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ABSTRACT

The work described in this thesis was carried out
in order to examine the practlical consegquences arising from
the assumption that a selsmic trace may be treated as
a finite interval of an infinitely long stationarj time
series. The "Predictive Decomposition Theorem® of Herman
Wold states that é general type of statlonary time series
may be considered to represent the running summation in
time of an infinite suite of wavelets; all of the stable
shape or form bs, but of random and uﬁcorrelated arrival
times and strengths. An artificilal serieg satisfying the
above requirements was generated, and subjected to a number
of mathematical tests in order to ascertain some of its
statistical and dynamic characteristics. Anélyses of a similar
nature could bé performed on other types of time serlies that
gatisfy stationary requirements, such as those that meet

.the conditlons of correlated decomposition.
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I. INTRODUCTION

During the past twenty-five years the seismic'method
has been used with ever Increasing success for the location
of sub-surface structural features that may bear oil.

In spite of the effectiveness of the technique, howéver,

a vast number of problems that have arisen since seismic
prospecting has been used as an explorétion tool remain

vet to be solved. Progféss'has proceeded simultaneocusly
along varlous lines. Our understanding of the nature of
propagation of the disturbance caqsed by tbe'explosion

of a charge of dynamite has improved considerably. Fleld
techniques have been refined to a degree where seismograph
surveys have been successful in areas where negative results
had been achieved several years before. Perhaps the greatest
advances have been made In the design and construction of
recording equipment. As a matter of fact, instrumentation

is probably at a more advanced stage than our understanding
of the information that it supplies the interpreter in the
office. |

Thue we often find that 1t is impossible to’pick
reflections on a seismlic trace where the noise 1s of a
nature that masks the signal, or reflection. The extraction
of the signal from a noisy seismogram is obviously a problem
of primary importance. Several alternate methods can be
used towards its soluﬁion. One, which we may call tue

determinicetic approach, involves writing down the differential



equations governing the behavior of a disturbance as it is
propagated through the medium, aﬁd finding solutions that
satlisfy the appropiate boundary conditions; and another,
which we may term the probabilistic approach, makes use of
concepts from statistics and information theory. In the
present investigationlwe ére concerned with the statisfical
method of attack.

No matter what approach 1s used, we must begin by
making a number of baslic assumptions. In varticular, We‘
assume that a selsmic pulse 1s propagated through the earth
as a wavelet of a certain shape which is dependent on
the absorption s?ectrum of the earth, and that a seismogram
consists of a succescslon of overlapping wavelets which have
reached the recording apparatus along various paths of
refraction andvreflection below the surface ofAthe ground .
This theory was first proposed by N. Ricker (1940); the
wavelet has come to be known as the "Ricker Wavelet".

‘Robinson (1954) has postulated a direct connection
between this "Wavelet Theory of Seismogram Structufe" and
the "Predictive Decomposition Theorem" of the statistician
H. Wold. The theorem states in essence that a certaln type
of a stationary time seriles consists of a dynamical, non-
statistical element, a wavelet shape b: and a random element,
a wavelet‘amplitude factor,gt. In the work that follows,
~a stationary time series will be consicdered to be one whose

integrated power spectrum 1s an absolutely contlnuous




function of frequencj. 4 time series is said to be
stationary 1if the probabllities associated with the series
are not 1ldentifled with any particular origin in time.
cuch a statlionary process meets the requirements of the,
Predictive Decomposition Theorem of Wold.

The running summation in time of the wavelet, where
thé wavelet shape b is successively weighted by a different
amplitude factor‘ft, generétes a statlonary time series Xy o
Robinson (1954) has shown that if a seismic trace is
indeed describable by Ricker's theory, then it may be
treated ag 2 finite plece of an infinitely long stationary
fime series, In particular, the Ricker wavelet becomes the
Wavelet shape b in this case.

In order to examine these concepts experimgntally, an
artificial series satisfylng the requirements of the
APredictive Decomposition Theorem was génerated.

The Ricker velocity type wavelet at infinity, V(uloo),
wag selected as the wavelet shapevbs, while the fandom

strengthé, or amplitude factors, were drawn from a ‘
suitable Normal Distribution Funcﬁion carefully tested
for true rén@omness. Normalized autocorrelation functions,
power spectfa; and vafianées were computed for various
sampling intervals of the generated serles. These calculations
were effected in order to secure a good pilcture of the
statistical characteristics of the generated artificial

time series. Provided that a selsmic trace may indeed be




descrlbed as a short interval of a stationary time series,
the investlgation presented in the followling pages may
serve to enhance our knowledge of the statistical and
mathematical behaviaur of a true seismogram. ‘

We thues hope to provide an artificial series
satisfying the criteria of a statlonary grocess. The
serieg generated in this manner wili be useful for future

controlled experiments reguiring the use of a truly

stationary serles sample.

IT. THEORY

The Wavelet Theory of Selsmogram Structure.

A selmsic trace may be considereé to represent the
recponse of a system composed of the medium and the
selsmometers to the excltation, the detonation of a charge
of dynamite. The wavelet theory 5f seismogramr structure,
proposed by N. Ricker in a series of papers (1940, 1941,
1043, 1944, 1945, 1949, 1953; a,b) holds that each trace of
a selmsic record may be considered to represent the result
of the running addition élong the time axis of a wavelet
of constant shape but varying amplitudes and times of arrival.
According to tne laws of wave propagation in a homogeneous,
isotropic medium, a disturbance remains unchanged in shape
as it is transmitted through this medium. Under these ldeal
conditione an initial impulsive disturbance representing the

explosion will be propagated in a completely unaltered



manner and received by the recording equipment in the form
of an impulée. Aé thile disturbance travels below the surface
of the earth, it will suffer a'certain nunker of reflections
ané refractions, but these will not alter the ghape of the
original pulse. It is assumed here that we are dealing

with perfect plane reflectors, and homogeneous, elastic,

and isotroéic media of propagation. This idealized seilesmic
trace will thus consist of a series of impulses of vhrying/
anplitudes and times of arrival, where each impulse represents
a reflection or refraction-of energy from the disturbance
from a layer at depth, (see Figure 1). Alternatively, it 1t
is aésumed'that the explosion can be mathematically repre-
seﬁted by a doublet, then the resulting seismogram should
consist of a geries of doublets whose varying amplitudés

and tlmes of arrival are again a result of refractions

and reflections at deoth.
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Figure 1. An ideal seismogranm consists of a series of

sharp splkes of warying amplitudes and times of arrival.
Each spike reoresents the arrival of reflected sr refracted
energy propagated form the site of the explosion.

It the‘earth would satisfy the ideal elastic wave equations,




the‘process of picking reflections‘wéuld be relafiﬁely
simple, provided that the sub—surfacergeometgj remainsg
reasdnably uncomplicated. It is of course an established
fact that actual seismograms do not at all resemble the
idealizatlions just described. Thls is a direct consequence
of the fact that the earth 1s not a perfectly elastic and
iéotropic medium and does therefore not satisfy ideal
elastic theory. However, the original acscsertion can be
somewhgt modified, and 1t may now be staﬁed that thé ¢istur-
" bance isg propagated in the form of a wavelet whoge shape is
determined by the absorption spectrum of thenearth for
elastic waves. A selismic trace is nbwAdefined to coneiet

of a running summation in time of a large number of these
Wavelets, whose shape 1s constant for a ziven disturbance
but whose amplitudés and instants of arfival vary‘in'time.v
These concepts may te worded 1n a soméwha£ different form
ag follows: a seimic trace conslets oan‘dynamical elémént,
the~shape'of the wavelet, and of two continually varying
élements, the amplitudes and times of arrival of these same

waveletls.

The Statistical Determination of Wavelets

One poeeikle method of approach that might be
employéd in order to extract useful information from a
seisﬁogram is to establish é process that effects a
separation of the dﬁnamical element in a seismic trace, the

wavelet sﬁape, from the two continually varying elements,
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the amplitudes and times of arrival of theée wavelets,
Let us.thua consider the ¢hape of a seimic wavelet to
revresent the response of the medium to the original
excitétion caused by the explosion. Let ﬁs assume glso
that the shape of this wavelet 1s physically stable,
that is, that its representation in the form of a set
of discrete ordinates is the solution of a'stable éiffefence
equation (Robinson, 1954). |
In order that the protlem may be tested éﬁatistically,
1t must be éssumed that 1t 1is nop possitle to vredict the
. arrival times and amplitudes‘of one wavelet from knowledge
of the arrival times and amplitudes of another wavelet.,
Using the notatlon of Robinson (1954), let us designate the
‘ stredﬁh, or amplitude of the wavelet arriving at time t by
the symbdlﬁ{t. Thus?k is a constant guantity for a giveﬁ
wavelet arriving at time t. Specifically, if the discrete
get of ordinates that describe théAshape of a wavelet
arriving at a time t 1s called (bgs B1s boye.svabg), then
the actual magnitude of thilis wavelet will be described by
the ordinates (€ by, € b, Y by by, (Bee Figure’E).
may ke called the strength, or weighting factor of the
wavelet by arriving at time t. Féom the forégoing discussion
1t becomes evident that tne quantitieSYt can be considered
to represent the sharp impulsive dlsturbances propagated |
through the medium, whose response is givén'by the wavelet

s which arrives at time t. Thus each wavelet forming part of
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2 selsmlec trace represents the response of the earth to an

lmpulse that has reached the selsmometer by a direct, a

refracted, or a reflected path.
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Flgure 2. The amplitude of a wavelet arriving at time t

s et oo

l1s determined by the strength of the welghting factor .

For the purposes‘of the oresent investigation, the
quantities {, are assumed to be "random variasbles". Robinson
(1954) explains that the use of the term "random variatle
S¢"does not mean that the values of these quantities are
completely uncertain, since they are fixed by the geologie
characteristics of the medium that the disturbance traverses.
In spite of thie apparently negative factor, it turné'out
that one cannot generally predict in advance the expected
arrival time and strength of a selemic wavelet before the

trace 1s actually recorded. Such incomplete information can

therefore still be tested from the statistlcal point of view.
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The eense 1in which the‘gtare agsumed to be random
is that they are uncorrelated. This does not necessarily

imply that they are independent; we merely ascume that
E(‘gt ‘gtw);o T#O (1)

where E isg the-ekpectation symbol.

We return again to a selsmic trace Xy, which 1is the
result of performing e running summation in timé of o
stable wavelet of chape b, and randam amplitudes?t .

Mathematically, this situation may be expressed as

00
X b %l ~w<E(roo (2)
' 80 .
‘

if it be assumed that the above eguation holds for all
time betwesn minus and plus infinity. It turns out
(Robinson, 1954) that equation (2) is the mathematical
statement of the Preéictive Decomposition Theorem, due
to the Swedish statisticlan Herman Wold, for a stationary
time_series with an absolutely continuous spectral distrib-
utioﬁ function. Consequently, if a ssismic trace is indeed
compcsed of wavelets of random, upcorrelated strengths and
arrival times, then the trace may for the purposes of the
oresgent mathematical analysis be considered fo be a
statlionary time series. It 1s next assumed that our
seismic trace 1is of a lengfh sufficient to warrant the
‘application of concepte from time series analysis to 1ts
study. The validity of this aseumption is.diséussed by

Wadsworth et al (1953%) and Smith, (1954).
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The Structure of a Stationary Series

A stationary process possessing an absolutely
continuous spectral distribution function may be

adequately described by the Precd¢lctive Decomposition

Theorem of Wold, (1938). The theorem states in essence

that such a_stationary time series is separable into

two components -2 dynamical,vstable element b, and a
random element ft.

Let us assume a stationary process L where -0 L{+0Q
which has an absolutely contlnuous spectral distribution.

Then the process may be described by the decomposition

xe s Po%y + b, % + b, Cpat bt (3)
or, 00
xt= zbsft-a ~ 0 o
sto (4)

In the above expression t 1s the discrete time parameter.
The random elements are linear in Xy, X4_q, xt_g....;.,
have zero mean, E(ft)ao , and are mutually uncorrelated,
E(ﬁ&,ﬂ%dr "~ # O (Robinson, 1954).

The wavelet theory of seismogram structure, pro@osedv
by N. Ricker in a series 6f papers (1940, 1943, 1945)
holds that each trace of a seismic record may be considered
to represent the result of the runhing addition along the
time axis of a wavelet of constant shape but varying

amplitudes and times of arrival. If damping be neglected,
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(which is a reasonable assumption to make, sincé damping
effects become negligible in the reglon not in the immediate
vicinity of the shotpoint), an initial impulsive disturbance
representing the explosion will be propagated through the
earth in the form of a wavelet whosevshape i1s determined
exclusively by the earth's absorption spectrum. The Shapé

of this=wavelet remalins unaltered during its entire refraction
or reflection path from the explosion site to the recording
geophone. Hovever, the strengths_and times of arrival of
cach wavelet at the'recording instrument are random and
uncorrelated.

If we accept the'assumptions stated above, it becomes
possible to descrite a selismic trace meeting Ricker's
criteria by Wold's Preéictive Deﬁompdsition Theorem.

We may then assume that our selsmic trace is a stationary
process, and that 1t 1s therefore completely described by
equation (4) in the 1imit.

- In order to effect the'separation of the random
from the non-random, dynamic bs's, 1t becomes nécessary to
find a method to average out the random componentsft s SO
that the result.of such an operation on the time seriles
be the stable wavelet shape b. Once this wavelet shape has
been found, it must next be removed fron the trace; when
this has been accompliched, there should remain the residual,
random components‘ft, which corresponé to the prediction

errors of Wadsworth et al (1953). For a more detailed
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treatment of this problem, the reader is referred to
Robinson, (1954).

Robinson shows that é pﬁrely random and uncorrelated
process hag a white-light power spectrum and autocorrelétion
coefficients which vanish except for the zeroth lag.__

This leads to the result that the autocorrelétion of

a statlonary time series'that satisfles predictive deéom—
pogition will'approach the autocorrelation of the generating
wavelet by in the limit. Such an autocorrelating process
effectiﬁély.averages out the random, non-dynamical element?t .

The Fourier Transform of the autocorrelation function
of the series xt,4§,mj, is
| )

£ 4. Me ™" = §(0) 2§, ()

T ~00

(5)

where @b(uﬂ is the power spectrum of not only the time
series Xt’ tut also of the wavelet b, again provided that
theft%'be mutually uncorrelated random variables. The

Fourier Transform of the wavelet by can be written as
_ I, .
- -.Lwt (6)
8(w) = tZO b e

~and it can further be shown that

|8(w)1" = §, () o

that 1s, that the sguare of the absolute value of the

wavelet amplitude spectrum is.equal to the power spectrum
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of the time series,

It i1s finally desirable to gain an idea of the
rough measure of spread of the series oréinates X4+ For
this purpose we introduce the concept of variance. Let
X be a random variable assumiag the values Xqs xg, x3,
coeeoXy with corresponding probabilities f(xq), f(xg)....

f(xk). The mean value, or expectation of X is defined

by
E(X) = Z"s*ﬁ*ﬂ*/‘* | (8)

provided that this serles converges absolutely.

The quantity

ok
‘E(XP)=ZX,; tQx;), | (9)
$ 3! ' ~

where r is an inﬁeger equal to or greater than zero 1is

known as the rb% moment of X about the origin. In particular,
if r=2, the resulting quantity E(X2) is called the second .
moment of X akout the origin. Its existenée is a

sufficient conditlon for the existence of the mean,

= E(x) | | (10)
Introducing the quantity Xt/*’ the deviation from the meaan,

we may write

R[] EQC) o s Vac ) gy
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Either the first or the second member of (11) defines

‘the wvariance of the variables X.

III.- DEBCRIPTICN OF EXPERIMENT

Choilce of Wavelet

N. Ricker (1941) presents the theoréticai derivation
df the wavelet shapes that should‘bé obtservable 1in s visco-
elastic medium at various relative distances from the site
of the dynamite detonation. He gives two families of such
wavelets, one of whoch includes those that are recorded
by a2 simple displacement type selsmometer, while{fhe second
includes wavelets that a velocity type seismometer would
record. These veloclty type wavelets are of course merely

the time derivatives of those of the displacement type.

Ricker's notation,

U(ﬁlX) displacement type wavelet,

V(u|X) velocity type wavelet,
where X 1s the relative distance from the explosion site,
will be used here in a similar fashlon. From Ricker's
experimental work in the Pilerre shaie of Colorado it 1is
evident that all wavelets V(u|X) occur so near the shot-
point that they can, if at all, only be recorded within
the first few milliseconds time interval of a seismogram.
It 1s therefore thne Ricker wavelet "at infinity", V(uloo)
or U(ulod, (which is symmetric), that 1s of interest here.

For thls reason the wavelet selected for the generation




18

of our artificial seismogram was Rickef‘s V(u]oo), whose
discrete numerical ordinate values are given in the
appendix of his 1945 paver, The velociﬁy type wavelet
was chosen rather than the corresponding displacement
type since most currently used selsmometers are of thev

velocity class.

GenerationAgi Stationary Series

It 1s recalled that the time series X composed of
a stable wavelet shape bs and random amplitude components

gt can'be written as

. o
Xe= Lb%., -oltw - (12)

$<0 .
Since & selsmogram 1s not recorded for an Infinite length
of time after the detonation of the charge, equation (12)
is replaced by the expréssion
T S

Xy S (xo)x”.......x?)'-‘szr.obs‘ft,é o(t¢M  (13)
If £Ee length of the resulting series is sufficiently.great,
the application of analysis that is only justified for
equation (12) in a véry strict sehse can aléo be'employed
in the case of (13). In order to 1llustrate the summation
procedure, the series arising from the running acddition
of three wavelets of stable shape b, where the wavelet
b is dieplaced thréee times along the time axlis, multi-
plied each time by a #eighting factor”gf and summed.over_

overlapping portions of adjacent wavelets, -1s now examined.
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For these parameter values, eguation (13) gives us
%02 $, be
X, = b, +9$ b,
xzzfo ‘oz +Y“o‘ -&‘le%
%, b

Xy * + € b %k,
X* : gl LB * ‘gz LZ
xg b,

The present example assumes that the wavelet b is

descrited ty four discrete ordinate values bo’ bl’ bg, .

and b}‘ In the more general case (b, byseennabp; ¥ fi,u”.fK),

matrix notatlon is found to be more suitable. Thus we may

write

/

[x1=[%][b] (15)
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The welghting factors Yt. were selected as entries
- 11,000 through 12,450 of Wold's (1948) random number

éeviates. Theée random deﬁiates'were constructed to fit
a Normal Distribution Function and carefully tested for
true randomness by the author of the tablés. Both the
wavelet ordinates and Wold's random numbers were scale-
factored in order to permit their qonvenient use in a
pfogram for the ¥.I.T. Whirlwind High-épeed Digital
Computer, where most of the calculations oresented in this
thesls were carfied out. |

“Tne series computed in this manner and the generating

wavelet are shown in Figure 19, and the ordinate values

Xi are presented in Table I. The generated series cénsists
of 1407 discrete ordinates; the generating wavelet consists
of 52 disdrete ordingtes. The series, composed of a dynamic
element bs'and a rawndom element ?t , Should thnue conform

to the regquinpments of the Predictive Deqomposition Theorern
of Wold. It now becomes necessary to subject this series

to the mathematical analysis outlined previously in order
to discover how well it actually does satisfy the reguire-

ments of thnls theorem.

Computation

 In order to gain sn idea of the spread of the
magnitudes of the series ordinates Xy, the running variances
of the series for interval lengths of 5, 10, 20, 40, 80,

and 160 ordinates were computed. These results are shown
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graphically in Figure 17.

The normalized Wiener autocorrelation function is

given by
Nin-}-7
ZlN(x X)(XH? X)
)\ = : £ 2 =0 |.M
P (V) N+a-| g (17)
21 (% =
where
| Nan-|
Xy
7 12N

Here Xy ie the value of an orcédinate of the series to be
autocorrelated, X the mean of this series, N the index
number of the first Xy that is used in the process, n
the nunber of xi's used, and M the highest lag desired.
The functiony, Wwas computed for the generated series and
random numkers Yt over a variety of interval lengths

and positions. The'intervals are specified in Figuresg 5
through 10, where the corresponding granhs of § (Yare
“presented.

The power spectrum, or cosine transform

()= Z,d?“ ) a> cah ¥ (18)

N-l

whereq, ()is the autocorrelatlon function defined in

equétion (17), @ the freguency in radiané/sec., and
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h the spacing of the serles ordinates in millifeconds,
was computed for the autocorrelations of Figures 5 through
10. These sepectra are shown in Figures 11 through 13,
Smoothing afipower séectra was effected by anplication
- of the Tukey-Hamming formulae, (See Ref.):

Upg® 0.34 L, + 0,46 [,
U, : 0.54L, + 0.23(Letl,)

U s 0.84L, +0.23(L,+L,)

2 (19)

Ut 054 L v0.23(L, +L,)
Vo 0.54L, +046l,

WhHere L iveveenos r he unsmoothed, and U ......
o Lm—l are the unsmoot s an LO Um

the smoothed spectral line powers.

IV. EVALUATION

An examination of the autocorrelation functions Q“AT)
as shown in Flgures 5 through 10 revelas & considerable
similarity of eachq,®with the the autocorrelation function
wa(*) of the Ricker wavelet, V(ulo ) . Ouo® 1s shown at the
top of each'suite of autocorrelation curves for purposes
of comparison. The shapes of the functions through
approximately the twentieth lag (7229 ) are almost identical
within the limits of the approximation made here i.e.,
the assumption that a sufficiently lonz finite interval
of a serles generated ty the method described previously
cén be treated as a stationary process. The autocorrelation

functions ihvariably lose most of their pOWerwafter the
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twentieth lag. Figure 10 presents normalized Wiener
éutocorfelation curves of the random numbers ?t for
five différent sampling intervals.

| In the ideal casé the autocorrelation of a serles
of random numbers should be a splke atT:0 , since all
lags beyond the zeroth vanish. The computed curves
a?proximately confirm this thebretical result. The
deviations may be employed as a measure for the random-
ness of the numbers uéed for the generation of our series.
Tt is seen that the "noise" teyond the first three or four
lags 1s: the least for the largest éampling intervals
1=0-800 and 1=52-1152; this result is to be expected since
the agreement with theory should be best for the 1argést
sampling interval taken. |

The convolution of the autocorrelation function of

the generating wavelet V(uloo), 4, (¥, with the auto-
correlation function of the random number set for sampling

interval I,4 (T)  should approximate the autocorrelation

%1

Qﬁq(T? of the generated series x; for the same samoling

interval. In other words,

)z P T
Gy )2 G (kg () | (20)
This result is clearly shown in the curves presented, and
the rapid decay of power of tne autocorrelation function

for the various sampling intervals of the series X4 is due
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to the spikelike shapes of theQQS!UD%». We may iook at this
matter from a slightlj different angle. The wavelet

shape b used in the generation of the artificial series

xi consisted of 52 dlscrete ordinate values. Gonsequently,
the autocorrelation function of any series generated from
this particular b by.our process should tend to zero after
the 52nd. lag -~ Dbecause all further contributions to QXXI (v
teyond this point should be due to the random amplitude
factors ?t ,vwhose autocorrelation, Q‘gI(T), has been

shown to approach a spike at the origin,@”=0).

The power spectraﬁ‘ﬁn)were computed from all the auto-
correlation functlons previously claculated. The spectra
shown in Figures 11 to 13 do not denote much uniforﬁity
individually, although they possess most of their power
within the came general freguency range. Figure 20
shows the smoothed power spectrgm of the generating
Ricker wavelet, V(u|oo), compared to the average of smoothed
spectra of the intervals 1=0-225; 225-450; and 450-675.

We sée.from Figure 20 that although indiVidual espectra are
not‘generally.too gimilar to the generatiﬁg wavelet spec-
trum in most cases, thelr average does show géod agree=

ment with the spectrum of the generating wavelet. In other
words, the spectral estimates are confined to the expected
frequency range. Oscillation about the true wavelet spectrum
oCceurs randomly, 80 that the averaged spectrum shows tetter

agreement with the wavelet spectrum than doe the individual
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spectra.

Figure 15 shows the proper spectra for the auto-
correlatidn functions of various gampling lengtﬁs of
the random numbers‘gt. It is seen that the distributioﬁ
of power is reasonably un;form at all frequency rangeé,

| sovthat the theoretical result which predicts a white

1ight,8pectrum for a suite of mutually uncorrelated random
variables ft'is ﬁpheld within the limits of our aporox-
imation. A more constant spectrum for the entire fre-
quency range would have been secured for greater sampling
intervals than the ones that have been selected for the
exoeriment described here.

The broken curve of Figure 14 presents the result of
a multiplication of the compﬁtéd unsmoo thed power
gpectrum of the first 1100‘}t @nployed'for the generation
of the series.by the unsmoéthed vower soectrum of the
Ricker wavelet, V(u| oo). For purposes of coﬁparison,
the unsmoothed power spectrum computed for the corres-
ponding first 1100 xi's of the generated series is shown
on the same‘graph. The similarity of these curves is
evident, since both peak with reasonabtly similar.
amplitudes ant n=4, 6, and 8. In order to éee why this
result should be expected from theory, we may take the

Fourier Transform of both eides of equation (20) so that

b1 (@) = §, () by (w) e
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where §‘1®0 ig the power spéctrum of the series of
interval I, @VVQ») the power spectrum of the wavelet
V(uloo), amﬂégtbﬂ the power spectrdm of the réhddm nﬁmbers
'ft used for the generation of the interval T of the
series Xi. Thus we have experimentally confirmed the
theoreticél,result predicted by equation (21). Figure

17 presents varisnce curves computed from the generated
series for sampling intervals of'5, 10, 20, 40, 80, and
160 xi‘s. Figure 18 presents variance curves computed for
an actual noisy selismogram. A comparison of ihese curves
with those computed for the artificlal series reveals a

a similarity of general behaviour whilch suggests that our
generated artificial stationary series will in fact simulate
characterietics of a true selsmogram.

| Figure 16 presents a comparison between the spectral
estimates on é'"noisy" seismogram and on the stationary
series generated in this thesis. The varlability of these
spectral estimates seems to be rathe? similar in both
instances, This fact.would serve to indicate that
Predictive Decomposition.is applicable to both situations
in thie daée. Tt should be clearly emphasized, hoﬁever,
that such an analysis is only warranted when the selsmic
trace satlisfiss the conditlons imposed by Predictilve

- Decomposlition; the technique must be cuitable modified_
for other situationé that might presumably ariée. Thus

a trace whose nolse 1is not completely random, but which
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rather involves a definitely non-random, deterministic
element (such as corfeiaied wavelet strengths) ‘may be
treated by correlative decomposition techpiques. These
are described in greater detail in M.I.T. G.A.G. Report
No. 9 (March 15, 1955).

V.- CONCLUSIONS

We have generated an artificial series Dby a mechanism
suggestéd by the "Predictive Decomposition Theorem" of
H. Woid, and we have computed normalized Wiener auto-
correlation functions, power spectra, and variances for
various sampling intervals of this series. If we make the
assumption that a seismic trace may be treated a a finite
sezment of a statlonary time series which consists of a
dynamic element by and a random element‘gh, then the behavior
of the autocorrelation functions; power spectra, and
variances computed for our artificial case should be a
reasonable indication of the corresponding behavior of
these entities in an actual seismogram.

It should be emphasized that the work presented in
this thesis is the result of an experiment performed on
one serles generated with the use of one particular
wavelet shape bs and a suite of random varlables chosen
from one particular distribution function. It does therefore
not necesearily follow that the parameters that have

been investlgated here will show identical behavior
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if ihe ssries is genefated with other wavelet shapes and
use is made of random ﬁumbers gelected from a différent
distribution function.

The serles genération pfocedure outlined in the
preceding pages may be generalized to take into account
not only random amplitudes of the wavelet bs, but also
random arriﬁal times. While such random arrivals and
gtrengths might well be drawn from different distribution
functions, it is possible to devise one such distribution
function ffom which both random ampnlitudes and arrival
times of the wavelet bs may be'drawn. Let us divide our
time axis into equal intervals of length h, and require

that at each point tl.;....ts......tn (Figure 3) there

e h —
i — L. I A A 1 ;T‘
E, t, by ot tme

Figure 3. The time axlis of a seilsmic trace is divided
into equal intervals of length h.

exiet a finlte, none-zero probability that no wavelet arrive
gt}time ts;——-in other words, that the amplitudevfactor be
of zero magnitude at time ts. |

Such conditions are satiefied by a distribution
function i1llustrated in Filgure 4, where a splke of
infinitesimal width but finite area A 1s added to a normal
distribution function at the orizin. If the area under the

normal curve 1s taken to be unlty, then the probabllity
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Area=A.

sa=]1

) - T

Figure 4. Distribution Function from which both the
random amplitudes and arrival times of the wavelet
may be drawn.

of zero wavelet amplitude at tlme t_ 1s given by

POt FA ! (22)
A procese bf thie nature may be shown to lead to a Poisson
type éistribution function in the arrival times.

Additional computations of thie type should moet
ceriainly be carried out in the future, so that the regultis
from such calculations can be extensgively compared with
autoporrelations, épectra, variances, and other statis-
tical criteria found for actual selsmograms. In particular,
it might well Dbe advisabie to geﬁeralize the series
-generating procedure 1in the sense oﬁtlined above.
fuch a series might perhaps be‘found to be an even more
satisfactory t00l in our understanding of the étatistical

characteristics of a sslsmic trace.
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ORDINATES x1 OF GENERATED SERIES
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-10917 ~10569 ~9870
-2966 . -1055 +955 +2422 +3405
+4079 - +3665 +3262 +3099 +2579
+2888 +3374 +3459 +3155 +3014
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-2545 -2335 -2187 -2015 -1731
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TABLE IR 1
ORDINATES x, OF GENERATED SERIES

| Xi
470[ +os29 41355 +6 -912  -1906  -2624 -342, .
= ) o
-3608 ~3187 -283k4 -1984 -1071 - 289 + 438 +3'g‘+§
+1400 +1213 +1121 4 625 + 191 - 298 - 829 -1091
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-3592 -2505 -123 64 +1428 +2731 +3909 +4865




TABLE i I
ORDINATES x1 OF GENERATED SERIES

’ [
1 )(\
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FIGURE 18.- VARIANGE CURVES OF AN AGTUAL "NOTSY"
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RECORD 12.4 VARIANCE CURVES (2p = 10)
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