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Abstract

We study the problem of the existence of a giant component in a random multipartite
graph. We consider a random multipartite graph with p parts generated according to a
given degree sequence nd

i (n) which denotes the number of vertices in part i of the multi-
partite graph with degree given by the vector d. We assume that the empirical distribution
of the degree sequence converges to a limiting probability distribution. Under certain mild
regularity assumptions, we characterize the conditions under which, with high probability,
there exists a component of linear size. The characterization involves checking whether the
Perron-Frobenius norm of the matrix of means of a certain associated edge-biased distribu-
tion is greater than unity. We also specify the size of the giant component when it exists.
We use the exploration process of Molloy and Reed to analyze the size of components in
the random graph. The main challenges arise due to the multidimensionality of the ran-
dom processes involved which prevents us from directly applying the techniques from the
standard unipartite case. In this paper we use techniques from the theory of multidimen-
sional Galton-Watson processes along with Lyapunov function technique to overcome the
challenges.

1 Introduction

The problem of the existence of a giant component in random graphs was first studied by
Erdös and Rényi. In their classical paper [ER60], they considered a random graph model
on n and m edges where each such possible graph is equally likely. They showed that if
m/n > 1

2 + ǫ, with high probability as n → ∞ there exists a component of size linear in n
in the random graph and that the size of this component as a fraction of n converges to a
given constant.

The degree distribution of the classical Erdös-Rényi random graph has Poisson tails.
However in many applications the degree distribution associated with an underlying graph
does not satisfy this. For example, many so-called “scale-free” networks exhibit power law
distribution of degrees. This motivated the study of random graphs generated according
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to a given degree sequence. The giant component problem on a random graph generated
according to a given degree sequence was considered by Molloy and Reed [MR95]. They
provided conditions on the degree distribution under which a giant component exists with
high probability. Further in [MR98], they also showed that the size of the giant component
as a fraction of the number of vertices converges in probability to a given positive constant.
They used an exploration process to analyze the components of vertices of the random
graph to prove their results. Similar results were established by Janson and Luczak in
[JL08] using different techniques based on the convergence of empirical distributions of
independent random variables. There have been several papers that have proved similar
results with similar but different assumptions and tighter error bounds [HM12], [BR12],
[Rio12]. Results for the critical phase for random graphs with given degree sequences were
derived by Kang and Seierstad in [KS08]. All of these results consider a random graph on
n vertices with a given degree sequence where the distribution is uniform among all feasible
graphs with the given degree sequence. The degree sequence is then assumed to converge to
a probability distribution and the results provide conditions on this probability distribution
for which a giant component exists with high probability.

In this paper, we consider random multipartite graphs with p parts with given degree
distributions. Here p is a fixed positive integer. Each vertex is associated with a degree
vector d, where each of its component di, i ∈ [p] dictates the number of neighbors of the
vertex in the corresponding part i of the graph. As in previous papers, we assume that
the empirical distribution associated with the number of vertices of degree d converges to
a probability distribution. We then pose the problem of finding conditions under which
there exists a giant component in the random graph with high probability. Our approach
is based on the analysis of the Molloy and Reed exploration process. The major bottleneck
is that the exploration process is a multidimensional process and the techniques of Molloy
and Reed of directly underestimating the exploration process by a one dimensional random
walk does not apply to our case. In order to overcome this difficultly, we construct a linear
Lyapunov function based on the Perron-Frobenius theorem, a technique often used in the
study of multidimensional branching processes. Then we carefully couple the exploration
process with some underestimating process to prove our results The coupling construction
is also more involved due to the multidimensionality of the process. This is because in
contrast to the unipartite case, there are multiple types of clones (or half-edges) involved
in the exploration process, corresponding to which pair of parts of the multipartite graph
they belong to. At every step of the exploration process, revealing the neighbor of such
a clone leads to the addition of clones of several types to the component being currently
explored. The particular numbers and types of these newly added clones is also dependent
on the kind of clone whose neighbor was revealed. So, the underestimating process needs to
be constructed in a way such that it simultaneously underestimates the exploration process
for each possible type of clone involved. We do this by choosing the parameters of the
underestimating process such that for each type of clone, the vector of additional clones
which are added by revealing its neighbor is always component wise smaller than the same
vector for the exploration process.

All results regarding giant components typically use a configuration model corresponding
to the given degree distribution by splitting vertices into clones and performing a uniform
matching of the clones. In the standard unipartite case, at every step of the exploration
process all available clones can be treated same. However in the multipartite case, this is
not the case. For example, the neighbor of a vertex in part 1 of the graph with degree d

can lie in part j only if dj > 0. Further, this neighbor must also have a degree d̂ such
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that d̂i > 0. This poses the issue of the graph breaking down into parts with some of the p
parts of the graph getting disconnected from the others. To get past this we make a certain
irreducibility assumption which we will carefully state later. This assumption not only
addresses the above problem, but also enables us to construct linear Lyapunov functions by
using the Perron-Frobenius theorem for irreducible non-negative matrices. We also prove
that with the irreducibility assumption, the giant component when it exists is unique and
has linearly many vertices in each of the p parts of the graph. In [BR12], Bollobas and
Riordan show that the existence and the size of the giant component in the unipartite case
is closely associated with an edge-biased branching process. In this paper, we also construct
an analogous edge-biased branching process which is now a multi-type branching process,
and prove similar results.

Our study of random multipartite graphs is motivated by the fact that several real
world networks naturally demonstrate a multipartite nature. The author-paper network,
actor-movie network, the network of company ownership, the financial contagion model, het-
erogenous social networks, etc. are all multipartite [New01], [BEST04], [Jac08]. Examples
of biological networks which exhibit multipartite structure include drug target networks,
protein-protein interaction networks and human disease networks [GCV+07], [YGC+07],
[MBHG06]. In many cases evidence suggests that explicitly modeling the multipartite
structure results in more accurate models and predictions.

Random bipartite graphs (p = 2) with given degree distributions were considered by
Newmann et. al in [NSW01]. They used generating function heuristics to identify the
critical point in the bipartite case. However, they did not provide rigorous proofs of the
result. Our result establishes a rigorous proof of this result and we show that in the special
case p = 2, the conditions we derive is equivalent to theirs.

The rest of the paper is structured as follows. In Section 2, we start by introducing
the basic definitions and the notion of a degree distribution for multipartite graphs. In
Section 3, we formally state our main results. Section 4 is devoted to the description of
the configuration model. In Section 5, we describe the exploration process of Molloy and
Reed and the associated distributions that govern the evolution of this process. In Section
6 and Section 7, we prove our main results for the supercritical case, namely when a giant
component exists with high probability. In Section 8 we prove a sublinear upper bound on
the size of the largest component in the subcritical case.

2 Definitions and preliminary concepts

We consider a finite simple undirected graph G = (V, E) where V is the set of vertices and
E is the set of edges. We use the words “vertices” and “nodes” interchangeably. A path
between two vertices v1 and v2 in V is a collection of vertices v1 = u1, u2, . . . , ul = v2
in V such that for each i = 1, 2, . . . , l − 1 we have (ui, ui+1) ∈ E . A component, or
more specifically a connected component of a graph G is a subgraph C ⊆ G such that
there is a path between any two vertices in C. A family of random graphs {Gn} on n
vertices is said to have a giant component if there exists a positive constant ǫ > 0 such
that P(There exists a component C ⊆ Gn for which |C|

n ≥ ǫ) → 1. Subsequently, when a
property holds with probability converging to one as n → ∞, we will say that the property
hold with high probability or w.h.p. for short.

For any integer p, we use [p] to denote the set {1, 2, . . . , p}. For any matrix M ∈ Rm×n,
we denote by ‖M‖ , maxi,j |Mij |, the largest element of the matrix M in absolute value.
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It is easy to check that ‖ · ‖ is a valid matrix norm. We use δij to denote the Kronecker
delta function defined by

δij =

{

1, if i = j,

0, otherwise.

We denote by 1 the all ones vector whose dimension will be clear from context.
The notion of an asymptotic degree distribution was introduced by Molloy and Reed

[MR95]. In the standard unipartite case, a degree distribution dictates the fraction of ver-
tices of a given degree. In this section we introduce an analogous notion of an asymptotic de-
gree distribution for random multipartite graphs. We consider a random multipartite graph
G on n vertices with p parts denoted by G1, . . . , Gp. For any i ∈ [p] a vertex v ∈ Gi is associ-
ated with a “type” d ∈ Zp

+ which we call the “type” of v. This means for each i = 1, 2, . . . , p,

the node with type d has d(i) , di neighbors in Gi. A degree distribution describes the frac-
tion of vertices of type d in Gi, i ∈ [p]. We now define an asymptotic degree distribution as
a sequence of degree distributions which prescribe the number of vertices of type d in a mul-
tipartite graph on n vertices. For a fixed n, let D(n) ,

(

nd
i (n), i ∈ [p],d ∈ {0, 1, . . . , n}p

)

,
where nd

i (n) denotes the number of vertices in Gi of type d. Associated with each D(n)

is a probability distribution p(n) =
(

nd

i (n)
n , i ∈ [p],d ∈ {0, 1, . . . , n}p

)

which denotes the

fraction of vertices of each type in each part. Accordingly, we write pdi (n) =
nd

i (n)
n . For any

vector degree d the quantity 1′d is simply the total degree of the vertex. We define the
quantity

ω(n) , max{1′d : nd
i (n) > 0 for some i ∈ [p]}, (1)

which is the maximum degree associated with the degree distribution D(n). To prove our
main results, we need additional assumptions on the degree sequence.

Assumption 1. The degree sequence {D(n)}n∈N satisfies the following conditions:

(a) For each n ∈ N there exists a simple graph with the degree distribution prescribed by
D(n), i.e., the degree sequence is a feasible degree sequence.

(b) There exists a probability distribution p =
(

pdi , i ∈ [p],d ∈ Zp
+

)

such that the se-
quence of probability distributions p(n) associated with D(n) converges to the distri-
bution p.

(c) For each i ∈ [p],
∑

d 1
′dpdi (n) →

∑

d 1
′dpdi .

(d) For each i, j ∈ [p] such that λj
i ,

∑

d djp
d
i = 0, the corresponding quantity λj

i (n) ,
∑

d djp
d
i (n) = 0 for all n.

(e) The second moment of the degree distribution given by
∑

d(1
′d)2pdi exists (is finite)

and
∑

d(1
′d)2pdi (n) →

∑

d(1
′d)2pdi .

Note that the quantity
∑

d 1
′dpdi (n) in condition (c) is simply

∑
v∈G

deg(v)

n . So this
condition implies that the total number of edges is O(n) , i.e., the graph is sparse. In

condition (e) the quantity
∑

d(1
′d)2pdi (n) is same as

∑
v∈G

(deg(v))2

n . So this condition says

that sum of the squares of the degrees is O(n). It follows from condition (c) that λj
i < ∞

and that λj
i (n) → λj

i . The quantity λj
i is asymptotically the fraction of outgoing edges from

Gi to Gj . For p to be a valid degree distribution of a multipartite graph, we must have for
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each 1 ≤ i < j ≤ p, λj
i = λi

j and for every n, we must have λj
i (n) = λi

j(n). We have not
included this in the above conditions because it follows from condition (a). Condition (d)
excludes the case where there are sublinear number of edges between Gi and Gj .

There is an alternative way to represent some parts of Assumption 1. For any probability
distribution p on Zp

+, let Dp denote the random variable distributed as p. Then (b), (c)
and (e) are equivalent to the following.

(b’) Dp(n) → Dp in distribution.

(c’) E[1′Dp(n)] → E[1′Dp].

(e’) E[(1′Dp(n))
2] → E[(1′Dp)

2].

The following preliminary lemmas follow immediately.

Lemma 1. The conditions (b’), (c’) and (e’) together imply that the random variables
{

1′Dp(n)

}

n∈N
and

{

(

1′Dp(n)

)2
}

n∈N
are uniformly integrable.

Then using Lemma 1, we prove the following statement.

Lemma 2. The maximum degree satisfies ω(n) = o(
√
n).

Proof. For any ǫ > 0, by Lemma 1, there exists q ∈ Z such that E[(1′Dp(n))
21{1′D>q}] < ǫ.

Observe that for large enough n, we have max{ω2(n)
n , q

2

n } ≤ E[(1′Dp(n))
21{1′D>q}] ≤ ǫ.

Since ǫ is arbitrary, the proof is complete.

Let S , {(i, j) | λj
i > 0} and let N , |S|. For each i ∈ [p], let Si , {j ∈ [p] | (i, j) ∈ S}.

Note that by condition (a), the set of feasible graphs with the degree distribution is
non-empty. The random multipartite graph G we consider in this paper is drawn uniformly
at random among all simple graphs with degree distribution given by D(n). The asymptotic
behavior of D(n) is captured by the quantities pdi . The existence of a giant component in
G as n → ∞ is determined by the distribution p.

3 Statements of the main results

The neighborhood of a vertex in a random graph with given degree distribution resembles
closely a special branching process associated with that degree distribution called the edge-
biased branching process. A detailed discussion of this phenomenon and results with strong
guarantees for the giant component problem in random unipartite graphs can be found in
[BR12] and [Rio12]. The edge biased branching process is defined via the edge biased degree
distribution that is associated with the given degree distribution. Intuitively the edge-biased
degree distribution can be thought of as the degree distribution of vertices reached at the
end point of an edge. Its importance will become clear when we will describe the exploration
process in the sections that follow. We say that an edge is of type (i, j) if it connects a
vertex in Gi with a vertex in Gj . Then, as we will see, the type of the vertex in Gj reached

by following a random edge of type (i, j) is d with probability
dipdj

λj
i

.

We now introduce the edge-biased branching process which we denote by T . Here T
is a multidimensional branching process. The vertices of T except the root are associated
with types (i, j) ∈ S. So other than the root, T has N ≤ p2 types of vertices. The root is
assumed to be of a special type which will become clear from the description below. The
process starts off with a root vertex v. With probability pdi , the root v gives rise to dj

5



children of type (i, j) for each j ∈ [p]. To describe the subsequent levels of T let us consider

any vertex with type (i, j). With probability
dip

d

j

λj
i

this vertex gives rise to (dm−δmi) children

of type (j,m) for each m ∈ [p]. The number of children generated by the vertices of T is
independent for all vertices. For each n, we define an edge-biased branching process Tn
which we define in the same way as T by using the distribution D(n) instead of D. We will
also use the notations T (v) and Tn(v) whenever the type of the root node v is specified.

We denote the expected number of children of type (j,m) generated by a vertex of type
(i, j) by

µijjm ,
∑

d

(dm − δim)
dip

d
j

λj
i

. (2)

It is easy to see that µijjm ≥ 0. Assumption 1(e) guarantees that µijjm is finite. Note
that a vertex of type (i, j) cannot have children of type (l,m) if j 6= l. But for convenience
we also introduce µijlm = 0 when j 6= l. By means of a remark we should note that it is
also possible to conduct the analysis when we allow the second moments to be infinite (see
for example [MR95], [BR12]), but for simplicity, we do not pursue this route in this paper.

Introduce a matrix M ∈ RN defined as follows. Index the rows and columns of the
matrix with double indices (i, j) ∈ S. There are N such pairs denoting the N rows and
columns of M . The entry of M corresponding to row index (i, j) and column index (l,m)
is set to be µijlm.

Definition 1. Let A ∈ RN×N be a matrix. Define a graph H on N nodes where for each
pair of nodes i and j, the directed edge (i, j) exists if and only if Aij > 0. Then the matrix
A is said to be irreducible if the graph H is strongly connected, i.e., there exists a directed
path in H between any two nodes in H.

We now state the well known Perron-Frobenius Theorem for non-negative irreducible
matrices. This theorem has extensive applications in the study of multidimensional branch-
ing processes (see for example [KS66]).

Theorem 1 (Perron-Frobenius Theorem). Let A be a non-negative irreducible matrix.
Then

(a). A has a positive eigenvalue γ > 0 such that any other eigenvalue of A is strictly
smaller than γ in absolute value.

(b). There exists a left eigenvector x of A that is unique up to scalar multiplication asso-
ciated with the eigenvalue γ such that all entries of x are positive.

We introduce the following additional assumption before we state our main results.

Assumption 2. The degree sequence {D(n)}n∈N satisfies the following conditions.

(a). The matrix M associated with the degree distribution p is irreducible.

(b). For each i ∈ [p], Si 6= ∅.

Assumption 2 eliminates several degenerate cases. For example consider a degree dis-
tribution with p = 4, i.e., a 4-partite random graph. Suppose for i = 1, 2, we have pdi is
non-zero only when d3 = d4 = 0, and for i = 3, 4, pdi is non-zero only when d1 = d2 = 0.
In essence this distribution is associated with a random graph which is simply the union of
two disjoint bipartite graphs. In particular such a graph may contain more than one giant
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component. However this is ruled out under our assumption. Further, our assumption
allows us to show that the giant component has linearly many vertices in each of the p
parts of the multipartite graph.

Let

η , 1−
∞
∑

i=1

P(|T | = i) = P(|T | = ∞). (3)

Namely, η is the survival probability of the branching process T . We now state our main
results.

Theorem 2. Suppose that the Perron Frobenius eigenvalue of M satisfies γ > 1. Then the
following statements hold.

(a) The random graph G has a giant component C ⊆ G w.h.p. Further, the size of this
component C satisfies

lim
n→∞

P

(

η − ǫ <
|C|
n

< η + ǫ

)

= 1, (4)

for any ǫ > 0.

(b) All components of G other than C are of size O(log n) w.h.p.

Theorem 3. Suppose that the Perron Frobenius eigenvalue of M satisfies γ < 1. Then all
components of the random graph G are of size O(ω(n)2 log n) w.h.p.

The conditions of Theorem 2 where a giant component exists is generally referred to in
the literature as the supercritical case and that of Theorem 3 marked by the absence of a
giant component is referred to as the subcritical case. The conditions under which giant
component exists in random bipartite graphs was derived in [NSW01] using generating
function heuristics. We now consider the special case of a bipartite graph and show that
the conditions implied by Theorem 2 and Theorem 3 reduce to that in [NSW01]. In this
case p = 2 and N = 2. The type of all vertices d in G1 are of the form d = (0, j) and those
in G2 are of the form d = (k, 0). To match the notation in [NSW01], we let pd1 = pj when
d = (0, j) and pd2 = qk when d = (k, 0). So λ2

1 = λ1
2 =

∑

d d2p
d
1 =

∑

j jpj =
∑

k kqk. Using
the definition of µ1221 from equation (2), we get

µ1221 =
∑

d

(d1 − δ11)
d1p

d
2

λ2
1

=

∑

k k(k − 1)qk
λ2
1

.

Similarly we can compute µ2112 =
∑

j j(j−1)pj

λ2
1

. From the definition of M ,

M =

[

0 µ1221

µ2112 0

]

.

The Perron-Frobenius norm of M is its spectral radius and is given by (µ1221)(µ2112). So
the condition for the existence of a giant component according to Theorem 2 is given by
(µ1221)(µ2112)− 1 > 0 which after some algebra reduces to

∑

j,k

jk(jk − j − k)pjqk > 0.

This is identical to the condition mentioned in [NSW01]. The rest of the paper is devoted
to the proof of Theorem 2 and Theorem 3.
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4 Configuration Model

The configuration model [Wor78], [Bol85], [BC78] is a convenient tool to study random
graphs with given degree distributions. It provides a method to generate a multigraph
from the given degree distribution. When conditioned on the event that the graph is
simple, the resulting distribution is uniform among all simple graphs with the given degree
distribution. We describe below the way to generate a configuration model from a given
multipartite degree distribution.

1. For each of the nd
i (n) vertices in Gi of type d introduce dj clones of type (i, j). An

ordered pair (i, j) associated with a clone designates that the clones belongs to Gi

and has a neighbor in Gj . From the discussion following Assumption 1, the number
of clones of type (i, j) is same as the number of clones of type (j, i).

2. For each pair (i, j), perform a uniform random matching of the clones of type (i, j)
with the clones of type (j, i).

3. Collapse all the clones associated with a certain vertex back into a single vertex. This
means all the edges attached with the clones of a vertex are now considered to be
attached with the vertex itself.

The following useful lemma allows us to transfer results related to the configuration
model to uniformly drawn simple random graphs.

Lemma 3. If the degree sequence {D(n)}n∈N satisfies Assumption 1, then the probability
that the configuration model results in a simple graph is bounded away from zero as n → ∞.

As a consequence of the above lemma, any statement that holds with high probability
for the random configuration model is also true with high probability for the simple random
graph model. So we only need to prove Theorem 2 and Theorem 3 for the configuration
model.

The proof of Lemma 3 can be obtained easily by using a similar result on directed
random graphs proved in [COC13]. The specifics of the proof follow.

Proof of Lemma 3. In the configuration model for multipartite graphs that we described,
we can classify all clones into two categories. First, the clones of the kind, (i, i) ∈ S and
the clones of the kind (i, j) ∈ S, i 6= j. Since the outcome of the matching associated with
each of the cases is independent, we can treat them separately for this proof. For the first
category, the problem is equivalent to the case of configuration model for standard unipartite
graphs. More precisely, for a fixed i, we can construct a standard degree distribution D̃(n)
from D(n) by taking the ith component of the corresponding vector degrees of the latter.
By using Assumptions 1, our proof then follows from previous results for unipartite case.

For the second category, first let us fix (i, j) with i 6= j. Construct a degree distribution
D1(n) = (nk(n), k ∈ [n]) where nk(n) denotes the number of vertices of degree k by
letting nk(n) =

∑

d 1{d(j) = k}nd
i . Construct D2(n) similar to D1(n) by interchanging

i and j. We consider a bipartite graph where degree distribution of the vertices in part
i is given by Di(n) for i = 1, 2. We form the corresponding configuration model and
perform the usual uniform matching between the clones generated from D1(n) with the
clones generated from D2(n). This exactly mimics the outcome of matching that occurs in
our original multipartite configuration model between clones of type (i, j) and (j, i). With
this formulation, the problem of controlling number of double edges is very closely related
to a similar problem concerning the configuration model for directed random graphs which
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was studied in [COC13]. To precisely match their setting, add “dummy” vertices with
zero degree to both D1(n) and D2(n) so that they have exactly n vertices each and then
arbitrarily enumerate the vertices in each with indices from [n]. From Assumption 1 it can
be easily verified that the degree distributions D1(n) and D2(n) satisfy Condition 4.2 in
[COC13]. To switch between our notation and theirs, use D1(n) → M [n] and D2(n) → D[n].
Then Theorem 4.3 in [COC13] says that the probability of having no self loops and double
edges is bounded away from zero. In particular, observing that self loops are irrelevant in
our case, we conclude that limn→∞P(No double edges) > 0. Since the number of pairs
(i, j) is less than or equal to p(p − 1) which is a constant with respect to n, the proof is
now complete.

5 Exploration Process

In this section we describe the exploration process which was introduced by Molloy and
Reed in [MR95] to reveal the component associated with a given vertex in the random
graph. We say a clone is of type (i, j) if it belongs to a vertex in Gi and has its neighbor
in Gj . We say a vertex is of type (i,d) if it belongs to Gi and has degree type d. We start
at time k = 0. At any point in time k in the exploration process, there are three kinds of
clones - ‘sleeping’ clones , ‘active’ clones and ‘dead’ clones. For each (i, j) ∈ S, the number
of active clones of type (i, j) at time k are denoted by Aj

i (k) and the total number of active

clones at time k is given by A(k) =
∑

(i,j)∈S Aj
i (k). Two clones are said to be “siblings” if

they belong to the same vertex. The set of sleeping and awake clones are collectively called
‘living’ clones. We denote by Li(k) the number of living clones in Gi and Lj

i (k) to be the

number of living clones of type (i, j) at time k. It follows that
∑

j∈[p]L
j
i (k) = Li(k). If all

clones of a vertex are sleeping then the vertex is said to be a sleeping vertex, if all its clones
are dead, then the vertex is considered dead, otherwise it is considered to be active. At
the beginning of the exploration process all clones (vertices) are sleeping. We denote the
number of sleeping vertices in Gi of type d at time k by Nd

i (k) and let NS(k) =
∑

i,dN
d
i (k).

Thus Nd
i (0) = nd

i (n) and NS(0) = n. We now describe the exploration process used to
reveal the components of the configuration model.

Exploration Process.

1. Initialization: Pick a vertex uniformly at random from the set of all sleeping vertices
and and set the status of all its clones to active.

2. Repeat the following two steps as long as there are active clones:

(a). Pick a clone uniformly at random from the set of active clones and kill it.

(b). Reveal the neighbor of the clone by picking uniformly at random one of its can-
didate neighbors. Kill the neighboring clone and make its siblings active.

3. If there are alive clones left, restart the process by picking an alive clone uniformly
at random and setting all its siblings to active, and go back to step 2. If there are no
alive clones, the exploration process is complete.

Note that in step 2(b), the candidate neighbors of a clones of type (i, j) are the set of
alive clones of type (j, i).

9



The exploration process enables us to conveniently track the evolution in time of the
number of active clones of various types. We denote the change in Aj

i (k) by writing

Aj
i (k + 1) = Aj

i (k) + Zj
i (k + 1), (i, j) ∈ S.

Define Z(k) ,
(

Zj
i (k), (i, j) ∈ S

)

to be the vector of changes in the number of active clones

of all types. To describe the probability distribution of the changes Zj
i (k + 1), we consider

the following two cases.

Case 1: A(k) > 0.
Let Ej

i denote the event that in step 2-(a) of the exploration process, the active clone

picked was of type (i, j). The probability of this event is
Aj

i (k)
A(k) . In that case we kill

the clone that we chose and the number of active clones of type (i, j) reduces by one.
Then we proceed to reveal its neighbor which of type (j, i). One of the following events
happen:

(i). Ea: the neighbor revealed is an active clone. The probability of the joint event
is given by

P(Ej
i ∩ Ea) =







Aj
i (k)

A(k)

Ai
j(k)

Li
j(k)

if i 6= j,

Ai
i(k)

A(k)
Ai

i(k)−1

Li
i(k)−1

if i = j.

Such an edge is referred to as a back-edge in [MR95]. The change in active clones
of different types in this joint event is as follows.

- If i 6= j,

Zj
i (k + 1) = Zi

j(k + 1) = −1,

Zm
l (k + 1) = 0, otherwise .

- If i = j,

Zi
i(k + 1) = −2,

Zm
l (k + 1) = 0, otherwise .

(ii). Ed
s : The neighbor revealed is a sleeping clone of type d. The probability of this

joint event is given by

P(Ej
i ∩ Ed

s ) =
Aj

i (k)

A(k)

diN
d
j (k)

Li
j(k)− δij

.

The sleeping vertex to which the neighbor clone belongs is now active. The change
in the number of active clones of different types is governed by the type d of this
new active vertex. The change in active clones of different types in this event are
as follows.

- If i 6= j,

Zj
i (k + 1) = −1,

Zm
j (k + 1) = dm − δim,

Zm
l (k + 1) = 0, otherwise.
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- If i = j,

Zi
i (k + 1) = −2 + di,

Zm
i (k + 1) = dm, for m 6= i,

Zm
l (k + 1) = 0, otherwise .

Note that the above events are exhaustive, i.e.,

∑

i,j∈S

∑

d

P(Ej
i ∩Ed

s ) +
∑

i,j∈S

P(Ej
i ∩ Ea) = 1.

Case 2: A(k) = 0.
In this case, we choose a sleeping clone at random and make it and all its siblings
active. Let Ej

i be the event that the sleeping clone chosen was of type (i, j). Further
let Ed be the event that this clone belongs to a vertex of type (i,d). Then we have

P(Ej
i ∩ Ed) =

Lj
i (k)

L(k)

djN
d
i (k)

Lj
i (k)

=
djN

d
i (k)

L(k)
.

In this case the change in the number of active clones of different types is given by

Zm
i (k + 1) = dm, for m ∈ Si,

Zm′

i′ (k + 1) = 0, otherwise.

We emphasize here that there are two ways in which the evolution of the exploration process
deviates from that of the edge-biased branching process. First, a back-edge can occur in the
exploration process when neighbor of an active clone is revealed to be another active clone.
Second, the degree distribution of the exploration process is time dependent. However,
close to the beginning of the process, these two events do not have a significant impact. We
exploit this fact in the following sections to prove Theorem 2 and 3.

6 Supercritical Case

In this section we prove the first part of Theorem 2. To do this we show that the number of
active clones in the exploration process grows to a linear size with high probability. Using
this fact, we then prove the existence of a giant component. The idea behind the proof
is as follows. We start the exploration process described in the previous section at an
arbitrary vertex v ∈ G. At the beginning of the exploration process, i.e. at k = 0 , we have
Nd

j (0) = npdj (n) and Lj
i (0) = nλj

i (n). So, close to the beginning of the exploration, a clone

of type (i, j) gives rise to dm − δim clones of type (j,m) with probability close to
dip

d

j (n)

λi
j(n)

which in turn is close to
dipdj
λi
j

for large enough n. If we consider the exploration process in a

very small linear time scale, i.e. for k < ǫn for small enough ǫ, then the quantities
diNd

j (k)

Li
j(k)−δij

remain close to
dipdj
λj

and the quantities
Ai

j(k)

Li
j(k)−δij

are negligible. We use this observation to

construct a process which underestimates the exploration process in some appropriate sense
but whose parameters are time invariant and “close” to the initial degree distribution. We
then use this somewhat easier to analyze process to prove our result.
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We now get into the specific details of the proof. We define a stochastic process Bj
i (k)

which we will couple with Aj
i (k) such that Bj

i (k) underestimates Aj
i (k) with probability

one. We denote the evolution in time of Bj
i (k) by

Bj
i (k + 1) = Bj

i (k) + Ẑj
i (k + 1), (i, j) ∈ S.

To define Ẑj
i (k + 1), we choose quantities πd

ji satisfying

0 ≤ πd
ji <

dip
d
j

λi
j

, pdj > 0, (5)

∑

d

πd
ji = 1− γ, (6)

for some 0 < γ < 1 to be chosen later.
We now show that in a small time frame, the parameters associated with the exploration

process do not change significantly from their initial values. This is made precise in Lemma
4 and Lemma 5 below. Before that we first introduce some useful notation to describe these
parameters for a given n and at a given step k in the exploration process. Let M(n) denote

the matrix of means defined analogous to M by replacing
dipdj
λi
j

by
dipdj (n)

λi
j(n)

. Also for a fixed

n, define Mk(n) similarly by replacing
dipdj
λi
j

by
diNd

j (k)

Li
j(k)−δij

. Note that M0(n) = M(n). Also

from Assumption 1 it follows that
dipdj (n)

λj
i (n)

→ dipdj

λj
i

and that M(n) → M .

Lemma 4. Given δ > 0, there exists ǫ > 0 and some integer n̂ such that for all n ≥ n̂ and

for all time steps k ≤ ǫn in the exploration process we have
∑

d

∣

∣

∣

∣

diN
d

j (k)

Lj
i (k)−δij

− dip
d

j

λj
i

∣

∣

∣

∣

< δ.

Proof. Fix ǫ1 > 0. From Lemma 1 we have that that random variables 1′Dp(n) are uniformly

integrable. Then there exists q ∈ Z such that for all n we have
∑

d dip
d
j (n)1{1′d>q} < ǫ1.

Since 0 ≤ Nd

j (k)

n ≤ Nd

j (0)

n = pdj (n), we have
∑

d 1{1′d>q}

∣

∣

∣

∣

dip
d
j (n)− di

Nd

j (k)

n

∣

∣

∣

∣

< ǫ1. For each

time step k ≤ ǫn in the exploration process we have
Nd

j (k)

n ≥ Nd

j (0)

n − ǫ. So for small enough

ǫ, we can make
∑

d 1{1′d≤q}

∣

∣

∣

∣

di
Nd

j (k)

n − dip
d
j (n)

∣

∣

∣

∣

< ǫ1. Additionally, Lj
i (k) can change by

at most two at each step. So |L
j
i (k)−δij

n − λj
i (n)| ≤ 2ǫ. So for small enough ǫ, for every

(i, j) ∈ S we have n

Lj
i (k)−δij

− 1

λj
i (n)

< ǫ1. Now we can bound

∑

d

1{1′d>q}

∣

∣

∣

∣

∣

diN
d
j (k)

Lj
i (k)− δij

−
dip

d
j (n)

λj
i (n)

∣

∣

∣

∣

∣

(7)

≤
∑

d

1{1′d>q}

(
∣

∣

∣

∣

∣

diN
d
j (k)

Lj
i (k)− δij

−
diN

d
j (k)

nλj
i (n)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

diN
d
j (k)

nλj
i (n)

−
dip

d
j (n)

λj
i (n)

∣

∣

∣

∣

∣

)

≤
∑

d

1{1′d>q}

diN
d
j (k)

n
ǫ1 +

ǫ1

λj
i (n)

≤ δ/4,
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where the last inequality can be obtained by choosing small enough ǫ1. Since q is a constant,

by choosing small enough ǫ we can ensure that
∑

d 1{1′d≤q}

∣

∣

∣

∣

diNd

j (k)

Lj
i (k)−δij

− dipdj (n)

λj
i (n)

∣

∣

∣

∣

≤ δ/4.

Additionally from Assumption 1, for large enough n we have
∑

d

∣

∣

∣

∣

dip
d

j (n)

λj
i (n)

− dip
d

j

λj
i

∣

∣

∣

∣

< δ/2.

The lemma follows by combining the above inequalities.

Lemma 5. Given δ > 0, there exists ǫ > 0 and some integer n̂ such that for all n ≥ n̂ and
for all time steps k ≤ ǫn in the exploration process we have ||Mk(n)−M || ≤ δ.

Proof. The argument is very similar to the proof of Lemma 4. Fix ǫ1 > 0. From Lemma
1 we know that the random variables (1′Dp(n))

2 are uniformly integrable. It follows that
there exists q ∈ Z such that for all n, we have E[(1′D(n))21{(1′D(n))>q}] ≤ ǫ1. From this

we can conclude that for all i, j,m we have
∑

d(dm − δim)dip
d
j (n)1{1′d>q} ≤ ǫ1. Since

Nd

j (0)

n − ǫ ≤ Nd

j (k)

n ≤ Nd

j (0)

n = pdj (n), we have

|
∑

d

(dm − δim)dip
d
j (n)1{1′d>q} −

∑

d

(dm − δim)
diN

d
j (n)

n
1{1′d>q}| ≤ ǫ1. (8)

Also Lj
i (k) can change by at most 2ǫn. So, for small enough ǫ, by an argument similar to

the proof of Lemma 4, we can prove analogous to (7) that

∣

∣

∣

∣

∣

∑

d

1{1′d>q}(dm − δim)
diN

d
j (k)

Lj
i (k)− δij

−
∑

d

1{1′d>q}(dm − δim)
dip

d
j (n)

λj
i (n)

∣

∣

∣

∣

∣

≤ δ

4
. (9)

By choosing ǫ small enough, we can also ensure

∣

∣

∣

∣

∣

∑

d

1{1′d≤q}(dm − δim)
diN

d
j (k)

Lj
i (k)− δij

−
∑

d

1{1′d≤q}(dm − δim)
dip

d
j (n)

λj
i (n)

∣

∣

∣

∣

∣

≤ δ

4
. (10)

Since M(n) converges to M we can choose n̂ such that ||M(n)−M || ≤ δ
2 . By combining

the last two inequalities, the proof is complete.

Lemma 6. Given any 0 < γ < 1, there exists ǫ > 0, an integer n̂ ∈ Z and quantities πd
ij

satisfying (5) and (6) and the following conditions for all n ≥ n̂:

(a) For each time step k ≤ ǫn,

πd
ji <

diN
d
j (k)

Li
j(k)− δij

, (11)

for each (i, j) ∈ S.

(b) The matrix M̂ defined analogous to M by replacing
dipdj

λj
i

by πd
ji in (2) satisfies

||M̂ −M || ≤ err(γ), (12)

where err(γ) is a term that satisfies limγ→0 err(γ) = 0.
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Proof. Choose q = q(γ) ∈ Z such that
∑

d

dipdj

λj
i

1{1′d>q} ≤ γ/2. Now choose πd
ji satisfying

(5) and (6) such that πd
ji = 0 whenever 1′d > q. Using Lemma 4, we can now choose n̂ and

ǫ such that for every (i, j) ∈ S and d such that 1′d ≤ q, (11) is satisfied for all n ≥ n̂ and
all k ≤ ǫn. The condition in part (a) is thus satisfied by this choice of πd

ji.

For any γ, let us denote the choice of πd
ji made above by πd

ji(γ). By construction,

whenever Mijlm = 0, we also have M̂ijlm = 0. Suppose Mijjm =
∑

d(dm − δim)
dip

d

j

λj
i

> 0.

Also, by construction we have 0 ≤ πd
ji(γ) <

dip
d

j

λj
i

and that πd
ji(γ) → dip

d

j

λj
i

as γ → 0. Let

Xγ be the random variable that takes the value (dm − δim) with probability πd
ji(γ) and 0

with probability γ. Similarly, let X be the random variable that takes the value (dm− δim)

with probability
dipdj

λj
i

. Then, from the above argument have Xγ → X as γ → 0 and that

the random variable X dominates the random variable Xγ for all γ ≥ 0. Note that X is
integrable. The proof of part (b) is now complete by using the Dominated Convergence
Theorem.

Assume that the quantities ǫ and πd
ij have been chosen to satisfy the inequalities (11)

and (12). We now consider each of the events that can occur at each step of the exploration
process until time ǫn and describe the coupling between Zj

i (k + 1) and Ẑj
i (k + 1) in each

case.

Case 1: A(k) > 0.
Suppose the event Ej

i happens. We describe the coupling in case of each of the
following two events.

(i). Ea: the neighbor revealed is an active clone. In this case we simply mimic
the evolution of the number of active clones in the original exploration process.
Namely, Ẑm

l (k + 1) = Zm
l (k + 1) for all l,m.

(ii). Ed
s : The neighbor revealed is a sleeping clone of type d. In this case, we split

the event further into two events Ed
s,0 and Ed

s,1, that is Ed
s,0 ∪ Ed

s,1 = Ed
s and

Ed
s,0 ∩ Ed

s,1 = ∅. In particular,

P(Ed
s,0|Ej

i ∩ Ed
s ) =

πd
ji(L

i
j(k)− δij)

diNd
j (k)

P(Ed
s,1|Ej

i ∩ Ed
s ) = 1−P(Ed

s,0|Ej
i ∩ Ed

s ).

For the above to make sense we must have πji ≤
diN

d

j (k)

Li
j(k)−δij

which is guaranteed by

our choice of πd
ij. We describe the evolution of Bj

i (k) in each of the two cases.

(a). Ed
s,0: in this case set Ẑm

l (k + 1) = Zm
l (k + 1) for all l,m.

(b). Ed
s,1: In this case, we mimic the evolution of the active clones of event Ea

instead of Ed
s . More specifically,

- If i 6= j,

Ẑj
i (k + 1) = Ẑi

j(k + 1) = −1,

Ẑm
l (k + 1) = 0, otherwise .
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- If i = j,

Ẑi
i (k + 1) = −2,

Ẑm
l (k + 1) = 0, otherwise .

Case 2: A(k) = 0.
Suppose that event Ej

i ∩Ed happens. In this case we split Ed into two disjoint events
Ed

0 and Ed
1 such that

P(Ed
0 |Ej

i ∩ Ed) =
πd
ij(L

i
j(k)− δij)

djNd
i (k)

P(Ed
1 |Ej

i ∩ Ed) = 1−P(Ed
0 |Ej

i ∩ Ed).

Again, the probabilities above are guaranteed to be less than one for time k ≤ ǫn
because of the choice of πd

ij. The change in Bj
i (k + 1) in case of each of the above

events is defined as follows.

(a) Ed
0 .

- If i 6= j,

Ẑi
j(k + 1) = −1,

Ẑm
i (k + 1) = dm − δim,

Ẑm
l (k + 1) = 0, for l 6= j.

- If i = j,

Ẑi
i (k + 1) = −2 + di,

Ẑm
i (k + 1) = dm, for m 6= i,

Ẑm
l (k + 1) = 0, for l 6= i.

(b) Ed
1 .

- If i 6= j,

Ẑj
i (k + 1) = Ẑi

j(k + 1) = −1,

Ẑm
l (k + 1) = 0, otherwise .

- If i = j,

Ẑi
i(k + 1) = −2,

Ẑm
l (k + 1) = 0, otherwise .

This completes the description of the probability distribution of the joint evolution of the
processes Aj

i (k) and Bj
i (k).

Intuitively, we are trying to decrease the probability of the cases that actually help in
the growth of the component and compensate by increasing the probability of the event
which hampers the growth of the component (back-edges). From the description of the
the coupling between Zj

i (k + 1) and Ẑj
i (k + 1) it can be seen that for time k < ǫn, with

probability one we have Bj
i (k) ≤ Aj

i (k).
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Our next goal is to show that for some (i, j) ∈ S the quantity Bj
i (k) grows to a linear

size by time ǫn. Let H(k) = σ({Aj
i (r), B

j
i (r), (i, j) ∈ S, 1 ≤ r ≤ k}) denote the filtration

of the joint exploration process till time k. Then the expected conditional change in Bj
i (k)

can be computed by considering the two cases above. First suppose that at time step k we
have A(k) > 0, i.e., we are in Case 1. We first assume that i 6= j. Note that the only events
that affect Ẑj

i (k + 1) are Ej
i and Ei

m for m ∈ [p]. Then,

E[Ẑj
i (k + 1)|H(k)] = P(Ej

i |H(k)) E[Ẑj
i (k + 1)|H(k), Ej

i ] (13)

+
∑

m

P(Ei
m ∩ Ea|H(k)) E[Ẑj

i (k + 1)|H(k), Ei
m ∩ Ea]

+
∑

m,d

P(Ei
m ∩ Ed

s0|H(k)) E[Ẑj
i (k + 1)|H(k), Ei

m ∩Ed
s0]

+
∑

m,d

P(Ei
m ∩ Ed

s1|H(k)) E[Ẑj
i (k + 1)|H(k), Ei

m ∩Ed
s1].

The event Ei
m∩Ea affects Ẑ

j
i (k+1) only when m = j, and in this case, Ẑj

i (k+1) = −1. The

same is true for the event Ei
m ∩Ed

s1. In the event Ei
m ∩Ed

s0, we have Ẑj
i (k+1) = dj − δjm.

Using this, the above expression is

=
Aj

i (k)

A(k)
(−1) +

Ai
j(k)

A(k)

Aj
i (k)

Lj
i (k)

(−1) +
∑

m,d

Ai
m(k)

A(k)
πd
im(dj − δjm)

+
∑

d

Ai
j(k)

A(k)

(

djN
d
i (k)

Lj
i (k)

− πd
ij

)

(−1)

=
Aj

i (k)

A(k)
(−1) +

Ai
j(k)

A(k)

Aj
i (k)

Lj
i (k)

(−1) +
∑

m

Ai
m(k)

A(k)

(

∑

d

πd
im(dj − δjm)

)

+
∑

d

Ai
j(k)

A(k)

(

djN
d
i (k)

Lj
i (k)

− πd
ij

)

(−1).

=
Aj

i (k)

A(k)
(−1) +

Ai
j(k)

A(k)

(

Aj
i (k)

Lj
i (k)

+
∑

d

(

djN
d
i (k)

Lj
i (k)

)

−
∑

d

πd
ij

)

(−1)

+
∑

m

Ai
m(k)

A(k)

(

∑

d

πd
im(dj − δjm)

)

=
Aj

i (k)

A(k)
(−1) +

Ai
j(k)

A(k)
(−γ) +

∑

m

Ai
m(k)

A(k)

(

∑

d

πd
im(dj − δjm)

)

,

where the last equality follows from (6). Now suppose that at time k we have A(k) = 0,
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i.e., we are in Case 2. In this case, we can similarly compute

E[Ẑj
i (k + 1)|H(k)] = P(Ej

i |H(k)) E[Ẑj
i (k + 1)|H(k), Ej

i ]

+
∑

m,d

P(Em
i ∩ Ed ∩ Ed

0 |H(k)) E[Ẑj
i (k + 1)|H(k), Em

i ∩ Ed ∩Ed
0 ]

+
∑

m,d

P(Em
i ∩ Ed ∩ Ed

1 |H(k)) E[Ẑj
i (k + 1)|H(k), Em

i ∩ Ed ∩Ed
1 ].

Using the description of the coupling in Case 2, the above expression is

=
Li
j(k)

L(k)
(−1) +

∑

m

Lm
i (k)

L(k)

∑

d

πd
mi(dj − δjm) +

∑

d

Lj
i (k)

L(k)

djN
d
i (k)

Lj
i (k)

(

1−
πd
jiL

j
i (k)

djNd
i (k)

)

=
Li
j(k)

L(k)
(−1) +

Li
j(k)

L(k)
(−γ) +

∑

m

Lm
i (k)

L(k)

∑

d

πd
mi(dj − δjm).

For the case i = j, a similar computation will reveal that we obtain very similar expressions
to the case i 6= j. We give the expressions below and omit the computation. For Case 1,
A(k) > 0,

E[Ẑi
i (k + 1)|H(k)] =

Ai
i(k)

A(k)
(−1) +

Ai
i(k)

A(k)
(−γ) +

∑

m

Ai
m(k)

A(k)

(

∑

d

πd
im(di − δim)

)

.

and for Case 2, A(k) = 0,

E[Ẑi
i (k + 1)|H(k)] =

Li
i(k)

L(k)
(−1) +

Li
i(k)

L(k)
(−γ) +

∑

m

Lm
i (k)

L(k)

∑

d

πd
mi(di − δim).

Define the vector of expected change E[Ẑ(k + 1)|H(k)] ,
(

E[Zj
i (k + 1)|H(k)], (i, j) ∈ S

)

.

Also define A(k) =

(

Aj
i (k)

A(k) , (i, j) ∈ S

)

if A(k) > 0 and A(k) =

(

Lj
i (k)
L(k) , (i, j) ∈ S

)

if

A(k) = 0. Let Q ∈ RN×N be given by

Qijji = 1, for (i, j) ∈ S,

Qijlm = 0, otherwise .

Then we can write the expected change of Bj
i (k) compactly as

E[Ẑ(k + 1)|H(k)] =
(

M̂ − γQ− I
)

A(k). (14)

Fix δ > 0. Let γ be small enough such that the function err(γ) in (12) satisfies err(γ) ≤ δ.
Using Lemma 6 we can choose ǫ and πd

ij satisfying (11) and (12). In particular, we have

||M̂ − M || ≤ δ. For small enough δ, both M and M̂ have strictly positive entries in the
exact same locations. Since M is irreducible, it follows that M̂ is irreducible. The Perron-
Frobenius eigenvalue of a matrix which is the spectral norm of the matrix is a continuous
function of its entries. For small enough δ, the Perron-Frobenius eigenvalue of M̂ is bigger
than 1, say 1 + 2ζ for some ζ > 0. Let z be the corresponding left eigenvector with all
positive entries and let zm , min(i,j)∈S zji and zM , max(i,j)∈S zji . Define the random
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process W (k) ,
∑

(i,j)∈S zjiB
j
i (k). Then setting ∆W (k+1) = W (k+1)−W (k), from (14)

we have

E[∆W (k + 1)|H(k)] = z′EẐ(k + 1)

= z′
(

M̂ − IγQ
)

A(k)

= 2ζz′A(k) − γz′QA(k).

The first term satisfies 2ζzm ≤ 2ζz′A(k) ≤ 2ζzM . This is because 1′A(k) = 1 and hence
z′A(k) is a convex combination of the entries of z. By choosing γ small enough, we can
ensure γz′QA(k) ≤ ζzm. Let κ = ζzm > 0. Then, we have

E[∆W (k + 1)|H(k)] ≥ κ. (15)

We now use a one-sided Hoeffding bound argument to show that with high probability
the quantity W (k) grows to a linear size by time ǫn. Let X(k+1) = κ−∆W (k+1). Then

E[X(k + 1)|H(k)] ≤ 0. (16)

Also note that |X(k + 1)| ≤ cω(n) almost surely, for some constant c > 0.
For any B > 0 and for any −B ≤ x ≤ B, it can be verified that

ex ≤ 1

2

eB + e−B

2
+

1

2

eB − e−B

2
x ≤ e

B2

2 +
1

2

eB − e−B

2
x.

Using the above, we get for any t > 0,

E[etX(k+1)|H(k)] ≤ e
t2c2ω2(n)

2 +
1

2

etcω(n) − e−tcω(n)

2
E[X(k + 1)|H(k)] ≤ e

t2c2ω2(n)
2 ,

where the last statement follows from (16). We can now compute

E[et
∑ǫn−1

k=0 X(k+1)] =

ǫn−1
∏

k=0

E[etX(k+1)|H(k)] ≤ e
t2c2ω2(n)ǫn

2 .

So,

P

(

ǫn−1
∑

k=0

X(k + 1) > ǫκn/2

)

= P(et
∑ǫn−1

k=0 X(k+1)−tǫκn/2 > 1) ≤ e−
tǫκn
2

+ t2c2ω2(n)ǫn
2 .

Optimizing over t, we get

P

(

ǫn−1
∑

k=0

X(k + 1) > ǫκn/2

)

≤ e
− κ2ǫn

8c2ω2(n) = o(1),

which follows by using Lemma 2. Substituting the definition of X(k + 1),

P
(

W (ǫn) <
κǫn

2

)

= o(1). (17)

Recall that W (k) =
∑

(i,j)∈S zjiB
j
i (k) ≤ NzM max(i,j)∈S Bj

i (k) ≤ NzM max(i,j)∈S Aj
i (k).

Define µ , κǫ
2NzM

. Then it follows from (17) that there exists a pair (i′, j′) such that

Aj′

i′ (ǫn) > µn, w.p 1− o(1).
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Using the fact that the number of active clones grows to a linear size we now show that the
corresponding component is of linear size. To do this, we continue the exploration process
in a modified fashion from time ǫn onwards. By this we mean, instead of choosing active
clones uniformly at random in step 2(a) of the exploration process, we now follow a more
specific order in which we choose the active clones and then reveal their neighbors. This is
still a valid way of continuing the exploration process. The main technical result required
for this purpose is Lemma 7 below.

Lemma 7. Suppose that after ǫn steps of the exploration process, we have Aj′

i′ (ǫn) > µn
for some pair (i′, j′). Then, there exists ǫ1 > ǫ and δ1 > 0 for which we can continue the
exploration process in a modified way by altering the order in which active clones are chosen
in step 2(a) of the exploration proces such that at time ǫ1n, w.h.p. for all (i, j) ∈ S, we
have Aj

i (ǫ1n) > δ1n.

The above lemma says that we can get to a point in the exploration process where there
are linearly many active clones of every type. An immediate consequence of this is the
Corollary 1 below. We remark here that Corollary 1 is merely one of the consequences of
Lemma 7 an can be proved in a much simpler way. But as we will see later, we need the
full power of Lemma 7 to prove Theorem 2-(b).

Corollary 1. Suppose that after ǫn steps of the exploration process, we have Aj′

i′ (ǫn) > µn

for some pair (i′, j′). Then there exists δ2 > 0 such that w.h.p., the neighbors of the Aj′

i′

clones include at least δ2n vertices in G′
j .

Before proving Lemma 7, we state a well known result. The proof can be obtained by
standard large deviation techniques. We omit the proof.

Lemma 8. Fix m. Suppose there are there are n objects consisting of αin objects of type
i for 1 ≤ i ≤ m. Let β > 0 be a constant that satisfies β < maxi αi. Suppose we pick βn
objects at random from these n objects without replacement. Then for given ǫ′ > 0 there
exists z = z(ǫ′,m) such that,

P

(
∣

∣

∣

∣

#objects chosen of type i

n
− αiβ

∣

∣

∣

∣

> ǫ′
)

< zn.

Proof of Lemma 7. The proof relies on the fact that the matrix M is irreducible. If we
denote the underlying graph associated with M by H, then H is strongly connected. We

consider the subgraph T j′

i′ of H which is the shortest path tree in H rooted at the node

(i′, j′). We traverse T j′

i′ breadth first. Let d be the depth of T j′

i′ . We continue the exploration
process from this point in d stages 1, 2, . . . , d. Stage 1 begins right after time ǫn. Denote
the time at which stage l ends by ǫln. For convenience, we will assume a base stage 0,
which includes all events until time ǫn. For 1 ≤ l ≤ d, let Il be the set of nodes (i, j) at

depth l in T j′

i′ . We let I0 = {(i′, j′)}.
We will prove by induction that for l = 0, 1, . . . , d, there exists δ(l) > 0 such that at

the end of stage l, we have w.h.p., Aj
i > δ(l)n for each (i, j) ∈ ⋃l

x=0 Ix. Note that at

the end of stage 0 we have w.h.p. Aj′

i′ > µn. So we can choose δ(0) = µ to satisfy the
base case of the induction. Suppose |Il| = r. Stage l + 1 consists of r substages, namely
(l + 1, 1), (l + 1, 2), . . . , (l + 1, r) where each substage addresses exactly one (i, j) ∈ Il. We
start stage (l + 1, 1) by considering any (i, j) ∈ Il. We reveal the neighbors of αδ(l)n clones
among the Aj

i > δ(l)n clones one by one. Here 0 < α < 1 is a constant that will describe
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shortly. The evolution of active clones in each of these αδ(l)n steps is identical to that in
the event Ej

i in Case 1 of the original exploration process. Fix any (j,m) ∈ Il+1. Note

that Mijjm > 0 by construction of T j′

i′ . So by making ǫ and ǫ1, . . . , ǫl smaller if necessary
and choosing α small enough, we can conclude using Lemma 5 that for all time steps
k < ǫln + αδ(l)n we have ||Mk(n) −M || < δ for any δ > 0. Similarly, by using Lemma 4,
we get

∑

d

(

−
diN

d
j (k)

Lj
i (k)− δij

+
dip

d
j

λj
i

)

=
Aj

i (k) − δij

Lj
i (k)− δij

≤
∑

d

∣

∣

∣

∣

∣

diN
d
j (k)

Lj
i (k)− δij

−
dip

d
j

λj
i

∣

∣

∣

∣

∣

< δ. (18)

By referring to the description of the exploration process for the event Ej
i in Case 1, the

expected change in Zm
j (k + 1) during stage (l + 1, 1) can be computed similar to (13) as

E[Zm
j (k + 1)|H(k)] =

Ai
j(k)− δij

Lj
i (k)− δij

(−δim) +
∑

d

diN
d
j (k)

Lj
i (k)− δij

(dm − δim)

= (Mk(n))ijjm −
Ai

j(k)− δij

Lj
i (k)− δij

(−δim)

(a)

≥ Mijjm − 2δ
(b)

≥ δ,

where (a) follows from (18) and (b) can be guaranteed by choosing small enough δ. The
above argument can be repeated for each (j,m) ∈ Il+1. We now have all the ingredients we
need to repeat the one-sided Hoeffding inequality argument earlier in this section. We can
then conclude that there exists δmj > 0 such that w.h.p. we have at least δmj n active clones
of type (j,m) by the end of stage (l + 1, 1). By the same argument, this is also true for all

children of (i, j) in T j′

i′ . Before starting stage S2
l+1, we set δ(l) = min{(1−α)δ(l), δmj1}. This

makes sure that at every substage of stage l we have at least δ(l)n clones of each kind that
has been considered before. This enables us to use the same argument for all substages of
stage l. By continuing in this fashion, we can conclude that at the end of stage l + 1 we
have δ(l+1)n clones of each type (i, j) for each (i, j) ∈ ⋃l+1

x=1 Ix for appropriately defined
δ(l+1). The proof is now complete by induction.

Proof of Corollary 1. Consider any j ∈ [p]. We will prove that the giant component has
linearly many vertices in Gj with high probability.

Let d be such that pdj > 0 and let di > 0 for some i ∈ [p]. This means in the configuration
model, each of these type d vertices have at least one clones of type (j, i). Continue the
exploration process as in Lemma 7. For small enough ǫ1 there are at least n(pdj − ǫ1) of
type (j, i) clones still unused at time ǫ1n. From Lemma 7, with high probability we have
at least δ1n clones of type (i, j) at this point. Proceed by simply revealing the neighbors of
each of these. Form Lemma 8, it follows that with high probability, we will cover at least a
constant fraction of these clones which correspond to a linear number of vertices covered.
Each of these vertices are in the giant component and the proof is now complete.

We now prove part(b) of Theorem 2. Part (a) will be proved in the next section. We
use the argument by Molloy and Reed, except for the multipartite case, we will need the
help of Lemma 7 to complete the argument.

Proof of Theorem 2 (b). Consider two vertices u, v ∈ G. We will upper bound the probabil-
ity that u lies in the component C, which is the component being explored at time ǫn and v
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lies in a component of size bigger than β log n other than C. To do so start the exploration
process at u and proceed till the time step ǫ1n in the statement of Lemma 7. At this time
we are in the midst of revealing the component C. But this may not be the component of
u because we may have restarted the exploration process using the “Initialization step” at
some time between 0 and ǫ1n. If it is not the component of u, then u does not lie in C.
So, let us assume that indeed we are exploring the component of u. At this point continue
the exploration process in a different way by switching to revealing the component of v.
For v to lie in a component of size greater than β log n, the number of active clones in the
exploration process associated with the component of v must remain positive for each of the
first β log n steps. At each step choices of neighbors are made uniformly at random. Also,
from Lemma 7, C has at least δ1n active clones of each type. For the component of v to
be distinct from the component of u this choice must be different from any of these active
clones of the component of u. So it follows that the probability of this event is bounded
above by (1− δ1)

β logn. For large enough β, this gives

P(C(u) = C, C(v) 6= C, |C(v)| > β log n) = o(n−2).

Using a union bound over all pairs of vertices u and v completes the proof.

7 Size of the Giant Component

In this section we complete the proof of Theorem 2-(a) regarding the size of the giant
component. For the unipartite case, the first result regarding the size of the giant component
was obtained by Molloy and Reed [MR98] by using Wormald’s results [Wor95] on using
differential equations for random processes. As with previous results for the unipartite
case, we show that the size of the giant component as a fraction of n is concentrated around
the survival probability of the edge-biased branching process. We do this in two steps.
First we show that the probability that a certain vertex v lies in the giant component is
approximately equal to the probability that the edge-biased branching process with v as
its root grows to infinity. Linearity of expectation then shows that the expected fraction of
vertices in the giant component is equal to this probability. We then prove a concentration
result around this expected value to complete the proof of Theorem 2. These statements
are proved formally in Lemma 10.

Before we go into the details of the proof, we first prove a lemma which is a very widely
used application of Azuma’s inequality.

Lemma 9. Let X = (X1,X2, . . . ,Xt) be a vector valued random variable and let f(X) be
a function defined on X. Let Fk , σ(X1, . . . ,Xk). Assume that

|E(f(X)|Fk)−E(f(X)|Fk+1)| ≤ c.

almost surely. Then

P(|f(X)−E[f(X)]| > s) ≤ 2e−
s2

2tc2 .

Proof. The proof of this lemma is a standard martingale argument. We include it here for
completeness. Define the random variables Y0, . . . , Yt as

Yk = E(f(X)|Fk).
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The sequence {Yk} is a martingale and |Yk − Yk+1| ≤ c almost surely. Also Y0 = f(X) and
Yt = E[f(X)]. The lemma then follows by applying Azuma’s inequality to the martingale
sequence {Yk}.

Lemma 10. Let ǫ > 0 be given. Let v ∈ G be chosen uniformly at random. Then for large
enough n, we have

|P(v ∈ C)−P(|T | = ∞)| ≤ ǫ.

Proof. We use a coupling argument similar to that used by Bollobas and Riordan [BR12]
where it was used to prove a similar result for “local” properties of random graphs. We
couple the exploration process starting at v with the branching process Tn(v) by trying to
replicate the event in the branching process as closely as often as possible. We describe the
details below.

The parameters of the distribution associated with Tn is given by
dipdj (n)

λj
i (n)

. In the ex-

ploration process, at time step k the corresponding parameters are given by
diNd

j (k)

Li
j(k)−δij

(see

Section 5). We first show that for each of the first β log n steps of the exploration process,
these two quantities are close to each other. The quantity diN

d
j (k) is the total number of

sleeping clones at time k of type (j, i) in Gj that belong to a vertex of type d. At each
step of the exploration process the total number of sleeping clones can change by at most
ω(n). Also Lj

i (k) is the total number of living clones of type (j, i) in Gj and can change by
at most two in each step.

Then initially for all (i, j) we have Lj
i (0) = Θ(n) and until time β log n it remains Θ(n).

Therefore,

∑

i,j,d

∣

∣

∣

∣

∣

diN
d
j (k + 1)

Li
j(k + 1)− δij

−
diN

d
j (k)

Li
j(k)− δij

∣

∣

∣

∣

∣

≤
∑

i,j,d

∣

∣

∣

∣

∣

diN
d
j (k + 1)− diN

d
j (k)

Li
j(k)− δij

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

diN
d
j (k + 1)

Li
j(k)− δij

−
diN

d
j (k + 1)

Li
j(k + 1)− δij

∣

∣

∣

∣

∣

.

From the explanation above, the first term is O(ω(n)/n) and the second term is O(1/n).

Recall that
diNd

j (0)

Li
j(0)

=
dipdj (n)

λi
j(n)

. From this we can conclude by using a telescopic sum and

triangle inequality that for time index k ≤ β log n,

∑

i,j,d

∣

∣

∣

∣

∣

diN
d
j (k)

Li
j(k) − δij

−
dip

d
j (n)

λj
i (n)

∣

∣

∣

∣

∣

= O(kω(n)/n) = O(ω(n) log n/n).

So the total variational distance between the distribution of the exploration process and
the branching process at each of the first β log n steps is O(ω(n) log n/n). We now describe
the coupling between the branching process and the exploration process. For the first time
step, note that the root of Tn has type (i,d) with probability pdi . We can couple this with
the exploration process by letting the vertex awakened in the “Initialization step” of the
exploration process to be of type (i,d). Since the two probabilities are the same, this step
of the coupling succeeds with probability one. Suppose that we have defined the coupling
until time k < β log n. To describe the coupling at time step k + 1 we need to consider the
case of two events. The first is the event when the coupling has succeeded until time k, i.e.,
the two processes are identical. In this case, since the total variational distance between
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the parameters of the two processes is O(ω(n) log n/n) we perform a maximal coupling,
i.e., a coupling which fails with probability equal to the total variational distance. For our
purposes, we do not need to describe the coupling at time k+1 in the event that the coupling
has failed at some previous time step. The probability that the coupling succeeds at each
of the first β log n steps is at least (1−O(ω(n) log n/n))β logn = 1 − O(ω(n)(log n)2/n) =
1− o(1). We have shown that the coupling succeeds till time β log n with high probability.
Assume that it indeed succeeds. In that case the component explored thus far is a tree.
Therefore, at every step of the exploration process a sleeping vertex is awakened because
otherwise landing on an active clone will result in a cycle. This means if the branching
process has survived up until this point, the corresponding exploration process has also
survived until this time and the component revealed has at least β log n vertices. Hence,

P(|C(v)| > β log n) = P(|Tn| > β log n) + o(1).

But Theorem 2 (b) states that with high probability, there is only one component of size
greater than β log n, which is the giant component, i.e.,

P(v ∈ C) = P(|C(v)| > β log n) + o(1) = P(|Tn| > β log n) + o(1).

So, for large enough n, we have |P(v ∈ C) − P(|Tn| > β log n)| ≤ ǫ/2. The survival
probability of the branching process T is given by

P(|T | = ∞) = 1−
∞
∑

i=1

P(|T | = i).

Choose K large enough such that |P(|T | ≥ K)−P(|T | = ∞)| ≤ ǫ/4. Also, since
dip

d

j (n)

λj
i (n)

→
dip

d

j

λj
i

for all i, j,d, from the theory of branching processes, for large enough n,

|P(|Tn| ≥ K)−P(|T | ≥ K)| ≤ ǫ/4,

|P(|Tn| = ∞)−P(|T | = ∞)| ≤ ǫ/2.

Since for large enougn n, we have P(|Tn| = ∞) ≤ P(|Tn| > β log n) ≤ P(|Tn| ≥ K), the
proof follows by combining the above statements.

Now what is left is to show that the size of the giant component concentrates around
its expected value.

Proof of Theorem 2 (a) - (size of the giant component). From the first two parts of Theo-
rem 2, with high probability we can categorize all the vertices of G into two parts, those
which lie in the giant component, and those which lie in a component of size smaller than
β log n, i.e., in small components. The expected value of the fraction of vertices in small
components is 1 − η + o(1). We will now show that the fraction of vertices in small com-
ponents concentrates around this mean.

Recall that cn , n
∑

i∈[p],d∈D 1′d pdi is the number of edges in the configuration model.
Let us consider the random process where the edges of the configuration model are revealed
one by one. Each edge corresponds to a matching between clones. Let Ei 1 ≤ i ≤ cn denote
the (random) edges. Let NS denote the number of vertices in small components, i.e., in
components of size smaller than β log n. We wish to apply Lemma 9 to obtain the desired
concentration result for which we need to bound |E[NS |E1, . . . , Ek]−E[NS |E1, . . . , Ek+1]|.
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In the term E[NS |E1, . . . , Ek+1], let Ek+1 be the edge (x, y). The expectation is taken over
all possible outcomes of the rest of the edges with Ek+1 fixed to be the edge (x, y). In the
first term E[NS |E1, . . . , Ek], after E1, . . . , Ek are revealed, the expectation is taken over
the rest of of the edges, which are chosen uniformly at random among all possible edges.
All outcomes are equally likely. We construct a mapping from each possible outcome to
an outcome that has Ek+1 = (x, y). In particular, if the outcome contains the edge (x, y)
we can map it to the corresponding outcome with Ek+1 = (x, y) by simply cross-switching
the positions of (x, y) with the edge that occured at k + 1. This does not change the value
of NS because it does not depend on the order in which the matching is revealed. On the
other hand, if the outcome does not contain (x, y), then we map it to one of the outcomes
with Ek+1 = (x, y) by switching the two edges connected to the vertices x and y. We claim
that switching two edges in the configuration model can change NS by at most 4β log n. To
see why observe that we can split the process of cross-switching two edges into four steps.
In the first two steps we delete each of the two edges one by one and in the next two steps
we put them back one by one in the switched position. Deleting an edge can increase NS

by at most 2β log n and can never reduce NS . Adding an edge can decrease NS by at most
2β log n and can never increase NS . So cross-switching can either increase or decrease NS

by at most 4β log n. Using this we conclude

|E[NS |E1, . . . , Ek]−E[NS |E1, . . . , Ek+1]| ≤ 4β log n.

We now apply Lemma 9 to obtain.

P

(

1

n
(NS − (1− η)) > δ

)

< e
− n2δ2

8nβ log n = o(1).

Since with high probability, the number of vertices in the giant component is n −NS, the
above concentration result completes the proof.

8 Subcritical Case

In this section we prove Theorem 3. The idea of the proof is quite similar to that of
the supercritical case. The strategy of the proof is similar to that used in [MR95]. More
specifically, we consider the event Ev that a fixed vertex v lies in a component of size greater
than ζω(n)2 log n for some ζ > 0. We will show that P(Ev) = o(n−1). Theorem 3 then
follows by taking a union bound over v ∈ G.

Assume that we start the exploration process at the vertex v. For v to lie in a component
of size greater than ζω(n)2 log n the exploration process must remain positive for at least
ζω(n)2 log n time steps, at each step of the exploration process, at most one vertex is new
vertex is added to the component being revealed. This means at time ζω(n)2 log n we must
have A

(

ζω(n)2 log n
)

> 0, where recall that A(k) denotes the total number of active clones
at time k of the exploration process.

Let H(k) = σ({Aj
i (r), (i, j) ∈ S, 1 ≤ r ≤ k}) denote the filtration of the exploration

process till time k. We will assume that A(k) > 0 for 0 < k ≤ ζω(n)2 log n and upper
bound P(A(ζω(n)2 log n) > 0). We first compute the expected conditional change in the
number of active clones at time k for 0 ≤ k ≤ ζω(n)2 log n by splitting the outcomes into
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the several possible cases that affects Ẑj
i (k + 1) as in (13).

E[Zj
i (k + 1)|H(k)] = P(Ej

i |H(k)) E[Z(k + 1)|H(k), Ej
i ]

+
∑

m,d

P(Ei
m ∩ Ea|H(k)) E[Z(k + 1)|H(k), Ei

m ∩ Ea]

+P(Ei
m ∩ Ed

s |H(k)) E[Z(k + 1)|H(k), Ei
m ∩ Ed

s ]

=
Aj

i (k)

A(k)
(−1) +

∑

m

Ai
m(k)

A(k)

Am
i (k)

Lm
i (k)

(−δmj)

+
∑

m,d

Ai
m(k)

A(k)

dmNd
i (k)

Lm
i (k)

(dj − δjm)

= −Aj
i (k)

A(k)
−

Ai
j(k)

A(k)

Aj
i (k)

Lj
i (k)

+
∑

m

Ai
m(k)

A(k)

∑

d

dmNd
i (k)

Lm
i (k)

(dj − δjm).

We proceed with the proof in a similar fashion to the proof of the supercritical case.
Let E[Ẑ(k + 1)|H(k)] = (E[Zj

i (k + 1)|H(k)], (i, j) ∈ S) and define the vector quantity

A(k) =

(

Aj
i (k)

A(k) , (i, j) ∈ S

)

. Also define the matrix Q(k) ∈ RN×N where rows and columns

are indexed by double indices and for each (i, j) ∈ S, and

Qijji(k) = − Aj
i (k)

Lj
i (k)− δij

,

Qijlm(k) = 0 for (l,m) 6= (j, i).

Then the expected change in the number of active clones of various types can be compactly
written as

E[Ẑ(k + 1)|H(k)] = (M(k)− I +Q(k))A(k).

As the exploration process proceeds, the matrix M(k) changes over time. However
for large enough n, it follows from Lemma 5 that the difference between M(k) and M is
small for 0 ≤ k ≤ 1

2ζω(n)
2 log n. In particular given any ǫ > 0, for large enough n, we

have ||M(k) − M || < ǫ. Also from Lemma 4 we also have ||Q(k)|| < ǫ. Let z be the
Perron-Frobenius eigenvector of M . By the assumption in Theorem 3, we have

z′M = (1− δ)z′,

for some 0 < δ < 1, where (1 − δ) = γ is the Perron-Frobenius eigenvalue of M . Also let
zm , mini zi and zM , maxi zi. Define the random process

W (k) ,
∑

i

ziAi(k)

Then the expected conditional change in W (k) is given by

E(∆W (k + 1)|H(k)) = z′EẐ(k + 1)

= z′ (M(k)− I +Q(k))A(k)

= z′(M − I)A(k) + z′(M(k) −M +Q(k))A(k)

= (−δ)z′A(k) + z′(M(k) −M +Q(k))A(k).
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We can choose ǫ small enough such that z′(M(k)−M +Q(k)) < 1
2δz

′, where the inequality
refers to element wise inequality. Thus

E(∆W (k)|H(k)) < −1

2
δz′A(k) < −1

2
δzm , κ.

We can now repeat the one-sided Hoeffding bound argument following equation (15) in the
supercritical case and obtain the following inequality:

P(|W (α) + κα)| > δ) ≤ 2e
− δ2

2αω2(n) .

Setting α = ζω2(n) log n and δ = 1
2κα, we get

P(W (ζω2(n) log n) > 0) ≤ 2e−
κ2ζ log n

8 = o(n−1),

for large enough ζ. We conclude

P(G has a component bigger than ζω2(n) log n ) <
∑

v∈G

P(C(v) > ζ log n) = o(1).

This completes the proof of the theorem.
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