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Abstract

Simulation models play an important role in the design, analysis, and optimization
of modern energy and environmental systems at building or urban scale. However,
due to the extreme complexity of built environments and the sheer number of inter-
acting parameters, it is difficult to obtain an accurate representation of real-world
systems. Thus, model calibration and uncertainty analysis hold a particular interest,
and it is necessary to evaluate to what degree simulation models are imperfect before
implementing them during the decision-making process. In contrast to the extensive
literature on the calibration of building performance models, little has been reported
on how to automatically calibrate physics-based urban microclimate models.

This thesis illustrates a general methodology for automatic model calibration and,
for the first time, applies it to an urban microclimate system. The study builds upon
the previously reported and updated Urban Weather Generator (UWG) to present
a deep look into an existing urban district area in downtown Abu Dhabi (UAE)
during 2017. Based on 30 candidate inputs covering the meteorological factors, ur-
ban characteristics, vegetation variables, and building systems, we performed global
sensitivity analysis, Monte Carlo filtering, and optimization-aided calibration on the
UWG model. In particular, an online hyper-heuristic evolutionary algorithm (EA) is
proposed and developed to accelerate the calibration process. The UWG is a fairly
robust simulator to approximate the urban thermal behavior for different seasons.
The validation results show that, in single-objective optimization, the online hyper-
heuristics can robustly help EA produce quality solutions with smaller uncertainties
at much less computational cost. Finally, the resulting calibrated solutions are able
to capture weekly-average and hourly diurnal profiles of the urban outdoor air tem-
perature similar to the measurements for certain periods of the year.

Thesis Supervisor: Leslie K. Norford
Title: George Macomber (1948) Professor in Construction Management
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“It was the best of times, it was the worst of times.”

Charles Dickens

Chapter 1

Introduction

This research is motivated by the energy and environmental concerns we face in the

context of increasing global climate change and massive urban growth. In general, it

aims to potentially provide a step toward improving the urban sustainability.

1.1 The need

Global concern about depletion of non-renewable energy resources and anthropogenic

climate change has become increasingly prevalent in recent years [1]. Over the next

decade, the United Nations predicts that we need to plan and build new homes for

billions of city-dwellers worldwide [2]. Homo sapiens has evolved into homo urbanus

[3]. This unprecedentedly continuous urbanization, if shaped merely by informal or

inadequate policy measures, can potentially lead to worrisome consequences for the

built environment, the economy at national or international level, and the well-being

of humanity at large.

In response to mitigating these on-going threats, the IPCC [1] urges dramatic re-

duction in greenhouse gas (GHG) emissions and sustainable adaption of societies to

a new climate context. Many governmental administrations have prioritized, among

other actions, decarbonizing the energy system and reducing GHG emissions at local

or global scales in order to achieve a clean-energy economy [4]. While the magnitude

of GHG emissions varies among different cities, the building-related emission is always

a key contributor. Urban systems need to be better understood to effectively tackle

these problems in existing or new neighborhoods, not only which current sectors may

cause the environmental issues but also what future changes may best reduce the en-

ergy consumption. Furthermore, in some cases the anthropogenic climate change can
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Figure 1-1: Heat balance of the urban surface layer (mainly from Ref. [7]).

be exacerbated by neighborhood-to-city-scale phenomena, such as the heat islands.

As cities develop, the urban areas are gradually filled by tall buildings and canyons

with dense blocks of structures, forming different morphologies relative to rural ter-

rain. Besides, more urban surfaces exposed to the environment lead to higher effective

albedo, increased effective thermal inertia, lower wind velocity, and decreased con-

vective heat removal. Added to this is the anthropogenic heat gain due to human

activities and the lower evaporation due to vegetation reduction. As a consequence,

the outdoor air temperatures in cities tend to be different from those in rural areas,

a phenomenon known as the Urban Heat Island (UHI) effect1 [5].

The urban microclimate strongly depends on the urban surface layer. The latter

is determined by the energy balance [6, 7] between the received net radiation (both

short-wave and long-wave), the sensible and latent heat fluxes transferred to the

air, the heat storage in urban structures and the ground, and the anthropogenic

heat sources, as shown in Figure 1-1. The energy-balance characteristics may vary

[8, 9] with city location, built form, urban geometry, surface materials, etc. So, the

UHI effect tends to vary significantly from one location to another, and should be

considered as site-specific.

Regardless of the inherent uncertainties in predicting future climate and weather

patterns, the UHI has been measured and documented throughout the world, in-

cluding in Washington, DC, New York [10], Vancouver, Marseille [11], London [12],

Abu Dhabi [13], etc. In particular, Crawley [14] studied the UHI effect on an office

building and suggested that the corresponding energy consumption could be modified

between 5% (increase in summer) and 10% (decrease in winter). In order to meet

1Sometimes, the urban-rural temperature difference could be negative (especially in the morning),
which is called the Urban Cool Island (UCI) effect.
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the increasing peak demand in summer, more electricity generation by power plants

will lead to higher emissions of VOCs, suspended particulates, and CO2, as well as to

aggravation of global warming and formation of harmful smog [15]. As a result, the

UHI could indirectly cause various health problems leading to morbidity, disability,

or even death [16]. Cities must undertake mitigation and adaptation measures to

reduce the negative impacts of heat islands on the environment, the economy, and

the population. However, aside from the social and economic concerns, developing

effective adaptation strategies comes with a large technical challenge since an urban

microclimate system comprises very complex physical relationships between many

elements that may interact with each other [17]. A good understanding of the mech-

anism and characteristics of UHI is thus a prerequisite for decision makers to identify

and adopt reliable sustainability options, particularly during the design of new or

renovated neighborhood areas.

1.2 The state of the art

1.2.1 Urban-scale simulation model

This pressing need motivates many energy and environment research communities to

expand their scope to the urban realm [18]. Great efforts have been made to incorpo-

rate the UHI effect into thermal simulations [8, 14, 19]. In addition, some researchers

have started to look at the physical behavior or causal factors of urban climate change

and heat island effect via mesoscale computational fluid dynamics (CFD) simulations

[20], analytical and empirical algorithms [21], and physics-based urban canopy models

[11]. As different models are developed for different uses, different spatial scales need

to be clearly defined and different simulation models need to be elaborated in terms of

their capabilities to predict corresponding energy and environmental conditions. Al-

though the mesoscale models are regarded as state-of-the-art in atmospheric weather

predictions [22], their applications still remain limited due to high computational cost

and lack of boundary condition data.

As an alternative, Bueno et al. [23] proposed and developed the Urban Weather

Generator (UWG) to quickly estimate the UHI effect in the urban canopy layer and

produce neighborhood-specific weather files, using the meteorological data measured

at weather stations located in an open area outside the city. The UWG can also be

considered as an offline bottom-up model to evaluate the building energy consump-

tion at the neighborhood-to-city scale. It has been validated in Toulouse (France),
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Basel (Switzerland) [23], Singapore [24], and Boston (USA) [25]. With continuous

improvements and updates [26], the UWG has the potential to be a promising urban

microclimate simulation engine that shows satisfactory performance with exception-

ally low computational requirements.

However, despite the positive progress, simulation practice to date has only pen-

etrated a small fraction of professional communities within the AEC industry. One

recognized obstacle is the discrepancy, sometimes significant, between actual and

predicted values. In general, prognostic law-driven models [27] involve a suite of sim-

plified physical relations describing the way various component disturbances (from

system operation, human activity, material property, etc.) interact with each other

and influence the aggregate physical behavior. Within these equations, both differen-

tial and algebraic, hundreds or even thousands of parameters exist. It is common for

an engineer to make ad-hoc estimates for these parameters based on limited engineer-

ing knowledge, past user experience, and an abundance of trial and error. As a result,

even though many inputs seem empirically validated, the simulated output could be

far from the real scenario. It is ironic that at the time when simulation is the most

popular, parameters of simulation may be the least reliable, which inevitably reduces

the confidence of simulated results and curtails the use of simulation models to some

extent. It is hence necessary to match simulation with measurement, a process called

“model calibration.”

1.2.2 Model uncertainty and sensitivity

Although some studies use calibrated models, their underlying calibration techniques

are unclear. In order to dive deeper into model calibration, it is important to con-

sider “model uncertainty” [28]. Validation of a complex-system model is notoriously

difficult, especially when the purpose of the model is to look at some non-observable

or unmeasured physical behavior. The reason stems from the fact that closed-loop

simulations usually represent major simplifications and constraints. That is to say,

“the portion of the world captured by the model is an arbitrary ‘enclosure’ of an other-

wise open, interconnected system” [29]. Model errors are mainly caused by difficulties

in capturing how exactly a system operates, due to software limitations and inaccu-

rate parameter descriptions that cannot be completely modeled a priori. The input

parameters are often calibrated manually by an expert, which may require days or

weeks of work depending on model complexity. A commonly observed method tunes

some specific parameters until the result meets an acceptance criterion without any
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uncertainty analysis.

Uncertainty quantification is often time-consuming and requires additional efforts

in the overall design and/or retrofit phase of an engineering system, but can provide

more robust decisions. However, not all the modeled aspects have the same level

of importance and not every input parameter offers the same contribution to error

propagation. As a result, uncertainty analysis is usually coupled with sensitivity anal-

ysis to measure the relative importance of various input parameters [30]. In general,

a single simulation only evaluates one single point in the parameter space without

taking uncertainties into account. Consequently, building designers or city planners

often perform manual parametric simulations varying one factor at a time, which is

referred to as local analysis. This is why some cynics would say that “models can be

made to conclude anything provided that suitable assumptions are fed into them” [31].

As many inputs in the model are associated with some degree of uncertainty, due to

changeable conditions or lack of knowledge about the exact value, sensitivity analysis

of model parameters plays an important role in the simulation process in order to

achieve valuable information and increase model confidence.

Sensitivity analysis (SA), presented by Saltelli et al. [32], is a measure of the effect

of an input on the output. In general, given the input uncertainties, one is able to

assess the uncertainty in the model response (uncertainty analysis), and eventually

to identify the inputs that contribute most to that uncertainty (sensitivity analy-

sis). Thus, SA can be of tremendous help in subsequent model analysis, including

simulation-based optimization [33], meta-model analysis [34], automatic model cal-

ibration [35], etc. The SA methods can generally be divided into local and global

approaches [32]. The local methods require fewer computations but are ill-suited

for complex systems. The global methods are regarded as more versatile to handle

non-linear, non-additive, and non-monotonic systems [30].

A brief literature review suggests that the global SA has been widely applied in

building thermal simulations [36, 37, 38, 39, 40, 41]. In addition, some researchers

have started to look at the causal factors of urban microclimate and heat island via

parametric studies [8, 11, 13, 23, 25, 42]. However, to the author’s best knowledge,

there is nearly no related work on performing the global SA in urban microclimate

models with respect to a large multiplicity of factors. This is because the global SA ap-

proaches are so computationally expensive that most urban-scale simulations cannot

afford them. Fortunately, with acceptable performances and exceptionally low com-

putational requirements, the UWG could enable a first step toward the exploration
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of the global design space with various input parameters in urban simulations. Once

the “weak” parameters are determined by SA, they could be set at nominal values,

thereby reducing the parameter space and increasing the calibration efficiency. The

remaining influential input set is considered by a more rigorous calibration process.

1.2.3 Optimization-aided model calibration

Given the evidence that manually tuning the parameters can be viewed as an opti-

mization process, it is natural to think about using computers to implement calibra-

tion in automatic or semi-automatic means via optimization algorithms. Simulation-

based optimization – wherein a simulation model is embedded in the optimization –

has been increasingly applied in the building science community through mathemati-

cal and statistical methods to assist design analysis [33, 43, 44] and model calibration

[45, 46, 47]. A pioneering study was conducted by Wright [48] in the 1980s, while the

number of optimization-related papers has sharply increased since 2005 [33]. Many

open-source tools, such as the GenOpt by Wetter [49], are now available to provide

the capabilities of coupling various building performance simulations to effectively

support optimization.

Generally speaking, an objective performance function is formulated to define a

max/min target, while some constraint functions are employed to reduce the pos-

sibility of deviating too far from the reality. Since the performance function asso-

ciated with building or urban thermal-physical behavior is usually discontinuous,

non-differentiable, multi-modal, and locally-flat [50], traditional gradient-based al-

gorithms cannot successfully search the whole parameter space. On the other hand,

heuristic-based algorithms (e.g., evolutionary algorithm) have been frequently used in

building or urban performance optimization, mainly owing to their abilities to obtain

good solutions with some degree of efficiency and robustness. In particular, a brief

literature review indicates that heuristic-based algorithms can perform reliable cali-

bration for building energy models [51, 52, 53, 54]. To the author’s best knowledge,

there is nearly no work on performing optimization-based calibration of physics-based

urban microclimate models, due partly to the expensive computational costs.

At the current stage, calibration still relies to some extent on expert judgment and

engineering experience (e.g., in the selection of candidate inputs). So, we recognize

that the computer is more likely to act as a supplement to optimize and accelerate

the calibration by transforming manual adjustment into automatic tuning. However,

application of numerical optimization in the calibration process, while abstracting the
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physical objective as a tractable mathematical problem, inevitably neglects some real

physical details in the constraint(s). Indiscriminant use could result in mathematical

match but physical mismatch, which is why some researchers would criticize such

methodology. This naturally necessitates the incorporation of uncertainty analysis

after calibration to test reliability.

Finally, although simulation-based optimization has been actively discussed, one

practical concern is the computation time. A typical model optimization could take

days or weeks of computation to find optimal or near-optimal solutions. Given the

time-constrained nature of engineering applications, it is necessary to develop novel

optimization methods that are able to find high-quality solutions as quickly as possi-

ble.

1.3 The goal

This study was initiated with the intention to account for uncertainty in developing

more coherent and integrated strategies concerning the energy and environmental

issues in the urban system. The overall goal of this thesis is to identify a general

methodology to the topic of automatic model calibration and apply it to an urban

microclimate system. Essentially, the proposed ideas involve various concepts and

methods borrowed from allied scientific disciplines in a more mathematical and sta-

tistical point of view. Corresponding analysis builds upon the newest Urban Weather

Generator (UWG) to present a deep look into an existing district area located in

downtown Abu Dhabi (UAE).

The core of the thesis is divided into two parts, which correspond to two journal

publications [55, 56] that have come out of this research. The first part is devoted to

global sensitivity analysis, which is used to determine the relative impacts of input

parameters on estimates of the urban outdoor air temperature. The second part is de-

voted to optimization-aided model calibration, which is used to auto-tune the selected

input parameters so that the UWG model can represent the urban microclimate as

precisely as possible. To the author’s best knowledge, this is to date the first time to

perform global sensitivity analysis and automatic calibration on physics-based urban

microclimate models.

Chapter 1 overviews the state of the art in urban microclimate simulation re-

search and states the thesis goal. Chapter 2 introduces the basic mechanism and

major updates of the newest UWG for urban microclimate simulation. Chapter 3
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illustrates a baseline model of the selected case study for the proposed methodologies

detailed in Chapter 4. In particular, we have developed a global regression-based

sensitivity analysis, a Monte Carlo filtering technique, and an online hyper-heuristic

evolutionary algorithm for the current research. Finally, results and discussions are

provided in Chapter 5, and the corresponding conclusions and prospects for future

work are outlined in Chapter 6.

The final achievement of this study is expected to be helpful in using simulation-

based analysis as a deeper basis for providing the tool, guideline, recommendation,

best-practice example, and background information to practitioners and researchers

in the field of building and/or urban system study. In this sense, a modeling approach

that is able to robustly integrate field measurements and computer simulations has

the potential to significantly improve the way buildings and/or cities are designed

and operated. This research aims to represent an initial step toward such promising

vision.
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“All models are wrong, but some are useful.”

George Box

Chapter 2

Urban Weather Generator

In order to capture the UHI effect and to simulate the microclimate condition, the

Urban Weather Generator (UWG) was developed by Bueno et al. [23] as a stand-alone

program to map a reference weather file to the estimated conditions at a neighborhood

scale based on the specific urban area characteristics.

2.1 Program introduction

The wisdom of UWG comes from the fact that many communities do not have access

to the microclimate information from local experimental measurements and mesoscale

simulation results, while the rural meteorological information can be easily found in

currently available weather files. Starting with the rural weather data provided in the

EPW format and the urban characteristics, the UWG outputs the simulated urban

weather data (during either an entire calendar year or just a subset thereof) that can

be readily used in the EPW format.

As shown in Figure 2-1, the UWG consists of four coupled models: the rural

Rural station model

Vertical diffusion model Urban boundary layer model

Urban canopy - Building energy model

Meteorological information

Air temperature at 

different heights

Air temperature above 

the urban canopy layer

Air temperature at 

the street level

Figure 2-1: Four coupled models in the UWG (mainly from Ref. [23]).
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Input

Output

UWG main program

.xml file + rural .epw file

.xlsm file + rural .epw file

or

.xlsx file

.mat file

urban .epw file

or

or

UWG

pre-processor

UWG

post-processor

UWG engine

refSite cityBlock

urbanArea soilIndex

ublVar urbanUsage

simParam road

geoParam rural

weather autosize

Figure 2-2: General workflow of the UWG program (mainly from Ref. [26]).

station model (RSM), the vertical diffusion model (VDM), the urban boundary layer

model (UBLM), and the urban canopy-building energy model (UC-BEM). Detailed

physical mechanisms of these models can be found in Refs. [23, 57]. Originally written

in Matlab, following update of the UWG program further includes XML [25] and

Excel [26] interfaces to allow flexibility in input formats of the urban characteristics.

General workflow of the UWG program is depicted in Figure 2-2. The version used

in this thesis is a macro-enabled Excel interface along with compiled Matlab scripts

of the UWG as a standalone urban microclimate simulation package.

Based on the main UWG code, Dragonfly is a new component for Grasshopper

and Rhino that allows users to model and estimate large-scale climate phenomena,

such as the UHI effect. This is accomplished with the help of several urban thermal

simulation engines, including the UWG and CitySim [58]. It also links to several

climate-related datasets such as the Hadley Global Circulation Model (for climate

change projections) and to several satellite image datasets such as the Landset and

MODIS from NASA. The Dragonfly program intends to make many large-scale

climate variables accessible to the visual scripting interface of Grasshopper as well as

the 3D visualization interface of Rhino. The latest executable tool and program code

(in Python) are currently maintained by Mackey et al. [59] on GitHub.
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2.2 Program update

Since the previous version in 2014 [24], the UWG has been updated in 2016 [26],

especially for the urban boundary layer model and the urban canopy-building energy

model, with the purpose of making it more physically sound and more capable to

handle increasingly detailed building definition. Major updated features of the current

UWG are re-emphasized and described below.

2.2.1 Urban canopy model

Based on the Town Energy Balance (TEB) scheme proposed by Masson [60], the UWG

maps the 3D urban geometry to a 2D canyon model consisting of a wall, roof, and

road, representative of the average urban characteristics. While the previous version

bounded the canyon volume by twice the building height, the urban boundary layer

(UBL) in the new version extends down to the top of the building. All heat released

from the roof is assumed to directly enter the UBL. This makes the formulation more

consistent with the original TEB scheme.

The direct solar radiation in the new version is also updated for numerical stability.

According to Masson [60], their fractions are given by:

Kw,dir = min
{ wr

hbld
(
1

2
− θ0
π

) +
1

π
tan(λ)(1− cos(θ0)), 1

}
, (2.1)

Kr,dir = min
{2θ0
π
− 2

π

hbld
wr

tan(λ)(1− cos(θ0)), 1− 2raspectKw,dir

}
, (2.2)

where Kw,dir is capped to 1 as the sun approaches the horizon.

While Masson defined these terms to scale the direct solar radiation received

by a horizontal surface, the value specified in a standard EPW file is the direct

normal radiation, namely the solar radiation received by a surface perpendicular to

the sunlight direction. This indicates that the previous model had a slightly excessive

solar gain. Thus, the direct solar radiation in the newest UWG is modified as:

Shor,dir = Snorm,dir cos(λ) . (2.3)
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In terms of the infrared radiation (IR) exchange, the previous version seemed to

over-estimate the IR absorption by bodies of air [61]. To correct this over-estimation,

the air is now assumed to be essentially transparent to the long-wavelength (LW)

radiation emitted from its boundary surfaces. This assumption has been validated

with MODTRAN simulations [26], showing that the IR absorption of the air is almost

negligible for the thick air bodies (around 1 km) considered in the UWG. Thus, the

net LW heat exchanges with the atmosphere for the roof, wall, and road are given as:

QLW,roof = εroof (QLW,down − σT 4
roof ) , (2.4)

QLW,wall = εwallV Fwall−sky(QLW,down − σT 4
wall)

+ σεroadεwallV Fwall−road(1− rshade)(T 4
road − T 4

wall) ,
(2.5)

QLW,road = εroadV Froad−sky(1− rshade)(QLW,down − σT 4
road)

+ σεroadεwallV Froad−wall(1− rshade)(T 4
wall − T 4

road) ,
(2.6)

where QLW,down has accounted for the radiative effect due to the water vapor and

carbon dioxide contained in the UBL.

Since the latent heat exchange between the four coupled models was not fully

considered, Yang [26] decided to remove the humidity calculation for canyon in the

new version of UWG. This calculation requires consideration of the moisture from

vegetation, soil, combustion, nearby bodies of water, etc., and these components

have not been precisely modeled in the current UWG. It is also worth noting that

the latent heat balance in the urban canyon has not been formally validated [23, 24].

Thus, the absolute humidity in the rural area is assumed the same as that in the

urban area, and is then used to calculate the relative humidity for the generated

EPW file. When accounting for the solar radiation received by the vegetation, we

only consider its sensible portion in the energy balance, subtracting a prescribed

latent-energy fraction.

When the urban weather file is generated, the calculated canyon wind speed is

included, instead of the rural wind speed used by previous versions. The calculation is

detailed in the appendixes of Refs. [23, 24]. In addition, the new UWG incorporates
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a user-specified hourly schedule for the traffic-generated heat flux, as a counterpart

to the schedules defined in the building energy model, to make the simulated diurnal

microclimate profile more accurate. Finally, the new version of UWG reads the soil

temperatures from the EPW file, and uses these values as the boundary condition

to obtain the road layer temperature profile. It is also worth noting that the road

elements in the new version are divided into thinner layers (with maximum of 5 cm)

so that the surface temperature fluctuation can be captured more precisely.

2.2.2 Urban boundary layer model

The urban boundary layer (UBL) model solves an energy balance for a control volume

above the urban canopy layer (UCL) where the boundary conditions can be imposed

[57]. The UBL is considered as a region of well-mixed and isothermal air below a

capping inversion.

As explained in Subsection 2.2.1, the IR portion of the energy exchange added

in 2014 [24] is now removed. Thus, the energy balance of the current UBL model

remains the same as the original version in 2012 [57], defined as:

VCV ρcv
dθu
dt

= Hu +

∫
urefρcp(θref − θu)dAf , (2.7)

where the term on the LHS stands for the thermal inertia of the control volume, and

the second term on the RHS stands for the advection effect.

The heat exchange at top of the control volume is assumed negligible when the

vertical profile of the potential temperature provided by the vertical diffusion model

is constant. So, the energy balance of the UBL model is driven only by the heat flux

from the bottom or the lateral sides of the volume surface.

The advection effect is driven by either the horizontal flow or the radial urban-

breeze circulation where the wind direction is not taken into account. Therefore, the

rural weather data seems applicable to large concentric regions surrounding the urban

area [62].

2.2.3 Building energy model

The building energy model approximates the heat balance of the indoor air tempera-

ture for each building. For simplicity, the air temperature is assumed uniform within
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Table 2.1: Fractions of the internal heat loads.

Occupancy load Equipment load Lighting load Added to
Convective fraction 0.5 0.5 0.3 Air
Latent fraction 0.3 0 0 Air
Radiant fraction 0.2 0.5 0.7 Mass

Note: The fraction values are selected based on ASHRAE Handbook – Fundamentals [63].

the entire building envelope. As a result, the UWG can capture the building energy

operations and calculate the waste heat emissions from HVAC systems, which are the

potentially significant sources of heat in the energy balance of an urban canyon.

Whereas the old version only specified the total internal heat load in buildings,

the new UWG takes into account the variation in the types of heat loads. As shown

in Table 2.1, the updated UWG treats the convective, latent, and radiant heat loads

separately. The convective and latent heat exchange is added directly into the indoor

air heat balance, while the radiant heat flux is received by the ceiling and floor. The

view factors from lights and occupants to the ceiling and floor are assumed close to

unity.

To simplify the estimation of various building types at the neighborhood scale,

commercial building reference data is imported from the US DOE online database [64]

into a spreadsheet associated with UWG. This allows the users to specify the building

types that make up the urban area, instead of modeling all the buildings individually.

Accordingly, the updated UWG simulates the hourly schedules of occupancy, lighting,

and equipment loads for each building type using the default values provided in the

DOE reference building database, with flexible options for user customization. The

goal is a better estimation of the building energy use pattern at the urban scale

and the temporal sensible heat fluxes released into the surrounding environment. In

addition, we consider a single building zone with a generic thermal mass and use

the multi-zone-weighted average to calculate the internal heat gain. The simplified

building models have been validated against the original models in Ref. [26].

For the heating mechanism in the updated version, the internal heat gain is added

into the building control volume based on the heating requirement, instead of based

on the supply air temperature and mass flow rate. On the other hand, the cooling

demand is determined by a psychrometric model based on the apparatus dew point.

If the energy demand is greater than the system capacity, the system capacity is then

used to calculate the supply air temperature.

In order to properly size the building elements, detailed information for the case
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study is determined according to local summaries and then is substituted into the

DOE reference building database. As for the thermal properties of the building en-

velope, if the insulation layer is too thin (less than 1 cm), it will not be modeled

in the structural element to avoid solver instability. Such omission will not signifi-

cantly affect the thermal characteristics of the structure. However, the surface optical

properties, such as the albedo and emissivity, are still taken into account.

Finally, while the previous version calculated the waste heat based on the total

building energy consumption, the updated version treats the waste heat in more

detail. The energy consumed by lights and equipment is considered as the heat flux

received by either indoor air or internal surfaces, eventually merging with the canyon

air through windows and walls. The waste heat added directly into the canyon is

calculated based on the HVAC-related waste heat (with a predetermined fraction),

as well as the waste heat from hot water usage and gas consumption1.

1Assuming that the zones where gas equipment is used are well-ventilated (indicated by exhaust
rate for EnergyPlus models), the heat loads of gas equipment are not included in the internal sensible
heat loads [26]. Hence, similar to space and water heating, a specified fraction of the gas consumption
is added to the waste heat from the building(s).
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“Scientists investigate that which already is;

Engineers create that which has never been.”

Albert Einstein

Chapter 3

Baseline urban design

In this chapter, a baseline model is established based on the newest version of UWG

for a typical district in downtown Abu Dhabi (UAE). The baseline model is validated

using the measurements in 2016 for the subsequent research.

3.1 Case study in Abu Dhabi

Abu Dhabi has been developed rapidly over the past 60 years. Its climate is character-

ized by a very hot summer from July to September and a mild winter from December

to February. The city experiences an environment with generally high temperatures

and insufficient rainfall throughout the year. The Köppen climate classification sub-

type for Abu Dhabi is BWh (tropical and subtropical desert climate).

This case study was conducted in District E3 (see Figure 3-1), which is rep-

resentative of the large city blocks in downtown Abu Dhabi. The total land area

of District E3 is about 193,351 m2. As shown in Figure 3-1(b), there is a row of

high-rise residential, office, and hotel buildings on the outer borders surrounding a

number of medium- and low-rise buildings in the inner part. In total, 70 buildings are

considered in the baseline model, including 59 residential buildings, five office build-

ings, three hotels, one mosque, one school, and one hospital. In general, the buildings

built in the 1990s have smaller window-to-wall ratios, while the buildings built after

2000 are mostly glazed over the façade. This makes Abu Dhabi an interesting case

with heterogeneous building forms located in a tropical or subtropical climate zone.

The parameters used for establishing the baseline model can be categorized into

four groups: meteorological factors, urban characteristics, vegetation variables, and

building systems. Since detailed data collection efforts on building properties would
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(a) Satellite plan

(b) 3D model

(c) Site view

Figure 3-1: District E3 in downtown Abu Dhabi (UAE).
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Table 3.1: Inputs of the UWG used in the baseline model with field data from District E3
in Abu Dhabi.

Parameter Setting

General information

Location Abu Dhabi
Latitude 24.490◦

Longitude 54.366◦

Simulation time-step 300 s
Weather data time-step 3600 s
Simulation period for validation 10/01/2016 – 10/07/2016

11/01/2016 – 11/07/2016
12/01/2016 – 12/07/2016

Meteorological factors

Daytime urban boundary layer height 700 m
Nighttime urban boundary layer height 80 m
Reference height of the VDM 150 m
RSM temperature reference height 10 m
RSM wind reference height 10 m
Circulation coefficient 1.2
UCM-UBL exchange coefficient 0.3
Heat flux threshold for daytime conditions 200 W m−2

Heat flux threshold for nighttime conditions 50 W m−2

Minimum wind velocity 0.1 m s−1

Rural average obstacle height 0.1 m

Urban characteristics

Average building height 35 m
Fraction of waste heat into canyon 0.3
Building density 0.24
Vertical-to-horizontal ratio 2.2
Urban area characteristic length 1000 m
Road albedo 0.165
Pavement thickness 1.25 m
Traffic sensible anthropogenic heat (peak) 19.6 W m−2

Traffic latent anthropogenic heat (peak) 2.0 W m−2

Vegetation variables

Urban vegetation coverage 0.01
Urban tree coverage 0.01
Start month of vegetation participation January
End month of vegetation participation December
Vegetation albedo 0.25
Latent fraction of grass 0.6
Latent fraction of tree 0.7
Rural vegetation coverage 0.01

Note: Detailed physical definition of the parameters can be found in Refs. [23, 57]. In particular,
Ref. [23] illustrates the parameters in the rural station model (RSM) and urban canopy-building
energy model (UC-BEM), while Ref. [57] illustrates the parameters in the vertical diffusion model
(VDM) and urban boundary layer model (UBLM).
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Table 3.2: Building parameters for the detailed model (DM) in the UWG.

Building parameter Residential Hotel Office Mosque School Hospital
Total floor area (m2) 382,086 99,666 140,886 2070 15,159 10,589
Glazing ratio 0.39 0.75 0.72 0.11 0.34 0.90
Wall U-value (W m−2 K−1) 2.70 2.27 1.71 2.70 2.70 1.71
Roof U-value (W m−2 K−1) 0.74 0.74 0.53 0.74 0.74 0.53
Window U-value (W m−2 K−1) 3.88 2.40 2.40 3.88 3.88 2.40
Window SHGC 0.75 0.36 0.36 0.75 0.75 0.36
Infiltration rate (ACH) 0.75 0.50 0.30 0.75 0.75 0.20
Lighting load density (W m−2) 8 10 12 8 15 15
Equipment load density (W m−2) 12 13 15 5 10 15
Occupancy density (m2 person−1) 25 10 10 10 8 15
Indoor air temperature set point (◦C) 22 22 22 22 22 22
Chiller COP 2.5 2.5 2.5 2.5 2.5 2.5

Note: The values are determined based on the corresponding data taken from the local building
design/energy codes provided by the Abu Dhabi Municipality (via personal contact), the on-site
survey, and the prevailing engineering practices [13, 64, 65, 66].

become impractical at the urban scale, it is necessary to abstract a building stock into

“building archetypes.” While such division is of tremendous importance for modeling

reliability, the process usually remains ad hoc based on generic assumptions. In our

case study, the descriptions of the baseline model are based on careful selections of

typical design and construction with corresponding data taken from the Abu Dhabi

Municipality (via personal contact) and prevailing engineering practices [13, 23, 24,

57, 64, 65, 66]. A summary of the key input parameters is shown in Tables 3.1 and

3.2. The structural elements of the DOE reference buildings based on the Miami

climate are modified according to the current building descriptions, since the climate

in Miami is quite similar to that in Abu Dhabi.

3.2 Model of anthropogenic heat flux

In urban studies, anthropogenic heat flux is defined as the heat released due to human

activities [67]. According to Sailor [68], it generally includes the heat from building

operation, traffic vehicles, and human metabolism.

A methodology is proposed to evaluate the aggregated effect of building energy

models on the outdoor microclimate conditions in the subsequent uncertainty/sensi-

tivity analysis and model calibration. The underlying expectation is that the average

building in a specific urban area is more thermally homogeneous and generic than

each particular building. Two models of District E3 with different levels of detail
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Table 3.3: Building parameters for the averaged model (AM) in the UWG.

Building parameter Weighted average
Glazing ratio 0.48
Wall U-value (W m−2 K−1) 2.5
Roof U-value (W m−2 K−1) 0.7
Window U-value (W m−2 K−1) 3.25
Window SHGC 0.58
Infiltration rate (ACH) 0.6
Lighting load density (W m−2) 10
Equipment load density (W m−2) 13
Occupancy density (m2 person−1) 19
Indoor air temperature set point (◦C) 22
Chiller COP 2.5

Note: The wall-, window-, and roof-related parameters are averaged based on the wall, window, and
roof area, respectively. The internal heat gains are averaged based on the floor area. The infiltration
level is averaged based on the building volume.

are compared via UWG. The first model, referred to as the detailed model (DM),

includes the exact information for the six building archetypes extracted from available

resources. The second model, referred to as the averaged model (AM), maintains the

assumptions of the building energy model but considers only one building archetype

using weighted average values. The key parameters of the building geometry, energy

load, and HVAC system are all set as weighted averages based on corresponding area

or volume. We assume that the schedules for each building prototype cannot be

averaged and thus remain unchanged. This method is adopted only if the objective

is to evaluate the overall energy consumption of a neighborhood area, rather than

the energy performance of a specific building. Tables 3.2 and 3.3 summarize the

parameters in DM and AM, respectively.

In the meantime, there has been a completed research project working exclusively

on quantifying the traffic-related anthropogenic heat in District E3 [69], since the

outdoor metabolic heat is negligible and the building-related waste heat can be cal-

culated by the UWG. The novelty of the method lies in the assumption that the air

quality measurements can be a proxy for traffic intensity. In particular, the BTEX

(Benzene, Toluene, Ethylbenzene, and m-, p-, o-Xylenes) concentration levels appear

strongly correlated with the traffic intensity [69].

The normalized diurnal profiles of the traffic intensity were derived using the

BTEX concentrations measured in a downtown air quality monitoring station near

District E3 during calendar year 2012. We neglect the seasonal dependence and focus

on the variance on a daily basis, since the diurnal average BTEX profile is not sensitive
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Figure 3-2: Normalized diurnal profile of the average traffic intensity in Abu Dhabi based
on the BTEX concentration (mainly from Ref. [69]).

to seasons. As shown in Figure 3-2, the Friday profile is quite different from the

workday profile, whereas Saturdays present wide similarities with workdays. There

are two peaks at 9 am and 10 pm and one minimum at 5 am in the workday diurnal

profile. The Friday profile also peaks at 10 pm, while the high values persist during

the nighttime. Such differences can be explained by cultural and climatic reasons. In

Abu Dhabi, it is worth noting that the weekend is Friday and Saturday; Friday is the

weekly Muslim holy day, a day of public worship.

The normalized profile has been calibrated using either a bottom-up method based

on high-resolution satellite images of the traffic intensity, or a top-down method based

on average macro-economic and demographic variables [69]. Both methods have been

applied and the results were quite similar. The peak traffic sensible anthropogenic

heat load for the diurnal profile is 19.6 W/m2, based on the full site. This is quite

consistent with the result produced by Quah and Roth [70] in Singapore. The peak

latent heat load due to motorized traffic is estimated to be 2.0 W/m2.

3.3 Reference and sensor data for validation

The rural reference weather data used for the baseline model is taken from the Masdar

Institute Field Station (24.436N, 54.612E), an isolated laboratory building in Masdar

City. The station was built near the Abu Dhabi International Airport, 28 km from

the downtown area (see Figure 3-1(a)). The rural station is basically surrounded

by deserts connecting Abu Dhabi, Dubai, and Al Ain. Due to regular maintenance to

ensure data quality, the measured data during calendar year 2016 is used for running

the UWG to validate the baseline model. As shown in Figure 3-3, Abu Dhabi has a

maximum temperature in August 2016 (about 47.3 ◦C) and a minimum temperature
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Figure 3-3: Monthly outdoor air temperature measured at the rural station in Abu Dhabi
during 2016.

in February 2016 (about 8.7 ◦C).

Temperature observations from installed urban sensors are compared with the

predicted values by the UWG baseline model. In fall 2016, several arrays of sensors

were attached to six lamp poles in District E3 at different sites, representing a range

of land usages, morphological parameters, building operations, etc. Each sensor array

consists of temperature measurements (at 3, 4, 5.5, 7, and 8.5 m), relative humidity

measurements (at 3 m), and wind measurements (at 6 m, only available in four of

the six stations). The sensors were inspected against each other before deployment

to ensure relative accuracy of readings.

We use the data measured in 2016 from three of the calibrated sensors that present

consistent performances for validating the baseline model. The corresponding loca-

tions in (latitude, longitude) of the three sensors are (24.4902◦, 54.3654◦), (24.4894◦,

54.3663◦), and (24.4907◦, 54.3660◦). In particular, the temperature observations at

8.5 m are selected for the subsequent comparison, since they are more suitable to val-

idate the current UWG outputs for this case study (given that the average building

height is 35 m).

3.4 Prediction of urban outdoor air temperature

Figure 3-4 compares the weekly-average profiles of rural and urban outdoor air

temperature calculated by the model from October to December 2016. The diurnal
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Figure 3-4: Weekly-average diurnal profiles of the rural and urban outdoor air tempera-
ture: (a) Data between October 1 and 7, 2016; (b) Data between November 1 and 7, 2016;
(c) Data between December 1 and 7, 2016.

pattern of UHI is characterized by a slightly cooler temperature in the urban area

than in the rural area during the late morning, and a relatively warmer temperature

from the afternoon to the early morning the next day. The urban-rural temperature

differences are more intense in the early morning. This is quite consistent with the

results from previous studies [23, 24, 67]. Generally speaking, due to the aggregate

effect of the whole city, the UHI cannot be neglected in Abu Dhabi for the assessment

of either thermal comfort or energy consumption.

We can also see that the DM and AM present almost the same profile of the

urban outdoor air temperature. The differences in the diurnal pattern, computed as

the root-mean-square error (RMSE) between the DM and AM, are all about 0.03 ◦C

from October to December. On the other hand, the difference in urban electricity use

between the DM and AM can be observed to some extent in Figure 3-5, especially
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Figure 3-5: Weekly-average diurnal profiles of the predicted urban electricity use: (a)
Data between October 1 and 7, 2016; (b) Data between November 1 and 7, 2016; (c) Data
between December 1 and 7, 2016.

during the daytime. The corresponding diurnal differences, computed as the RMSE

between the DM and AM, are respectively about 0.52, 0.59, and 0.64 MWh in Octo-

ber, November, and December. Usually there are more cooling demands during the

daytime than during the nighttime for Abu Dhabi, resulting in more significant im-

pacts of building-related parameters on the urban energy consumption. Nevertheless,

the differences are not very high given the state of the art of urban energy modeling.

This justifies the application of AM in the UWG to assess the aggregated effect of

building energy models on the outdoor microclimate conditions in the subsequent

uncertainty/sensitivity analysis and model calibration.

The capacity of the UWG baseline model with the averaged building energy mod-

els to predict the urban outdoor air temperature is evaluated against the observations

from October to December 2016, as shown in Figure 3-6. To properly describe the

39



20

25

30

35

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hour

A
ir
 t
e
m

p
e
ra

tu
re

 (
ºC

)

Measured outdoor air temperature by the sensors

Predicted outdoor air temperature by the UWG (AM)

(a) October

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hour

A
ir
 t
e
m

p
e
ra

tu
re

 (
ºC

)

Measured outdoor air temperature by the sensors

Predicted outdoor air temperature by the UWG (AM)

(b) November

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hour

A
ir
 t
e
m

p
e
ra

tu
re

 (
ºC

)

Measured outdoor air temperature by the sensors

Predicted outdoor air temperature by the UWG (AM)

(c) December

Figure 3-6: Weekly-average diurnal profiles of the measured and predicted urban outdoor
air temperature: (a) Data between October 1 and 7, 2016; (b) Data between November
1 and 7, 2016; (c) Data between December 1 and 7, 2016. The error bar represents the
standard deviation of the measured urban outdoor air temperature from different sensors.

air temperature in the whole area of District E3 and to account for the sensor mea-

surement uncertainty, we considered the average and standard deviation of the three

sensors. Figure 3-6 illustrates that the UWG tends to either over-predict or under-

estimate the urban air temperature to some extent in the daytime. In general, the

prediction performance is relatively better during the nighttime than during the day-

time. Although validation of the electricity use prediction has not been performed

– due to our current inability to access such data – we expect to obtain the corre-

sponding meter data and will include such validation in the future. Still, considering

the complexity of urban systems, the UWG can roughly capture the UHI pattern and

produce some plausible values regarding the urban microclimate condition.
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“Premature optimization is the root of all evil.”

Donald Knuth

Chapter 4

Methodology

The measurement uncertainty has been taken into account, but not the simulation

uncertainty. The objectives of this chapter are to create a pool of candidate inputs

with associated uncertainties, select the sensitivity analysis method to identify key

system parameters, and develop the model calibration algorithm to auto-capture the

system dynamics.

4.1 Overview

Model calibration is commonly regarded as an inverse estimation process where the

selected input parameters are tuned to reconcile the outputs from simulation as closely

as possible to the measurements. Generally there are three technical parts: model

pre-establishment, model calibration, and model post-evaluation. In this study, the

UWG is selected as the simulation engine to implement the calibration, since it can

be applied to different climate zones and urban configurations to yield an estimation

of the UHI effect to some extent.

As shown in Figure 4-1, the whole process starts by establishing case-specific

UWG input files via the Excel interface facilitated by Matlab. Then, the simulated

outputs are collected along with the measured data to initiate the calibration algo-

rithm. Once the most plausible solutions are produced, they will be further examined

to evaluate the system behavior.

The core methodology of calibrating a simulation program against the real data

needs to be rational, robust, and efficient. Besides, it should have the flexibility for

different users with different levels of preference and target. It is recognized from

previous studies [71, 72] that calibrating a detailed model with numerous parameters
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Figure 4-1: General workflow of model calibration via the UWG.

is a highly underdetermined problem, which may yield multiple non-unique solutions.

The conventional wisdom is that once a model is calibrated in a certain sense, the

effect of some intended adaption measures (i.e., parameter variations) could be as-

sessed with a high level of confidence. This idea could be misleading since the urban

microclimate condition is the aggregate behavior of many components in the system.

Even if the optimization algorithm exhibits an overall good calibration performance,

some of the individual parameters might be inaccurately identified. Therefore, it is

unlikely that any one optimal solution can be deemed the “best.” Instead, we posit

that it is more reasonable to identify the most plausible solutions (that are able to

perform well under some specified measure) with associated uncertainties for a fairly

robust calibration method.

Within this context, the calibration framework developed in this thesis generally

enjoys the methodology proposed by Reddy et al. [73, 74]. The basic structure, shown

in Figure 4-2, involves the following five steps:

Step 1: Prepare the baseline information of the neighborhood area as precisely as

possible. This enables the UWG to simulate the microclimate condition in

the target street-level area.

Step 2: Identify a set of candidate parameters along with their preferred defaults

and ranges. This provides some potential options for model calibration and

adaption measures.

Step 3: Perform uncertainty and sensitivity analysis with different combinations of

the inputs. This improves the understanding of the system by identifying the

significant parameters.
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Figure 4-2: Structure of an optimization-aided calibration method via the UWG.

Step 4: Apply guided search and optimization algorithm to refine the solutions auto-

matically. This results in a set of plausible solutions that may represent the

system dynamics.

Step 5: Evaluate the calibration effectiveness and efficiency of these solutions under

uncertainty. This examines how likely the calibrated model is to yield biased

system predictions.

Since Chapter 3 has detailed the baseline model of the present case study (Step

1 ), the following subsections will further illustrate the technical guidelines and pro-

cedures of sensitivity/uncertainty analysis and model calibration (Steps 2-4 ).
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4.2 Candidate input parameter

Before conducting sensitivity/uncertainty analysis and model calibration, it is impor-

tant to determine what input parameters with corresponding uncertainties are to be

studied and what method is to be used.

Defining a pool of candidate input parameters with reasonable uncertainties is

often an arduous task which requires a sensible engineering judgment. Based on pre-

vious studies [23, 24, 57] and local engineering practices [13, 64, 65, 66], 30 parameters

are selected and categorized into four groups for the present study (see Table 4.1).

For the parameters in the group of meteorological factors, urban characteristics, and

vegetation variables, the uncertainty ranges are intentionally defined rather broadly

in order to take all the possible uncertainties into account. In terms of most building-

related parameters for a specific case study, values could be obtained within relatively

small uncertainty ranges from available reports and technical specifications. The cor-

responding values of the remaining unselected parameters are taken as defaults from

the data shown in Tables 3.1 and 3.3. Yet, disregarding uncertain input parame-

ters can cause a fraction of the total output uncertainty to remain unexplained in the

results, which should be considered in the interpretation of the outcomes.

Uncertainty can be generally classified as aleatory and epistemic uncertainty [75].

Aleatory uncertainty refers to the inherent randomness in the system behavior, while

epistemic uncertainty comes from a lack of knowledge about the appropriate value

in a specific application. The parameters associated with aleatory uncertainty are

assumed to have a normal distribution, which is suitable for measured physical prop-

erties. On the other hand, the parameters associated with epistemic uncertainty are

approximated with a uniform distribution, which represents that all the values are

equally likely to happen. Table 4.1 summarizes the distribution and uncertainty for

each parameter.

4.3 Global sensitivity analysis

The next step is to design and implement a global sensitivity analysis (SA) to find

the most influential parameters and to evaluate the effects of their uncertainties on

the predicted urban microclimatic performance for different seasons in Abu Dhabi.

Selecting analysis methods with suitable sensitivity indices usually relies on a good

mathematical understanding of the engineering systems.
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Table 4.1: Uncertainty of the model parameters for District E3 in Abu Dhabi.

No Parameter Unit Distribution Uncertainty

Meteorological factors

A1 Daytime urban boundary layer height m Uniform 500 – 1000
A2 Nighttime urban boundary layer height m Uniform 50 – 100
A3 Reference height of the VDM m Uniform 100 – 200
A4 Circulation coefficient - Uniform 0.8 – 1.2
A5 UCM-UBL exchange coefficient - Uniform 0.1 – 0.9
A6 Heat flux threshold for daytime conditions W m−2 Uniform 150 – 250
A7 Heat flux threshold for nighttime conditions W m−2 Uniform 40 – 60

Urban characteristics

B1 Average building height m Normal 35 ± 5
B2 Fraction of waste heat into canyon - Uniform 0.1 – 0.9
B3 Building density - Normal 0.25 ± 0.10
B4 Vertical-to-horizontal ratio - Normal 2.2 ± 0.5
B5 Urban area characteristic length m Uniform 800 – 1200
B6 Road albedo - Normal 0.165 ± 0.080
B7 Traffic sensible anthropogenic heat (peak) W m−2 Normal 20 ± 5

Vegetation variables

C1 Urban grass coverage - Uniform 0 – 0.1
C2 Urban tree coverage - Uniform 0 – 0.1
C3 Vegetation albedo - Normal 0.25 ± 0.05
C4 Latent fraction of grass - Uniform 0.45 – 0.75
C5 Latent fraction of tree - Uniform 0.5 – 0.9
C6 Rural vegetation coverage - Uniform 0 – 0.1

Building systems

D1 Glazing ratio - Normal 0.5 ± 0.15
D2 Wall U-value W m−2 K−1 Normal 2.5 ± 1
D3 Window U-value W m−2 K−1 Normal 3.25 ± 1
D4 Window SHGC - Normal 0.60 ± 0.15
D5 Infiltration rate ACH Uniform 0.1 – 0.7
D6 Chiller COP - Uniform 2 – 4
D7 Indoor air temperature set point ◦C Uniform 20 – 24
D8 Equipment load density W m−2 Normal 13 ± 3
D9 Lighting load density W m−2 Normal 10 ± 3
D10 Occupancy density m2 person−1 Uniform 15 – 25

Note:
(a) For the input parameter assumed to have a normal distribution, the uncertainty is represented
as (µ± 3σ), where µ is the mean and σ is the standard deviation of the distribution.
(b) The parameter uncertainty is mainly assigned based on the data taken from the local building
design/energy codes provided by the Abu Dhabi Municipality (via personal contact), the prevailing
engineering practices [13, 64, 65, 66], and the previous investigations [23, 24, 57].
(c) The physical properties of some parameters (e.g., B6 and C3) are considered according to the
work by Stewart and Oke [76].
(d) Detailed physical definition of the parameters can be found in Refs. [23, 57]. In particular, Ref.
[23] illustrates the parameters in the RSM and UC-BEM, while Ref. [57] illustrates the parameters
in the VDM and UBLM.
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4.3.1 Regression-based analysis

Commonly used global SA methods in simulations include screening-based, regression-

based, and variance-based methods. The technical details of these methods can be

found in Refs. [32, 77, 78]. The selection of the SA method for a specific case study

depends on many factors, such as the research purpose, the number of input pa-

rameters, the potential computational cost, etc. In particular, the regression analysis

based on Monte Carlo sampling is regarded as a good practice in the global SA of built

environments [38, 39, 40, 41]. This is because the quasi-random sampling techniques

can potentially offer more detailed quantitative insights into the system behavior with

moderate computational costs.

As a pilot, the present study performs a global regression-based SA using the ran-

dom sampling method. Technically speaking, a Monte Carlo SA provides statistical

outcomes to a problem by running multiple models with a probabilistically gener-

ated input sample. These simulated results are then used to quantify the output

uncertainty and calculate the sensitivity indices. As recommended by Tian [30], we

implement the SimLab [79] to automate the sampling work and use the R program

[80] to conduct the uncertainty/sensitivity analysis. It is important to note that the

Latin Hypercube (LH) sampling strategy is applied in this study due to its efficient

stratification properties [77].

The general analysis process is structured as shown in Figure 4-3. It starts by

defining the distributions for aleatory and epistemic uncertainty and by producing

Distribution assignment

Sample generation

Uncertainty propagation

Simulation output

Uncertainty analysis

Sensitivity analysis

Pre-processor

Model execution

Post-processor

Figure 4-3: General process of a global regression-based analysis using the SimLab, UWG,
and R program.
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the input samples automated via SimLab. Then, the sample data is read to create

UWG input files via the Excel interface facilitated by Matlab. In the meantime, the

Matlab code checks whether any severe or fatal errors occur during the parametric

simulations. Finally, the outputs are collected to quantify the uncertainty/sensitivity

indices, which is supported by the R sensitivity package. In the present study, effects

due to the correlation between various inputs are assumed to be negligible.

The number of parametric simulations (sample size) for a reliable Monte Carlo

analysis should be large enough to ensure convergence of the sensitivity indices but

not be so large as to delay the SA process. For the regression-based analysis, although

nearly no formal explanation has been presented, Saltelli et al. [32] recommended the

sample size of 1.5 – 10 times the number of input parameters. Some researchers

[40, 41] examined the convergence behavior with various simulation runs but gave

quite different conclusions about the appropriate value. From the available experi-

ence and references, we choose to execute 1000 simulation runs for the summer and

winter cases, respectively. This choice is a compromise between analysis accuracy and

computational cost.

4.3.2 Sensitivity index

To estimate the sensitivity indices using the regression-based method, the model re-

sponse is approximated by a multidimensional polynomial equation with a regression

coefficient for each input. Then, the estimated regression coefficients are standard-

ized using the variance of the corresponding input parameter and the variance of the

model response [32]. If a first-order polynomial is chosen, we will obtain the so-called

standardized regression coefficient (SRC). The absolute value of the SRC represents

a measure of parameter importance, with higher SRCs indicating more impact on the

model output. In addition, the sign of the SRC shows whether the model output will

increase or decrease as the corresponding input changes.

Many researchers [30] have applied the sensitivity indices based on the rank trans-

formation (SRRC) to investigate non-linear but monotonic models. However, the rank

transformation techniques would change the model during the calculation, thereby

leading to the sensitivity information of a different model [32]. Such transformation

would make the convergence of the sensitivity indices more difficult [40] and result

in unstable outcomes. In addition, the available references indicate that the SRRC

did not exhibit any outstanding performance [38, 40], while the SRC could keep quite

stable and in good agreement with the indices from more sophisticated global SA
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methods [41]. Thus, the SRC is used in the present study to interpret a quantitative

measure for the influence of the inputs on the model outputs.

However, the feasibility of the SRC is limited to the model responses that can

be sufficiently approximated by the fitted regression model. The SRC is not reliable

when the model under investigation is highly non-linear. In order to measure how well

the regression model fits the model output, we use the coefficient of determination

(R2). Ranging from zero to one, the coefficient of determination tests how much the

variance of the model response is explained by the variance of the regression model.

The larger the R2 is, the better the model will fit the data. Saltelli et al. [32] have

recommended a threshold of R2 = 0.7 for a fairly strong regression model and its

resulting SRCs.

4.4 Model calibration

After the global SA is performed, the non-influential parameters will be fixed at some

nominal values while the influential parameters will be further refined automatically

via search and optimization algorithms. In particular, the Monte Carlo filtering tech-

nique and online hyper-heuristic evolutionary algorithm are proposed and developed

in the present study.

4.4.1 Objective function

Goodness-of-fit (GOF) is an index that relates the dispersion between the measured

and simulated data via a statistical model. Many researchers [54, 74] have recom-

mended and adopted the GOF as the objective for model calibration. Lower values

mean that the model is more accurate and its behavior fits better with the real case.

The GOF is defined as:

GOF =

√√√√w2
NMBENMBE2 + w2

CV(RMSE)CV(RMSE)2

w2
NMBE + w2

CV(RMSE)

, (4.1)

where

NMBE =
1

m̄

∑n
i=1(si −mi)

n
, (4.2)
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CV(RMSE) =
1

m̄

√∑n
i=1(si −mi)2

n− 1
. (4.3)

The NMBE (normalized mean bias error) quantifies the relative error of the sim-

ulated values with respect to the measured values summed over the selected number

of time steps. Positive values indicate that the model over-estimates the actual sce-

narios, while the under-prediction produces negative values. As a counterpart, the

CV(RMSE) (coefficient of variation of the root-mean-square error) indicates the vari-

ability of the errors (i.e., uncertainty) between the simulated (si) and measured (mi)

data. For numerical stability during optimization, m̄ is set as the mean of the absolute

values.

If the simulation results are plotted on an x-y plane with NMBE and CV(RMSE)

as the axes, one would like to identify a set of trade-off optimal solutions (i.e., a Pareto

set) as the “better” solution set. This method is referred to as “multi-objective opti-

mization” or “Pareto optimization.” For any given problem, the Pareto optimal set

can be produced by an infinite number of Pareto points. A potential drawback of this

approach is slower algorithm convergence and hence lower computational efficiency,

compared with the performance of single-objective optimization [54]. In addition, the

problem of how to select the best solution from the Pareto set is not trivial since it

depends on many aspects [33].

To avoid multi-objective optimization in the present case study, we use the idea

of “scalarization.” Different weights are assigned to each index, and then the multi-

objective function will be simplified as a weighted function of the criteria. Accord-

ingly, we introduce a set of weights, wNMBE and wCV(RMSE), to impact our consolidated

indices in Equation (4.1), where wNMBE + wCV(RMSE) = 1. Thus, the estimation of a

Pareto front can be achieved by running single-objective optimizations with various

weights.

In practice, energy and environment researchers would prefer the model to capture

the bias (i.e., NMBE) more precisely than the variation (i.e., CV(RMSE)). This

argument has been supported by the ASHRAE Guideline 14-2002 (RP-1051) [74, 81],

which recommends a ratio of 3: 1 for wNMBE: wCV(RMSE). Therefore, in the present

study, we adopt this rule and set the wNMBE and wCV(RMSE) to be 0.75 and 0.25,

respectively.
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4.4.2 Monte Carlo filtering

Before conducting a fine calibration, it is important to reduce the dimensionality of

the parameter space by identifying strong and weak parameters among the set of

candidate inputs. Another intent is to detect the local ranges most likely to contain

the “actual” value for each parameter. This can be achieved by adopting a blind

Monte Carlo (MC) search coupled with sensitivity analysis (SA). In general, MC

filtering is a process of rejecting sets of model outputs that are far from reality, while

the SA can produce an influential parameter set that meets some prescribed criteria.

Once the strong parameters are determined, the weak parameters can be fixed at

some nominal values.

We have illustrated the details of regression-based SA through MC sampling in

Subsection 4.3. After an LHMC batch run and regression-based analysis are com-

pleted, the strong parameters can be identified and the GOF indices can be computed

for each trial. Those input vectors that result in unfavorable GOF values will be ruled

out. On the other hand, the information contained in the “good” input vectors can be

used to set values for the weak parameters, which can then be removed from further

consideration in the calibration process. In particular, we use the average values of

these promising input vectors to fix the weak parameters.

Once the MC filtering has identified a set of strong parameters, we can use the

information advantageously to further fine-tune these influential inputs via heuristic-

based search methods such as the evolutionary algorithm.

4.4.3 Online hyper-heuristic evolutionary algorithm

Evolutionary algorithms (EAs) have been widely used in a variety of complex real-

world applications. However, EAs need to perform a large number of fitness (or

objective) function evaluations in order to get optimal or near-optimal solutions. For

engineering problems, each fitness function is evaluated via physics-based simulation,

which often makes the whole process computationally expensive. Hyper-heuristics

represent a class of methods that could address this barrier and reduce computational

cost.

A hyper-heuristic search method seeks to automate, often by incorporation of

statistical or machine learning techniques, the process of handling several simpler

heuristics to efficiently solve computational search problems. The overall goal is to

reduce the number of numerical simulations along a search path at the algorithm level.
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One popular paradigm is to construct a so-called surrogate or meta-model that can

approximate the behavior of the original fitness function in the optimization process.

The idea of hyper-heuristics can be traced back to the 1960s [82], while managing

approximate models in optimization via EAs has received continuous attention since

the 1990s [83].

Based on how the surrogate models are used during the evolution, the hyper-

heuristics can be further classified as offline and online. Offline hyper-heuristics utilize

a surrogate model that is trained in advance, separately from the evolution process.

This needs to be pre-validated and the surrogate must be updated to support a new

case study. In online hyper-heuristics, a surrogate model is continuously retrained

during the evolution and thus can make use of the most recent data. The self-updating

mechanism without any pre-simulated database enables the online method to flexibly

allow for many “plug-and-play” applications. Therefore, online hyper-heuristics have

been very popular in engineering optimization problems [84].

Table 4.2: Hyper-parameters of the evolutionary algorithm and support vector regression
used in the model calibration.

Hyper-parameter Setting

Evolutionary algorithm

Algorithm type Evolutionary strategy
Objective function Goodness-of-fit
Parent population size |P | 120
Offspring population size |Q| 120
Surrogate population size |S| 360
Maximum number of generations 60
Maximum number of expensive evaluations 2040
Crossover algorithm Laplace
Crossover probability 0.8
Mutation algorithm Power
Mutation probability 0.005
Proportion of elitism 0.2

Support vector regression

Regression type ε-SV regression
Kernel function Gaussian radial basis function
Optimization method Grid search
Cross-validation 5 folds

Note: The hyper-parameters are set based on the prevailing engineering practices, previous related
studies [83, 84, 85, 86, 87], and trial and error. In particular, the surrogate population size is set
to be three times of the parent population size [85], while the parent population size is set to be 10
times of the number of design parameters for single-objective optimization [87]. The settings for the
crossover and mutation operator follow the suggestions in Ref. [87].
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Although many researchers have utilized offline hyper-heuristics to calibrate the

building energy models [88, 89], little is known to the author about the use of online

hyper-heuristics. Very recently, some studies have been published to develop the on-

line hyper-heuristic EAs for simulation-based multi-objective optimization in building

design [85, 90]. Therefore, we opt to embrace the methodology proposed by Brown-

lee and Wright [85] and develop an online hyper-heuristic EA to calibrate an urban

microclimate model. There are many possible ways to implement the general idea of

online hyper-heuristics. The aim of this thesis is not to explore this whole space but

simply to illustrate that one fairly straightforward application works well and that

online surrogate model helps. As an illustrative example, the evolutionary strategy

(ES) [91] in the Matlab environment and the support vector regression (SVR) [92]

from LIBSVM [93] are selected for the present study due to their wide applications.

Table 4.2 summarizes the associated hyper-parameters. Although the convergence

behavior of EA could be significantly affected by the hyper-parameters [94], we do

not intend to explore this topic here and merely adopt some common settings.

Initialize evolutionary algorithm

...

...

...

...

Converge?

Stop

P individuals

S individuals (|S| > |P|)

Q individuals (|Q| = |P|)

Q individuals

Yes

No

Conduct evolution operation

Generate new population

Sort using surrogate (SVR) model

Assign exact fitness value

Expensive value

Approximated value

Figure 4-4: General flowchart of an online hyper-heuristic EA (mainly from Ref. [86]).
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Algorithm 1 Online Hyper-Heuristic Evolutionary Algorithm

1: initialize(Pt) at t = 1 . Initialize new population
2: FE,Pt = obj-and-const-calc(Pt) . Expensive objective and constraint in P
3: D = cache(Pt, FE,Pt

) . Store training data P and F into D
4: while not terminated do
5: for all objective and constraint do
6: compute FPC in Pt . Surrogate model performance
7: if FPC < 0.7 then
8: update-model(D) . Retrain model within the current generation
9: end if

10: end for
11: S = make-new-pop(Pt) . Create surrogate population S (with size |S| > |P |)
12: FS = obj-and-const-approx(S) . Approximated objective and constraint in S
13: S = rank(FS , S) . Rank individuals based on fitness values
14: Qt = extract(S) . Pre-select Q individuals (with size |Q| = |P |)
15: FE,Qt

= obj-and-const-calc(Qt) . Expensive objective and constraint in Q
16: D = D ∪ (Qt, FE,Qt

) . Add expensive evaluations into D
17: Pt+1 = Qt . Assign Q as the next generation
18: t = t+ 1 . Increase generation counter
19: end while

Figure 4-4 shows the procedure of an individual-based model management strat-

egy, as described in Ref. [86]. In each generation, a local surrogate (SVR) model is

trained if necessary. The role of SVR is to approximately evaluate the offspring in

each generation and identify the most promising individuals among them, which will

then be evaluated via expensive simulation. The latter are, of course, recorded and

can be exploited as training patterns in the forthcoming generations. It is important

to note that the surrogate model is not used directly to examine the convergence

behavior.

The pseudo-code of the proposed online hyper-heuristic EA for single-objective

optimization is shown in Algorithm 1. The blue part (Steps 5-14) illustrates where

and how a local surrogate model is built within the EA. At generation t, a surrogate

(SVR) model needs to be updated if its accuracy is not acceptable. The SVR model

is trained using the database D that consists of previous population(s) P and their

expensive evaluations FE,P (Steps 5-10). Then, the crossover and mutation operators

are used to generate a surrogate population S (with size |S| > |P |) (Step 11). The

SVR approximates the objective values in S (Step 12), and the ES ranks S (Step 13)

with the highest ranking solutions inserted into the offspring population Q (with size

|Q| = |P |) (Step 14). Q are then evaluated using the expensive UWG simulations,

which will be appended into the database D if they are not in D before. Finally, the

offspring Q are assigned to be the parent P in the next generation.

The whole process continues until the evolution meets a stop criterion, e.g., the
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search exceeds the maximum number of generations or the maximum number of

expensive simulations. In addition, we use a fitness prediction correlation (FPC) to

measure the surrogate model accuracy. Usually the FPC is the Spearman’s rank

correlation, between the exact and approximated values, for one solution set. The

threshold FPC for retraining is set as 0.7 [85] for the present case study.
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“The distance between insanity and genius is measured only by success.”

Bruce Feirstein

Chapter 5

Result and discussion

We have applied the proposed methods to an urban microclimate system simulated

by the UWG. In particular, the UWG model has been calibrated based on the urban

outdoor air temperature in District E3 of downtown Abu Dhabi (UAE) during 2017.

This chapter presents and discusses the main results.

5.1 Overview

The case study was conducted in District E3, the same area detailed in Chapter

3. The measured rural data from the Masdar Institute Field Station during calendar

year 2017 is used for running the UWG. For the urban outdoor air temperature, we

use the data measured in 2017 from all six of the same calibrated sensors that present

consistent performances. The locations of these sensors are depicted as the red-cross

points in Figure 3-1(c). The temperature observations at 8.5 m were selected for

validating the calibrated models.

In this study, we use the urban-rural outdoor air temperature difference to cali-

brate the UWG. A good fit between the predicted and measured temperature tra-

jectories is one indication that the model has captured the thermal dynamics well.

Other calibration studies based on energy use instead of air temperature may increase

the solution uncertainty, since various combinations of the system properties can eas-

ily produce similar consumptions. We also find that some researchers have used air

temperature to analyze or calibrate building thermal simulations [53, 54, 95, 96].

First, a Latin Hypercube sample matrix of size N = 1000 has been generated

and propagated via the UWG for summer (August 1-7) and winter (February 1-7)

in 2017, respectively. For each trial, the predicted hourly outdoor air temperatures
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were saved. The computation of a one-week scenario lasted around one minute on a

3.00GHz processor computer for each trial. To the author’s knowledge, this is to date

the fastest simulation engine to estimate the microclimate conditions for a specific

urban site using physics-based model setting. Finally, corresponding indices (i.e.,

SRC and R2) were calculated based on the generated results to enable uncertainty

and sensitivity analysis.

Once the weak parameters were identified according to some specified criteria,

their values were set via MC filtering based on the information contained in those

input vectors with the lowest GOFs. The strong parameters, on the other hand, were

considered to be tuned in the subsequent EA-based optimization. The objective func-

tion used to guide the EA is the GOF based on weekly-average diurnal profiles of the

urban-rural outdoor air temperature difference in February 1-7 and August 1-7, 2017.

That is, we are calibrating the strong parameters only based on the measurements in

one summer week and one winter week.

In order to evaluate the associated uncertainty as predicted by the calibrated solu-

tions, we ran 10 independent trials for both the traditional and online hyper-heuristic

EAs. All the trials used the same stop criteria: the evolution ends when the number

of expensive evaluations exceeds the maximum 2040 or the evolution lasts more than

60 generations. The goal is to find the algorithm setup returning the lowest GOF for

the same number of evaluations within fixed computation budgets (i.e., better qual-

ity solution given the same effort); this goal precluded use of a convergence criterion.

Also provided were comparisons of the computational effort required to obtain the

same quality of solutions. An internal cache of previously-evaluated solutions is main-

tained in the online hyper-heuristic EA for each run, to avoid re-evaluating the same

solutions. The solutions drawn from the cache do not count toward the limit of 2040.

Finally, the resulting solution sets from the 10 trials of the online hyper-heuristic EA

were evaluated using the measurements.

5.2 Uncertainty analysis

The cumulative distribution functions are used to present the results from the Monte

Carlo simulations and to display percentiles and confidence intervals of the outputs.

Figure 5-1 illustrates the uncertainty range of the weekly-average diurnal profile of

the predicted outdoor air temperature in summer and winter, 2017. The shaded area

represents the predicted values ranging from the 5th to 95th percentile, while the
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Figure 5-1: Uncertainty range of the weekly-average diurnal profiles of the predicted urban
outdoor air temperature based on Monte Carlo sampling: (a) Results between August 1
and 7, 2017 (summer); (b) Results between February 1 and 7, 2017 (winter). The shaded
area represents the predicted values ranging from the 5th to 95th percentile. The solid line
represents the predicted values of the 50th percentile.

solid line represents the predicted value of the 50th percentile (i.e., median). It can

be said that a model is robust enough to simulate the underlying phenomenon if, fed

by the inputs with a given uncertainty, it is able to produce responses in a suitably

small range. Thus, we can claim from Figure 5-1 that the UWG is a fairly good

simulator to approximate the thermal behavior of an urban microclimate system for

different seasons with a specific degree of robustness. In addition, the results are quite

consistent with those in our former study [55] when we performed identical analysis

on the same UWG model for summer and winter in 2016.

It is interesting to observe that both the predicted summer uncertainty band and

diurnal variation are generally larger than the winter ones. A possible reason lies

in the seasonal variation of cooling load and solar radiation. During the summer in

Abu Dhabi, the cooling demand and solar radiation become very high, resulting in

a situation where the HVAC- and radiation-related parameters may have relatively

larger impacts on the variation of the microclimate. During the winter, however, the

role of these parameters in the urban thermal process becomes quite trivial.
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Table 5.1: Coefficient of determination (R2) of the regression model for the weekly-average
diurnal profiles of the predicted urban outdoor air temperature during 2017.

Hour Summer Winter Hour Summer Winter
1 0.734 0.815 13 0.825 0.787
2 0.712 0.810 14 0.797 0.778
3 0.735 0.830 15 0.701 0.760
4 0.778 0.797 16 0.745 0.741
5 0.756 0.841 17 0.790 0.721
6 0.815 0.855 18 0.796 0.738
7 0.772 0.825 19 0.789 0.779
8 0.782 0.818 20 0.751 0.761
9 0.790 0.810 21 0.772 0.771
10 0.731 0.768 22 0.718 0.783
11 0.798 0.755 23 0.779 0.795
12 0.837 0.783 24 0.770 0.807

5.3 Sensitivity analysis

Based on the evaluations with a large sample size, it seems reasonable to state that

0.025 (2.5%) is a sufficient threshold for obtaining good SRC values [32, 41]. Thus

we decide that, for the present study, the parameter with an average of the absolute

SRCs larger than 2.5% over 24 hours in one day should have a significant impact

on the model output. The resulting hourly coefficients of determination (R2) are

summarized in Table 5.1. The generally high R2 values for most hours suggest that

the higher-order effects due to non-linear behavior or parameter interaction play a

fairly trivial role in the current model setting. This increases our confidence of using

the SRC for the sensitivity analysis, which then identified 10 significant parameters

for summer and eight for winter in 2017. Figures 5-2 and 5-3 plot their hourly

SRCs for each group respectively. The results are very consistent with those in our

former study [55] when we performed identical analysis on the same UWG model for

summer and winter in 2016.

It is important to mention that no parameter in Group C (vegetation variables)

is identified as a strong parameter. This can be explained by the fact that there is

nearly no vegetation in Abu Dhabi, thus resulting in relatively smaller uncertainty

ranges for the vegetation coverages (see Table 4.1). Previously, Bueno et al. [23]

reported that the case study of Basel (Switzerland) is sensitive to some vegetation

parameters. We should emphasize that the UHI effect seems to vary locally from one

place to another and thus the parameter sensitivity needs to be considered case by

case.
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Figure 5-2: The significant parameters obtained from the global sensitivity analysis of
the weekly-average diurnal profiles of the predicted urban outdoor air temperature between
August 1 and 7, 2017 (summer). The parameter denotations are the same as those defined
in Table 4.1.

It can also be seen from Figures 5-2 and 5-3 that although all the parameters

have an impact, the most critical ones are the reference height of the VDM (A3), the

UCM-UBL exchange coefficient (A5), the fraction of waste heat into canyon (B2), and

the nighttime urban boundary layer height (A2, for winter only). Ironically, these

parameters remain the most uncertain among all the input variables. The reference

height of the VDM and the nighttime urban boundary layer height are obtained from

previous mesoscale atmospheric simulations [20, 97] because no observations are avail-

able. The UCM-UBL exchange coefficient and the fraction of waste heat into canyon

are derived from the previous literature [98] and well-educated guesses with limited

domain knowledge. Since an urban system is typically characterized by a multiplicity

of dynamic (building), stochastic (occupant), and probabilistic (weather) elements,

it is difficult to find the exact values for these parameters for a given urban site. In

order to capture the site-specific microclimate effects and reduce the uncertainty in

the UWG model, additional numerical simulations of the established energy balances
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Figure 5-3: The significant parameters obtained from the global sensitivity analysis of
the weekly-average diurnal profiles of the predicted urban outdoor air temperature between
February 1 and 7, 2017 (winter). The parameter denotations are the same as those defined
in Table 4.1.

might be required. In addition, future improvement of the assessment would be to

conduct more detailed estimate of higher-order effects, thus revealing deeper insights

into the complex parameter behavior.

Finally, the difference between the summer and winter case suggests that we should

focus on different parameters when studying different periods of time. Nevertheless,

the identified key factors will be the subject of our subsequent research on the urban

microclimate system in Abu Dhabi.

5.4 Performance of the Monte Carlo filtering

Given the results of SA, the weak parameters were then removed from the subsequent

calibration process. Their static values were determined, somewhat arbitrarily, using

the average of the 20 input vectors with the lowest GOFs. In addition, many strong

parameters may have associated higher uncertainties and perhaps be more likely in
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Table 5.2: List of the strong and weak parameters from the Monte Carlo filtering.

Strong parameter Unit Range
Nighttime urban boundary layer height (A2) m [50, 100]
Reference height of the VDM (A3) m [100, 200]
UCM-UBL exchange coefficient (A5) - [0.1, 0.9]
Average building height (B1) m [30, 40]
Fraction of waste heat into canyon (B2) - [0.1, 0.9]
Building density (B3) - [0.15, 0.35]
Urban area characteristic length (B5) m [800, 1200]
Infiltration rate (D5) ACH [0.1, 0.7]
Chiller COP (D6) - [2, 4]
Indoor air temperature set point (D7) ◦C [20, 24]
Equipment load density (D8) W m−2 [10, 16]
Occupancy density (D10) m2 person−1 [15, 25]

Weak parameter Unit Value
Daytime urban boundary layer height (A1) m 753.31
Circulation coefficient (A4) - 0.98
Heat flux threshold for daytime conditions (A6) W m−2 199.04
Heat flux threshold for nighttime conditions (A7) W m−2 50.59
Vertical-to-horizontal ratio (B4) - 2.19
Road albedo (B6) - 0.16
Traffic sensible anthropogenic heat (peak) (B7) W m−2 20.35
Urban grass coverage (C1) - 0.04
Urban tree coverage (C2) - 0.04
Vegetation albedo (C3) - 0.25
Latent fraction of grass (C4) - 0.61
Latent fraction of tree (C5) - 0.70
Rural vegetation coverage (C6) - 0.04
Glazing ratio (D1) - 0.50
Wall U-value (D2) W m−2 K−1 2.52
Window U-value (D3) W m−2 K−1 3.18
Window SHGC (D4) - 0.60
Lighting load density (D9) W m−2 9.90

Note:
(a) The values of the weak parameters are set using the average of the top 20 promising input vectors
in terms of the GOF.
(b) The identified strong parameters along with the associated ranges will be adjusted through an
EA-based calibration process.

need of tweaking, which can be done through EA-based optimization. The ranges of

these to-be-tuned parameters were assigned by considering the uncertainties based on

local building design/energy codes, prevailing engineering practices, and our previous

investigations [23, 24, 25, 26]. Table 5.2 summarizes the current settings to initiate

both the traditional and online hyper-heuristic EAs for the following calibration tests.

Each strong parameter is bounded via a uniform distribution in order to evaluate the

mathematical optimality in terms of calibration performance.
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Figure 5-4: Convergence behavior of the traditional and online hyper-heuristic EAs in
terms of the UWG simulation runs (i.e., expensive evaluations). The solid line represents
the average of the best fitness values over the 10 trials for the two algorithms, respectively.
The shaded area inside the dashed lines represents one standard deviation of the best fitness
values over the 10 trials for the two algorithms, respectively.

5.5 Performance of the online hyper-heuristics

The overall goal of our calibration method is to minimize the GOF, stated by Equation

(4.1), via parameter tuning. The EA is executed to search the design space of the

12 significant parameters identified by the SA. In order to compare the performances

of the traditional and online hyper-heuristic EAs, we applied both EAs to the same

calibration problem for 10 independent trials. The two EAs have the same settings

for crossover operators, mutation operators, elitist strategies, etc.

Figure 5-4 shows the convergence behavior of the traditional and online hyper-

heuristic EAs. For 2040 simulation runs, the online hyper-heuristic EA has, on aver-

age, converged to a slightly better near-optimal value than the traditional EA. That

is, given the same computation budget, the online hyper-heuristic EA is able to find

a slightly better objective value, on average, than the traditional EA for the present

case study. In addition, the average number of expensive evaluations (i.e., the UWG

simulations) required for the online hyper-heuristic EA to reach a near-optimal value

is only around 1000, while that for the traditional EA roughly exceeds 2000. However,

it is important to note that Figure 5-4 only depicts the number of computationally

expensive evaluations (i.e., simulation runs). The online hyper-heuristic EA should

require a larger number of objective function evaluations than the traditional EA, be-

cause it needs to evaluate an additional surrogate population in each generation. The
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computation time for the function evaluations in the surrogate is negligible compared

with that for the expensive evaluations via the UWG, even though the number of

additional function evaluations in the surrogate is large. One could also compute the

total number of function evaluations, including both expensive and surrogate eval-

uations, to see the difference (an option for future work), but what really matters

in practice is the number of expensive evaluations during a simulation-based opti-

mization. Therefore, the online hyper-heuristic EA seems to be about twice as fast,

on average, as the traditional EA for the same level of accuracy. In this case study,

where a single simulation costs about two minutes on a single thread, using the on-

line hyper-heuristic EA can approximately save at least one day, on average, for one

calibration trial if no parallel computation is applied.

In addition, the optimum uncertainties of the two EAs (i.e., the shaded area in-

side the dashed lines in Figure 5-4) are quite different. Over these 10 trials, the

online hyper-heuristic EA has a smaller uncertainty band, especially after ∼1000 ex-

pensive evaluations, which means that the results of one single trial of the online

hyper-heuristic EA are more reliable and robust. In contrast, the traditional EA

yields a much wider uncertainty band, which somewhat compromises the best fitness

value identified in only one calibration trial. In single-objective optimization, a well-

performed EA can produce most solutions that are expected to be clustered around

the global optimum. Some others could be clustered around local optima and some

outlying individuals may exist as well. Outliers are generated due to mutation, which

intends to prevent the solution from being trapped in local optima. Searching solu-

tions mostly in a specific parameter space would act in favor of the online surrogate

model, whose predictive capability is progressively increased as more objective func-

tions are evaluated. Therefore, the online hyper-heuristics can fairly produce more

confident solutions when computation time is limited.

The solutions obtained from both the traditional and online hyper-heuristic EAs

are summarized in Table 5.3. We found great consistency between the two algorithms

over 10 trials, leading us to conclude that the EA is able to identify the sub-ranges

of most strong parameters in our current settings. Besides, the solution uncertainties

from the online hyper-heuristic EA are, in general, smaller than those from the tra-

ditional EA. This reinforces our argument that, in single-objective optimization, the

online surrogate model can help EA produce the solutions that are robustly closer to

the global optimum with much less computation time.

One interesting observation in Table 5.3 is that neither algorithm is able to

63



Table 5.3: Calibration results over the 10 trials of EA-based optimization.

Parameter Unit Result from
traditional EA

Result from online
hyper-heuristic EA

Nighttime urban boundary layer height (A2) m 79.51 ± 13.92 89.57 ± 9.98
Reference height of the VDM (A3) m 171.96 ± 29.09 195.09 ± 11.86
UCM-UBL exchange coefficient (A5) - 0.10 ± 0.00 0.10 ± 0.00
Average building height (B1) m 34.48 ± 2.42 35.68 ± 1.16
Fraction of waste heat into canyon (B2) - 0.14 ± 0.03 0.16 ± 0.01
Building density (B3) - 0.33 ± 0.02 0.33 ± 0.01
Urban area characteristic length (B5) m 1116.43 ± 108.50 1176.47 ± 29.97
Infiltration rate (D5) ACH 0.24 ± 0.13 0.15 ± 0.09
Chiller COP (D6) - 3.25 ± 0.87 3.86 ± 0.05
Indoor air temperature set point (D7) ◦C 21.22 ± 1.50 20.65 ± 1.05
Equipment load density (D8) W m−2 14.19 ± 1.09 14.45 ± 0.43
Occupancy density (D10) m2 person−1 20.13 ± 3.09 22.43 ± 0.93

Note: The results are presented as “average ± one standard deviation” from the solutions over the
10 trials for the two algorithms, respectively.

identify an appropriate sub-range for some parameters (e.g., D5), since the corre-

sponding standard deviation is quite comparable to the average value. On the other

hand, the optimal solution of other parameters (e.g., A5) can be determined almost

surely. Under a modern optimization lens, there are two possible reasons. First, if

the objective function is not quite as sensitive to the parameter (compared to other

parameters), its solution could be easily varied during a purely mathematical search

and the resulting uncertainty would become large. Second, even if the parameter is

quite influential, an algorithm may still fail to reach a single optimal or near-optimal

region, since the objective function with respect to this parameter could be highly

non-convex, multi-modal, and/or locally-flat. Thus, the observed uncertainties from

purely mathematical search in this study would naturally come up with an appealing

motivation to investigate the convexity of the target parameter space in urban-scale

simulation settings. Future studies could be considered along this direction.

Whether the proposed algorithm’s performance can be considered “good” from

the perspective of why the calibration was considered in the first place is addressed

in the next subsection.

5.6 Performance of the calibrated model

Now we analyze in more detail the behavior of the solutions obtained from the online

hyper-heuristic EA. Given the measured data at hand, four periods in 2017 are con-
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Figure 5-5: Weekly-average diurnal profiles of the urban outdoor air temperature: (a)
Data between January 15 and 21, 2017; (b) Data between February 8 and 14, 2017; (c)
Data between July 15 and 21, 2017; (d) Data between August 8 and 14, 2017. The error bar
represents one standard deviation of the measured values by the sensors and the predicted
values by the 10 calibrated models, respectively. The baseline model has been manually
calibrated via detailed investigations.

sidered for validation of the calibrated UWG models, i.e., January 15-21, February

8-14, July 15-21, and August 8-14. Based on the assumption that the measure-

ment uncertainties impose a limit to the model accuracy that one could hope to

achieve, we compared the values measured by the sensors, the values predicted by the

optimization-calibrated models, and the values predicted by the manually-calibrated

baseline model (detailed in Tables 3.1 and 3.3). The final results are shown in

Figure 5-5 and Table 5.4, where the accuracy is assessed in terms of how close the

predicted values are to the measured values and whether the uncertainty bands are

narrow enough to be of practical use while bounding the measurements.

Overall, the calibrated solutions (black curve) produce weekly-average diurnal pro-

files of the urban outdoor air temperature similar to the baseline solution (red curve),

as shown in Figure 5-5. Sometimes the calibrated models represent the observed

behavior better than the baseline model (e.g., January). This is very encouraging

since the baseline model has been manually refined and calibrated for over one year

via exhaustive investigations of the local construction documents, regular on-site vis-

its, and detailed discussions with experienced engineers and building management

personnel. In addition to the performance guarantee from the calibrated models, one
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Table 5.4: Performance of the baseline and calibrated UWG models based on two weekly-
average diurnal profiles of the urban-rural outdoor air temperature difference.

Scenario January 15-21
Evaluation metric NMBE CV(RMSE) GOF
Measured values v.s. predicted values (baseline model) -0.27 0.43 0.29
Measured values v.s. predicted values (calibrated model) 0.05 0.21 0.08

Scenario February 8-14
Evaluation metric NMBE CV(RMSE) GOF
Measured values v.s. predicted values (baseline model) 0.36 0.69 0.40
Measured values v.s. predicted values (calibrated model) 0.77 0.90 0.78

Scenario July 15-21
Evaluation metric NMBE CV(RMSE) GOF
Measured values v.s. predicted values (baseline model) 0.18 1.06 0.38
Measured values v.s. predicted values (calibrated model) -0.41 1.22 0.55

Scenario August 8-14
Evaluation metric NMBE CV(RMSE) GOF
Measured values v.s. predicted values (baseline model) 0.57 0.87 0.61
Measured values v.s. predicted values (calibrated model) 0.17 0.89 0.33

Note: For the measured values by the sensors and predicted values by the calibrated models, we use
the average to evaluate the performance. The bold type highlights which model performs better in
terms of the GOF for each scenario. The baseline model has been manually calibrated via detailed
investigations.

great advantage of the methodology proposed in this study lies in the time consumed

to obtain them. For this case study, a total of only ∼1000 simulations (which take at

most two days without parallel computing) on average have resulted in an improved

urban microclimate model. So, it seems highly cost-effective and convenient to use

the developed algorithm in the process of model calibration.

A further consideration of the hourly data is shown in Figure 5-6, where four days

in each validation period are depicted. In general, the calibrated solutions are able to

capture most trends as well as peaks and valleys of the measurements. This is impres-

sive because in this study we calibrated the model parameters for a whole year based

on just two weekly-average diurnal profiles of the urban-rural outdoor air temperature

difference. More data with higher spatial and temporal resolution are being collected

and it is reasonable to expect that, if these data were used to calibrate the model, the

resulting solutions could achieve higher accuracies with lower uncertainties. Whether

the improved performance is commensurate with the extra resources and efforts re-

quired to perform accurate measurement and conduct optimization-aided calibration

on urban-scale models is not clear and should be investigated in the future.

Finally, one particular aspect to notice in Figure 5-6 is the unexpected behavior
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Figure 5-6: Hourly diurnal profiles of the urban outdoor air temperature in 2017. The solid
line represents the average of the measured values by the sensors and the predicted values by
the 10 calibrated models, respectively. The shaded area represents one standard deviation
of the measured values by the sensors and the predicted values by the 10 calibrated models,
respectively. The baseline model has been manually calibrated via detailed investigations.

during July 17-18, where large discrepancies between predicted and measured data

are evident. A good fit to the weekly-average diurnal profile (i.e., the one with low

GOF shown in Figure 5-5) may not necessarily predict the hourly diurnal profile

more accurately. One possible reason is that, there may be some short-term physical
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activities (e.g., anomalous wind patterns) during that time which can largely affect the

corresponding urban microclimate condition, while such physical activities have not

been adequately modeled in the current UWG or have not been reflected in the given

rural weather data. This strong bias needs to be revisited in our future studies and

may call into question a conclusion from a previous UWG assessment that the location

of the reference station has minimal impact on the estimate of temperatures at district

level because the urban-canopy energy balance is weakly influenced by advection in

the urban boundary layer [24]. Nevertheless, in most cases, the differences are quite

acceptable given the state of the art of urban microclimate modeling.
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“Now this is not the end.

It is not even the beginning of the end.

But it is, perhaps, the end of the beginning.”

Winston Churchill

Chapter 6

Conclusion

The extreme complexity of a building or urban system leads to difficulties in estimat-

ing the benefits and drawbacks of present and future adaptation strategies to climate

change and energy concern. The design, analysis, and optimization of modern build-

ing and urban systems may benefit significantly from the implementation of energy

and environmental simulation tools at different scales. However, in many cases, stud-

ies have revealed large discrepancies between modeled and measured values, which

somewhat undermines our confidence in the practical value of these simulation tools.

A well-calibrated model is hence one of the key bases for practitioners to perform

simulation-based analysis.

This thesis illustrates a general methodology for automatic model calibration and,

for the first time, applies it to an existing urban microclimate system. This chapter

summarizes the key conclusions.

6.1 Summary of contributions

We started by recognizing that calibration remains an indeterminate and/or over-

parametrized problem which could yield non-unique solutions. Hence, it is more

reasonable to identify a set of most plausible solutions and to incorporate uncertainty

when evaluating and using a calibrated model. In general, we performed global sensi-

tivity analysis, Monte Carlo filtering, and optimization-aided calibration on a micro-

climate model using the measurements in 2017. Due to the time-constrained nature

of engineering applications, an online hyper-heuristic evolutionary algorithm (EA)

is proposed and developed to accelerate the calibration process. Validation of the

proposed methods was more of an empirical nature.
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The Urban Weather Generator (UWG) [23] is selected as the simulation engine in

the present study. The UWG can be used as a physics-based model to produce the

microclimate condition at the urban street level by using the meteorological infor-

mation in available rural weather files. It can also be used as a bottom-up model to

estimate the urban energy consumption by aggregating the building stocks. Since the

previous version in 2014 [24], the UWG has been updated, especially for the urban

boundary layer model and the urban canopy-building energy model [26]. In general,

the newest version aims to make it more physically sound and more capable to handle

increasingly detailed building definition.

The District E3 in downtown Abu Dhabi provides a test to the new UWG with an

interesting case of heterogeneous building forms located in a tropical or subtropical

climate zone. The comparison between the measurements and the predictions by a

baseline model from October to December 2016 shows that the UWG can roughly

capture the UHI pattern and can produce some plausible values regarding the urban

microclimate condition. Thus, together with previous studies [23, 24, 25, 26], the

UWG model can be applied to different climate zones and urban configurations to

yield an estimation of the UHI effect.

The regression-based analysis with Monte Carlo sampling is then used to quantify

the model uncertainty and to identify significant parameters for summer and winter in

2017, based on 30 candidate inputs from the meteorological factors, urban character-

istics, vegetation variables, and building systems. The uncertainty analysis indicates

that the UWG is a fairly robust simulator to approximate the thermal behavior of

the urban microclimate system in Abu Dhabi for different seasons. It is interesting

to observe that both the predicted summer uncertainty band and diurnal variation

are generally larger than the winter ones.

The parameter ranking based on the standardized regression coefficients (SRCs)

from the linear regression suggests that no vegetation parameter has been identified

as a strong parameter in Abu Dhabi during 2017. The most critical parameters are

the reference height of the VDM, the UCM-UBL exchange coefficient, the fraction of

waste heat into canyon, and the nighttime urban boundary layer height (for winter

only). Ironically, these parameters remain the most uncertain among all the input

parameters, calling for further investigations into their physical mechanism. Overall,

the regression-based analysis is able to identify 12 strong parameters for summer and

winter. These 12 parameters are then considered in an optimization-aided calibration

process based on the measurements in one summer week and one winter week during
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2017.

The proposed online hyper-heuristic EA is roughly twice as fast, on average over

10 trials for the present case study, as the traditional EA to achieve the same objec-

tive. In addition, both algorithms are able to identify the sub-ranges of most strong

parameters in our current settings, while the solutions from the online hyper-heuristic

EA have generally smaller uncertainties. In single-objective optimization, searching

solutions mostly in a specific parameter space would act in favor of the online hyper-

heuristics, which can thus help EA produce the solutions that are robustly closer to

the global optimum with much less computation time.

The solutions obtained from the online hyper-heuristic EA can produce weekly-

average diurnal profiles of the urban outdoor air temperature similar to the manually-

calibrated baseline solution, which has been extensively investigated for over one year.

This is encouraging because a total of only ∼1000 simulations (which take at most two

days without parallel computing for the present study) could result in an improved

urban microclimate model. In addition, the calibrated solutions are able to capture

most trends as well as peaks and valleys of the measured data on an hourly basis for

certain periods of the year. Despite some yet unexplained behaviors, the calibrated

models generally perform well. Therefore, the automatic calibration method proposed

in this study is expected to improve the model performance to some extent, both

effectively and efficiently.

6.2 Discussion and future work

For simulation-based optimization problems, hyper-heuristics have a catalytic effect

in obtaining solutions, but have been overshadowed by the success of parallel com-

puting [99]. Indeed, some researchers have recently tried to improve the run-time of

optimization algorithms via surrogate models [100, 101, 102]. However, most stud-

ies focused on offline hyper-heuristics where a surrogate or meta-model is trained in

advance. This would require additional effort to build a database for a specific case

study and the algorithm cannot fully guarantee equivalent quality solutions if the true

simulation engine is discarded. Online hyper-heuristics, on the other hand, have a

self-updating mechanism without any pre-simulated database to produce well-verified

solutions [85, 90]. Therefore, we advocate the use of online hyper-heuristics among

relevant research communities that are interested in simulation-based optimization.

The present study only considered a model calibration based on the urban outdoor
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air temperature via single-objective optimization. Energy use or other urban microcli-

mate conditions (e.g., air humidity) at multi-layer level could be further incorporated

into the calibration process if the corresponding data were available at sufficiently

high frequency. Given hourly or sub-hourly data of the outdoor microclimate and/or

building energy use in an urban neighborhood, one could conduct simultaneous model

calibration via multi-objective optimization (MOO) [103]. The performance of the

online hyper-heuristic EA could be further evaluated in this MOO setting. Another

direction for future studies would be to develop automatic pattern-based calibration

methods [104] or Bayesian calibration methods [35] in order to further improve the

results from a purely heuristic-based search. A joint mathematics- and physics-based

calibration approach that is able to effectively integrate the actual measurements

and computer simulations has the potential to improve the way building and urban

systems are designed and operated.

At a more fundamental and philosophical level, any comparison between the pre-

dicted and measured performance could be viewed in terms of not only how well the

simulation agrees with the measurement, but also whether the simulation program is

good enough for its intended purposes [74]. The question of interest is, then, how to

determine a “good enough” solution? In particular, there should be a broad consensus

among the scientific and engineering communities when it comes to the specification

of the accuracy bound at different scales for the calibration to be deemed satisfac-

tory. Scientists prefer to describe such bound as uncertainty, which is one key idea

we want to deliver in this thesis. The input uncertainties indicate the difficulties in

capturing the inherent physical properties (e.g., model parameter values) during a

specific simulation setting. It is assumed that, if the model is calibrated within the

prescribed criteria, it seems closer to the physical reality as the input parameters (i.e.,

the “knobs”) are tuned properly.

However, just because all the selected knobs yield a desired output, we cannot

guarantee that each knob is tuned correctly [74]. Most simulation models have many

degrees of freedom and, with judicious fiddling, can be easily manipulated to pro-

duce any desired behavior with both plausible model structures and parameter val-

ues. More often than not, this calibration process can be seen as GIGO (garbage in,

garbage out) [27]. The reason may lie in the fact that, during an optimization process,

we usually obtain one specific parameter combination leading to a “local” optimum

within the search space. Thus, the output (or solution) uncertainties, which demon-

strate the consistency of a calibration process, should also be considered with great
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care after calibration. Earlier, Kaplan et al. [105] looked at this issue and concluded

that one can never hope to identify the parameters correctly, in part because we do

not know what is correct. Given this unanswerable (and maybe hopeless) situation,

limiting ourselves to one plausible solution would be quite misleading. It is hence

much more reasonable to incorporate both the input and output uncertainties when

evaluating and using a calibrated model.

The present study has not considered the parameters of the rural measurement,

which might be an interest of research in the future if sufficient data is available. In

addition, to incorporate the actual effect on an urban system due to occupancy, we

might need to combine the UWG with reliable stochastic occupant behavior models

[106]. Finally, the energy flow process modeled by the current UWG from the rural

station to the urban canopy may not be a complete mechanism to depict the physics

of the urban microclimate, even though most UWG outputs seem reasonable and

the intended purposes of UWG have been fulfilled to some extent. Numerical CFD

simulations might be further needed to illustrate whether the actual interaction be-

tween the air masses in the rural and urban area has been accurately formulated for

a specific city.
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Nomenclature

Af lateral heat exchange area (m2)

cp specific heat of air at constant pressure (J kg−1 K−1)

cv specific heat of air at constant volume (J kg−1 K−1)

D training database

FE,P/FE,Q expensive objective and constraint values in P/Q

FS approximated objective and constraint values in S

hbld average building height (m)

Hu sensible heat flux at the surface of the control volume (W)

Kr,dir/Kw,dir fraction of the direct solar radiation received by the road/wall

m̄ mean of the absolute measured urban-rural temperature differ-

ences

mi measured data point i of the urban-rural temperature difference

n number of the data points

P parent population

Q offspring population

QLW,down down-welling infrared radiation specified in the EPW file (W)

QLW,road/QLW,roof/QLW,wall long-wavelength heat exchange between the atmo-

sphere and the road/roof/wall (W)

R2 coefficient of determination

raspect aspect ratio

rshade fraction of the road shaded by trees

S surrogate population

Shor,dir direct solar radiation on a horizontal surface (W m−2)

Snorm,dir direct normal solar radiation (W m−2)

si simulated data point i of the urban-rural temperature difference

t generation counter

Troad/Troof/Twall surface temperature of the road/roof/wall (K)
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uref reference air velocity (m s−1)

VCV control volume (m3)

V Fi−j view factor from i to j

wCV(RMSE)/wNMBE weight assigned to CV(RMSE)/NMBE

wr average road width (m)

Greek symbol

εroad/εroof/εwall emissivity of the road/roof/wall

θ0 critical canyon orientation

θref reference potential temperature outside the control volume (K)

θu average potential temperature of the control volume (K)

λ solar zenith angle

ρ air density (kg m−3)

σ Stefan-Boltzmann constant (W m−2 K−4)

Abbreviation

AEC architecture, engineering, and construction

AM averaged model

ASHRAE American Society of Heating, Refrigerating, and Air-condition-

ing Engineers

BTEX Benzene, Toluene, Ethylbenzene, and m-, p-, o-Xylenes

CFD computational fluid dynamics

CO2 carbon dioxide

COP coefficient of performance

CV(RMSE) coefficient of variation of the root-mean-square error

DM detailed model

DOE Department of Energy

EA evolutionary algorithm

EPW EnergyPlus Weather

ES evolutionary strategy

FPC fitness prediction correlation
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GHG greenhouse gas

GIGO garbage in, garbage out

GOF goodness-of-fit

HVAC heating, ventilation, and air conditioning

IPCC Intergovernmental Panel on Climate Change

IR infrared radiation

LH Latin Hypercube

LW long-wavelength

MC Monte Carlo

MODIS Moderate Resolution Imaging Spectroradiometer

MOO multi-objective optimization

NMBE normalized mean bias error

RMSE root-mean-square error

RSM rural station model

SA sensitivity analysis

SHGC solar heat gain coefficient

SRC standardized regression coefficient

SRRC standardized rank regression coefficient

SVR support vector regression

TEB Town Energy Balance

UBL urban boundary layer

UCL urban canopy layer

UCM urban canopy model

UHI Urban Heat Island

UWG Urban Weather Generator

VDM vertical diffusion model

VOC volatile organic compound
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Ana Sánchez-Ostiz Gutierrez. Genetic algorithm for building envelope calibration.
Applied Energy, 168:691–705, 2016.

82



[54] Germán Ramos Ruiz and Carlos Fernández Bandera. Analysis of uncertainty indices
used for building envelope calibration. Applied Energy, 185:82–94, 2017.

[55] Jiachen Mao, Joseph H Yang, Afshin Afshari, and Leslie K Norford. Global sensitivity
analysis of an urban microclimate system under uncertainty: Design and case study.
Building and Environment, 124:153–170, 2017.

[56] Jiachen Mao, Yangyang Fu, Afshin Afshari, Peter R Armstrong, and Leslie K Norford.
Optimization-aided calibration of an urban microclimate model under uncertainty.
Building and Environment, 143:390–403, 2018.
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