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ABSTRACT

Invasive electrical brain stimulation has been increasingly used to treat an ever wide range of
neuropsychiatric disorders from Parkinson's disease to epilepsy and depression. In addition, single
pulse electrical stimulation (SPES) is increasingly used to map connections between cortical areas
using cortico-cortical evoked potentials (CCEPs). However, the properties and mechanisms
underlying brain stimulation remain mostly unknown, hindering the application of stimulation to
new neurological disorders and the development of adaptive stimulation technologies that could
improve clinical outcome.

To improve understanding of SPES, we systematically explored the effects of cortical electrical
stimulation in human epilepsy patients. These patients have intracranial electrodes implanted for
intractable epilepsy as part of their clinical course, creating a unique opportunity to simultaneously
stimulate and record the human brain in multiple locations. Single pulses of electrical current were
delivered across pairs of electrodes in the human cortex, and the neurophysiological responses are
recorded.

Examining some fundamental properties of CCEPs, we show that the brain's response to less than a
millisecond pulse of stimulation can be detected up to one second post-stimulus. This response has
two peaks with distinct properties; compared to the second peak, the first is less variable, and its
timing is less delayed by distance, while its magnitude is more diminished by distance. Looking at
the spatial distribution of CCEPs, we show that stimulation-derived networks are more closely
related to structural connectivity than functional connectivity. However, correcting for distance
eliminates this difference. Monitoring CCEPs across different brain states, we show that the second
peak of the CCEP is significantly diminished during anesthesia.

Taken together, these results provide important insight into the basic neurophysiological properties
of CCEPs, their spatial distribution, and how they are modulated by the state of the brain itself.
These characteristics can inform experimental design, provide input parameters for modeling
studies, and be applied towards the development of adaptive closed-loop stimulation paradigms.

Thesis Supervisor: Sydney Cash
Title: Associate Professor of Neurology
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1 Background and Significance

Millions of Americans suffer from neurological disorders, including debilitating conditions such as

Parkinson's disease and epilepsy (Zack and Kobau, 2017; Marras et al., 2018). Medications are often

the first line of treatment, but they sometimes cause unwanted side-effects and are not equally

effective for all patients (Jankovic and Poewe, 2012; Smith et aL., 2012; Sprenger and Poewe, 2013).

In recent years, invasive electrical brain stimulation has been used to successfully treat an increasing

number of neurological disorders (mostly movement disorders) in patients who do not respond well

to medication; such stimulation has markedly improved their quality of life. For example, deep brain

stimulation has been an effective treatment for over a hundred thousand patients with movement

disorders such as Parkinson's disease and essential tremor (Larson, 2014); other forms of brain

stimulation are effective in treating pain and mood disorders (Boccard, Pereira and Aziz, 2015;

Fitzgerald and Segrave, 2015). Brain stimulation is now a commonplace approach to the treatment

of refractory epilepsy, including the responsive neurostimulator from Neuropace Inc. - the first

closed-loop system approved by the FDA (Morrell and Halpern, 2016).

Despite the enormous potential of this therapeutic method, progress in the field is hampered by the

fact that relatively little is known about the physiological mechanisms that underlie the benefits of

brain stimulation (Modolo et al., 2011). Stimulation parameters are primarily chosen by trial-and-

error (Kuncel and Grill, 2004; Wagle Shukla et al., 2017), and despite the existing consensus that

dynamic, adaptive stimulation could improve the efficacy and safety of stimulation devices (Widge,

Malone and Dougherty, 2018), development of these devices requires a fairly comprehensive

understanding of the effects of different types of stimulation on the local and distant neuronal

circuits (Modolo et al., 2011). Advances in recording techniques for human patients and increases in

computational power have opened up potential for a new depth of study of cortical and subcortical



circuits, but these techniques have not yet been applied to the comprehensive understanding of

brain stimulation.

As a result, surprisingly little is known about how the brain responds to electrical stimulation. Even

some of the most basic questions, such as how the response varies to increasing stimulus amplitude,

remain unanswered. In order to uncover some of these answers, we have undertaken a study of the

human brain's response to a single pulse of electrical stimulation. Brain stimulation has a highly-

dimensional set of potential parameters, including amplitude, pulse width, polarity, number of

pulses, and pulse frequency. Choosing to focus on single pulse electrical stimulation (SPES) allows us

to narrow down the list of possible parameters to a more manageable subset while still exploring

the basic properties of the brain's response to electrical stimuli. Single pulse experiments have been

a mainstay of electrophysiology for decades, especially in other contexts such as transcranial

magnetic stimulation and microstimulation.

1.1 Bioelectricity of the Nervous System

1.1.1 Voltage-gated ion channels

The nervous system and its central organ, the brain, are partially comprised of billions of electrically

active cells called neurons (L6pez-Muioz, Boya and Alamo, 2006). Like many other cells, neurons

actively create an ionic and chemical gradient across their membranes at rest: maintaining a

relatively high concentration of potassium ions and a relatively low concentration of sodium ions in

the cell, and keeping a net negative charge between the intracellular and extracellular space

(Hodgkin and Katz, 1985). Uniquely, neurons exploit such gradients to transmit signals by briefly

reversing those electrochemical potentials in a wave-like impulse (action potential) that travels

along the membrane. Central to the transmission of these action potentials, voltage-gated ion

channels open in response to a particular electric field and then allow ionic currents to diffuse across
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the membrane according to their electrochemical gradient (Hodgkin and Huxley, 1952). These

voltage-gated ion channels can respond to the electrical environment of neighboring areas of the

membrane, allowing a cascade of depolarization to propagate over the entire neuron. Biological

action potentials are elicited chemically, as receptors on the cell surface respond to chemical signals

from sensory receptors or other neurons, but the activity of a neuron can be artificially controlled by

exposing it to an external electric field, causing voltage-gated ion channels to open in the absence of

a true potential across the membrane. This artificial control of neural activity is the basis for the

current brain stimulation therapies.

1.1.2 Stimulation excites primarily axons

Voltage-gated ion channels can be found distributed across the neuron in the axon hillock, nodes of

Ranvier, and presynaptic terminals (Lai and Jan, 2006), so any of these neural components could be

responsible for the brain's response to stimulation. Biophysical measurements such as the

chronaxie of the neural tissue indicate that the biophysical thresholds of intracranial stimulation are

very similar to the biophysical thresholds of axons, compared to other neural elements such as cell

bodies. Modeling experiments use simulations of neural tissue and electric fields to examine how

different neural components respond to stimulation. Finally, two-photon imaging can record the

activation of neurons and neural elements simultaneously with electrical stimulation experiments.

Taken together, these three forms of evidence indicate that axons are the primary neural

component activated during electrical stimulation of the cortex.

In measurements of excitable tissue, the chronaxie is the duration required to elicit a response

when stimulating at an amplitude of twice the minimum amplitude to generate a response. Early

measurements indicate that the chronaxies of large, myelinated axons are considerably shorter than

the chronaxies of small axons and cell bodies (Ranck, 1975; Brocker and Grill, 2013). In extracellular



microstimulation experiments, measurements of both cell body activation and axonal activation

show that the chronaxie for microstimulation is very similar to the chronaxie for axons, while being

40 times larger than cell body activation (Nowak and Bullier, 1998). These experiments have since

been repeated with the macrostimulation used in clinical settings. Measurements of chronically

implanted electrodes on the motor cortex yield a small chronaxie - indicative of axonal activation

(Hanajima et al., 2002). Similarly, subcortical measurements with chronically-implanted deep brain

stimulation also indicate a chronaxie that corresponds to large myelinated axons (Holsheimer et al.,

2000). Chronaxie measurements suggest that axons are the primary targets of electrical stimulation

in the human brain.

However, modeling and simulation studies paint a slightly more complex picture. Given that the

stimulation electrode creates an electric field that varies in strength by distance, which neuronal

elements are activated may be dependent on the particular geometry, orientation, and distance of

the neuron to the stimulation electrode (Ranck, 1975). While simple models with point source

approximations of stimulation produce reliable activation at the axon at the axon, more complicated

stimulation paradigms may change the results (McIntyre and Grill, 1999, 2002). Symmetric,

charged-balanced stimuli - the kind used in this thesis - may preferentially activate axons, while

asymmetric stimuli may activate a larger portion of cell bodies; still, the threshold for activation of

axons is consistently lower than the threshold for cell bodies (McIntyre and Grill, 2002). Ultimately,

the activation of axons may explain some otherwise confusing experimental results - that the

output of stimulated areas increases while the firing of neurons within stimulated areas decreases; if

cell bodies and axons are differentially activated, their activity could be decoupled (McIntyre et al.,

2004). Together, these modeling studies confirm that axons have a lower threshold of activation,

while allowing for more complicated effects.



Further evidence for the disparate involvement of axons and cells bodies in stimulation comes from

calcium imaging experiments. Two-photon calcium imaging is an optical imaging technique to

monitor the activity of neurons using fluorescent, calcium-sensitive dye (G6ppert-Mayer, 1931;

Stosiek et al., 2003). This method has the advantage of not being affected by the electrical stimulus

itself, allowing for a simultaneous monitoring of neuronal activity during stimulation. Two-photon

imaging during microstimulation of the cortex revealed that a small, sparse number of neurons were

activated during stimulation, and that small changes in the position of the stimulating electrode

yielded large changes in the population of activated neurons (Histed, Bonin and Reid, 2009). These

results indicate that axons are the primary targets of activation during stimulation (Histed, Bonin

and Reid, 2009). While the degree of sparsity of activation has been called into question, the fact

that axons are primarily activated has not (Tehovnik and Slocum, 2013). Taken together, these

three modes of study provide strong evidence that axons are the primary target of electrical

stimulation in the cortex.

1.1.3 Models of stimulation mechanisms

Outside of the experimental evidence, mathematical models of stimulation can help predict the

effects of stimulation. Broadly speaking, there are two components to these models: a model of the

stimulation itself, and a model of the neuronal response to the stimulation. The simplest model of

the stimulation itself is a point source of voltage, which can be used to determine appropriate

electric fields for the rest of the model (McIntyre and Grill, 1999). More complex representations of

the stimulation use finite element modelling to numerically solve differential equations across

complex geometric boundaries. These geometric elements can be derived from structural imaging

of the brain obtained by MRI or histology, as well as the physical dimensions of the electrode itself

(Nathan et al., 1993; McIntyre and Grill, 2002; McIntyre et al., 2004).
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Once you have the model of the stimulation and the electric field it induces, you need a model of

how the brain will respond. In the seminal paper by Hodgkin and Huxley, the first models of the

electrical activity of neurons were developed alongside the discovery of voltage-gated ion channels,

as the authors sought to describe the results of their electrical manipulations by analogy to electrical

components (Hodgkin and Huxley, 1952). In these first models, voltage-gated ion channels are

described by their nonlinear conductance for a specific ion, driven by an electrochemical gradient

(represented as a battery), and the membrane itself has some capacitance. Strung together, these

components describe a compartment model of nonlinear ordinary differential equations that can be

numerically (and sometimes analytically) solved. Because of this model's relative simplicity and

strong predictive power, it has been the primary method of describing current flow along a neuron's

compartment since its conception (Catterall et aL., 2012).

Since the nonlinear conductances of voltage-gated ion channels are represented as a function of

voltage and time, the effects of electrical stimulation can already be determined on a neuronal

compartment scale by determining the electric field induced by a particular stimulation sequence

over time(McIntyre and Grill, 1999). Here, the primary compartment of interest is the neuron's axon

- the branch of the cell responsible for transmitting signals to other neurons, and the long-

presumed target of electrical stimulation (see section 1.1.1). Such models have had a substantial

early success. For example, these models accurately predicted that anodal stimulation would

require a lower threshold of stimulation amplitude to elicit a motor response (Manola et al., 2007)

and that high-frequency stimulation could paradoxically reduce the neural activity of the proximal

brain region and simultaneously increase its output to downstream areas (McIntyre et al., 2004).

These compartment models have even been used to make predictions about the optimal electrical

stimulus for activating sodium ion channels (Clay, Forger and Paydarfar, 2012).



Hodgkin-Huxley compartment models are a mainstay in the field of stimulation modeling. However,

understanding the effects of brain stimulation at a clinically useful scale requires modeling not just

individual neurons but neuronal circuits and networks. More recent models of electrical stimulation

in the brain take network activity and connectivity into account. In the simplest cases, structural

connectivity patterns of different brain regions are determined using imaging techniques such as

diffusion tensor imaging (McIntyre and Hahn, 2010; Latteri, Arena and Mazzone, 2011). Other

models include rudimentary relationships between stimulation effect and LFP (Hahn and McIntyre,

2010) or using artificial neural networks to predict the response to stimulation (Chaturvedi, Luj n

and McIntyre, 2013). As computational capabilities increase, our ability to model stimulation for

clinical understanding also improves.

1.2 Therapeutic Brain Stimulation

1.2.1 Clinical applications

Brain stimulation is an important tool in a number of areas. Stimulation is used in the clinical

mapping of brain areas (Mueller and Morris, 1993; Trebuchon and Chauvel, 2016), in the treatment

of movement disorders (Larson, 2014; Mahlknecht, Limousin and Foltynie, 2015), pain disorders

(Tsubokawa et a/., 1991, 1993), and many other neurological and psychiatric illnesses (Oluigbo,

Salma and Rezai, 2012; Laxton, Lipsman and Lozano, 2013; Barrett, 2017). Though there are

theoretically an infinite number of possible time-varying electrical fields that could be applied as

stimulation to the brain, current clinical stimulation protocols are conventionally limited to

rectangular pulses and a few parameters: number of electrodes (typically one or two), polarity

(which electrode serves as the anode or cathode), frequency (how many times per second to

stimulate), amplitude (the amount of voltage to apply), pulse width (the duration of the stimulus

pulse), and location (electrode placement within the brain).
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A number of different methods have been employed or proposed for determining clinically useful

stimulation parameters within this space. Often, effective targets have been discovered by chance

or by accident, as for example the placement of electrodes over the motor cortex for chronic pain

(Tsubokawa et al., 1991). Sometimes many different stimulation options are tested, and the best of

those is used; the high frequency of stimulation chosen for deep brain stimulation was chosen by

testing many different frequencies, and noting that symptoms tend to get worse at lower

frequencies (such as 50 Hz) and tend to improve at higher frequencies (>90 Hz) (Birdno and Grill,

2008). Other times, factors other than patient outcome are taken into account, such as energy

consumption (Wongsarnpigoon and Grill, 2010). Often, the physician will adjust the parameters

slightly for each individual patient.

These arbitrarily chosen stimulation parameters have still been shown to be clinically effective, even

having a possible neuroprotective effect (Spieles-Engemann et al., 2010). Therapeutic brain

stimulation is poised to treat a number of neurological disorders and even mental illnesses, but as

the number and complexity of these diseases increases, the effectiveness of fortuitous discovery or

trial-and-error strategies is diminished.

1.2.2 Mechanism hypotheses

Stimulation primarily activates axons, and there are a number of hypotheses to explain how this

initial activation mediates the clinical effects seen in patients. Recordings from individual neurons in

the brain during stimulation have often led to contradictory results suggesting that neural activity is

either increased or suppressed by stimulation; these contradictory results have led to speculation

that stimulation simultaneously suppresses somatic activation and increases efferent output in an

area by bypassing cell bodies and directly activating axons orthodromically (McIntyre et al., 2004).

One prevailing hypothesis is that stimulation overrides the pathological activity of brain disorders,
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such as bursts, low frequency oscillations, synchronization, or disrupted firing patterns (Birdno and

Grill, 2008). Another hypothesis is that brain stimulation disrupts competing neurological processes

between pathological brain areas, and this model of brain stimulation has been used to successfully

predict stimulation parameters for patients with essential tremor (Cooper et al., 2008). The

competing processes model is a subset of general network theories of brain stimulation: the idea

that stimulation primarily achieves therapeutic results by acting on brain networks (Hahn and

McIntyre, 2010; McIntyre and Hahn, 2010; Walker et al., 2011). Ultimately, the mechanisms behind

the therapeutic effects of brain stimulation are unknown.

1.2.3 Closed-loop brain stimulation

Even in the case of well-managed diseases like Parkinson's disease, most patients must still take

some form of medication to compliment the stimulation therapy. As the patient's drug metabolism

or energy levels fluctuate throughout the day, the severity of his symptoms will also fluctuate,

indicating potential gains for an adaptive stimulation system. Other diseases treated by brain

stimulation, such as epilepsy, have intermittent rather than constant symptoms, requiring a

responsive brain stimulation paradigm. Consensus exists in the scientific community that dynamic,

adaptive stimulation could improve the efficacy and safety of stimulation devices. Indeed, some

attempts have been made to develop brain stimulation devices that adaptively respond to

symptoms as they arise (Graupe et al., 2010). However, the development of this technology is

hindered by a lack of biophysical models of brain stimulation itself (Modolo et al., 2011). Brain-

computer interfaces have been developed to include microstimulation as a real-time feedback

mechanism (O'Doherty et al., 2009), and insights from this kind of technology may be needed to

develop the next generation of brain-stimulation therapies (Widge, Malone and Dougherty, 2018).



1.3 Historical Perspective on Single Pulse Electrical Stimulation

The first recordings of evoked potentials in response to electrical stimulation of the cortex were

performed by Edgar Adrian in 1936 (Adrian, 1936). In these studies, the evoked potentials were

labeled "direct cortical response" and recorded in anesthetized animals (Adrian, 1936). While the

experiments primarily focused on trains of stimulation, some of the frequencies used were low

enough to elicit evoked potentials from single pulses (Adrian, 1936). This early work noted two

separate phases to the evoked potential: an early response, called a "superficial" response, and a

late response, called a "deep" response -the latter only appearing if the electrical stimulus was

strong enough (Adrian, 1936). It was hypothesized that the superficial response was generated by

the excitation of neurons in the superficial layers of cortex, while the deep response was

characterized by the recruitment of neurons in the deeper cortical layers (Eccles, 1951). Soon after,

single pulse stimulation was used to provide evidence that the corpus callosum mediates

interhemispheric connections in both cats and non-human primates, in one of the first examples of

using single pulse electrical stimulation to measure connectivity (Curtis, 1940b, 1940a).

Many subsequent attempts were made to study the properties of the direct cortical response and its

two phases. In non-human primates, the direct cortical response to single pulse electrical

stimulation was shown to decrease in amplitude as the distance from the stimulation site increases,

while the latency, time to peak, and duration increase with distance (Rosenblueth and Cannon,

1941). These responses appeared to be the same even when the cortex was isolated by incision

from other areas of the brain (Burns, 1950). While many of these experiments occurred under

anesthesia, experiments without anesthetic agents revealed an additional high-frequency

component to the response which could last 2 to 4 seconds (Burns, 1951). Paired pulse experiments

showed an attenuation of the second evoked potential when the second stimulus was delivered

during the late, deep phase of the evoked response (Burns, 1951; Chang, 1951a).
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Early discussion of the response to single pulse electrical stimulation provides differing accounts of

the relationship between the stimulus amplitude and the evoked response. It was noted that the

evoked potential became increasingly polyphasic with increasing stimulus amplitude (Rosenblueth

and Cannon, 1941). In isolated cat cortex, the early response is said to have a linear relationship

with stimulus amplitude, while the late response is said to be all-or-nothing (Burns, 1950). However,

other accounts suggest nearly the opposite, with the early response being linear in only a short

range and quickly plateauing, while the late response increased linearly with stimulus amplitude

(Chang, 1951b). These varying results could be explained by both the differences in methodology -

referencing, stimulation paradigms, and cortex preparation - as well as the possibility of

undersampling due to a very small number of recording and stimulation electrodes.

Alongside work understanding the evoked potential itself, individual neurons have been recorded

during stimulation. One study in cats found an inconsistent increase in firing of neurons during the

superficial response, and a very consistent decrease in firing during the deep response, followed by

another wave of activation and inhibition (Creutzfeldt, Ba and Schoen, 1956). In total, they

measured changes in firing patterns up to 1 second after stimulation (Creutzfeldt, Ba and Schoen,

1956). Similarly, another study in cats found that stimulating the thalamus lead to inhibition of

downstream cortical neurons, and that this inhibition increased in duration with stimulus amplitude

(Li and Chou, 1962).

Single pulse studies in humans appear somewhat later in the field literature. One of the first studies

to look at the response of the human brain to single pulse electrical stimulation makes qualitative

observations that the evoked potential increases in magnitude but not in latency with increasing

stimulation amplitude (Delgado, Hamlin and Koskoff, 1955). Similarly, evoked potentials in the

medial temporal lobe of epilepsy patients were first recorded using depth electrodes in response to

single pulse electrical stimulation (Brazier, 1964). This move to studying human patients was not
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without controversy. Many scientists like Brazier followed exemplary ethical standards, even by

modern sensibilities; they carried out studies in informed, volunteer patients who were already

receiving electrode implantation for other clinical purposes such as preparation for epilepsy surgery.

Others conducted experiments involving radical new treatments of unclear benefit in vulnerable

patient populations1 and advocated the use of brain stimulation to control marginalized

communities. These experiments and the scientific vision being promoted, as well as increasing

awareness of government experiments such as MK Ultra, led to public outrage and, ultimately,

congressional hearings. The ultimate results seems to have been a significant reduction in the

funding and study of brain stimulation for several decades.

1.4 Overview of Thesis Work

Today, electrical stimulation is used in a number of clinical settings. The most visible application of

electrical stimulation is therapeutic brain stimulation, such as deep brain stimulation, in which

patients receive electrical pulses through implanted electrical devices for the alleviation of

symptoms related to neurological disease. Clinicians also use electrical stimulation of the brain to

map the cortex before brain surgery, for patients who have either a malignant or an epileptogenic

region of brain tissue. This electrical stimulation can be used to inform neurosurgeons of which

areas of the cortex are responsible for essential motor and language tasks. This latter form of

electrical stimulation is usually done in conjunction with neurophysiological recordings and provides

a unique opportunity to study the mechanisms of electrical stimulation in the brain.

From predictions of the Hodgkin-Huxley-type models, the general consensus within the

neuroscience community is that electrical stimulation primarily activates axons. This microscopic

1 For moral and ethical considerations, I have chosen not to cite this research here. However, curious readers
can read "The Forgotten Era of Brain Chips", published in Scientific American in 2005 by John Horgan, for an
overview of this research in historical context. Readers should be forewarned that this content includes
homophobia and racism.
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understanding of stimulation has not translated easily into clinical utility, as neurologists primarily

diagnose and treat neurological phenomena that occur on a much greater scale. The higher-level

effects of electrical stimulation have yet to be thoroughly studied in humans. The major goal of this

thesis was to study the effects of electrical pulses applied to the human brain and develop an

empirical model of such effects that is clinically useful. Therefore, this study required four main

areas of focus:

1. Development of a stimulation API for programming stimulation experiments. In order to

enable stimulation studies in this work and other studies, an application programming

interface (API) was developed that interfaces with the intracortical stimulation device and

that generates and executes sophisticated stimulation experiments. This API has been

successfully used in a wide variety of stimulation experiments, not just the ones outlined

below.

2. The local neurophysiological response to single electrical pulse. In particular, we monitored

responses in clinically-relevant local field potentials and show that the two phases of the

evoked potential have different properties.

3. The relationship between functional and structural connectivity with the spatial spread of

electrical stimulation effects. The spread of the response to electrical stimulation across

the brain was compared to other common measures of functional connectivity, such as

cross-correlation and Granger causality, and structural connectivity as derived from

diffusion tensor imaging. We show that stimulation networks are similar to structural

networks.

4. An examination of how the states of local and distant cortical circuits contribute variations

in electrical stimulation response. This examination involved determining to what extent

the power and phase of cortical rhythms and brain states such as sleep and anesthesia



affect the response to electrical stimulation. We show that anesthesia induces a decrease in

the magnitude of the second phase of the evoked potential.



2 Prior Work

The work in this thesis is built on a strong foundation of previous study into the neurophysiological

response to single pulse stimulation in the human brain. Here we describe the related work

previously done in the field by others.

2.1 The Development of Cortico-Cortical Evoked Potentials

In 1980s and early 1990s, a set of safety protocols for electrical stimulation in humans began to

develop (Babb et al., 1980; Gordon et aL., 1990; McCreery and Agnew, 1990; Shannon, 1992). The

evoked responses of the human brain were soon used to establish estimates of connectivity

between areas -first in resected tissue (Rutecki et aL., 1989) and then in human patients (Wilson et

a/., 1990). The term cortico-cortical evoked potential (CCEP) was coined in 2004 by Riki Matsumoto

(Matsumoto, Nair, Lapresto, et al., 2004). Though single pulse electrical stimulation and the

subsequent evoked potential had been previously studied and used in a wide variety of contexts,

this paper described the evoked response in greater detail, renamed the first and second peaks of

the response as "N1" and "N2" respectively, and proposed a standardized - albeit somewhat

complex - method for determining the magnitude of the response (Matsumoto, Nair, Lapresto, et

al., 2004).

2.2 Basic Properties of Cortico-Cortical Evoked Potentials

As explained previously, the 'direct cortical response' to SPES has been primarily characterized by a

CCEP with two peaks, labelled historically as the "superficial" and "deep" responses and most

recently as "Ni" and "N2" (Adrian, 1936; Purpura et al., 1957; Matsumoto, Nair, Lapresto, et a/.,

2004). The timing of N1 - the first peak - has been measured from 6 to 40 milliseconds, and N2 - the

second peak - from 40 to 200 milliseconds (Wilson et al., 1990; Matsuzaki, Juh sz and Asano, 2013).

However, the shape of the CCCEP can also be polyphasic, particularly with increasing stimulus



strength(Rosenblueth and Cannon, 1941). In total, the duration of the CCEP has been recorded as

lasting about 500 ms (Pigorini et al., 2015), though early measurements of neuronal firing rates after

single pulse electrical stimulation showed differences up to 1 second (Creutzfeldt, Ba and Schoen,

1956).

Other differences have been noted between the two peaks of the CCEP. Laminar and single-unit

recordings suggest that N1 is characterized by an increase in firing, whereas N2 is characterized by a

volley of inhibition (Creutzfeldt, Watanabe and Lux, 1966; Alarc6n et al., 2012; Keller, Honey,

M6gevand, et al., 2014). In one patient, a laminar electrode captured data from multiple levels of

cortex during the CCEP; this recording revealed that, at least in this one case, N1 was characterized

by an increase in firing in layers 4-6, followed by an inhibition of firing in those layers, then N2 was

characterized by an increase in firing in layers 1-4 (Keller, Honey, M6gevand, et al., 2014).

Historically, the relationship of N1 and N2 to stimulus amplitude varied wildly across studies. In one

study of isolated cat cortex, N1 is said to have a linear relationship with stimulus amplitude, while

N2 is said to be all-or-nothing (Burns, 1950). However, another study suggested N1 has a linear

relationship with stimulus amplitude in only a short range and quickly plateauing, with N2 increasing

linearly with stimulus amplitude (Chang, 1951b). More recently, a few studies have shown generally

increasing CCEP in response to increasing stimulus strength, but the results are largely qualitative or

with very poor resolution in stimulus strength (Entz et a/., 2014). In addition to the evoked

response, it has been shown that SPES increases high frequency activity (> 80 Hz) during N1 and

decreases it during N2 (Kobayashi et al., 2015).

The exploration of CCEP properties has been haphazard and incomplete, often producing

contradictory results. Some of these properties were discovered decades ago in animal studies but



were never confirmed in humans with contemporary techniques. In Chapter 4 of this work, we take

a more systematic approach to the study of CCEPs.

2.3 Cortico-Cortical Evoked Potential Networks

The bulk of study regarding single pulse electrical stimulation, particularly in humans, has been using

CCEPS to map out connections between cortical areas. While the use of stimulation as a "gold

standard" for determining physiological connections has been disputed (Borchers et a/., 2011), it is

still a common tool for clinical and scientific determination of connectivity and function (Ritaccio,

Brunner and Schalk, 2018). The use of CCEPs to determine connectivity has been compared to a

couple of other common techniques for estimating connectivity - most notably imaging techniques

such as resting state functional magnetic resonance imaging and diffusion tensor imaging. CCEPs

have been an invaluable tool for studying connectivity in humans, where more drastic techniques

like dissection and histochemical tracing are rare.

The properties of CCEP networks have been explored in a number of studies. CCEP networks exhibit

a strong dependence on distance, with most evoked responses occurring locally to the stimulation

site (Keller et a/., 2011; Entz et a/., 2014; Keller, Honey, Entz, et al., 2014). The qualitative pattern of

frequent local connections and rarer distant connections, combined with the quantitative analysis of

cluster coefficients and path lengths, indicate that CCEP networks in the brain have a small-world

network topology (Keller, Honey, Entz, et al., 2014). Reciprocity of evoked potentials between brain

areas is low, estimated to be somewhere between 5 and 10% for all connections and up to 25% for

local connections (Matsuzaki, Juhdsz and Asano, 2013; Entz et al., 2014; Keller, Honey, Entz, et al.,

2014; Araki et a/., 2015; Jimenez-Jimenez et al., 2015). This asymmetry is structured, with CCEPs in

higher-order areas being evoked from stimulation in lower-order areas such as sensory areas

(Matsuzaki, Juh sz and Asano, 2013; Keller, Honey, Entz, et al., 2014). These properties, combined
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with the causal nature of stimulation, have led many scientists to classify CCEP networks as

measuring effective connectivity (Entz et a/., 2014; Keller, Honey, Entz, et al., 2014).

CCEP networks have been compared to a handful of other techniques for estimating neural

connectivity between brain areas. In Broca's area specifically, both the amplitude and the latency of

CCEPs were found to correlate with the number of DTI pathways between the stimulation and

recording sites (Conner et a/., 2011). Similarly, DTI and CCEPs were shown to have qualitatively

similar results in one patient in the pre-supplementary motor area (Swann et a., 2012). CCEPs

correlate with networks derived from resting state functional magnetic resonance imaging, both in

terms of spatial distribution and magnitude (Keller et al., 2011). High gamma power correlations

between ECoG channels, as well as raw voltage correlations, correspond to CCEP networks derived

from both N1 and N2, and high gamma power degree correlates negatively with CCEP out-degree,

degree, and net flow (Keller, Honey, Entz, et al., 2014). However, N2 has a wider spatial distribution

than N1 (Matsumoto, Nair, LaPresto, et a!., 2004; Entz et a/., 2014), indicating that stimulation-

derived networks may vary depending on the estimating methodology. Still, CCEP networks show

some similarity, overall, to some common measures of structural and functional connectivity.

Given the utility of CCEPs to estimate connectivity, CCEPs have been used in both scientific and

clinical contexts as a tool to estimate connections in a large number of functional areas. These areas

include the limbic system (Wilson et al., 1990; Kubota et aL., 2013), auditory system(Brugge et al.,

2003), visual system(Matsuzaki, Juh sz and Asano, 2013), language system(Matsumoto, Nair,

LaPresto, et al., 2004; Conner et aL., 2011; Entz et aL., 2014; Araki et al., 2015; Kunieda et aL., 2015),

and sensorimotor cortex(Matsumoto et aL., 2007; Enatsu et al., 2013). In addition to confirming

known connectivity patterns and exploring new ones, these networks have potential for clinical use.

CCEPs can be recorded during anesthesia, which allows their use during intraoperative mapping,

particularly in cases where awake mapping is not feasible (Yamao et a/., 2014, 2017; Matsumoto,
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Kunieda and Nair, 2017). When language networks have reorganized in patients with temporal lobe

epilepsy, CCEPs can reveal nonstandard network configurations in conjunction with standard clinical

mapping of the cortex (Enatsu et a/., 2013).

In summary, CCEP networks have demonstrated great utility in mapping connectivity in the brain for

both scientific and clinical purposes. These networks correlate with a few other methods of

estimating connectivity, such as resting state fMRI, high gamma power, and - in a small number of

areas - DTI, and they seem to correspond to known properties of effective brain networks, such as

asymmetry, local clustering, and network 'small-worldness'. Building off this knowledge, the

degree of similarity between CCEP networks and other common network measures, as well as the

relative strength of each similarity, is explored in Chapter 5 of this work.

2.4 State-based Modulation of Cortico-Cortical Evoked Potentials

The large majority of studies involving CCEPs assume that the response to CCEPs is static and

independent of brain state. There is some limited evidence, however, that CCEPs may in fact be

modulated by dynamic changes in cortical activity and, of course, the brain is anything but static as

it shifts through various states over both short and long time scales. For example, CCEPs can be

recorded during large, broad changes in brain state such as sleep and sometimes show marked

differences in their properties. CCEPs during sleep show marked changes compared to rest. During

non-rapid-eye-movement (NREM) sleep, the high gamma activity, defined as power in the 100-

200Hz frequency range, increases during N1, as does N1 size (Usami et al., 2015). This increase is

followed by a decrease in HGA between N1 and N2 (Usami et al., 2015). Similarly, the power above

20 Hz was found to show a similar pattern, with a short increase during N1 followed by suppression

during NREM sleep (Pigorini et al., 2015). Other spectral changes during sleep include an increase in

slow wave activity, defined as the rectified amplitude of the signal below 4 Hz, and a decrease in
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the phase locking across trials (Pigorini et al., 2015). Interestingly, these changes from wakefulness

to NREM seem to be graded, with the responses to single pulse electrical stimulation during rapid

eye movement (REM) sleep showing a qualitatively similar response to NREM sleep, but to a lesser

degree (Usami et al., 2015, 2017). These results show changes in connectivity and excitability during

sleep, which are reflected in the CCEPs.

Sleep represents a very large change in brain state, but more subtle state changes can be monitored

using the amplitude and phase of oscillatory activity. The power in the alpha and beta frequency

bands (8-13 Hz and 13-20 Hz respectively) has been shown in one study to modulate the effect of

single pulse electrical stimulation, with higher power immediately preceding the stimulus yielding a

larger response (Usami et al., 2018). A similar result has been found with single pulse transcranial

magnetic stimulation, where prestimulus phase in the beta or alpha frequency bands was shown to

modulate motor evoked potentials or visual evoked stimuli (phosphenes) respectively (van Elswijk et

a/., 2010; Dugue, Marque and VanRullen, 2011). These studies suggest that CCEPs could be

modulated by changes in brain state during wakefulness.

Together, these studies suggest that CCEPs may not be as static of a phenomenon as is assumed.

We explore this possibility further with studies conducted on CCEPs during sleep, anesthesia, and

changes in oscillatory activity in Chapter 6.



3 CereLAB: a MATLAB API for CereStim Stimulation

3.1 Introduction

Performing stimulation experiments requires the ability to deliver electrical stimuli to the patient's

brain. In the previous decades, stimulation by hand-controlled electrodes was the norm; as

technology advances, programmable stimulation has increasingly been used. Programmable

stimulation allows more consistent timing and location of stimulus delivery, in addition to more

sophisticated experimental protocols such as random interstimulus intervals. The programmable

stimulation device used for all stimulation experiments presented in this thesis is the BlackRock

CereStim 96 (BlackRock Microsystems Inc., Salt Lake City, Utah).

The CereStim is a programmable neurostimulator that can stimulate 96 different electrodes -

including up to 16 at once. In addition to a graphical user interface for simple manual stimuli and

basic programs, the CereStim includes a C++ API for more complex development of stimulation

routines. However, C++ is not a common programming language among scientists, who often prefer

to use higher level languages such as MATLAB and Python. To bridge this gap and enable a broad

audience of scientists to use the CereStim device for their own stimulation experiments, I developed

a MATLAB API for the CereStim called CereLAB. This MATLAB API wraps the C++ API methods and

classes through a MATLAB executable (MEX) interface, provides additional warnings and errors for

common use cases, includes high-level stimulation programs for oft-repeated stimulation tasks, and

is fully documented within the MATLAB environment.

The CereStim device was acquired by the laboratory in 2014; an official BlackRock MATLAB API for

the device was released in early 2016. However, the custom-built CereLAB API continued to be

used both for the work of this thesis and for experiments by others due to increased internal

consistency, convenient higher-order programs for common shared stimulation routines such as
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safety testing, and the difficulty of overhauling code to implement a new system. Since the initial

development of the CereLAB API, the code has been used for a number of experiments, including

the exploration of the parameter space of stimulation trains in both frequency and amplitude and

task-dependent stimulation to different regions of the brain based on real-time analysis of cognitive

task performance, and the API is being developed for real-time neurophysiological applications.

3.2 Wrapping C++ Classes into MATLAB Classes

The BlackRock CereStim C++ API is structured such that each stimulation device is an object with

callable functions from the BStimulator class. MATLAB itself can be used as an object-oriented

programming language, with support for class creation including properties and methods (MATLAB,

2016b). Since both C++ and MATLAB support classes, the most straightforward method for creating

a MATLAB wrapper of a C++ class is to create a MATLAB shell class with methods that each

individually call their C++ counterparts. This strategy has the benefit of allowing very easy transition

between C++ and MATLAB APIs for users of either or both languages and of maintaining consistency

of code that is simple and easy to debug. However, using this method also requires some kind of

reference of the BStimulator object to be passed between the C++ and MATLAB APIs. In a C++

environment, this reference would be implemented with pointers, but pointers are not natively

available in MATLAB. Instead, MATLAB refers to objects with object handles, and it has a class type

called Handle class for passing references to underlying data rather than the data itself (MATLAB,

2016a).

In order to create a MATLAB wrapper for a C++ class, a method of converting pointers into handles,

and handles into pointers, is required. This process is carried out in a MEX intermediary interface

between the MATLAB and C++ APIs. Since MATLAB allows for objects of the Handle class to have an

arbitrary handle set upon construction, instantiation of the BStimulator class is a four-step process



outlined in Figure 3-1. First, the MATLAB constructor for BStimulator is called in user code. This

constructor seeks to define the MATLAB object handle of this particular instance, so next, the

MATLAB API calls the underlying mex constructor from the MEX interface. The MEX constructor

calls the C++ API, which creates a new BStimulator object in memory, along with a corresponding

C++ pointer reference. Finally, this pointer is converted first into a mex Array within the MEX

interface, which is then passed to the initial MATLAB API and set as the MATLAB object handle.

CereLAB MATLAB API CereLAB MEX Interface

A

Original C++ API

Figure 3-1: an overview of the CereLAB API constructor and its communication with the original BlackRock C++
CereStim API via the CereLAB MEX interface. A: MATLAB constructor calls MEX constructor. B: MEX
constructor calls C++ constructor, which creates new object with pointer reference. C: The pointer is returned
to the MEX interface and converted to a MEX array. D: The MATLAB constructor receives the converted
pointer as an object handle.

Fortunately, conversion of pointers into mex arrays has been implemented in community code

through a classhandle template header, enabling C++ code to convert any pointers into MATLAB-

friendly handles (Woodford, 2018). The classhandle methods in this software allow for converting

from pointers to object handles by casting pointers as an unsigned 64-bit integer, and then storing

this data directly into a mex Array using mxGetData (Woodford, 2018). Similarly, the header recasts

the object handle from a 64-bit unsigned integer back to a pointer (Woodford, 2018). These two
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functions together enable seamless communication between the MATLAB wrapper and the C++ API

for any method that has been implemented in both APIs.

CereLAB MATLAB API CereLAB MEX Interface

A

B

Original C++ API

Figure 3-2: an example of a CereLAB function call and its communication with the original C++ API via the MEX
interface. A: MATLAB API calls MEX interface with BStimulator object cerestim. B: MEX interface converts
object handle to C++ pointer. C: MEX interface calls C++ API with any input arguments. D: C++ output from
function call is converted into the corresponding MEX datatype. E: MATLAB method receives converted result
as output.

Just as C++ pointers need to be converted to MATLAB object handles to create a BStimulator object,

function calls from the CereLAB API must perform the reverse conversion to call the underlying C++

methods. Any method call from the CereLAB API requires a five-step process to complete outlined

in Figure 3-2. First the CereLAB function is called from user code using the previously created

BStimulator object. This object passes the name of the function call, along with any accompanying

arguments, to the MEX C++ API, which first converts the handle back into a C++ pointer, and then

calls the appropriate C++ method with any provided input arguments. When the C++ method call

has completed and output arguments have been returned, the MEX C++ API may convert these
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output arguments into the appropriate MATLAB format before returning the output to the MATLAB

API for the user.

3.3 Warnings and Errors for Intuitive Use Cases

The bulk of the CereLAB API is comprised of the MATLAB BStimulator handle class with its associated

MEX interface for converting data structures between the two regimes. Most of the functions

recreated in the MATLAB API are direct pipelines to the C++ API, with no additional functionality

added. However, there are a few differences in some of the key methods where the original C++ API

did not lend itself well to translation into a MATLAB environment. These changes allow for more

intuitive and familiar use within the MATLAB framework.

The native C++ API for the CereStim has a function for connecting to the CereStim device. This

function attempts connection one time and returns an error if a connection has not been

established. Due to timeouts and potential cable mistakes, this function often fails on the first try,

leaving the user to manually and repeatedly call the connect method until a connection has finally

been achieved. The CereLAB API circumvents some of this user frustration by automating the

repeated connection process. If a connection has not been established on the first method call, the

API will automatically reattempt the connection process for up to 100 tries. In addition, the API

provides helpful status messages within the MATLAB environment to indicate when the CereLAB API

will first attempt to connect, when it fails to connect but will reattempt connection, when it has

successfully connected, and/or when it has repeatedly failed to connect and will no longer attempt

to do so.

Another area of expansion has been the method for configuring the stimulation parameters on the

device. According to the C++ API of the CereStim device, the API will accept stimulation frequencies

from 4 Hz to 1000 Hz. However, the CereStim device is unable to maintain a wait period longer than



65,535 microseconds (the largest number that can be defined with a 16-bit integer). This limitation

means that the CereStim is not capable of producing stimulation at frequencies lower than 16 Hz,

since the period between pulses is longer than the CereStim can handle. The C++ API will still allow

you to attempt stimulation at these lower frequencies, producing erratic and undefined results

which depend on the degree of integer overflow. The CereLAB API, however, checks the intended

stimulation frequency and produces an error if the frequency is below 16 Hz. Stimulation at

frequencies below 16 Hz is still possible in both APIs, but it requires delivering each pulse

individually with a sequence of pulses and wait periods.

Finally, when querying the CereStim status, the CereLAB API has included an option to display the

status in text in the MATLAB environment. The original C++ API returns an integer value between 0

and 5 inclusive to indicate the real-time status of the CereStim when queried. These values indicate

whether the CereStim is currently delivering stimulation, whether it has been stopped or paused,

whether the CereStim is waiting for an external trigger, or whether the CereStim is writing a

sequence or has been given an invalid sequence. For ease of use, primarily in debugging, the

CereLAB API method call for reading the status of the CereStim includes an optional "verbose" flag

to enable the display of human-readable output.

3.4 Additional Functionality for Stimulation Routines

On top of a wrapper for the native functions provided by the original C++ CereStim API, CereLAB are

higher-level functions for the automation of common or routine tasks. These functions cover a

variety of tasks, ranging from simple programs for safety testing before experiments and delivering

repetitive single pulses to more complex experimental protocols such as delivering theta burst

stimulation. The primary advantage to using a custom-developed stimulation API is that it allows for

these common tasks to be included directly into the API itself, rather than having every user develop



their own unique code for the same task. This sharing saves work and standardizes protocols across

users for easier comparisons.

Before delivering trains of stimulation at the desired amplitude, it is often necessary to first test a

few trains at a lower amplitude, checking to be sure that the patient cannot discern any side effects

and that the stimulation does not itself evoke any epileptiform activity or afterdischarges (So and

Alwaki, 2018). The CereLAB API contains a function called safetytest to semi-automate this process

and to speed up the process by reducing the time necessary for set-up and control. For a specified

electrode pair, the safetytest function will stimulate at the given frequency and amplitude five times

in a row, with a wait period in between to check the recordings and check-in with the patient. If

multiple amplitudes are given, the function will iterate through them in the order given.

The bulk of the results presented in this thesis were collected through the use of three functions in

the CereLAB API: Amplitudes, networktest, and singlepulses. The Amplitudes function delivers

single pulses at an interstimulus interval with a uniform distribution between 2500 and 3000

milliseconds. These single pulses are delivered at varying amplitudes between 500 and 10,000

microamperes in a block-random order, allowing for the data from the lower amplitude blocks to

remain useful even if the experiment was terminated in a higher amplitude block. The networktest

function delivers single pulses to a set of stimulation pairs in a random permuted sequence for the

specified number of trials. Single pulses are delivered individually at 3 second intervals. The

singlepulses function delivers single pulses to one pair of electrodes at an interstimulus interval with

a uniform random distribution between 2500 and 3000 milliseconds at 7000 microamperes with

alternating polarity for each trial. All three of these functions include automatic logfile generation

for reconstructing the sequence of stimuli in data analysis.



Finally, the CereLAB API also includes scripts and functions for experiments not covered in this

thesis. The pairedtrainpulse script delivers single pulses of stimulation at a random interval after a

train of random frequency. Parameters for the script can be modified in the top section of the local

file. The thetaburst function allows for automatic delivery of stimulation trains that approximate

theta bursts. For a given amplitude and electrode pair, six trains of 200 Hz stimulation, each lasting

50 ms, are delivered with a train frequency of approximately 6 Hz.

3.5 Documentation

While some experiments have been designed directly into the API, the CereLAB API is primarily

intended to allow users to write their own stimulation code. To that end, the CereLAB API has been

fully documented with corresponding help text for use in the MATLAB environment.

Documentation includes not only high-level functions but low-level BStimulator class methods.

Users can call BStimulator methods help by using the construct BStimulator.method or

BStimulator/method. Help text provides users with a summary of the method or function purpose,

a description of every input and output, including format, and often includes examples of use cases

for illustration. Examples of help text documentation can be seen in Figure 3-3.

3.6 Applications

In addition to the experiments presented in subsequent chapters of this thesis, the CereLAB API has

been used for a number of other applications by others. Since MATLAB is a common language for

designing experiments, particularly with the development and use of Psychtoolbox (Brainard, 1997;

Pelli, 1997; Kleiner et al., 2007), the CereLAB API allows for stimulation to be directly integrated into

MATLAB code for psychophysical and cognitive tasks. In addition, the API can be combined with

real-time Simulink processes to enable closed-loop stimulation (Sarma et al., 2016).



New to MATLAB? See resources for Gettina Startedj X

>> help BStimnulatzr.connect

function connect (cerestim)

Tries to establish a connection with a CereStim 96 device that
is connected to the host PC

Inputs:

cerestim a stimulator object created by the

BStimulator ) method.

Outputs:

connx returns 0 if connected and -1 if not connected.

Example:

cerestim = BStimulator();

connect (cerestim)

>> help safecycest
function res = safetytest (frequency, duration, amplitudes, trials, waitperiod, npairs)
safetytest automatic safety testing for DARPA stimulation tasks

Takes the parameters for the desired safety testing and implements the
safety testing. The procedure is fairly automatic, requiring manual
intervention (Ctrl+C or using the emergency stop on the cerestim
device) to stop prematurely. The program will run through the vector
of amplitudes provided.

Inputs:

frequency the stimulation frequency at which the biphasic pulses
should repeat. 4-5000 Hz

duration the duration, in ms, of each train of stimulation.

This parameter can be any whole, positive integer, but

the total number of pulses delivered cannot exceed 255.
For example, 200Hz stimulation trains can be at maximum

1275 ma long.
amplitudes a vector of integers containing the desired amplitudes

for stimulation, between 100 and 10000 uA. The total

number of trials will be the number of amplitudes

specified (i.e. the length of the amplitudes vector)

times the number of trials.
trials the total number of trials for each amplitude. This

input parameter can be a vector the same length as the

amplitudes input parameter for a unique number of

trials per amplitude. Otherwise, the program will take
the first value for every amplitude.

waitperiod the total number of whole seconds to wait in between

each stimulation train. This input parameter can be a

vector the same length as the amplitudes input

parameter for a unique number of trials per amplitude.

Otherwise, the program will take the first value for

every amplitude.
pairs a nx2 matrix with the electrode pair numbers to be

stimulated.

Outputs:

res a BResult status. Returns 0 if everything was

successful. Otherwise, check BStimulator.h for
corresponding error messages.

Figure 3-3: CereLAB documentation. Users can call the CereLAB documentation within the MATLAB
environment using intuitive MATLAB-style commands. The documented help information includes an
overview of the function's purpose, a detailed description of any inputs or outputs, and an example use case.

3.6.1 Open-loop stimulation

One of the main and most common use cases of the CereLAB API is to develop open-loop

experiments for electrical stimulation. One example of an open-loop stimulation protocol is the
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routine safety testing performed before task-based stimulation to ensure that the desired

stimulation parameters - such as amplitude and location - do not provoke any afterdischarges,

epileptiform activity, or other side effects. This protocol is described above in section 3.4 and is

carried out under the supervision of a trained epileptologist who can monitor the recordings during

stimulation.

While the work in this thesis has

primarily centered on the properties of

the response to single pulses, other

work carried out by Ishita Basu and

Angelique Paulk, has used CereLAB to

focus on the response of the brain to

trains of electrical stimulation of

varying amplitudes and frequencies

(Basu, Robertson, et al., 2018). In

addition to the MATLAB API, I was able

to program a custom C++ executable

for delivering trains of electrical

stimulation at a given amplitude (see

Figure 3-4). This program, referred to

AA Frequencies B A currents
Currnt 6 A Fr*W.:160 Hz

200
C 160

u 8 0  II\W (2Vh4

S40

a 20
E 10 E 2

HP19 HP19
t* 4urw 0 1 0 1

limo sine end of stMuration train (sec)

Figure 3-4: custom-built C++ executables delivered trains of
stimulation at different amplitudes and frequencies to explore
how the response varies with these parameters. Large
stimulation artifacts can be seen in the signal during the train;
the train duration is indicated by the grey rectangle on the x-
axes. A: an example from one patient showing how the
response to stimulation varies with train frequency. All
stimulation in this example was carried out at 6 mA. Each
stimulation frequency is represented by a different color from
blue (10 Hz) to pink (200 Hz). B: an example from one patient
showing how the response to stimulation varies with train
amplitude. All stimulation in this example was carried out at 160
Hz. Each stimulation amplitude is represented by a different
color from red (2 mA) to yellow (6 mA). Stimulation responses
are measured here by peak amplitude, time to peak, area under
the curve, valley amplitude, and time to valley. Reproduced
with permission from Basu et al. 2018.

as the Matrix program because it explores the frequency and amplitude matrix of the stimulation

parameter space, delivers trains of stimulation across a specified electrode pair and amplitude at 10,

20, 40, 80, 100, 160, and 200 Hz in a block random design (Basu, Robertson, et al., 2018). Higher

stimulation amplitudes are more likely (though still unlikely) to cause unwanted side effects, which

would typically result in aborting the experiment. By implementing the Matrix program with a
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constant amplitude, the researcher is able to slowly increase amplitude at each iteration and ensure

that experimental data at lower amplitudes will be collected even if the program must be stopped at

higher amplitudes. The Matrix program delivers trains of stimulation at 8 second intervals with 500

ms of random jitter, with a single pulse interspersed between each train. This long interval between

trains allows the neurophysiological signals to recover to baseline. The recorded evoked potentials

in a subset of stimulation frequencies have been used to fit a neural mass model to simulate

responses at other stimulation frequencies (Basu, Crocker, et al., 2018).

a Train-Pulse stimulationsingle pulse single ulse single ulse single ulse Delays: 0.15 sec 0.25 sec 0.5 sec 1 sec
W.IID.4J1 tra MraMn IIIM4 Frequencies (Hz):10 20 40 80 100160200

time 0. four different delays

b dACC Train-pulse stimulation, A Frequencies Current: 4 mA 200 IN
r_ HP20 0.15 sec 0.25 sec 0.5 sec 1 sec

'pr N=1 delay delay delay delay

E 8 100
8 0

20U.L 1 __ _ __ _ _

-1 0 1 -1 0 1 -1 0 1 -1 0 1
Time since single pulse (sec)

C dACC Subtracted single pulse responses Current: 4 mA
0.15 sec delay 0.25 sec delay 0.5 sec delay first peak 1 sec delay HP20

E second peak N=1

0.0
0 o

0 0.4 0 0.4 0 0.4 0 0.4
Time since single pulse (sec)

Figure 3-5: the CereLAB API can create stimulation routines such as paired train-pulse. a: an overview of the
train-pulse experimental paradigm. Trains of stimulation at frequencies from 10 to 200 Hz are delivered,
followed by one of four delays from 0.15 to 1 s and then a single pulse of stimulation. b: examples from one
patient showing the delivery of both trains and single pulses at every possible frequency and delay
combination. The single pulse response varies with both frequency and delay. c: the single pulse responses
from b are overlayed on one another, highlighting the differences across frequencies and delays. Reproduced
with permission by Angelique Paulk.

In addition to looking at the neurophysiological response to different frequencies and amplitudes of

stimulation, changes in neural dynamics can be measured by delivering a single pulse of electrical
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stimulation after the train at some delay interval. Paired pulse paradigms have been used for

decades as a way to gauge facilitation, potentiation, and depression in a wide variety of

contexts(Curtis and Eccles, 1960; Rothwell, 1999). For this investigation carried out by Angelique

Paulk, I created a CereLAB script to deliver trains of pulses and delayed single pulses in a block-

random order with a specified

amplitude and location (see A
Control block Adaptive stimulation block

Block of non-_ Block of trials with subsets of
stimulation trials 5 dACC or dmPFC stimulation

expands on the previous Matrix *BM ******
mby investigating the *dmPFC stimulation OdACC stimulation

program bControl block Adaptive stimulation block
0.05 E1response of the brain to trains of EP14

electric stimulation more closely. 0
W -0 t

3.6.2 Closed-loop

stimulation to

behavior

In addition to open-loop

routines and scripts, the

CereLAB API can be used in

conjunction with task-creating

toolboxes like Psychtoolbox to

integration has been

accomplished already by two

investigators - Alik Widge and

Angelique Paulk - in two tasks:

the Multi-Source Interference

'0

CU
E
4-'

C)

a)

w

Control block Adaptive stimulation block
0.01 EP15

0"

-0.01 sgt

-0.02

Control block Adaptive stimulation block
0.02 EP16

-0.02
0 20 " 40 60 trial 80

integrate stimulation into a cognitive or psychophysical task. This

Figure 3-6: the CereLAB API can be used for adaptive real-time
stimulation based on performance in a cognitive task. A: an overview
of the experimental protocol. First, a control block of task trials without
stimulation is implemented to establish a behavioral baseline. After a
break, the same task is repeated with adaptive stimulation of either the
dorsomedial prefrontal cortex (dmPFC) or the dorsal anterior cingulate
cortex (dACC) in some of the trials. B: examples from three participants
showing the effects of adaptive stimulation on performance of the task.
Reproduced with permission from Paulk et al. 2018.
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Task and the Emotional Conflict Regulation (ECR) task (Paulk et aL., 2018). In particular, the ECR task

has been programmed to adaptively select stimulation parameters (in this case, stimulation

location) in real-time based on the behavioral performance of the patient in the task (see Figure 3-6)

(Paulk et al., 2018).

3.6.3 Closed-loop Stimulation to neurophysiology

Finally, the CereLAB API has been used to deliver closed-loop stimulation in response to

neurophysiological activity. Together with Anish Sarma and Rina Zelmann, we have developed a

modular, closed-loop system for intracranial stimulation. This system can collect data from

intracranial electrodes, process the data using a wide variety of potential signal processing and state

estimation techniques, and deliver stimulation based on this processing and estimation. The real-

time processing is accomplished with real-time software on the Simulink Real-Time operating

system (Mathworks, Natick, MA) on the "Decider". Stimulation parameters can be controlled using

a graphical user interface (GUI) at the host computer. The latency of this system has been measured

at 5 ms (Sarma et al., 2016).

This system has since been extended by Rina Zelmann to handle real-time changes in stimulation

parameters based on ongoing neurophysiological changes. For example, closed-loop changes in

stimulation electrodes can be configured such that if a specified parameter falls below a certain

threshold, one pair of channels is stimulated, but if the parameter rises above a threshold, then

another pair of channels is stimulated. This closed-loop multisite stimulation paradigm has been

coded into the host GUI using the CereLAB API, including two higher-level functions called

initializeCereStim and changeChannelStimulationCereStim. The first function, initializeCereStim,

connects to the CereStim and establishes the parameters for future stimulation, such as frequency,

duration, amplitude, and channels of interest. It then loads these parameters into the CereStim to



be stimulated upon receipt of an analog trigger stimulus. The second function,

changeChannelStimulationCereStim, keeps the original stimulation parameters but changes the

specified stimulation electrode pair, again loading these parameters into the CereStim to be

triggered as neurophysiological features are detected.

Neural Acquisition Neuronal Data

Patient

'Tasks 4 Closed-loop Behavior

Figure 3-7: an overview of the closed-loop stimulation paradigms. Neural data is acquired from the patient
through the neural signal processors and then sent to the Decider to be analyzed for closed-loop physiology
(yellow). The detection parameters can be modified with the host GUI. Once the specified neurophysiological
feature has been detected, this information is sent to the CereStim, along with any relevant stimulation
parameters, to initiate stimulation (orange). This paradigm can be used on its own or alongside a cognitive or
psychophysical task. Any tasks are presented through a separate computer; information about task
performance is then sent to a separate computer for closed-loop analysis of behavior (blue). Parameters in
the closed-loop behavior can also be used to trigger stimulation (orange). The CereLAB API is used to send
instructions from the closed-loop physiology or closed-loop behavior computers to the CereStim. Reproduced
with permission by Rina Zelmann.

3.7 Conclusion

In order to facilitate stimulation with the BlackRock CereStim device, I wrote a custom MATLAB API

called CereLAB to interface with the original BlackRock C++ API. The CereLAB API uses a MEX

interface to convert between MATLAB class objects and C++ pointers to objects, and it comes with

higher-order stimulation routines for common and repetitive tasks as well as full MATLAB-friendly

Closed-loop Physiology



documentation. In addition to the experiments in the proceeding chapters, the CereLAB API has

been used for a wide variety of experiments from other scientists in the past few years, including

attempts to map out the brain's response to a wide variety of parameters and using stimulation in

conjunction with cognitive tasks for open-loop and closed-loop stimulation. The CereLAB API has

successfully allowed scientists who are familiar with MATLAB but not C++ to easily utilize the

CereStim device to implement their own stimulation experiments.



4 Neurophysiological Responses to Single Pulse Electrical
Stimulation in the Human Brain

4.1 Introduction

As discussed above, brain stimulation is an important tool in the clinical mapping of brain areas

(Mueller and Morris, 1993; Trebuchon and Chauvel, 2016), in the clinical treatment of movement

disorders (Larson, 2014; Mahlknecht, Limousin and Foltynie, 2015), and as a clinical treatment for

many other neurological and psychiatric illnesses (Oluigbo, Salma and Rezai, 2012; Laxton, Lipsman

and Lozano, 2013; Barrett, 2017). Electrical stimulation of the brain acts primarily on the axons of

neurons near the stimulation site (Histed, Bonin and Reid, 2009), though the response of any

individual neuron to stimulation is variable(Bosch et al., 2011) and determined by a variety of

factors (Brocker and Grill, 2013). These factors increase the difficulty of predicting the effects of

direct electrical stimulation, which arise from a complex combination of events within a large

volume of brain tissue (Borchers et al., 2011), even in the case of a single pulse of electrical

stimulation.

Recent investigations of single pulse electrical stimulation (SPES) have focused on mapping the

cortex with the resulting cortico-cortical evoked potentials (CCEPs) (Kunieda et aL., 2015). These

responses can be recorded both local to the stimulation site and at a portion of cortical sites some

distance away and are used to infer connectivity between cortical brain regions (Matsumoto, Nair,

Lapresto, et a/., 2004). Particularly in humans where tract-tracing studies are rare (Schmahmann

and Pandya, 2007), CCEPs present an invaluable opportunity to explore brain connectivity in many

regions, including the motor system and frontal lobe (Matsumoto, Nair, LaPresto, et al., 2004; Lacruz

et al., 2007).



The 'direct cortical response' to SPES has been primarily characterized by a CCEP with two peaks,

labelled most recently as "N1" and "N2" (Adrian, 1936; Purpura etaL., 1957; Matsumoto, Nair,

Lapresto, et al., 2004). The timing of the first peak has been measured from 6 to 40 milliseconds,

and the second peak from 40 to 200 milliseconds (Wilson et al., 1990; Matsuzaki, Juh sz and Asano,

2013). The late response, N2, is known to have a wider spatial distribution than N1 (Matsumoto,

Nair, LaPresto, et al., 2004; Entz et al., 2014). Laminar and single-unit recordings suggest that N1 is

characterized by an increase in firing, whereas N2 is characterized by an initial volley of inhibition

(Creutzfeldt, Watanabe and Lux, 1966; Alarc6n et al., 2012; Keller, Honey, Megevand, et aL., 2014).

In addition to the evoked response, it has been shown that SPES increases high frequency activity (>

80 Hz) during N1 and decreases it during N2 (Kobayashi et aL., 2015), and slow wave activity (>4 Hz)

increases and is enhanced if the stimulation is delivered during non-REM sleep (Pigorini et al., 2015).

Still, the characteristics and mechanisms of these evoked responses remain poorly understood.

To further explore the properties of CCEPs, we analyzed the responses to SPES from 15 human

patients with clinically implanted electrodes. We characterize the time course, variability, and

distribution of CCEPs in both the time and frequency domain. Focusing on the two characteristic

peaks of the CCEP (N1 and N2), we show that the response to SPES can last up to one second, much

longer than previously reported, and N2, but not N1, peak timing is later as a function of distance to

the stimulation site.

4.2 Methods

4.2.1 Data Collection

I present the data from 15 participants (7 women, 8 men, ages: 19-57) - patients with intractable

epilepsy who had implanted invasive depth electrodes (162 - 242 contacts per patient, average

number: 211) in both hemispheres as part of their clinical course in preparation for resective brain
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surgery. Depth electrodes (Ad-tech Medical, Racine WI, USA, or PMT, Chanhassen, MN, USA) had

diameters of 0.8-1.0 mm and consisted of 8-16 platinum/iridium-contacts 1-2.4 mm long. The

placement of electrodes was determined by clinical need, with most electrodes in the frontal or

temporal lobe. All experiments were conducted in the last 2-3 days of their hospital stay, after

clinical decision making and restarting of antiepileptic medications but before resection. All

participants gave informed consent to the research protocol, which was approved by the Partners

Healthcare Institutional Review Board.

Data were recorded using Blackrock Neural Signal Processors at 2000 samples per second (BlackRock

Microsystems Inc., Salt Lake City, Utah). Signals were not filtered to avoid ringing artifacts caused by

low-pass filters with sharp transitions. All data were rereferenced using a bipolar scheme before

further analysis. Any channels with a high level of background noise (determined visually) were

excluded from analysis. Channel locations were determined by coregistering pre-surgery MRI to

post-surgery CT(Dykstra et al., 2012; Yang et al., 2012). Reported distances between channels are

calculated as the Euclidean distance between the mean locations of each electrode pair.

4.2.2 Stimulation Delivery

SPES was delivered using the Blackrock CereStim (BlackRock Microsystems Inc., Salt Lake City, Utah).

Each pulse of stimulation was biphasic and bipolar (between adjacent channels), with a square

pulse-width of 90 us and an inter-pulse interval of 53 us. Stimulation pulses were delivered at a

total of 33 electrode pairs where little to no epileptiform activity was recorded and distant from the

clinically-determined seizure onset zone. Of these sites, 17 were located in the left hemisphere and

16 were located in the right hemisphere; 15 sites are located in the anterior cingulate cortex (4

rostral, 11 dorsal), 13 sites are located in the frontal lobe (2 in the superior frontal gyrus, 5 in the

middle frontal gyrus, 5 in orbitofrontal cortex, and 1 in the cingulate sulcus), 4 in the temporal lobe



(2 in the middle temporal gyrus, 1 in the inferior temporal gyrus, and 1 in the amygdala) and 1 in the

corpus callosum. One to five sites were stimulated per patient (range: 1-5, average 3). Stimulation

was delivered at an amplitude of 6 or 7 mA. Single pulses were delivered at uniformly random

intervals between 2.5 and 3.5 seconds, sometimes interspersed with other stimulation, and at least

20 trials were conducted for each site (range: 20-368, average number of trials: 109).

When testing how the CCEP changes in response to varying stimulation amplitudes, single pulses

were delivered from 0.5 mA to 10 mA in 0.5 mA increments. Pulses were delivered in 3 blocks, from

0.5 to 3.5 mA, from 4 to 7.5 mA, and from 8 to 10 mA. Each block consists of 10 trials, and for each

trial, all stimulation amplitudes within that block are delivered in a shuffled order. This pseudo-

random order was chosen because it is possible, though unlikely, for the patient to experience

adverse effects from higher stimulation amplitudes. Splitting the amplitudes into segments allows

for the experiment to be terminated at higher amplitudes without abandoning the entire

experiment.

4.2.3 CCEP time-domain analysis

CCEPs were extracted from the data by averaging the 2 seconds of voltage data before to 2 seconds

after the digital trigger signaling stimulation by the CereStim. Similar to previous studies(Keller et al.,

2011; Entz et al., 2014), CCEP amplitude was measured using peak amplitude of the rectified

average signal after stimulation in the first 5-100 ms, demeaned and normalized by the standard

deviation of the signal 5-100 ms (baseline) before stimulation to account for variation between

electrodes. CCEP amplitude was calculated as the largest absolute deviation from baseline in the

standardized signal between 2.5 and 50 ms (N1) or 50 and 200 ms (N2) after the stimulus delivery.

CCEP timing for each peak was calculated as the timing of the same largest absolute deviation from
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baseline (Figure 1A,1B). CCEP variability was calculated as the mean standard deviation across trials

in each time period, divided by the mean standard deviation across trials at baseline.

A Example local CCEP B Example distant CCEP
40 '40
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CCCEP distribution DCCEP vs distance
200 2
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0-
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Figure 4-1: Representative local and distant CCEP examples, and CCEP magnitude distribution, including as a
function of distance. A representative CCEP response in a local (A) and distant (B) channel in one participant,
including individual trials (light grey lines) and the average across trials (solid black). The stimulation artifact
can also be seen at t = 0. The log- distribution of all maximum absolute magnitudes, across all channels
including channels with no response, is shown in black (C). The light grey region shows the channels that cross
the threshold of greater than 3 standard deviations above baseline, considered a CCEP. The likelihood of
getting a CCEP decreases with distance, though not monotonically (D). All responses are plotted with open
circles, and above-threshold CCEPs are plotted with closed circles. The bold black line represents the average
response as a function of distance.

When CCEP amplitudes are binarized into positive and negative responses, a threshold of 3 standard

deviations above the baseline mean was chosen(Entz et al., 2014) (Figure iC). Unless otherwise

specified, data were analyzed using the nearest pair of electrodes to the stimulation pair (but not

including either anode or cathode) that recorded an evoked response, averaging 6.9 +/- 0.95 mm

away from the stimulation site (Figure D).
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4.2.4 CCEP frequency-domain analysis

To evaluate the average power increase for each trial, we first demeaned and detrended the trials,

and then used the multi-taper spectral estimation method with half second windows starting 5 ms

after stimulation and advancing in 10ms steps. This spectral data was normalized by the power

spectrum up to 5ms preceding stimulation, and then these normalized spectra were averaged for

each recording channel. To evaluate the average phase synchrony, the intertrial phase coherence

was calculated with EEGLAB (Delorme and Makeig, 2004) for frequencies from 3:100 with 3 cycles

each. Results from each site were collected and averaged across patients.

To specifically characterize high gamma activity beyond the high-frequency components of the

sharp deflections in the CCEP waveform, we subtracted the average waveform for each site from

each trial. Using windows of 20ms, we then estimated the power in the 100-200Hz range using the

multi-taper spectral estimation method, with both mean-subtracted and detrended windows.

4.2.5 Significance Calculations

To test the significance between the timing, magnitude, and variance of various groups of CCEPs,

two-tailed t-tests were used with p-values reported. For time and time-frequency plots, the number

of total tests was very high and the tests for each time point or frequency are not independent. To

control for multiple comparisons, a two-staged approach was used. First, a Bonferroni-corrected

Type 1 error rate was calculated for each plot in a figure. Next, a cluster-based threshold for

significance was calculated using a permutation test. Baseline and post-stimulation values were

randomly swapped with 50% probability for 1000 iterations to create a null distribution, and

maximum cluster size was recorded at each step. Cluster sizes greater than the Bonferroni-

corrected percentile of the null distribution were considered significant.



4.3 Results

4.3.1 Time-domain characteristics

Across 15 patients, SPES was attempted in a total of 33 cortical regions, with significant CCEPs

measured in 26 of those attempts. The presence of a significant response to stimulation was

defined as a CCEP with an average magnitude at least 3 standard deviations above baseline within

the first 2.5-250 ms, which included both the N1 and N2 peaks (Figure 1C).

In the subset of SPES sites that produced a local CCEP, the average magnitude of the CCEP closest to

the stimulation electrodes was 25.3 18.0 standard deviations above the mean, with magnitudes

ranging from 4.62 to 69.5 standard deviations above the mean. The closest recording site to the

stimulation site was on average 6.78 mm (std: 0.935) away. The magnitude of N1 for the closest

CCEP to the stimulation site was 24.7 standard deviations above the mean (std: 18.4, min: 4.62,

max: 69.5), occurring at 12.9 ms (std: 5.87, min: 2.5, max: 24), whereas for N2 the magnitude was

9.80 standard deviations above the mean (std: 5.70, min: 1.23, max: 23.7), occurring at 127 ms (std:

36.7, min: 59.5, max: 240). During N1, the variability of the signal was 1.59 times higher than

baseline (std: 1.53), and during N2, the variability of the signal was 1.71 times higher than baseline

(std: 1.56). On a per-channel basis, N1 and N2 magnitudes of the closest CCEP are significantly

correlated (r2 = 0.25, p = 0.0088).

Within a 3 cm radius of the 26 stimulation sites (16.3% of all recording sites), 27.1% of local

recording sites measured a significant CCEP (signals within 3 cm may partially or wholly represent

volume-conducted potentials(Shimada et al., 2017)). For these local responses, the average

magnitude of the CCEP was 9.60 standard deviations above the mean (std: 10.2, min: 3.03, max:

69.5, Figure 1A). The magnitude of N1 for local recording sites was 9.06 standard deviations above

the mean (std: 10.4, min: 0.663, max: 69.5), occurring at 26.7 ms (std: 15.0, min: 2.5, max: 50),



whereas for N2 the magnitude was 4.70 standard deviations above the mean (std: 3.62, min: 0.528,

max: 23.7), occurring at 115 ms (std: 54.1, min:
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measured a significant CCEP. For these distant responses, the average magnitude of the CCEP was

5.40 standard deviations above the mean (Figure 1B, std: 4.77, min: 3.00, max: 33.5). Unlike in the

local CCEPs, for distant responses the magnitude of N1 was often smaller than the magnitude of N2
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Figure 4-2: N1 vs N2 magnitude, timing, and
variability. N2 magnitude is significantly lower than
NI magnitude in local channels (dark grey bars), but
there is no significant difference between the peaks
in distant channels (light grey bars) (A). Near
channels have larger responses overall, in both
peaks. There is no significant difference in timing of
NI between local channels and distant channels,
but N2 arrives significantly later in distant channels
(B). CCEPs generally have an increase in variability
of the signal (C). No difference between local
channels and distant channels was detected, but N2
showed much higher increase in variability than N1.
(s.e.m.: standard error of the mean, n.s.: p > 0.05, *:

p <0.05, ***: p <0.001, ****: p <0.0001)
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(Figure 1B). The magnitude of N1 for distant recording sites was 4.26 standard deviations above the

mean (std: 5.20, min: 0.255, max: 33.5), occurring at 28.1 ms (std: 16.5, min: 2.5, max: 50), whereas

for N2 the magnitude was 3.50 standard deviations above the mean (std: 1.69, min: 0.53, max:

8.68), occurring at 137.6 ms (std: 63.9, min: 50, max: 250; Figure 2A-B). During N1, the variability of

the signal was 1.06 times higher than baseline (std: 0.179), and during N2, the variability of the

signal was 1.38 times higher than baseline (std: 0.473) (Figure 2C). On a per-channel basis, N1 and

N2 magnitudes of the distant CCEPs are not significantly correlated (r 2 = 0.017, p = 0.30). There was

no apparent relationship between the timing of the N1 peak and distance, but N2 peaks in distant

electrodes occurred significantly later than in local electrodes (Figure 2B, p = 0.0061).

4.3.2 Amplitude response

SPES at varying amplitudes was successfully completed in 3 stimulation sites across 2 patients. In

the first participant, the amplitude of both N1 and N2 peaks increases monotonically with increasing

stimulus amplitude (Figure 4-3). In both cases, N2 appears to plateau earlier than N1. The smooth

monotonic relationship is not seen in the results from the second participant, however. Instead,

both peaks appear to increase until about 7 mA of stimulation, and then they abruptly decrease.
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Figure 4-3: the effect of stimulation amplitude on N1 and N2 magnitude in 2 patients. Each row represents a
stimulation site, and each column represents either NI or N2. The peak response increases with increasing
stimulation amplitude, but this relationship is not always monotonic.

Taking a closer look at these odd results reveals how the peak-amplitude relationship may be more

complicated (Figure 4-4). As the stimulation amplitude increases, the evoked waveform becomes

increasingly polyphasic, with a tertiary peak emerging after N1 and N2 around 700 ms. Meanwhile,

as the trough between N1 and N2 deepens, N1 and N2 become less prominent. This shape of the

CCEP seems to stabilize starting at 8.5 mA. Further data would be needed to determine whether

this kind of complex relationship with stimulation amplitude is common.
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Figure 4-4: One example of CCEPs at varying stimulation amplitudes. Single pulse stimulation was delivered at
amplitudes from 0.5 to 10 mA in steps of 0.5 mA in a block-random order. Each waveform represents the
average of 10 trials and is plotted with unnormalized voltage units. The stimulation artifact can be seen at
time 0.

4.3.3 Time-frequency characteristics

CCEPs exhibit a broadband increase in spectral power in the 1-30 Hz range and a shorter increase in

intertrial phase coherence (Figures 3C, 3E). In the time domain, the average CCEP deviates

significantly from baseline for 1006 ms in the closest channels (Figures 3A-B). In the frequency

domain, the increase in LFP power in these lower frequencies is significant for up to 950 ms (Figure

3D), and the phase synchronization across trials in the same frequency range is significantly higher

than baseline for up to 486 ms (Figure 3F). These results show that the measurable response to

SPES can last for at least 1 second, far outlasting the N1 and N2 peaks in average CCEP waveform.

While using previously reported analysis methods did show high gamma activity after stimulation,
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we found that detrending the analysis windows completely removed any spectral content in the

high gamma range beyond the first few milliseconds post-stimulation (data not shown).
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Figure 4-5: The power and phase spectra of the nearest CCEP. A representative CCEP, averaged across trials,
on a longer time scale (A). The average absolute value of the CCEP for all participants (B) is significantly higher
than baseline for up to 1006 ms. The light grey background indicates the significant time period (corrected for
multiple comparisons), and the dark grey error bars represent the standard error of the mean. CCEPs involve
an initial broad-band increase in power, followed by a sustained increase in the lower frequencies (C). White
areas of the image are non-significant compared to baseline. The increase in power from baseline in the lower
frequencies lasts 950 ms (D). Increases in inter-trial phase coherence are much shorter in duration (E). In the
lower frequencies, inter-trial phase coherence is significantly higher than baseline for up to 486 ms (F).

The sustained increase in low-frequency power is not just present in channels close to the

stimulation site, but in fact can be seen in distant channels that respond to stimulation. This

increase in power can be seen for up to 910 ms in near sites and up to 930 ms in far sites (Figure 4A-

B). On the other hand, inter-trial phase coherence is much shorter, lasting up to 454.4 ms in near

sites and 415.5 ms in far sites (Figure 4C-D). These effects are very similar in duration to the effects

measured in the nearest channels to the stimulation site, indicating that these properties do not

change with distance.
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Figure 4-6: High gamma activity measured in the nearest CCEPs without (left) or with (right) detrend
correction. Detrend correction eliminates all high gamma activity beyond the first few milliseconds.

4.4 Discussion

The characteristics of CCEPs were systematically explored to better understand the response of the

brain to SPES. The two peaks of the evoked response, N1 and N2, differed in their spatial

distributions of timing and magnitude and in their total variability. In both time and time-frequency,

the response to SPES lasted for approximately one second - many orders of magnitude longer than

the stimulus itself.

The differences between N1 and N2 must reflect underlying differences in physiological mechanisms

and generation, with N1 being less variable, less dependent on distance for peak timing, and more

dependent on distance for magnitude than N2. While the mechanisms of CCEP generation have yet

to be elucidated, several mechanisms for each phase of the response have been proposed. It has

been suggested than N1 could be a polysynaptic excitatory response mediated by either small, slow

fibers with direct cortico-cortical activation or indirect cortico-subcortico-cortical pathways
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(Matsumoto, Nair, Lapresto, et a/., 2004). The large drop-off with distance could suggest the

former, while the lack of timing change with distance could suggest the latter. In contrast, N2 may

be generated by a longer-lasting inhibitory response(Keller, Honey, Megevand, et al., 2014). Since

N2 has a larger spatial distribution and varies less in magnitude by distance, it could be that N2

responses are generated from a wider pool of indirect pathways(Matsumoto, Nair, LaPresto, et al.,

2004).
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Figure 4-7: As in Figure 4-3, average CCEP power and phase synchrony over time after SPES. The light grey
background indicates the significant time period (corrected for multiple comparisons), and the dark grey error
bars represent the standard error of the mean. In both local (A) and distant (B) channels, CCEPs involve a
sustained increase in the lower frequencies, lasting nearly 1 second. Inter-trial phase coherence, however,
lasts only about half a second in both local (C) and distant (D) channels.

Beyond these two previously-identified peaks, the CCEP response has a surprisingly long duration

compared to visual inspection of the easily identifiable average waveform. Intertrial phase

coherence degrades much faster after a pulse of electrical stimulation than low-frequency power,

suggesting that averaging across trials - a common technique - may reduce phase-uncoupled signals

via destructive interference. Furthermore, studies of CCEPs stimulating at intervals of 1 second may

not allow the signal enough time to recover to baseline in between trials. Whatever the mechanism
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of CCEP generation, the long duration of the response indicates a strong recruitment of neural

circuitry can be induced from a biphasic electrical stimulus of only 250 ps.

Compared to other CCEP studies, our stimulation protocol delivers substantially less charge per

pulse, and our recording method has a different spatial sampling than typical surface

electrocorticography. Perhaps due to these differences, the likelihood of connectivity here is much

lower than previously reported(Entz et al., 2014). Despite concerns about volume

conduction(Shimada et al., 2017), only about 25% of local channels and 2% of distant channels

recorded an above-threshold response to SPES. Even in "local" channels, the likelihood of a

response increased markedly with proximity to the stimulation site, and 3 cm may not be the ideal

boundary for distinguishing local from distant responses. Still, the pattern of responses resembles a

small-world network, where the majority of connections are local with only a small number of long-

distance connections(Bassett and Bullmore, 2017).

In order to better understand the biophysical properties of CCEPs, the characteristics of these

responses in both time and frequency domains were systematically explored. We show that the

CCEP can last up to one second, indicating a surprisingly long-lasting response of the brain to even

very short electrical stimuli. Further, the two phases of the CCEP have distinct properties, likely

indicating different mechanisms of generation. This study elucidates important characteristics of

CCEPs for mapping protocols and further CCEP studies.



5 Cortico-Cortical Evoked Potentials Resemble Structural
Connectivity

5.1 Introduction

The connectivity and structure of brain regions is an important aspect of understanding brain

function and pathology. Evoked potentials elicited by single pulse electrical stimulation have been

used to map pathways in the central nervous system of humans for decades, with increasing

scientific use starting with the coining of cortico-cortical evoked potentials (CCEPs)(Wilson et al.,

1990; Matsumoto, Nair, Lapresto, et al., 2004). CCEPs have been used as a tool to estimate the

connectivity of cortical areas in important systems of the human brain, including the limbic system

(Wilson et al., 1990; Kubota et al., 2013), auditory system(Brugge et al., 2003), language

system(Matsumoto, Nair, LaPresto, et al., 2004; Conner et al., 2011; Yamao et al., 2014; Araki et al.,

2015), and sensorimotor cortex(Matsumoto et al., 2007; Enatsu et al., 2013). Dynamic changes in

cortical connectivity and excitability during sleep have been mapped via CCEP networks (Usami et

al., 2015), and CCEP mapping has been used to show possible reorganization of networks in

pathological cortex (Enatsu et al., 2012, 2013; Matsumoto, Kunieda and Nair, 2017).

The generation mechanisms of CCEPs are not fully understood, but some characteristics of CCEP

networks have been elucidated. CCEPs are not symmetric (Entz et ai., 2014; Keller, Honey, Entz, et

ai., 2014) and can therefore be used to create directed network graphs. Networks derived from

CCEP methodology may be stable across days of measurement (Entz et al., 2014), and in the visual

cortex, this method provides results consistent with already known network structure (Matsuzaki,

Juhasz and Asano, 2013). Comparable to other brain network estimates, CCEP networks exhibit

small-world topology (Keller, Honey, Entz, et al., 2014). These properties indicate that CCEPs may

be an appropriate tool for estimating brain networks. Indeed, CCEP networks correlate with other

estimates of brain connectivity, such as resting state high gamma electrocorticography (ECoG)



(Keller, Honey, Entz, et al., 2014) and resting state functional magnetic resonance imaging (fMRI)

(Keller et al., 2011).

Typically, brain network estimates are categorized into three distinct types: functional, effective,

and structural (Friston, 2011). Functional connectivity identifies channels or brain regions with

correlated activity, and includes methods such as correlation, cross-correlation, and magnitude-

squared coherence(Bowyer, 2016). While these measures often exhibit large fluctuations on small

timescales, they can be used to estimate stable networks over time (Bullock et al., 1995; Chu et al.,

2012). While long-range connections can be found during tasks, these three functional connectivity

metrics tend to drop off very quickly with distance(Bullock et al., 1995; Muller et aL., 2016). Distance

has a larger effect on coherence in the higher frequencies (Srinath and Ray, 2014).

Effective connectivity identifies whether channels or brain regions may have causal influence on

another, and includes methods such as weighted phase lag index and Granger causality(Friston,

2011). Weighted phase lag index is a measure of connectivity based on the imaginary coherence of

two channels, which weights the lag (or lead) of a particular pair of channels by the magnitude of

the lag (or lead) (Vinck et al., 2011). By using the imaginary coherence, weighted phase lag index is

thought to be robust to spurious connections due to volume conduction (Vinck et al., 2011).

Granger causality is a directed measure of connectivity that estimates how much additional benefit

a second channel provides in predicting the time series of the first channel, above the

autoregressive predictive power of the first channel itself (Wiener, 1956; Granger, 1969; Bressler

and Seth, 2011). Compared to functional connectivity, effective connectivity measures often seek to

produce the simplest possible explanatory network for the underlying data (Barnett and Seth, 2014).

Structural connectivity estimates whether there is an anatomical connection between brain regions.

While tracer studies using dissections are the gold standard for determining structural connectivity,



these methods are impractical for use in scientific and clinical settings involving human participants.

Diffusion tensor imaging (DTI) allows for estimates of structural connectivity by measuring the

anisotropy of water molecules, allowing for a partial reconstruction of the white matter tracts in the

brain(Basser et al., 2000). Though DTI has its limitations - e.g. a bias towards large, short, straight

tracts - it has proved a useful tool for a wide variety of connectivity investigations(Jones, 2010).

Diffusion tractography has been shown to correlate with CCEP networks in the language

system(Conner et al., 2011).

It has been hypothesized that CCEP networks represent functional or effective connectivity

(Matsumoto, Nair, LaPresto, et al., 2004; Oya et al., 2017; Trebaul et al., 2018). However, a measure

of effective connectivity would require CCEPs to be generated in a causal, directed manner. It is

unclear whether CCEPs represent orthodromic or antidromic activation of cortico-cortical

pathways(Kunieda et al., 2015). Without a clear physiological understanding of CCEP generation,

the relationship of CCEP networks to theoretical frameworks remains an open question. Here, we

explore the similarities between CCEP connectivity estimates and common electrocorticographic

and imaging estimates of functional, effective, and structural connectivity.

5.2 Methods

5.2.1 Data Collection

Neurophysiological data was recorded from 11 patients (6 females and 5 males) of ages ranging

from 19 to 57 (mean 36.9, std 12.5) undergoing invasive monitoring for intractable epilepsy using

bilateral intracranial depth electrodes. Depth electrodes (Ad-tech Medical, Racine WI, USA, or PMT,

Chanhassen, MN, USA) had diameters of 0.8-1.0 mm and consisted of 8-16 platinum/iridium-

contacts 1-2.4 mm long. The placement of these electrodes was determined solely by clinical



criteria, with most electrodes in the frontal or temporal lobe. All patients provided informed

consent to participate in any experiments, which were approved by MGH IRB and MIT COUHES.

Voltage data from implanted electrodes were recorded at a sampling rate of 2000 Hz using a

custom-built BlackRock recording system. In addition to these electrophysiological recordings, each

patient underwent a Ti-weighted structural magnetic resonance imaging (MRI) scan which was

coregistered to the post-operative computed tomography (CT) scan (Dykstra et aL., 2012; Yang et aL.,

2012). Distance between channels is defined as the Euclidean distance between the average

locations for each bipolar electrode pair.

5.2.2 Stimulation

To evoke CCEPs, biphasic bipolar single pulses of stimulation were applied across pairs of adjacent

electrodes with a 90us pulse width at 6 or 7 mA. These pulses were delivered by the BlackRock

CereStim stimulator at 3 second intervals with +/- 500 ms random jitter with uniform distribution

and at an amplitude below the threshold for afterdischarges or for any perceptual or behavior

effects reported by the patients. In one participants, these single pulses were delivered

interspersed between other trains of stimulation. The number of trials ranged from 20 to 337

(mean 47), and stimulation occurred in one to nine sites per participant. The stimulation sites were

not in the seizure onset zone or early seizure spread areas for any patient, and all stimulation

experiments were performed while the patients were awake, after the patients resumed

antiepileptic medication, and were under medical supervision.

To estimate CCEPs, the following procedure was followed. Recordings were first analyzed using

custom software in MATLAB. The data were re-referenced using a bipolar reference scheme

between neighboring electrodes then divided into 2 second epochs time-locked to the delivery of

the stimulus, including one second pre- and one second post-stimulation. Any per-stimulus data



within 3 ms of the stimulation pulse were excluded from analysis. All channels and trials were

visually inspected for artifacts, and any channels or trials with large artifacts were excluded from

analysis. CCEP responses were averaged across trials and then quantified per bipolar recording by

taking the maximum absolute amplitude of the average evoked potential normalized by the

standard deviation at baseline (Keller et al., 2011). Stimulation sites were only included in analysis if

CCEPs greater than 3 standard deviations above baseline could be measured, and when CCEP are

binarized into positive and negative responses, a threshold of 6 standard deviations above the mean

was chosen (Keller et al., 2011; Entz et al., 2014).

5.2.3 Functional Connectivity Calculations

For functional connectivity estimates, 5 minutes of recordings while the participant was awake

before or after single pulse stimulation sessions were used. These data were re-referenced with the

same bipolar reference scheme, then bandpass filtered from 1-150 Hz and notch filtered from 58-62

Hz and 118-122 Hz (Butterworth 3 rd order, forward and reverse). The recordings were then split

contiguously into 1 second epochs. As above, channels and trials identified by visual inspection as

having large artifacts were excluded from further analysis.

Correlation and cross-correlation measures were used as estimates of functional connectivity in the

time domain. For each 1 second epoch, the correlation and maximum cross-correlation with lags

between +/- 250 ms were calculated between the stimulation electrode pairs and all other electrode

pairs. The 5% thresholds for each channel pair was determined by independently shuffling epochs

(with replacement) 10,000 times, then choosing the values at the 2 .5 th and 9 7 .5th percentile. Then

the final network is determined as the percentage of times each correlation or cross-correlation

rises above the 5% threshold, yielding values between 0 and 1. For more details, see (Kramer et al.,

2011; Chu et al., 2012).
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Similarly, magnitude-squared coherence was used as an estimate of functional connectivity in the

frequency domain. For each 1 second epoch, magnitude-squared coherence was calculated for each

frequency from 1 to 150 Hz between stimulation electrode pairs and all other electrode pairs.

Again, for each epoch, a 5% threshold was calculated using a bootstrap method, and the final

network for each frequency is the percentage of times each MS-coherence estimate rises above the

5% threshold, yielding values between 0 and 1.

5.2.4 Effective Connectivity Calculations

For effective connectivity estimates, the same 5 minutes of recording was used with the same

bipolar reference scheme as for functional connectivity. For pairwise Granger causality estimates,

these recordings were split contiguously into 1 second epochs and then decimated from 2000Hz to

250 Hz in order to reduce computational time. Pairwise Granger causality was estimated using the

multivariate Granger causality toolbox with a model order of 10 between every recording channel

and the stimulation channel for each stimulation site(Barnett and Seth, 2014). Weighted phase lag

indices were calculated from 4 to 50 Hz with the FieldTrip toolbox using 2 second contiguous epochs

in order to capture lower frequency networks (Oostenveld et al., 2011; Vinck et al., 2011).

5.2.5 Structural Connectivity Calculations

Diffusion tensor imaging was acquired heterogeneously across 8 participants, with b-values of 700

(1 participant), 1000 (3 participants), and 2000 (4 participants) and number of directions ranging

from 28 to 74. Structural connectivity between two regions was determined using the FDT toolbox

(Behrens et al., 2003, 2007). First, we used bedpostx to locally model the diffusion parameters. The

average coordinates of the bipolar electrode pairs from the structural imaging were transformed

into diffusion-space using the transformation from the coregistration of the structural MRI and the

diffusion MRI with FLIRT (Jenkinson and Smith, 2001; Jenkinson et al., 2002; Greve and Fischl, 2009).



These transformed coordinates were then used to generate binary masks of spheres of 1 centimeter

radius centered on each channel. For each stimulation site, probtrackx2 was then used to calculate

the number of tracts from the seed mask to the target mask, with the target mask as both a

waypoint and a termination mask. This process was repeated for the stimulation mask as seed mask

and target recording mask as target mask (generating tracts from the stimulation channel to the

target recording channel) and for the stimulation mask as target mask and the target recording mask

as seed mask (generating tracts from the target recording channel to the stimulation channel). The

number of tracts was then normalized by the total mask volume in order to generate a value for

structural connectivity.

5.2.6 Network Comparisons

Every set of connectivity estimates generated for each stimulation site can be represented as a row

in the total weighted adjacency matrix of the complete connectivity matrix across channels for each

participant. Since participants had an unequal number of stimulation sites, we computed the

similarity of connectivity estimates for each row (i.e. each stimulation site). To compare CCEP

networks to other network estimates, we calculated the correlation between the two vectors.

When controlling for distance, we used a partial correlation with the reciprocal of distance squared

as the controlling variable. Unless otherwise noted, all significance calculations are uncorrected t-

tests of the Fisher-transformed correlation coefficients - two-sided when comparing two methods,

or one-sided when comparing to zero. Confidence intervals were determined using bootstrap-

resampling over 1000 iterations.
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Figure 5-1: an overview of how networks are computed and compared. A: reconstruction in one
representative participant of data collection by stimulating one channel and recording the others (red panel),
recording neurophysiological signals at rest in all channels (yellow panel), or collecting diffusion tensor
imaging (blue panel). In the first two panels of column A, channel locations are shown in the 3-D
reconstruction of the pial surface from structural MRI, with the stimulation channel marked in red and one of
the recording channels marked in green. B: schematic representations of the three data collection methods.
For CCEP networks, one channel is stimulated and the others are recorded. For functional and effective
networks, all channels are recorded. For structural networks, the channel locations are used to create regions
of interest (ROls) for both seed and target masks; tractography is then computed between pairs of ROls. C:
representative data samples for each type of data collection method. An example CCEP is shown in the red
panel. Resting state electrophysiology is shown in both the stimulation channel (red) and a non-stimulation
channel (green) before the stimulation experiment in the yellow panel. In the blue panel, the ROI created
from the stimulation channel location (red) and a non-stimulation channel (green) is shown overlayed on the
structural MRI. The tract between the two ROls is highlighted in white. D: example networks, defined as a
vector of pairwise calculations between the stimulation channel or ROI and all other channels or ROls.
Similarity scores are then calculated as the correlation between a given method vector and the CCEP vector.
Method labels: pairwise Granger causality (pwgc), weighted phase-lag index (wpli) and diffusion tensor
imaging (dti).
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5.3 Results

5.3.1 Functional Connectivity

Correlation-derived connectivity patterns share substantial similarities to stimulation-derived

connectivity patterns. Across 53 stimulation sites, correlation networks corresponded to stimulation

networks with an average similarity score of 0.4978 0.2393 std (Figure 2A). This relationship is

reflected in the underlying data; channels with an above-threshold response to stimulation (CCEP-

positive) had an average absolute correlation of 0.1976 0.1842 std to the stimulation channel at

rest, compared to 0.0370 0.0453 std in channels with no response to stimulation (CCEP-negative)

(Figure 2B). The relatively high variance of correlation among stimulation-responsive channels

suggests that correlation is not a sensitive measure of predicting CCEPs, but the large difference

between CCEP-positive and CCEP-negative channels suggests that correlation is reasonably specific.

Compared to correlation, cross-correlation-derived connectivity patterns are significantly less similar

to stimulation-derived connectivity patterns (p = 1.5061e-08). Across 53 stimulation sites, cross-

correlation networks corresponded to stimulation networks with an average similarity score of

0.2794 0.2152 std (Figure 2A). CCEP-positive channels had a normalized cross-correlation of

0.3411 0.0688 std to the stimulation channel at rest, compared to 0.3000 0.0412 std in channels

with no response to stimulation (Figure 2B). While cross-correlation was on average higher in CCEP-

positive channels compared to correlation, and with more sensitivity, cross-correlation networks still

performed worse than correlation networks as a measure of predicting CCEPs. This drop in

performance is caused by the relatively high cross-correlation values between CCEP-negative

channels and the stimulation channel, yielding overall less specificity.

The similarity between magnitude-squared-coherence-derived networks and stimulation-derived

networks was computed over a range of frequencies, with the best agreement occurring at

68



approximately 8 Hz (Figure 2C). At this frequency, coherence networks corresponded to stimulation

networks with an average similarity score of 0.3981 0.2524 std (Figure 2C), which is significantly

better than cross-correlation and worse than correlation (p = 1.3946e-04 and 1.2330e-0.5,

respectively). Across all frequencies, the lower bound of the uncorrected 95% confidence interval

for network similarity is above zero up to 100 Hz (the highest tested). Similar to correlation, CCEP-

positive channels show a larger coherence with the stimulation channel than CCEP-negative

channels, though with higher variance (Figure 2D).
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Figure 5-2: functional connectivity networks show similarity to stimulation-evoked networks. A: boxplots
showing the similarity scores between correlation or cross-correlation networks and CCEPs across 34 for
different stimulation sites. The red lines represent the median value, and the top and bottom segments of the
blue box represent the 7 5th and 2 5th percentile respectively. The whiskers represent the extrema of the data.
B: the average correlation and normalized cross-correlation values for all channels with (+, blue) or without (-,
green) an above threshold CCEP. The presence of a CCEP is defined as any average evoked potential that
reaches an absolute value at least 6 standard deviations above baseline mean. Uncorrected confidence
intervals (blue error bars) were determined by naive bootstrap resampling. C: the mean (black) similarity
across the 34 stimulation sites for magnitude-squared coherence networks and CCEP networks at each
frequency, and the uncorrected 95% confidence intervals at each frequency (grey) determined by naive
bootstrap resampling. D: the average unnormalized magnitude-squared coherence for all channels with (+,
blue) or without (-, green) an above threshold CCEP, with the same threshold as in B. Uncorrected confidence
intervals (blue error bars) were determined by naive bootstrap resampling. Magnitude-squared coherence
has different units than correlation, so the scales are not directly comparable. Rather, the important
information is the difference between the + and - groups.
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5.3.2 Effective Connectivity

Pairwise Granger causality is a directed measure of connectivity, yielding estimates of connectivity

from the stimulation channel to the target recording channel and the other way around. Across 53

stimulation sites, pairwise Granger causality networks from the stimulation channel corresponded

to stimulation networks with an average similarity score of 0.3810 0.2688, while pairwise Granger

causality networks from the target recording channel corresponded to stimulation networks with an

average similarity score of 0.3418 0.2773 std (Figure 3A). No significant difference was found

between the two groups (p = 0.3907). CCEP-positive channels had higher resting state Granger

causality values with the stimulation channel at resting state (0.0137 0.0188 std from the

stimulation channel, and 0.0171 0.0198 std from the target recording channel) than CCEP-negative

channels (0.0050 0.0121 std from the stimulation channel, and 0.0061 0.0140 std from the target

recording channel) (Figure 3B). Overall, these similarities are significantly smaller than functional

correlation similarities (p = 8.0417e-4 and 4.0787e-04).

The similarity between weighted-phase-lag-index-derived networks and stimulation-derived

networks was computed over a range of frequencies, with the best agreement occurring at 8 Hz

(Figure 3C). While the lower bound of the uncorrected 95% is higher than zero at all frequencies

tested, overall the agreement between weighted phase lag index connectivity and CCEP connectivity

is very poor, and the highest similarity score is 0.1038 0.1497 std. Examining the individual values,

the average weighted phase lag indices of CCEP-positive channels are higher than CCEP-negative

channels, particularly in the 1-10 Hz and 25-35Hz ranges, but the variability is also very high, leading

to poor sensitivity (Figure 3D).
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Figure 5-3: effective connectivity shows less similarity to stimulation-evoked networks. A: boxplots showing

the similarity scores between pairwise Granger causality networks in both directions and CCEPs across 34 for

different stimulation sites. Pairwise Granger causality is a directed measure of connectivity, so calculations

from the stimulation site to the target channel and from the target channel to the stimulation site are both

represented. The red lines represent the median value, and the top and bottom segments of the blue box

represent the 7 5 th and 2 5 th percentile respectively. The whiskers represent the extrema of the data. B: the

average unnormalized pairwise Granger causality values for all channels with (+, blue) or without (-, green) an

above threshold CCEP. The presence of a CCEP is defined as any average evoked potential that reaches an

absolute value at least 6 standard deviations above baseline mean. Uncorrected confidence intervals (blue

error bars) were determined by naive bootstrap resampling. Every measure of connectivity has its own scale,
so absolute values are not as important as the difference between the two groups. C: the mean (black)

similarity across the 34 stimulation sites for weighted phase lag index networks and CCEP networks at each

frequency, and the uncorrected 95% confidence intervals at each frequency (grey) determined by naive
bootstrap resampling. D: the average weighted phase lag index for all channels with (+, blue) or without (-,

green) an above threshold CCEP, with the same threshold as in B. Uncorrected confidence intervals (blue

error bars) were determined by naive bootstrap resampling. Every measure of connectivity has its own scale,
so absolute values are not as important as the difference between the two groups.

5.3.3 Structural Connectivity

Diffusion tensor imaging was conducted in a subset of our participants, for a total of 34 stimulation

sites. Like Granger causality, probabilistic tractography is also a directed measure of connectivity.

Across 34 stimulation sites, diffusion-derived networks in both directions had the highest similarity

to stimulation-derived networks, with tractography networks from the stimulation channel to the
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target channel averaging a similarity score of 0.6799 0.2116 std and tractography networks from

the target recording channel to the stimulation channel averaging a similarity score of 0.6741

0.2287 std (Figure 4A). There is no statistically significant difference between the two groups (p =

0.5131), both groups are significantly more similar to CCEP networks than correlation networks

(paired t-test using the subset of participants with diffusion tensor imaging, p = 3.4445e-09 and p =

3.5650e-08, respectively). CCEP-positive channels had an average normalized tract percentage of

0.4111 0.2930 std from the stimulation channel to the target recording channel and 0.3992

0.3083 std from the target recording channel to the stimulation channel, compared to 0.0192

0.0720 std and 0.0167 0.0691 in CCEP-negative channels (Figure 4B).
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Figure 5-4: structural connectivity shows high similarity to stimulation-evoked networks. A: boxplots showing
the similarity scores diffusion tensor imaging networks in both directions and CCEPs across 34 for different
stimulation sites. Diffusion tensor imaging is a directed measure of connectivity, so calculations from the
stimulation site to the target channel and from the target channel to the stimulation site are both
represented. The red lines represent the median value, and the top and bottom segments of the blue box
represent the 7 5 th and 2 5th percentile respectively. The whiskers represent the extrema of the data. B: the
average unnormalized diffusion tensor imaging for all channels with (+, blue) or without (-, green) an above
threshold CCEP. The presence of a CCEP is defined as any average evoked potential that reaches an absolute
value at least 6 standard deviations above baseline mean. Uncorrected confidence intervals (blue error bars)
were determined by naive bootstrap resampling. Every measure of connectivity has its own scale, so absolute
values are not as important as the difference between the two groups.

5.3.4 Controlling for Distance

All of these estimates of connectivity share a common cofounding factor - distance from the target

recording channel to the stimulation channel. Correcting for distance using a partial correlation

substantially lowers the similarity between networks across the board (see Figure 5). Still, all
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connectivity estimates except weighted phase lag indices maintain a significant similarity to

stimulation networks even when we corrected for distance. While uncorrected network similarity

showed DTI as significantly more similar to stimulation networks than correlation, corrected

similarity measures between these two methods are no longer significantly different (p = 0.2980 for

tractography from the stimulation channel and p = 0.1872 for tractography to the stimulation

channel).

Though the similarity scores decreased when correcting for distance, distance does not have a

homogenous effect across connectivity metrics. Splitting the channels into local (within 3cm of the

stimulation site) and distant (further than 3cm from the stimulation site) reveals that functional and

effective connectivity estimates preferentially predict local channels, while structural connectivity

metrics show no difference between local and distant channels (Figure 6). The method with the

highest similarity to the local channel CCEPs was correlation, and the method with the highest

similarity to the distant channel CCEPs was DTI from the stimulation site to the target site. Breaking

the functional connectivity down into its frequency components with magnitude-square coherence,

the high beta and gamma frequency bands were not significantly similar to distant channel CCEPs,

with mean values close to zero.

Figure 5-5: network measures used in this paper share distance as a confounding factor. (Figure follows on
next page). A-D show the relationship between a few selected measures and the Euclidian distance between
the stimulation channel and the target channel. A: A scatter plot of the normalized absolute peak in the 250
ms post-stimulation (CCEP) at the target channel and distance from the stimulation channel. B: A scatter plot
of the correlation of the target channel and the stimulation channel and distance between those channels. C:
A scatter plot of mean normalized magnitude coherence in the 8-12 Hz range between the target and the
stimulation channels and distance between those channels. D: A scatter plot of the normalized diffusion
tensor imaging strength and the Euclidean distance between the target and stimulation channels. E-G: the
average similarity between CCEP networks and the indicated connectivity measure with (dark purple) or
without (light orange) distance correction across 34 stimulation sites. Error bars indicate the standard error of
the mean. Method labels: distance (dist), correlation (corr), cross-correlation (xcorr), pairwise Granger
causality (pwgc), and diffusion tensor imaging (dti). Frequency bands: 1-4 Hz (delta), 4-8 Hz (theta), 8-12 Hz
(alpha), 15-20 Hz (betal), 20-30 Hz (beta2), 30-50 Hz (gamma).
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Figure 5-6: network similarity for local and distant channels separately. A-B: the mean distance-corrected
similarity between CCEP networks and the indicated connectivity measure across 34 stimulation sites when
channels are split by distance to the stimulation site into two groups: local (dark blue) or distant (orange).
Local channels are within 3cm of the stimulation channel, as measured by Euclidean distance, and distant
channels are outside that radius. Error bars indicate the standard error of the mean. Method labels: distance
(dist), correlation (corr), cross-correlation (xcorr), pairwise Granger causality (pwgc), and diffusion tensor
imaging (dti). Frequency bands: 1-4 Hz (delta), 4-8 Hz (theta), 8-12 Hz (alpha), 15-20 Hz (betal), 20-30 Hz
(beta2), 30-50 Hz (gamma).
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5.3.5 Differences between N1 and N2 networks

5.4 Discussion

In order to explore CCEP networks, we systematically compared these networks to other common

estimates of connectivity. Of the connectivity estimates chosen, naive comparisons show that

structural connectivity derived through diffusion tractography are the most similar to stimulation-

induced connectivity. However, controlling for distance abolishes the advantage of structural

connectivity above functional and effective estimation methods. By segmenting channels into two

groups - local and distant - we show that, even controlling for distance, structural connectivity

maintains a unique similarity to distant CCEP distributions.
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Uncorrected functional connectivity metrics showed a reasonable similarity to stimulation-derived

connectivity. Of this group, cross-correlation showed the least similarity to CCEPs, even though

cross-correlation has been shown to produce stable networks in EEG over time(Kramer et al., 2011).

Unlike the assumption of simultaneity under correlation, cross-correlation has a more plausible

biophysical assumption that to connected regions may lag each other in activity. However, the

inclusion of a variable lag within a relatively large window increases the noise of the estimation by

raising the floor of possible values, and our results show that cross-correlation finds many

connections between channels that do not respond to stimulation. Magnitude-squared coherence

showed the highest similarity in spatial distribution to CCEPs in the 10-20 Hz range, consistent with

the notion that lower frequency oscillations are more spatially distributed and more dependent on

white matter connections than high frequency oscillations (Crone, 1998; Miller et aL., 2007; Hawasli

et al., 2016).

Despite categorization of stimulation as a measure of effective connectivity, the effective

connectivity measures chosen here were overall less similar to stimulation networks than functional

and structural connectivity measures. Weighted phase lag index fared particularly poorly, though

both measures tended to underidentify channels that would be responsive to stimulation. Though

Granger causality is a directed measure of connectivity, direction seemed to matter very little in

predicting stimulation responses. This lack of difference could be because stimulation may activate

white matter tracks in both orthodromic and antidromic directions, or it could be due to the high

degree of reciprocal connections between cortical areas (Matsumoto, Nair, LaPresto, et al., 2004;

Borchers et a/., 2011; Rockland, 2015). Given the incomplete spatial sampling from sEEG recordings,

and the speculation that cortico-cortical evoked potentials may include subcortical pathways,

hidden sources of brain activity may have limited the accuracy of effective connectivity measures.
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In naive estimates of similarity, connectivity based on diffusion tractography was most similar to

connectivity based on CCEPs. DTI is also a directed measure of connectivity, though in practice the

directions differ very little from each other because diffusion happens in both orthodromic and

antidromic directions along axons. Mechanistically, stimulation is thought to excite primarily axons

(Histed, Bonin and Reid, 2009), so its agreement with structural connectivity is perhaps not

surprising. Still, it is important to note that both CCEPs and DTI share a common cofounding factor -

distance from the stimulation or seed site. Practical limitations of collecting data in a clinical setting

resulted in heterogeneous DTI data collection parameters. Though no relationship between these

parameters and results were found, a more homogenous data set of higher quality may improve

results.

Correcting for distance, the landscape changes dramatically. Weighted phase lag index is the only

metric, of the ones we tested, to no longer be significantly similar to CCEP networks after distance

correction. Coherence in the gamma band is relatively unaffected by distance corrections, which

could be due to its relatively constrained spatial distribution in the first place. While naive estimates

formerly had DTI most similar to stimulation networks, distance correction abolishes this advantage.

There is no statistically measurable difference in distance-corrected similarity between DTI,

correlation, Granger causality, and coherence in all bands except delta and gamma. These results

would seem to indicate that, once corrected for distance, many methods of estimating connectivity

perform reasonably similarly in predicting stimulation response.

However, overall comparable distance-corrected similarity scores does not mean that this similarity

is homogenously applicable across the entire pool of channels. Segmenting the channels into two

groups by distance to the stimulation site reveals that structural connectivity is more robust to

distance from the stimulation site, even after correcting for distance. On the other hand,

correlation again rises to the top as being most similar to channels closest to the stimulation site.
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Structural connectivity may fail to predict local responsive channels because of its poor spatial

resolution. Though MRI as a modality has much higher spatial sampling than sEEG, diffusion

tractography requires the creation of reasonably large regions of interest as seed and target masks

(up to 1 cm in diameter), which limit its utility in estimating connectivity of overlapping ROls. On the

other hand, correlation and coherence, particularly in the higher frequencies, are known to drop off

dramatically with distance in the cortex (Muller et a/., 2016). Our results affirm that different

methods may be more appropriate within specific spatial regimes.

Our results suggest that structural connectivity methods produce very similar networks to those

derived by single pulse electrical stimulation. However, this similarity is driven in large part due to

the underlying relationship between distance and connectivity in both cases. This relationship is

due to a variety of factors, including volume conduction, the cumulative probability of terminating a

tract, and the underlying tendency of brain regions to form both physical and functional connectivity

with neighboring areas. Still, distance-corrected connectivity is more suited for the purposes of

determining which non-invasive methods of connectivity estimation may help predict the effects of

stimulation. Taken together, our results indicate many methods may suffice, though functional and

effective methods seem particularly well-suited for predicting local effects.



6 Modulation of Cortico-Cortical Evoked Potentials by Brain State

6.1 Introduction

So far we have been considering CCEPs occurring when patients are awake and at rest.

Furthermore, we have been operating under the assumption that CCEPs are stationary. Are these

assumptions correct?

There is limited evidence to support that the brain's response to stimulation may be affected by

large changes in the brain's state. The most researched area so far has been CCEPs recorded during

sleep. While previous work has shown that the spatial distribution of CCEP responses does not

change between wake and non-rapid-eye-movement (NREM) sleep, individual CCEPs recorded

during NREM exhibit a larger response in the slow wave frequencies (<4 Hz) (Pigorini et al., 2015). In

addition, studies have found a suppression of activity in the high frequency (> 20 Hz) or high gamma

(100-200 Hz) ranges during NREM CCEPs, compared to CCEPs recorded during wake (Pigorini et al.,

2015; Usami et ai., 2015). Further, NREM CCEPs have been shown to be larger in amplitude than

wake CCEPs (Usami et ai., 2015), and CCEPs recorded during rapid-eye-movement (REM) sleep seem

to indicate a transitory state between sleep and wakefulness (Usami et al., 2017).

Very little research has been done on the impact of anesthesia on CCEPs. Propofol, a common

anesthetic, is a gamma-aminobutyric acid A receptor (GABAA) agonist (Trapani et al., 2000; Kotani et

al., 2008; Vanlersberghe and Camu, 2008). CCEPs have been recorded while patients were

undergoing propofol-induced anesthesia in one study (Yamao et a/., 2017). However, in this study,

only N1 amplitude is presented and no comparison between awake and anesthetized CCEPs is

made.

In addition to large changes in brain state, it is possible that small fluctuations in ongoing oscillatory

activity may have an impact on the response of the brain to single pulse electrical stimulation. Two
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studies suggest that the effects of brain stimulation are modulated by the phase of frequencies

during each pulse for transcranial magnetic stimulation (TMS) (van Elswijk et al., 2010; Dugue,

Marque and VanRullen, 2011). In the first, pre-stimulus phase in the motor cortex is shown to

modulate post-stimulus motor-evoked potentials(van Elswijk et al., 2010). In the second, alpha

(~10Hz) phase in the occipital cortex was shown to modulate the probability that a participant

would see a TMS-induced phosphene (Dugue, Marque and VanRullen, 2011). Though these

experiments were performed with TMS rather than electrical stimulation, they provide some

evidence that the ongoing brain activity may have some impact on the response to stimulation.

Here we explore whether brain state can modulate the CCEP response. First, we look at whether

very large changes in brain states can affect the brain's response to stimulation by exploring CCEPs

when patients are undergoing anesthesia or sleeping. Second, we see whether CCEPs are affected

by the dynamics of ongoing oscillations in brain activity.

6.2 Materials and Methods

6.2.1 Data Collection and Stimulation Delivery

We collected data for sleep and anesthesia in a subset of the 15 participants whose data are used in

chapter 4. For sleep, we repeated the same experiments in 1 stimulation site for 3 participants

each. Stimulation was delivered in the same manner, in a quiet and dark hospital room in the

evening after the patient had been instructed to fall asleep. Sleep was monitored actively with the

neurophysiological recordings by a trained clinician, but no sleep staging was performed.

For anesthesia, stimulation experiments were performed with 3 participants in the operating room

under active monitoring immediately preceding the surgical explantation of the intracranial

electrodes. Stimulation pulses were interleaved with audio stimuli from an audio discrimination

task and were delivered every 4 seconds with uniformly distributed jitter of 500 ms. For each pulse,



stimulation was delivered to one of a small set of possible stimulation sites in pseudorandom order.

Stimulation started for 5-6 minutes before delivery of propofol and continued for another 5-6

minutes afterwards.

In all cases, data were recorded and stimulation pulses were delivered with the exact system and

parameters as described in previous chapters.

6.2.2 CCEP Estimation

As in previous chapters, CCEP magnitudes were estimated as the largest z-normalized absolute value

of the signal post-stimulus. However, sleep and anesthesia can both increase the variance of the

signal, which would artificially reduce CCEP magnitudes due to the normalization. Therefore, we

used the standard deviation of the signal at wake for all normalization in order to ensure that fair

comparisons across conditions can be made. Since normalization in this case is primarily to facilitate

comparisons between channels, rather than within channels, this method of normalization is

appropriate.

6.2.3 Pre-stimulus Power and Phase

Pre-stimulus power and phase were calculated using a metric similar to a previous study by van

Elswijk et al. (van Elswijk et al., 2010). For each frequency between 3 and 50 Hz, a window

preceding the stimulus of duration three times longer than the period length was chosen, and an

FFT was used to calculate the power and phase for each trial. To determine the relationship

between pre-stimulus power and post-stimulus response, correlation coefficients were calculated

for each frequency between the CCEP amplitude and the LFP power across trials. To determine the

relationship between pre-stimulus phase and post-stimulus response, first pre-stimulus phases were

grouped into 20 bins based on proximity to 20 equally spaced phases between 0 and 2R. Next, the

average CCEP amplitude was calculated for each of these bins, and a best-fit cosine was estimated.



The amplitude of this fitted cosine model is called modulation depth and indicates the strength of

the relationship between pre-stimulus phase and post-stimulus response. However, modulation

depth cannot be negative and therefore has positive bias as an indicator. To correct for this bias, we

shuffled pre-stimulus phases relative to post-stimulus responses and repeated the procedure to

calculate the modulation depth under the null hypothesis, and then subtracted this value from the

original estimate.

6.2.4 Statistical Significance

To infer the statistical significance of the changes to N1 and N2 amplitude under anesthesia, a two-

sided paired t-test of the amplitudes is used and the uncorrected p-values are reported. For the

effect of ongoing oscillatory activity on CCEPs, two-sided t-tests indicate that a few individual

frequencies produce significant results. However, there are over 100 individual t-tests being

computed, so even the null hypothesis could produce a few individual significant results. The results

for each frequency are not independent, so to correct for multiple comparisons, a cluster-based

approach is used. First, baseline and effect are swapped randomly for each stimulation site. Then,

the p-value for each frequency is calculated at the group level. Since frequencies are not

independent, the size of the largest group of contiguously significant results is recorded. This

process is repeated 1000 times to yield a null hypothesis distribution of cluster sizes, and the 9 5th

percentile of cluster size is used as the threshold for significance.

6.3 Results

6.3.1 CCEPs during sleep

CCEPs were recorded in the same electrode for three different participants both while they were

awake and while they were asleep (see Figure 6-1). In the first participant, no significant difference

was found between the two peak amplitudes, with N1 normalized amplitude at 21.75 2.45 during



wake and 21.97 1.85 during sleep and N2 normalized amplitude at 15.56 4.11 during wake and

14.88 3.13 during sleep. In the second participant, both N1 and N2 were significantly smaller

during sleep than during wake (p = 2.85e-08 and 1.83e-18, respectively). Normalized amplitudes

were estimated at 27.38 6.33 during wake and 20.28 12.47 during sleep for N1 and 19.79 2.24

during wake and 11.29 10.13 during sleep for N2. Similarly, in the third participant, both NI and

N2 were significantly smaller during sleep than during wake (p = 5.06e-07 and 1.6892e-26,

respectively)2 . Normalized amplitudes were estimated at 23.08 5.72 during wake and 15.81 4.76

during sleep for N1 and 15.46 5.66 during wake and 5.90 7.84 during sleep for N2.
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Figure 6-1: CCEPs during sleep and wake for three participants. The blue line represents the mean CCEP while
participants were awake, while the orange line represents the mean CCEP while participants were sleeping.
The voltage traces have been normalized by the pre-stimulus standard deviation during wake and mean. In
two of the three participants, the CCEP is significantly smaller during sleep compared to wake.

Three data points is too few to draw generalizable conclusions about how CCEPs may be changed

during sleep. A preliminary power calculation using these three points suggests that more than

2 For this participant, stimuli were delivered in both bipolar directions, but standard deviations and p-values
are reported for the second direction only for ease of comparison.
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8000 data points (stimulation sites) would be required for a 90% chance to detect a significant

difference in N1 magnitude between sleep and wake, while only 9 stimulation sites would be

required to detect a significant difference in N2.

6.3.2 CCEPs during anesthesia

CCEPs were recorded in 12 different sites across 3 participants. Before administration of anesthesia,

mean NI normalized amplitude was 5.48 1.38 and mean N2 normalized amplitude was 3.74

1.30; after administration of anesthesia, mean NI normalized amplitude was 5.06 1.37 and mean

N2 normalized amplitude was 2.56 1.15. Though many of the stimulation sites show a decrease in

N1 during anesthesia, the overall effect is very small, and a power calculation suggests that 41 total

stimulation sites would be required for a 90% chance to detect a significant difference between the

two conditions.
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Figure 6-2: N1 and N2 amplitudes before and after administration of anesthesia. Grey bars represent each
stimulation site, and the black bars represent the mean across stimulation sites. N2 is significantly smaller
after administration of anesthesia, whereas there is no significant change for N1.
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6.3.3 Effect of Ongoing Oscillatory Activity on CCEPs

After correcting for multiple comparisons, neither pre-stimulus power nor phase of any frequency

has any significant effect on the post-stimulus magnitude of either N1 or N2 in data collected in 26

different sites across 13 patients. Power calculations are difficult to estimate for non-parametric

cluster-based multiple comparisons corrected methods, but for the relationship between pre-

stimulus power and post-stimulus N2 amplitude, power calculations for individual frequencies

suggest that the total number of sites collected needs to be at least 53 - or more than double the

current sample size.
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Figure 6-3: Relationship between pre-stimulus power and phase and post-stimulus NI and N2 response. After
a cluster-based correction for multiple comparisons, none of these relationships are significantly different
from null.

6.4 Discussion

CCEPs are not static responses to stimulation but dynamically modulated responses that are

affected by the state of the brain. In particular, N2 seems to be more affected by brain state than
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N1. Anesthesia is in some ways a blunt tool to establish different brain states, and administration of

anesthesia yields significant changes in CCEP magnitude. Similarly, sleep involves a very large

change to brain dynamics, and though the data here is limited, it suggests that a similar pattern may

be found with very few additional replicates. On the other hand, the influence - if any - that the

ongoing oscillatory activity has on CCEP magnitude is subtle. The oscillatory activity of the brain at

rest is reflecting smaller changes in brain state, compared to sleep or anesthesia, so it is not

surprising that this difference in the magnitude of the result would also be small.

Ultimately, the findings here are limited by the weak effect sizes (in the case of ongoing oscillatory

power) and a very limited number of participants. Each of these experiments has practical

challenges that limit data collection. Sleep experiments must be carried out at night under

supervision of a clinician. Anesthesia experiments must be carried out in the operating room with a

team of clinicians including an epileptologist and an anesthesiologist. While ongoing oscillatory

oscillations can be measured at rest in the epilepsy monitoring unit, the calculations generally

require a large number of trials in order to fully capture different brain dynamics, and these

experiments can take 15 minutes per stimulation site. Since each stimulation site has a low chance

of producing a CCEP (see section 4.3), a successful experimental paradigm could take an hour or

more.

Due in part to the low number of participants, the analysis here has treated every stimulation site

equally, though the effects could be specific to particular brain regions. Sleep is known to

particularly affect higher order association areas of the brain more than primary sensory areas, and

oscillatory activity in different frequency bands is thought to play different roles depending on brain

region (Michel et al., 1992; Braun et al., 1997; Hofle et aL., 1997). With a higher number of

replicates, the analysis could be grouped by stimulation or recording channel location.



Still, the limited data collected here yields some interesting comparisons to the current literature.

While other studies have found an increase in the CCEP amplitude during NREM sleep (Usami et al.,

2015), our preliminary results suggest a decrease - at least in N2. More data needs to be collected,

but these results are surprising, and no obvious explanation exists for the contradiction. Previous

studies on CCEPs during anesthesia note the presence of CCEPs and focus on N1 exclusively (Yamao

et al., 2014, 2017). Our results suggest a reason for this focus on NI - the N2 peak appears to

disappear almost entirely during anesthesia.

Finally, our data fail to reproduce the previous result indicating a relationship between pre-stimulus

amplitude and post-stimulus CCEP (Usami et al., 2018). A large reason for this disparity is

differences in methodology; while we look for relationships across 26 stimulation sites, Usami et al.

found a significant relationship in only 7 of 14 total stimulation sites. Even then, a significant result

was only found in a subset of channels; overall, the significant relationship found by Usami et al.

occurred in less than 7% of recording sites with significant CCEPs. Furthermore, the authors find

only positive effects (i.e. higher alpha yields higher CCEPs) but fail to correct for the fact that higher

power in the lower frequencies may simply add larger background oscillations on top of the CCEP,

resulting in larger waveforms. The low incidence rate suggests that this relationship - to the extent

that it even exists - is a rare phenomenon.
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7 Conclusions

7.1 Summary of Results

We studied the neurophysiological response single pulse electrical stimulation in human patients - a

precursory key step to better understanding how therapeutic brain stimulation works and to

develop more effective treatment going forward. To allow for easy control of the stimulation device

by a group of researchers, I first developed the CereLAB API - a MATLAB API and MEX interface for

communicating with and programming the BlackRock CereStim device. I then explored the

properties of CCEPs in three areas - their basic time-frequency characteristics, their spatial spread

and networks, and their modulation by brain states.

The CereLAB API has been used by a handful of researchers across multiple institutions. It employs

MEX datatypes to convert C++ pointers into MATLB-friendly class handles using MATLAB's native

object-oriented programming capabilities. I used this API to implement the stimulation experiments

outlined in chapters 4-6 of this work. The API has also been used to explore how the response

changes with varying frequencies and amplitudes, to produce complex combinations of frequency

trains and single pulses, and to deliver adaptive stimulation based on a patient's behavior in a task

or their ongoing brain activity.

When measured in either the time or the frequency domain, CCEPs deviate significantly from base

line for at least almost a second. This duration is two or three orders of magnitude larger than the

stimulus itself, and nearly twice as long as previously reported, qualitative estimates. The CCEP is

perhaps longer than expected because the increase in phase synchrony after stimulation returns to

baseline far quicker than the increase in power in the 1-30 Hz frequency range. In addition, the two

peaks of the CCEP demonstrate different characteristics, suggesting that the two peaks have

different generating mechanisms. NI amplitude is less variable than N2 amplitude. Comparing



distant CCEPs to local ones, the amplitude of both peaks decrease with increasing distance, but the

decrease of N1 is much greater than the decrease seen in N2. On the other hand, distant N2 peaks

occur significantly later than local N2 peaks, while no difference in timing was detected between

distant and local NI peaks.

CCEP networks are very similar to structural networks derived from DTI - moreso than common

estimates of functional or effective connectivity. However, the probability of a connection between

brain regions is heavily dependent on the distance between the two regions; neural networks are

organized such that most connections are local, with a much smaller proportion of long-range

connections. All connectivity estimates reflect this underlying structure to some degree, but

connectivity estimates are most useful when they provide additional information and can help

predict connectivity beyond this distance relationship.

Correcting for distance, CCEP networks were no longer more closely matched to structural

connectivity than functional or effective connectivity. Instead, many connectivity estimates

performed relatively similarly. On first glance, these results are quite surprising. If sophisticated

connectivity estimates such as DTI perform just as well as very simple ones such as correlation, what

is the point of ever bothering with computationally and resource-intensive techniques? A closer

look gives us the answer. While distance-corrected correlation and DTI do globally align with

distance-corrected CCEPs to a similar degree, their predictive power is not spread across all

electrodes equally. Rather, DTI is better at predicting long-range connections than short-range,

while correlation is better at predicting short-range rather than long-range connections. These

differences likely derive from the differences in methodology - DTI has poor spatial resolution,

making it ill-suited to distinguish between differences at the local, and therefore spatially smaller,

scale, while correlation across electrodes is known to diminish rapidly with distance.



Despite at least one finding to the contrary, CCEPs do not appear to be modulated by ongoing

oscillatory activity in the brain - at least in the wake, resting state. If any relationship does exist, it is

very subtle and would require a much larger dataset to prove. However, these negative results do

not mean that CCEPs are an entirely static phenomenon. Our results indicate that CCEPs are

substantially modified after administration of anesthesia, including a reduction or even complete

elimination of N2 but not N1.

7.2 Possible Implications

One of the most surprising results of this work was the extremely long relative duration of the

evoked potential, compared to the initial stimulus itself. This duration is not immediately obvious in

a qualitative assessment of the CCEP, particularly when judged by eye, but it has immediate

implications for both experimental design and scientific understanding of brain stimulation. Quite a

few CCEP studies report results using experimental protocols with 1 second or less between each

stimulus delivery. Our results suggest that this type of experimental design does not allow enough

time for the neurophysiological signals to return to baseline. Stimulating an already-perturbed

signal could have as yet unknown cumulative effects. Aside from the practicalities, this extended

duration of the response demonstrates one of the brain's most striking features - its ability to turn

ephemeral inputs into sustained neuronal activity via feed-forward circuitry.

The processing of this circuitry is perhaps best illustrated by the discrete neurological features of the

CCEP. Though the CCEP is characterized by an increase in power in the lower frequency bands, it is

not an oscillatory feature with a singular generating mechanism. Rather, the two characteristic

peaks that comprise the CCEP have unique properties. The idea that N1 and N2 represent distinct

neural features is not new - preliminary laminar recordings and paired-pulse experiments have

suggested that NI is generated by excitatory activity primarily in layers 4 and 6, followed by a period



of suppression of activity in layer 4, and that N2 is generated by subsequent "rebound" excitatory

activity in more superficial layers of cortex. Our results add evidence to this proposed generating

mechanism.

The involvement of the deeper layers of the cortex in CCEP generation aligns well with the evidence

that stimulation primarily excites axons. This information is also consistent with the high

correspondence between the spatial distribution of CCEPs and connectivity metrics derived from

estimates of white matter connectivity through DTI. This high correspondence bolsters the idea that

structural connectivity is predictive of the spread of the response to stimulation in the brain.

Indeed, many studies already use DTI to model the possible effects of various deep brain stimulation

paradigms (Coenen et al., 2012). Brain networks exhibit small-world topology; i.e. most connections

in the brain are local, with long-range connections being much rarer. It makes sense, therefore, that

any estimate of brain connectivity (including CCEP networks and DTI networks) would exhibit this

underlying structure and consequently inherit a strong relationship between connectivity probability

and distance. In that case, any estimate of brain connectivity is useful to the extent that it can

provide information above the baseline likelihood of connectivity based on distance. By this logic,

distance-corrected measurements reveal that functional connectivity metrics are just as predictive

as structural connectivity, particularly in determining short-range connections. These results

suggest that more accurate models of stimulation effects may be created by incorporating

functional connectivity into estimates of the spatial spread of the effects.

If we assume that the similarity between CCEP networks and DTI networks indicates that CCEPs

ultimately represent a metric of structural connectivity, it would reasonably follow that over short

time periods, CCEPs are essentially time-invariant responses - particularly with respect to functional

brain states. Our experiments failed to uncover any strong relationship between the pre-stimulus

amplitude or phase of any frequency from 1 to 50 Hz and the post-stimulus evoked potential
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amplitude, supporting this assumption. The suggestion that the response to stimulation is time-

invariant is an attractive one; time-invariant systems are substantially easier than time-varying

systems to model and to dynamically control, which would ease the development of closed-loop

therapeutic stimulation. Unfortunately, our results also show a large, fast change in CCEPs following

the induction of anesthesia, and possible changes to the CCEP during sleep, meaning that CCEPs are

at least susceptible to some short-term dynamics of brain activity. Anesthesia-induced changes in

neural activity are hardly likely to be relevant to human patients during the courses of their daily

lives, and most brain stimulation therapies target symptoms of diseases that are most prominent

during wakefulness. Still, further study is necessary to determine how CCEPs may be modulated

with other changes in cortical dynamics, and how well the assumption of time-invariance can

approximate the effects of stimulation.

7.3 Next Steps

The work presented here is far from completed. The preliminary evidence we have collected for

CCEPs during sleep, during anesthesia, and at varying stimulation amplitudes should be expanded in

order to draw quantitative conclusions from the results. The dose-response curve of stimulation is

vital to our ability to model the effects of stimulation and may shed further light on distinctions

between the characteristics of N1 and N2. Modulations of the CCEP during sleep and anesthesia

could give more information on any fluctuations of the brain's response to stimulation - important

for predicting closed-loop stimulation effects. An expanded dataset would allow for a fuller

exploration of the properties of the CCEP under altered brain states, including network and time-

frequency changes.

A closer look at the data I have collected could yield some interesting results as well. Much of the

work done in Chapter 4, looking at the properties of the CCEP, was analyzed on a group level.
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Looking at these properties per stimulation site could answer a few more questions. First, analyzing

the duration of the response on a per-channel basis could give confidence bounds on the duration

of the response and allow us to make comparisons between different conditions (such as brain

region or distance to the stimulation electrode). Similarly, analyzing the peak timing on a

stimulation-site level could enable us to determine the exact nature of the delay - e.g. is the

relationship between distance and peak timing linear? - and would also increase the power of our

statistical testing to detect differences in N1 peak timing. Our data set is currently too small, but if it

were to increase, a breakdown of the results by anatomical properties of the stimulation and

recording sites (brain region and proximity to white matter) could add nuance to our conclusions.

The field of estimating connectivity between brain regions is rich with diverse methods that were

not addressed in this work but could still be interesting to compare to CCEP networks.

Finally, new experiments and new tools would deepen our knowledge of the discoveries laid out in

this work. Experimental time is one of the most precious resources for experiments with human

patients in a clinical setting. The CereLAB API could be expanded to include a larger variety of

debugging features and more high-level functions for common stimulation paradigms. A method of

interleaving single pulse stimulation and subsequently recovering the signal for the response to each

individual pulse would greatly speed up the collection of CCEP network data and possibly allow for a

larger proportion of the network to be sampled. The clinical course of the patient generally

determines the placement of electrodes. In the case that these electrodes are placed on

sensorimotor cortex, similar analysis techniques could be applied to other evoked potentials, such

as motor-evoked potentials from single pulse stimulation. Recordings in subcortical areas could help

determine whether CCEPs are truly caused by direct connectivity between cortical areas, or whether

they are perhaps mediated by subcortical connections. Multiunit or laminar recordings during

CCEPs could uncover the generating mechanisms of CCEP properties.
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