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Abstract

RNA plays important and diverse roles in biology, yet molecular tools to measure and manipulate
RNA are limited. Recently, the bacterial adaptive immune system, CRISPR, has revolutionized our
ability to manipulate DNA, but no known RNA-targeting versions exist. To discover parallel bacterial
RNA-targeting systems that could be used for transcriptome engineering, we developed a
computational pipeline to mine for novel Class 2 CRISPR systems across more than 25,000 bacterial
genomes. Among the many novel CRISPR systems, we found a programmable RNA-targeting
CRISPR system, CRISPR-Cas13, that could provide immunity to E. coli against the ssRNA MS2 phage
and biochemically characterized the enzyme.

We adapted CRISPR-Cas13 for modulating the transcriptome in mammalian and plant cells by
heterologously expressing Cas13 and engineering the enzyme to precisely knockdown, bind, and edit
RNA. Cas13 knockdown was as efficient as RNA interference, but much more specific, across many
transcripts tested. RNA editing with Cas13 was also highly efficient, with up to 90% base editing rates,

and as low as 20 off-targets with engineered specificity versions.

Lastly, we combined Cas13 with isothermal amplification to develop a CRISPR-based diagnostic
(CRISPR-Dx), providing rapid DNA or RNA detection with single-molecule sensitivity and single-
base mismatch specificity. We used this Casl3a-based molecular detection platform, termed
SHERLOCK (Specific High Sensitivity Enzymatic Reporter UnLOCKing), to specifically detect
pathogenic bacteria, genotype human DNA, and identify cell-free tumor DNA mutations. Our results
establish CRISPR-Casl13 as a flexible platform for RNA targeting with wide applications in RNA
biology, diagnostics, and therapeutics.

Thesis Supervisor: Feng Zhang
Title: James and Patricia Poitras Professor of Neuroscience at MIT
Associate Professor, Brain and Cognitive Sciences and Biological Engineering



Preface

The work presented here represents the culmination of four and a half years of work during my
graduate studies in Feng Zhang's lab. Although I have been involved in many projects during this
time, this thesis highlights six studies focused on the discovery of novel CRISPR effectors, the
molecular characterization of these systems, and applications for cellular RNA tools and molecular
diagnostics. The work has appeared in a number of published manuscripts and was made possible
through the teamwork of numerous world-class collaborators, as is described in the cover page
preceding each chapter. Below, I will share some thoughts about each study that will frame the work

within a larger scientific context.

CHAPTER 2 - This study was my first foray into the world of enzymes beyond Cas9. In
collaboration with Eugene Koonin’s group, we sifted through many new candidate CRISPR
systems and characterized them in bacteria and biochemically. This project was rather
exciting, because at the time, most attention was focused on Cas9, and so the existence of
enzymes beyond Cas9, like Cas12a, Cas12b, and Cas13, with vastly different properties, was

very surprising.

CHAPTER 3 - The most amazing enzyme from Chapter 2 was Cas13, as it was a putative
programmable RNase, but its mechanism was entirely a mystery. In this project, I delved into
unraveling how a programmable RNase would function, discovering properties of the

enzyme that greatly differed from Cas9, and finding a promiscuous cleavage effect that



suggested a role in programmed cell death. This project was perhaps the most fun, as it
involved cracking the Cas13 puzzle and required the most basic science approaches of any of

the other studies.

CHAPTER 4 - Off the heels of understanding Cas13’s molecular activity, we applied the
unique collateral activity of Cas13 towards highly sensitive and specific nucleic acid testing.
The assays were easy to design and always worked, yielding a robust molecular diagnostic
platform that could have great impact in clinics and for global health. I most appreciate this
study because it shows that the basic exploration of nature and enzymes can yield completely
novel insights and technologies. I never intended to work on diagnostics, but in a way, nature

guided us there.

CHAPTER 5 - In this study, we continued to develop the Cas13 diagnostic platform with
new features, including portable and visual lateral flow readouts and signal amplification via
crosstalk from other CRISPR enzymes, such as Csmé6. We continued to explore enzyme

orthologs and new classes of enzymes to produce an even better diagnostic.

CHAPTER 6 - While nucleic acid testing is certainly the killer application of Cas13, we were
also interested in making better RNA tools in cells. In this work, we developed a
programmable Cas13 tool for knocking down transcripts with better specificity and for
imaging transcripts in live cells. This paper was a proof-of-principle that Cas13 could work

in mammalian cells and that Cas13 could enable an RNA toolbox.

CHAPTER 7 - We continued to develop the RNA toolbox in this work. We first explored
more Casl3 orthologs, settling on Cas13b, which demonstrated more robust and active
knockdown activity in cells. We then used the Cas13 enzyme to recruit natural deaminase
enzymes to allow for targeted RNA editing activity. RNA editing is an exciting area because
it allows for the temporal modulation of genetic variants, which can be useful for many acute
states of disease or reversible gene therapy. This study serves as a foundation for exploring

RNA therapies further.



I hope these thoughts help to frame the work within the larger context of CRISPR enzyme
discovery and molecular tool development, and to also demonstrate the unexpected twists
and turns our research took. At many times, the paths were frustrating, but overall, we ended
up at very interesting destinations. Overall, I hope to convey that science is tough, grueling,
and filled with uncertainty, but those moments where you're left in absolute awe at the beauty

of nature, make it all worth it in the end.

Omar Abudayyeh, writing in Cambridge, MA.
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Chapter1
Introduction

All known life is connected by DNA. Four letters of DNA- A, T, C, and G - provide the code of life
and when strung together form a unique blue print for each and every organism. In the case of the
mammalian genome, billions of DNA letters come together to encode more than 20,000 genes,
innumerable noncoding elements, and complex regulatory pathways we are only beginning to grasp.
The first human genome was sequenced 17 years ago (Lander et al., 2001), and since then, millions
more have followed, but how that information governs cellular, tissue, and even organismal function
is still elusive. Much like engineers must debug a circuit to reverse engineer a device and understand
its function, biologists need similar tools to reverse engineer cells and organisms. These tools would
allow us to modify genes and study their function and could offer a promising path for eventually

understanding the genetic circuits that drive life.

The central dogma of biology states that DNA is transcribed to RNA which is then translated into
protein. Molecular biology and genetics attempt to study these processes, their regulation, and how
these different molecules come together in a cell to drive complex function. Forward and reverse
genetic approaches allow for perturbations to be made to DNA, RNA, or protein in order to
understand how cellular function is affected. Therefore, precise tools to manipulate DNA are required
to enable these functional biology experiments, and indeed many types of site-directed mutagenesis

strategies have been developed, including designer meganucleases (Smith et al., 2006), Zinc finger
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nucleases (Miller et al., 2007; Urnov et al., 2005; Urnov et al., 2010), transcription activator like
effector nucleases (TALENSs) (Boch et al., 2009; Christian et al., 2010; Miller et al., 2011; Moscou and
Bogdanove, 2009; Zhang et al., 2011a), and most recently CRISPR-Cas9 (Doudna and Charpentier,
2014; Hsu et al., 2014). Wielding these tools in creative ways will unlock the potential of molecular

genetics to probe and understand cellular circuits.

The first tool to manipulate nucleic acid in a cell was recombinant DNA technology developed in the
1970s to express any prdtein of interest. Tools to directly probe the genome would eventually be
developed, but technologies, such as Zinc finger nucleases and meganucleases, were not easy to use.
Whereas zinc finger nucleases, meganucleases, and TALENS required extensive protein engineering
work to reprogram the mutagenesis site, CRISPR-Cas9 allowed for easy reprogramming by a dual
guide RNA that encodes targeting via complementarity in a 20-bp region. This has enabled research
into studying how genetic variants and gene regulation affect phenotypes and diseases in cells.
Additionally, numerous DNA-targeting technologies have been built with the Cas9 platform,
including high-throughput genome wide screens (Konermann et al., 2015; Shalem et al., 2014; Wang
et al., 2014), transcriptional activators (Bikard et al., 2013a; Chavez et al., 2015; Cheng et al., 2013;
Farzadfard et al., 2013; Gilbert et al., 2014; Gilbert et al., 2013; Konermann et al., 2015; Maeder et al.,
2013; Mali et al., 2013a; Perez-Pinera et al., 2013) and repressors (Gilbert et al., 2013), epigenetic
modifiers (Gilbert et al., 2013; Hilton et al., 2015; Kearns et al., 2015; Vojta et al., 2016; Xu et al.,
2016), genomic imagers (Chen et al., 2013), cellular lineage tracers (Frieda et al., 2617; Junker et al,,
2017; Kalhor et al., 2017; McKenna et al., 2016), and direct base editors (Gaudelli et al., 2017; Komor
etal., 2016). In addition to the vast amount of science being enabled by these tools, there is also great
therapeutic potential for a platform that can efficiently knockout genes, modify DNA sequence, and

tune gene regulation.

In this introduction, I will explore the development of CRISPR, efforts for expanding enzyme
diversity, and delve into RNA targeting tools. This discussion will include CRISPR-based
technologies for manipulating DNA and RNA regulation; traditional RNA tools for RNA knockdown,
imaging, and editing; and nucleic acid sensing and how CRISPR could help improve molecular
diagnostics. This background will help frame my thesis, which largely revolves around discovery of

new CRISPR enzymes and applications for RNA manipulation and nucleic acid diagnostics.
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1.1 CRISPR biology and development of genome editing tools

Although the CRISPR field has experienced a remarkable acceleration in discoveries and technology
development the past few years, its beginnings date back to 1987. Nakata and colleagues in Japan were
studying the iap enzyme responsible for izosyme conversion of alkaline phosphatase (Ishino et al.,
1987). While studying the gene, they observed a series of 29-nt repeats downstream of the locus, but
were unable to explain them. They remarked that the repeats were curious, as they appeared in
noncoding regions and had interspaced regions of nonrepetitive sequences, but could not solve the
problem of what their purpose was. As the sequencing revolution took off in the 1990s, many more
bacteria and archaeal strains were sequenced, revealing the prevalence of similar repeat elements. In
2002, Jansen and Mojica named these interspaced repeat arrays with the acronym CRISPR, which
stands for Clustered Regularly Interspaced Short Palindromic Repeats (Barrangou and Van der Oost,
2013; Jansen et al., 2002). Around this time, as more systems were sequenced, it became apparent that
clusters of CRISPR-associated (Cas) genes were tightly associated with the arrays (Jansen et al., 2002).
In 2005, by which time a large number of microbes and phages were sequenced, a systematic analysis
of the inter-repeat spacer sequences showed similarities to extrachromosomal DNA or phage
genomes (Bolotin et al., 2005; Mojica et al., 2005; Pourcel et al., 2005). Because these repeat arrays
were transcribed (Tang et al., 2002) and later studies found that archaea containing these systems
were immune to phages targeted by these spacers (Mojica et al., 2005), it was suggested that CRISPR

arrays could be an immune defense system with memory of past infections.

Although the exact mechanism of CRISPR defense was not clear, a series of experiments showed that
dairy production bacteria could be protected by phage infection using CRISPR (Barrangou et al.,
2007), CRISPR arrays are transcribed and processed into small crRNAs with spacers that guide Cas
nuclease activity (Brouns et al., 2008), and that the target of CRISPR immunity is DNA (Marraffini
and Sontheimer, 2008). By 2010, studies began to illuminate the biochemical mechanism of these
systems including showing Cas9 alone is sufficient for target DNA cleavage (Garneau et al., 2010),
Cas9 crRNA must hybridize to an additional trans-activating crRNA (tracrRNA) that is required for
Cas9 binding and activation (Deltcheva et al., 2011), and the CRISPR system can be transplanted from

endogenous hosts to E. coli and still be functional (Sapranauskas et al., 2011). In 2012, a study from
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Charpentier and Doudna (Jinek et al., 2012) and a study from Siksnys (Gasiunas et al., 2012) showed
that purified Cas9 can be guided by a hybridized crRNA:tracrRNA molecule to create a double
stranded break in DNA in vitro. It was further shown that a chimeric guide RNA, or single-guide
RNA (sgRNA), created by the fusion of the crRNA and tracrRNA was sufficient for programmable
DNA cleavage by Cas9 (Jinek et al., 2012). In 2013, two studies showed that the Cas9 protein could
be used for genome editing in mammalian cells by expression of the protein and guide off of DNA
vectors (Cong et al., 2013; Mali et al., 2013c). Both crRNA:tracrRNA hybrids and sgRNAs could be
used for genomic DNA cleavage in cells, allowing for either NHEJ- or HDR-mediated genome editing
outcomes. Since then, thousands of labs have applied CRISPR for a variety of applications across

diverse organisms (Doudna and Charpentier, 2014; Mohanraju et al., 2016).

As studies have shown, CRISPR proteins in bacteria and archaea constitute adaptive immune systems
that capture fragments of genetic material from invading phages or mobile genetic elements and use
these fragments to generate CRISPR RNAs (crRNA) which guide the cleavage of matching viral
sequences upon future infections (Figure 1.1) (Marraffini, 2015). CRISPR-Cas systems display diverse
sequence characteristics and architectural organization, providing a range of features that have utility
in various genome editing applications. The highest-level organization of CRISPR loci separates
systems into two groups: Class 1, which have multi-subunit effector complexes, and Class 2 systems,
which only have single-protein effector complexes (Makarova et al., 2015a) (Figure 1.2). Class 2
systems are easier to engineer as tools, as only one protein must be reconstituted and expressed
(Figure 1.3). While the Class 1 systems encompass a range of subtypes and Cas enzymes, Class 2
systems are less common, and initially thought to only contain CRISPR-Cas9 systems. This was
expanded in 2015 to reflect the discovery of a second single-effector CRISPR enzyme, Cas12a
(formerly called Cpf1) (Zetsche et al., 2015b) (Figure 1.4). These two Class 2 enzymes both target
DNA in a programmable RNA guided fashion, but have different characteristics, such as sequence

preferences, tracrRNA requirement, and cleavage overhangs.
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Figure 1.1: Class 1 and 2 CRISPR adaptive immunity.
CRISPR systems are adaptive immune systems in bacteria capable of cleaving invading phage

genomes and protecting against infection. Adapted from (Hsu et al., 2014).
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Figure 1.2: Class 1 and Class 2 architecture.

CRISPR systems can be split into Class 1 or Class 2 systems depending on the number of

effector protein subunits.

Components from CRISPR-Cas systems can be engineered and optimized to enable programmable
targeting of specific DNA sequences. Typically, a Cas protein effector (e.g, Cas9 or Casl2a) is
combined with a customized guide RNA to establish a ribonucleoprotein complex capable of targeting
DNA in a cell type of interest (Cong et al., 2013; Gasiunas et al., 2012; Jinek et al., 2012; Mali et al.,
2013c¢; Zetsche et al., 2015b). In contrast to earlier DNA-editing enzymes (Kim and Kim, 2014) —
such as meganucleases, zinc finger nucleases, and TALENs — CRISPR-Cas systems are targeted by
Watson-Crick base-pairing between the guide RNA and target DNA or RNA, allowing rapid and
flexible reprogramming by adjusting the sequence of the guide RNA. By modifying the Cas protein

or RNA guide, the system can be used to recruit other molecules to act on the target sequence in
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different ways. In combination with appropriate cellular or molecular assays, this flexibility enables

systematic forward and reverse genetic studies in mammalian cells.
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Figure 1.3: CRISPR classification.

Functional classification of Class 1 and 2 CRISPR systems. Reproduced from (Makarova et al.,
2015a).
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Figure 1.4: Cas9 and Cas12a CRISPR systems.
The Class 2 CRISPR enzymes Cas9 and Casl2a enact RNA-guided DNA cleavage in a
programmable fashion. Shown are the typical locus organization of these systems and the

structure of the protein:RNA complexes.

1.2 Importance of an RNA-targeting toolbox

RNAs are a diverse set of molecules in the cell that can broadly be categorized as either coding or
noncoding. Coding RNAs are represented by messenger RNAs (mRNA) that are translated into

proteins and are heavily regulated via splicing and interactions with RNA binding proteins (RBPs)

23



and other RNAs (Hentze et al., 2018; Li et al., 2016). These regulatory interactions can dramatically
reshape the transcriptomic profile of cells and are indispensable to proper cellular function. There is
also emerging evidence that mRNA bases can be heavily modified, changing the interactions of these
molecules with RBPs or how the nucleotides base-pair with other bases (Helm and Motorin, 2017).
These modifications, including methylation and pseudouridylation, have been mapped via
observational studies, but will need tools to better understand them. In addition to mRNAs, there are
numerous classes of noncoding RNAs, including rRNAs, long noncoding RNAs, microRNAs, circular
RNAs, and vault RNAs. These RNAs play diverse roles, including genome organization, gene
transcription, splicing, transcript regulation, transcript stability and transport, rna editing, and
translation. Because many non-coding RNAs may have no function at all and are products of spurious
transcription, it is important to have tools for studying noncoding RNAs with different

perturbational tools.

Long noncoding RNAs (IncRNAs) are a heterogeneous class of molecules, operationally defined as
polyadenylated RNAs >200 nt that do not encode peptides. Prior to the genomic era, biochemical and
genetic studies identified a handful of IncRNAs with important molecular functions, including Xist,
which orchestrates X-chromosome inactivation by spreading across the X chromosome in cis and
recruiting multiple repressive chromatin regulatory complexes to silence gene transcription (Plath et
al., 2002). RNA sequencing studies found that nearly the whole genome is transcribed to some extent,
and that these noncoding transcripts included thousands of polyadenylated and spliced IncRNAs
(Consortium, 2012; Djebali et al., 2012; Kapranov et al., 2007). Although there are some notable
exceptions, such as Xist, the function (if any) of most IncRNAs has remained elusive and will require

new tools to help elucidate the mystery.

Initial tools for investigation of general RNA biology, such as antisense oligos (Wagner, 1994) or
RNA interference (RNAi) (Elbashir et al., 2001; Fire et al., 1998; Root et al., 2006), have great utility,
but are limited due to off-target effects (Jackson et al.,, 2003) and their reliance on endogenous
machinery (Grimm et al., 2010; Valdmanis et al., 2016). The advent of protein-based systems, such as
the MS2-MCP system(Bertrand et al., 1998) or IRP1, allowed for additional applications, such as
imaging (Tyagi, 2009) or translational upregulation (De Gregorio et al., 1999). Some RNA binding

proteins, including members of the pumilio (Pum/Puf), Pentatricopeptide, and Tristetraprolin
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protein families (Mackay et al., 2011; Yagi et al., 2013), show promise of reprogrammability and have
been utilized for imaging (Adamala et al., 2016; Ozawa et al., 2007), translational modulation
(Campbell et al., 2014), RNA knockdown (Choudhury et al., 2012), and splicing modulation in limited
capacities (Wang et al., 2009). Analogous to zinc finger (Choo et al., 1994) or TALE (Boch et al., 2009;
Moscou and Bogdanove, 2009) DNA-binding domains, the RNA recognition domains of these
proteins are determined by their amino acid sequence, and Pum/Puf proteins cannot easily be
retargeted. PUF domains recognize ssRNA by repeat domains that consist of a ~35-residue three-
helix bundle that can bind to a single base (Edwards et al., 2001). Typically, the entire PUF domain
will consist of eight of these repeats allowing recognition of an eight nucleotide RNA (Mackay et al.,
2011). Certain residues in the repeat can be modified to change recognition to each of the four
nucleotides. For example, glutamate and serine will encode for guanine recognition whereas glycine
and asparagine will favor uracil (Cheong and Hall, 2006; Wang et al., 2002). The recognition code of
PUF domains has been mapped over multiple studies allowing them to be reprogrammed
theoretically to any sequence (Mackay et al., 2011). Despite this code, however, multiple designs must

be tested and binding is not always specific.

Generally, four useful tools to probe both coding and noncoding transcripts would be valuable. Tools
for modulating RNA levels, such as transcription activation or transcript knockdown, would be
valuable for studying gene or transcript function. Tools to image RNAs would allow for a deeper
understanding of RNA localization in the cell and dynamics during cell processes. RNA editing would
allow for the temporal modulation of genetic variants for studying variant function and also
therapeutics. RNA sensing would enable nucleic acid detection and quantification for both cellular
and clinical applications. I'll explore these areas, including previous approaches, in the following

sections.

1.3 Type III CRISPR systems target RNA

Developing CRISPR tools for targeting RNA would be ideal. However, only type IIl RNA-targeting
CRISPR enzymes existed when starting the work of this thesis, and they are far too complex to
engineer as cellular tools. Type III CRISPR systems are defined as Type III-A and Type III-B systems

based on their effector complexes, Csm complex and Cmr complex, respectively (Makarova et al.,

25



2011b). Type III-C and III-D systems also exist, but have not been characterized well (Makarova et
al., 2015a). Several proteins make up these complexes with Csm3 (in III-A) or Cmr4 (in III-B)
polymerizing as a protein backbone along the crRNA along with Csm2 (in [II-A) or Cmr5 (in I1I-B)
as the small subunit protein (Jackson and Wiedenheft, 2015). These proteins bend the crRNA with
kinks, such that it binds every 6 nucleotides along a target RNA. Cmr3 and Csm4 also bind the 5’ end
of the crNRA handle, while Cas10 binds the protein complex as the large subunit (Osawa et al., 2015;
Staals et al., 2014; Taylor et al., 2015). On the 3’ end of the crRNA, Csm5, Cmré6, and Cmr1 bind the
protein complex and cap the helical protein backbone formed by Csm3 or Cmr4. While there was
confusion early on whether the Type III interference complex targeted DNA or RNA, later in vitro
studies showed targeting and degradation of RNA targets (Hale et al., 2009; Marraffini and
Sontheimer, 2008). The confusion was later reconciled, as it was shown in vivo that the Csm complex
can cleave both DNA and RNA in a transcription-dependent manner in Staphylococcus epidermidis

(Samai et al., 2015).

The multi-protein interference complex separates various functions amongst the constituent
subunits (Wright et al., 2016). RNA interference is performed by the Csm3 backbone units that are
situated along the target with cleavage every six nucleotides mediated by metal-independent RNase
activity (Osawa et al., 2015; Staals et al., 2014; Tamulaitis et al., 2014; Taylor et al., 2015). In concert,
Cas10 cleaves DNA exposed via a transcription bubble using a single catalytic site in the palm
polymerase domain (Samai et al., 2015). This distinct co-transcriptional DNA and RNA cleavage
activity allows bacterial hosts to tolerate temperate phages to persist until transcription and
replication are activated. This can be advantageous for hosts as it can allow acquisition of beneficial
phage genes, like antibiotic resistance genes, and when phages become lytic, can protect against

replication (Wright et al., 2016).

Type III systems also lack a protospacer adjacent motif (PAM) requirement present in other CRISPR
systems, which normally serves to restrict auto-immunity by permitting interference only for targets
adjacent to the PAM. Instead, Type III systems check for complementarity between the direct repeat
portion of the crRNA and the target, and do not cleave if there is a match (Marraffini and Sontheimer,
2010b; Wright et al., 2016). The programmable RNase activity of type III complexes make them a

potential platform for developing RNA targeting tools. However, because of the large number of
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proteins that must be expressed and assembled, developing a robust set of tools has been difficult,
especially in mammalian cells. The lack of a PAM requirement, which vastly expands the potential
targeting space, could be a universal characteristic of CRISPR RNA-targeting systems perhaps yet to
be found, and would be a useful feature for developing RNA targeting tools. Finding such a CRISPR
system that only involves a single-protein effector for targeting RNA would be incredibly useful for

building an RNA targeting platform.

1.4 RNA-targeting tools for modulating RNA levels

Several approaches using CRISPR have been developed for modulating RNA levels up or down.
Beyond cleaving genomic sequences, CRISPR effectors can be used to direct protein or RNA cargo to
specific locations in the genome. In such applications, functional proteins or RNAs are adjoined either
to catalytically dead Cas9 (dCas9) (Gilbert et al., 2013; Mali et al., 2013a; Qi et al., 2013), in which the
active sites of the nuclease domains have been mutated, or to the guide RNA via a number of different
recruitment strategies. Emerging tools in this category include a variety of “epigenome editors”,

which recruit one or more proteins to alter gene regulatory processes.

CRISPR interference (CRISPRi) for gene repression. By itself, dCas9 delivery to gene promoters can
physically block RNA polymerase or transcription factors from accessing DNA, leading to modest
(20-40%) repression of endogenous gene expression (Gilbert et al., 2013). Repressive activity can be
dramatically improved by fusing dCas9 to repressive chromatin regulators (Gilbert et al., 2013). For
example, fusion to the Kriippel associated box (KRAB) domain leads to deposition of repressive
histone modifications (including H3K9me3) and loss of activating modifications (including H3K27ac)
at gene promoters, leading to 50 to 90% repression of gene expression when delivered in a critical
window 0-200 bp downstream of a transcription start site (Gilbert et al., 2014; Gilbert et al., 2013)
(Figure 1.5). Other repressive domains —including SID, LSD1, and DNMT3A proteins or protein
domains (Bintu et al., 2016; Kearns et al., 2015; Konermann et al., 2013; Liu et al., 2016; Vojta et al.,

2016) — have been explored and may have different kinetic properties for fine-tuning gene silencing.
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Figure 1.5: dCas9 CRISPR applications.

Various CRISPR applications using catalytically dead Cas9 to recruit effector enzymes.

CRISPR activation (CRISPRa). CRISPR-Cas9 tools for activation use Cas9 to recruit multiple
transcriptional activators to achieve robust induction of gene expression at promoters (Bikard et al.,
2013b; Chavez et al., 2015; Cheng et al., 2013; Farzadfard et al., 2013; Gilbert et al., 2014; Gilbert et
al., 2013; Konermann et al., 2015; Maeder et al., 2013; Mali et al., 2013a; Perez-Pinera et al., 2013).
Konermann et al. developed an approach called Synergistic Activation Mediator (SAM), in which
MS2 stem loops are fused to modified Cas9 guide RNAs to recruit multiple activating proteins to the
same site (Konermann et al., 2015) (Figure 1.5). Recruiting multiple activating proteins (VP64, HSF1,
and p65) led to synergistic effects on gene expression compared to recruiting each protein individually
(Konermann et al., 2015). In an alternative approach (“SunTag”), Tanenbaum et al. fused dCas9 to a
repetitive GCN4 peptide-domain scaffold that is recognized by a GCN4-targeting nanobody fused to
VP64, enabling simultaneous recruitment of up to 10 copies of VP64 (Tanenbaum et al., 2014). Each
of these approaches appears to vary in efficiency across different genes in a way that is not yet entirely
predictable, and the precise location of targeting (ideally, 50-400 bp upstream of the transcription
start site) has an important effect on the efficiency of activation (Gilbert et al., 2014; Konermann et

al., 2015).

RNA-targeting Cas9. Several other CRISPR-based approaches have been developed to enable RNA-
targeted degradation or programmable protein recruitment. Although Cas9 is typically regarded as a
DNA-targeting enzyme, certain natural Cas9 variants or engineered modifications have been shown
to have the potential to also interact with and cleave RNA. Initial in vitro characterization of the Cas9

from Streptococcus pyogenes (SpCas9) demonstrated the possibility of RNA as a binding substrate
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(Gasiunas et al., 2012), and later methods refined the activity in vitro via co-delivery of PAM duplex-
forming small oligos, termed PAMmers (O'Connell et al., 2014). This engineered adaptation of
SpCas9 for RNA binding was demonstrated to function in vivo for RNA imaging or cleavage of
repeat-containing RNA (Batra et al., 2017; Nelles et al., 2016). Certain Cas9 orthologs also possess
endogenous RNase activity and can cleave RNA without a PAMmer in E. coli (Strutt et al., 2018) or
in vitro (Rousseau et al., 2018). RNA targeting with Cas9 in mammalian cells appears to require the
introduction of the exogenous synthetic modified oligo (PAMmer) (Nelles et al., 2016), rendering
Cas9 challenging to use for pooled screening approaches that require genetically-encodable

constructs.

Beyond CRISPR, RNA interference is one of the most developed tools for knocking down RNAs.
Since its discovery (Fire et al., 1998), there has been many studies exploring RNAi biology and
applications, especially for clinical applications (Pecot et al., 2011). RNAi was exciting because it
circumvented many of the specificity problems of small molecules and target accessibility of
antibodiés, promising programmable gene-specific targeting. RNAi works by cleaving target mRNA,
which results in deadenylation, transcript destability, and transcript knockdown Double-stranded
RNAs (dsRNAs) are recognized by the RNase Dicer, which cleaves them into small 21-23 bp
fragments (Hannon and Rossi, 2004; Meister and Tuschl, 2004). These small fragments can guide the
RNA-induced silencing complex (RISC) to bind to any complementary region in mRNA, allowing
for cleavage (Martinez et al., 2002). Endogenous microRNAs (miRNAs), derived from non-coding
RNAs in the cell, most typically target the 3’ UTR where they are most effective at cleavage. When
these dsRNA fragments are provided exogenously as siRNA, the RISC complex can be co-opted for
programmable cleavage at a complementary target site and prevents translation via cleavage of the
target RNA (Pecot et al., 2011). Although RNAi has offered major advances for studying genes, a big
hurdle was it was not as specific as first believed. The siRNAs in a cell can easily bind to similar
sequences, sometimes with only as much as 6-8 nt of similarity, especially inside the seed region
(Jackson et al., 2006b). Although this is an evolutionary mechanism to allow for regulation of similar
transcripts (Farh et al., 2005), as a tool this can have important phenotypic effects and can account
for phenotypic changes that are independent of the expected target (Jackson et al., 2006a). Off-targets
are most concerning when using RNAI as a tool for gene knockdown or high-throughput screens, as

they can cause spurious phenotypes and lead to incorrect gene to phenotype connections. These off-
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targets are also concerning for clinical therapeutics. In some cases, where Dicer is properly expressed,
there can be excessive overuse of the endogenous RNAi machinery by exogenous siRNA, causing
toxicity due to inhibition of normal cellular processes. In one study, this caused hepatic failure and
death in mice (Grimm et al., 2006). In other cases, oversaturation of RISC by exogenous siRNAs leads
to derepression of regulated transcripts, causing unforeseen consequences in affected tissues (Khan
et al,, 2009). Additionally, many tissue types have low expression of Dicer, such as ovarian, lung, and
breast cancers, preventing efficient use of RNAi (Merritt et al., 2008). As a result, co-opting an

endogenous pathway for cellular perturbations or therapeutics can have negative consequences.

It would be ideal to find an exogenous RNA perturbation technology that does not affect endogenous
cellular processes, has little effect on the transcriptome, and is highly specific. Particularly, finding an
RNA-targeting CRISPR enzyme that is analogous to Cas9, without the needed addition of oligos or
further engineering, would enable a range of applications. There are RNA-targeting enzymes within
the CRISPR universe, but the RNA-targeting type III systems use large multi-protein complexes to
perform programmable RNA cleavage (Hale et al., 2012; Hale et al., 2009). Because these complexes
involve more than 10 protein subunits coming together, they are difficult to engineer in mammalian
cells. These type III complexes can also activate RNA cleavage by an associated enzyme known as
Csx1 or Csmé (Kazlauskiene et al., 2017; Niewoehner et al., 2017). These enzymes contain the HEPN
RNase domain, which is typically characterized by the RxxxxH amino acid motif (Anantharaman et

al., 2013) and could be a promising alternative if they could be rendered easily programmable.

The HEPN superfamily is prevalent across prokaryotes and eukaryotes and include RNase LS and
LsoA, KEN domains, and animal Sacsin proteins (Anantharaman et al., 2013). HEPN RNase activity
is performed by a metal-independent endoRNase active site and typically functions in toxins. In
prokaryotes, HEPN-containing proteins are in many toxin-antitoxin and abortive infection systems
and play a role in both restriction modification and CRISPR-Cas immunity. Because of their
prevalence in these systems, their existence is likely coupled to pathogen-targeting and strategies to
protect against viruses. The Csx1 and Csmé6 enzymes in type III CRISPR systems have been shown
to be activated in response to foreign RNA and can non-specifically cleave and degrade RNA, likely
serving an abortive infection function in cells (Kazlauskiene et al., 2017; Niewoehner et al., 2017).

Given the prevalent nature of RNA-targeting in CRISPR systems, it is reasonable to speculate that

30



there may be RNases that associate with CRISPR arrays and could function in a programmable
fashion. Perhaps by searching for HEPN domains that co-localize with CRISPR arrays, it could be
possible to identify programmable RNA-targeting CRISPR effectors that would serve as a defense

against invading nucleic acid and could be ported to mammalian cells for RNA targeting applications.

1.5 RNA-targeting tools for RNA imaging

RNA imaging and tracking has been of significant interest ever since protein translation was linked
to localized mRNA translation (Lehmann and Nusslein-Volhard, 1986). RNA localization has since
become important across many biological settings, such as neurons where local mRNA translation at
synapses can cause specific activity changes (Mannack et al., 2016). The oldest method for visualizing
RNA was in situ hybridization (ISH), which used short fluorescently-labeled oligonucleotides to
recognize transcripts, and has been further developed into various technologies, such as molecular
beacons, which reduce background via a quenching mechanism. While these early technologies work
great in fixed cells, they are difficult to deliver to live cells and are not optimized for the cellular setting,
where they must overcome target secondary structure. As an alternative, bacteriophage-derived RNA
binding proteins have been used for engineering RNA interactions in the cell. The MS2 coat protein
(MCP) can recognize MS2 loops with high binding strength and specificity. By fusing GFP to the
MCP and tagging target RNAs with multiple MS2 loops, target RNAs can be imaged in live cells
(Bertrand et al., 1998). This MS2 system has even allowed for the imaging of single mRNA molecules
in living mouse cells (Park et al., 2014). While these MS2 approaches have been successful, tagging
RNAs with MS2 loops can affect their normal function and creating transgenic cell lines or organisms
is very time consuming. Alternatively, Pumilio proteins from the PUF RNA binding protein family
could be used for programmed RNA sensing without adding an RNA tag on the target. By using RNA
binding proteins, multiplexed imaging would enable the study of different transcripts at once or for
the localization of two transcripts together. Additionally, they would circumvent the high
background fluorescence typical of RNA imaging tools by using a split-GFP system that only
reconstitutes by targeting adjacent sites on a transcript (Ozawa et al., 2007; Tilsner et al., 2009).
Pumilio proteins are still difficult to reprogram, however, limiting their broad applicability. A tool

that is easily reprogrammable, can detect low transcript levels, and yield quantitation would be ideal.
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1.6 RNA-targeting tools for RNA editing

Direct base editing of nucleic acid that circumvents endogenous repair pathways would allow for
highly efficient cellular modification across a broad range of cell types and tissues. DNA base editing

was first developed using CRISPR-Cas?9 for site-directed recruitment of adenine deaminases.

CRISPR-mediated base editing is performed by fusing certain enzymes —such as APOBEC, AID, or
ADAT engineered to target DNA —to a Cas9 protein in which one or both of its catalytic domains
have been genetically inactivated (Gaudelli et al., 2017; Komor et al., 2016; Nishida et al., 2016)
(Figure 1.6). These fusions currently enable specific and programmable conversions of C:G to T:A
base-pairs or vice versa, enabling relatively efficient modification of just over half of all known
pathogenic single-nucleotide variants (Gaudelli et al., 2017), although the requirement for a PAM
sequence nearby reduces this number. An advantage of these approaches is that they can lead to DNA
edits without introducing double-stranded DNA breaks, thereby avoiding certain error-prone repair
mechanisms. For example, the APOBEC C-to-T base editor first enzymatically converts a target
cytosine to uracil, and then creates a single-strand DNA break to engage the mismatch repair (MMR)

machinery to repair the opposing guanine to adenine (Komor et al., 2016).
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Figure 1.6: CRISPR base editing.
Base editing with Cas9 allows for direct adenosine to guanine or cytosine to thymine

conversion in DNA.
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While DNA base editing is efficient, it is restricted to PAM sites and still relies on some repair
pathways, potentially limiting its use to dividing cells only. RN A editing offers a promising alternative,
as it directly modifies the RNA bases without any repair and can be performed with high efficiency.
RNA editing by adenosine deamination is a naturally occurring process in cells for the precise
conversion of adenosines to inosines (Bass and Weintraub, 1987; Kim et al., 1994). The Adenosine
Deaminase that Acts on RNA (ADAR) enzyme catalyzes the simple hydrolytic deamination reaction
through a single active catalytic site (Melcher et al., 1996). During translation and other cellular
processes, the inosines are interpreted as guanosines allowing for precise changes to the genetic code
in a temporal fashion. Some of the best studied examples of ADAR editing are in neurons where RNA
editing changes ion selectivity of ionotropic glutamate receptors, alters serotonin receptor function,
inhibits voltage-dependent potassium channels, and modulates the transport rate of Na*/K* ATPases

(Montiel-Gonzalez et al., 2016).

ADAR enzymes contain two double-stranded RNA binding domains (dsRBDs) and a catalytic domain
referred to as the deaminase domain (ADARpp). Normally, ADARs bind to specific secondary
structures in a transcript via the dsRBDs, positioning the ADARppD in the right orientation to
deaminate a target adenosine. Beyond secondary structure, catalytic activity is also directed to specific
adenosines because of enzymatic bias towards specific neighboring bases, namely a 5 uridine or

adenine and a 3’ guanine (Lehmann and Bass, 2000).

Two RNA editing strategies have been developed to redirect the ADARpp towards a desired target
adenosine for programmable A to I conversions. The first technology replaces the dsRBDs with a AN
RNA binding peptide, which specifically recognizes the boxB hairpin fused to an RNA guide
(Montiel-Gonzalez et al., 2013; Montiel-Gonzalez et al., 2016). The AN-boxB interaction is of
nanomolar affinity, allowing for strong association of the ADARpp with the guide RNA in cells.
Genetically encoded plasmids carrying these components can be delivered to cells, allowing for
around 20% editing in both epithelial cells and Xenopus oocytes (Montiel-Gonzalez et al., 2013). The
guide design of this approach is complicated, however, limiting its use. An alternative approach uses
a SNAP-tag to covalently link the ADARpp to the guide RNA, which also has shown efficient editing,

but has the limitation that a synthetic guide must be generated and linked to the protein (Stafforst
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and Schneider, 2012). The same group has more recently developed a genetically encoded version
that uses the full ADAR2 enzyme and a unique hairpin on the guide RNA that the dsRBDs recognize
(Wettengel et al., 2017). This approach achieves editing rates of up to 65% in cell culture, but can
suffer from off-target editing since the dsRBDs are present and capable of recognizing their
endogenous targets in cells. Neither approach has assayed transcriptome-wide off-targets, and so the

true specificity of these technologies are hard to evaluate.

1.7 Nucleic acid detection technologies

While most CRISPR applications have focused on therapeutic genome editing or tools for studying
cells, nucleic acid detection would benefit from the programmable and specific recognition of nucleic
acid templates enabled by CRISPR proteins. Molecular nucleic acid testing (NAT) for infectious
diseases and cancer are typically performed in central laboratories by skilled personnel due to the
complexity of current systems (Niemz et al., 2011). The vision for point of care (POC) NAT would
enable patient testing in hospital emergency rooms, primary care offices, at local clinics, and even at
home for a variety of applications, including infectious disease, cancer, and genotyping (Figure 1.7).
POC testing would also bring NAT to the developing world where central laboratories do not exist
and skilled personnel are not available. Most current systems for clinical diagnostics are polymerase
chain reaction (PCR)-based, can only be performed in labs by trained technicians, and require many
hours for a result. A key barrier to PCR is the thermocycling steps that require complex
instrumentation. Many iso-thermal nucleic acid amplification schemes have been developed in
respohse to enable cheaper, quicker, and simpler tests, including recombinase polymerase
amplification (RPA) and nicking enzyme amplification reaction (NEAR)(Niemz et al., 2011). These
approaches replace the thermocycling steps with enzymatic components that allow for primer
annealing and extension at a constant temperature of 37°C for RPA and 55°C for NEAR. Although
these approaches are rapid, typically amplifying nucleic acids in 10-20 minutes, they suffer from poor
specificity and primer bias, making multiplexing difficult. To overcome the specificity problem, a
detection method must be coupled to these amplifications to allow for sequence-specific confirmation
of the input target, either post-amplification or in real-time. Examples of detection methodologies
include fluorescent oligonucleotide probes that are cleaved during the reaction, intercalating dyes,

and riboswitch sensors that translate fluorescent proteins (Pardee et al., 2014; Pardee et al., 2016).
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CRISPR enzymes could also serve as a sequence-specific detection method due to the specificity of
the crRNA:target duplex recognition by the effector enzyme. To enable such a method however, the

target recognition by the crRNA:enzyme complex must be coupled to some fluorescent readout.

Bacterial discrimination —_ Patient
and detection of Freeze-dryin, genotyping cancer-related &4
and strain antibiotic resistance for point-of- mutations in

discrimination care detection

cell-free DNA

Figure 1.7: Molecular nucleic acid testing applications.

Examples of nucleic acid testing applications enabled by rapid isothermal amplification

methods. Adapted from (Caliendo and Hodinka, 2017).

1.8 Other RNA-targeting applications

If a programmable RNA targeting enzyme could be identified and developed, a range of RNA tools
could be realized (Figure 1.8). RNA cleavage would be the direct application of a natural
programmable RNase, allowing for degradation of coding or noncoding transcripts. By catalytically
inactivating the programmable RNase, an RNA binding platform would be possible with specific
applications enabled by protein recruitment (Mackay et al., 2011). Translation could be stimulated by
recruiting specific initiation factors, such as EIF4G, EIF4E, or EIF4A, to specific sites around the
ribosome binding site (RBS) and could be repressed by blocking access to the RBS. Splicing of
transcripts could also be modulated by recruiting certain splicing factors like A1 or RS domains
allowing for exon inclusion or blocking a splice site for exon exclusion. By fusing to GFP, transcripts
could be imaged in real-time and localized similar to applications with MS2, but without needing to
modify the transcripts. Transcript localization could also be altered by changing the localization
sequence on the programmable RBP. By fusing to RNA modifying enzymes, specific

epitranscriptomic marks could be introduced in a site-specific manner, allowing elucidation of the

35



role of many marks that have unknown function. For example, pseoduridine sites could be created
by fusion to pseudouridine synthase 1-4 and methylation sites can be added to adenosines by
methyltransferase-like 3. Additionally, RNA base editing enzymes, such as ADAR1/2 and APOPECs,
could be recruited for site-specific editing of adenosine to inosine or cytosine to uridine, respectively.
Lastly, a programmable RBP could be used for transcript-specific pulldown of interacting RNAs and

proteins.

Several of these applications have been achieved using PUF proteins. PUF proteins can be fused to
the arginine- and serine- rich domain of ASF or human heterogeneous nuclear ribonucleoprotein
(hnRNP) A1 to enhance or repress splicing, respectively (Wang et al., 2009). PUF proteins can also
be fused to translation initiation factors like EIF4E to enhance translation (Adamala et al., 2016).
While several PUF-based applications have been developed, it has not reached widespread use
because of the difficulty for most people to engineer and develop these constructs. Because of the
limitations of existing tools, there remains a need for a genetically encodable, modular, and easily
programmable RNA targeting platform. As more enzymes are identified to interact with RNA, more
possibilities for RNA-targeting tools will emerge, allowing a robust toolbox for understanding RNA
function in the cell. CRISPR based tools offer a potential platform for RNA tools if a natural RNA-

targeting system could be discovered and tamed for mammalian application.
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Figure 1.8: RNA targeting applications.
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A variety of RNA perturbation tools can be developed with a programmable RNA binding
protein. Partially reproduced from (Mackay et al., 2011).

In this thesis, I explore the evolutionary basis of CRISPR systems in the hope of expanding the
framework and diversity of known CRISPR enzymes. We employ computational techniques to mine
known bacterial genomes using signatures of CRISPR systems to expand the known set of Class 2
CRISPR systems (Chapter 2). In bacteria and biochemically, we characterize the Class 2 RNA-targeted
RINA-guided CRISPR-Cas13 and uncover its unique mechanisms for programmable RNA cleavage
(Chapter 3). Using its unique collateral RNase activity, we develop next generation molecular
diagnostics for human health and agricultural applications (Chapters 4 and 5). Lastly, we transplant
the Cas13 enzyme to mammalian cells and build RNA tools to allow for RNA knockdown and
imaging (Chapter 6) as well as precise and efficient RNA base editing (Chapter 7). The series of work
described here demonstrates the power of pursuing basic discovery of novel bacterial systems and
great potential these new enzymes can have for building a comprehensive RNA toolbox with

applications in basic science, biotechnology, therapeutics, and diagnostics.
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Chapter 2

Discovery and Functional Characterization of
Diverse Class 2 CRISPR-Cas Systems

This chapter is adapted from the following article:

Shmakov, S.*, Abudayyeh, 0.0.*, Makarova, K.S., Wolf, Y.I., Gootenberg, J.S., Semenova, E.,

Minakhin, L., Joung, J., Konermann, S., Severinov, K., et al. (2015). Discovery and Functional
Characterization of Diverse Class 2 CRISPR-Cas Systems. Mol Cell 60, 385-397.

Contributions: Sergey Shmakov and Omar Abudayyeh are co-first authors (*). Eugene Koonin and
Feng Zhang conceived the study; Kira Makarova, Yuri Wolf and Eugene Koonin designed the
computational analyses; Sergey Shmakov, Kira Makarova, Yuri Wolf and Feng Zhang performed the
computational analyses; Omar Abudayyeh, Jonathan Gootenberg, Feng Zhang and Konstantin
Severinov designed the experiments; Omar Abudayyeh, Jonathan Gootenberg, Julia Joung, Silvana
Konermann, Ekaterina Semenova and Leonid Minakhin performed the experiments; Omar
Abudayyeh, Jonathan Gootenberg and Feng Zhang analyzed the results; Omar Abudayyeh, Kira
Makarova, Feng Zhang and Eugene Koonin wrote the manuscript that was read, edited and approved
by all authors.
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2.1 Abstract

Microbial CRISPR-Cas systems are divided into Class 1, with multisubunit effector
complexes, and Class 2, with single protein effectors. Currently, only two Class 2 effectors,
Cas9 and Cpfl, are known. We describe here three distinct Class 2 CRISPR-Cas systems. The
effectors of two of the identified systems, C2c1 and C2c3, contain RuvC-like endonuclease
‘domains distantly related to Cpfl. The third system, C2c2, contains an effector with two
predicted HEPN RNase domains. Whereas production of mature CRISPR RNA (crRNA) by
C2c1 depends on tracrRNA, C2c2 crRNA maturation is tracrRNA independent. We found
that C2c1 systems can mediate DNA interference in a 5'-PAM-dependent fashion analogous
to Cpfl. However, unlike Cpfl, which is a single-RNA-guided nuclease, C2c1 depends on
both crRNA and tracrRNA for DNA cleavage. Finally, comparative analysis indicates that
Class 2 CRISPR-Cas systems evolved on multiple occasions through recombination of Class

1 adaptation modules with effector proteins acquired from distinct mobile elements.

2.2 Introduction

CRISPR (clustered regularly interspaced short palindromic repeat)-Cas (CRISPR-Associated proteins)
are adaptive immune systems of archaea and bacteria (Barrangou and Marraffini, 2014; Koonin and
Makarova, 2013; Marraffini and Sontheimer, 2010a). These systems have recently attracted much
attention due to their unique, “Lamarckian” mode of action that retains “memories” from past
infections and provides specific resistance to these infections via an RNA-guided process that has
been harnessed to create powerful genome editing tools (Cho et al., 2013; Cong et al., 2013; Hwang
et al., 2013; Jiang et al., 2013; Jinek et al., 2013; Mali et al., 2013b). The CRISPR-Cas systems show
extreme diversity of Cas protein composition as well as genomic loci architecture (Makarova et al.,

2011b; Makarova et al., 2015b).

Despite this diversity, CRISPR-Cas systems share a core set of features, indicative of a common origin.
Most Cas proteins can be grouped into two main functional modules: the adaptation module, which
delivers genetic material into CRISPR arrays to generate CRISPR RNAs (crRNAs), and the effector

module, which, guided by crRNA, targets and cleaves invading nucleic acids (Makarova et al., 2011b;
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Makarova et al., 2013). The adaptation modules are largely uniform across CRISPR-Cas systems and
consist of two essential proteins, Casl and Cas2. By contrast, the effector modules show extreme
variability. The latest classification of the CRISPR-Cas systems divides them into two classes based
on the architecture of the effector modules (Figure 2.1A) (Makarova et al., 2015b). Class 1 systems,
which encompass types I and III as well as the putative type IV, possess multi-subunit effector
complexes comprised of multiple Cas proteins. Class 2 systems, which encompass type II and the

putative type V, are characterized by effector complexes that consist of a single, large Cas protein.

The effector protein of type Il CRISPR-Cas systems is Cas9, a large multidomain nuclease that ranges
in size depending on the species from ~950 to over 1,600 amino acids and contains two nuclease
domains, a RuvC-like (RNase H fold) domain and an HNH (McrA-like fold) domain (Makarova etal.,
2006), for target DNA cleavage (Barrangou et al,, 2007; Deltcheva et al., 2011; Garneau et al., 2010;
Gasiunas et al., 2012; Jinek et al., 2012; Sapranauskas et al., 2011). This multifunctional protein has
been engineered into a key tool for genome editing. Recently, a second Class 2 effector protein, Cpfl,
which contains a RuvC domain, but not an HNH domain (Makarova et al., 2015b; Schunder et al.,
2013), has been shown to be an RNA-guided endonuclease that cleaves the target DNA via a staggered
cut (Zetsche et al., 2015a). Based on their unique domain architecture, the Cpfl-containing systems

have been categorized as type V CRISPR-Cas (Makarova et al., 2015b).

Although Class 2 systems are less common than Class 1 systems (Chylinski et al., 2014; Makarova et
al., 2015b), it is likely that additional Class 2 systems, beyond those containing Cas9 and Cpf1 effector
proteins, exist in the yet unexplored microbial diversity. Using a computational strategy, we identified
three groups of candidate genomic loci encoding previously uncharacterized Class 2 variants. We
experimentally demonstrate the functionality of two of the discovered systems, which have unique
properties compared to Cas9. The characterization of these new systems provides evidence to suggest
Class 2 systems originated by combination of Class 1 adaptation modules with effector proteins

derived from different mobile elements.
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Figure 2.1: Prediction of candidate novel Class 2 CRISPR-Cas systems.

(A) Architectural principles of Class 1 (multi-protein effector complexes) and Class 2 (single-
protein effector complexes) CRISPR-Cas systems.

(B) Schematic of the computational pipeline for identification of putative new Class 2 loci.
(C) Genomic architectures of the known and newly identified Class 2 CRISPR-Cas systems.
The left panel shows the previously described three subtypes of type II and subtype V-A, and
the right panel shows subtypes V-B and V-C, and type VI identified in this work. Subfamilies
based on Casl are also indicated. The schematics include only the common genes represented
in each subtype; the additional genes present in some variants are omitted. The red rectangle
shows the degenerate repeat. The gray arrows show the direction of CRISPR array
transcription. PreFran, Prevotella-Francisella.

See also Figure 2.51.
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2.3 Results

2.3.1 Computational prediction of candidate novel Class 2 CRISPR-Cas loci

We designed a computational pipeline to prospect the microbial genome sequence diversity to
identify previously undetected Class 2 CRISPR-Cas loci (Figure 1B). Because most CRISPR-Cas loci
include a cas gene (Makarova et al., 2011b; Makarova et al., 2015b) and the Cas1 sequence is the most
conserved among all Cas proteins (Takeuchi et al., 2012), we used casI as the anchor to identify
candidate loci. A substantial majority of the candidate CRISPR-Cas loci identified by the pipeline
could be assigned to known subtypes (Chylinski et al., 2013; Chylinski et al., 2014; Fonfara et al., 2014;
Makarova et al., 2011b; Makarova et al., 2015b). To identify novel Class 2 systems, we focused on
unclassified candidate CRISPR-Cas loci containing long proteins (>500 aa) given that the presence of
large single-subunit effector proteins, such as Cas9 and Cpfl, is the diagnostic feature of type II and
type V systems, respectively. Based on this criterion, we identified 63 candidate loci that were
analyzed individually using PSI-BLAST and HHpred. The protein sequences encoded in the candidate
loci were used as queries to search metagenomic databases for additional homologs. In total, we
discovered 53 loci (some of the originally identified 63 were discarded as spurious whereas several
incomplete loci that lacked cas! were added) with characteristic features of Class 2 CRISPR-Cas
systems that could be classified into three distinct groups based on the nature of the putative effector

proteins (Figure 2.1C and Figure 2.S1).

The first group (Figure 2.1C and Figure 2.S1A), provisionally denoted C2c1 (Class 2 candidate 1), is
represented in 18 bacterial genomes from four major taxa: Bacilli, Verrucomicrobia, a-proteobacteria,
and §-proteobacteria (Figure 2.S1A). The C2c1 loci encode a Cas1-Cas4 fusion, Cas2, and a large
putative effector protein, and typically are adjacent to a CRISPR array (Figure 2.S1A). The loci in the
second group include solely metagenomic sequences and thus could not be assigned to specific taxa.
These loci encode only Cas1 and a large putative effector protein denoted C2c3 (Class 2 candidate 3;
although the candidates were designated in the order of discovery, throughout the text, we juxtapose

C2c1 and C2c3 as they contain distantly related effector proteins, discussed below) (Figure 2.1C and
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Figure 2.51B). The third group, denoted C2¢2 (Class 2 candidate 2), was identified in 21 genomes
from five major bacterial taxa: [-proteobacteria, Bacilli, Clostridia, Fusobacteria, and Bacteroidetes
(Figure 2.1C and Figure 2.S1C). These loci encompass a large protein with no sequence similarity to
C2cl1, Cpfl, or Cas9. Although under our computational strategy, the originally identified C2c2 loci
encompassed casl and cas2, subsequent searches showed that the majority consists only of the c2c2
gene and a CRISPR array (Figure 2.S1C). Such apparently incomplete loci could either encode
defective CRISPR-Cas systems or might function with the adaptation module encoded elsewhere in

the genome, as observed for some type III systems (Majumdar et al., 2015).

Typically, the sequence and structure of repeats in CRISPR arrays strongly correlate with the
sequence of the respective Casl protein, which interacts with the repeats during spacer acquisition.
However, despite the high similarity of the C2c1 system Cas1 proteins to each other, the CRISPR in
the respective arrays are highly heterogeneous. All the repeats are 36-37 bp long and can be classified
as unstructured. Among the C2¢3 loci, only one contains a CRISPR array with unusually short, 17-
18 nt spacers. The repeats in this array are 25 bp long and appear to be unstructured. The CRISPR
arrays of the C2c2 loci are also highly heterogeneous (repeat length ranging from 35 to 39 bp) and

unstructured.

Although bacteriophages infecting bacteria that harbor these newly discovered Class 2 CRISPR-Cas
systems are virtually unknown, for each of these systems, we detected spacers that matched phages
or predicted prophages. Although the majority of the spacers were not significantly similar to any
available sequences, the existence of spacers matching phage genomes implies that at least some of
these loci encode active, functional adaptive immunity systems. The low fraction of phage-specific
spacers is typical of CRISPR-Cas systems and most likely reflects their dynamic evolution and the
small fraction of virus diversity that is currently known. This interpretation is compatible with the
observation that closely related bacterial strains encoding homologous CRISPR-Cas loci, e.g. the C2c2
loci from Listeria weihenstephanensis and Listeria newyorkensis, typically contain unrelated collections

of spacers (Figure 2.S2)
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2.3.2 C2c1 and C2c3 proteins contain RuvC-like nuclease domains and have a domain

architecture resembling Cpf1

The lengths of C2c1 and C2c3 proteins range from ~1100 to ~1500 amino acids, similar to the typical
lengths of Cas9 and Cpf1. Analogous to the previous findings for Cas9 and Cpf1 (Chylinski et al.,
2014; Makarova and Koonin, 2015; Makarova et al., 2015b), the C-terminal regions of the C2¢c1 and
C2c3 proteins are significantly similar to a subset of TnpB proteins encoded by transposons of the
15605 family (Figure 2.2A and Figure 2.S3). However, in database searches, only C2¢3 showed limited
but significant similarity to Cpfl within the TnpB homology regions, whereas C2cl was not
significantly similar to any of the other known or putative Class2 effector proteins. Moreover, the
subsets of the TnpB proteins with significant similarity to the known (Cas9 and Cpf1) and putative
(C2cl and C2c3) Class 2 effectors did not overlap (Figure 2.2A and Figure 2.S3), suggesting that Cas9,

Cpfl, C2cl, and C2c3 evolved independently from distinct transposable elements.

The TnpB homology regions of C2c1 and C2c3 contain the three catalytic motifs of the RuvC-like
nuclease (Aravind et al., 2000), the region corresponding to the arginine-rich bridge helix, which is
involved in crRNA-binding by Cas9, and a counterpart to the Zn finger of TnpB (the Zn-binding
cysteine residues are conserved in C2c3 but are missing in the majority of Cpfl and C2c1 proteins;
Cpfl and C2cl contain multiple insertions and deletions in this region suggestive of functional
divergence) (Figure 2.2A; Figures 2.S4 and 2.S5). The conservation of the catalytic residues implies
that the RuvC homology domains of all these proteins are active nucleases. The N-terminal regions
of C2cl and C2c3 show no significant similarity to each other or any known proteins. Secondary
structure predictions indicate that both these regions adopt a mixed 0000conformation (Figures 2.54
and 2.S5). Thus, the overall domain architectures of C2c1 and C2c3, and in particular the organization
of the RuvC domain, resemble Cpfl but are distinct from Cas9 (Figure 2.2A). Accordingly, we
propose that the C2c1 and C2c3 loci are best classified as subtypes V-B and V-C, respectively, with
Cpfl-encoding loci now designated subtype V-A.
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Figure 2.2: Domain architectures and conserved motifs of the Class 2 proteins.

(A) Types II and V: TnpB-derived nucleases. The top panel shows the RuvC nuclease from
Thermus thermophilus (PDB ID: 4EP5) with the catalytic amino acid residues denoted.
Underneath each domain architecture, an alignment of the conserved motifs in selected
representatives of the respective protein family (a single sequence for RuvC) is shown. The
catalytic residues are shown by white letters on a black background; conserved hydrophobic
residues are highlighted in yellow; conserved small residues are highlighted in green; in the
bridge helix alignment, positively charged residues are in red. Secondary structure prediction
is shown underneath the aligned sequences: H denotes [-helix and E denotes extended
conformation ([-strand). See also Figures 2.54 and 2.S5.

(B) Type VI: predicted RNases containing two HEPN domains. The top alignment blocks
include selected HEPN domains described previously and the bottom blocks include the

catalytic motifs from the putative type VI effector proteins. The designations are as in (A).
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2.3.3 C2c2 contains two HEPN domains and is predicted to possess RNase activity

Database searches detected no significant sequence similarity between C2c2 and any known proteins.
However, inspection of multiple alignments of C2c2 protein sequences revealed two conserved

R(N)xxxH motifs that are characteristic of HEPN (Higher Eukaryotes and Prokaryotes Nucleotide-

binding) domains (Anantharaman et al., 2013; Grynberg et al., 2003). Additionally, a conserved
glutamate embedded in a strongly predicted long 0-helix and corresponding to the similar motif of
HEPN domains was identified (Figure 2.2B; Figure 2.S6). The HEPN superfamily includes small
(=150 aa) O-helical domains with extremely diverse sequences but highly conserved catalytic motifs
shown or predicted to possess RNase activity (Anantharaman et al., 2013). Searching the Pfam
database using the HHpred program and the C2c2 sequences as queries detected similarity to HEPN
domains for both putative nuclease domains of C2c2 albeit not at a highly significant level.
Importantly, however, these were the only HHpred-generated alignments in which the R(N)xxxH
motifs were conserved. The identification of HEPN domains in C2c2 proteins is further supported
by secondary structure predictions, which indicate that each motif is located within compatible
structural contexts, and the predicted [-helical secondary structure of each putative domain is
consistent with the HEPN fold (Figure 2.2B; Figure 2.S6). Outside of the two HEPN domains, the
C2c2 sequence is predicted to adopt a mixed [l structure without discernible similarity to any known
protein folds (Figure 2.56). Given the unique predicted effector of C2c2, these systems qualify as a
putative type VI CRISPR-Cas.

2.3.4 The candidate Class 2 CRISPR-Cas loci are expressed to produce mature crRNAs and

encode putative tracrRNAs
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Figure 2.3: Functional validation of the Alicyclobacillus acideoterrestris C2c1 locus.

(A) RNA-sequencing shows the A. acideoterrestris C2c1 locus is highly expressed in the
endogenous system, with processed crRNAs incorporating a 5° 14-nt DR and 20-nt spacer. A
putative 79-nt tractrRNA is expressed robustly in the same orientation as the cas gene cluster
(see also Figures 2.57B and 2.S7C).

(B) Northern blot of RNAs expressed from endogenous locus (M) and a minimal first-spacer
array (S) show processed crRNAs with a 5" DR and the presence of a small putative tracrRNA.
Arrows indicate the probe positions and their directionality.

(C) In silico co-folding of the crRNA direct repeat and putative tracrRNA shows stable
secondary structure and complementarity between the two RNAs. 5’ bases are colored blue
and 3’ bases are colored orange (see also Figure 2.S7D).

(D) Schematic of the PAM determination screen.
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(E) Depletion from the 5’ left PAM library reveals a 5 TTN PAM. Depletion is measured as
the negative logs fold ratio and PAMs above a threshold of 3.5 are used to calculate the entropy
score at each position.

(F) Sequence logo for the AacC2c1 PAM as determined by the plasmid depletion assay. Left:
Letter height at each position is measured by entropy scores and error bars show the 95%
Bayesian confidence interval. Right: Letter height at each position is measured by the relative
frequency of the nucleotide (see also Figure 2.S7E).

(G) Validation of the AacC2c1 PAM by measuring interference with 8 different PAMs. PAMs

matching the TTN motif show depletion as measured by cfus.

In addition to the adaptation and interference protein modules, type II, Cas9-based systems also use
a small non-coding trans-activating CRISPR RNA (tracrRNA), which is typically encoded adjacent to
the cas operon. The tracrRNA is partially complementary to repeat portions of the respective CRISPR
array transcript (pre-crRNA) and is essential for its processing into crRNA which is catalyzed by
RNase III recognizing the repeat-anti-repeat duplex (Chylinski et al., 2013; Chylinski et al., 2014;
Deltcheva et al,, 2011). We investigated whether the loci encoding Class 2 systems identified here
also contain small RNAs with complementarity to cognate CRISPR repeats. We chose a
representative C2cl system from Alicyclobacillus acidoterrestris ATCC 49025 (Aac) for initial
characterization and conducted whole-transcriptome RNA sequencing (RNA-seq) and Northern
blotting to map transcription of small RNAs associated with the C2c1 locus. The CRISPR array was
found to be actively transcribed in the same orientation as the cas gene cluster and shows robust
processing of crRNAs that are 34 nt in length, with a 5’ 14-nt direct repeat (DR) and a 20-nt spacer
(Figure 2.3A). We also identified an abundant 79-nt small RNA encoded between the cas2 gene and
the CRISPR array and transcribed in the same orientation as the CRISPR array (Figure 2.3A, B). The
internal region of this RNA contains a sequence complementary to the processed CRISPR repeat
sequence (anti-repeat), suggesting that this transcript is the tractrRNA. In silico co-folding of the
processed 14-nt CRISPR repeat with this putative tracrRNA predicts a stable secondary structure
(Figure 2.3C).

Given that the putative tracrRNA in A. acidoterrestris contains a characteristic anti-repeat sequence,

we sought to predict potential tracrRNAs for the rest of the identified C2c1, C2c2, and C2¢3 loci by
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searching for anti-repeat sequences within each locus. In many CRISPR-Cas loci, the repeat located
at the promoter-distal end of the CRISPR array is degenerate and has a sequence that is distinct from
the rest of the repeats (Biswas et al., 2014). Such degenerate repeats were detected in several C2c1 and
C2c2 systems (Figure 2.S1), allowing us to predict the direction of the array transcription. By
integrating this information, we identified putative tracrRNAs in 4 of the 13 C2c1 and 4 of the 17
C2c2 loci (Figures 2.S1 and 2.S7A). However, in some subtype II-B and II-C loci, the CRISPR array
is transcribed in the opposite direction, starting from the degenerate repeat (Sampson et al., 2013;
Zhang et al., 2013). Accordingly, we attempted to predict the tractrRNA in different positions with
respect to the CRISPR array but were unable to identify additional candidate tracrRNA sequences.
However, not all Class 2 CRISPR systems require tracrRNA for crRNA maturation or effector
function, as demonstrated by the Cpf1 systems (Zetsche et al., 2015a). Effectively identical patterns of
RNA expression and processing were observed when the Aac C2c1 locus was expressed in the

heterologous E. coli system (Figure 2.S7B).

Given the robust expression of the Aac locus and the identification of processed tracrRNA and
crRNAs, we designed an interference screen to determine if the Aac C2cl loci are active and to
identify the protospacer adjacent motif (PAM), which in type II systems dictates where the effector
protein will cleave (Figure 2.3D). Whereas the 3’ PAM screen showed no significant depletion of
PAMs, the 5 PAM library screening resulted in the identification of 364 significantly depleted PAMs
(> 3.5 log: fold depletion) (Figure 2.3E) which all had the sequence NNNNTTN (Figure 2.3F).
Although there was a slight preference for bases other than C in the 5’ position immediately adjacent
to the protospacer, these results indicate that the 5" TTN motif is likely recognized by the AacC2cl
complex. We validated the proposed PAM using the first spacer of the AacC2c1 locus and all four
TTN PAMs. The results of this experiment confirm that a 5 TTN PAM is necessary for interference

and that interference is slightly reduced with the 5’TTC PAM (Figure 2.3G).

2.3.5 C2clis a dual-RNA-guided DNA endonuclease

We then sought to investigate whether C2c1 is an RNA-guided endonuclease, and to determine its

RNA substrate requirements. We assayed in vitro DNA cleavage by incubating target DNA with
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protein lysate from human 293FT cells expressing C2c1 and in vitro transcribed crRNA and putative
tractrRNA (Figure 2.4A). We designed crRNAs corresponding to the mature processed form that
consisted of a 22-nt DR followed by a 20-nt spacer targeting a sequence from the human EMXI locus.
To test cleavage of the EMXI target DNA, we used PCR to amplify a ~600 bp fragment containing
the same DNA target site as the EMXI-targeting ctrRNA. A. acidoterrestris optimally grows at 50°C
(Chang and Kang, 2004), and we observed most efficient AacC2c1-mediated RNA-guided, crRNA-
specific and tracrRNA-dependent cleavage of the target DNA at 50°C (Figure 2.4B).

Because RNA-seq experiments identified putative tracrRNA transcripts of variable size (Figure 2.3A),
we tested a series of 3’-truncated tracrRNAs and found that the shortest tracrRNA capable of
supporting RNA-guided cleavage using C2c1 cell lysate was 78-nt in length (Figure 2.4C). Using this
minimal tracrRNA, we showed that 50°C is indeed the optimal cleavage temperature and that there
is no observable cleavage below 40°C (Figure 2.4D). To further validate the PAM requirements of
C2c1, we designed a second crRNA targeting the protospacer-1 of the endogenous AacC2c1 CRISPR
array (Figure 2.3F) and found that linear DN A molecules containing protospacer-1 preceded by TTT,
TTA, and TTC PAMs but not GGA were efficiently cleaved (Figure 2.4E).

Given the demonstration that AacC2cl is a dual-RNA-guided endonuclease, we hypothesized that,
similar to Cas9 (Jinek etal., 2012), the C2c1 crRNA:tracrRNA duplex could be simplified into a single-
guide RNA (sgRNA) by fusing the 3’ end of the 78-nt tracrRNA with the 5’ end of the crRNA (Figure
2.4F). Target cleavage activity similar to that obtained with the crRNA:tracrRNA duplex was
observed for the sgRNA with both the EMX1 and protospacer-1 plasmid targets (Figure 2.4G). Thus,
these experiments demonstrate that the lysate of human cells expressing C2c1 can cleave taréet DNA,
identify the temperature optimum of the enzyme and demonstrate the requirement for a
crRNA:tracrRNA duplex and 5 PAM for AacC2cl nuclease activity, in contrast to Cas9 which
requires a 3’ PAM (Jinek et al., 2012; Mojica et al., 2009) .

To validate the results obtained with heterologous expression and expand the findings to other type
V-B systems, we screened the C2cl locus from Bacillus thermoamylovorans (Bth). Whole-
transcriptome sequencing of a synthesized BthC2c1 locus cloned into pET-28 in E. coli revealed strong

processing of both spacers present in the array, as well as expression of a 91-nt RNA (Figure 2.S7C)
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that displayed secondary structure and repeat-anti-repeat base-paring similar to the putative Aac
tracrRNA (Figure 2.S7D). To test for interference, we transformed the PAM library with the
corresponding spacer into E. coli harboring the BthC2c1 locus and compared depletion to pET-28. In
agreement with the results obtained for AacC2c1, this screen showed that BthC2c1 employs a 5’ PAM

with the consensus sequence ATTN (Figure 2.S7E).
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Figure 2.4: Characterization of the cleavage requirements of A. acideoterrestris C2cl.
(A) Schematic of the AacC2c1 crRNA and tracrRNA design hybridizing to the EMX1 target
site.

(B) In vitro cleavage of the EMX1 target with the human cell lysate expressing AacC2c1 shows
that in vitro targeting of AacC2cl1 is robust and depends on tracrRNA. Non-targeting crRNA
(crRNA 2) fails to cleave the EMX1 target, whereas crRNA 1 targeting EMX1 enabled strong
cleavage in the presence of Mg++ and weak cleavage in the absence of Mg++.

(C) In vitro cleavage of the EMXI1 target in the presence of a range of tracrRNA lengths
identifies the 78 nt species as the minimal tractrRNA form, with increased cleavage efficiency

for the 91nt form.
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(D) Analysis of the temperature dependency of the in vitro cleavage of the EMX1 target shows
that the optimal temperature range of robust AacC2c1 cleavage is between 40°C and 55°C
(E) In vitro validation of the AacC2c1 PAM requirements with four different PAMs. The
PAM:s matching the TTN motif are efficiently cleaved.

(F) Schematic of the chimeric AacC2c1 sgRNA shown hybridized to the EMX1 DNA target
with repeat:anti-direct pairing between segments derived from the tracrRNA (red) and the
crRNA (green)

(G) Comparison of the in vitro target cleavage in the presence of crRNA-tracrRNA AacC2cl

and sgRNA identifies comparable cleavage efficiencies.

2.3.6 Type VI C2c2 systems produce mature crRNA without tracrRNA

Using a similar approach, we investigated the functionality of the C2c2 loci. We synthesized the C2c2
locus of Listeria seeligeri serovar 1/2b str. SLCC3954 (Lse) and expressed it in E. coli. We observed a
high level of expression and the formation of crRNAs with a 5° 29-nt DR and 15-18-nt spacers (Figure
2.5A). In contrast to the C2cl loci, although this C2c2 locus contains a predicted tracrRNA (Figure
2.51C), we did not observe its expression (Figure 2.5A). Thus, the secondary structure present in the
pre-crRNA of this C2¢2 locus could be sufficient for processing yielding the mature crRNA as well as
crRNA loading onto the C2c2 protein. The RNA-folding of the processed crRNA shows a strongly
predicted stem-loop within the direct repeat that might serve as a handle for the C2c2 protein (Figure
2.5A). In addition, we expressed the Leptotrichia shahii str. SLCC3954 C2¢2 locus in E. coli and found
that the CRISPR array is expressed and processed into 44-nt crRNAs (Figure 2.5B). We then used
RNAseq to compare the expression of the L. shahii C2c1 locus in the endogenous and heterologous
systems and in both cases, detected abundant, mature crRNA species but no tracrRNA (Figure
2.S7F,G). An additional, uncharacterized small RNA was expressed in the vicinity of the CRISPR
array in L. shahii (Figure 2.S7F) but not in E. coli cells (Figure 2.S7G). In silico folding of the crRNA
predicted secondary structure that was highly similar to that in L. seeligeri (Figure 2.S7F). However,
co-folding with the highly expressed small RNA showed no stable structure or significant
complementarity (not shown). The functional relevance of this RNA species in the C2c2 system

remains to be determined.
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Listeria seeligeri serovar 1/2b str. SLCC3954 locus expressed in E. coli
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Figure 2.5: Expression and processing of C2c2 loci.

(A) RNA-sequencing of the Listeria seeligeria serovar 1/2b str. SLCC3954 C2c2 locus (see also
Figures 2.S7F and 2.S7G).

(B) Northern blot analysis of the Leptotrichia shahii DSM 19757 shows processed crRNAs with

a 5" DR. Arrows indicate the probe positions and their directionality.
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2.3.7 The adaptation modules of distinct Class 2 systems evolved independently from

different divisions of Class 1 systems

Casl is the most conserved Cas protein (Takeuchi et al., 2012) and the only one for which
comprehensive phylogenetic analysis is feasible (Makarova et al., 2011b; Makarova et al., 2015b). In
the phylogenetic tree of Casl, putative subtype V-B (C2c1) is largely monophyletic and confidently
clusters with type I-U (Figure 2.6). Among all the (putative) CRISPR-Cas loci, only type I-U and C2c1
encode a Cas1-Cas4 fusion. This derived shared character, together with the phylogenetic affinity of
Casl, indicates that the adaptation module of subtype V-B derives from that of type I-U. The type V-
C Casl is the most diverged variant of Casl sequences discovered to date as indicated by the long
branch in the phylogenetic tree (Figure 2.6). In the Casl tree, the type V-C branch is inside subtype
I-B (Figure 2.6) although the position of such a fast evolving group should be taken with caution. The
type VI Casl proteins are distributed among two clades. The first clade includes Cas1 from Leptotrichia
and is located within the type Il subtree along with a small type III-A branch. The second clade
consists of Casl proteins from C2c2 loci of Clostridia and belongs to a mixed branch that mostly
contains Casl proteins of type III-A (Figure 2.6). Although Cas2 is a small and relatively poorly
conserved protein, for which a reliable phylogeny is difficult to obtain, all available data point to
coevolution of cas! and cas2 (Chylinski et al., 2014; Norais et al., 2013). Thus, the adaptation modules

of the new Class 2 CRISPR-Cas systems apparently come from different variants of Class 1.
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Figure 2.6: Phylogenetic tree of Casl.

The tree was constructed from a multiple alignment of 1498 Casl sequences which contained 304
phylogenetically informative positions. Branches, corresponding to Class 2 systems are highlighted:
cyan, type II; orange, subtype V-A; red, subtype V-B; brown, subtype V-C; purple, type VI. Insets
show the expanded branches of the novel (sub)types. The bootstrap support values are given as
percentage points and shown only for few relevant branches. The complete tree with species names
and bootstrap support values is available in Figure S7; the underlying alignment is available at
ftp://ftp.ncbi.nih.gov/pub/wolf/_suppl/Class2/ (FASTA format).

See also Supplemental Experimental Procedures.
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2.4 Discussion

Despite intense efforts to characterize the CRISPR-Cas systems, major aspects of the basic biology,
diversity, and evolution of this remarkable defense strategy remain unknown. We describe here the
discovery of three distinct Class 2 CRISPR-Cas systems, C2c1 and C2c¢3 (subtypes of the previously
described putative type V), and C2c2 (putative type VI). Type V effector proteins resemble Cas9 in
their overall domain architecture but contain only a single nuclease domain, the RuvC-like domain.
The type V effector Cpfl was recently shown to cleave double-stranded DNA, indicating that these
enzymes use a different mechanism than Cas9 (Zetsche et al., 2015a). Type VI CRISPR-Cas systems
contain a unique effector protein with two predicted HEPN domains, which typically possess RNAse
activity (Anantharaman et al., 2013), suggesting that they might target and cleave mRNA. RNA
cleavage has been reported for certain type IIl CRISPR-Cas systems (Hale et al., 2014; Hale et al., 2009;
Peng et al., 2015). Alternatively, C2c2 could be the first DNase in the HEPN superfamily, perhaps

with the two HEPN domains each cleaving one DNA strand.

We showed that two C2c1 CRISPR arrays are expressed, processed into mature crRNAs, and capable
of interference in E. coli. These experiments reveal distinct characteristics of the C2c1 loci including:
(i) a 5 processed DR in the crRNA, (ii) a 5 PAM, and (iii) a putative tracrRNA. The AT-rich PAM
of C2c1 contrasts with the GC-rich PAMs of Cas9. Using expression of C2c1 in a human cell culture,
we show that a tracrRNA is essential for in vitro cleavage of target DNA. This feature is in sharp
contrast to the recently characterized Cpfl nuclease (Zetsche et al., 2015a), which does not require a
tracrRNA for DNA cleavage. These findings show that, despite their common overall layout, Class 2

CRISPR-Cas systems substantially differ in their requirements for PAM and tracrRNA.

We also showed that when the C2c2 locus from L. seeligeri is expressed in E. coli, it is processed into
crRNAs containing a 29-nt 5’ DR; similar results were obtained for the C2c2 locus of L. shahii. In this
case, the degenerate repeat is at the beginning of the array, rather than at the end, as in most other
CRISPR arrays, and the array and cas genes are transcribed co-directionally. We did not detect a

putative tracrRNA in the C2c2 RNA-seq data. The predicted secondary structure of the 29-nt DR
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shows a stable hairpin handle which could be important for complex formation with the C2c2 effector

protein. Together, these results strongly suggest that C2c2 loci are functionally active.

The discovery of three distinct Class 2 CRISPR-Cas systems combined with the results of previous
analyses (Chylinski et al., 2014; Makarova et al., 2011b) reveals a dominant theme in their evolution.
The effector proteins of two of the three types within this class appear to have evolved from a pool
of transposable elements that encode TnpB proteins containing the RuvC-like nuclease domain. Cas9,
the effector protein of type II systems, seems to be derived from a family of TnpB-like proteins with
an HNH nuclease insert that is particularly abundant in Cyanobacteria (Chylinski et al., 2014). By
contrast, it is hardly possible to trace Cpf1, C2c1, and C2c3 to a specific TnpB group; however, given
that they contain distinct insertions between the RuvC-motifs and apparently unrelated N-terminal
regions, the effector proteins of each subtype of type V likely evolved independently from different

TnpB proteins.

The TnpB proteins seem to be “predesigned” for utilization in Class 2 CRISPR-Cas effector complexes,
perhaps stemming from their predicted ability to cut single-stranded DNA while bound to an RNA
molecule via the R-rich bridge helix, which in Cas9 has been shown to bind crRNA (Anders et al.,

2014; Nishimasu et al., 2014).

With regard to the origin of the putative type VI systems, although HEPN domains so far have not
been detected in bona fide transposons, they are characterized by high horizontal mobility and are
integral to certain mobile elements such as toxin-antitoxin units (Anantharaman et al., 2013). Thus,
type VI systems seem to fit the paradigm of the modular evolution of Class 2 CRISPR-Cas from
mobile components. Given that the C2c2 protein is unrelated to the other Class 2 effectors, the

discovery of type VI seems to clinch the case for the independent origins of different Class 2 variants.

In view of the emerging scenario of the evolution of Class 2 systems from mobile elements, it is
instructive to examine the overall evolution of CRISPR-Cas loci and the contributions of mobile
elements (Figure 2.7). The ancestral adaptive immunity system most likely originated via the
insertion of a casposon (a Cas1-encoding transposon) next to a locus that encoded a primitive innate

immunity system (Koonin and Krupovic, 2015; Krupovic et al., 2014). An additional important
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contribution was the incorporation of a toxin-antitoxin system that delivered the cas2 gene, either in
the ancestral casposon or in the evolving adaptive immunity locus. Given the wide spread of Class 1
systems in archaea and bacteria and the proliferation of the ancient RRM (RNA Recognition Motif)
domains in them, there is little doubt that the ancestral system was of Class 1. The different types and
subtypes of Class 2 then evolved via multiple substitutions of the gene block encoding the Class 1
effector complexes via insertion of transposable elements encoding various nucleases. This direction
of evolution follows from the observation that the adaptation modules of different Class 2 variants

derive from different Class 1 types (Figure 2.6).
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Figure 2.7: Evolutionary scenario for the CRISPR-Cas systems.

The scenario is a synthesis of the present and previous analyses (Chylinski et al., 2014;
Makarova et al., 2011a; Makarova et al., 2015b; Makarova et al., 2013). The Cas8 protein is
hypothesized to have evolved by inactivation of Cas10 (shown by white X) which was
accompanied by a major acceleration of evolution. Abbreviations: TR, terminal repeats; TS,
terminal sequences; HD, HD family endonuclease; HNH, HNH family endonuclease; RuvC,
RuvC family endonuclease; HEPN, putative endoribonuclease of HEPN superfamily. Genes
and portions of genes shown in gray denote sequences that are thought to have been encoded
in the respective mobile elements but were eliminated in the course of evolution of CRISPR-

Cas systems.
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Strikingly, Class 2 CRISPR-Cas systems appear to have been completely derived from different
mobile elements. There seem to have been at least two (subtype V-C) but typically, three or, for type
II, even four mobile element contributors: (i) the ancestral casposon, (ii) the toxin-antitoxin module
that gave rise to Cas2, (iii) a transposable element, in many cases a TnpB-encoding one, that was the
ancestor of the Class 2 effector complex, and (iv) for type II, the HNH nuclease that could have been
donated to the ancestral transposon by a group I or group II self-splicing intron (Stoddard, 2005)
(Figure 2.7). The type V-C loci described here encode the ultimate minimalist CRISPR-Cas system,
the only identified one that lacks Cas2; conceivably, the highly diverged subtype V-C Cas1 proteins

are able to form the adaptation complex on their own, without the accessory Cas2 subunit.

Our report here of new varieties of Class 2 CRISPR-Cas systems could be only a sample of the
additional variants that exist in nature, and although most if not all of the new CRISPR-Cas systems
are expected to be rare, they could employ novel strategies and molecular mechanisms, providing a
major resource for versatile applications in genome engineering and biotechnology. That the
development of such new tools is realistic, is demonstrated by the activity of a C2c1nuclease in human
cell lysate described here, and Cpf1-mediated genome editing in human cells (Zetsche et al., 2015a).
In addition, the discovery of new variants will provide direct tests of the modular scenario of the
evolution of CRISPR-Cas systems (Figure 2.7) and shed further light on the function of these diverse

systems.

2.5 Experimental Procedures

2.5.1 Computational sequence analysis

The TBLASTN program with the E-value cut-off of 0.01 and low complexity filtering turned off
parameters was used to search the NCBI W GS database using the Cas1 profile (Makarova et al., 2015b)
as the query. Sequences of contigs or complete genome partitions where a Cas1 hit was identified
were retrieved from the database, and regions 20 kb from the start of the cas! gene and 20 kb from
the end of it were extracted and translated using GeneMarkS (Besemer et al., 2001). Predicted

proteins from each Casl-encoding region were searched against the collection of profiles from the

59



CDD database (Marchler-Bauer et al., 2013) and the specific Cas protein profiles (Makarova et al.,
2015b) using the RPS-BLAST program (Marchler-Bauer et al,, 2002). The previously developed
procedure to assess the completeness and to classify CRISPR-Cas systems into the existing types and
subtypes (Makarova et al., 2015b) was applied to each locus. Partial and/or unclassified loci that
encompassed proteins larger than 500 amino acids were analyzed on a case-by-case basis. Specifically,
each predicted protein encoded in these loci was searched against the NCBI non-redundant (NR)
protein sequence database using PSI-BLAST (Altschul et al., 1997), with a cut-off e-value of 0.01 and
composition based-statistics and low complexity filtering turned off. Each non-redundant protein
identified in this search was searched against the WGS database using the TBLASTN program
(Altschul et al., 1997). The HHpred program was used with default parameters to identify remote
sequence similarity using as the queries all proteins identified in the BLAST searches (Soding et al.,
2006). Multiple sequence alignments were constructed using MUSCLE (Edgar, 2004) and MAFFT
(Katoh and Standley, 2013). Phylogenetic analysis was performed using the FastTree program with
the WAG evolutionary model and the discrete gamma model with 20 rate categories (Price et al,,

2010). Protein secondary structure was predicted using Jpred 4 (Drozdetskiy et al., 2015).

CRISPR repeats were identified using PILER-CR (Edgar, 2007) or, for degenerate repeats,
CRISPRfinder (Grissa et al., 2007). The Mfold program (Zuker, 2003) was used to identify the most
stable structure for the repeat sequences. The CRISPRmap method (Lange et al., 2013) was used for

repeat classification.
The spacer sequences were searched against the NCBI nucleotide NR and WGS databases using

MEGABLAST (Morgulis et al., 2008) with default parameters except that the word size was set at
20.

2.5.2 Bacterial RNA-sequencing

RNA was isolated from stationary phase bacteria by first resuspending the bacteria in TRIzol and
then homogenizing the bacteria with zirconia/silica beads (BioSpec Products) in a BeadBeater

(BioSpec Products) for 7 one-minute cycles. Total RNA was purified from homogenized samples with
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the Direct-Zol RNA miniprep protocol (Zymo), DNase treated with TURBO DNase (Life
Technologies) and 3’ dephosphorylated with T4 Polynucleotide Kinase (New England Biolabs). rRNA
was removed with the bacterial Ribo-Zero rRNA removal kit (Illumina). RNA sequencing libraries
were prepared from rRNA-depleted RNA using a derivative of the previously described CRISPR
RNA sequencing method (Heidrich et al., 2015). Briefly, transcripts were poly-A tailed with E.
coliPoly(A) Polymerase (New England Biolabs), ligated with 5" RNA adapters using T4 RNA Ligase
1 (ssRNA Ligase), High Concentration (New England Biolabs), and reverse transcribed with
AffinityScript Multiple Temperature Reverse Transcriptase (Agilent Technologies). cDNA was PCR

amplified with barcoded primers using Herculase II polymerase (Agilent Technologies) .

2.5.3 RNA-sequencing analysis

The prepared cDNA libraries were sequenced on an MiSeq (Illumina). Reads from each sample were
identified on the basis of their associated barcode and aligned to the appropriate RefSeq reference
genome using BWA (Li and Durbin, 2009). Paired-end alignments were used to extract entire
transcript sequences using Picard tools (http://broadinstitute.github.io/picard) and these sequences
were analyzed using Geneious 8.1.5. All the sequences obtained in this work were deposited in the

Single Read Archive (SRA) database under the accession number PRJNA296743.

2.5.4 PAM Screen

Randomized PAM plasmid libraries were constructed using synthesized oligonucleotides (IDT)
consisting of 7 randomized nucleotides either upstream or downstream of the spacer 1 target. The
randomized ssDNA oligos were made double stranded by annealing to a short primer and using the
large Klenow fragment for second strand synthesis. The dsDNA product was assembled into a
linearized PUC19 using Gibson cloning. Stabl3 E. coli cells were transformed with the cloned
products and more than 107 cells were collected and pooled. Plasmid DNA was harvested using a
Qiagen maxi-prep kit. We transformed 360ng of the pooled library into E. coli cells transformed with
the AacC2c1 locus, BthC2c1 locus, pACYC-184 and pET-28a. After transformation, cells were plated
on ampicillin/chloramphenicol (Aac/pACYC-184) and ampicillin/kanamycin (Bth/pET-28a). After
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16 hours of growth, >4*10° cells were harvested and plasmid DNA was extracted using a Qiagen
maxi-prep kit. The target PAM region was amplified and sequenced using an Illumina MiSeq with

single-end 150 cycles.

2.5.5 PAM validation

Sequences corresponding to both PAMs non-PAMs were cloned into digested pUC19 and ligated
with T4 ligase (Enzymatics). Competent E. coli with either the AacC2c1 locus plasmid or pACYC184
control plasmid were transformed with 20ng of PAM plasmid and plated on LB agar plates
supplemented with ampicillin and chloramphenicol. After 18 hours, colonies were counted with

OpenCFU (Geissmann 2013).

2.5.6 Invitro lysate cleavage assay

Cleavage was performed using the lysate of HEK293 cells expressing C2cl protein at 50°C, unless
otherwise noted, in cleavage buffer (NEBuffer 3, 5mM DTT) for 1 hour. Each cleavage reaction used
200ng of target DNA and an equimolar ratio of crRNA:tracrRNA (500ng of crRNA). The RNA was
pre-annealed by heating to 95°C and slowly cooling to 4°C. Target DNA consisted of either genomic
PCR amplicons from the EMXI gene or the first protospacer of the AacC2c1 locus cloned into pUC19.
The pUC19 protospacer construct was linearized by Bsal digestion prior to the cleavage reaction.
Reactions were cleaned up using PCR purification columns (Qiagen) and run on 2% agarose E-gels

(Life Technologies).
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Chapter 3

C2c2 is a single-component programmable RNA -
guided RNA-targeting CRISPR effector.
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3.1 Abstract

The CRISPR-Cas adaptive immune system defends microbes against foreign genetic elements
via DNA or RNA-DNA interference. We characterize the Class 2 type VI-A CRISPR-Cas
effector C2c2 and demonstrate its RNA-guided RNase function. C2c2 from the bacterium
Leptotrichia shahii provides interference against RNA phage. In vitro biochemical analysis show
that C2c2 is guided by a single crRNA and can be programmed to cleave ssRNA targets
carrying complementary protospacers. In bacteria, C2¢c2 can be programmed to knock down
specific mRNAs. Cleavage is mediated by catalytic residues in the two conserved HEPN
domains, mutations in which generate catalytically inactive RNA-binding proteins. These
results broaden our understanding of CRISPR-Cas systems and suggest that C2c2 can be used

to develop new RNA-targeting tools.

3.2 Introduction

Almost all archaea and about half of bacteria possess Clustered Regularly Interspaced Short
Palindromic Repeats and CRISPR-associated genes (CRISPR-Cas) adaptive immune systems
(Makarova et al., 2011b; Makarova et al., 2015a), which protect microbes from viruses and other
invading DNA through three steps: (i) adaptation, i.e., insertion of foreign nucleic acid segments
(spacers) into the CRISPR array in between pairs of direct repeats (DRs), (ii) transcription and
processing of the CRISPR array to produce mature CRISPR RNAs (crRNAs), and (iii) interference,
whereby Cas enzymes are guided by the crRNAs to target and cleave cognate sequences in the
respective invader genomes (Marraffini, 2015; van der Oost et al., 2009; Wright et al., 2016). All
CRISPR-Cas systems characterized to date follow these three steps, although the mechanistic

implementation and proteins involved in these processes display extensive diversity.

The CRISPR-Cas systems are broadly divided into two classes on the basis of the architecture of the
interference module: Class 1 systems rely on multi-subunit protein complexes whereas Class 2
systems utilize single effector proteins (Makarova et al., 2015a). Within these two classes, types and
subtypes are delineated according to the presence of distinct signature genes, protein sequence

conservation, and organization of the respective genomic loci. Class 1 systems include type I, where
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interference is achieved through assembly of multiple Cas proteins into the Cascade complex, and
type III systems, which rely on either the Csm (type III-A/D) or Cmr (Type III-B/C) effector
complexes which are distantly related to the Cascade (Brouns et al., 2008; Hale et al., 2009; Jackson et
al,, 2014; Makarova et al., 2015a; Marraffini and Sontheimer, 2008; Mulepati et al., 2014; Sinkunas et
al,, 2013).

Class 2 CRISPR systems comprise type II, characterized by the single-component effector protein
Cas9 (Barrangou et al., 2007; Deltcheva et al., 2011; Garneau et al., 2010; Gasiunas et al., 2012; Jinek
etal., 2012; Sapranauskas et al., 2011), which contains RuvC and HNH nuclease domains, and type V
systems, which utilize single RuvC domain-containing effectors such as Cpf1 (Zetsche et al., 2015b),
C2cl, and C2c3 (Shmakov et al,, 2015). All functionally characterized systems, to date, have been
reported to target DNA, and only the multi-comPonent type III-A and III-B systems additionally
target RNA (Hale et al., 2012; Hale et al., 2009; Jiang et al., 2016; Samai et al., 2015; Staals et al., 2013;
Staals et al., 2014; Tamulaitis et al., 2014). However, the putative Class 2 type VI system is
characterized by the presence of the single effector protein C2c2, which lacks homology to any known
DNA nuclease domain but contains two Higher Eukaryotes and Prokaryotes Nucleotide-binding
(HEPN) domains (Shmakov et al., 2015). Given that all functionally characterized HEPN domains are
RNases (Anantharaman et al., 2013), there is a possibility that C2c2 functions solely as an RNA-
guided RNA-targeting CRISPR effector.

HEPN domains are also found in other Cas proteins. Csmé6, a component of type III-A systems, and
the homologous protein Csx1, in type III-B systems, each contain a single HEPN domain and have
been biochemically characterized as ssRNA-specific endoribonucleases (Jiang et al., 2016;
Niewoehner and Jinek, 2016; Sheppard et al., 2016). In addition, type III systems contain complexes
of other Cas enzymes that bind and cleave ssSRNA through acidic residues associated with RNA-
recognition motif (RRM) domains. These complexes (Cas10-Csm in type III-A and Cmr in type III-
B) carry out RNA-guided co-transcriptional cleavage of mRNA in concert with DNA target cleavage
(Deng et al., 2013; Goldberg et al., 2014; Samai et al., 2015). In contrast, the roles of Csmé6 and Csx1,
which cleave their targets with little specificity, are less clear, although in some cases, RNA cleavage
by Csmé apparently serves as a second line of defense when DNA targeting fails (Jiang et al., 2016).

Additionally, Csmé6 and Csx1 have to dimerize to form a composite active site (Kim et al., 2013;
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Niewoehner and Jinek, 2016; Sheppard et al., 2016), but C2c2 contains two HEPN domains,

suggesting that it functions as a monomeric endoribonuclease.

As is common with Class 2 systems, type VI systems are simply organized. In particular, the type VI
locus in Leptotrichia shahii contains Casl, Cas2, C2c2 and a CRISPR array, which is expressed and
processed into mature crRNAs (Shmakov et al., 2015). In all CRISPR-Cas systems characterized to
date, Casl and Cas2 are exclusively involved in spacer acquisition (Datsenko et al., 2012; Diez-
Villasenor et al., 2013; Heler et al., 2015; Nunez et al., 2014; Nunez et al., 2015; Yosef et al., 2012),
suggesting that C2c2 is the sole effector protein which utilizes a crRNA guide to achieve interference,

likely targeting RNA.

3.3 Results

3.3.1 Reconstitution of L. shahii C2c2 locus in Escherichia coli confers RNA-guided immunity

We explored whether LshC2c2 could confer immunity to MS2 (Tamulaitis et al., 2014), a lytic single-
stranded (ss) RNA phage, without DNA intermediates in its life cycle, that infects E. coli. We
constructed a low-copy plasmid carrying the entire LshC2c2 locus (pLshC2c2) to allow for
heterologous reconstitution in E. coli (fig. 3.S1A). Because expressed mature crRNAs from the
LshC2c2 locus have a maximum spacer length of 28nt (fig. 3.S1A) (Shmakov et al., 2015), we tiled all
possible 28-nt target sites in the MS2 phage genome (Fig. 3.1A). This resulted in a library of 3,473
spacer sequences (along with 490 non-targeting guides designed to have a Levenshtein distance of >8
with respect to the MS2 and E. coli genomes) which we inserted between pLshC2c2 direct repeats
(DRs). After transformation in of this construct into E. coli, we infected cells with varying dilutions
of MS2 (107!, 10, and 1075) and analyzed surviving cells to determine the spacer sequences carried
by cells that survived the infection. Cells carrying spacers that confer robust interference against MS2
are expected to proliferate faster than those that lack such sequences. Following growth for 16 hours,
we identified a number of spacers that were consistently enriched across three independent infection
replicas in both the 10" and 1073 dilution conditions, suggesting that they enabled interference against

MS2. Specifically, 147 and 150 spacers showed >1.25 logz-fold enrichment in all three replicates for
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the 10"' and 107 phage dilutions, respectively; of these two groups of top enriched spacers, 84 are
shared (Figs. 3.1B, 3.S2A-G). Additionally, no non-targeting guides were found to be consistently
enriched among the three 10!, 107, or 10~ phage replicates (fig. 3.52D, G). We also analyzed the
flanking regions of protospacers on the MS2 genome corresponding to the enriched spacers and
found that spacers with a G immediately flanking the 3’ end of the protospacer were less fit relative
to all other nucleotides at this position (i.e. A, U, or C), suggesting that the 3’ protospacer flanking
site (PFS) affects the efficacy of C2c2-mediated targeting (Figs. 3.1C, 3.S2E-F, 3.S3). Although the
PFS is adjacent to the protospacer target, we chose not to use the commonly used protospacer adjacent
motif (PAM) nomenclature as it has come to connote a sequence used in self vs. non-self
differentiation (Marraffini and Sontheimer, 2010b), which is irrelevant in a RNA-targeting system.
It is worth noting that the avoidance of G by C2c2 echo the absence of PAMs applicable to other
RNA-targeting CRISPR systems and effector proteins (Hale et al., 2014; Hale et al., 2012; Samai et al,,
2015; Staals et al., 2014; Tamulaitis et al., 2014; Zhang et al., 2012).

The fact that only ~5% of crRNAs are enriched may reflect other factors influencing interference
activity, such as accessibility of the target site that might be affected by RNA binding proteins or
secondary structure. In agreement with this hypothesis, the enriched spacers tend to cluster into
regions of strong interference where they are closer to each other than one would expect by random

chance (fig. 3.S3F-G).

To validate the interference activity of the enriched spacers, we individually cloned four top-enriched
spacers into pLshC2c2 CRISPR arrays and observed a 3- to 4-logio reduction in plaque formation,
consistent with the level of enrichment observed in the screen (Figs 3.1B, 3.S4). We cloned sixteen
guides targeting distinct regions of the MS2 mat gene (4 guides per possible single-nucleotide PFS).
All 16 crRNAs mediated MS2 interference, although higher levels of resistance were observed for the
C, A, and U PFS-targeting guides (Figs. 3.1D, 3.1E, 3.S5), indicating that C2c2 can be effectively

retargeted in a crRNA-dependent fashion to sites within the MS2 genome.

To further validate the observed PFS preference with an alternate approach, we designed a
protospacer site in the pUC19 plasmid at the 5 end of the f-lactamase mRNA, which encodes

ampicillin resistance in E. coli, flanked by five randomized nucleotides at the 3’ end. Significant
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depletion and enrichment was observed for the LshC2c2 locus (****, p<0.0001) compared to the
pACYC184 controls (Fig. 3.56A). Analysis of the depleted PFS sequences confirmed the presence of
a PFS preference of H (Fig. 3.S6B).
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Figure 3.1: Heterologous expression of the Leptotrichia shahii C2c2 locus mediates
robust interference of RNA phage in Escherichia coli.

A) Schematic for the MS2 bacteriophage interference screen. A library consisting of spacers
targeting all possible sequences in the MS2 RNA genome was cloned into the LshC2c2
CRISPR array. Cells transformed with the MS2-targeting spacer library were then treated
with phage and plated, and surviving cells were harvested. The frequency of spacers was
compared to an untreated control (no phage), and enriched spacers from the phage-treated
condition were used for the generation of PFS preference logos.

B) Box plot showing the distribution of normalized crRNA frequencies for the phage-treated
conditions and control screen (no phage) biological replicates (n = 3). The box extends from

the first to third quartile with whiskers denoting 1.5 times the interquartile range. The mean

68



is indicated by the red horizontal bar. The 107! and 10 phage dilution distributions are
significantly different than each of the control replicates (***¥, p < 0.0001 by ANOVA with
multiple hypothesis correction).

C) Sequence logo generated from sequences flanking the 3’ end of protospacers corresponding
to enriched spacers in the 10! phage dilution condition, revealing the presence of a 3’ H PFS
(not G).

D) Plaque assay used to validate the functional significance of the H PFS in MS2 interference. All
protospacers flanked by non-G PFSs exhibited robust phage interference. Spacer were
designed to target the MS2 mat gene and their sequences are shown above the plaque images;
the spacer used in the non-targeting control is not complementary to any sequence in either
the E. coli or MS2 genome. Phage spots‘were applied as series of half-log dilutions.

E) Quantitation of MS2 plaque assay validating the H (non-G) PFS preference. 4 MS2-targeting
spacers were designed for each PFS. Each point on the scatter plot represents the average of
three biological replicates and corresponds to a single spacer. Bars indicate the mean of 4

spacers for each PFS and standard error (s.e.m).

3.3.2 C2c2 is a single-effector endoRNase mediating ssRNA cleavage with a crRNA guide

We purified the LshC2c2 protein (fig. 3.S7) and assayed its ability to cleave an in vitro transcribed
173-nt ssRNA target (Figs. 3.2A, 3.S8) containing a C PFS (ssRNA target 1 with protospacer 14).
Mature LshC2c2 crRNAs contain a 28-nt direct repeat (DR) and a 28 nt spacer (fig. 3.S1A) (Shmakov
et al, 2015). We therefore generated an in-vitro-transcribed crRNA with a 28-nt spacer
complementary to protospacer 14 on ssRNA target 1. LshC2c2 efficiently cleaved ssRNA in a Mg?*-
and crRNA-dependent manner (Figs. 3.2B, 3.59). We then annealed complementary RNA oligos to
regions flanking the crRINA target site. This partially double-stranded RNA substrate was not cleaved
by LshC2c2, suggesting it is specific for ssRNA (figs. 3.S10A-B).

We tested the sequence constraints of RNA cleavage by LshC2c2 with additional crRNAs

complementary to ssRNA target 1 where protospacer 14 is preceded by each PFS variant. The results

of this experiment confirmed the preference for C, A, and U PFSs, with little cleavage activity detected
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for the G PFS target (Fig. 3.2C). Additionally, we designed 5 crRNAs for each possible PFS (20 total)
across the ssRINA target 1 and evaluated cleavage activity for LshC2c2 paired with each of these
crRNAs. As expected, we observed less cleavage activity for G PFS-targeting crRNAs compared to

other crRNAs tested (Fig. 3.2D).
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Figure 3.2: LshC2c2 and crRNA mediate RNA-guided ssRNA cleavage

A) Schematic of the ssRNA substrate being targeted by the crRNA. The protospacer region is
highlighted in blue and the PFS is indicated by the magenta bar.

B) A denaturing gel demonstrating crRNA-mediated ssSRNA cleavage by LshC2c2 after 1 hour
of incubation. The ssRNA target is either 5’ labeled with IRDye 800 or 3’ labeled with Cy5.
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Cleavage requires the presence of the crRNA and is abolished by addition of EDTA. Four
cleavage sites are observed. Reported band lengths are matched from RNA sequencing.

C) A denaturing gel demonstrating the requirement for an H PFS (not G) after 3 hours of
incubation. Four ssRNA substrates that are identical except for the PFS (indicated by the
magenta X in the schematic) were used for the in vitro cleavage reactions. ssRNA cleavage
activity is dependent on the nucleotide immediately 3’ of the target site. Reported band lengths
are matched from RNA sequencing.

D) Schematic showing five protospacers for each PFS on the ssRNA target (top). Denaturing gel
showing crRNA-guided ssRNA cleavage activity after 1 hour of incubation. crRNAs
correspond to protospacer numbering. Reported band lengths are matched from RNA

sequencing.

We then generated a dsDNA plasmid library with protospacer 14 flanked by 7 random nucleotides to
account for any PFS preference. When incubated with LshC2c2 protein and a crRNA complementary
to protospacer 14, no cleavage of the dsDNA plasmid library was observed (fig. 3.5S10C). We also did
not observe cleavage when targeting a ssDNA version of ssRNA target 1 (fig. 3.510D). To rule out
co-transcriptional DNA cleavage, which has been observed in type III CRISPR-Cas systems (Samai
et al,, 2015), we recapitulated the E. coli RNA polymerase co-transcriptional cleavage assay (Samai et
al., 2015) (fig. 3.S11A) expressing ssRNA target 1 from a DNA substrate. This assay of purified
LshC2c2 and crRINA targeting ssRNA target 1 did not show any DNA cleavage (fig. 3.511B). Together,
these results indicate that C2c2 cleaves specific ssRNA sites directed by the target complementarity

encoded in the crRNA, with a H PFS preference.

3.3.3 C2c2 cleavage depends on local target sequence and secondary structure

Given that C2c2 did not efficiently cleave dsRNA substrates and that ssSRNA can form complex
secondary structures, we reasoned that cleavage by C2c¢2 might be affected by secondary structure of
the ssRNA target. Indeed, after tiling ssRNA target 1 with different crRNAs (Fig. 3.2D), we observed
the same cleavage pattern regardless of the crRNA position along the target RNA. This observation

suggests that the crRNA-dependent cleavage pattern was determined by features of the target
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sequence rather than the distance from the binding site. We hypothesized that the LshC2c2-crRNA
complex binds the target and cleaves exposed regions of ssSRNA within the secondary structure

elements, with potential preference for certain nucleotides.

In agreement with this hypothesis, cleavage of three ssRNA targets with different sequences flanking
identical 28-nt protospacers resulted in three distinct patterns of cleavage (Fig. 3.3A). RNA-
sequencing of the cleavage products for the three targets revealed that cleavage sites mainly localized
to uracil-rich regions of ssSRNA or ssRNA-dsRNA junctions within the in silico predicted co-folds of
the target sequence with the crRNA (Figs. 3.3B-C, 3.S12A-D). To test whether the LshC2c2-crRNA
complex prefers cleavage at uracils, we analyzed the cleavage efficiencies of homopolymeric RNA
targets (a 28-nt protospacer extended with 120 As or Us regularly interspaced by single bases of G or
C to enable oligo synthesis) and found that LshC2c2 preferentially cleaved the uracil target compared
to adenine (figs. 3.S12E, 3.S12F). We then tested cleavage of a modified version of ssRNA 4 which
had its main site of cleavage, a loop, replaced with each of the four possible homopolymers and found
that cleavage only occurred at the uracil homopolymer loop (fig. 3.512G). To further test whether
cleavage was occurring at uracil residues, we mutated single uracil residues in ssRNA 1 that showed
cleavage in the RNA-sequencing (Fig. 3.3B) to adenines. This experiment showed that, by mutating
each uracil residue, we could modulate the presence of a single cleavage band, consistent with

LshC2c2 cleaving at uracil residues in ssRNA regions (Fig. 3.3D).
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non-homopolymeric ssRNA targets (1, 4, 5; black, blue and green on figs 3B-C and S12A-D
respectively) that share the same protospacer but are flanked by different sequences. Despite

identical protospacers, different flanking sequences resulted in different cleavage patterns.
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Denaturing gel showing C2c2-crRNA-mediated cleavage after 3 hours of incubation of three

Reported band lengths are matched from RNA sequencing.

B) The cleavage sites of non-homopolymer ssRNA target 1 were mapped with RNA-sequencing
of the cleavage products. The frequency of cleavage at each base is colored according to the z-
score and shown on the predicted crRNA-ssRNA co-fold secondary structure. Fragments
used to generate the frequency analysis contained the complete 5’ end. The 5’ and 3’ end of
the ssRNA target are indicated by blue and red outlines, on the ssRNA and secondary

structure, respectively. The 5" and 3’ end of the spacer (outlined in yellow) is indicated by the
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blue and orange residues highlighted respectively. The crRNA nucleotides are highlighted in
orange.

C) Plot of the frequencies of cleavage sites for each position of ssRNA target 1 for all reads that
begin at the 5’ end. The protospacer is indicated by the blue highlighted region.

D) Schematic of a modified ssSRNA 1 target showing sites (red) of single U to A flips (left).
Denaturing gel showing C2c2-crRNA mediated cleavage of each of these single nucleotide
variants after 3 hours of incubation (right). Reported band lengths are matched from RNA

sequencing.

3.3.4 The HEPN domains of C2c2 mediate RNA-guided ssRNA-cleavage

Bioinformatic analysis of C2c2 has suggested that the HEPN domains are likely to be responsible for
the observed catalytic activity (Shmakov et al., 2015). Each of the two HEPN domains of C2c2
contains a dyad of conserved arginine and histidine residues (Fig. 3.4A), in agreement with the
catalytic mechanism of the HEPN endoRNAse (Anantharaman et al., 2013; Niewoehner and Jinek,
2016; Sheppard et al., 2016). We mutated each of these putative catalytic residues separately to alanine
(R597A,H602A, R1278A, H1283A) in the LshC2c2 locus plasmids and assayed for MS2 interference.

None of the four mutant plasmids were able to protect E. coli from phage infection (Figs. 3.4B, 3.S13).

We purified the four single-point mutant proteins and assayed their ability to cleave 5-end-labeled
ssRNA target 1 (Fig. 3.4C). In agreement with our in vivo results, all four mutations abolished cleavage
activity. The inability of either of the two wild-type HEPN domains to compensate for inactivation
of the other implies cooperation between the two domains. These results agree with observations
that several bacterial and eukaryotic single-HEPN proteins function as dimers (Kozlov et al., 2011;

Niewoehner and Jinek, 2016; Sheppard et al., 2016).
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Figure 3.4: The two HEPN domains of C2c2 are necessary for crRNA-guided ssRNA

cleavage but not for binding

Schematic of the LshC2c2locus and the domain organization of the LshC2c2 protein, showing
conserved residues in HEPN domains (dark blue).

Quantification of MS2 plaque assay with HEPN catalytic residue mutants. For each mutant,
the same crRNA targeting protospacer 35 was used. (n=3 biological replicates, ****, p <
0.0001 compared to pACYC184 by t-test. Bars represent mean + s.e.m.)

Denaturing gel showing conserved residues of the HEPN motif, indicated as catalytic residues
in panel A, are necessary for crRNA-guided ssRNA target 1 cleavage after 3 hours of
incubation. Reported band lengths are matched from RNA sequencing.

Electrophoretic mobility shift assay (EMSA) evaluating affinity of the wild type LshC2c2-
crRNA complex against a targeted (left) and a non-targeted (right) ssRNA substrate. The non-
targeted ssSRNA substrate is the reverse-complement of the targeted ssRNA 10. EDTA is

supplemented to reaction condition to reduce any cleavage activity.
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E) Electrophoretic mobility shift assay with LshC2c2(R1278A)-crRNA complex against on-

target ssRNA 10 and non-targeting ssRNA (same substrate sequences as in D)

Catalytically inactive variants of Cas9 retain target DNA binding, allowing for the creation of
programmable DNA-binding proteins (Gasiunas et al., 2012; Jinek et al.,, 2012). Electrophoretic
mobility shift assays (EMSA) on both the wild-type (Fig. 3.4D) and R1278A mutant LshC2¢2 (Fig.
3.4E) in complex with crRNA showed the wild-type LshC2¢2 complex binding strongly (Kp ~ 46 nM,
fig. 3.S14A) and specifically to 5-end-labeled ssSRNA target 10 but not to the 5-end-labeled non-
target ssSRNA (the reverse complement of ssRNA target 10). The R1278A mutant C2¢2 complex
showed even stronger (Kp ~ 7 nM, fig. 3.S14B) specific binding, indicating that this HEPN mutation
results in a catalytically inactive, RNA-programmable RNA-binding protein. The LshC2c2 protein
or crRNA alone showed reduced levels of target affinity, as expected (fig. 3.S14C-E). Additionally, no
specific binding of LshC2c2-crRNA complex to ssDNA was observed (fig. 3.S15).

These results demonstrate that C2c2 cleaves RNA via a catalytic mechanism distinct from other
known CRISPR-associated RNases. In particular, the type III Csm and Cmr multiprotein complexes
rely on acidic residues of RRM domains for catalysis, whereas C2c2 achieves RNA cleavage through

the conserved basic residues of its two HEPN domains.

3.3.5 Sequence and structural requirements of C2c2 crRNA

Similar to the type V-B (Cpf1) systems (Zetsche et al., 2015b), the LshC2¢2 crRNA contains a single
stem loop in the direct repeat (DR), suggesting that the secondary structure of the crRNA could
facilitate interaction with LshC2c2. We thus investigated the length requirements of the spacer
sequence for ssSRNA cleavage and found that LshC2c2 requires spacers of at least 22 nt length to
efficiently cleave ssRNA target 1 (fig. 3.S16A). The stem-loop structure of the crRNA is also critical
for ssRNA cleavage, because DR truncations that disturbed the stem loop abrogated target cleavage
(fig. 3.516B). Thus, a DR longer than 24 nt is required to maintain the stem loop necessary for
LshC2c2 to mediate ssRNA cleavage.
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Single base pair inversions in the stem that preserved the stem structure did not affect the activity of
the LshC2c2 complex. In contrast, inverting all four G-C pairs in the stem eliminated the cleavage
despite maintaining the duplex structure (fig. 3.S17A). Other perturbations, such as those that
introduced kinks and reduced or increased base-pairing in the stem, also eliminated or drastically
suppressed cleavage. This suggests that the crRNA stem length is important for complex formation
and activity (fig. 3.517A). We also found that loop deletions eliminated cleavage, whereas insertions
and substitutions mostly maintained some level of cleavage activity (fig. 3.S17B). In contrast, nearly
all substitutions or deletions in the region 3’ to the DR prevented cleavage by LshC2c2 (fig 3.518).
Together, these results demonstrate that LshC2c2 recognizes structural characteristics of its cognate
crRNA but is amenable to loop insertions and most tested base substitutions outside of the 3’ DR
region. These results have implications for the future application of C2c2-based tools that require
guide engineering for recruitment of effectors or modulation of activity (Dahlman et al., 2015; Kiani

etal., 2015; Konermann et al., 2015).

3.3.6 C2c2 cleavage is sensitive to double mismatches in the crRNA-target duplex

We tested the sensitivity of the LshC2c2 system to single mismatches between the crRNA guide and
target RNA by mutating single bases across the spacer to the respective complementary bases (e.g., A
to U). We then quantified plaque formation with these mismatched spacers in the MS2 infection
assay and found that C2c2 was fully tolerant to single mismatches across the spacer as such
mismatched spacers interfered with phage propagation with similar efficiency as fully matched
spacers (figs. 3.519A, 3.520). However, when we introduced consecutive double substitutions in the
spacer, we found a ~3 logio-fold reduction in the protection for mismatches in the center, but not at
the 5'- or 3’-end, of the crRNA (figs. 3.19B, 3.520). This observation suggests the presence of a

mismatch-sensitive “seed region” in the center of the crRNA-target duplex.

We generated a set of in vitro transcribed crRNAs with mismatches similarly positioned across the
spacer region. When incubated with LshC2c2 protein, all single mismatched crRNA supported
cleavage (Fig. 3.519C), in agreement with our in vivo findings. When tested with a set of consecutive

and non-consecutive double mutant crRNAs, LshC2c2 was unable to cleave the target RNA if the
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mismatches were positioned in the center, but not at the 5- or 3-end of the crRNA (Fig. 3.519D,
3.821A), further supporting the existence of a central seed region. Additionally, no cleavage activity

was observed with crRNAs containing consecutive triple mismatches in the seed region (fig. 3.521B).

3.3.7 C2c2 can be reprogrammed to mediate specific nRNA knockdown in vive

Given the ability of C2c2 to cleave target ssRNA in a crRNA sequence-specific manner, we tested
whether LshC2c2 could be reprogrammed to degrade selected non-phage ssRNA targets, and
particularly mRNAs, in vivo. We co-transformed E. coli with a plasmid encoding LshC2c¢2 and a
crRNA targeting the mRNA of red fluorescent protein (RFP) as well as a compatible plasmid
expressing RFP (Fig. 3.5A). For OD-matched samples, we observed an approximately 20% to 92%
decrease in RFP positive cells for crRNAs targeting protospacers flanked by C, A, or U PFSs (Fig.
3.5B, C). As a control, we tested crRNAs containing reverse complements (targeting the dsDNA
plasmid) of the top performing RFP mRNA -targeting spacers. As expected, we observed no decrease
in RFP fluorescence by these crRNAs (Fig. 3.5B). We also confirmed that mutation of the catalytic
arginine residues in either HEPN domain to alanine precluded RFP knockdown (fig. 3.522). Thus,
C2c2 is capable of general retargeting to arbitrary ssRNA substrates, governed exclusively by

predictable nucleic-acid interactions.

When we examined the growth of cells carrying the RFP-targeting spacer with the greatest level of
RFP knockdown, we noted that the growth rate of these bacteria was substantially reduced (Fig. 3.5A,
spacer 7). We investigated whether the effect on growth was mediated by the RFP mRNA-targeting
activity of LshC2c2 by introducing an inducible-RFP plasmid and an RFP-targeting LshC2c2 locus
into E. coli. Upon induction of RFP transcription, cells with RFP knockdown showed substantial
growth suppression, not observed in non-targeting controls (Fig. 3.5D, E). This growth restriction
was dependent on the level of the RFP mRNA, as controlled by the concentration of the inducer
anhydrotetracycline. In contrast, in the absence of RFP transcription, we did not observe any growth
restriction nor did we observe any transcription-dependent DNA targeting in our biochemical
experiment (fig. 3.511). These results indicate that RNA-targeting is likely the primary driver of this

growth restriction phenotype. We therefore surmised that, in addition to the cleavage of the target
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RNA, C2c2 CRISPR systems might prevent virus reproduction also via non-specific cleavage of
cellular mRNAs, causing programmed cell death (PCD) or dormancy (Hayes and Van Melderen, 2011;
Makarova et al., 2009).
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Figure 3.5: RFP mRNA knockdown by retargeting LshC2c2

A) Schematic showing crRNA-guided knockdown of RFP in E. coli heterologously expressing the
LshC2c2 locus. Three RFP-targeting spacers were selected for each non-G PFS and each
protospacer on the RFP mRNA is numbered.

B) RFP mRNA-targeting spacers effected RFP knockdown whereas DNA-targeting spacers
(targeting the non-coding strand of the RFP gene on the expression plasmid, indicated as “rc”
spacers) did not affect RFP expression. (n=3 biological replicates, ****, p < 0.0001 compared
to non-targeting guide by ANOV A with multiple hypothesis correction. Bars represent mean

+sem)
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C) Quantification of RFP knockdown in E. coli. Three spacers each targeting C, U, or A PFS-
flanking protospacers (9 spacers, numbered 5-13 as indicated in panel (A)) in the RFP mRNA
were introduced and RFP expression was measured by flow cytometry. Each point on the
scatter plot represents the average of three biological replicates and corresponds to a single
spacer. Bars indicate the mean of 3 spacers for each PFS and errors bars are shown as the s.e.m.

D) Timeline of E. coli growth assay. |

E) Effect of RFP mRNA targeting on the growth rate of E. coli transformed with an inducible
RFP expression plasmid as well as the LshC2c2 locus with non-targeting, RNA targeting
(spacer complementary to the RFP mRNA or RFP gene coding strand), and pACYC control

plasmid at different anhydrotetracycline (aTc) concentrations.

3.3.8 C2c2 cleaves collateral RNA in addition to crRNA-targeted ssRNA

Cas9 and Cpf1 cleave DNA within the crRNA-target heteroduplex at defined positions, reverting to
an inactive state after cleavage. In contrast, C2c2 cleaves the target RNA outside of the crRNA binding
site at varying distances depending on the flanking sequence, presumably within exposed ssSRNA loop
regions (Figs. 3.3B, 3.3C, 3.S12A-D). This observed flexibility with respect to the cleavage distance
led us to test whether cleavage of other, non-target ssRNAs also occurs upon C2c2 target binding and
activation. Under this model, the C2c2-crRNA complex, once activated by binding to its target RNA,
cleaves the target RNA as well as other RNAs non-specifically. We carried out in vitro cleavage
reactions that included, in addition to LshC2c2 protein, crRNA and its target RNA, one of four
unrelated RNA molecules without any complementarity to the ctrRNA guide (Fig. 3.6A). These
experiments showed that, whereas the LshC2c2-crRNA complex did not mediate cleavage of any of
the four collateral RNAs in the absence of the target RNA, all four were efficiently degraded in the
presence of the target RNA (Figs. 3.6B, 3.523A). Furthermore, R597A and R1278 A HEPN mutants
were unable to cleave collateral RNA (Fig. 3.523B).

To further investigate the collateral cleavage and growth restriction in vivo, we hypothesized that if a

PFS preference screen for LshC2c2 was performed in a transcribed region on the transformed plasmid,

then we should be able to detect the PFS preference due to growth restriction induced by RNA
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targeting. We designed a protospacer site flanked by five randomized nucleotides at the 3’ end in
either a non-transcribed region or in a region transcribed from the lac promoter (fig. 3.524A). The
analysis of the depleted and enriched PFS sequences identified a H PFS only in the assay with the

transcribed sequence but no discernable motif in the non-transcribed sequence (fig. 3.524B-C).
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Figure 3.6: crRNA-guided ssRNA cleavage activates non-specific RNase activity.

A) Schematic of the biochemical assay used to detect crRNA-binding-activated non-specific
RNase activity on non-crRNA-targeted collateral RNA molecules. The reaction consists of
C2c2 protein, unlabeled crRNA, unlabeled target ssRNA, and a second ssRNA with 3’
fluorescent labeling and is incubated for 3 hours. C2c2-crRNA mediates cleavage of the
unlabeled target ssRNA as well as the 3’-end-labeled collateral RNA which has no
complementarity to the crRNA.

B) Denaturing gel showing non-specific RNase activity against non-targeted ssRNA substrates
in the presence of target RNA after 3 hours of incubation. The non-targeted ssRNA substrate

is not cleaved in the absence of the crRNA-targeted ssRNA substrate.

These results suggest a HEPN-dependent mechanism whereby C2c2 in a complex with crRNA is
activated upon binding to target RNA and subsequently cleaves non-specifically other available
ssRNA targets. Such promiscuous RNA cleavage could cause cellular toxicity, resulting in the
observed growth rate inhibition. These findings imply that, in addition to their likely role in direct

suppression of RNA viruses, type VI CRISPR-Cas systems could function as mediators of a distinct
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variety of PCD or dormancy induction that is specifically triggered by cognate invader genomes (Fig.
3.7). Under this scenario, dormancy would slow the infection and supply additional time for adaptive
immunity. Such a mechanism agrees with the previously proposed coupling of adaptive immunity

and PCD during the CRISPR-Cas defensive response (Makarova et al., 2012).
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Figure 3.7: C2c2 as a putative RNA-targeting prokaryotic immune system

The C2c2-crRNA complex recognizes target RNA via base pairing with the cognate
protospacer and cleaves the target RNA. In addition, binding of the target RNA by C2c2-
crRINA activates a non-specific RNase activity which may lead to promiscuous cleavage of
RNAs without complementarity to the crRNA guide sequence. Through this non-specific
RNase activity, C2c2 may also cause abortive infection via programmed cell death or

dormancy induction.
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3.4 Discussion

In summary, the Class 2 type VI effector protein C2c2 is an RNA-guided RNase that can be efficiently
programmed to degrade any ssRNA by specifying a 28-nt sequence on the crRNA (Fig. 3.7). C2c2
cleaves RNA through conserved basic residues within its two HEPN domains, in contrast to the
catalytic mechanisms of other known RNases found in CRISPR-Cas systems (Benda et al., 2014;
Tamulaitis et al., 2014). Alanine substitution of any of the four predicted HEPN domain catalytic
residues converted C2c2 into an inactive programmable RN A-binding protein (dC2c2, analogous to
dCas9). Many different spacer sequences work well in our assays although further screening will likely

define properties and rules governing optimal function.

These results suggest a broad range of biotechnology applications and research questions (Abil and
Zhao, 2015; Filipovska and Rackham, 2011; Mackay et al., 2011). For example, the ability of dC2c2 to
bind to specified sequences could be used to (i) bring effector modules to specific transcripts to
modulate their function or translation, which could be used for large-scale screening, construction of
synthetic regulatory circuits and other purposes; (ii) fluorescently tag specific RNAs to visualize their
trafficking and/or localization; (iii) alter RNA localization through domains with affinity for specific
subcellular compartments; and (iv) capture specific transcripts (through direct pull down of dC2¢2)

to enrich for proximal molecular partners, including RNAs and proteins.

Active C2c2 also has many potential applications such as targeting a specific transcript for destruction,
as performed here with RFP. In addition, C2c2, once primed by the cognate target, can cleave other
(non-complementary) RNA molecules in vitro and inhibit cell growth in vivo. Biologically, this
promiscuous RNase activity might reflect a PCD/dormancy-based protection mechanism of the type
VI CRISPR-Cas systems (Fig. 3.7). Technologically, it might be used to trigger PCD or dormancy in
specific cells such as cancer cells expressing a particular transcript, neurons of a given class, or cells

infected by a specific pathogen.

Further experimental study is required to elucidate the mechanisms by which the C2c2 system

acquires spacers and the classes of pathogens against which it protects bacteria. The presence of the
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conserved CRISPR adaptation module consisting of typical Casl and Cas2 proteins in the LshC2c2
locus suggests that it is capable of spacer acquisition. Although C2c2 systems lack reverse
transcriptases, which mediate acquisition of RNA spacers in some type III systems (Silas et al., 2016),
it is possible that additional host or viral factors could support RNA spacer acquisition. Additionally,
or alternatively, type VI systems could acquire DNA spacers similar to other CRISPR-Cas variants
but then target transcripts of the respective DNA genomes, eliciting PCD and abortive infection (Fig.

3.7).

The CRISPR-C2c2 system represent a distinct evolutionary path among Class 2 CRISPR-Cas systems.
It is likely that other, broadly analogous Class 2 RNA-targeting immune systems exist, and further
characterization of the diverse members of Class 2 systems will provide a deeper understanding of
bacterial immunity and provide a rich starting point for the development of programmable molecular

tools for in vivo RNA manipulation.
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3.5 Experimental Procedures

3.5.1 Cloning of C2c2 locus and screening libraries for MS2 activity Screen

Genomic DNA from Leptotrichia shahii DSM 19757 (ATCC, Manassas, VA) was extracted using the
Blood & Cell Culture DNA Mini Kit (Qiagen, Hilden, Germany) and the C2c2 CRISPR locus was
PCR amplified and cloned into a pACYC184 backbone with chloramphenicol resistance. For
retargeting of the locus to MS2 phage or endogenous targets, the wild type spacers in the array were
removed and replaced with a Eco31I landing site an additional spacer and a degenerate repeat,

compatible with Golden Gate cloning.

A custom library consisting of all possible spacers targeting the genome of the bacteriophage MS2,
excluding spacers containing the Eco31I restriction site, was synthesized by Twist Biosciences (San
Francisco, CA), cloned into the retargeting backbone with Golden Gate cloning, transformed into
Endura Duo electrocompetent cells (Lucigen, Middleton, WI) and subsequently purified using a

NucleoBond Xtra MaxiPrep EF (Machery-Nagel, Diiren, Germany).

3.5.2 Cloning of libraries and screening for f-lactamase and transcribed/non-transcribed

PFS screens

Plasmid libraries for PFS screens were cloned from synthesized oligonucleotides (IDT, Coralville, IA)
consisting of either 6 or 7 randomized nucleotides downstream of the spacer 1 target. To generate
dsDNA fragments for cloning, these ssDNA oligonucleotides were annealed to a short primer for
second strand synthesis by large Klenow fragment (New England Biolabs, Ipswich, MA). dsDNA
fragments were Gibson cloned (New England Biolabs) into digested pUC19 at the 5-region of -
lactamase, downstream of the lac promoter, or in a non-transcribed region of pUC19 and
electroporated into Endura Duo electrocompetent cells (Lucigen). More than 5%10° cells were
collected, pooled, and harvested for plasmid DNA using a NucleoBond Xtra MaxiPrep EF (Machery-

Nagel, Diiren, Germany). To screen libraries, we co-transformed 50 ng of the pooled library and an
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equimolar amount of the LshC2c2 locus plasmid or pACYC184 plasmid control into E. coli cells
(NovaBlue GigaSingles, EMD Millipore, Darmstadt, Germany). After transformation, cells were
plated on ampicillin and chloramphenicol to select for both plasmids. After 16 hours of
growth, >1*10° cells were harvested for plasmid DNA using a NucleoBond Xtra MaxiPrep EF
(Machery-Nagel) The target PFS region was PCR amplified and sequenced using a MiSeq (Illumina,
San Diego, CA) with a single-end 150 cycle kit.

3.5.3 Bacterial phage interference PFS screen assay

For the phage screen, 50ng of the plasmid library were transformed into NovaBlue(DE3) Competent
Cells (EMD Millipore) followed by an outgrowth at 37°C for 30 minutes. Three different replicates
of cells were then grown in Luria broth (LB, Miller’s modification, 10g/L tryptone, 5g/L yeast extract,
5g/L NaCl, Sigma, St. Louis, MO) supplemented with 25 pg/mL chloramphenicol (Sigma) in a
volume of 3.0mL for 30 minutes. Phage conditions were treated with 7*10° (107! dilution), 7*107 (10"
* dilution), or 7*10° (10°° dilution) PFU of Bacteriophage MS2 (ATCC). After 3 hours of shaking
incubation at 37°C, samples were plated on LB-agar plates supplemented with chloramphenicol and
harvested after 16 hours. DNA was extracted using NucleoBond Xtra MaxiPrep EF (Machery-Nagel),
PCR amplified around the guide region, and sequenced using a2 MiSeq (Illumina) with a paired-end

150 cycle kit.

3.5.4 Bacterial phage interference assay for individual spacers

To test individual spacers for MS2 interference, the oligonucleotides encoding the spacer sequences
flanked by Eco311 sites were ordered from IDT as complementary strands. The oligonucleotides (final
concentration 10uM) were annealed in 10X T4 ligase buffer (New England Biolabs; final
concentration 1X) supplemented with 5 units of T4 PNK (New England Biolabs). The
oligonucleotides were phosphorylated by setting the thermocycler to 37°C for 30 minutes and then
subsequently annealed by heating to 95°C for 5 minutes followed by a -5°C/minute ramp down to
25°C. Annealed oligos were then cloned into the locus backbone with Golden Gate cloning. Plasmids

were transformed into C3000 strain E. coli, and the cultures were made competent with the Mix and
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Go kit (Zymo Research, Irvine, CA). C3000 cells were seeded from an overnight culture grown to
ODeoo of 2, at which point they were diluted 1:13 in Top Agar (10g/L tryptone, 5g/L yeast extract,
10g/L NaCl, 7g/L agar) and poured on LB-chloramphenicol plates. Dilutions of MS2 phage in
phosphate buffered saline were then spotted on the plates using a multichannel pipette, and plaque

formation was recorded after overnight incubation.

3.5.5 RFP targeting assay

An ampicillin resistant RFP-expressing plasmid (pRFP) was transformed into DH5-alpha cells (New
England Biolabs). Cells containing pRFP were then made chemically competent (Mix and Go, Zymo
Research) to be used for downstream targeting experiments with pLshC2c2. Spacers targeting RFP
mRNA were cloned intoprshC2c2 (as described above) and these plasmids were transformed into
the chemically competent DH5-alpha pRFP cells. Cells were then grown overnight under double
selection in LB and subjected to analysis by flow cytometry when they reached an OD600 of 4.0.
Knockdown efficiency was quantified as the percent of RFP positive cells compared to a non-

targeting spacer control (the endogenous LshC2c2 locus in pACYC184).

To interrogate the effect of LshC2c2 activity on the growth of the host cells, we created a TetR-
inducible version of the RFP plasmid in pBR322 (pBR322_RFP). We transformed E. coli cells with
this vector and then made them chemically competent (Mix and Go, Zymo Research) to prepare them
for downstream experiments. We cloned pLshC2c2 plasmids with various spacers targeting RFP
mRNA as well as their reverse complement controls and transformed them into E. coli cells carrying
pBR322_RFP and streaked them on double-selection plates to maintain both plasmids. Colonies were
then picked and grown overnight in LB with double selection. Bacteria were diluted to an ODsoo of
0.1 and grown at 37C for 1 hour with chloramphenicol selection only. RFP expression was then
induced using dilutions of anhydrotetracycline (Sigma) and ODgoo measurements were taken every 6

minutes under continuous shaking in a Synergy 2 microplate reader (BioTek, Winooski, VT).

3.5.6 C2c2 protein purification
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The mammalian codon-optimized gene for C2c2 (Leptotrichia shahii) was synthesized (GenScript,
Jiangsu, China) and inserted into a bacterial expression vector (6-His-MBP-TEV, a pET based vector
generously provided by Doug Daniels) using Golden Gate cloning. The LshC2c2 expression construct
was transformed into One Shot® BL21(DE3)pLysE (Invitrogen, Carlsbad, CA) cells. 10mL of
overnight culture were inoculated into 12 liters of Terrific Broth growth media (12g/L tryptone,
24g/L yeast extract, 9.4g/L K2HPO, 2.2g/L KH;PO4, Sigma) supplemented with 100 pg/mL. Cells
were then grown at 37 °C to a cell density of 0.2 ODsoo, at which point the temperature was lowered
to 21°C. At a cell density of 0.6 ODsoo, MBP-LshC2c2 expression was induced by supplementing with
IPTG to a final concentration of 500 uM. Induced culture was grown for 14-18 hours before

harvesting cell paste, which was stored at -80°C until subsequent purification.

Frozen cell paste was crushed and resuspended via stirring at 4°C in 1L of Lysis Buffer (50 mM Hepes
pH 7, 2M NaCl, 5 mM MgCl;, 20 mM imidazole) supplemented with protease inhibitors (cOmplete,
EDTA-free, Roche Diagnostics Corporation, Indianapolis, IN). The resuspended cell paste was lysed
by lysozyme (Sigma) addition and sonication (Sonifier 450, Branson, Danbury, CT). Lysate was
cleared by centrifugation at 10,000g for 1 hour, and the supernatant was filtered through Stericup
0.45 micron filters (EMD Millipore). Filtered lysate was incubated with Ni-NTA superflow nickel
resin (Qiagen) at 4°C for 1 hour with gentle agitation, and then applied to an Econo-column
chromatography column (Bio-Rad Laboratories, Hercules, CA). Resin was washed with lysis Buffer
and eluted with a gradient of imidazole. Fractions containing protein of the expected size for MBP-
LshC2c2 were pooled and buffer exchanged into TEV Buffer (500 mM NaCl, 50 mM Hepes pH 7, 5
mM MgCl, 2 mM DTT) with Ultra-15 Centrifugal Filter Unit with 50 KDa cutoff (Amicon, EMD
Millipore). TEV protease (Sigma) was added and incubated at 4°C overnight. After incubation, TEV
cleavage was confirmed by SDS-PAGE and Coomassie staining, and the sample was concentrated via
Centrifugal Filter Unit to 1 mL. Concentrated sample was loaded a gel filtration column (HiLoad
16/600 Superdex 200, GE Healthcare Life Sciences, Chalfont Saint Giles, United Kingdom) via FPLC
(AKTA Pure, GE Healthcare Life Sciences). The resulting fractions from gel filtration were tested
for presence of LshC2c2 protein by SDS-PAGE; fractions containing LshC2c2 were pooled, buffer
exchanged into Storage Buffer (1 M NaCl, 50 mM Tris-HCl pH 7.5, 5% glycerol, 2 mM DTT),

concentrated, and either used directly for biochemical assays or frozen at -80°C for storage. To
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calculate the approximate size of recombinant LshC2c2, gel filtration standards were run on the same

gel filtration column equilibrated in 2M NaCl, Hepes pH 7.0.

3.5.7 C2c2 HEPN mutant protein purification

Alanine mutants at each of the four HEPN catalytic residues were generated by Gibson cloning and
transformed into One Shot® BL21(DE3)pLysE cells (Invitrogen). For each mutant, 6 L of Terrific
Broth were used to generate cell paste. Protein purification was performed similarly to wild type C2c2
with exception of buffer composition being altered to increase stability of recombinant protein in
solution. Detergent or glycerol was added to Lysis Buffer (50 mM Hepes pH 7, 1M NaCl, 5 mM MgCl,,
20 mM imidazole, 1% Triton X-100), Imidazole Elution Buffer Buffer (50 mM Hepes pH 7, 1M NaCl,
5 mM MgClz, 200 mM imidazole, 0.01% Triton X-100, 10% glycerol) and TEV Buffer (500 mM NaCl,
50 mM Hepes pH 7, 5 mM MgCl, 1 mM DTT, 0.01% Triton X-100, 10% glycerol). In all situations
where HEPN mutants were used biochemical analysis, wild type protein used for comparison was

purified in the same manner.

3.5.8 Nucleic acid target preparation

DNA oligo templates for T7 transcription were ordered from IDT. Templates for crRNAs were
annealed to a short T7 primer (final concentrations 10uM) and incubated with T7 polymerase
overnight at 37°C using the HiScribe T7 Quick High Yield RNA Synthesis kit (New England Biolabs).
Target templates were PCR amplified to yield dsDNA and then incubated with T7 polymerase at 30°C

overnight using the same kit.

5" end labeling was accomplished using the 5’ oligonucleotide kit (VectorLabs, Burlingame, CA) and
with a maleimide-IR800 probe (LI-COR Biosciences, Lincoln, NE). 3’ end labeling was performed
using a 3’ oligonucleotide labeling kit (Sigma) using ddUTP-Cy5. Labeled probes were purified using

Clean and Concentrator columns (Zymo Research).
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dsRNA substrates were prepared by mixing 5-end-labeled ssRNA targets with two-fold excess of
non-labeled complementary ssRNA oligos in annealing buffer (30mM HEPES pH 7.4, 100 mM
potassium acetate, and 2mM magnesium acetate). Annealing was performed by incubating the

mixture for 1 minute at 95°C followed by a -1°C/minute ramp down to 23°C.

3.5.9 Nuclease Assay

Nuclease assays were performed with 160nM of end-labeled ssRNA target, 200nM purified LshC2c2,
and 100nM crRNA, unless otherwise indicated, in nuclease assay buffer (40mM Tris-HCl, 60mM
NaCl, 6mM MgCl2, pH 7.3). Reactions were allowed to proceed for 1 hour at 37°C (unless otherwise
indicated) and were then quenched with proteinase buffer (proteinase K, 60mM EDTA, and 4M Urea)
for 15 minutes at 37°C. The reactions were then denatured with 4.5M urea denaturing buffer at 95°C
for 5 minutes. Samples were analyzed by denaturing gel electrophoresis on 10% PAGE TBE-Urea

(Invitrogen) run at 45°C. Gels were imaged using an Odyssey scanner (LI-COR Biosciences).

3.5.10 Electrophoretic mobility shift assay

Target ssSRNA binding experiments were performed with a series of half-log complex dilutions
(crRNA and LshC2c2) from 2pM to 0.2pM (or 1pM to 0.1pM in the case of R1278A LshC2c2).
Binding assays were performed in nuclease assay buffer supplemented with 10mM EDTA to prevent
cutting, 5% glycerol, and 10pug/mL heparin in order to avoid non-specific interactions of the complex
with target RNA. Reactions were incubated at 37°C for 20 minutes and then resolved on 6% PAGE
TBE gels (Invitrogen) at 4°C (using 0.5X TBE buffer). Gels were imaged using an Odyssey scanner
(LI-COR Biosciences).

3.5.11 Next-generation sequencing of in vitro cleaved RNA

In vitro nuclease assays were performed as described above using unlabeled ssRNA targets. After one

hour, samples were quenched with proteinase K + EDTA and then column purified (Clean and
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Concentrator, Zymo Research). The RNA samples were PNK treated in absence and presence of ATP
to allow for the enrichment of 3-P and 5-OH ends, respectively. The samples were then
polyphosphatase treated (Epicentre, Madison, WI) before being prepared for next-generation
sequencing using the NEBNext Small RNA Library Prep Set for Illumina sequencing (New England
Biolabs) with the PCR extension step increased to allow for longer templates to be included in the
library. Libraries were sequenced on an MiSeq (Illumina) to sufficient depth and analyzed using the
alignment tool BWA (Li and Durbin, 2009). Paired-end alignments were used to extract entire
transcript sequences using Galaxy tools (https://usegalaxy.org/), and these sequences were analyzed
using Geneious 8.1.5 (Biomatters, Auckland, New Zealand) and custom scripts

(github.com/fengzhanglab).

3.5.12 In vitro co-transcriptional DNA cleavage assay

The E. coli RNAP co-transcriptional DNA cleavage assay was performed essentially as described
previously (Samai et al., 2015). Briefly, 0.8pmol of ssDNA template strand were annealed with
1.6pmol of RNA in transcription buffer (from E.coli RNAP core enzyme, New England Biolabs)
without magnesium to prevent RNA hydrolysis. 0.75ul of E.coli RNAP core enzyme and Magnesium
were added and the reaction incubated at 25°C for 30min and then transferred to 37°C. 1pmol of
freshly denatured nontemplate strand (NTS) were added and incubated at 37°C for 15min to obtain
elongation complexes (ECs). 4pmol of LshC2C2-crRNA complexes along with 1.25 mM of RNTPs
were added to the ECs and transcription was allowed to proceed for 1h at 37°C. DNA was resolved
by denaturing gel electrophoresis on a 10% PAGE TBE-Urea (Invitrogen) gels following RNase and

proteinase K treatment.

3.5.13 Computational analysis of in vivo PFS screens

To determine enriched spacers in the bacterial phage interference screens, spacer regions were
extracted, counted, and normalized to total reads for each sample. For a given spacer, enrichment was
measured as the log; ratio compared to the no phage conditions, with a 1.0 psuedocount adjustment.

5"and 3’ PFS regions from spacers above a 1.25 log, enrichment threshold that occurred in all three
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biological replicates were used to generate sequence logos for the phage dilution samples (Crooks et
al., 2004). Correlations between replicate conditions were measured using a Kendall's Tau rank
correlation and the information coefficient, a mutual information based metric for ascertaining

similarity (Konermann et al., 2015; Liberzon et al., 2015).

For the B-lactamase PFS screen and transcribed/non-transcribed pUC19 PFS screens, PFS regions
were extracted, computationally collapsed to 5nt to increase coverage, counted, and normalized to
total reads for each sample. For a given PFS, enrichment was measured as the log ratio compared to
pACYC184 control, with a 0.01 psuedocount adjustment. PFSs above a 6 depletion threshold (B-
lactamase screen), a 0.35 depletion threshold (transcribed pUC19 screen), or a 0.5 depletion threshold
(non-transcribed pUC19 screen) that occurred in both biological replicates were collected and used

to generate sequence logos (Crooks et al., 2004).
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Chapter 4

Nucleic acid detection with CRISPR-
Cas13a/C2c2

This chapter is adapted from the following article:

Gootenberg, J.S.*, Abudayyeh, 0.0.%, Lee, J.W., Essletzbichler, P., Dy, A.J., Joung, J., Verdine, V.,

Donghia, N., Daringer, N.M., Freije, C.A,, et al. (2017b). Nucleic acid detection with CRISPR-
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4.1 Abstract

Rapid, inexpensive, and sensitive nucleic acid detection may aid point-of-care pathogen
detection, genotyping, and disease monitoring. The RNA-guided, RNA-targeting CRISPR
effector Cas13a (previously known as C2c2) exhibits a “collateral effect” of promiscuous
RNAse activity upon target recognition. We combine the collateral effect of Casl3a with
isothermal amplification to establish a CRISPR-based diagnostic (CRISPR-Dx), providing
rapid DNA or RNA detection with attomolar sensitivity and single-base mismatch specificity.
We use this Cas13a-based molecular detection platform, termed SHERLOCK (Specific High
Sensitivity Enzymatic Reporter UnLOCKing), to detect specific strains of Zika and Dengue
virus, distinguish pathogenic bacteria, genotype human DNA, and identify cell-free tumor
DNA mutations. Furthermore, SHERLOCK reaction reagents can be lyophilized for cold-
chain independence and long-term storage, and readily reconstituted on paper for field

applications.

4.2 Introduction

The ability to rapidly detect nucleic acids with high sensitivity and single-base specificity on a portable
platform may aid in disease diagnosis and monitoring, epidemiology, and general laboratory tasks.
Although methods exist for detecting nucléic acids (Du et al., 2017; Green et al., 2014; Kumar et al,,
2014; Pardee et al., 2014; Pardee et al., 2016; Urdea et al., 2006), they have trade-offs among sensitivity,
specificity, simplicity, cost, and speed. Microbial Clustered Regularly Interspaced Short Palindromic
Repeats (CRISPR) and CRISPR-associated (CRISPR-Cas) adaptive immune systems contain
programmable endonucleases that can be leveraged for CRISPR-based diagnostics (CRISPR-Dx).
While some Cas enzymes target DNA (Shmakov et al., 2017b; Zetsche et al., 2015b), single effector
RNA-guided RNases, such as Cas13a (previously known as C2¢2) (Shmakov et al., 2017b), can be
reprogrammed with CRISPR RNAs (crRNAs) to provide a platform for specific RNA sensing
(Abudayyeh et al., 2016; East-Seletsky et al., 2016; Shmakov et al., 2015; Smargon et al., 2017a). Upon
recognition of its RNA target, activated Cas13a engages in “collateral” cleavage of nearby non-

targeted RNAs (Abudayyeh et al., 2016). This crRNA-programmed collateral cleavage activity allows
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Cas13a to detect the presence of a specific RNA in vivo by triggering programmed cell death
(Abudayyeh et al., 2016) or in vitro by nonspecific degradation of labeled RN A (Abudayyeh et al., 2016;
East-Seletsky et al., 2016). Here we describe SHERLOCK (Specific High Sensitivity Enzymatic
Reporter UnLOCKing), an in vitro nucleic acid detection platform with attomolar sensitivity based
on nucleic acid amplification and Casl13a-mediated collateral cleavage of a reporter RNA (East-

Seletsky et al., 2016), allowing for real-time detection of the target (Fig. 4.1A).

4.3 Results

To achieve robust signal detection, we identified an ortholog of Casl3a from Lepfotrichia wadei
(LwCas13a), which displays greater RNA-guided RNase activity relative to Leptotrichia shahii Cas13a
(LshCas13a) (Abudayyeh et al.,, 2016) (fig. 4.S1). LwCas13a incubated with ssRNA target 1 (ssRNA
1), crRNA, and reporter (quenched fluorescent RNA) (Fig. 1B) yielded a detection sensitivity of ~50
fM (Fig. 4.1C, 4.S2). Although this sensitivity is an improvement on previous studies with LbCas13a
(East-Seletsky et al., 2016), attomolar sensitivity is required for many diagnostic applications (Barletta
et al.,, 2004; Emmadi et al,, 2011; Song et al., 2013). We therefore explored combining Cas13a-based
detection with different isothermal amplification steps (fig. 4.S3, 4.S4A) (Compton, 1991; Piepenburg
et al., 2006). Of the methods explored, recombinase polymerase amplification (RPA) (Piepenburg et
al.,, 2006) afforded the greatest sensitivity and can be coupled with T7 transcription to convert
amplified DNA to RNA for subsequent detection by LwCas13a. We refer to this combination of
amplification by RPA, T7 RNA polymerase transcription of amplified DNA to RNA, and detection
of target RNA by Cas13a collateral RNA cleavage-mediated release of reporter signal as SHERLOCK.

95



collateral cleavage

Cas13a of reporter
—— detection releases signal
dsDNA =
. = RPA — S
L e —_— N X )
transcription s
—_——— — e —p @ —_ ..
R —— —— —— . ga LR
4 (- —— -
Y /RTAPA —— P .
RNA ~7 —~— ™% —— —
Te~—§
o ¥ [ S
—e cleavage reporter Ej) Casi3a-ctRNA  _—~ target sequence
B .
1 41 targetsite 72 176
ssRNA1 &' —_— = 3
’, e -
. -
’ - -
, L % -
¥ target site S-a

ssANA1 5 - .. UCUAGAAAUAUGGAUUACUUGGUAGAACAGCAAUCUACUCGACCUGCAGGCAUGCAA, . —3'

RN R EARNRRRR RNy
3' - UACCUAAUGAACCAUCUUGUCGUUAGAUCAAAAUCAGGGGAAGL
crRNA 1 FLEEL LEL] A

5' — GAUUUAG CCCCAAAA
A A
cu

0
=)

8x10° ®Cas13a 6105 -

3 ®eeeee®, SSHERLOK 3
£ g 4x10°- a £ 8 ax108
o b3 2
28 3 8
28 moed® o ° =R
§ S 8x107 4 E §2x105
D= BE
g axace] E
o ]

T el 0.

i

10 10% 10° 10* 102 10° 107 10 10° 107 10" 10°1071102

ssRNA 1 (~—) concentration (aM) ssDNA 1 (—) concentration (aM)

Figure 4.1: SHERLOCK is capable of single-molecule nucleic acid detection.
(A) Schematic of SHERLOCK.

(B) Schematic of ssRNA target detected via the Cas13a collateral detection. The target site is
highlighted in blue.

(C) Cas13a detection of RNA with RPA amplification (SHERLOCK) can detect ssRNA target

at concentrations down to ~2 aM, more sensitive than Cas13a alone. (n=4 technical replicates;

bars represent mean + s.e.m.)

(D) SHERLOCK is also capable of single-molecule DNA detection. (n=4 technical replicates;

bars represent mean + s.e.m.)

We first determined the sensitivity of SHERLOCK for detection of RNA (when coupled with reverse
transcription) or DNA targets. We achieved single molecule sensitivity for both RNA and DNA, as
verified by digital-droplet PCR (ddPCR) (Fig. 4.1C,D, 4.S4B,C). Attomolar sensitivity was

maintained when we combined all SHERLOCK components in a single reaction, demonstrating the
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viability of this platform as a point-of-care (POC) diagnostic (fig. 4.54D). SHERLOCK has similar
levels of sensitivity as ddPCR and quantitative PCR (qPCR), two established sensitive nucleic acid
detection approaches, whereas RPA alone was not sensitive enough to detect low levels of target (fig.
4.85A-D). Moreover, SHERLOCK shows less variation than ddPCR, qPCR, and RPA, as measured

by the coefficient of variation across replicates (fig. 4.S5E-F).

We next examined whether SHERLOCK would be effective in infectious disease applications that
require high sensitivity. We produced lentiviruses harboring genome fragments of either Zika virus
(ZIKV) or the related flavivirus Dengue (DENV) (Dejnirattisai et al., 2016) (Fig. 4.2A). SHERLOCK
detected viral particles down to 2 aM and could discriminate between ZIKV and DENV (Fig. 4.2B).
To explore the potential use of SHERLOCK in the field with paper-spotting and lyophilization
(Pardee et al., 2016), we first demonstrated that Casl3a-crRNA complexes lyophilized and
subsequently rehydrated could detect 20 fM of non-amplified ssRNA 1 (fig. 4.S6A) and that target
detection was also possible on glass fiber paper (fig. 4.S6B). The other components of SHERLOCK
are also amenable to freeze-drying: RPA is provided as a lyophilized reagent at ambient temperature,
and we previously demonstrated that T7 polymerase tolerates freeze-drying (Pardee et al., 2014). In
combination, freeze-drying and paper-spotting the Cas13a detection reaction resulted in comparable
levels of sensitive detection of ssRNA 1 as aqueous reactions (fig. 4.56C-E). Although paper-spotting
and lyophilization slightly reduced the absolute signal of the readout, SHERLOCK (Fig. 4.2C) could

readily detect mock ZIKV virus at concentrations as low as 20 aM (Fig. 4.2D).

SHERLOCK is also able to detect ZIKV in clinical isolates (serum, urine, or saliva) where titers can
be as low as 2 x 10° copies/mL (3.2 aM) (Paz-Bailey et al., 2017). ZIKV RNA extracted from patient
serum or urine samples and reverse transcribed into cDNA (Fig. 4.2E) could be detected at
concentrations down to 1.25 x 10% copies/mL (2.1 aM), as verified by qPCR (Fig. 4.2F). Furthermore,
the signal from patient samples was predictive of ZIKV RNA copy number and could be used to
predict viral load (Fig. 4.S6F). To simulate sample detection without nucleic acid purification, we
measured detection of ssRNA 1 spiked into human serum, and found that Cas13a could detect RNA

in reactions containing as much as 2% serum (fig. 4.S6G).
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Figure 4.2: Casl13a detection can be used to sense viral and bacterial pathogens.

(A) Schematic of ZIKV RNA detection by SHERLOCK.

(B) SHERLOCK is capable of highly sensitive detection of the ZIKV lentiviral particles. (n=4
technical replicates, two-tailed Student t-test; ****, p < 0.0001; bars represent mean * s.e.m.;
n.d., not detected)

(C) Schematic of ZIKV RNA detection with freeze-dried Cas13a on paper

(D) Paper-based SHERLOCK is capable of highly sensitive detection of ZIKV lentiviral
particles. (n=4 technical replicates, two-tailed Student t-test; **, p < 0.01; ****, p < 0.0001;
bars represent mean + s.e.m.)

(E) Schematic of SHERLOCK detection of ZIKV RNA isolated from human clinical samples.
(F) SHERLOCK is capable of highly sensitive detection of human ZIKV-positive serum (S)
or urine (U) samples. Approximate concentrations of ZIKV RNA shown were determined by

qPCR. (n=4 technical replicates, two-tailed Student t-test; **** p < 0.0001; bars represent
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mean + s.e.m.; n.d., not detected)

(G)Schematfc of using SHERLOCK to distinguish bacterial strains using a universal 16S
rRNA gene V3 RPA primer set.

(H)SHERLOCK achieves sensitive and specific detection of E. coli or P. aeruginosa gDNA. (n=4
technical replicates, two-tailed Student t-test; *, p < 0.05; **, p < 0.01; **¥*, p < 0.001; **** p
< 0.0001; bars represent mean + s.e.m.). Ec, Escherichia coli; Kp, Klebsiella pneumoniae; Pa,

Pseudomonas aeruginosa; Mt, Mycobacterium tuberculosis; Sa, Staphylococcus aureus.

Another important epidemiological application for CRISPR-dx is the identification of bacterial
pathogens and detection of specific bacterial genes. We targeted the 16S rRNA gene V3 region, where
conserved flanking regions allow universal RPA primers to be used across bacterial species and the
variable internal region allows for differentiation of species. In a panel of five possible targeting
crRNAs for different pathogenic strains and gDNA isolated from E. coli and Pseudomonas aeruginosa
(Fig. 4.2G), SHERLOCK correctly genotyped strains and showed low cross-reactivity (Fig. 4.2H).
Additionally, we were able to use SHERLOCK to distinguish between clinical isolates of Klebsiella
pneumoniae with two different resistance genes: Klebsiella pneumoniae carbapenemase (KPC) and New

Delhi metallo-beta-lactamase 1 (NDM-1) (Gupta et al., 2011) (fig. 4.S7).

To increase the specificity of SHERLOCK, we introduced synthetic mismatches in the crRNA:target
duplex that enable LwCas13a to discriminate between targets that differ by a single-base mismatch
(fig. 4.S8A,B). We designed multiple crRNAs with synthetic mismatches in the spacer sequences to
detect either the African or American strains of ZIKV (Fig. 4.3A,B) and strain 1 or 3 of DENV (Fig.
4.3C,D). Synthetic mismatch crRNAs detected their corresponding strains with significantly higher
signal (two-tailed Student t-test; p < 0.01) than the off-target strain, allowing for robust strain
discrimination based off single mismatches (Fig. 4.3B,D, 4.S8C). Further characterization revealed
that Cas13a detection achieves maximal specificity while maintaining on-target sensitivity when a

mutation is in position 3 of the spacer and the synthetic mismatch is in position 5 (fig. 4.S9 and 4.510).
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Figure 4.3: Casl3a detection can discriminate between similar viral strains.

(A)Schematic of ZIKV strain target regions and the crRNA sequences used for detection.

SNPs in the target are highlighted red or blue and synthetic mismatches in the guide sequence

are colored red.

(B)Highly specific detection of strain SNPs allows for the differentiation of ZIKV African

versus American RNA targets using Cas13a. (n=2 technical replicates, two-tailed Student t-
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(C)Schematic of DENV strain target regions and the crRNA sequences used for detection.

SNPs in the target are highlighted red or blue and synthetic mismatches in the guide sequence

are colored red.

(D)Highly specific detection of strain SNPs allows for the differentiation of DENV strain 1

versus strain 3 RNA targets using Cas13a. (n=2 technical replicates, two-tailed Student t-test;

¥, p <0.05; **, p < 0.01; *** p <0.001; bars represent mean + s.e.m.)

The ability to detect single-base differences opens the opportunity of using SHERLOCK for rapid
human genotyping. We chose five loci spanning a range of health-related single-nucleotide

polymorphisms (SNPs) and benchmarked SHERLOCK detection using 23andMe genotyping data as
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the gold standard at these SNPs (Eriksson et al., 2010) (Fig. 4.4A). We collected saliva from four
human subjects with diverse genotypes across the loci of interest, and extracted genomic DNA either
through column purification or direct heating for five minutes . SHERLOCK distinguished alleles

with high significance and with enough specificity to infer both homozygous and heterozygous

genotypes (Fig. 4.4B, 4.511, 4.512).

Finally, we sought to determine if SHERLOCK could detect low frequency cancer mutations in cell
free (cf) DNA fragments, which is challenging because of the high levels of wild-type DNA in patient
blood (Bettegowda et al,, 2014; Newman et al.,, 2014; Qin et al., 2016). We first found that
SHERLOCK could detect ssDNA 1 at attomolar concentrations diluted in a background of genomic
DNA (fig. 4.S13A). Next, we found that SHERLOCK was also able to detect single nucleotide
polymorphism (SNP)-containing alleles (fig. 4.S13B,C) at levels as low as 0.1% of background DNA,
which is in the clinically relevant range. We then demonstrated that SHERLOCK could detect two
different cancer mutations, EGFR L858R and BRAF V600E, in mock cfDNA samples with allelic
fractions as low as 0.1% (Fig. 4.4C-F) .
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Figure 4.4: SHERLOCK can discriminate SNPs for human genotyping and cell-free
allele DNA detection.

(A)Circos plot showing location of human SNPs detected with SHERLOCK.
(B)SHERLOCK can correctly genotype four different individuals at four different SNP sites
in the human genome. The genotypes for each individual and identities of allele-sensing
crRINAs are annotated below each plot. (n=4 technical replicates, two-tailed Student t-test; *,
p < 0.05; **, p < 0.01; *** p < 0.001; ****, p < 0.0001; bars represent mean = s.e.m.)
(C)Schematic of cell-free DNA detection of cancer mutations using SHERLOCK.
(D)Sequences of two genomic loci assayed for cancer mutations in cell-free DNA. Shown are
the target genomic sequence with the SNP highlighted in blue and the mutant/wild-type

sensing crRNA sequences with synthetic mismatches colored in red.
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(E,F) Cas13a can detect the mutant minor allele in mock cell-free DNA samples for the EGFR
L858R (E) or the BRAF V600E (F) minor allele. (n=4 technical replicates, two-tailed Student

t-test; *, p < 0.05; **, p < 0.01; ****, p < 0.0001; bars represent mean * s.e.m.)

4.4 Conclusion

The SHERLOCK platform lends itself to further applications including (i) general RNA/DNA
quantitation in lieu of specific qPCR assays, such as TaqMan, (ii) rapid, multiplexed RNA expression
detection, and (iii) other sensitive detection applications, such as detection of nucleic acid
contamination. Additionally, Cas13a could potentially detect transcripts within biological settings
and track allele-specific expression of transcripts or disease-associated mutations in live cells. We
have shown that SHERLOCK is a versatile, robust method to detect RNA and DNA, suitable for rapid
diagnoses including infectious disease applications and sensitive genotyping. A SHERLOCK paper
test can be redesigned and synthesized in a matter of days for as low as $0.61/test with confidence, as
almost every crRNA tested resulted in high sensitivity and specificity. These qualities highlight the
power of CRISPR-Dx and open new avenues for rapid, robust and sensitive detection of biological

molecules.

4.5 Experimental Procedures

4.5.1 Cloning of Casl13a loci and proteins for expression

For the bacterial in vivo efficiency assay, Cas13a proteins from Leptotrichia wadei and Leptotrichia shahii
were ordered as codon-optimized genes for mammalian expression (Genscript, Jiangsu, China) and
cloned into pACYC184 backbones along with the corresponding direct repeats flanking either a beta-

lactamase targeting or non-targeting spacer. Spacer expression was driven by a J23119 promoter.
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For protein purification, mammalian codon-optimized Cas13a proteins were cloned into bacterial
expression vector for protein purification (6x His/ Twin Strep SUMO, a pET-based expression vector

received as a gift from Ilya Finkelstein, University of Texas-Austin).

4.5.2 Bacterial in vivo Cas13a efficiency assay

LwCas13a and LshCas13a in vivo efficiency plasmids and a previously described beta-lactamase
plasmid (Abudayyeh et al., 2016) were co-transformed into NovaBlue Singles competent cells
(Millipore) at 90 ng and 25 ng, respectively. After transformation, dilutions of cells were plated on
ampicillin and choramphicol LB-agar plate and incubated overnight at 37°C. Colonies were counted

the next day.

4.5.3 LwCasl3a protein purification

Cas13a bacterial expression vectors were transformed into Rosetta™ 2(DE3)pLysS Singles
Competent Cells (Millipore). A 16 mL starter culture was grown overnight in Terrific Broth 4 growth
media (12 g/L tryptone, 24 g/L yeast extract, 9.4 g/L K;HPO, 2.2 g/L KH2PO4, Sigma) (TB), which
was used to inoculate 4 L of TB for growth at 37°C and 300 RPM until an OD600 of 0.6. At this time,
protein expression was induced by supplementation with IPTG (Sigma) to a final concentration of
500 uM, and cells were cooled to 18°C for 16 h for protein expression. Cells were then centrifuged at

5200 g for 15 min at 4°C. Cell pellet was harvested and stored at -80°C for later purification.

All subsequent steps of the protein purification were performed at 4°C. Cell pellet was crushed and
resuspended in lysis buffer (20 mM Tris-HCI, 500 mM NaCl, 1 mM DTT, pH 8.0) supplemented with
protease inhibitors (Complete Ultra EDTA-free tablets), lysozyme, and benzonase followed by
sonication (Sonifier 450, Branson, Danbury, CT) with the following conditions: amplitude of 100 for
1 second on and 2 seconds off with a total sonication time of 10 min. Lysate was cleared by
centrifugation for 1 hr at 4°C at 10,000 g and the supernatant was filtered through a Stericup 0.22 um
filter (EMD Millipore). Filtered supernatant was applied to StrepTactin Sepharose (GE) and

incubated with rotation for 1 hr followed by washing of the protein-bound StrepTactin resin three
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times in lysis buffer. The resin was resuspended in SUMO digest buffer (30 mM Tris-HCI, 500 mM
NaCl 1 mM DTT, 0.15% Igepal (NP-40), pH 8.0) along with 250 Units of SUMO protease
(ThermoFisher) and incubated overnight at 4°C with rotation. Digestion was confirmed by SDS-

PAGE and Coomassie Blue staining and the protein eluate was isolated by spinning the resin down.

For further cation exchange and gel filtration purification, protein was loaded onto a 5 mL HiTrap
SP HP cation exchange column (GE Healthcare Life Sciences) via FPLC (AKTA PURE, GE Healthcare
Life Sciences) and eluted over a salt gradient from 130 mM to 2M NaCl in elution buffer (20 mM
Tris-HCI, 1 mM DTT, 5% glycerol, pH 8.0). The resulting fractions were tested for presence of
LwCas13a by SDS-PAGE, and fractions containing the protein were pooled and concentrated via a
Centrifugal Filter Unit to 1 mL in S200 buffer (10 mM HEPES, 1 M NaCl, 5 mM MgCl;, 2 mM DTT,
pH 7.0). The concentrated protein was loaded onto a gel filtration column (Superdex® 200 Increase
10/300 GL, GE Healthcare Life Sciences) via FPLC. The resulting fractions from gel filtration were
analyzed by SDS-PAGE and fractions containing LwCas13a were pooled and buffer exchanged into
Storage Buffer (600 mM NaCl, 50 mM Tris-HCl pH 7.5, 5% glycerol, 2mM DTT) and frozen at -80°C

for storage.

4.5.4 Nucleic acid target and crRNA preparation

Nucleic acid targets were PCR amplified with KAPA Hifi Hot Start (Kapa Biosystems), gel extracted,
and purified using MinElute gel extraction kit (Qiagen). Purified dsDNA was incubated with T7
polymerase overnight at 30°C using the HiScribe T7 Quick High Yield RNA Synthesis kit (New
England Biolabs) and RNA was purified with the MEGAclear Transcription Clean-up kit (Thermo
Fisher)

For preparation of crRNAs, constructs were ordered as DNA (Integrated DNA Technologies) with
an appended T7 promoter sequence. crRNA DNA was annealed to a short T7 primer (final
concentrations 10 uM) and incubated with T7 polymerase overnight at 37°C using the HiScribe T7
Quick High Yield RNA Synthesis kit (New England Biolabs). crRNAs were purified using RNAXP
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clean beads (Beckman Coulter) at 2x ratio of beads to reaction volume, with an additional 1.8x

supplementation of isopropanol (Sigma)

4.5.5 NASBA isothermal amplification

NASBA was performed as previously described (Pardee et al., 2016). For a 20 uL total reaction volume,
6.7 uL of reaction buffer (Life Sciences, NECB-24), 3.3 pL of Nucleotide Mix (Life Sciences, NECN-
24), 0.5 pL of nuclease-free water, 0.4 uL of 12.5 uM NASBA primers, 0.1 uL of RNase inhibitor
(Roche, 03335402001) and 4 pL of RNA input (or water for the negative control) were assembled at
4°C and incubated 65°C for 2 min and then 41°C for 10 min. 5 pL of enzyme mix (Life Sciences, NEC-

1-24) was added to each reaction, and the reaction mixture was incubated at 41°C for 2 hr.

4.5.6 Recombinase Polymerase Amplification

Primers for RPA were designed using NCBI Primer-BLAST (Ye etal., 2012) using default parameters,
with the exception of amplicon size (between 100 and 140 nt), primer melting temperatures (between
54°C and 67°C), and primer size (between 30 and 35 nt). Primers were then ordered as DNA

(Integrated DNA Technologies).

RPA and RT-RPA reactions run were as instructed with TwistAmp® Basic or TwistAmp® Basic RT
(TwistDx), respectively, with the exception that 280 mM MgAc was added prior to the input template.

Reactions were run with 1 uL of input for 2 hr at 37°C, unless otherwise described.

4.5.7 LwCasl3a collateral detection

Detection assays were performed with 45 nM purified LwCas13a, 22.5 nM crRNA, 125 nM quenched
fluorescent RNA reporter (RNAse Alert v2, Thermo Scientific), 2 pL murine RNase inhibitor (New
England Biolabs), 100 ng of background total human RNA (purified from HEK293FT culture), and
varying amounts of input nucleic acid target, unless otherwise indicated, in nuclease assay buffer (40

mM Tris-HCl, 60 mM NaCl, 6 mM MgCl;, pH 7.3). If the input was amplified DNA including a T7
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promoter from a RPA reaction, the above Cas13a reaction was modified to include 1 mM ATP, 1
mM GTP, 1 mM UTP, 1 mM CTP, and 0.6 pL. T7 polymerase mix (New England Biolabs). Reactions
were allowed to proceed for 1-3 hr at 37°C (unless otherwise indicated) on a fluorescent plate reader

(BioTek) with fluorescent kinetics measured every 5 min.

The single reaction combining RPA-DNA amplification, T7 polymerase conversion of DNA to RNA
and Cas13a detection was performed by integrating the reaction conditions above with the RPA mix.
Briefly, a 50 uL single reaction assay consisted of 0.48 pM forward primer, 0.48 uM reverse primer,
1x RPA rehydration buffer, varying amounts of DNA input, 45 nM LwCas13a recombinant protein,
22.5 nM crRNA, 250 ng background total human RNA, 200 nM substrate reporter (RNase alert v2),
4 uL murine RNase inhibitor (New England Biolabs), 2 mM ATP, 2 mM GTP, 2 mM UTP, 2 mM
CTP, 1 pL T7 polymerase mix (New England Biolabs), 5 mM MgCl,, and 14 mM MgAc.

4.5.8 Digital droplet PCR quantification

To confirm the concentration of ssDNA 1 and ssRNA 1 standard dilutions used in Figure 1C-D and
for comparison of SHERLOCK sensitivity, we performed digital-droplet PCR (ddPCR). For DNA
quantification, droplets were made using the ddPCR Supermix for Probes (no dUTP) (BioRad) with
PrimeTime qPCR probes/primer assays (IDT) designed to target the ssDNA 1 sequence. For RNA
quantification, droplets were made using the one-step RT-ddPCR kit for probes with PrimeTime
gPCR probes/primer assays designed to target the ssSRNA 1 sequence. Droplets were generated in
either case using the QX200 droplet generator (BioRad) and transferred to a PCR plate. Droplet-
based amplification was performed on a thermocycler as described in the kit protocol and nucleic acid

concentrations were subsequently determined via measurement on a QX200 droplet reader.

4.5.9 Quantitative PCR (qQPCR) analysis with TagMan probes

To compare SHERLOCK quantification with other established methods, we performed qPCR on a

dilution series of ssDNA 1. A TagMan probe and primer set were designed against ssDNA 1 and
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synthesized with IDT. Assays were performed using the TaqMan Fast Advanced Master Mix

(Thermo Fisher) and measured on a Roche LightCycler 480.

4.5.10 Real-time RPA with SYBR Green II

To compare SHERLOCK quantification with other established methods, we performed RPA on a
dilution series of ssDNA 1. To quantitate accumulation of DNA in real-time, we added 1x SYBR
Green II (Thermo Fisher) to the typical RPA reaction mixture described above, which provides a
fluorescent signal that correlates with the amount of nucleic acid. Reactions were allowed to proceed
for 1 hr at 37°C on a fluorescent plate reader (BioTek) with ﬂuoreséent kinetics measured every 5

min.
4.5.11 SHERLOCK freeze-drying and paper deposition

Glass fiber filter paper (Whatman, 1827-021) was autoclaved for 90 min (Consolidated Stills and
Sterilizers, MKII) and blocked in 5% nuclease-free BSA (EMD Millipore, 126609-10GM) overnight.
After rinsing the paper once with nuclease-free water (Life technologies, AM9932), RNases were
removed via incubation with 4% RNAsecure™ (Life technologies, AM7006) at 60°C for 20 min, and
the paper was rinsed three more times with nuclease-free water to remove traces of RNAsecure.
Treated papers were dried for 20 min at 80°C on a hot plate (Cole-Parmer, IKA C-Mag HS7) prior to
use. 1.8 uL of Cas13a reaction mixture as indicated earlier was put onto the disc (2 mm) that was
placed in black, clear bottom 384-well plate (Corning, 3544). For the freeze-dried test of SHERLOCK,
the plate containing reaction mixture discs was flash frozen in liquid nitrogen and was freeze-dried
overnight as previously described (Pardee et al., 2016). RPA samples were diluted 1:10 in nuclease-
free water, and 1.8 uL of the mixture was loaded onto the paper discs and incubated at 37°C using a

plate reader (BioTek Neo).

4.5.12 Lentivirus Preparation and Processing
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Lentivirus preparation and processing was performed as previously described (1). Briefly, 10 pg
pSB700 derivatives that include a ZIKV or DENV RNA fragment, 7.5 ug psPAX2, and 2.5 ug pMD2.G
were transfected into HEK293FT cells (Life Technologies, R7007) using the HeBS-CaCl, method. 28
hr after changing media to fresh DMEM supplemented with 10% FBS, 1% penicillin-streptomycin
and 4 mM GlutaMAX (ThermoFisher Scientific), the supernatant was filtered using a 0.45 um syringe
filter. ViralBind Lentivirus Purification Kit (Cell Biolabs, VPK-104) and Lenti-X Concentrator
(Clontech, 631231) were used to purify and prepare lentiviruses from the supernatant. Viral
concentration was quantified using QuickTiter Lentivirus Kit (Cell Biolabs, VPK-112). Viral samples
were spiked into 7% human serum (Sigma, H4522), were heated to 95°C for 2 min and were used as

input to RPA.

4.5.13 Isolation and cDNA purification of ZIKV human serum samples

Suspected ZIKV positive human serum or urine samples were inactivated with AVL buffer (Qiagen)
and isolation of RNA was achieved with QIAamp Viral RNA minikit (Qiagen). [solated RNA was
converted into cDNA by mixing random primers, dNTPs, and sample RNA followed by heat
denaturation for 7 min at 70 C. Denatured RNA was then reverse transcribed with Superscript III
(Invitrogen) incubated at 22-25 T for 10 min, 50 T for 45 min, 55 T for 15 min, and 80 T for 10
min. cDNA was then incubated for 20 min at 37 T with RNAse H (New England Biolabs) to destroy
RNA in the RNA:cDNA hybrids.

4.5.14 Bacterial genomic DNA extraction

For experiments involving CRE detection, bacterial cultures were grown in lysogeny broth (LB) to
mid-log phase, then pelleted and subjected to gDNA extraction and purification using the Qiagen
DNeasy Blood and Tissue Kit, using the manufacturer's protocol for either Gram negative or Gram
positive bacteria, as appropriate. gDNA was quantified by the Quant-It dsDNA (Thermo Scientific)
assay on a Qubit fluorometer (Thermo Scientific) and its quality assessed via 200-300 nm absorbance

spectrum on a Nanodrop spectrophotometer.
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For experiments discriminating between E. coli and P. aeruginosa, bacterial cultures were grown to
early stationary phase in Luria-Bertani (LB) broth. 1.0 mL of both E. coli and P. aeruginosa were
processed using the portable PureLyse bacteria gDNA extraction kit (Claremont BioSolutions). 1X
binding buffer was added to the bacterial culture before passing through the battery-powered lysis
cartridge for three minutes. 0.5X binding buffer in water was used as a wash solution before eluting

with 150 pL of water.

4.5.15 Genomic DNA extraction from human saliva

2 mL of saliva was collected from volunteers, who were restricted from consuming food or drink 30
min prior to collection. Samples were then processed using QIAamp® DNA Blood Mini Kit (Qiagen)
as recommended by the kit protocol. For boiled saliva samples, 400 uL of phosphate buffered saline
(Sigma) was added to 100 uL of volunteer saliva and centrifuged for 5 min at 1800 g. The supernatant
was decanted and the pellet was resuspended in phosphate buffered saline with 0.2% Triton X-100
(Sigma) before incubation at 95°C for 5 min. 1 pL of sample was used as direct input into RPA

reactions.

4.5.16 Synthetic standards for human genotyping

To create standards for accurate calling of human sample genotypes, we designed primers around the
SNP target to amplify ~200 bp regions from human genomic DNA representing each of the two
homozygous genotypes. The heterozygous standard was then made by mixing the homozygous
standards in a 1:1 ratio. These standards were then diluted to equivalent genome concentrations

(~0.56 fg/pL) and used as input for SHERLOCK alongside real human samples.

4.5.17 Detection of tumor mutant cell free-DNA (cfDNA)

Mock cfDNA standards simulating actual patient cfDNA samples were purchased from a commercial

vendor (Horizon Discovery Group). These standards were provided as four allelic fractions (100%
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WT and 0.1%, 1%, and 5% mutant) for both the BRAF V600E and EGFR L858R mutants. 3 pL of
these standards were provided as input to SHERLOCK.

4.5.18 Analysis of SHERLOCK fluorescence data

To calculate background subtracted fluorescence data, the initial fluorescence of samples was
subtracted to allow for comparisons between different conditions. Fluorescence for background
conditions (either no input or no crRNA conditions) were subtracted from samples to generate

background subtracted fluorescence.

crRINA ratios for SNP or strain discrimination were calculated to adjust for sample-to-sample overall

variation as follows:

(m + n)4;
?;1 Ai + Z?=1 Bi

crRNA A; ratio =

where A; and B; refer to the SHERLOCK intensity values for technical replicate i of the crRNAs
sensing allele A or allele B, respectively, for a given individual. Since we typically have four technical
replicates per crRNA, m and n are equal to 4 and the denominator is equivalent to the sum of all eight
of the crRNA SHERLOCK intensity values for a given SNP locus and individual. Because there are
two crRNAs, the crRNA ratio average across each of the crRNAs for an individual will always sum
to two. Therefore, in the ideal case of homozygosity, the mean crRNA ratio for the positive allele
crRNA will be two and the mean crRNA ratio for the negative allele crRNA will be zero. In the ideal

case of heterozygosity, the mean crRNA ratio for each of the two crRNAs will be one.
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Chapter 5

Multiplexed and portable nucleic acid detection
platform with Cas13, Cas12a, and Csmé6

This chapter is adapted from the following article:

Gootenberg, J.S.*, Abudayyeh, 0.0.%, Kellner, M J., Joung, J., Collins, J.J., and Zhang, F. (2018).

Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csmé. Science.
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5.1 Abstract

Rapid detection of nucleic acids is integral for clinical diagnostics and biotechnological
applications. We recently developed a platform termed SHERLOCK (Specific High
Sensitivity Enzymatic Reporter UnLOCKing) that combines isothermal pre-amplification
with Cas13 to detect single molecules of RNA or DNA. Through characterization of CRISPR
enzymology and application development, we report here four advances integrated into
SHERLOCKV2: 1) 4-channel single reaction multiplexing using orthogonal CRISPR enzymes;
2) quantitative measurement of input down to 2 aM; 3) 3.5-fold increase in signal sensitivity
by combining Cas13 with Csmé, an auxilary CRISPR-associated enzyme; and 4) lateral flow
read-out. SHERLOCKvV2 can detect Dengue or Zika virus ssRNA as well as mutations in
patient liquid biopsy samples via lateral flow, highlighting its potential as a multiplexable,

portable, rapid, and quantitative detection platform of nucleic acids.

5.2 Introduction

Versatile, rapid, and portable sensing of nucleic acids is vital for applications in human health. The
RNA-targeting CRISPR-associated enzyme Cas13(Abudayyeh et al., 2016; Shmakov et al., 2015) has
recently been adapted for such purpose. This detection platform, termed SHERLOCK (Specific High
Sensitivity Enzymatic Reporter UnLOCKing) (Gootenberg et al., 2017¢), can discriminate between
inputs that differ by a single nucleotide at very low concentrations and can be lyophilized for portable
deployment. However, this technology has several limitations, including the lack of quantitation and
reliance on fluorescent detection equipment for readout. Here, we extend the SHERLOCK

technology to address these limitations and further develop the utility of this platform.

5.3 Results

Many applications require detection of more than one target molecule in a single reaction, and we

therefore sought to create a multiplex platform that relies on unique cleavage preferences of Cas
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enzymes(Abudayyeh et al., 2016; East-Seletsky et al., 2017; East-Seletsky et al., 2016; Gootenberg et
al., 2017c¢). To identify possible candidate enzymes compatible with multiplexing, we biochemically
characterized three members of the CRISPR-Cas13a family and fourteen members of the CRISPR-
Cas13b family(Shmakov et al., 2017a; Smargon et al., 2017b) (fig. 5.S1, 5.52). We profiled cleavage
preferences on homopolymer reporters, and found that most orthologs preferred either uridine, a
combination of bases, or adenine (fig. 5.53) and cleavage could be improved with buffer and crRNA
design optimization (fig. 5.54-7). Among the adenine cleaving enzymes, PsmCas13b was more
sensitive than LbaCas13a (fig. 5.S8). We refined the cleavage sequence preferences by evaluating
collateral activity across di-nucleotide motifs (Fig. 5.1A), finding a large diversity of di-nucleotide
cleavage motif preferences (figs. 5.89-10). From these di-nucleotide cleavage screens, we found that
the activities of LwaCas13a, CcaCas13b, LbaCas13a and PsmCas13b could all be independently
measured with the four di-nucleotide reporters AU, UC, AC, and GA, respectively (Fig. 5.1B and fig.
5.811). Additionally, using a random in vitro RNA library motif cleavage screen, we identified
numerous RNA 6-mers that allowed for further orthogonality between Cas13 enzymes (fig. 5.512-
15).
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Figure 5.1: Multiplexed SHERLOCK detection with orthogonal collateral activity.
A)Schematic of assay for determining di-nucleotide preferences of Cas13a/b enzymes.
B)Collateral activity of LwaCas13a, CcaCas13b, LbaCas13a, and PsmCas13b on orthogonal
di-nucleotide reporters.

C)Schematic of collateral activity of Cas12a activated by dsDNA.

D)Comparison of collateral activity and pre-amplification enhanced collateral activity
(SHERLOCK) of LwaCas13a, PsmCas13b, and AsCas12a. The dotted line denotes 2e9 (aM),
the limit of AsCas12a sensitivity without preamplification. Values represent mean +/- S.E.M.
E)Schematic of in-sample 4 channel multiplexing using orthogonal Cas13 and Casl2a
enzymes.

F)In-sample multiplexed detection of ZIKV ssRNA, ssRNA 1, DENV ssRNA, and dsDNA 1
with LwaCas13a, PsmCas13b, CcaCas13b, and AsCas12a.
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G)Schematic of in-sample multiplexed detection of S. aureus thermonuclease and P.
aeruoginosa acyltransferase synthetic targets with LwaCas13a and PsmCas13b.

H)In-sample multiplexed RPA and collateral detection at decreasing concentrations of S.
aureus thermonuclease and P. aeruoginosa acyltransferase synthetic targets with LwaCas13a

and PsmCas13b.

Using these unique cleavage preferences, we were able to detect synthetic Zika virus (ZIKV) ssRNA
in the HEX channel and synthetic Dengue virus (DENV) ssRNA in the FAM channel in the same
reaction (fig. 5.816). To expand the in-sample multiplexing capabilities of SHERLOCK, we
engineered a detection system based on Cas12a, which also exhibits collateral activity(Chen et al.,
2017) (Fig. 5.1C). Although AsCas12a collateral activity did not produce a detectable signal at input
concentrations below 100nM, preamplification with recombinase polymerase amplification (RPA)
enabled single-molecule detection at 2aM (Fig. 5.1D, 5.5S17) (unless otherwise noted, all SHERLOCK
reactions that involve a pre-amplification are performed in two steps with the RPA reaction being
directly added into the Cas13 assay without any purification step). For triplex detection, we designed
aLwaCas13a uridine reporter in the Cy5 channel, a PsmCas13b adenine reporter in the FAM channel,
and an AsCas12a ssDNA reporter in the HEX channel (fig. 5.518A). We were able to detect three
targets (a synthetic ssDNA target, ZIKV ssRNA, and DENV ssRNA) in a single reaction (fig. 5.518B).
We further extended detection to four targets by leveraging orthogonal di-nucleotide motifs, with
reporters for LwaCas13a, PsmCas13b, CcaCas13b, and AsCas12a in FAM, TEX, Cy5, and HEX
channels, respectively (Fig. 5.1E), and were able to distinguish all combinations of targets (Fig. 5.1F).
When combined with RPA, we detected two DNA targets (the P. aeruginosa acyltransferase gene and
the S. aureus thermonuclease gene) (Fig. 5.1G) down to the attomolar range (Fig. 5.1H). Similarly,
multiplexed SHERLOCK with PsmCas13b and LwaCas13a achieved attomolar multiplexed detection
of ZIKV and DENV RNA dilutions as well as allele-specific genotyping of human saliva samples (fig.
5.519). These advances in in-sample multiplexing via orthogonal base preferences allow for many

targets to be detected at scale and for cheaper cost.

We next focused on tuning the output of the SHERLOCK signal to make it more quantitative,
sensitive, and robust to broaden the utility of the technology. SHERLOCK relies on an exponential

pre-amplification, which saturates quickly and hinders accurate quantitation, but we observed that
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more dilute primer concentrations increased both raw signal and quantitative accuracy, indicating

that at lower primer concentrations, the reaction does not saturate (Fig. 5.2A,B and fig. 5.S20A-E).

We tested a range of primer concentrations and found that 240nM exhibited the greatest correlation

between signal and input (fig. 5.520F), and quantification was sustainable across a large range of

sample concentrations down to the attomolar range (Fig. 5.2C and fig. 5.520G). Many applications

of nucleic acid detection, such as HIV detection(Barletta et al., 2004; 2009), require single

molecule/mL sensitivity, and we therefore tested if the detection limit could be pushed beyond 2aM,

allowing for more dilute sample inputs into SHERLOCK. By scaling up the pre-amplification RPA

step, we found that LwaCas13a could give detection signal for 200, 80, and 8zM input samples and

allow for single-molecule volume inputs of 250puL and 540uL (fig. 5.521A-B), and PsmCas13b could

detect 200zM input samples in 250pL reactions (fig. 5.21C).

A
acyltransferase
ssDNA quantitation

A

dilution
series

tasting
[primer]

arc

—
i — Cas13a
§ lwaCasi3a  getection =

with T7

I mmmn
0w
I Hmnn

Cc
P. aeruginosa SHERLOCK copy number detection
acyltransferase ssDNA copy number
206 Wl 4B0nM primer 1506
) B 240nM primer . R’=0.9844
§ B9 120nM primer
£8 106 o 1e6
EE 3%
2 2
8 g 505 505
B =
£ 8 :
o 0.
164 12 1600 164 162 1600 1ed 182 1000 0 181 182 183 184 186
acyliransferase ssDNA acyltransferase ssDNA
concentration (aM) concentration (aM)
¥ lyA-FAM lyA-FAM
POlyA-| 3 PolyA- s
EiCsm, polyA reporter polyU-FAM reporter polyU-FAM reporter
U@ @raaan®
.MA@ @uuuuu® @M@ . Lyacastaa -e- LwaCasida + EiCsm6
-#-LwaCas13a, - LwaCas13a
366 no target + EiCsm, no target
& LwaCas13a 406
waCas13a
E 00 W, U § m L §
(A 306
3000 st g - §
3 -y E g -
AU, B
23 mao, Eg ‘g, g
§ 1 W o § - -‘;": 106 o
LITHT T 0 0
Casl3a Casi3a+ EiCsmé [activator] OpM 10uM 20pM 50uM [] 50 100
EiCsme (), ) time (min)

Figure 5.2: Single molecule quantitation and enhanced signal with SHERLOCK and

Csmé6

A)Schematic of DNA reaction scheme for quantitation of P. aeroginosa synthetic DNA

B)Quantitation of P. aeroginosa synthetic DNA at various RPA primer concentrations. Values

represent mean +/- S.E.M.

C)Correlation of P. aeroginosa synthetic DNA concentration with detected fluorescence.

Values represent mean +/- S.E.M.
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D)Schematic of independent readout of LwaCasl3a and Csmé cleavage activity with
orthogonal reporters.

E)Activation of EiCsmé6 by LwaCas13a cleavage of adenine-uridine activators with different
length adenine tracts. LwaCas13ais targeting synthetic DENV ssRNA. Values represent mean
+/-S.E.M.

F)Combined LwaCas13a and EiCsmé6 signal for increasing concentrations of (A)s-(U)s
activator detecting 20nM of DENV ssRNA. Values represent mean +/- S.E.M.

G)Kinetics of EiCsmé6-enhanced LwaCas13a SHERLOCK detection of P. aeruoginosa

acyltransferase synthetic target.

In order to amplify the detection signal, we leveraged the CRISPR type-III effector nuclease
Csmé6(Deng et al., 2013; Goldberg et al., 2014; Jiang et al., 2016; Niewoehner and Jinek, 2016; Samai
etal., 2015; Staals et al., 2014; Tamulaitis et al., 2014), which is activated by cyclic adenylate molecules
or linear adenine homopolymers terminated with a 2',3'-cyclic phosphate(Kazlauskiene et al., 2017;
Niewoehner et al., 2017). LwaCas13a and PsmCas13b collateral activity generates cleavage products
with hydroxylated 5" ends and 2',3'-cyclic phosphate ends (fig. 5.522), suggesting that Cas13 collateral
activity could generate Csmé activating species, which would allow for amplified signal detection in
the SHERLOCK assay. By testing RNA adenylate molecules of different lengths and 3’ end
modifications (Fig. 5.523 and 5.524A), we found that Csmé from Enterococcus italicus (EiCsmé6) and
Csmé from Lactobacillus salivarius (LsCsm6) were efficiently activated by hexadenylates containing
2',3'-cyclic phosphate ends (Fig. 5.524B,C). Moreover, EiCsmé6, LsCsm6, and Csmé from Thermus
thermophilus (TtCsmé6) demonstrated a strong cleavage preference for A- and C-rich sensors based on
sensor screening, enabling independent measurements of LwaCas13a and Csmé cleavage activity in

separate channels (Fig. 5.2D and fig. 5.524B-D, 5.525, 5.526A-E).

To couple the activity of Cas13 with Csmé6 activation, we designed protected RNA activators that
contained a poly-A stretch followed by a protecting poly-U stretch that could be cleaved by a uracil
preferring Cas13 enzyme, with the rationale that LwaCas13a could degrade all the uridines down to
the homopolymeric A stretch since it had robust activity on UU and AU two-base motifs (fig. 5.59).
We found that, upon addition of target and LwaCas13a-crRNA complex, EiCsm6 and LsCsmé were

activated by the (A)s-(U)s activator, consistent with the finding that the As activator is optimal for
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Csmé6 activation and confirmed by mass spectrometry (Fig. 5.2E and fig. 5.S26F, 5.527-5.528). We
combined the reporters for both Csmé and Cas13 in the same reaction within the same fluorescence
channel, and found that increasing the activator concentration increased the synergistic activation of
Csmé6 by Cas13 for DENV ssRNA detection (Fig. 5.2F), and that increasing the Csmé6-specific polyA
reporter also increased the Csm6 signal, leading to a larger increase in signal upon activator addition
(fig. 5.529A,B). After optimization (fig 5.530), we found that Csmé-enhanced LwaCas13a increased
the overall signal and kinetics of synthetic acyltransferase gene detection by SHERLOCK (Fig. 5.2G).

Another goal of SHERLOCKv2 was engineering a visual readout of activity requiring no additional
instrumentation. We first tested a colorimetric RNase reporter based upon gold nanoparticle cluster
disaggregation(Zhao et al., 2008a; Zhao et al., 2008b), but this readout required a level of RNase
activity beyond what Cas13 collateral activity could achieve (fig. 5.531). We then designed a lateral-
flow readout that was based on the destruction of a FAM-biotin reporter, allowing for detection on
commercial lateral flow strips. Abundant reporter accumulates anti-FAM antibody-gold nanoparticle
conjugates at the first line on the strip, preventing binding of the antibody-gold conjugates to protein
A on the second line; cleavage of reporter would reduce accumulation at the first line and result in
signal on the second line (Fig. 5.3A). We tested this design for instrument-free detection of ZIKV or
DENYV ssRNA, and found that detection was possible in under 90 minutes with sensitivities down to
the 2 aM condition (Fig. 5.3B,C and fig. 5.532). Moreover, we found that we could do rapid genomic
DNA extraction from human saliva (<10min) and input this directly into SHERLOCK without
purification for rapid genotyping in under 23 minutes by fluorescence and 2 hours by lateral flow (fig.
5.533). This exemplifies a closed-tube assay format with the entire SHERLOCK reaction being

performed in a one-pot assay without any sample purification.
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Figure 5.3: Adapting SHERLOCK for lateral flow detection

A)Schematic of lateral flow detection with SHERLOCK

B)Detection of synthetic ZIKV ssRNA using lateral flow SHERLOCK with 1 hour of

LwaCas13a reaction

C)Quantitation of band intensity from detection in (B)

D)Schematic of lateral flow detection of therapeutically relevant EGFR mutations from

patient liquid biopsy samples.

E)Detection of EGFR L858R mutation in patient-derived cell-free DNA samples with either

L858R or WT cancer mutations. Values represent mean +/- S.E.M.

F)Lateral-flow detection of EGFR L858R mutation in patient-derived cell-free DNA samples

with either L858R or WT alleles.
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G)Quantitation of band intensity from detection in (E).

H)Detection of EGFR exon 19 deletion mutation in patient-derived cell-free DNA samples
with either exon 19 deletion or WT alleles. Values represent mean +/- S.E.M.
I)Lateral-flow detection of EGFR exon 19 deletion mutation in patient-derived cell-free DNA
samples with either exon 19 deletion or WT alleles.

J)Quantitation of band intensity from detection in (H).

K)Schematic of lateral flow readout of EiCsmé-enhanced LwaCas13a detection of DENV
ssRNA

L)EiCsm6-enhanced lateral flow detection of synthetic DENV RNA in combination with
LwaCas13a without preamplification by RPA. Band intensity quantitation is shown to the

right.

We also applied the system to create a rapid and portable paper test for mutation detection in liquid
biopsies of non-small cell lung cancer (NSCLC) patients. We designed SHERLOCK assays to detect
either the EGFR L858R mutation or the exon 19 deletion (5 amino acids) and isolated cfDNA from
patients with or without these mutations (Fig. 5.3D), as verified by targeted sequencing. SHERLOCK
successfully detected these mutations, both with fluorescence based readout (Fig. 5.3E,H) and lateral
flow-based readout (Fig. 5.3F,G,1] fig. 5.534A-D). Fluorescence-based SHERLOCK was also able to
detect a different common EGFR mutation, T790M, in synthetic and patient cfDNA liquid biopsy
samples (fig. 5.S34E,F).

To improve the robustness of the detection and reduce the likelihood of false positive readout, we
combined Csmé6 with Cas13 detection on lateral flow (Fig. 5.3K). We tested lateral flow reporters of
various sequence and length in the presence of Csmé and activator, and found that a long A-C
reporter demonstrated strong cleavage signal (fig. 5.535A,B). We used this reporter in combination
with the Cas13 lateral flow reporter for rapid detection of DENV ssRNA relying solely on Csmé6 for
amplification (i.e., in the absence of RPA) (Fig. 5.3L). We subsequently combined RPA, Cas13/Csms,
and lateral flow readout to detect an acyltransferase target, and found that the increase in signal
conferred by Csmé allowed for more rapid detection by lateral flow (fig. 5.S35C-D) with reduced
background.
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Finally, we applied SHERLOCKV2 in a simulated approach that involves Cas13 serving as both a
companion diagnostic and the therapy itself, as Cas13 has been developed for a variety of applications
in mammalian cells including RNA knockdown, imaging, and editing (Abudayyeh et al., 2017; Cox et
al,, 2017)(Fig. 5.4A). We recently harnessed Cas13b from Prevotella sp. P5-125 (PspCas13b) to correct
mutations in genetic diseases using a system called RNA Editing for Programmable A-to-I
Replacement (REPAIR)(Cox et al., 2017). To direct and monitor the outcome of a treatment, we
tested if SHERLOCK could be used both for genotyping to guide the REPAIR treatment and as a
readout of the edited RNA to track the efficiency of the therapy. We used a mutation in APC
(APC:c.1262G>A) implicated in Familial adenomatous polyposis 1 (Fig. 5.4B,C) (Cottrell et al., 1992),
and transfected synthetic healthy and mutant cDNAs of the fragment surrounding the mutation into
HEK293FT cells. We harvested DNA from these cells and successfully genotyped the correct samples
using single-sample multiplexed SHERLOCK with LwaCas13a and PsmCas13b (Fig. 5.4D).
Concurrently, we designed and cloned guide RNAs for the REPAIR system and transfected cells that
had the diseased genotype with the guide RNA and dPspCas13b-ADAR244(E488Q) REPAIR system.
We confirmed editing by next-generation sequencing (NGS) analysis, finding that 43% editing was
achieved with the REPAIR system (Fig. 5.4E), and we were able to detect this editing with
SHERLOCK (Fig. 5.4F and fig. 5.836).
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Figure 5.4: Combined therapeutics and diagnostics with Cas13 enzymes

A)Schematic of timeline for detection of disease alleles, correction with REPAIR, and
assessment of REPAIR correction.

B)Sequences of targets and crRNA designs used for detection of APC alleles.

C)Sequences of target and REPAIR guide design used for correction of APC alleles.
D)In-sample multiplexed detection of APC alleles from healthy- and disease-simulating
samples with LwaCas13a and PsmCas13b. Adjusted crRNA ratio allows for comparisons
between different crRNAs that will have different overall signal levels (see supplementary
methods for more details). Values represent mean +/- S.E.M.

E)Quantitation of REPAIR editing efficiency at the targeted APC mutation. Values represent
mean +/- S.E.M.

F)In-sample multiplexed detection of APC alleles from REPAIR targeting and non-targeting

samples with LwaCas13a and PsmCas13b. Values represent mean +/- S.E.M.
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5.4 Conclusion

The additional refinements presented here for Cas13-based detection allow for quantitative, visual,
more sensitive, and multiplexed readouts, enabling additional applications for nucleic acid detection,
especially in settings where portable and instrument-free analysis are necessary. SHERLOCKv?2 can
be used for multiplexed genotyping to inform pharmacogenomic therapeutic development and
application, detecting genetically modified organisms in the field, or determining the presence of co-
occurring pathogens. Moreover, the rapid, isothermal readout of SHERLOCKV2, enabled by lateral
flow and Csmé, provides an opportunity for detection in settings where power or portable readers
are unavailable, even for rare species like circulating DNA. In the future, it might be possible to make
solution-based colorimetric readouts and multiplex lateral flow assays containing multiple test strips
for different targets. Improved CRISPR-dx nucleic acid tests make it easier to detect the presence of
nucleic acids in a range of applications across biotechnology and health and are now field-ready for

rapid and portable deployment.

5.5 Experimental Procedures

5.5.1 Protein expression and purification of Cas13 and Csmé6 orthologs

LwaCas13a expression and purification was carried out as described before(Gootenberg et al., 2017¢)
with minor modifications and is detailed below. LbuCas13a, LbaCas13a, Cas13b and Csmé6 orthologs
were expressed and purified with a modified protocol. In brief, bacterial expression vectors were
transformed into Rosetta™ 2(DE3)pLysS Singles Competent Cells (Millipore). A 12.5 mL starter
culture was grown overnight in Terrific Broth 4 growth media (Sigma) (TB), which was used to
inoculate 4 L of TB for growth at 37°C and 300 RPM until an OD600 of 0.5. At this time, protein
expression was induced by supplementation with IPTG (Sigma) to a final concentration of 500 uM,
and cells were cooled to 18°C for 16 h for protein expression. Cells were then centrifuged at 5000 g

for 15 min at 4°C. Cell pellet was harvested and stored at -80°C for later purification.

125



All subsequent steps of the protein purification were performed at 4°C. Cell pellet was crushed and
resuspended in lysis buffer (20 mM Tris-HCI, 500 mM NaCl, 1 mM DTT, pH 8.0) supplemented with
protease inhibitors (Complete Ultra EDTA-free tablets), lysozyme (500pg/1ml), and benzonase
followed by high-pressure cell disruption using the LM20 Microfluidizer system at 27,000 PSI. Lysate
was cleared by centrifugation for 1 hr at 4°C at 10,000 g. The supernatant was applied to 5mL of
StrepTactin Sepharose (GE) and incubated with rotation for 1 hr followed by washing of the protein-
bound StrepTactin resin three times in lysis buffer. The resin was resuspended in SUMO digest buffer
(30 mM Tris-HCI, 500 mM NaCl 1 mM DTT, 0.15% Igepal (NP-40), pH 8.0) along with 250 Units of
SUMO protease (250mg/ml) and incubated overnight at 4°C with rotation. The suspension was
applied to a column for elution and separation from resin by gravity flow. The resin was washed two
times with 1 column volume of Lysis buffer to maximize protein elution. The elute was diluted in
cation exchange buffer (20 mM HEPES, 1 mM DTT, 5% glycerol, pH 7.0; pH 7.5 for LbuCas13a,
LbaCas13a, EiCsmé6, LsCsmé6, TtCsmé6) to lower the salt concentration in preparation for cation

exchange chromatography to 250mM.

For cation exchange and gel filtration purification, protein was loaded onto a 5 mL HiTrap SP HP
cation exchange column (GE Healthcare Life Sciences) via FPLC (AKTA PURE, GE Healthcare Life
Sciences) and eluted over a salt gradient from 250 mM to 2M NaCl in elution buffer (20 mM HEPES,
1 mM DTT, 5% glycerol, pH 7.0; pH 7.5 for LbuCas13a, LbaCas13a). The resulting fractions were
tested for presence of recombinant protein by SDS-PAGE, and fractions containing the protein were
pooled and concentrated via a Centrifugal Filter Unit (Millipore 50MWCO) to 1 mL in S200 buffer
(10 mM HEPES, 1 M NaCl, 5 mM MgCl2,2 mM DTT, pH 7.0). The concentrated protein was loaded
onto a gel filtration column (Superdex® 200 Increase 10/300 GL, GE Healthcare Life Sciences) via
FPLC. The resulting fractions from gel filtration were analyzed by SDS-PAGE and fractions
containing protein were pooled and buffer exchanged into Storage Buffer (600 mM NaCl, 50 mM
Tris-HCl pH 7.5, 5% glycerol, 2mM DTT) and frozen at -80°C for storage.

5.5.2 Nucleic acid target and crRNA preparation
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Nucleic acid targets for Cas12a and genomic DNA detection were PCR amplified with NEBNext PCR
master mix, gel extracted, and purified using MinElute gel extraction kit (Qiagen). For RNA based
detection, purified dsDNA was incubated with T7 polymerase overnight at 30°C using the HiScribe
T7 Quick High Yield RNA Synthesis kit (New England Biolabs) and RNA was purified with the
MEGAclear Transcription Clean-up kit (Thermo Fisher)

crRNA preparation was carried out as described before(Gootenberg et al., 2017c) with minor
modifications and is detailed below. For preparation of crRNAs, constructs were ordered as ultramer
DNA (Integrated DNA Technologies) with an appended T7 promoter sequence. crRNA DNA was
annealed to a short T7 primer (final concentrations 10 uM) and incubated with T7 polymerase
overnight at 37°C using the HiScribe T7 Quick High Yield RNA Synthesis kit (New England Biolabs).
crRNAs were purified using RNAXP clean beads (Beckman Coulter) at 2x ratio of beads to reaction

volume, with an additional 1.8x supplementation of isopropanol (Sigma).

5.5.3 Recombinase Polymerase Amplification (RPA)

Primers for RPA were designed using NCBI Primer-BLAST(Ye et al., 2012) using default parameters,
with the exception of amplicon size (between 100 and 140 nt), primer melting temperatures (between
54°C and 67°C), and primer size (between 30 and 35 nt). Primers were then ordered as DNA

(Integrated DNA Technologies).

RPA and RT-RPA reactions run were as instructed with TwistAmp® Basic or TwistAmp® Basic RT
(TwistDx), respectively, with the exception that 280 mM MgAc was added prior to the input template.

Reactions were run with 1 pL of input for 1 hr at 37°C, unless otherwise described.
For SHERLOCK quantification of nucleic acid, RPA primer concentration tested at standard

concentration (480nM final) and lower (240nM, 120nM,60nM, 24nM) to find the optimum

concentration. RPA reactions were further run for 20 minutes.
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When multiple targets were amplified with RPA, primer concentration was adjusted to a final
concentration of 480nM. That is, 120nM of each primer for two primer pairs were added for duplex

detection.

5.5.4 Fluorescent cleavage assay

Detection assays were carried out as described before(Gootenberg et al., 2017c) with minor
modifications and the procedure is detailed below. Detection assays were performed with 45 nM
purified Cas13, 22.5 nM crRNA, quenched fluorescent RNA reporter (125nM RNAse Alert v2,
Thermo Scientific, homopolymer and di-nucleotide reporters (IDT); 250nM for polyA Trilink
reporter ), 0.5 uL murine RNase inhibitor (New England Biolabs), 25 ng of background total human
RNA (purified from HEK293FT culture), and varying amounts of input nucleic acid target, unless
otherwise indicated, in nuclease assay buffer (20 mM HEPES, 60 mM NaCl, 6 mM MgCl;, pH 6.8).
For Csm6 fluorescent cleavage reactions, protein was used at 10nM final concentration along with
500nM of 2, 3’ cyclic phosphate oligoadenylate, 250nM of fluorescent reporter, and 0.5 pL. murine
RNase inhibitor in nuclease assay buffer (20 mM HEPES, 60 mM NaCl, 6 mM MgCl;, pH 6.8).
Reactions were allowed to proceed for 1-3 hr at 37°C (unless otherwise indicated) on a fluorescent
plate reader (BioTek) with fluorescent kinetics measured every 5 min. In reactions involving
AsCasl12a, 45nM AsCasl2a was included using recombinant protein from IDT. In the case of

multiplexed reactions, 45nM of each protein and 22.5nM of each crRNA was used in the reaction.

5.5.5 SHERLOCK nucleic acid detection

Detection assays were performed with 45 nM purified Cas13, 22.5 nM crRNA, quenched fluorescent
RNA reporter (125nM RNAse Alert v2, Thermo Scientific, homopolymer and di-nucleotide
reporters (IDT), 250nM for polyA Trilink reporter ), 0.5 L. murine RNase inhibitor (New England
Biolabs), 25 ng of background total human RNA (purified from HEK293FT culture), and 1uL of RPA
reaction in nuclease assay buffer (20 mM HEPES, 60 mM NaCl, 6 mM MgCl;, pH 6.8), INTP mix
(1mM final, NEB), 0.6 pL T7 polymerase (Lucigen) and 3mM MgCl,. Reactions were allowed to
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proceed for 1-3 hr at 37°C (unless otherwise indicated) on a fluorescent plate reader (BioTek) with

fluorescent kinetics measured every 5 min.

For one-pot nucleic acid detection, the detection assay was carried out as described before
(Gootenberg et al., 2017¢c) with minor modifications. A single 100 uL. combined reaction assay
consisted of 0.48 pM forward primer, 0.48 uM reverse primer, 1x RPA rehydration buffer, varying
amounts of DNA input, 45 nM LwCas13a recombinant protein, 22.5 nM crRNA, 125 ng background
total human RNA, 125 nM substrate reporter (RNase alert v2), 2.5 uL. murine RNase inhibitor (New
England Biolabs), 2 mM ATP, 2 mM GTP, 2 mM UTP, 2 mM CTP, 1 pL T7 polymerase mix
(Lucigen), 5 mM MgCl2, and 14 mM MgAc. Reactions were allowed to proceed for 1-3 hr at 37°C
(unless otherwise indicated) on a fluorescent plate reader (BioTek) with fluorescent kinetics
measured every 5 min. For lateral flow readout, 20 uL of the combined reaction was added to 100uL.

of HybriDetect 1 assay buffer (Milenia) and run on HybriDetect 1 lateral flow strips (Milenia).

5.5.6 Nucleic acid labeling for cleavage fragment analysis

Target RNA was in vitro transcribed from a dsDNA template and purified as described above. The in
vitro cleavage reaction was performed as described above for fluorescence cleavage reaction with the
following modifications. Fluorescence reporter was substituted for 1pug RNA target and no
background RNA was used. Cleavage reaction was carried out for 5 minutes (LwaCas13a) or 1 hour
(PsmCas13b) at 37°C. The cleavage reaction was purified using the RNA clean & concentrator-5 kit
(Zymo Research) and eluted in 10 uL UltraPure water (Gibco). Cleavage reaction was further labeled
with a 10pg of maleimide IRDye 800CW (Licor) following the 5’EndTag labeling Reaction (Vector
Laboratories) kit protocol. To determine the 5" end produced by Cas13 cleavage, the protocol was
modified to either perform an Alkaline Phosphatase (AP) treatment or substitute with UltraPure
water to only label 5-OH containing RNA species, while undigested triphosphorylated (PPP) RNA

species are only labeled when AP treatment is performed.

5.5.7 Mass Spectrometry for high resolution cleavage fragment analysis
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For determining the cleavage ends produced by Cas13 collateral RNase activity by Mass Spectrometry,
an in vitro cleavage reaction was performed as described above with the following modifications.
Cas13 RNA target was used at 1 nM final concentration, Csmé6 activator at 3uM final concentration
and no background RNA was used. For control reactions, either Casl3 target was substituted by
UltraPure water, or standard in vitro cleavage reaction was incubated with hexaadenylate containing
a 2’,3'cyclic phosphate activator in the absence of Cas13 target, Cas13 protein and Cas13 ctrRNA. The
cleavage reactions were carried out for 1h at 37°C and purified using an New England Biolabs siRNA
purification protocol. In brief, one-tenth volume of 3 M NaOAc, 2 pL of RNase-free Glycoblue
(Thermofisher) and three volumes of cold 95% ethanol was added, placed at -20°C for 2 hours, and
centrifuged for 15 minutes at 14,000g. The supernatant was removed and two volumes of 80% EtOH
was added and incubated for 10 minutes at room temperature. The supernatant was decanted and
samples centrifuged for 5 minutes at 14,000g. After air-drying the pellet, 50 uL of UltraGrade water

added and sent on dry ice for Mass spectrometry analysis.

For mass spectrometry analysis, samples were diluted 1:1 with UltraGrade water and analyzed on
Bruker Impact II q-TOF mass spectrometer in negative ion mode coupled to an Agilent 1290 HPLC.
10 uL were injected onto a PLRP-S column (50 mm, 5 um particle size, 1000 angstrom pore size
PLRP-S column, 2.1 mm ID) using 0.1% ammonium hydroxide v/v in water as mobile phase A and
acetonitrile as mobile phase B. The flow rate was kept constant throughout at 0.3 ml/minute. The
mobile phase composition started at 0%B and was maintained for the first 2 minutes. After this point,
the composition was changed to 100% B over the next 8 minutes and maintained for one minute. The
composition was then returned to 0% B over 0.1 minute and then maintained for the following 4.9
minutes to allow the column to re-equilibrate to starting conditions. The mass spectrometer was
tuned for large MW ions, and data was acquired between m/z 400-5000. The entire dataset from the
mass spectrometer was calibrated by m/z using an injection of sodium formate. Data was analyzed
using Bruker Compass Data Analysis 4.3 with a license for MaxEnt deconvolution algorithm to

generate a calculated neutral mass spectrum from the negatively charged ion data.

5.5.8 Genomic DNA extraction from human saliva
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Saliva DNA extraction was carried out as described before(Gootenberg et al., 2017c) with minor
modifications and is detailed below. 2 mL of saliva was collected from volunteers, who were restricted
from consuming food or drink 30 min prior to collection. Samples were then processed using
QIAamp® DNA Blood Mini Kit (Qiagen) as recommended by the kit protocol. For boiled saliva
samples, 400 uL of phosphate buffered saline (Sigma) was added to 100 pL of volunteer saliva and
centrifuged for 5 min at 1800 g. The supernatant was decanted and the pellet was resuspended in
phosphate buffered saline with 0.2% Triton X-100 (Sigma) before incubation at 95°C for 5 min. 1 pL

of sample was used as direct input into RPA reactions.

5.5.9 Digital droplet PCR quantification

ddPCR quantification was carried out as described before(Gootenberg et al., 2017c) with minor
modifications and is detailed below. To confirm the concentration of target dilutions, we performed
digital-droplet PCR (ddPCR). For DNA quantification, droplets were made using the ddPCR
Supermix for Probes (no dUTP) (BioRad) with PrimeTime qPCR probes/primer assays (IDT)
designed for the target sequence. For RNA quantification, droplets were made using the one-step
RT-ddPCR kit for probes with PrimeTime qPCR probes/primer assays designed for the target
sequence. Droplets were generated in either case using the QX200 droplet generator (BioRad) and
transferred to a PCR plate. Droplet-based amplification was performed on a thermocycler as
described in the kit protocol and nucleic acid concentrations were subsequently determined via

measurement on a QX200 droplet reader.

5.5.10 Cas13-Csmé fluorescent cleavage assay

Cas13-Csmé6 combined fluorescent cleavage assays were performed as described for standard Cas13
fluorescent cleavage reactions with the following modifications. Csmé protein was added to 10 nM
final concentration, 400 nM of Csmé fluorescent reporter and 500 nM Csmé activator unless
otherwise indicated. For distinguishing Cas13 from Csmé collateral RNase activity, two distinct

fluorophores were used for fluorescence detection (FAM and HEX). Because of the interference of
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rNTPs with Csm6 activity, the IVT was performed in the RPA pre-amplification step and then 1uL

of this reaction was added as input to the Cas13-Csmé6 cleavage assay.

In the case where we tested a three-step Cas13-Csmé6 cleavage assay, the RPA was performed
normally as discussed above for varying times and then used as input to a normal IVT reaction for
varying times. Then 1L of the IVT was used as input to the Cas13-Csmé6 reaction described in the

previous paragraph.

5.5.11 Motif discovery screen with library

To screen for Cas13 cleavage preference, an in vitro RNA cleavage reaction was set up as described
above with the following modifications. Cas13 target was used at 20nM, fluorescent reporter was
substituted for 1 uM of DNA-RNA oligonucleotide (IDT) that contains a 6-mer stretch of
randomized ribonucleotides flanked by DNA handles for NGS library preparation. Reactions were
carried out for 60 minutes (unless otherwise indicated) at 37°C. The reactions were purified using the
Zymo oligo-clean and concentrator-5 kit (Zymo research) and 15pL of UltraPure water was used for

elution. 10pL of purified reaction was used for reverse transcription using a gene-specific primer that

binds to the DNA handle.

Reverse transcription (RT) was carried out for 45 minutes at 42°C according to the qScript Flex
c¢DNA-kit (quantabio) protocol. To assess cleavage efficiency and product purity, RT-reactions were
diluted 1:10 in water and loaded on a Small RNA kit and run on a Bioanalyzer 2100 (Agilent). Four
microliters of RT-reaction was used for the first-round of NGS library preparation. NEBNext (NEB)
was used to amplify first strand cDNA with a mix of forward primers at 625 nM final and a reverse
primer at 625 nM for 15 cycles with 3 minute initial denaturation at 98°C, 10s cycle denaturation at

98°C, 10s annealing at 63°C, 20s 72°C extension and 2 minute final extension extension at 72°C.
Two microliters of first round PCR reaction was used for second round PCR amplification to attach

Illumina-compatible indices (NEB) for NGS sequencing. The same NEBNext PCR protocol was used
for amplification. PCR product were analysed by agarose gel-electrophoresis (2% Sybr Gold E-Gel
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Invitrogen system) and 5uL of each reaction was pooled. The pooled samples was gel extracted,
quantified with Qubit DNA 2.0 DNA High sensitivity kit and normalized to 4 nM final concentration.
The final library was diluted to 2 pM and sequenced on a NextSeq 500 Illumina system using a 75-

cycle kit.

5.5.12 Motif Screen Analysis

To analyze depletion of preferred motifs from the random motif library screen, 6-mer regions were
extracted from sequence data and normalized to overall read count for each sample. Normalized read
counts were then used to generated log ratios, with psuedocount adjustment, between experimental
conditions and matched controls. For Cas13 experiments, matched controls did not have target RNA
added; for Csmé6 and RNase A experiments, matched controls did not have enzyme. Log ratio
distribution shape was used to determine cut-offs for enriched motifs. Enriched motifs were then
used to determine occurrence of 1-, 2-, or 3- nucleotide combinations. Motif logos were generated

using Weblogo3(Crooks et al., 2004).

5.5.13 Phylogenetic analysis of Cas13 protein and crRNA direct repeats

To study ortholog clustering, multiple sequence alignments were generated with Cas13a and Cas13b
protein sequences in Geneious with MUSCLE and then clustered using Euclidean distance in R with
the heatmap.2 function. To study direct repeat clustering, multiple sequence alignments were
generated with Cas13a and Cas13b direct repeat sequences in Geneious using the Geneious algorithm
and then clustered using Euclidean distance in R with the heatmap.2 function. To study clustering of
orthologs based on di-nucleotide motif preference, the cleavage activity matrix was clustered using

Euclidean distance in R using the heatmap.2 function.

5.5.14 Gold nanoparticle colorimetric

An RNA oligo was synthesized from IDT with thiols at the 5" and 3’ ends. In order to deprotect the

thiol groups, the oligo at a final concentration of 20mM was reduced in 150mM sodium phosphate
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buffer containing 100mM DTT for 2 hours at room temperature. The oligo were then purified using
sephadex NAP-5 columns (GE Healthcare) into a final volume of 700pL water. As previously
described(Zhao et al., 2008a), the reduced oligo at 10uM was added at a volume of 280pL to 600uL of
2.32nM 15nm-gold nanoparticles (Ted Pella), which is a 2000:1 ratio of oligo to nanoparticles.
Subsequently, 10pL of 1M Tris-HCI at pH8.3 and 90puL of 1M NaCl were added to the oligo-
nanoparticle mixture and incubated for 18 hours at room temperature with rotation. After 18 hours,
additional 1M Tris-HCI (5uL at pH8.3) was added with 5M NaCl (50uL) and this was incubated for
an additional 15 hours at room temperature with rotation. Following incubation, the final solution
was centrifuged for 25 min at 22,000g. The supernatant was discarded and the conjugated

nanoparticles were resuspended in 50uL of 200mM NaCl.

The nanoparticles were tested for RNase sensitivity using an RNase A assay. Varying amounts of
RNase A (Thermo Fischer) were added to 1x RNase A buffer and 6uL of conjugated nanoparticles in
a total reaction volume of 20pL. Absorbance at 520nm was monitored every 5 minutes for 3 hours

using a plate spectrophotometer.

5.5.15 Lateral flow readout of Cas13 activity using FAM-biotin reporters

For lateral flow based on cleavage of a FAM-RNA-biotin reporter, non-RPA LwaCas13a reactions
or SHERLOCK-LwaCas13areactions were run for 1 hour, unless otherwise indicated, with 1uM final
concentration of FAM-RNA-biotin reporter. After incubation, 20uL LwaCasl3a reactions
supernatant was added to 100uL of HybriDetect 1 assay buffer (Milenia) and run on HybriDetect 1

lateral flow strips (Milenia).

5.5.16 Cloning of REPAIR constructs, Mammalian cell transfection, RNA isolation and NGS

library preparation for REPAIR

Constructs for simulating reversion of APC mutations and guide constructs for REPAIR were cloned

as previously described(Cox et al., 2017). Briefly, 96 nt sequences centered on the APC:c.1262G>A
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mutation were designed and golden gate cloned under an expression vector, and corresponding guide
sequences were golden gate cloned into U6 expression vectors for PspCas13b guides. To simulate
patient samples, 300ng of either mutant or wildtype APC expression vector was transfected into
HEK293FT cells with Lipofectamine 2000 (Invitrogen), and two days post-transfection DNA was
harvested with Qiamp DNA Blood Midi Kit (Qiagen) following manufacturer’s instructions. 20ng of

DNA were used as input into SHERLOCK-LwaCas13a reactions.

RNA correction using the REPAIR system was performed as previously described(Cox et al., 2017):
150ng of dPspCas13b-ADAR(DD)E488Q, 200 ng of guide vector, and 30ng of APC expression vector
were co-transfected, and two-days post transfection RNA was harvested using the RNeasy Plus Mini
Kit (Qiagen) following manufacturer's instructions. 30ng of RNA was used as input into

SHERLOCK-LwaCas13a reactions.

RNA editing fractions were independently determined by NGS as previously described. RNA was
reverse transcribed with the qScript Flex kit (Quanta Biosciences) with a sequence specific primerk.
First strand cDNA was amplified with NEBNext High Fidelity 2X PCR Mastermix (New England
Biosciences) with a mix of forward primers at 625nM final and a reverse primer at 625nM for 15
cycles with 3 minute initial denaturation at 98°C, 10 second cycle denaturation at 98°C, 30 second
annealing at 65°C, 30 second 72°C extension and 2 minute final extension extension at 72°C. Two
microliters of first round PCR reaction was used for second round PCR amplification to attach
Illumina-compatible indices for NGS sequencing, with NEBNext, using the same protocol with 18
cycles. PCR products were analysed by agarose gel-electrophoresis (2% Sybr Gold E-Gel Invitrogen)
and 5uL of each reaction was pooled. The pooled samples was gel extracted, quantified with Qubit
DNA 2.0 DNA High sensitivity kit and normalized to 4nM final concentration, and read out with a

300 cycle v2 MiSeq kit (Illumina).

5.5.17 Analysis of SHERLOCK fluorescence data

SHERLOCK fluorescence analysis was carried out as described before(Gootenberg et al., 2017¢)

with minor modifications and is detailed below. To calculate background subtracted fluorescence
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data, the initial fluorescence of samples was subtracted to allow for comparisons between different
conditions. Fluorescence for background conditions (either no input or no ¢crRNA conditions) were

subtracted from samples to generate background subtracted fluorescence.

crRNA ratios for SNP discrimination were calculated to adjust for sample-to-sample overall

variation as follows:

(m + n)Ai
1A+ X, B

crRNA A, ratio =

where A; and B refer to the SHERLOCK intensity values for technical replicate i of the crRNAs
sensing allele A or allele B, respectively, for a given individual. Since we typically have four
technical replicates per crRNA, m and n are equal to 4 and the denominator is equivalent to the sum
of all eight of the crRNA SHERLOCK intensity values for a given SNP locus and individual. Because
there are two crRNAs, the crRNA ratio average across each of the crRNAs for an individual will
always sum to two. Therefore, in the ideal case of homozygosity, the mean crRNA ratio for the
positive allele crRNA will be two and the mean crRNA ratio for the negative allele crRNA will be
zero. In the ideal case of heterozygosity, the mean crRNA ratio for each of the two crRNAs will be
one. Because in SHERLOCKvV2, we accomplish genotyping by measuring A; and B; in different color
channels, we scaled the 530-color channel by 6 to match the intensity values in the 480-color

channel.
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Chapter 6

RNA targeting with CRISPR-Cas13

This chapter is adapted from the following article:

Abudayyeh, 0.0.%, Gootenberg, ].S.*, Essletzbichler, P., Han, S., Joung, J., Belanto, J.J., Verdine, V.,
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280-284.

Contributions: Omar Abudayyeh and Jonathan Gootenberg are co-first authors (*). Omar Abudayyeh,
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6.1 Abstract and introduction

RNA plays important and diverse roles in biology, but molecular tools to manipulate and

measure RNA are limited. For example, RNA interference (RNAi)(Elbashir et al., 2001; Fire

et al., 1998; Root et al., 2006) can efficiently knockdown RNAs, but it is prone to off-target

effects(Jackson et al., 2003), and visualizing RNAs typically relies on the introduction of

exogenous tags(Tyagi, 2009). Here, we demonstrate that the class 2 type VI(Shmakov et al.,
2015; Shmakov et al, 2017a) RNA-guided RNA-targeting CRISPR-Cas effector
Cas13a(Abudayyeh et al,, 2016) (previously known as C2c2) can be engineered for

mammalian cell RNA knockdown and binding. After initial screening of fifteen orthologs, we
identified Cas13a from Leptotrichia wadei (LwaCas13a) as the most effective in an interference
assay in E. coli. LwaCas13a can be heterologously expressed in mammalian and plant cells for
targeted knockdown of either reporter or endogenous transcripts with comparable levels of
knockdown as RNAi and improved specificity. Catalytically inactive LwaCas13a maintains
targeted RN A binding activity, which we leveraged for programmable tracking of transcripts
in live cells. Our results establish CRISPR-Cas13a as a flexible platform for studying RNA in

mammalian cells.

6.2 Results

To achieve robust Cas13a-mediated RNA knockdown, we first evaluated fifteen Cas13a orthologs for
protospacer flanking site (PFS) preference and activity using a previously described ampicillin

resistance assay(Abudayyeh et al., 2016) (Fig. 6.1a and Extended Data Fig. 6.1a). This assay monitors

Cas13a-mediated cleavage of the R-lactamase (ampicillin resistance) transcript, resulting in bacterial
death under ampicillin selection, which can be measured by quantifying surviving colonies. Using
this approach, we found that the Cas13a ortholog from L. wadei (LwaCas13a) was most active,
followed by the previously characterized LshCas13a (from Leptotrichia shahii) (Fig. 6.1b and Extended
Data Fig. 6.1b)(Abudayyeh et al.,, 2016). Sequencing analysis of the PFS distributions from the

LwaCas13a and LshCas13a screens revealed that most LwaCas13a PFS sequences were depleted

(Extended Data Fig. 6.1c-e). Motif analysis of the depleted PFS sequences at varying thresholds
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revealed the expected 3’ H motif for LshCas13a, but no significant PFS motif for LwaCas13a (Fig. 6.1c
and Extended Data Fig. 6.1f,g). Consistent with these results, LwaCas13a was also found to be more

active than LshCas13a as a nucleic acid sensor(Gootenberg et al., 2017b). Because of its high activity

and lack of PFS in bacteria, we focused on LwaCas13a for further development.

In vitro cleavage reactions with LwaCas13a demonstrated programmable RNA cleavage with a crRNA
encoding a 28-nt spacer (shorter than the 29-30 nt length found in the native L. wadei CRISPR array
(Extended Data Fig. 6.2a)). These reactions confirmed the higher cleavage efficiency of LwaCas13a
over LshCas13a (Extended Data Fig. 6.2b,c), and revealed similar biochemical characteristics for the
two enzymes (Extended Data Fig. 6.2d-g). We found that LwaCas13a could cleave the corresponding
pre-crRNA transcript from L. wadei (Extended Data Fig. 6.2h). We also explored the crRNA
constraints on LwaCas13a cleavage by truncating the spacer, finding that LwaCas13a retained in vitro
cleavage activity with spacer lengths as short as 20 nt (Extended Data Fig. 6.2i). Although guide
lengths less than 20 nt no longer support catalytic activity, the LwaCas13-crRNA complex may still
retain binding activity, providing an opportunity for orthogonal applications with a single

enzyme(Dahlman et al., 2015).

We next evaluated the ability of LwaCas13a to cleave transcripts in mammalian cells. We cloned
mammalian codon-optimized LwaCas13a into mammalian expression vectors with msfGFP fusions
on the C- or N-terminus and either a dual-flanking nuclear export sequence (NES) or nuclear
localization sequence (NLS) and evaluated expression and localization (Fig. 6.1d). We found that
msfGFP-fused LwaCas13a constructs expressed well and localized effectively to the cytoplasm or
nucleus according to the localization sequence. To evaluate the in vivo cleavage activity of LwaCas13a
we developed a dual luciferase reporter system that expresses both Gaussia luciferase (Gluc) and
Cypridinia luciferase (Cluc) under different promoters on the same vector, allowing one transcript to
serve as the LwaCas13a target and the other to serve as a dosing control (Fig. 6.1¢). We then designed
guides against Gluc and cloned them into a tRNAY? promoter-driven guide expression vector. We
transfected the LwaCas13a expression vector, guide vector, and dual-luciferase construct into
HEK293FT cells and measured luciferase activity at 48 hrs post-transfection. We found that
LwaCas13a-msfGFP-NLS resulted in the highest levels of knockdown (75.7% for guide 1, 72.9% for
guide 2), comparable to position-matched shRNA controls (78.3% for guide 1, 51.5% for guide 2) (Fig.
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6.1f), which control for accessibility and sequence in the target region; we therefore used this design
for all further knockdown experiments. We also found that knockdown is most efficient with a spacer
length of 28 nt (73.8%), is dose-responsive to both the protein and guide transfected vector amounts,

and is not sensitive to RNA polymerase III promoter choice. (Extended Data Fig. 6.3a-d).

We next tested knockdown in HEK293FT cells of three endogenous genes: KRAS, CXCR4, and PPIB.
We observed varying levels of knockdown, and for KRAS and CXCR4, LwaCas13a knockdown (40.4%
for PPIB, 83.9% for CXCR4, 57.5% for KRAS) was similar to RNAi with position-matched shRNAs
(63.0% for PPIB, 73.9% for CXCR4, 44.3% for KRAS) (Fig. 6.1g). We also found that knockdown of
KRAS was possible with either U6 or tRNAY? promoters (Extended Data Fig. 6.3¢). Similar results
were obtained in the A375 melanoma cell line (Extended Data Fig. 3f). In all cases tested, knockdown
was abolished by mutating the catalytic domain of LwaCas13a (Extended Data Fig. 6.3g). To test if
LwaCas13a knockdown is efficient in plants, we targeted three rice (Oryza sativa) genes with three
guides per transcript and co-transfected LwaCas13a and guide vectors into O. sativa protoplasts (Fig.
6.1h). After transfection, we observed >50% knockdown with seven out of the nine guides and

maximal knockdown of 78.0% (Fig. 6.11).
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Figure 6.1: Cas13a from Leptotrichia wadei (LwaCas13a) is capable of eukaryotic
transcript knockdown.

A)Schematic of protospacer flanking site (PFS) characterization screen of Cas13a orthologs.

B) Quantitation of Cas13a activity in E. coli measured by colony survival from PFS screen (n
=2 or 3).

C)In vivo PFS screening shows LwaCas13a has a minimal PFS preference. Error bars indicate
an approximate Bayesian 95% confidence interval.

D)Imaging showing localization and expression of each of the mammalian constructs. Scale
bars, 10um.

E)Schematic of the mammalian luciferase reporter system used to evaluate knockdown.
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F)Knockdown of Gaussia luciferase (Gluc) using engineered variants of LwaCasl3a.
Sequences for guides and shRNAs are shown above.

G)Knockdown of three different endogenous transcripts with LwaCas13a compared to
corresponding RNAIi constructs.

H)Schematic for LwaCas13a knockdown of transcripts in rice (Oryza sativa) protoplasts.
I)LwaCas13a knockdown of three transcripts in O. sativa protoplasts using three targeting
guides per transcript (n = 4 or 6). All values are mean + SEM with n = 3, unless otherwise

noted.

To evaluate the range of efficiency of LwaCas13a knockdown, we tiled guides along the length of
four transcripts: Gluc, Cluc, KRAS, and PPIB (Fig. 6.2a). The Gluc and Cluc tiling screens revealed
guides with greater than 60% knockdown (Fig. 6.2b,c), with the majority of Gluc targeting guides
exhibiting >50% knockdown and up to 83% knockdown. To compare LwaCas13a knockdown with
RNAI, we selected the top three performing guides against Gluc and Cluc and compared them to
position-matched shRNAs. We found that five out of six top performing guides achieved significantly
higher levels of knockdown (p < 0.05) than their matched shRNAs (Extended Data Fig. 6.3h). For
endogenous genes, we found that, while knockdown efficiency was transcript dependent, there was
maximal knockdown of 85% and 75% for KRAS and PPIB, respectively (Fig. 6.2d,e). We selected the
top three guides from the KRAS and PPIB tiling screens and observed robust knockdown with
LwaCas13a (53.7%-88.8%) equivalent to levels attained by shRNA knockdown (61.8%-95.2%), with
shRINA significantly better for 2 out of 6 guides (p < 0.01) and LwaCas13a significantly better for 2
out of 6 guides (p < 0.01) (Fig. 6.2f). LwaCas13a can also mediate significant knockdown of the
nuclear transcripts MALATI and XIST(Hutchinson et al., 2007), whereas position-matched shRNAs

showed no detectable knockdown (p > 0.05) (Fig. 6.2g,h, Extended Data Fig. 6.3i)

LshCas13a activity is governed by target accessibility in E. coli (Abudayyeh et al., 2016), and we

therefore used our data from the four tiling screens to investigate whether LwaCas13a activity is
higher for guides located in regions of accessibility. We found that the most effective guides were
closer together than expected by chance (Extended Data Fig. 6.4a), and predicted target accessibility
could explain some of the variation in targeting efficacy (4.4%-16% of the variation in knockdown)

(Extended Data Fig. 6.4b-d).
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Because LwaCas13a can process its own pre-crRNA(East-Seletsky et al., 201 6), it offers the possibility

of streamlined multiplexed delivery of LwaCas13a guides(Zetsche et al., 2017). We designed five
different guides against the endogenous PPIB, CXCR4, KRAS, TINCR, and PCAT transcripts and

delivered the targeting system as a CRISPR array with 28-nt guides flanked by 36-nt DRs
(representing an unprocessed DR and a truncated spacer), under expression of the U6 promoter. We
found levels of knockdown for each gene that were comparable to single or pooled guide controls
(Fig. 6.2i). To evaluate specificity in this context, we tested multiplexed delivery of three guides
against PPIB, CXCR4, and KRAS or three variants where each one of the three guides was replaced
with a non-targeting guide. We found that in each case where a guide was absent from the array, only

the targeted transcripts were reduced (Fig. 6.2j).
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Figure 6.2: LwaCasl3a arrayed screening of mammalian coding and non-coding
RNA targets and multiplexed guide delivery.

A)Schematic of LwaCas13a arrayed screening.
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B)Arrayed knockdown screen of 186 guides evenly tiled across the Gluc transcript.
C)Arrayed knockdown screen of 93 guides evenly tiled across Cluc.

D) Arrayed knockdown screen of 93 guides evenly tiled across KRAS transcript.

E)Arrayed knockdown screen of 93 guides evenly tiled across PPIB transcript.

F)Validation of the top three guides from the endogenous arrayed knockdown screens with
shRNA comparisons (n = 2 or 3). **¥p < 0.001; **p < 0.01; two-tailed student’s T-test).
G)Arrayed knockdown screen of 93 guides evenly tiled across the MALAT] transcript.
H)Validation of top three guides from the endogenous arrayed MALAT1 knockdown screen
with shRNA comparisons (n= 2 or 3).

I)Multiplexed knockdown of five endogenous genes through delivery of five guides in a
CRISPR array under the expression of a single promoter (n = 2 or 3).

J)Three-guide arrays containing combinations of targeting and non-targeting spacers
showing sequence-specific multiplexed knockdown (n = 2 or 3). All values are mean + SEM

with n = 3 (n represents the number of transfection replicates), unless otherwise noted.

To further investigate the specificity of LwaCas13a in vivo, we introduced single mismatches into
guides targeting either Gluc (Fig. 6.3a) or endogenous genes (Fig. 6.3b, Extended Data Fig. 6.5a,b), as
well as double mismatches (Fig. 6.3c and Extended Data Fig. 6.5c), and found that knockdown was
sensitive to mismatches in the central seed region of the guide:target duplex, which we additionally
confirmed by biochemical profiling (Extended Data Fig. 6.5d-k). To comprehensively search for off-
target effects of LwaCas13a knockdown, we performed transcriptome-wide mRNA sequencing. We
targeted the Gluc transcript with LwaCas13a or a position matched-shRNA construct, and found
significant knockdown of the target transcript (p < .01) (Fig. 6.3d,e). Similar results were found for
the same comparison when targeting KRAS and PPIB (p < .05) (Extended Data Figure 6.6a,b).
Differential expression analysis indicated hundreds of significant off-targets in each of the sShRNA
conditions but none in LwaCas13a conditions (Fig. 6.3f), despite comparable levels of knockdown of
the target transcripts (30.5%, 43.5%, and 64.7% for shRNA, 62.6%, 27.1%, and 29.2% for LwaCas13a,
for Gluc, KRAS, and PPIB, respectively) (Fig. 6.3g). Additional analysis of the Gluc targeting RNA-seq
comparisons suggested the shRNA libraries show higher variability between targeting and non-
targeting conditions compared to LwaCas13a because of these off-target effects (Extended Data Fig.

6.6¢c-f, 7).
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Figure 6.3: Evaluation of LwaCas13a knockdown specificity and comparisons to

RNA interference.

A)

B)

C)

Knockdown of Gluc evaluated with guides containing single mismatches at varying
positions across the spacer sequence (shown above).

Knockdown of CXCR4 evaluated with guides containing single mismatches at varying
positions across the spacer sequence (shown above).

Knockdown of Gluc evaluated with guide 3 containing single or double mismatches at
varying positions across the spacer sequence (shown above).

Expression levels in loga(transcripts per million (TPM)) values of all genes detected in
RNA-seq libraries of non-targeting control (x-axis) compared to Gluc-targeting
condition (y-axis) for shRNA. Shown is the mean of three biological replicates. The Gluc
transcript data point is colored in red. The guide sequence used is shown above.
Expression levels in logs(transcripts per million (TPM)) values of all genes detected in
RNA-seq libraries of non-targeting control (x-axis) compared to Gluc-targeting

condition (y-axis) for LwaCas13a.
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F) Differential gene expression analysis of six RNA-seq libraries (each with three biological
replicates) comparing LwaCas13a knockdown to shRNA knockdown at three different
genes (n =2 or 3).

G) Quantified mean knockdown levels for the targeted genes from the RNA-seq libraries.

H) Luciferase knockdown (left), cell viability (middle), and LwaCas13a-GFP expression (right)
for cells transfected with LwaCas13a for 72 hours with and without selection. All values
are mean * SEM with n = 3 (n represents the number of transfection replicates), unless

otherwise noted.

The collateral activity of LshCas13a has been directly observed biochemically in vitro and indirectly
through growth suppression in bacteria(Abudayyeh et al., 2016), but the extent of this activity in
mammalian cells is unclear. The multiplexed leave-one-out and RNA-seq analyses suggested a lack of
collateral RNA degradation. We verified this by re-analyzing the knockdown tiling screens (Fig. 6.2b-
e), finding that expression of the control gene did not correlate with the expression of the targeted
gene (Gluc: R = -0.078, p > 0.05; PPIB: R = -0.058, p > 0.05; KRAS: R = -0.51, p < 0.001) (Extended
Data Fig. 6.8a-h). Additionally, in the RNA-seq experiments there were no differentially expressed
genes other than the target gene, indicating that LwaCas13a targeting does not lead to an observable

cell stress response at the transcriptomic level(Subramanian et al., 2005) (Fig. 6.3d,e and Extended

Data Fig. 6.6a,b), as would be reasonably expected if substantial collateral activity occurred.
Furthermore, LwaCas13a-mediated knockdown of targeted transcripts did not affect the growth of
mammalian cells expressing similar levels of LwaCas13a (Fig. 6.3h). Finally, because activation of
non-specific RNA nucleases in mammalian cells results in detectable changes in RNA size

distribution(Rath et al., 2015), we examined global RNA degradation in cells after LwaCas13a

knockdown of Gluc transcripts and found no difference in the RNA integrity between targeting and

non-targeting conditions (p > 0.05) (Extended Data Fig. 6.8i,j).

To expand the utility of LwaCas13a as a tool for studying RNA, we created a catalytically dead variant
(dCas13a) by mutating catalytic arginine residues. We quantified RNA binding by dCas13a with
RNA immunoprecipitation (RIP) (Fig. 6.4a) using guides containing the 36-nt DR and 28-nt spacers.

We found that pulldown of dLwaCas13a targeted to either luciferase transcripts or ACTBmRNA (Fig.
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6.4b) resulted in significant enrichment of the corresponding target over non-targeting controls (7.8-
11.2x enrichment for luciferase and 2.1-3.3x enrichment for ACTB; p < 0.05), validating dLwaCas13a

as a reprogrammable RNA binding protein.

One application for dLwaCas13a is as a transcript imaging platform. To reduce background noise due
to unbound protein, we incorporated a negative-feedback (NF) system based upon zinc finger self-

targeting and KRAB domain repression(Gross et al., 2013) (Fig. 6.4c). In comparison to dLwaCas13a,

dLwaCas13a-NF effectively translocated from the nucleus to the cytoplasm when targeted to ACTB
mRNA (Extended Data Fig. 6.9a). To further characterize translocation of dLwaCas13a-NF, we
targeted ACTB transcripts with two guides and found that both guides increased translocation
compared to a non-targeting guide (3.1-3.7x cellular/nuclear signal ratio; p < 0.001) (Fig. 6.4d,e and
Extended Data Fig. 6.9b-d). To further validate dLwaCas13a-NF imaging, we analyzed the
correlation of dLwaCas13a-NF signal to ACTB mRNA fluorescent in situ hybridization (FISH) signal
(Extended Data Fig. 6.10a) and found that there was significant correlation and signal overlap for the
targeting guides versus the non-targeting guide conditions (R = 0.27 and 0.30 for guide 1 and 2,
respectively, and R = 0.00 for the non-targeting guide condition; p < 0.0001) (Extended Data Fig.
6.10b).

Using dLwaCas13a-NF, we investigated the accumulation of mRNA into stress granules(Nelles et al.,
2016; Unsworth et al., 2010) by combining transcript imaging with visualization of stress granules

marker G3BP1(Tourriere etal., 2003). In fixed samples, we found significant correlations between the

dLwaCas13a-NF signal and the G3BPI fluorescence for ACTB-targeting guides compared to non-
targeting controls (R = 0.49 and 0.50 for guide 1 and guide 2, respectively, and R = 0.08 for the non-
targeting guide; p < 0.001) (Fig. 6.4f,g). We next performed stress granule tracking in live cells and
found that dLwaCas13a-NF targeted to ACTB localized to significantly more stress granules per cell

over time than the corresponding non-targeting control (p < 0.05) (Extended Data Fig. 6.10c,d).

148



Gluc mRNA ACTBmRNA

U6,....-DR

.- spacer
quige \ EF1a —
veclor transfect yg oy anti-HA |
plasmids P |
() reporiel il ——— ——— ———
o veclor
dlLwa
Cas13a Jomv
SR PR
analysis 2 ANA 0
Bala 1 _2 NT 1 2 NT
& purification Guide Guide
Unbound dLwaCas13a
dLwaCasi3a ZF represses transcription
diwaCasi3a ZF ) ¥ Ceg®
— - < —i .
ZF binding site msiGFP KRAB(A)
" A msfGFP KHAB(A)\L Bound to transcript
translocation to
cyloplasm
d f
dLwa
dLwa dLwa Cas13a-NF

Cas13a-NF G3BP1 G3BP1 DAPI

Cas13a-NF __ DAPI _col

ACTB
guide 1

ACTB
guide 1
ACTB ACTB
quide 2 guide 2
. -.. e ...
L g

wnnn

waan

£ 8 T

g g 10 [a—

z_. . 2 g -

g3 s 05 tens®

g . .. £ “~7

£¥ * 8 Y - =

§§ 4 o . @ 007 o =

k- ‘:!':' P .: § L] e

g o2 H P £ 05 b .e Cane®

8 0 : B 1.0

= T T T -1. T T T
ACTB ACTB NT ACTB ACTB NT
guide 1 guide 2 guide guide 1  guide 2 guide

Figure 6.4: Catalytically-inactive LwaCasl3a (dLwaCasl13a) is capable of binding transcripts
and tracking stress granule formation.
A) Schematic of RNA immunoprecipitation for quantitation of dLwaCas13a binding.
B) dLwaCasl13a targeting Gluc and ACTB transcripts is significantly enriched compared to non-
targeting controls. n = 2 or 3 (n represents the number of transfection replicates).
C) Schematic of dLwaCas13a-GFP-KRAB negative feedback (dLwaCas13a-NF) construct used
for imaging. |
D) Representative images for dLwaCas13a-NF imaging with multiple guides targeting ACTB.

Scale bars, 10pm.
E) Quantitation of translocation of dLwaCas13a-NF.n = 12, 11, and 19 (Guides 1, 2, and NT) (n

represents the number of individual cells analyzed).
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F) Representative immunofluorescence images of HEK293FT cells treated with 400 uM sodium
arsenite. Stress granules are indicated by G3BPI staining. Scale bars, 5pm.

G) G3BPI and dLwaCas13a-NF co-localization quantified per cell by Pearson’s correlation. n =
75, 40, and 27 (Guides 1, 2, and NT) (n represents the number of individual cells analyzed).
All values are mean + SEM. ***¥*p < 0.0001; ***p < 0.001; **p < 0.01; *p < 0.05. ns = not

significant. A one-tailed student’s t-test was used for comparisons in (b) and a two-tailed

student’s t-test was used for comparisons in (e) and (g).

6.3 Conclusion

These results show that LwaCasl3a can be reprogrammed with guide RNAs to effectively
knockdown or bind transcripts in mammalian cells. LwaCas13a knockdown is comparable to RNAi
knockdown efficiency, but with substantially reduced off-targets. Furthermore, it can mediate nuclear
RNA and multiplexed knockdown. Catalytically inactive dLwaCas13a can be used as a programmable
RNA binding protein, which we adapted for live imaging transcript tracking. We anticipate that there
will be a number of applications for LwaCas13a and dLwaCas13a, such as genome-wide pooled
knockdown screening, interrogation of IncRNA and nascent transcript function, pulldown assays to
study RNA-protein interactions, translational modulation, and RNA base editing. Importantly, we
do not observe any evidence for collateral activity of LwaCas13a in mammalian cells. Our data show
LwaCas13a functions in mammalian and plant cells with broad efficacy and high specificity, providing

a platform for a range of transcriptome analysis tools.

6.4 Experimental Procedures

6.4.1 Cloning of orthologs for activity screen and recombinant expression

We synthesized human codon-optimized versions of fifteen Casl3a orthologs (Genscript, Jiangsu,

China) and cloned them into pACYC184 under a pLac promoter. Adjacent to the Cas13a expression
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cassette, we cloned the ortholog’s corresponding direct repeats flanking either a f-lactamase targeting

or non-targeting spacer. Spacer array expression was driven by the J23119 promoter.

For purification of LwaCas13a, we cloned the mammalian codon-optimized LwaCas13a sequence
into a bacterial expression vector for protein purification (6x His/Twin Strep SUMO, a pET-based

expression vector received as a gift from Ilya Finkelstein, University of Texas-Austin).

6.4.2 Bacterial in vivo testing for Casl3a activity and PFS identity

Briefly, Cas13a is programmed to target a 5 stretch of sequence on the [-lactamase transcript flanked
by randomized PFS nucleotides. Cas13a cleavage activity results in death of bacteria under ampicillin
selection, and PFS depletion is subsequently analyzed by next generation sequencing. In order to
allow for quantitative comparisons between orthologs, we cloned each Cas13a ortholog under a pLac
promoter along with a single-spacer CRISPR array nearby under expression of the pJ23119 small

RNA promoter.

To test for activity of Cas13a orthologs, 90 ng of ortholog expression plasmid with either targeting
or non-targeting guide was co-transformed with 25 ng of a previously described p-lactamase target

plasmid(Abudayyeh et al., 2016) into NovaBlue Singles competent cells (Millipore). Post-

transformation, cells were diluted, plated on LB-agar supplemented with 100 ug/uL ampicillin and
25 pg/uL chloramphenicol, and incubated at 37°C overnight. Transformants were counted the next

day.

For determination of LshCas13a and LwaCas13a PFS identity, 40 ng of ortholog expression plasmid
with either targeting or non-targeting spacer was co-transformed with 25 ng of B-lactamase target
plasmid into 2 aliquots of NovaBlue GigaSingles (Millipore) per biological replicate. Two biological
replicates were performed. Post-transformation, cells were recovered at 37°C in 500 uL of SOC
(ThermoFisher Scientific) per biological replicate for 1 hour, plated on bio-assay plates (Corning)

with LB-agar (Affymetrix) supplemented with 100 pg/uL ampicillin and 25 pg/uL chloramphenicol,
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and incubated at 37°C for 16 hours. Colonies were then harvested by scraping, and plasmid DNA was

purified with NuceloBond Xtra EF (Macherey-Nagel) for subsequent sequencing.

Harvested plasmid samples were prepared for next generation sequencing by PCR with barcoding
primers and Illumina flow cell handles using NEBNext High Fidelity 2X Master Mix (New England
Biosciences). PCR products were pooled and gel extracted using a Zymoclean gel extraction kit (Zymo

Research) and sequenced using a MiSeq next generation sequencing machine (Illumina).

6.4.3 Computational analysis of PFS

From next generation sequencing of the LshCas13a and LwaCas13a PFS screening libraries, we
aligned the sequences flanking the randomized PFS region and extracted the PFS identities. We
collapsed PFS identities to 4 nucleotides to improve sequence coverage, counted the frequency of each
unique PFS, and normalized to total read count for each library with a pseudocount of 1. Enrichment
of each distribution as displayed in Extended Data Figure 1c. was calculated against the pACYC184
control (no protein/guide locus) as -loga(fcondition/fpacyciss), where feondition is the frequency of PFS
identities in the experimental condition and fpacyciss is the frequency of PFS identities in the
pACYC184 control. For analysis of a conserved PFS motif, top depleted PFS identities were calculated
using each condition’s non-targeting control as follows: -loga(f; targeting/ fi non-targeting) Where fi targeting
is the frequency of PFS identities in condition i with targeting spacer and fi non-targeting is the frequency

of PFS identities in condition i with non-targeting spacer.

6.4.4 Purification of LwaCasl3a

Purification of LwaCas13a was performed as previously described(Gootenberg et al., 2017b). Briefly,

LwaCas13a bacterial expression vectors were transformed into Rosetta 2(DE3)pLysS singles
Competent Cells (Millipore) and 4 L of Terrific Broth 4 growth media (TB) was seeded with a starter
culture. Cell protein expression was induced with IPTG and after overnight growth, the cell pellet
was harvested and stored at -80°C. Following cell lysis, protein was bound using a StrepTactin

Sepharose resin (GE) and protein was eluted by SUMO protease digestion (ThermoFisher). Protein
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was further purified by cation exchange using a HiTrap SP HP cation exchange column (GE
Healthcare Life Sciences) and subsequently by gel filtration using a Superdex 200 Increase 10/300 GL
column (GE Healthcare Life Sciences), both steps via FPLC (AKTA PURE, GE Healthcare Life
Sciences). Final fractions containing LwaCas13a protein were pooled and concentrated into Storage
Buffer (600 mM NaCl, 50 mM Tris-HCI pH 7.5, 5% Glycerol, 2 mM DTT) and aliquots were frozen

at -80°C for long-term storage.

6.4.5 Cloning of mammalian expression constructs

The human codon optimized Cas13a gene was synthesized (Genscript) and cloned into a mammalian
expression vector with either a nuclear export sequence (NES) or nuclear localization sequence (NLS)
under expression of the EF1-a promoter. Because of the stability conferred by monomeric-super-
folded GFP (msfGFP), we fused msfGFP to the C-terminus of LwaCas13a. The full-length direct-
repeat of LwaCas13a was used for cloning the guide backbone plasmid with expression under a U6
promoter. The catalytically-inactive LwaCas13a-msfGFP construct (dead LwaCas13a or dLwaCas13a)
was generated by introducing R474A and R1046A mutations in the two HEPN domains. A drug-
selectable version of LwaCas13a-msfGFP was generated by cloning the protein into a backbone with
the Blasticidin selection marker linked to the C-terminus via a 2A peptide sequence. The negative
feedback version of the dLwaCas13a-msfGFP construct (dLwaCas13a-NF) was generated by cloning
a zinc-finger binding site upstream of the promoter of dLwaCas13a-msfGFP and fusing a zinc finger

and KRAB domain to the C-terminus.

The reporter luciferase construct was generated by cloning Cypridinia luciferase (Cluc) under
expression of the CMV promoter and Gaussia luciferase (Gluc) under expression of the EF1-a
promoter both on a single vector. Expression of both luciferases on a single vector allows one
luciferase to serve as a dosing control for normalization of knockdown of the other luciferase,

controlling for variation due to transfection conditions.

For the endogenous knockdown experiments in Fig. 6.1g, guides and shRNAs were designed using

the RNAxs siRNA design algorithm(Tafer et al., 2008). The prediction tool was used to design
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shRNAs, and guides were designed in the same location to allow for comparison between shRNA and

LwaCas13a knockdown.

For the plant knockdown experiments, the rice actin promoter (pOsActin) was PCR amplified from

pANIC6A(Mann et al, 2012) and LwaCasl3a was PCR amplified from human expression

LwaCas13a constructs. These fragments were ligated into existing plant expression plasmids such
that LwaCas13a was driven by the rice actin promoter and transcription was terminated by the HSP

terminator while the LwaCas13a gRNAs were expressed from the rice U6 promoter (pOsUs).

6.4.6 Protoplast Preparation

Green rice protoplasts (Oryza sativa L. ssp. japonica var. Nipponbare) were prepared as previously
described(Zhang et al.,, 2011b) with slight modifications. Seedlings were grown for 14 days and
protoplasts were resuspended in MMG buffer containing 0.1 M CaCl,. This modified MMG buffer

was used to prepare fresh 40% PEG buffer as well as in place of W1 buffer. Finally, protoplasts were
kept in total darkness for 48 hours post-transformation. All other conditions were as previously

described.

6.4.7 Nucleic acid target and crRNA preparation for in vitro reactions and collateral activity

For generation of nucleic acid targets, oligonucleotides were PCR amplified with KAPA Hifi Hot
Start (Kapa Biosystems). dsDNA amplicons were gel extracted and purified using a MinElute gel
extraction kit (Qiagen). The resulting purified dsSDNA was transcribed via overnight incubation at
30°C with the HiScribe T7 Quick High Yield RNA Synthesis kit (New England Biolabs). Transcribed
RNA was purified using the MEGAclear Transcription Clean-up kit (Thermo Fisher).

To generate crRNAs, oligonucleotides were ordered as DNA (Integrated DNA Technologies) with
an additional 5’ T7 promoter sequence. crRNA template DNA was annealed with a T7 primer (final
concentrations 10 uM) and transcribed via overnight incubation at 37°C with the HiScribe T7 Quick

High Yield RNA Synthesis kit (New England Biolabs). The resulting transcribed crRNAs were
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purified with RNAXP clean beads (Beckman Coulter), using a 2x ratio of beads to reaction volume,

supplemented with additional 1.8x ratio of isopropanol (Sigma).

6.4.8 LwaCasl3a cleavage and collateral activity detection

For biochemical characterization of LwaCasl3a, assays were performed as previously
described(Abudayyeh et al., 2016). Briefly, nuclease assays were performed with 160 nM of end-
labeled ssRNA target, 200 nM purified LwaCas13a, and 100 nM crRNA, unless otherwise indicated.

All assays were performed in nuclease assay buffer (40 mM Tris-HCl, 60 mM NaCl, 6 mM MgCla,
pH 7.3). For array processing, 100 ng of in vitro transcribed array was used per nucelease assay.
Reactions were allowed to proceed for 1 hour at 37°C (unless otherwise indicated) and were then
quenched with proteinase buffer (proteinase K, 60 mM EDTA, and 4 M Urea) for 15 minutes at 37°C.
The reactions were then denatured with 4.5 M urea denaturing buffer at 95°C for 5 minutes. Samples
were analyzed by denaturing gel electrophoresis on 10% PAGE TBE-Urea (Invitrogen) run at 45°C.

Gels were imaged using an Odyssey scanner (LI-COR Biosciences).

Collateral activity detection assays were performed as previously described(Gootenberg et al., 2017b).

Briefly, reactions consisted of 45 nM purified LwaCas13a, 22.5 nM crRNA, 125 nM quenched

fluorescent RNA reporter (RNAse Alert v2, Thermo Scientific), 2 uL murine RNase inhibitor (New
England Biolabs), 100 ng of background total human RNA (purified from HEK293FT culture), and
varying amounts of input nucleic acid target, unless otherwise indicated, in nuclease assay buffer (40
mM Tris-HCl, 60 mM NaCl, 6 mM MgCl;, pH 7.3). Reactions were allowed to proceed for 1-3 hr at
37°C (unless otherwise indicated) on a fluorescent plate reader (BioTek) with fluorescent kinetics

measured every 5 min.

6.4.9 Cloning of tiling guide screens

For tiling guide screens, spacers were designed to target mRNA transcripts at even intervals to fully

cover the entire length of the transcript. Spacers (ordered from IDT) were annealed and golden-gate
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cloned into LwaCas13a guide expression constructs with either a tRNA"? promoter (Gluc and Cluc

screens) or U6 promoter (all endogenous screens).

6.4.10 Mammalian cell culture and transfection for knockdown with LwaCasl13a

All mammalian cell experiments were performed in the HEK293FT line (ATCC) unless otherwise
noted. HEK293FT cells were cultured in Dulbecco’s Modified Eagle Medium with high glucose,
sodium pyruvate, and GlutaMAX (Thermo Fisher Scientific) supplemented with 10% fetal bovine
serum (VWR Seradigm) and 1X Penicillin-Streptomycin (Thermo Fisher Scientific). Cells were
passaged to maintain confluency below 70%. For experiments involving A375 (ATCC), cells were
cultured in RPMI Medium 1640 (Thermo Fisher Scientific) supplemented with 9% fetal bovine serum

(VWR Seradigm) and 1X Penicillin-Streptomycin (Thermo Fisher Scientific).

To test knockdown of endogenous genes, Lipofectamine 2000 (Thermo Fisher Scientific)
transfections were performed with 150 ng of LwaCas13a plasmid and 250 ng of guide plasmid per
well, unless otherwise noted. Experiments testing knockdown of reporter plasmids were
supplemented with 12.5 ng reporter construct per well. Sixteen hours prior to transfection, cells were
plated in 96-well plates at approximately 20,000 cells/well and allowed to grow to 90% confluency
overnight. For each well, plasmids were combined with Opti-MEM® [ Reduced Serum Medium
(Thermo Fisher) to a total of 25 uL, and separately 0.5 uL of Lipofectamine 2000 was combined with
24.5 uL of Opti-MEM. Plasmid and lipofectamine solutions were then combined, incubated for 5

minutes, and slowly pipetted onto cells to prevent disruption.

6.4.11 Transformation of green rice protoplasts

For the green rice experiments, plasmids expressing each LwaCas13a and the corresponding guide
RNA were mixed in equimolar ratios such that a total of 30 pg of DNA was used to transform a total

of 200,000 protoplasts per transformation.
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6.4.12 Measurement of luciferase activity

Media containing secreted luciferase was harvested at 48 hours post transfection, unless otherwise
noted. Media was diluted 1:5 in PBS and then luciferase activity was measured using the BioLux
Cypridinia and Biolux Gaussia luciferase assay kits (New England Biolabs) on a Biotek Synergy 4 plate

reader with an injection protocol. All replicates were performed as biological replicates.

6.4.13 Harvest of total RNA and quantitative PCR

For gene expression experiments in mammalian cells, cell harvesting and reverse transcription for

cDNA generation was performed using a previously described modification(Joung et al., 2017) of the

commercial Cells-to-Ct kit (Thermo Fisher Scientific) 48 hours post-transfection. Transcript
expression was then quantified with qPCR using Fast Advanced Master Mix (Thermo Fisher
Scientific) and TagMan qPCR probes (Thermo Fisher Scientific) with GAPDH control probes
(Thermo Fisher Scientific). All qPCR reactions were performed in 5 uL reactions with 4 technical
replicates in 384-well format, and read out using a LightCycler 480 Instrument I (Roche). For
multiplexed targeting reactions, readout of different targets was performed in separate wells.
Expression levels were calculated by subtracting housekeeping control (GAPDH) Ct values from target
Ct values to normalize for total input, resulting in ACt levels. Relative transcript abundance was

computed as 2°(-ACt). All replicates were performed as biological replicates

For gene expression experiments in plant cells, total RNA was isolated after 48 hours of incubation
using Trizol according to the manufacturer’s protocol. One nanogram of total RNA was used in the
SuperScript III Plantinum SYBR Green One-Step qRT-PCR Kit (Invitrogen) according to the
manufacturer’s protocol. All samples were run in technical triplicate of three biological replicates in
a 384-well format on a LightCycler 480 Instrument (Roche). All PCR primers were verified as being
specific based on melting curve analysis and are as follows: OsEPSPS (0s06g04280), 5’ - TTG CCA
TGA CCC TTG CCG TTG TTG - 3" and 5’ - TGA TGA TGC AGT AGT CAG GAC CTT - 3}
OsHCT (Os11g07960), 5’ ~ CAA GTT TGT GTA CCC GAG GAT TTG -3 and 5~ AGC TAG TCC
CAA TAA ATA TGC GCT - 3; OsEF1a (0s03g08020), 5~ CTG TAG TCG TTG GCT GTG GT -
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3 and 5 - CAG CGT TCC CCA AGA AGA GT - 3. Primers for OsEFla were previously
described(Jain et al., 2006).

For analysis of RNA quality post-knockdown with LwaCas13a, total RNA was harvested by lysing
cells using TRI Reagent® and purifying the RNA using the Direct-zol RN A MiniPrep Plus kit (Zymo).
Four ng of total RNA was analyzed using a RNA 6000 Pico Bioanalyzer kit (Agilent).

6.4.14 Computational analysis of target accessibility

To first analyze target accessibility, top guides from the tiling screen were analyzed to determine
whether they grouped closer together than expected under the assumption that if there were regions
of accessibility, multiple guides in that region would be expected to be highly active. Top guides were
defined as the top 20% of performing guides for the Gluc tiling screen and top 30% of performing
guides for the Cluc, KRAS, and PPIB tiling screens. A null probability distribution was generated for
pair-wise distances between guides by randomly simulated 10,000 guide positions and then compared

to experimentally determined top guide pair-wise distances.

Accessibility was predicted using the RNApl fold algorithm in the Vienna RNA software

suite(Bernhart et al., 2006). The default window size of 70 nt was used and probability of a target

region being unpaired was calculated as the average of the 28 single-nt unpaired probabilities across
the target region. These accessibility curves were smoothened and compared to smoothened
knockdown curves across each of the four transcripts and correlations between the two factors and
their significance were computed using Pearson’s correlation coefficient using the SciPy Python
package (pearsonr function). The probability space of these two factors was also visualized by

performing 2D kernel density estimation across the two variables.

6.4.15 RN A sequencing and analysis

For specificity analysis of LwaCas13a knockdown, RNA sequencing was performed on mRNA from

knockdown experiments involving both LwaCas13a and shRNA constructs. Total RN A was prepared
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from transfection experiments after 48 hours using the Qiagen RNeasy Plus Mini kit. mnRNA was
then extracted using the NEBNext Poly(A) mRNA Magnetic Isolation Module and RNA-seq libraries
were prepared using the NEBNext Ultra Directional RNA Library Prep Kit for Illumina. RNA-
sequencing libraries were sequenced on an [llumina NextSeq instrument with at least 10M reads per

library.

An index was generated using the RefSeq GRCh38 assembly and reads were aligned and quantified

using Bowtie and RSEM v1.2.31 using default parameters(Li and Dewey, 2011). Transcript per

million (TPM) values were used for expression counts and were transformed to log-space by taking

the log2(TPM+1).

To find differentially expressed genes, Student’s t-test was performed on the three targeting replicates
versus the three non-targeting replicates. The statistical analysis was only performed on genes that
had a log2(TPM+1) value greater than 2.5 in at least two of the six replicates. Only genes that had a
differential expression greater than 2 or less than 0.75 and a false discovery rate < 0.10 were reported

to be significantly differentially expressed.

Cross-correlations between replicates and averages of replicates were performed using Kendall’s tau
coefficient. The variation of shRNA versus LwaCas13a libraries was analyzed by considering the
distribution of standard deviations for gene expression across the 6 replicates (3 targeting and 3 non-

targeting replicates) and plotted as violin plots.

6.4.16 Cell viability assay

Mammalian cells were transfected with luciferase reporter target, guide plasmid, and either
LwaCas13a or drug-selectable LwaCas13a. Twenty-four hours post-transfection, cells were split 1:5
into fresh media and drug-selectable LwaCas13a samples were supplemented with 10 ug/mL
Blasticidin S (Thermo Fisher Scientific). After 48 hours of additional growth, cells were assayed for

luciferase knockdown, maintenance of LwaCas13a expression via GFP fluorescence measurement on
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a multimode plate reader (Biotek Neo2), and cell growth by CellTiter-Glo® Luminescent Cell

Viability Assay (Promega).

6.4.17 Quantifying dLwaCas13a binding with RIP

For RNA immunoprecipitation (RIP) experiments, HEK293FT cells were plated in 6-well plates and
transfected with 1.3 ug of dLwaCas13a expression plasmid and 1.7 ug of guide plasmid, with an
additional 150 ng of reporter plasmid for conditions involving reporter targeting. 48 hours post
transfection, cells were washed twice with ice-cold PBS (Sigma) and fixed with 0.2%
paraformaldehyde (Electron Microscopy Sciences) in PBS for 15 minutes at room temperature. After
fixation, the paraformaldehyde was removed, 125 mM glycine in PBS was added to quench
crosslinking, and the cells were incubated for 10 minutes. Cells were washed twice with ice-cold PBS,
harvested by scraping, and the cell suspension was centrifuged at 800 g for 4 minutes to pellet the
cells. The supernatant was removed and the pellet was washed with PBS prior to lysis. Cells were
lysed with 200 uL of 1X RIPA Buffer (Cell Signaling) supplemented with cOmplete™ ULTRA
Tablets, EDTA-free (Sigma) and Ribonuclease inhibitor (Sigma R1158). Cells were allowed to lyse
on ice for 10 minutes and then sonicated for 2 minutes with a 30 sec on/30 sec off cycle at low
intensity on a Bioruptor sonicator (Diagenode). Insoluble material was pelleted by centrifugation at
16,000 g for 10 minutes at 4°C, and the supernatant containing cleared lysate was used for pulldown

with magnetic beads.

To conjugate antibodies to magnetic beads, 100 pL/sample of Dynabeads® Protein A for
Immunoprecipitation (Thermo Fisher Scientific) were pelleted by application of a magnet, and the
supernatant was removed. Beads were resuspended in 200 pL of wash buffer (PBS supplemented with
0.02% Tween-20 (Sigma)) and 5 pg of rabbit anti-Mouse IgG (Sigma M7023) was added. The sample
was incubated for 10 minutes at room temperature on a rotator to allow antibody to conjugate to the
beads. After incubation, beads were pelleted via magnet, supernatant was removed, and beads were
washed twice with wash buffer. The pellet was resuspended in 100 pL wash buffer and split into two
50 uL volumes for conjugation of anti-HA antibody (Thermo Fisher Scientific 26183) or IgG antibody
control (Sigma I5381). For each antibody, 2.5 pg of antibody was added with 200 uL wash buffer and
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incubated for 10 minutes at room temperature on a rotator. Post-incubation, beads were pelleted via
magnet and washed twice with wash buffer, and resuspended in 200 uL 1X RIPA with Ribonuclease
inhibitor (Sigma R1158) and protease inhibitor cocktail (Sigma P8340). 100 pL of sample lysate was

added to beads and rotated overnight at 4°C.

After incubation with sample lysate, beads were pelleted, washed three times with 1X RIPA, 0.02%
Tween-20, and then washed with DNase buffer (350 mM Tris-HCI [pH 6.5]; 50 mM MgCI2; 5 mM
DTT). Beads were resuspended in DNase buffer and TURBO DNase (Life Technologies) was added
to final concentration of 0.08 units/pl. DNase was incubated 30 minutes at 37°C on a rotator. Proteins
were then digested by addition of Proteinase K (New England Biosciences) to a final concentration
of 0.1 units/ul and incubated at 37°C with rotation for an additional 30 minutes. For denaturation
and purification, urea (Sigma) was added to a final concentration of 2.5 M, samples were incubated
for 30 minutes, and RNA was purified using a Direct-Zol RNA miniprep (Zymo Research). Purified
RINA was reverse transcribed to cDNA using the qScript Flex cDNA (Quantabio) and pulldown was
quantified with qPCR using Fast Advanced Master Mix and TagMan qPCR probes. All qPCR
reactions were performed in 5 pL reactions with 4 technical replicates in 384-well format, and read
out using a LightCycler 480 Instrument II. Enrichment was quantified for samples as compared to

their matched IgG antibody controls.

6.4.18 Translocation measurement of LwaCas13a and LwaCas13a-NF

HEK293FT cells were plated in 24-well tissue culture plates on poly-D-lysine coverslips (Corning)
and transfected with 150 ng dLwaCas13a-NF vector and 300 ng guides for imaging ACTB. For
translocation experiments, cells were fixed with 4% PFA and permeabilized with 0.2% Triton X-100
after 48 hours and mounted using anti-fade mounting medium with DAPI (Vectashield). Confocal
microscopy was performed using a Nikon Eclipse Til with Andor Yokagawa Spinning disk

Revolution WD system.

161



Nuclear export of dLwaCas13a-NF with guides targeting ACTB mRNA was analyzed by measuring
the average cytoplasmic and nuclear msfGFP fluorescence and comparing the ratio across many cells

between targeting and non-targeting conditions.

6.4.19 Fluorescent in situ hybridization (FISH) of ACTB transcript

HEK293FT cells were plated in 24-well tissue culture plates on poly-D-lysine coverslips (Corning)
and transfected with 75 ng dLwaCas13a-NF vector and 250 ng guides for imaging ACTB. After 48
hours, cells were fixed with 4% PFA for 45 minutes. The QuantiGene viewRNA ISH Cell assay kit
(Affymetrix) was used for performing FISH on the cell samples according to the manufacturer’s
protocol. After finishing the FISH procedure, coverslips were mounted using anti-fade mounting
medium (Vectashield). Confocal microscopy was performed using a Nikon Eclipse Til with Andor

Yokagawa Spinning disk Revolution WD system.

6.4.20 Tracking of LwaCasl13a to stress granules

HEK293FT cells were plated in 24-well tissue culture plates on poly-D-lysine coverslips (Corning)
and transfected with 75 ng dLwaCas13a-NF vector and 250 ng guides for imaging ACTB. For stress
granule experiments, 200 pM sodium arsenite was applied for 1 hour prior to fixing and
permeabilizing the cells. For immunofluorescence of G3BP1, cells were blocked with 20% goat serum,
and incubated over night at room temperature with anti-G3BP! primary antibody (Abnova
H00010146-BO1P). Cells were then incubated for 1 hour with secondary antibody labeled with Alexa
Fluor 594 and mounted using anti-fade mounting medium with DAPI (Vectashield). Confocal
microscopy was performed using a Nikon Eclipse Til with Andor Yokagawa Spinning disk

Revolution WD system.

Stress granule co-localization with dLwaCas13a-NF was calculated using the average msfGFP and
G3BP1 signal per cell using Pearson’s correlation coefficient. The colocalization analyses were

performed in the image analysis software FIJI (Schindelin et al., 2012) using the Coloc 2 plugin.
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For live imaging experiments, HEK293FT cells were plated in 96-well tissue culture plates and
transfected with 150 ng dLwaCas13a-NF vector, 300 ng guides for imaging ACTB, and 5 ng of G3BPI-
RFP reporter. After 48 hours, the cells were subjected to 0 uM or 400 uM sodium arsenite and imaged
every 15 minutes every 2 hours on an Opera Phenix High Content Screening System (PerkinElmer)
using the spinning disk confocal setting with 20x water objective. Cells were maintained at 37 Cina
humidified chamber with 50% CO;. Live cell dLwaCas13a-NF colocalization with G3BPI-RFP in

stress granules was measured using the Opera Phenix Harmony software (PerkinElmer).
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RNA editing with CRISPR-Cas13
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7.1 Abstract

Nucleic acid editing holds promise for treating genetic disease, particularly at the RNA level,
where disease-relevant sequences can be rescued to yield functional protein products. Type
VI CRISPR-Cas systems contain the programmable single-effector RNA-guided RNases
Cas13. Here, we profile Type VI systems to engineer a Cas13 ortholog capable of robust
knockdown and demonstrate RNA editing by using catalytically-inactive Cas13 (dCas13) to
direct adenosine to inosine deaminase activity by ADAR2 to transcripts in mammalian cells.
This system, referred to as RNA Editing for Programmable A to I Replacement (REPAIR),
has no strict sequence constraints, can be used to edit full-length transcripts containing
pathogenic mutations. We further engineer this system to create a high specificity variant,
REPAIRv2, that is 919 times more specific than REPAIRv1 as well as minimize the system to
ease viral delivery. REPAIR presents a promising RNA editing platform with broad

applicability for research, therapeutics, and biotechnology.

7.2 Introduction

Precise nucleic acid editing technologies are valuable for studying cellular function and as novel
therapeutics. Current editing tools, based on programmable nucleases such as the prokaryotic
clustered regularly interspaced short palindromic repeats (CRISPR)-associated nucleases Cas9 (Cong
et al., 2013; Komor et al., 2017; Mali et al., 2013¢c; Wu et al., 2014) or Cpf1(Zetsche et al., 2015b),
have been widely adopted for mediating targeted DNA cleavage which in turn drives targeted gene
disruption through non-homologous end joining (NHE]J) or precise gene editing through template-
dependent homology-directed repair (HDR) (Kim and Kim, 2014). NHE] utilizes host machineries
that are active in both dividing and post-mitotic cells and provides efficient gene disruption by
generating a mixture of insertion or deletion (indel) mutations that can lead to frame shifts in protein
coding genes. HDR, in contrast, is mediated by host machineries whose expression is largely limited
to replicating cells. Accordingly, the development of gene-editing capabilities for post-mitotic cells
remains a major challenge. DNA base editors, consisting of a fusion between Cas9 nickase and

cytidine deaminase can mediate efficient cytidine to uridine conversions within a target window and

165



significantly reduce the formation of double-strand break induced indels (Komor et al., 2016; Nishida
etal.,, 2016). However the potential targeting sites of DNA base editors are limited by the requirement
of Cas9 for a protospacer adjacent motif (PAM) at the editing site (Kim et al., 2017). Here, we describe
the development of a precise and flexible RNA base editing technology using the type VI CRISPR-
associated RNA-guided RNase Cas13 (Abudayyeh et al., 2016; Shmakov et al., 2015; Shmakov et al.,
2017a; Smargon et al., 2017b).

Casl3 enzymes have two Higher Eukaryotes and Prokaryotes Nucleotide-binding (HEPN)
endoRNase domains that mediate precise RNA cleavage with a preference for targets with
protospacer flanking site (PFS) motif observed biochemically and in bacteria (Abudayyeh et al., 2016;
Shmakov et al., 2015). Three Cas13 protein families have been identified to date: Cas13a (previously
known as C2¢2), Cas13b, and Cas13c (Shmakov et al., 2017a; Smargon et al., 2017b). We recently
reported that Cas13a enzymes can be adapted as tools for nucleic acid detection (Gootenberg et al.,
2017c) as well as mammalian and plant cell RNA knockdown and transcript tracking (Abudayyeh et
al., 2017). Interestingly, the biochemcial PFS was not required for RNA interference with Cas13a
(Abudayyeh et al., 2017). The programmable nature of Casl13 enzymes makes them an attractive

starting point to develop tools for RNA binding and perturbation applications.

The adenosine deaminase acting on RNA (ADAR) family of enzymes mediates endogenous editing
of transcripts via hydrolytic deamination of adenosine to inosine, a nucleobase that is functionally
equivalent to guanosine in translation and splicing (Nishikura, 2010; Tan et al., 2017). There are two
functional human ADAR orthologs, ADAR1 and ADAR2, which consist of N-terminal double
stranded RNA-binding domains and a C-terminal catalytic deamination domain. Endogenous target
sites of ADAR1 and ADAR?2 contain substantial double stranded identity, and the catalytic domains
require duplexed regions for efficient editing in vitro and in vivo (Bass and Weintraub, 1988; Matthews
et al., 2016). Importantly, the ADAR catalytic domain is capable of deaminating target adenosines
without any protein co-factors in vitro (Zheng et al., 2017). ADAR1 has been found to target mainly
repetitive regions whereas ADAR2 mainly targets non-repetitive coding regions (Tan et al., 2017).
Although ADAR proteins have preferred motifs for editing that could restrict the potential flexibility
of targeting, hyperactive mutants, such as ADAR2(E488Q) (Kuttan and Bass, 2012), relax sequence

constraints and increase adenosine to inosine editing rates. ADARs preferentially deaminate
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adenosines mispaired with cytidine bases in RNA duplexes (Wong et al, 2001), providing a
promising opportunity for precise base editing. Although previous approaches have engineered
targeted ADAR fusions via RNA guides (Fukuda et al., 2017; Montiel-Gonzalez et al., 2013; Montiel-
Gonzalez et al., 2016; Wettengel et al., 2017), the specificity of these approaches has not been reported
and their respective targeting mechanisms rely on RNA-RNA hybridization without the assistance of

protein partners that may enhance target recognition and stringency.

Here we assay a subset of the family of Cas13 enzymes for RNA knockdown activity in mammalian
cells and identify the Cas13b ortholog from Prevotella sp. P5125 (PspCas13b) as the most efficient and
specific for mammalian cell applications. We then fuse the ADAR2 deaminase domain (ADAR2pp)
to catalytically inactive PspCas13b and demonstrate RNA editing for programmable A to I (G)
replacement (REPAIR) of reporter and endogenous transcripts as well as disease-relevant mutations.
Lastly, we employ a rational mutagenesis scheme to improve the specificity of dCas13b-ADAR2pp

fusions to generate REPAIRv2 with more than 919-fold higher specificity.

7.3 Results

7.3.1 Comprehensive Characterization of Cas13 Family Members in Mammalian Cells

We previously developed LwaCas13a for mammalian knockdown applications, but it required an
monomeric superfolder GFP (msfGFP) stabilization domain for efficient knockdown and, although
the specificity was high, knockdown levels were not consistently below 50% (Abudayyeh et al., 2017).
We sought to identify a more robust RNA-targeting CRISPR system by characterizing a genetically
diverse set of Cas13 family members to assess their RNA knockdown activity in mammalian cells (Fig.
7.1A). We generated mammalian codon-optimized versions of multiple Cas13 proteins, including
21 orthologs of Cas13a, 15 of Cas13b and 7 of Cas13c, and cloned them into an expression vector
with N- and C-terminal nuclear export signal (NES) sequences and a C-terminal msfGFP to enhance
protein stability. To assay interference in mammalian cells, we designed a dual reporter construct
expressing the independent Gaussia (Gluc) and Cypridinia (Cluc) luciferases under separate promoters,

which allows one luciferase to function as a measure of Cas13 interference activity and the other to
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serve as an internal control. For each Cas13 ortholog, we designed protospacer flanking site (PFS)-
compatible guide RNAs, using the Cas13b PFS motifs derived from an ampicillin interference assay

(fig 7.S1) and the 3’ H (not G) PFS from previous reports of Cas13a activity (Abudayyeh et al., 2016).

We transfected HEK293FT cells with Cas13-expression, guide RNA, and reporter plasmids and then
quantified levels of Cas13 expression and the targeted Gluc 48 hours later (Fig. 7.1B, fig. 7.S2A).
Testing two guide RNAs for each Cas13 ortholog revealed a range of activity levels, including five
Cas13b orthologs with similar or increased interference across both guide RNAs relative to the
recently characterized LwaCas13a (Figure 7.1B), and we observed only a weak correlation between
Cas13 expression and interference activity (fig. 7.S2B-D). We selected the top five Cas13b orthologs,

as well as the top two Cas13a orthologs for further engineering.

We next tested Cas13-mediated knockdown of Gluc without msfGFP, to select orthologs that do not
require stabilization domains for robust activity. We hypothesized that Cas13 activity could be
affected by subcellular localization, as we previously reported for optimization of LwaCasl3a
(Abudayyeh et al., 2017). Therefore, we tested the interference activity of the seven selected Cas13
orthologs C-terminally fused to one of six different localization tags without msfGFP. Using the
luciferase reporter assay, we identified the top three Cas13b designs with the highest level of
interference activity: Cas13b from Prevotella sp. P5-125 (PspCas13b) and Cas13b from Porphyromonas
gulae (PguCas13b) C-terminally fused to the HIV Rev gene NES and Cas13b from Riemerella
anatipestifer (RanCas13b) C-terminally fused to the MAPK NES (fig. 7.S3A). To further distinguish
activity levels of the top orthologs, we compared the three optimized Cas13b constructs to the optimal
LwaCas13a-msfGFP fusion and to shRNA for their ability to knockdown the endogenous KRAS
transcript using position-matched guides (fig. 7.S3B). We observed the highest levels interference for

PspCas13b (average knockdown 62.9%) and thus selected this for further comparison to LwaCas13a.

To more rigorously define the activity of PspCas13b and LwaCas13a, we designed position-matched
guides tiling along both Gluc and Cluc transcripts and assayed their activity using our luciferase
reporter assay. We tested 93 and 20 position-matched guides targeting Gluc and Cluc, respectively,
and found that PspCas13b had consistently increased levels of knockdown relative to LwaCas13a

(average of 92.3% for PspCas13b vs. 40.1% knockdown for LwaCas13a) (Fig. 7.1C,D).
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Figure 7.1: Characterization of a highly active Cas13b ortholog for RNA knockdown
A)Schematic of stereotypical Cas13 loci and corresponding crRNA structure.

B)Evaluation of 19 Cas13a, 15 Cas13b, and 7 Casl13c orthologs for luciferase knockdown
using two different guides. Orthologs with efficient knockdown using both guides are labeled
with their host organism name. Values are normalized to a non-targeting guide with
designed against the E. coli LacZ transcript, with no homology to the human transcriptome.
C)PspCas13b and LwaCas13a knockdown activity (as measured by luciferase activity) using
tiling guides against Gluc. Values represent mean +/- S.E.M. Non-targeting guide is the same

as in Fig. 1B.
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D)PspCas13b and LwaCas13a knockdown activity (as measured by luciferase activity) using
tiling guides against Cluc. Values represent mean +/— S.E.M. Non-targeting guide is the same
as in Fig. 1B.

E)Expression levels in loga(transcripts per million (TPM+1)) values of all genes detected in
RNA-seq libraries of non-targeting control (x-axis) compared to Gluc-targeting condition (y-
axis) for LwaCasl13a (red) and shRNA (black). Shown is the mean of three biological
replicates. The Gluc transcript data point is labeled. Non-targeting guide is the same as in
Figl1B.

F)Expression levels in loga(transcripts per million (TPM+1)) values of all genes detected in
RNA-seq libraries of non-targeting control (x-axis) compared to Gluc-targeting condition (y-
axis) for PspCas13b (blue) and shRNA (black). Shown is the mean of three biological
replicates. The Gluc transcript data point is labeled. Non-targeting guide is the same as in Fig.
1B.

G)Number of significant off-targets from Gluc knockdown for LwaCas13a, PspCas13b, and

shRNA from the transcriptome wide analysis in E and F.

7.3.2 Specificity of Cas13 mammalian interference activity

To characterize the interference specificities of PspCas13b and LwaCas13a we designed a plasmid
library of luciferase targets containing single mismatches and double mismatches throughout the
target sequence and the three flanking 5’ and 3’ base pairs (fig. 7.S3C). We transfected HEK293FT
cells with either LwaCas13a or PspCas13b, a fixed guide RNA targeting the unmodified target
sequence, and the mismatched target library corresponding to the appropriate system. We then
performed targeted RNA sequencing of uncleaved transcripts to quantify depletion of mismatched
target sequences. We found that LwaCas13a and PspCas13b had a central region that was relatively
intolerant to single mismatches, extending from base pairs 12-26 for the PspCas13b target and 13-24
for the LwaCas13a target (fig. 7.S3D). Double mismatches were even less tolerated than single
mutations, with little knockdown activity observed over a larger window, extending from base pairs
12-29 for PspCas13b and 8-27 for LwaCas13a in their respective targets (fig. 7.S3E). Additionally,

because there are mismatches included in the three nucleotides flanking the 5’ and 3’ ends of the target
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sequence, we could assess PFS constraints on Cas13 knockdown activity. Sequencing showed that
almost all PFS combinations allowed robust knockdown, indicating that a PFS constraint for
interference in mammalian cells likely does not exist for either enzyme tested. These results indicate

that Cas13a and Cas13b display similar sequence constraints and sensitivities against mismatches.

We next characterized the interference specificity of PspCas13b and LwaCas13a across the mRNA
fraction of the transcriptome. We performed transcriptome-wide mRNA sequencing to detect
significant differentially expressed genes. LwaCas13a and PspCas13b demonstrated robust
knockdown of Gluc (Fig. 7.1E,F) and were highly specific compared to a position-matched shRNA,
which showed hundreds of off-targets (Fig. 7.1G), consistent with our previous characterization of

LwaCas13a specificity in mammalian cells (Abudayyeh et al., 2017).

7.3.3 Cas13-ADAR fusions enable targeted RNA editing

Given that PspCas13b achieved consistent, robust, and specific knockdown of mRNA in mammalian
cells, we envisioned that it could be adapted as an RNA binding platform to recruit RNA modifying
domains, such as the deaminase domain of ADARs (ADARpp) for programmable RNA editing. To
engineer a PspCas13b lacking nuclease activity (dPspCas13b, referred to as dCas13b hereafter), we
mutated conserved catalytic residues in the HEPN domains and observed loss of luciferase RNA
knockdown (fig. 7.S4A). We hypothesized that a dCas13b-ADARDD fusion could be recruited by a
guide RNA to target adenosines, with the hybridized RNA creating the required duplex substrate for
ADAR activity (Fig. 7.2A). To enhance target adenosine deamination rates we introduced two
additional modifications to our initial RNA editing design: we introduced a mismatched cytidine
opposite the target adenosine, which has been previously reported to increase deamination frequency,
and fused dCas13b with the deaminase domains of human ADAR1 or ADAR2 | containing
hyperactivating mutations to enhance catalytic activity (ADAR1pp(E1008Q) (Wang et al., 2015) or
ADAR2pp(E488Q) (Kuttan and Bass, 2012)).

To test the activity of dCas13b-ADARpp we generated an RNA-editing reporter on Cluc by

introducing a nonsense mutation (W85X (UGG->UAG)), which could functionally be repaired to
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the wildtype codon through A->I editing (Fig. 7.2B) and then be detected as restoration of Cluc
luminescence. We evenly tiled guides with spacers of 30, 50, 70 or 84 nucleotides in length across the
target adenosine to determine the optimal guide placement and design (Fig. 7.2C). We found that
dCas13b-ADARI1Dpp required longer guides to repair the Cluc reporter, while dCas13b-ADAR2pp was
functional with all guide lengths tested (Fig. 7.2C). We also found that the hyperactive E488Q
mutation improved editing efficiency, as luciferase restoration with the wildtype ADAR2pp was
reduced (fig. 7.54B). From this demonstration of activity, we chose dCas13b-ADAR2pp(E488Q) for
further characterization and designated this approach as RNA Editing for Programmable A to [

Replacement version 1 (REPAIRv1).

To validate that restoration of luciferase activity was due to bona fide editing events, we directly
measured REPAIRv1-mediated editing of Cluc transcripts via reverse transcription and targeted next-
generation sequencing. We tested 30- and 50-nt spacers around the target site and found that both
guide lengths resulted in the expected A to I edit, with 50-nt spacers achieving higher editing
percentages (Fig. 7.2D,E, fig. 7.84C). We also observed that 50-nt spacers had an increased
propensity for editing at non-targeted adenosines within the sequencing window, likely due to

increased regions of duplex RNA (Fig. 7.2E, fig. 7.54C).

We next targeted an endogenous gene, PPIB. We designed 50-nt spacers tiling PPIB and found that
we could edit the PPIB transcript with up to 28% editing efficiency (Fig. 7.S4D). To test if REPAIR
could be further optimized, we modified the linker between dCas13b and ADAR2pp(E488Q) (fig.
7.S4E) and found that linker choice modestly affected luciferase activity restoration. Additionally, we
tested the ability of dCas13b and guide alone to mediate editing events, finding that the ADAR

deaminase domain is required for editing (fig. 7.S5A-D).
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Figure 7.2: Engineering dCas13b-ADAR fusions for RNA editing

A)Schematic of RNA editing by dCas13b-ADARDp fusion proteins. Catalytically dead Cas13b
(dCas13Db) is fused to the deaminase domain of human ADAR (ADARpp), which naturally
deaminates adenosines to insosines in dsRNA. The crRNA specifies the target site by
hybridizing to the bases surrounding the target adenosine, creating a dsRNA structure for
editing, and recruiting the dCas13b-ADARpp fusion. A mismatched cytidine in the crRNA
opposite the target adenosine enhances the editing reaction, promoting target adenosine
deamination to inosine, a base that functionally mimics guanosine in many cellular reactions.
B)Schematic of Cypridina luciferase W85X target and targeting guide design. Deamination
of the target adenosine restores the stop codon to the wildtype tryptophan. Spacer length is

the region of the guide that contains homology to the target sequence. Mismatch distance is
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the number of bases between the 3’ end of the spacer and the mismatched cytidine. The
cytidine mismatched base is included as part of the mismatch distance calculation.
C)Quantification of luciferase activity restoration for dCas13b-ADAR1pp(E1008Q) (left) and
dCas13b-ADAR2pp(E488Q) (right) with tiling guides of length 30, 50, 70, or 84 nt. All guides
with even mismatch distances are tested for each guide length. Values are background
subtracted relative to a 30nt non-targeting guide that is randomized with no sequence
homology to the human transcriptome.

D)Schematic of the sequencing window in which A to I edits were assessed for Cypridinia
luciferase W85X.

E)Sequencing quantification of A to I editing for 50-nt guides targeting Cypridinia luciferase
W85X. Blue triangle indicates the targeted adenosine. For each guide, the region of duplex
RNA is outlined in red. Values represent mean +/— S.E.M. Non-targeting guide is the same

as in Fig. 2C.

7.3.4 Defining the sequence parameters for RNA editing

Given that we could achieve precise RNA editing at a test site, we wanted to characterize the sequence
constraints for programming the system against any RNA target in the transcriptome. Sequence
constraints could arise from dCas13b targeting limitations, such as the PFS, or from ADAR sequence
preferences (Lehmann and Bass, 2000). To investigate PFS constraints on REPAIRV1, we designed a
plasmid library carrying a series of four randomized nucleotides at the 5’ end of a target site on the
Cluc transcript (Fig. 7.3A). We targeted the center adenosine within either a UAG or AAC motif and
found that for both motifs, all PFSs demonstrated detectable levels of RNA editing, with a majority
of the PFSs having greater than 50% editing at the target site (Fig. 7.3B). Next, we sought to determine
if the ADAR2pp in REPAIRv1 had any sequence constraints immediately flanking the targeted base,
as has been reported previously for ADAR2pp (Lehmann and Bass, 2000). We tested every possible
combination of 5’ and 3’ flanking nucleotides directly surrounding the target adenosine (Fig. 7.3C),
and found that REPAIRv1 was capable of editing all motifs (Fig. 7.3D). Lastly, we analyzed whether
the identity of the base opposite the target A in the spacer sequence affected editing efficiency and

found that an A-C mismatch had the highest luciferase restoration, in agreement with previous
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reports of ADAR2 activity, with A-G, A-U, and A-A having drastically reduced REPAIRv1 activity
(fig. 7.S5E).
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Figure 7.3: Measuring sequence flexibility for RNA editing by REPAIR v1
A)Schematic of screen for determining Protospacer Flanking Site (PFS) preferences of RNA
editing by REPAIRv1. A randomized PFS sequence is cloned 5’ to a target site for REPAIR
editing. Following exposure to REPAIR, deep sequencing of reverse transcribed RNA from
the target site and PFS is used to associate edited reads with PFS sequences.

B)Distributions of RNA editing efficiencies for all 4-N PFS combinations at two different
editing sites

C)Quantification of the percent editing of REPAIRv1 at Cluc W85 across all possible 3 base
motifs. Values represent mean +/- S.E.M. Non-targeting guide is the same as in Fig. 2C.
D)Heatmap of 5" and 3’ base preferences of RNA editing at Cluc W85 for all possible 3 base

motifs.

175



7.3.5 Correction of disease-relevant human mutations using REPAIR v1

To demonstrate the broad applicability of the REPAIRV1 system for RNA editing in mammalian cells,
we designed REPAIRV1 guides against two disease relevant mutations: 878G>A (AVPR2 W 293X) in
X-linked Nephrogenic diabetes insipidus and 1517G>A (FANCC W506X) in Fanconi anemia. We
transfected expression constructs for cDNA of genes carrying these mutations into HEK293FT cells
and tested whether REPAIRv1 could correct the mutations. Using guide RNAs containing 50-nt
spacers, we were able to achieve 35% correction of AVPR2 and 23% correction of FANCC (Fig. 7.4A-
D). We then tested the ability of REPAIRvV1 to correct 34 different disease-relevant G>A mutations
and found that we were able to achieve significant editing at 33 sites with up to 28% editing efficiency
(Fig. 7.4E). The mutations we chose are only a fraction of the pathogenic G to A mutations (5,739)
in the ClinVar database, which also includes an additional 11,943 G to A variants (Fig. 7.4F and fig.
7.56). Because there are no sequence constraints (Fig. 7.3), REPAIRv1 is capable of potentially editing
all these disease relevant mutations, especially given that we observed editing regardless of the target

motif (Fig. 7.3C and Fig. 7.4G).

Delivering the REPAIRvV1 system to diseased cells is a prerequisite for therapeutic use, and we
therefore sought to design REPAIRvV1 constructs that could be packaged into therapeutically relevant
viral vectors, such as adeno-associated viral (AAV) vectors. AAV vectors have a packaging limit of
4.7kb, which cannot accommodate the large size of dCas13b-ADARppD (4,473 bp) along with
promoter and expression regulatory elements. To reduce the size, we tested a variety of N-terminal
and C-terminal truncations of dCas13 fused to ADAR2pp(E488Q) for RNA editing activity. We
found that all C-terminal truncations tested were still functional and able to restore luciferase signal
(fig. 7.S7), and the largest truncation, C-terminal A984-1090 (total size of the fusion protein 4,152bp)

was small enough to fit within the packaging limit of AAV vectors.
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Figure 7.4: Correction of disease-relevant mutations with REPAIRv1

A)Schematic of target and guide design for targeting AVPR2 878G>A.

B) The 878G>A mutation (indicated by blue triangle) in AVPR2 is corrected to varying levels
using REPAIRv1 with three different guide designs. For each guide, the region of duplex RNA
is outlined in red. Values represent mean +/- S.E.M. Non-targeting guide is the same as in
Fig. 2C.

C)Schematic of target and guide design for targeting FANCC 1517G>A.

D) The 1517G>A mutation (indicated by blue triangle) in FANCC is corrected to varying
levels using REPAIRv1 with three different guide designs. For each guide, the region of
duplex RNA is outlined in red. The heatmap scale bar is the same as in panel B. Values
represent mean +/- S.E.M. Non-targeting guide is the same as in Fig. 2C.

E)Quantification of the percent editing of 34 different disease-relevant G>A mutations
selected from ClinVar using REPAIRv1. Non-targeting guide is the same as in Fig. 2C.
F)Analysis of all the possible G>A mutations that could be corrected using REPAIR as

annotated in the ClinVar database.
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G)The distribution of editing motifs for all G>A mutations in ClinVar is shown versus the
editing efficiency by REPAIRv1 per motif as quantified on the Gluc transcript. Values

represent mean +/—- S.E.M.

7.3.6 Transcriptome-wide specificity of REPAIRv1

Although RNA knockdown with PspCas13b was highly specific in our luciferase tiling experiments,
we observed off-target adenosine editing within the guide:target duplex (Fig. 7.2E). To see if this was
a widespread phenomenon, we tiled an endogenous transcript, KRAS, and measured the degree of
off-target editing near the target adenosine (Fig. 7.5A). We found that for KRAS, while the on-target
editing rate was 23%, there were many sites around the target site that also had detectable A to [ edits

(Fig. 7.5B).

Because of the observed off-target editing within the guide:target duplex, we initially evaluated
transcriptome-wide off-targets by performing RNA sequencing on all mRNAs with 12.5X coverage.
Of all the editing sites across the transcriptome, the on-target editing site had the highest editing rate,
with 89% A to I conversion. We also found that there was a substantial number of A to I off-target
events, with 1,732 off-targets in the targeting guide condition and 925 off-targets in the non-
targeting guide condition, with 828 off-targets shared between the targeting and non-targeting guide
conditions (Fig. 7.5C,D). Given the high number of overlapping off-targets between the targeting
and non-targeting guide conditions, we reasoned that the off-targets may arise from ADARpp. To
test this hypothesis, we repeated the Cluc targeting experiment, this time comparing transcriptome
changes for REPAIRv1 with a targeting guide, REPAIRv1 with a non-targeting guide, REPAIRv1
alone, or ADARDD(E488Q) alone (fig. 7.88). We found differentially expressed genes and off-target
editing events in each condition (fig. 7.S8B,C). Interestingly, there was a high degree of overlap in
the off-target editing events between ADARpD(E488Q) and all REPAIRv1 off-target edits,
supporting the hypothesis that REPAIR off-target edits are driven by dCas13b-independent
ADARDD(E488Q) editing events (fig. 7.S8D).
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Next, we sought to compare two RNA-guided ADAR systems that have been described previously
(fig. 7.S9A). The first utilizes a fusion of ADAR2pp to the small viral protein lambda N (AN), which
binds to the BoxB-A RNA hairpin (Montiel-Gonzalez et al., 2013). A guide RNA with double BoxB-
A hairpins guides ADAR2pp to edit sites encoded in the guide RNA (Montiel-Gonzalez et al., 2016).
The second design utilizes full-length ADAR2 (ADAR2) and a guide RNA with a hairpin that the
double strand RNA binding domains (dsRBDs) of ADAR2 recognize (Fukuda et al., 2017; Wettengel
et al,, 2017). We analyzed the editing efficiency of these two systems compared to REPAIRv1 and
found that the BoxB-ADAR?2 and full-length ADAR?2 systems demonstrated 50% and 34.5% editing
rates, respectively, compared to the 89% editing rate achieved by REPAIRv1 (fig. 7.S9B-E).
Additionally, the BoxB and full-length ADAR2 systems created 1,814 and 66 observed off targets,
respectively, in the targeting guide conditions, compared to the 2,111 off targets in the REPAIRv1
targeting guide condition. Notably, all the conditions with the two ADAR2pp-based systems
(REPAIRv1 and BoxB) showed a high percentage of overlap in their off-targets whereas the full-
length ADAR?2 system had a largely distinct set of off-targets (fig. 7.S9F). The overlap in off-targets
between the targeting and non-targeting conditions and between REPAIRv1 and BoxB conditions

suggests ADAR2pp drives off-targets independent of dCas13 targeting (fig. 7.S9F).
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Figure 7.5: Characterizing specificity of REPAIRv1

A)Schematic of KRAS target site and guide design.

B)Quantification of percent A to I editing for tiled KRAS-targeting guides. Editing
percentages are shown for the on-target (blue triangle) and neighboring adenosine sites. For
each guide, the region of duplex RNA is outlined in red. Values represent mean +/- S.E.M.
C)Transcriptome-wide sites of significant RNA editing by REPAIRv1 (150ng REPAIR vector
transfected) with Cluc targeting guide. The on-target site Cluc site (254 A>I) is highlighted in
orange.

D)Transcriptome-wide sites of significant RNA editing by REPAIRv1 (150ng REPAIR vector

transfected) with non-targeting guide. Non-targeting guide is the same as in Fig. 2C.
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7.3.7 Improving specificity of REPAIR through rational protein engineering

To improve the specificity of REPAIRv1, we employed structure-guided protein engineering of
ADAR2pp(E488Q). Because of the guide-independent nature of the off-targets, we hypothesized that
destabilizing ADAR2pp(E488Q)-RNA binding would selectively decrease off-target editing, but
maintain on-target editing due to increased local concentration from dCas13b tethering of
ADAR2pp(E488Q) to the target site. We mutated residues in ADAR2pp(E488Q) previously
determined to contact the duplex region of the target RNA (Fig. 7.6A) (Matthews et al., 2016). To
assess efficiency and specificity, we tested 17 single mutants with both targeting and non-targeting
guides, under the assumption that background luciferase restoration in the non-targeting condition
would be indicative of broader off-target activity. We found that mutations at the selected residues
had significant effects on the luciferase activity for targeting and non-targeting guides (Fig. 7.6A,B,
fig. 7.S10A). A majority of mutants either significantly improved the luciferase activity for the
targeting guide or increased the ratio of targeting to non-targeting guide activity, which we termed

the specificity score (Fig. 7.6A,B).

We selected a subset of these mutants (Fig. 7.6B) for transcriptome-wide specificity profiling by next
generation sequencing. As expected, off-targets measured from transcriptome-wide sequencing
correlated with our specificity score (fig. 7.S10B) for mutants. We found that with the exception of
ADAR2pp(E488Q/R455E), all sequenced REPAIRv1 mutants could effectively edit the reporter
transcript (Fig. 7.6C), with many mutants showing reduction in the number of off-targets (Fig. 7.6C,
fig 7.810C, 7.S11). We further explored the surrounding motifs of off-targets for the various
specificity mutants, and found that REPAIRv1 and most of the engineered variants exhibited a strong
3’ G preference for their off-target edits, in agreement with the characterized ADAR2 motif (fig.
7.S12A) (Lehmann and Bass, 2000).

We focused on the mutant ADAR2pp(E488Q/T375G), as it had the highest percent editing of the
four mutants with the lowest numbers of transcriptome-wide off targets and termed it REPAIRV2.
Compared to REPAIRv1, REPAIRV2 exhibited increased specificity, with a reduction from 18,385 to
20 transcriptome-wide off-targets by high-coverage sequencing (125X coverage, 10ng DNA

transfection) (Fig. 7.6D). In the region surrounding the targeted adenosine in Cluc, REPAIRv2 also
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had reduced off-target editing, visible in sequencing traces (Fig. 7.6E). In motifs derived from the off-
target sites, REPAIRv1 presented a strong preference towards 3’ G, but showed off-targeting edits
for all motifs (fig. 7.512B); by contrast, REPAIRv2 only edited the strongest off-target motifs (fig.
7.812C). The distribution of edits on transcripts was heavily skewed for REPAIRv1, with highly-
edited genes having over 60 edits (fig. 7.S13A), whereas REPAIRv2 only edited one transcript
(EEF1A1) multiple times (fig. 7.S13B). REPAIRv1 off-target edits were predicted to result in
numerous variants, including 1000 missense base changes (fig. 7.513C) with 93 events in genes
related to cancer processes (fig. 7.513D). In contrast, REPAIRvV2 only had 6 predicted base changes
(fig. 7.S10E), none of which were in cancer-related genes (fig. 7.S13F). Analysis of the sequence
surrounding off-target edits for REPAIRv1 or v2 did not reveal homology to guide sequences,
suggesting that off-targets are likely dCas13b-independent (fig. 7.S14), consistent with the high
overlap of off-targets between REPAIRv1 and the ADAR deaminase domain (fig. 7.S8D). To directly
compare REPAIRvV2 against other programmable ADAR systems, we repeated our Cluc targeting
experiments with all systems at two different dosages of ADAR vector, finding that REPAIRv2 had
comparable on-target editing to BoxB and ADAR2 but with significantly fewer off-target editing
events at both dosages (fig. 7.515). REPAIRv2 had enhanced specificity compared to REPAIRv1 at
both dosages (fig. 7.S15B), a finding that also extended to two guides targeting distinct sites on PPIB
(fig. 7.516A-D). It is also worth noting that, in general, the lower dosage condition (10 ng) had fewer

off-targets than the higher dosage condition (150 ng) (fig. 7.S5).

To assess editing specificity with greater sensitivity, we sequenced the low dosage condition (10 ng
of transfected DNA) of REPAIRv1 and v2 at significantly higher sequencing depth (125X coverage
of the transcriptome). Increased numbers of off-targets were found at higher sequencing depths
corresponding to detection of rarer off-target events (fig. 7.S17). Furthermore, we speculated that
different transcriptome states could also potentially alter the number of off-targeting events.
Therefore, we tested REPAIRV2 activity in the osteosarcoma U2OS cell line, observing 6 and 7 off-

targets for the targeting and non-targeting guide, respectively (fig. 7.518).

We targeted REPAIRV2 to endogenous genes to test if the specificity-enhancing mutations reduced
nearby edits in target transcripts while maintaining high-efficiency on-target editing. For guides

targeting either KRAS or PPIB, we found that REPAIRv2 had no detectable off-target edits, unlike
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REPAIRv1, and could effectively edit the on-target adenosine at efficiencies of 27.1% (KRAS) or 13%
(PPIB) (Fig. 7.6F). This specificity extended to additional target sites, including regions that
demonstrate high-levels of background in non-targeting conditions for REPAIRv1, such as other
KRAS or PPIB target sites (fig. 7.519). Overall, REPAIRvV2 eliminated off-targets in duplexed regions

around the edited adenosine and showed dramatically enhanced transcriptome-wide specificity.
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Figure 7.6: Rational mutagenesis of ADAR2 to improve the specificity of REPAIRv1

A)Quantification of luciferase signal restoration (on-target score, red boxes) by various

dCas13-ADAR2pp mutants as well as their specificity score (blue boxes) plotted along a

schematic of the contacts between key ADAR2 deaminase residues and the dsRNA target

(target strand shown in gray; the non-target strand is shown in red). All deaminase mutations

were made on the dCas13-ADAR2pp(E488Q) background. The specificity score is defined as
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the ratio of the luciferase signal between targeting guide and non-targeting guide conditions.
Schematic of ADAR2 deaminase domain contacts with dsRNA is adapted from ref (Zheng et
al,, 2017).

B)Quantification of luciferase signal restoration by various dCas13-ADAR2 mutants versus
their specificity score. Non-targeting guide is the same as in Fig. 2C.

C)Quantification of on-target editing and the number of significant off-targets for each
dCas13-ADAR2pp(E488Q) mutant by transcriptome wide sequencing of mRNAs. Values
represent mean +/— S.E.M. Non-targeting guide is the same as in Fig. 2C.
D)Transcriptome-wide sites of significant RNA editing by REPAIRv1 (top) and REPAIRv2
(bottom) with a guide targeting a pretermination site in Cluc. The on-target Cluc site (254
A>I) is highlighted in orange. 10 ng of REPAIR vector was transfected for each condition.
E)Representative RNA sequencing reads surrounding the on-target Cluc editing site (254 A>[;
blue triangle) highlighting the differences in off-target editing between REPAIRvV1 (top) and
REPAIRv2 (bottom). A>I edits are highlighted in red; sequencing errors are highlighted in
blue. Gaps reflect spaces between aligned reads. Non-targeting guide is the same as in Fig. 2C.
F)RNA editing by REPAIRv1 and REPAIRv2 with guides targeting an out-of-frame UAG
site in the endogenous KRAS and PPIB transcripts. The on-target editing fraction is shown as
a sideways bar chart on the right for each condition row. For each guide, the region of duplex
RNA is outlined in red. Values represent mean +/~ S.E.M. Non-targeting guide is the same

as in Fig. 2C.

7.4 Discussion

We show here that the RNA-guided RNA-targeting type VI-B CRISPR effector Cas13b is capable of

highly efficient and specific RNA knockdown, providing the basis for improved tools for

interrogating essential genes and non-coding RNA as well as controlling cellular processes at the

transcript level. Catalytically inactive Cas13b (dCas13b) retains programmable RNA binding

capability, which we leveraged here by fusing dCas13b to the adenosine deaminase domain of ADAR2

to achieve precise A to [ edits, a system we term REPAIRv1 (RNA Editing for Programmable A to I

Replacement version 1). Further engineering of the system produced REPAIRv2, which has

184



dramatically higher specificity than previously described RNA editing platforms (Montiel-Gonzalez

et al., 2016; Stafforst and Schneider, 2012) while maintaining high levels of on-target efficacy.

Although Cas13b exhibits high fidelity, our initial results with dCas13b-ADAR2pp(E488Q) fusions
revealed a substantial number of off-target RNA editing events. To address this, we employed a
rational mutagenesis strategy to vary the ADAR2pp residues that contact the RNA duplex, identifying
a variant, ADAR2pp(E488Q/T375G), capable of precise, efficient, and highly specific editing when
fused to dCas13b. Editing efficiency with this variant was comparable to or better than that achieved
with two currently available systems, BoxB-ADAR2pp(E488Q) or ADAR2 editing. Moreover, the
REPAIRV2 system created only 20 observable off-targets in the whole transcriptome, at least an order
of magnitude better than both alternative editing technologies. While it is possible that ADAR could
deaminate adenosine bases on the DNA strand in RNA-DNA heteroduplexes (Zheng et al., 2017), it
is unlikely to do so in this case as Cas13b does not bind DNA efficiently and that REPAIR is
cytoplasmically localized. Additionally, the lack of homology of off-target sites to the guide sequence
and the strong overlap of off-targets with the ADARpp(E488Q)-only condition suggest that off-
targets are not mediated by off-target guide binding. Deeper sequencing and novel inosine

enrichment methods could further refine our understanding of REPAIR specificity in the future.

The REPAIR system offers many advantages compared to other nucleic acid editing tools. First, the
exact target site can be encoded in the guide by placing a cytidine within the guide extension across
from the desired adenosine to create a favorable A-C mismatch ideal for ADAR editing activity.
Second, Cas13 has no targeting sequence constraints, such as a PFS or PAM, and no motif preference
surrounding the target adenosine, allowing any adenosine in the transcriptome to be potentially
targeted with the REPAIR system. The lack of motif for ADAR editing, in contrast with previous
literature, is likely due to the increased local concentration of REPAIR at the target site due to
dCas13b binding. We do note that DNA base editors can target either the sense or anti-sense strand,
while the REPAIR system is limited to transcribed sequences, thereby constraining the total number
of possible editing sites. However, due to the less constrained nature of targeting with REPAIR, this
system can affect more edits within ClinVar (Fig. 7.4C) than Cas9-DNA base editors. Third, the
REPAIR system directly deaminates target adenosines to inosines and does not rely on endogenous

repair pathways, such as base-excision or mismatch repair, to generate desired editing outcomes.
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Therefore, REPAIR should be able to mediate efficient RNA editing even in post-mitotic cells such
as neurons. Fourth, in contrast to DNA editing, RNA editing is transient and can be more easily
reversed, allowing the potential for temporal control over editing outcomes. The temporary nature
of REPAIR-mediated edits will likely be useful for treating diseases caused by temporary changes in
cell state, such as local inflammation and could also be used to treat disease by modifying the function
of proteins involved in disease-related signal transduction. For instance, REPAIR editing would allow
the re-coding of some serine, threonine and tyrosine residues that are the targets of kinases.
Phosphorylation of these residues in disease-relevant proteins affects disease progression for many
disorders including Alzheimer’s disease and multiple neurodegenerative conditions (Ballatore et al.,
2007). REPAIR might also be used to transiently or even chronically change the sequence of expressed,
risk-modifying G to A variants to decrease the chance of entering a disease state for patients. For
instance, REPAIR could be used to functionally mimic A to G alleles of IFIHI that protect against
autoimmune disorders such as type I diabetes, immunoglobulin A deficiency, psoriasis, and systemic

lupus erythematosus (Ferreira et al., 2010; Li et al., 2010).

The REPAIR system provides multiple opportunities for additional engineering. Cas13b possesses
pre-crRNA processing activity (Smargon et al., 2017b), allowing for multiplex editing of multiple
variants, any one of which alone may not affect disease, but together might have additive effects and
disease-modifying potential. Extension of our rational design approach, such as combining promising
mutations and directed evolution, could further increase the specificity and efficiency of the system,
while unbiased screening approaches could identify additional residues for improving REPAIR

activity and specificity.

Currently, the base conversions achievable by REPAIR are limited to generating inosine from
adenosine; additional fusions of dCas13 with other catalytic RNA editing domains, such as APOBEC,
could enable cytidine to uridine editing. Additionally, mutagenesis of ADAR could relax the substrate
preference to target cytidine, allowing for the enhanced specificity conferred by the duplexed RNA
substrate requirement to be exploited by C to U editors. Adenosine to inosine editing on DNA
substrates may also be possible with catalytically inactive DN A-targeting CRISPR effectors, such as
dCas9 or dCpf1, either through formation of DNA-RNA heteroduplex targets (Zheng et al., 2017) or

mutagenesis of the ADAR domain.
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We have demonstrated the use of the PspCas13b enzyme as both an RNA knockdown and RNA
editing tool. The dCas13b platform for programmable RNA binding has many applications, including
live transcript imaging, splicing modification, targeted localization of transcripts, pull down of RNA-
binding proteins, and epitranscriptomic modifications. Here, we used dCas13 to create REPAIR,
adding to the existing suite of nucleic acid editing technologies. REPAIR provides a new approach for
treating genetic disease or mimicking protective alleles, and establishes RNA editing as a useful tool

for modifying genetic function.
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7.5 Experimental Procedures

7.5.1Design and cloning of bacterial constructs

Mammalian codon optimized Cas13b constructs were cloned into the chloramphenicol resistant
pACYC184 vector under control of the Lac promoter. Two corresponding direct-repeat (DR)
sequences separated by Bsal restriction sites were then inserted downstream of Cas13b, under control
of the pJ23119 promoter. Last, oligos for targeting spacers were phosphorylated using T4 PNK (New
England Biolabs), annealed and ligated into Bsal digested vectors using T7 ligase (Enzymatics) to

generate targeting Cas13b vectors.

7.5.2 Bacterial PFS screens

Ampicillin resistance plasmids for PFS screens were cloned by inserting PCR products containing
Cas13Db targets with two 5’ randomized nucleotides and four 3’ randomized nucleotides separated by
a target site immediately downstream of the start codon of the ampicillin resistance gene bla using
NEB Gibson Assembly (New England Biolabs). 100 ng of ampicillin-resistant target plasmids were
then electroporated with 65-100 ng chloramphenicol-resistant Cas13b bacterial targeting plasmids
into Endura Electrocompetent Cells (Lucigen). Plasmids were added to cells, incubated for 15
minutes on ice, electroporated using the manufacturer’s recommended settings, and then 950 uL of
recovery media was added to cells before a one-hour outgrowth at 37° C. The outgrowth was plated
onto chloramphenicol and ampicillin double selection plates. Serial dilutions of the outgrowth were
used to estimate the cfu/ng DNA. 16 hours post plating, cells were scraped off plates and surviving
plasmid DNA was harvested using the Qiagen Plasmid Plus Maxi Kit (Qiagen). Surviving Cas13b
target sequences and their flanking regions were amplified by PCR and sequenced using an Illumina
NextSeq. To assess PFS preferences, the positions containing randomized nucleotides in the original
library were extracted, and sequences depleted relative to the vector only condition and that were
present in both bioreplicates were extracted using custom python scripts. The -logz of the ratio of

PFS abundance in the Cas13b condition compared to the vector only control was then used to
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calculate preferred motifs. Specifically, all sequences having -logz(sample/vector) depletion ratios
above a specific threshold were wused to generate weblogos of sequence motifs

(weblogo.berkeley.edu).

7.5.3 Design and cloning of mammalian constructs for RNA interference

To generate vectors for testing Cas13 orthologs in mammalian cells, mammalian codon optimized
Cas13a, Cas13b, and Cas13c genes were PCR amplified and golden-gate cloned into a mammalian
expression vector containing dual NLS sequences and a C-terminal msfGFP, under control of the
EFlalpha promoter. For further optimization Cas13 orthologs were golden-gate cloned into
destination vectors containing different C-terminal localization tags under control of the EFlalpha

promoter.

The dual luciferase reporter was cloned by PCR amplifying Gaussia and Cypridinia luciferase coding
DNA, the EFlalpha and CMV promoters and assembled using the NEB Gibson Assembly (New
England Biolabs).

For expression of mammalian guide RNAs for Cas13a, Cas13b, or Casl3c orthologs, the
corresponding direct repeat sequences were synthesized with golden-gate acceptor sites and cloned

under U6 expression via restriction digest cloning. Individual guides were then cloned into the

corresponding expression backbones for each ortholog by golden-gate cloning.

7.5.4 Measurement of Casl3 expression in mammalian cells

Dual-NLS Cas13-msfGFP constructs were transfected into HEK293FT cells with targeting and non-
targeting guides. GFP fluorescence was measured 48 hours post transfection in the non-targeting

guide condition using a plate reader.

7.5.5 Cloning of pooled mismatch libraries for Casl3 interference specificity
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Pooled mismatch library target sites were created by PCR using a forward primer containing the
semi-degenerate target sequences and a constant reverse primer off of a Gluc template. The semi-
degenerate forward oligo had at each position of the Cas13 target, plus the 5" and 3’ three flanking
bases, a nucleotide mixture containing 94% of the correct base and 2% of each incorrect base. The
mismatch library amplicon was then cloned into the dual luciferase reporter in place of wild-type Gluc

using NEB Gibson assembly (New England Biolabs).

7.5.6 Design and cloning of mammalian constructs for RNA editing

PspCas13b was made catalytically inactive (dPspCas13b) via two histidine to alanine mutations
(H133A/H1058A) at the catalytic site of the HEPN domains. The deaminase domains of human
ADAR1 and ADAR?2 were synthesized and PCR amplified for Gibson cloning into pcDNA-CMV
vector backbones and were fused to dPspCas13b at the C-terminus via GS or GSGGGGS linkers. For
the experiment in which we tested different linkers we cloned the following additional linkers
between dPspCas13b and ADAR2pp: GGGGSGGGGSGGGGS, EAAAK,
GGSGGSGGSGGSGGSGGS, and SGSETPGTSESATPES (XTEN). Specificity mutants were
generated by Gibson cloning the appropriate mutants into the dPspCas13b-GSGGGGS backbone.

The luciferase reporter vector for measuring RNA editing activity was generated by creating a W85X
mutation (TGG>TAG) in the luciferase reporter plasmid used for knockdown experiments. This
reporter vector expresses functional Gluc as a normalization control, but a defective Cluc due to the
addition of the W 85X pretermination site. To test ADAR editing motif preferences, we cloned every

possible motif around the adenosine at codon 85 (XAX) of Cluc.

7.5.7 Testing PFS preferences for dCas13b

For testing PFS preference of REPAIR, we cloned a pooled plasmid library containing a 6 basepair
degenerate PFS sequence upstream of a target region and adenosine editing site. The library was
synthesized as an ultramer from Integrated DNA Technologies (IDT) and was made double stranded

via annealing a primer and using the Klenow fragment of DNA polymerase I (New England Biolabs)
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to fill in the sequence. This dsDNA fragment containing the degenerate sequence was then Gibson
cloned into the digested reporter vector and this was then isopropanol precipitated and purified. The
cloned library was then electroporated into Endura competent E. coli cells (Lucigen) and plated on
245mm x 245mm square bioassay plates (Nunc). After 16 hours, colonies were harvested and
midiprepped using endotoxin-free MACHEREY-NAGEL midiprep kits. Cloned libraries were

verified by next-generation sequencing.

7.5.8 Cloning pathogenic G>A mutations for assaying REPAIR activity

For cloning disease-relevant mutations for testing REPAIR activity, 34 G>A mutations related to
disease pathogenesis as defined in ClinVar were selected and 200-bp regions surrounding these
mutations were golden-gate cloned between mScarlett and EGFP under a CMV promoter. Two
additional G>A patient mutations in AVPRZ and FANCC and their cDNA sequences were synthesized

and Gibson cloned under expression of EFlalpha.

7.5.9 Guide cloning for REPAIR

For expression of mammalian guide RNAs for REPAIR, the PspCas13b direct repeat sequences were
synthesized with golden-gate acceptor sites and cloned under U6 expression via restriction digest

cloning. Individual guides were then cloned into this expression backbone by golden-gate cloning.

7.5.10 Mammalian cell culture

Mammalian cell culture experiments were performed in the HEK293FT line (American Type Culture
Collection (ATCC)), which was grown in Dulbecco’s Modified Eagle Medium with high glucose,
sodium pyruvate, and GlutaMAX (Thermo Fisher Scientific), additionally supplemented with 1x
penicillin-streptomycin (Thermo Fisher Scientific) and 10% fetal bovine serum (VWR Seradigm).
Cells were maintained at confluency below 80%. The U20S specificity experiment was performed
using the U20S cell line from ATCC and cells were cultured in ATCC-formulated McCoy's 5a
Medium Modified.

191



Unless otherwise noted, all transfections were performed with Lipofectamine 2000 (Thermo Fisher
Scientific) in 96-well plates coated with poly-D-lysine (BD Biocoat). Cells were plated at
approximately 20,000 cells/well 16 hours prior to transfection to ensure 90% confluency at the time
of transfection. For each well on the plate, transfection plasmids were combined with Opti-MEM I
Reduced Serum Medium (Thermo Fisher) to a total of 25 pl. Separately, 24.5 ul of Opti-MEM was
combined with 0.5 pl of Lipofectamine 2000. Plasmid and Lipofectamine solutions were then
combined and incubated for 5 minutes, after which they were pipetted onto cells. The U20S

transfections were performed using Lipofectamine 3000 according to the manufacturer's protocol.

7.5.11 Mammalian cell RNA knockdown assays

To assess RNA targeting in mammalian cells with reporter constructs, 150 ng of Cas13 construct was
co-transfected with 300 ng of guide expression plasmid and 12.5 ng of the knockdown reporter
construct. 48 hours post-transfection, media containing secreted luciferase was removed from cells,
diluted 1:5 in PBS, and measured for activity with BioLux Cypridinia and Biolux Gaussia luciferase
assay kits (New England Biolabs) on a plate reader (Biotek Synergy Neo2) with an injection protocol.

All replicates performed are biological replicates.

For targeting of endogenous genes, 150 ng of Cas13 construct was co-transfected with 300 ng of
guide expression plasmid. 48 hours post-transfection, cells were lysed and RNA was harvested and
reverse transcribed using a previously described(Joung et al., 2017) modification of the Cells-to-Ct
kit (Thermo Fisher Scientific). cDNA expression was measured via qPCR using TagMan qPCR
probes for the KRAS transcript (Thermo Fisher Scientific), GAPDH control probes (Thermo Fisher
Scientific), and Fast Advanced Master Mix (Thermo Fisher Scientific). qPCR reactions were read out

on a LightCycler 480 Instrument II (Roche), with four 5 ul technical replicates in 384-well format.

7.5.12 Evaluation of RNA specificity using pooled libraries of mismatched targets

192



The ability of Cas13 to interfere with the mismatched target library was tested using HEK293FT cells
seeded in 6-well plates. ~70% confluent cells were transfected using 2400 ng Cas13 vector, 4800 ng
of guide, and 240 ng of mismatched target library. 48 hours post-transfection, cells were harvested
and RNA was extracted using the QIAshredder (Qiagen) and the Qiagen RNeasy Mini Kit. 1 pg of
extracted RNA was reverse transcribed using the qScript Flex cDNA synthesis kit (Quantabio)
following the manufacturer’s gene-specific priming protocol with a Gluc specific RT primer. cDNA

was then amplified and sequenced on an Illumina NextSeq.

Sequencing was analyzed by counting reads per sequence and depletion scores were calculated by
determining the loga(-read count ratio) value, where read count ratio is the ratio of read counts in
the targeting guide condition versus the non-targeting guide condition. This score represents the
level of Cas13 activity on the sequence, with higher values representing stronger depletion and thus
higher Cas13 cleavage activity. Separate distributions for the single mismatch and double mismatch
sequences were determined and plotted as heatmaps with a depletion score for each mismatch
identity. For double mismatch sequences the average of all possible double mismatches at a given

position were plotted.

7.5.13 Transcriptome-wide profiling of Cas13 in mammalian cells by RNA sequencing

For measurement of transcriptome-wide specificity, 150 ng of Cas13 construct, 300 ng of guide
expression plasmid, and 15 ng of the knockdown reporter construct were co-transfected; for shRNA
conditions, 300 ng of shRNA targeting plasmid, 15 ng of the knockdown reporter construct, and 150
ng of EF1-alpha driven mCherry (to balance reporter load) were co-transfected. 48 hours post-
transfection, RNA was purified with the RNeasy Plus Mini kit (Qiagen), mRNA was isolated using
NEBNext Poly(A) mRNA Magnetic Isolation Module (New England Biolabs), and prepared for
sequencing with the NEBNext Ultra RNA Library Prep Kit for Illumina (New England Biolabs). RNA

sequencing libraries were then sequenced on a NextSeq (Illumina).

To analyze transcriptome-wide sequencing data, reads were aligned to the RefSeq GRCh38 assembly

using Bowtie and RSEM version 1.2.31 with default parameters(Li and Dewey, 2011). Transcript
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expression was quantified as log2(TPM + 1), genes were filtered for log2(TPM + 1) >2.5. For selection
of differentially expressed genes, only genes with differential changes of >2 or <.75 were considered.
Statistical significance of differential expression was evaluated using a Student’s t-test on three
targeting replicates versus non-targeting replicates, and filtered for a false discovery rate of <0.01%

by the Benjamini-Hochberg procedure.

7.5.14 REPAIR editing in mammalian cells

To assess REPAIR activity in mammalian cells, we transfected 150 ng of REPAIR vector, 300 ng of
guide expression plasmid, and 40 ng of the RNA editing reporter. After 48 hours, RNA from cells was
harvested and reverse transcribed using a method previously described(Joung et al., 2017) with a gene
specific reverse transcription primer. The extracted cDNA was then subjected to two rounds of PCR
to add Illumina adaptors and sample barcodes using NEBNext High-Fidelity 2X PCR Master Mix
(New England Biolabs). The library was then subjected to next generation sequencing on an [llumina
NextSeq or MiSeq. RNA editing rates were then evaluated at all adenosines within the sequencing

window.

In experiments where the luciferase reporter was targeted for RNA editing, we also harvested the
media with secreted luciferase prior to RNA harvest. In this case, because corrected Cluc might be at
low levels, we did not dilute the media. We measured luciferase activity with BioLux Cypridinia and
Biolux Gaussia luciferase assay kits (New England Biolabs) on a plate reader (Biotek Synergy Neo2)

with an injection protocol. All replicates performed are biological replicates.

7.5.15 PFS binding mammalian screen

To determine the contribution of the PFS to editing efficiency in mammalian cells, 625 ng of PFS
target library, 4.7 ug of guide, and 2.35 pg of REPAIR were co-transfected in HEK293FT cells plated
in 25 cm? flasks. Plasmids were mixed with 33 ul of PLUS reagent (Thermo Fisher Scientific), brought
to 533 pl with Opti-MEM, incubated for 5 minutes, combined with 30 ul of Lipofectamine 2000 and

500 ul of Opti-MEM, incubated for an additional 5 minutes, and then pipetted onto cells. 48 hours
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post-transfection, RNA was harvested with the RNeasy Plus Mini kit (Qiagen), reverse transcribed
with qScript Flex (Quantabio) using a gene specific primer, and amplified with two rounds of PCR
using NEBNext High-Fidelity 2X PCR Master Mix (New England Biolabs) to add Illumina adaptors
and sample barcodes. The library was sequenced on an Illumina NextSeq, and RNA editing rates at
the target adenosine were mapped to PFS identity. To increase coverage, the PFS was
computationally collapsed to 4 nucleotides adjacent to the 5 end of the target sequence. REPAIR
editing rates were calculated for each PFS, averaged over biological replicates with non-targeting

rates for the corresponding PFS subtracted.

7.5.16 Whole-transcriptome sequencing to evaluate ADAR editing specificity

For analyzing off-target RNA editing sites across the transcriptome, we harvested total RNA from
cells 48 hours post-transfection using the RNeasy Plus Miniprep kit (Qiagen). The mRNA fraction
was then enriched using a NEBNext Poly(A) mRNA Magnetic Isolation Module (NEB) and this RNA
was then prepared for sequencing using an NEBNext Ultra RNA Library Prep Kit for [llumina (NEB).
The libraries were then sequenced on an Illumina NextSeq and loaded such that there were at least 5

million reads per sample.

7.5.17 RNA editing analysis for targeted and transcriptome-wide experiments

Analysis of the transcriptome-wide editing RNA sequencing data was performed on the FireCloud

computational framework (https://software.broadinstitute.org/firecloud/) using a custom workflow

we developed:

https://portal.firecloud.org/#methods/m/rna_editing_final_workflow/rna_editing_final_workflow

/1. For analysis, unless otherwise denoted, sequence files were randomly downsampled to 5 million
reads. For the high-coverage sequencing analysis, samples were randomly downsampled to 5 million,
15 million, or 50 million reads. An index was generated using the RefSeq GRCh38 assembly with Gluc
and Cluc sequences added, and reads were aligned and quantified using Bowtie/RSEM version 1.3.0.
Alignment BAMs were then sorted and analyzed for RNA editing sites using REDitools (Picardi et
al., 2015; Picardi and Pesole, 2013) with the following parameters: -t 8 -e -d -1-U [AG or TC] -p -u -
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m20 -T6-0 -W -v 1 -n 0.0. Any significant edits found in untransfected or EGFP-transfected
conditions were considered to be SNPs or artifacts of the transfection and filtered out from the
analysis of off-targets. Off-targets were considered significant if the Fisher’s exact test yielded a p-
value less than 0.05 after multiple hypothesis correction by Benjamini Hochberg correction and at
least 2 of 3 biological replicates identified the edit site. Overlap of edits between samples was
calculated relative to the maximum possible overlap, equivalent to the fewer number of edits between
the two samples. The percentage of overlapping edit sites was calculated as the number of shared edit
sites divided by minimum number of edits of the two samples, multiplied by 100. For the high-
coverage sequencing analysis, an additional layer of filtering for known SNP positions was performed

using the Kaviar (Glusman et al., 2011) method for identifying SNPs.

For analyzing the predicted variant effects of each off-target, the list of off-target edit sites was

analyzed using the variant annotation integrator (https://genome.ucsc.edu/cgi-bin/hgVai) as part of

the UCSC genome browser suite of tools using the SIFT and PolyPhen-2 annotations. To predict
whether the off-target genes are oncogenic, a database of oncogenic annotations from the COSMIC
catalogue of somatic mutations in cancer was used to characterize off-target genes

(cancer.sanger.ac.uk).

For analyzing whether the REPAIR constructs perturbed RNA levels, the transcript per million
(TPM) values output from the RSEM analysis were used for expression counts and transformed to
log-space by taking the log2(TPM+1). To find differentially regulated genes, a Student’s t-test was
performed on three targeting guide replicates versus three non-targeting guide replicates. The
statistical analysis was only performed on genes with log2(TPM+1) values greater than 2.5 and genes
were only considered differentially regulated if they had a fold change greater than 2 or less than 0.8.
Genes were reported if they had a false discovery rate (Benjamini Hochberg correction) of less than

0.01.
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Chapter 8

Conclusion

The generation of somatic or germline genome edits allows for the study and modeling of genetic
variants and holds the promise for modulating human traits and treating all genetic diseases. The
development of CRISPR-Cas9 for genome editing has enabled the unprecedented speed and scale at
which scientists can study diseases, generate mouse models, and develop human gene therapy due to
the high efficiency of mutagenesis and the ease of programmability. While the Cas9 technology has
matured, we have demonstrated that there is more Class 2 enzyme diversity beyond Cas9 and that the
enzymes, such as Cpfl (i.e. Cas12a), Cas12b, and Cas13, can be characterized and used for novel
genome editing applications. In particular, we focus on the RNA-guided RNA targeting Cas13 system,
determining its biochemical mechanism in detail and biological function in bacteria as an adaptive
immune system against RNA phage or transcripts of DNA phages. While characterizing the system,
we discovered a peculiar phenomenon called the collateral effect in which activated Cas13 complex
bound to target ssSRNA would cleave any other RNAs in solution. We harnessed this effect to cleave
fluorescent reporters in response to the presence of specific nucleic acid targets and developed it into
a highly sensitive, specific, cheap, and rapid diagnostic called SHERLOCK. Because mammalian RNA
perturbation tools are lacking, we further optimized Cas13 expression for mammalian cells and
developed tools to knockdown RNA, image transcripts, and precisely and efficiently perform A to G
base edits in RNA. These applications highlight the promise of new enzyme discovery, and for Cas13

to enable a comprehensive RNA targeting toolbox for biology and therapeutics.
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8.1 Comparison of characterized Class 2 CRISPR enzymes

The diversity of enzymes found in nature, especially bacteria, has evolved over billions of years and
serves as a rich resource for biology and biotechnology. In this thesis alone, we found numerous new
CRISPR enzyme systems with unique and interesting biochemical properties and numerous
applications for biotechnology with immense potential to affect human health and society. Related to
the work of this thesis, we also discovered numerous DNA targeting systems, including Cas12a and
Cas12b, in our original computational work that we have shown also function for genome editing in
mammalian cells with very different properties than Cas9. For instance, Cas12a has no tracrRNA, a
very short crRNA, and has a AT-rich PAM allowing for expanded targeting range in genomes. Cas12a
is more specific owing to two seed regions in the guide:target duplex and has worked in numerous
organisms beyond humans. As a direct result of this thesis, there are now four Class 2 enzymes known
and characterized, including Cas9, Cas12a, Cas12b, and Cas13 (Figure 8.1 and 8.2). Their diverse

properties are described below and summarized in Table 8.1.

Cas9. The most well-characterized single-protein Cas effector is Cas9 (Class 2, type II). Cas9 is a dual-
guide RNA-dependent endonuclease that contains two nuclease domains, RuvC and HNH, that
coordinate to cleave both strands of a double-stranded DNA (dsDNA) target complementary to the
crRNA spacer sequence (Doudna and Charpentier, 2014; Hsu et al., 2014). Cas9 can be engineered to
facilitate genome editing in eukaryotic cells (Cong et al., 2013; Mali et al., 2013c). The two guide
RNAs, crRNA and its trans-activating crRNA (tracrRNA) (Deltcheva et al., 2011), can be covalently
linked to form a single-guide RNA (sgRNA) to simplify the RNA components (Jinek et al., 2012).
Targeting is PAM-dependent (e.g,, Cas9 from Streptococcus pyogenes requires a 5-NGG-3’ PAM at the
3’ end of the target sequence), restricting editing to genomic sites that contain the appropriate PAM

sequence.

Cas12. CRISPR-Cas12a systems (originally called Cpfl) also target DNA using a single-protein
endonuclease and can be engineered to facilitate genome editing in eukaryotic cells (Zetsche et al.,
2015b). Like Cas9, Cas12a cleaves dsDNA using two DNase domains, the RuvC and nuclease domains

(Yamano et al., 2016; Zetsche et al., 2015b). By contrast, Cas12a does not require a tracrRNA (Zetsche
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et al., 2015b) and possesses its own RNase domain capable of cleaving a pre-crRNA array into
individual mature crRNAs for convenient delivery of multiple guide RNAs (Fonfara et al., 2016;
Zetsche et al., 2017). Cas12a-mediated dsDNA cleavage results in 5" staggered ends, (Zetsche et al.,
2015b) and the PAM sequence and location differ from those used by Cas9, with most Cas12a
orthologs requiring a 5-TTTV-3’ PAM at the 5’ end of the target site and cleaving distal to the PAM
(Zetsche et al.,, 2015b). There is also the Cas12b system (formerly called C2c1) that functions similar
to Casl12a in having staggered cleavage overhangs and an AT-rich PAM, but requires an accessory

tracrRNA for functional activity (Shmakov et al., 2015).

Cas13. The recent discovery of single-effector CRISPR systems that target RNA (Shmakov et al., 2015;
Shmakov et al., 2017a) has further expanded our conception of the diversity of these bacterial
enzymes. Members of the Cas13 family contain two domains with homology to higher eukaryote’s
and prokaryote’s nucleotide-binding (HEPN) RNase domains (Anantharaman et al., 2013). Cas13a,
like DNA-targeting CRISPR systems, is guided to target RN A sequences by a complementary crRNA,
and hybridization between the target RNA and its complementary crRNA leads to cleavage of the
target RNA at multiple sites within single-stranded regions (Abudayyeh et al., 2016). Continued
protein discovery has since uncovered many Cas13 subfamilies (Cas13a, Cas13b, Cas13c, and Cas13d)
(Abudayyeh et al., 2016; East-Seletsky et al., 2017; East-Seletsky et al., 2016; Konermann et al., 2018;
Shmakov et al., 2015; Shmakov et al., 2017a; Smargon et al., 2017b; Yan et al., 2018). In bacteria, both
Cas13a and Cas13b have a sequence constraint known as the protospacer flanking site (PFS)
(Abudayyeh et al., 2016; Smargon et al., 2017b). In bacteria, Cas13a from Leptotrichia shahiihas a 3’ H
(not G) requirement (Abudayyeh et al., 2016), and in mammalian cells it appears that the PFS does
not affect targeting (Abudayyeh et al., 2017; Cox et al., 2017). An additional unique feature of these
enzymes observed in vitro is that, upon target RNA binding, the activated Cas13 complex is capable
of cleaving both the targeted transcript and other nearby non-complementary RNAs via a “collateral”
activity (Abudayyeh et al., 2016), which has been harnessed for nucleic acid detection applications

(East-Seletsky et al., 2017; East-Seletsky et al., 2016; Gootenberg et al., 2018; Gootenberg et al., 2017c).

These examples illustrate the value of continued exploration of the diversity of CRISPR systems for

the development of molecular tools. Many CRISPR systems remain unexplored and may harbor novel
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combinations of sequence flexibility, endonuclease capabilities, or other unexpected functions to

facilitate genome-engineering applications.
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Table 8.1: Comparison of the biochemical features of Class 2 CRISPR enzymes.

- Casi2a/Cpfi  |Casi2b/C2ei |Casi3a/C2c2

DR Position 31

PAM/ PFS

3 5 5 3
Position

GC rich AT rich AT rich not G

v x v x

blunt staggered Staggered ssRNA breaks

dsDNA dsDNA dsDNA ssRINA
Collateral

No Yes No Yes

activity

8.2 Nucleic acid testing platform with CRISPR diagnostics

Nucleic acid testing with Cas13 is an exciting new direction that has resulted in a new field of CRISPR
diagnostics. Although we did not set out to develop next generation molecular diagnostics, the work
presented here is a classic example of how research can guide us in unexpected directions. CRISPR
enzymes were previously only used for studying biology or generating therapeutics, but new
discoveries have propelled the field into diagnostics. The Cas13 collateral effect was uniquely poised
for highly sensitive diagnostics because of its signal amplification and high nucleotide specificity due
to the inherent specificity of target recognition by the guide/protein complex. By combining Cas13
detection with isothermal pre-amplification strategies, we generated a diagnostic solution that is
cheap, rapid, and highly portable and that does not require complex skill to run. Nucleic acid tests

that are cheap, quick, and simple-to-use are urgently needed in fields such as infectious disease, cancer
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cell free DNA monitoring, and agriculture. For example, sepsis diagnostic evaluation can take days,
something a sick person cannot afford. Having molecular diagnostics that can guide treatment
decision making in a matter of minutes to an hour can save lives. This is especially true in the
developing world where portable, point-of-care solutions are necessary, especially during epidemics.
While the SHERLOCK technology is quite mature, there is still more work to distill the test into a
small handheld device and have additional readouts, such as mobile electronic or colorimetric solution
versions. Additionally, more clinical evaluation on large patient sample sets are necessary to evaluate
the sensitivity and specificity of the test and robustness towards sample-to-sample variability.
Nevertheless, the SHERLOCK platform is well poised to improve diagnostics in numerous fields,

including human and animal healthcare and agriculture.

8.3 An expanding RNA toolbox with CRISPR-Cas13

Beyond nucleic acid diagnostics, Cas13 has immense potential for generating a diverse set of tools for
studying and perturbing RNA. Although some RNA tools existed before, they were based on protein
recognition of RNA requiring intense protein engineering to reprogram akin to Zinc finger nucleases
or TALENs. We envision Cas13 as a platform for any RNA perturbations, including the ability to
manipulate translation, splicing, localization, transcript levels, base identity, and base modifications.
In this thesis, we demonstrate highly specific RNA knockdown that is as efficient as RNA interference,
but orders of magnitude more specific. We also generate catalytically inactive dead Cas13 versions
for serving as a scaffold for targeted recruitment of enzymes, such as GFP for transcript imaging or
ADAR for base editing. An exciting area of future development is recruitment of enzymes for targeted
base modification, such as methylation or pseudouridylation, as epitranscriptomics is emerging as an

abundant phenomenon in cells, but tools for studying them are lacking.

These new RNA-targeted tools open new opportunities to study many additional aspects of RNA

biology. Here, I will highlight key developments and potential applications with Cas13 (Figure 8.3).

RNA knockdown. In light of the challenges in distinguishing the effects of DNA- and RNA-mediated
mechanisms (Section 2.2), technologies for RNA knockdown with CRISPR enzymes have the
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potential to enable more specific studies of RNA-mediated functions because they avoid manipulating
DNA sequence. To this end, we recently showed that the Cas13 platform can knock down RNAs with
efficiency similar to RNA interference (Figure 8.3) (Abudayyeh et al., 2017; Cox et al., 2017). At the
same time, Cas13 knockdown of a reporter transcript (luciferase) had minimal effects on the rest of
the transcriptome, whereas RNAi knockdown of the same transcript led to significant effects on ~900
other genes (Abudayyeh et al., 2017; Cox et al, 2017; Konermann et al., 2018). Thus, RNA
knockdown screens with Casl3 have the potential to reduce the off-target effects that have
confounded RNAI screens, and, in contrast to approaches that rely on endogenous RNAI proteins,
the Cas13 enzymes can be further optimized and engineered for additional functionality or specificity.
For example, adding a nuclear localization tag to Cas13a led to successful knockdown of nuclear-
localized IncRNAs, while RNAi was ineffective (Abudayyeh et al., 2017). We also found that a second
Cas13 enzyme, Cas13b from Prevotella sp. P5-125, was far more effective at RNA knockdown (>90%
for each site targeted) than our original studies using LwaCas13a (Cox et al., 2017). Further
optimizations of the system — including adapting other Cas13 proteins and guide RNAs for viral
delivery, learning design rules for efficient guides, and exploring or optimizing Cas13 proteins for
high stability and specificity — should soon enable RNA-targeted forward genetic screens to directly

study RNA function.

Post-transcriptional RNA modifications. Post-transcriptional modifications of RNA nucleotides
— including N6-methyladenosine (m6A), pseudouridine, and inosine — appear to be a critical layer
of post-transcriptional regulation (Helm and Motorin, 2017; Hsu et al., 2017; Lewis et al., 2017;
Schwartz, 2016). RNA mapping technologies have revealed that these modifications can affect tens
of thousands of sites in both coding and noncoding RNAs (Li et al., 2016), but the functions of most
of these modifications are poorly understood. We developed a Cas13 approach to perform adenine-
to-inosine (A-to-I) editing, a natural modification that alters the sequence of RNA. In this approach,
named RNA Editing for Programmable A to I Replacement (REPAIR), we fused catalytically dead
Cas13 to the ADAR2 enzyme to enable targetable A-to-1 editing activity (Cox et al., 2017) (Figure
8.3). By extending the guide RNA and including a cytosine mismatch in the guide across from the
targeted adenosine, a more optimal double-stranded RNA substrate with a bubble was created,
maximizing ADAR?2 enzymatic activity. This approach achieved up to 90% A-to-I editing of targeted

sites on reporter transcripts and up to 40% on endogenous transcripts. Off-target editing observed
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with the initial system (>18,000 edited off-target sites) was reduced through a rational mutagenesis
strategy, which produced a more specific version of Cas13 that retained on-target editing activity but
reduced off-target activity (20 edited off-target sites) (Cox et al., 2017). Because of the high specificity,
high efficiency, lack of sequence restriction, and precise modification site, REPAIR provides a useful
tool for studying the effects of sequence variants and inosine modifications, and for developing

therapeutics.

Programmable and precise base modification with REPAIR is also a promising avenue for temporal
modification of genetic variants in cells. The modulation of enzymatic function via sites of
phosphorylation or other post-translational modifications will allow for the precise modulation of
signaling processes in a cell and can also be useful for therapeutics. For instance, in the case of acute
liver failure, f-catenin can be activated via mutagenesis of phosphorylation sites, leading to
regeneration of hepatocytes and prevention of fibrosis. Additionally, many acute states of disease such
as infectious disease, cancer, auto-immune disease, pain, or migraines could be targeted with REPAIR.
Targeted cellular differentiation via temporal genetic modification would also be possible. REPAIR
delivered via AAV also offers the opportunity for long term expression and permanent correction of
genetic disease that could be reversed. A major advantage of REPAIR is it directly deaminates the
riboadenosine, not requiring endogenous repair pathways, and thus would be highly efficient in post-
mitotic cells like neurons. For the full potential of RNA editing to be realized, more work needs to be
done to demonstrate REPAIR in in vivo models of disease and characterize the immunogenic effects
of REPAIR expression. Additionally, continued protein engineering and directed evolution of base
editing enzymes will allow for additional base modifications beyond just adenosine to inosine editing.
Similar approaches with alternative RNA editing or modification enzymes, such as RNA
methyltransferases, cytidine deaminases, and pseudouridine synthases, may enable precise
introduction of RNA modifications and studies to connect these modifications with their cellular and

molecular functions (Figure 8.3).

RNA splicing, localization, and more. RNA-targeted CRISPR tools are still in their infancy, and — just
as an explosion of dCas9 fusion tools have begun to reveal biological insights into transcriptional
regulation — dCas13 fusions will likely have a major impact in illuminating post-transcriptional

regulation. Indeed, studies using previous RNA-targeting technologies have highlighted additional
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possibilities for manipulating RNA regulation with new CRISPR tools. For example, fusion of PUF
proteins to the arginine- and serine-rich domain of SRSF1 or the glycine-rich domain of HNRNPA1
enabled the creation of programmable activators and repressors of splicing, respectively (Cheong and
Hall, 2006). RNA recruitment systems using MS2 and PP7 (or other systems that involve tagging an
endogenous RNA with the recognition sequence for an exogenous RNA-binding protein) have been
used to test the sufficiency of specific RNA-protein interactions for RNA function (Bos et al., 2016;
Chen and Varani, 2013) and to track transcripts via fluorescence (Park et al., 2010). Early studies have
shown the potential for Cas13 tools to modulate the expression of specific RNA isoforms by binding
and blocking splice sites (Konermann et al., 2018) (Figure 8.3). The ability to combine each of these
tools with transcriptome-wide screening will enable systematic perturbation studies of many aspects
of RNA biology, including translation, splicing, RNA localization, and post-transcriptional

modifications (Figure 8.3).
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Figure 8.3: Applications that can be developed with Cas13 RNA tools.

CRISPR studies of RNA regulation will not only reveal the functions of key molecular processes, but
will also help us to directly manipulate them in humans. Pre-clinical development for CRISPR-based
therapeutics is already underway, including approaches for genome editing ex vivo (where editing is
performed outside the body and edited cells are transplanted into the patient) and in vivo (where

CRISPR tools are delivered to edit cells directly in the tissue of interest). Many challenges remain,
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including optimizing the efficiency and specificity of CRISPR editing, developing new methods for
efficient and precise delivery to target tissues and cell types, and minimizing unintended consequences
of these manipulations on immune responses or target cell functions. Nonetheless, overcoming these
challenges promises to enable a flexible class of therapeutics that leverage a programmable suite of

CRISPR tools to manipulate DNA or RNA.

While therapeutic development efforts have largely focused on modification of protein-coding genes,
approaches for targeting DNA and RNA regulatory mechanisms may prove advantageous for certain
indications. For example, therapeutic targeting of DNA enhancers, which can have cell-type specific
activities, may enable more precise modulation of gene function in cell types relevant to disease
(Canver et al., 2015). RNA-targeted therapeutic approaches may enable specific regulation of entities
that are difficult to manipulate at the level of DNA, such as degradation of toxic repeat expansion
RNAs (Batra et al., 2017) or selective activation of specific RNA splice isoforms (Konermann et al.,

2018; Palacino et al., 2015).

8.4 Limitations of CRISPR-Cas13

Despite many of the advances Cas13 enables, there are still limitations that need to be addressed.
Cas13 catalytic activity could be improved, as knockdown in mammalian cells varies widely and is not
always robust. Although discovery of Cas13b yielded a version that could reach up to 95% protein
knockdown, there are still many guides that do not work and often endogenous transcript
knockdown does not exceed 50%. Newer Cas13 orthologs or programmable RNA targeting tools
other than Cas13 could potentially be better. In addition, finding orthologs that bind the target tighter
could improve certain applications as well. Although I was able to develop a transcript imaging tool
with Cas13, many guides did not work, and imaging was limited to highly expressed transcripts. Based
on biochemical data, the K4 for Cas13 is only in the low nM range, which is much weaker than the
MS2 to MS2-binding protein interaction, which is in the lower pM range. In order to make transcript
imaging more robust and capable of imaging lowly expressed transcripts, either engineering Cas13
to have a stronger Kq or finding tighter-binding Cas13 orthologs is necessary. In general, having a
Cas13 capable of strong binding would improve many other applications, including splicing

modulation, which relies on blocking splicing factors, and RNA-editing, which requires robust target
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binding. An additional consideration for RNA editing is that binding must not be too tight as to block
ribosome readthrough and so there is likely an optimal binding strength. A deeper understanding of
Cas13b activation upon target binding and the resultant conformational shift will also enable more
applications. For instance, two domains of split-GFP could be placed in specific positions on the
Cas13 protein and would reassociate upon the conformational change of Cas13 induced by target
recognition. This principle could be applied to any split-effector application, such as target-
dependent killing of cells via split Caspase proteins that are reconstituted on activated Cas13

molecules.

8.5 Looking beyond CRISPR for next generation technologies

As more bacteria and archaea are sequenced around the world (Figure 8.4), additional computational
mining of genomes will yield even newer systems with unimaginable properties that could be useful
biotechnologically. Even recently, additional mining of more bacterial databases, yielded a newer
Cas13d that was smaller and more amenable for packaging in AAV delivery vectors and was shown
to be more superior for RNA knockdown due to its stability in mammalian cells (Konermann et al.,
2018). Given the rate at which microorganisms are being sequenced (Figure 8.4), there is tremendous
opportunity to find systems beyond CRISPR that play roles in important bacterial processes, such as
cell defense, metabolism, and genome regulation. Enzymes in these systems could be useful for human
genome editing, especially as more efficient methods for gene insertion and deletion are needed that

are independent of endogenous repair pathways.
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Figure 8.4: Cumulative sequenced genomes.

Projected number of sequenced prokaryotic genomes over time. Adapted from (Andrew,

2013).

The idea that many gene systems are waiting to be explored in microbial genomes was recently
explored in a systematic study of phage defense systems. Doron et al. developed a computational
approach to uncover genes that cluster together in defense islands nearby known phage defense genes
(Doron et al., 2018). This approach uncovered known defense genes, such as restriction enzymes or
CRISPR systems, as well as hundreds of more gene families, nine of which were experimentally
verified to protect model bacteria from phage infection. These proteins adopted unique mechanisms,
including the use of bacterial flagella and chromosome maintenance complexes, and many of the
genes showed similarity to Toll-interleukin receptor (TIR) domains involved in innate immunity in
animals and plants (Doron et al., 2018). While only a handful of these systems were experimentally
explored, there were tens of thousands of new phage defense systems waiting to be explored. In
addition to expanding our understanding of the rich molecular processes at play in bacteria, there is
also the potential for many new biotechnological tools using these proteins once their mechanisms
are deciphered. With each new enzyme discovered, whether within CRISPR or beyond, novel biology
will be understood, new biotechnologies developed, and the closer we will come to better

understanding disease and eventually curing all genetic disease.
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10.1.1 Figure 2.51
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Figure 2.S1: Genomic architectures of all identified candidate novel CRISPR-Cas loci.
(A) The C2c1 loci (subtype V-B).

(B) The C2c3 loci (subtype V-C)

(C) The C2c2 loci (type VI).
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Genes are colored according to the schematic in Figure 1. The number of repeats in CRISPR arrays
is indicated. For each genomic contig, Genbank numeric ID and the coordinates of the locus are
indicated. Additional designations: ST-PknB, serine/threonine protein kinase; RT, reverse

transcriptase.
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10.1.2 Figure 2.52
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GATAATAATGCTTTCCGAGATGCTGCCAATTTTGTATTGCGATTAAATAAAAAT AGACAGCAGGATGCAAAAGCTTTTATTAACATTAGAGAAGT TGAAGAAGG TGAGATGCCTAGAGACTATATGGGTTATGTCCAAGG
TCARATAGCGATACATGAGGAT TCAACTGAGGATACACCGARTCATTTTGAAAAATTTATTAGCCAGGTTTT TAT TAAGGGAT TT GATAG TCATATGAGATC TGCTGATT TAARATT TATTARAAAT CCAAGAAATCAGG
TCAAATAGCGATACATGAGGATTCAATTGAGGATACACCGAATCATTTTGAGAAAT TTATTAGTCAGGTTTTTATTARGGGCTTTCATAGGCATATCAGATCTCCTAATTTAAAATTTATTAAARAT CCAAGAAATCAGG

GGCTAGARCAARGTGAAATTGAGCARATGAGCTTTGATATTAAAG TAGAGCCATCATTTTTGAARAATAAAGATGACTATATTGCATTI TGCACATTCTUCAAARTCC TGOATGCTAGGCATTTAAGCGAGC TAAGAARC
GOOTAGAACAAAGTGAGATTGAGGANATGAGCTTTGATAT TAAAGTGGAGCCGTCATT TTTGAAAAATAAAGATGACTATATTGCAT TTTGGATATTC TGCAAAATGC TTGATGCTAGGCAT TTAAGCGAGCTAAGARAC
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TGTTGGAGAGGAATTGTATCAGCGGGAACCGTACCGACAAAGTGATGGCAAAACACCGATTCTTTTTCGTGGTGTAGAGCAAGCGAGGAAGTATGGTACTGAAACAGTGATTCAACGGCTTTTTGATGCTAGTCCTGAGT
TGTTGTAGAGGAATTGTATCAGCGGGAACCGTACCGACARAG TGATGGCAAAACACCGATTCTTTTTCOTGGTCTAGAGCAAGCGAGGARGTATGGTACTGAARCAGTGAT TCAACGGCT TTTTGATGCTAATCCTGAGT

Figure 2.52: Alignment of Listeria loci encoding putative Type VI CRISPR-Cas system.

The aligned syntenic region corresponds to Listeria weihenstephanensis FSL R9-0317 contig
AODJ01000004, coordinates 42281-46274, and Listeria newyorkensis strain FSL M6-0635 contig
JNFB01000012.1, coordinates 169489-173541. Color coding: C2c2 gene is highlighted by blue,

CRISPR repeats - red, degenerated repeat — magenta, spacers - bold.
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10.1.3 Figure 2.83
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Figure 2.83:The closest homologs of the new type V effector proteins among the transposon-

encoded proteins: non-overlapping sets of homologs.
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10.1.4 Figure 2.54

544884152 Alicyclobacillus_acidoterrestris
652589596 Alicyclobacillus_contaminans
652932497 Desulfovibrio_inopinatus
667765471_Desulfonatronum_thiodismutans
497199019 _Opitutaceae_bacterium_TAVS
654153037 Tubenbacluus calidus
754{55389 Bacillus themoamylovorans
!95056150 Brevibacillus _sp-_CF112
651512544 Bac:tllus _Sp—_] Nsp2-1

Sec.nndary structure for 651512544 _(Jpred)
654874074 _Desulfatithabdium butyrativorans
652569729 Alicyclobacillus_herbarius
652589403 Alicyclobacillus_contaminans
411770298_citrobacter_freundii_ATCC_8090
696372964 Cll:robac:ez “freundii

49"410145 Brevibacillus agn

492410748 B:ev.lbaclllu: _agri

495062547 Bnev.lbacﬂ.lus _sp-_CF112
506407588 Hethyloba:tenun nodulans
219945206_Methylobacterium_nodulans_ORS_2060
760065057 Methylobacterium_nodulans
CONSENSUS_0.8

RuvC-like motifs

544884152 _Alicyclobacillus_acidoterrestris
652589596 _Alicyclobacillus ¢ contaminans
65“93.:497 Desulfovibrio 1nop1nat.us
667765471 Desulfonat:onm thiodismutans
497199019 Op:ltutal:eae bacterium TAVS
654153037 _Tuberibacillus_calidus
754405369 Bacillus_thermoamylovorans
495056180 Brevibacillus _sp-_CF112
651512544 Bacillus _Sp- NSPL 1
Secondary_structure_for_651512544_(Jpred)
654874074 Desulfuclrhabdxun bul:yrat.lvorans
€52569729 ] _Alicyclobacillus ] herbarius
652589403 _Alicyclobacillus contaminans
411770298 Citrobacter freundii ATCC B0S0
696372964 Citrobacter freundii
492410745_Brevibacillus_agri

492410748 Brevibacillus_agri

495062547 _Brevibacillus _Sp-_ CF112
506407588 Mechylobacterlm nodulans
2199452063 Hel:hylobacterxm nodulans_ORS_2060
760065057 ) )iethylobacterz\m nodulans
CONSENSUS_0.8

RuvC-like motifs

544884152_Alicyclobacillus_acidoterrestris
652589596 nhcyclohaclllus contaminans
652932497 Desulfovibrio_inopinatus
667765471 Desulfonatrunun thiodismutans
497199019 ¢ _Opitutaceae | bactenm TAVS
654153037_Tuberibacillus_t calidus
754485389 Bacillus_thermoamylovorans
495056180 Brevibacillus _sp- CF112
651512544 Bacillus_sp- NSP2-1

Se:ondary structure for 651512544 (Jpred)
654874074 Desulfatirhabdium butynitlwn‘ms
652569729 Alicyclobacillus herbarius
652589403 Alicyclobacillus_contaminans
411770298_Citrobacter_: freundii _RATCC_8090
696372964 Cztrubacter freundii”

492410745 Brevibacillus agn

492410748 Brevibacillus _agri

4950625(7 Brevibacillus_sp-_CF112
506407588 Hel:!\ylobactenm nodulans
219945206 Het.hylnhncr.erllm nodulans_ORS_ 2060
760065057 _Methylobacterium nodulans
CONSENSUS 0.8

RuvC- J.xlrewnotxfs

544884152 Alicyclobacillus_acidoterrestris
652589596_Alicyclobacillus _contaminans
652932497 Desulfovibrio _inopinatus
667765471_Desulfonatronum_thiodismutans
497199019 ¢ )_Opitutaceae | bacter:um TAVS
654153037_Tuberibacillus cahdus
‘.'54!55389 Bacillus Lhemnamylwerans
495056180 1 Brev.\bacxllus _sp-_CF112
651512544 Bacillus _sp—_] NSP2-1

Secondary structure for 651512544 (Jpred)
654874074 Desulfatirhabdium bm:yrnnvorans
652569729_Alicyclobacillus_herbarius
652589403 Alicyclobacillus contaminans
411770298 Citrobacter freundii ATCC_B090
696372964 Citrobacter_freundii

49"4]0745 Brevibacillus _agri

492410748 Breubac:.llus _agri

495062547 Brev1bac111us _sp-_CF112
506407588 Meth]rlobactenum nodulans
219945206 Hethylobacterl.um nodulans_ORS_2060
760065057 Hechylohac:erum nodulans
CONSENSUS_0.8

Ruvc—like:mf.ifs
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MAIRSIKLKLKTHTGPEAQNLRKG:
MAIRSIKLKLKTHTGPEAQNLRK

AEECKAELLERIRAR——--- S . DDELLQLARQL -
Eak
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"""" VVGEDEEILLALRYL
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QOKNGFHGEV-SKDEVLETLRAL-—
QKCNSFTHEV-DKDVVFNILREL--

HHHHHH---

-rmxnmrummsm.«;npssnvns«;mpmnmnwwsu.z}:rwsmmstnmncsunsmmnmwwnsm-
GEQCRRELLQRLRER ORLNGRTDEPGTDEELLKVARQI -
AEHCKRELLRRLRQV- ol TSHTDEELLQVMRAL-
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LPLDEALEALRQL-~-

~QRRNGG--SGGSDDEIVRLCRSL- -~

YELLVPQ- - ~ATGAK~ -~~~ ~GDAQQTARKFLSPLADKDA -~ ~ == == === = = == = = e e e e
EEEMRET ~~ SV D = = = = = = = = = = = = o o e
YERLV] ~AGDAQ, Ms, YDKVLDPPF LKEEKA QIWIQSD-

YEQIVPS---CLLDDLGKPLKGDAQKIGTNYAGPLFDSD--TCRRDEGKDVACCG PFHEVAGKY LGALPEWATP 1 SKQEF DGKDAS HLRFKATGGDDAFE
GATQQEGRS YWPKFCDPDSTANFAGDPAMLRREQHRLLLPQVLHDPAITHDSPALGSFDTYSIAT -————————————~

-GEANQISNKYLYPLTDPA- -5~ ~--———-—-—mmmom e

--GEANQLSNKFLYPLVDPN--5

YEELVPS---AVGKS-
YEELVPS---SVEKK--

F MLERFFGSRDAYLTPMKDPEDKSSETEQEDKAKDLVQKAGOWLS SRYGTSEGADFCRMSDIYGKTAAWADNASQGGSSTVD
YEVLVPQ- - -SIGKS------GDAQQLASNFLSPLVDEN:

~GDAQTISRKFLSPLVDPNS-

~=DDANAQLANAFLGPLTDPNSAGFLEAFNKVDRPAPSWLDQVPASDPTIDPAVL DTD- ——
-DDANARQLANAFLGPLTDPNSAGFLEAFNKVDRPAPSWLDQVPASDPIDPAVL

--------------- VGGLGIAKAGNKPR
- EGQSLLNKPGSP
RVSTEKANAWYEDPANQDALKNKAYNKDD ——ELG
RTPQ)! EQAITLWRVRL JFDRLASSLKKIPDDDSRLNLQGYVGSSAKGEVQARLFALLLFRHLERSSFT
QSGKG R-—====~=-WKKLKEA DAY JEDPKL- - ~KILAALQ- -~ == === === = e SFG
QSGKGT WYNLKIAGE A KILGKLA EYG
- e e
EEE HHHHHH: HHHHH----HH---HHHHHAH

_________ YTGHTPNPVHELLRQNTSLNKSHLDI

~~WRSLARKQDP IWPREFARKLGELRKEAASGTSAIIKALKR-
WRSLARKQDPTWPREFARKLGELRKEAASGTSAITKALKR-
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544884152_Alicyclobacillus_acidoterrestris
652589596_Alicyclobacillus_contaminans
652932497 Desulfovibrio inopinatus
667765471_Desulfonatronum_thiodismutans
497199019 _Opitutaceas_bacterium_TAVS
654153037_Tuberibacillus_calidus
754485385 Bacillus thermoamylovorans
495056180_Brevibacillus_sp-_CF112
651512544 _Bacillus_sp- NSP2-1
Secondary_structure_for_651512544_(Jpred)
654874074_Deaulfatirhabdium butyrativorans
652569729_Alicyclobacillus_herbarius
652589403_Alicyclobacillus_contaminans
411770298_citrobacter_freundii ATCC_8090
696372964 _Citrobacter_ freundii
492410745_Brevibacillus_agri
492410748_Brevibacillus_agri

495062547 _Brevibacillus_sp-_CF112
506407588_Methylobacterium_nodulans
219945206_Methylobacterium_nodulana_ORS_2060
760065057_Methylobacterium_nodulans
CONSENSUS_0.8

RuvC-like motifs

544884152 _Alicyclobacillus_acidoterrestris
©52589596_Alicyclobacillus_contaminans

652932497 _Desulfovibrio_inopinatus
€€7765471_Desulfonatronum_thiodismutans
497159015 Opitutaceae bacterium TAVS
€54153037_Tuberibacillus_calidus
754485389_Bacillus_thermoamylovorans
495056180_Brevibacillus sp- CF112
€51512544_Bacillua_sp-_NSP2-1

!m:nndary structure_for_ €51512544_(Jpred)
654874074 Dclulfltlzhabdau-_butyt-tlv.:t‘nn
652569729_Alicyclobacillus_berbariua
652589403_Alicyclcbacillus_contaminans
411770298 Citrobacter freundii_ ATCC_80%0
696372964_citrobacter_freundii
492410745_Brevibacillus_agri

492410748 _Brevibacillus_agri
495062547_Brevibacillus_sp-_CF112
50£407588_Methylobacterium_nodulana
219945206 Methylobacterium nodulans ORS_2060
760065057_Methylobacterium nodulans
CONSENSUS_0.8

RuvC-like motifa

544884152_Alicyclobacillus_acidoterrestris
652589596_Alicyclobacillus_contaminans
652932497_Desulfovibrio_inopinatus
667765471_Desulfonatronum_thiodismutans
497195015 Opitutaceae_bacterium TAVS
654153037 _Tuberibacillua_calidus

754485389 _Bacillus_thermoamylovorans
495056180 _Brevibacillus_sp- CFL12
651512544 Bac&l}un _sp=_] NsP2-1
Secondary_structure_for_651512544_(Jpred)
£54874074_Desulfatirhabdium butyrativorans
652569729 Alicyclobacillus_herbarius
€52589403_Alicyclobacillus_contaminans
411770298_Citrobacter_freundii_ ATCC_8090
696372964_Citrobacter_freundii

492410745 Brevibacillus agri
492410748_Brevibacillus_agri
495062547_Brevibacillus_sp-_CF112
506407588 Nethylnbnm:ernm nodulans
219945206_Methylobacterium nodulans ORS 2060
7600E5057_Methylobacterium_nodulans
CONSENSUS 0.8

RuvC-like motifs

544884152_Rlicyclobacillus_acidoterrestris
€52589596_Alicyclobacillus_contaminans
£52932497 Desulfovibrio_inopinatus
6€67765471_Desulfonatronum_thiodismutans
4397199019 _Opitutaceae_bacterium_TAVS
654153037_Tuberibacillus_calidus
754485389_Bacillus_thermoamylovorans
495056180_Brevibacillua_sp-_CF112
651512544_Bacillus_sp-_ NSP2-1

Secondary structure_for_651512544_(Jpred)
654874074 _Desul f-cuhabdxu_bn;yuuvoxou
652569729 _Aliecyclobacillus_herbarius
652589403 _Alicyclobacillus_contaminans
411770296_Citrobacter_freundii_ ATCC_8090
696372964_Citrobacter_freundii
492410745_Brevibacillus_agri
492410746_Brevibacillus_agri
495062547_Brevibacillus_sp-_CF112
506407588 Ilechylobac:aru\n nodulans
219945206_Methylobacterium nodulans_ORS_2060
T60065057_Methylobacterium nodulans
CONSENSUS_0.8

RuvC-like motifs
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- HEQYKEALKRVQGQRLRGRFGDAHFF - QY LMEEKNRLIW- -~ -~~~ KG-~~ -~ -] NP-QRIBYFV PMARKHPLNVRFDA
~HEQYKEALKRVQORLRGRFGDAHFF-QYL LIN--------KG NP-ORIHYF PNARKHPLWVRFDA
EDRIAAR F-EALAEDDALCVN-—— -~ HKDGEATNE P-DFQPLIDYSLATER DPGK.
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$44884152_Alicyclobacillus_acidoterrestris
€52589596_Alicyclobacillus_contaminans
£52932497_Desulfovibric_inopinatus
€67765471_Desulfonatronum_thiodismutans
497199019 Opitutaceae_bacterium_TAVS
€54153037_Tuberibacillus_calidus

754485389 _Bacillus_thermoamylovorans
495056180_Brevibacillus_sp-_CF112
651512544_Bacillus_sp- NSP2-1

Secondary structure_for_ 651512544_(Jpred)
€54674074_Desulfatirhabdium butyrativorans
€52569729_Alicyclobacillus_herbarius

652589403 Alicyclobacillus_centaminans
411770298 _Citrobacter_freundii_ATCC_8090
696372964_Citrobacter_freundii
492410745_Brevibacillus_agri
492410748_Brevibacillus_agri

495062547 _Brevibacillus_sp-_CF112
506407588_Methylobacterium_ncdulans
219945206_Methylobacterium nodulans_ORS_2060
760065057 _Methylobacterium_nodulans
CONSENSUS_0.8

RuvC-like motifs

544884152 Alicyclobacillus_acidoterrestris
652589596_Alicyclobacillus_contaminans
652932497 _Desulfovibrio_inopinatus
667765471_Desulfonatronum_thicdismutans
497199019_Opitutaceas_bacterium_TAVS
654153037_Tuberibacillus_calidus
754485389_Bacillus_thermoamylovorans
495056180_Brevibacillus_sp-_CF112
651512544_Bacillus_sp-_N3P2-1

Secondary structure_for_651512544_(Jpred)

‘RYPHRVE--3GNVGRIYFNMTVNIEPT -~ —=~====] ESFVSKSLRIHR--DDFPRFVNFEPK

B-- E--DGEIGSVYLNVVIDFEPL-QE PYGOVIQL PEVTTYKSE

LOLERGDL KEERNFE--DGEIGSVYLNVVIDFEPL-QEVRENGRVOAPYGOVLOLIRRPNEFPEVTITYRSE
~---EEEEEE--E----EEEE----HH- L
———-NITGLF EALAVVRDN] GMIEHIRWLVTFSVELQPQ-

~TGRSARFTLTL-
KEEKTSR- -TGESAAFTLTL

DELSDYL SEGLL RTSASISVFRVARKDEL PFFEPIRGND
RDLVSL RVMSVDLG AISVFEVEPFAEVR: KDF --LHEYPITGCE
Lal VDLGMRTFASCEVEELIEGRPEPG == === == === = == = e RAFPVADER

L ADQVRPGLRVLIVDLGVRSFAACSVFE! Do

WPADGAV. HI TVLGV LALLNVTAQKPAK:

ELTEHI GVESLPTGL VDLGQRQAAAISIFEVVSEKPD

ELTEMI IESLETIGLRVMSIE FEVVDQRPDI-

QLVEWIKASPQHSA- I 1Fs ARD FSYWIEGTP

QLVEWIKASPQHSA: 1D ATSIFS' - ARD===== FSYWIEGTP

------ HHHH--EEEEEE EEEE:
WPHA RLILPRLP-GLRVLIV

55!B7!OTl_Deauliltith.bdiun_buty:lt'
652569729 Alicyclobacillus_herbarius
652589403_Alicyclobacillus_contaminans
411770298_Citrobacter_freundii ATCC_8090
€96372964_Citrobacter_freundii
492410745_Brevibacillus_agri
492410748_Brevibacillus_agri

495062547 _Brevibacillus_sp-_CF112
506407588_Methylobacterium nodulans
219945206_Methylobacterium_nodulans_ORS_2060
760065057_Methylobacterium_nodulans
CONSENSUS_0.8

RuvC-1like_motifs

544684152_Alicyclobacillus_acidoterrestris
652589596_Alicyclobacillus_contaminans
€52932497_Desulfovibrio_inopinatus
667765471_Desulfonatronum_thiodismutans
497199019 _Opitutaceae_bacterium_TAVS
654153037_Tuberibacillus_calidus
754485389 _Bacillus_thermoamylovorans
435056180 _] vibacillus_sp-_CF112
651512544_Bacillus_sp-_NSP2-1
Secondary_structure_for_651512544_(Jpred)
654874074_Desulfatirhabdium butyrativorans
652569729_Alicyclobacillus_herbarius
652589403_Alicyclobacillus_contaminans
411770298_Citrobacter_freundii ATCC_8090
696372964_Citrobacter freundii
492410745_Brevibacillus_agri

492410748 Brevibacillus agri
495062547_Brevibacillus_sp- CF112
506407588_Methylobacterium_nodulans
219945206_Msthylobacterium_nodulans_ORS_2060
760065057 _Methylobacterium_nodulans
CONSENSUS_0.8

RuvC-like_motifs

5448084152_Alicyclobacillus_acidoterrestris
€52589596_Alicyclobacillus_contaminans
652932497_Desulfovibrio_inopinatus
EET?SS!TI_D.‘\:Ifnnntxon__hhiodi.—utlna
497199019 _Opitutaceas_bacterium_TAVS
€54153037_Tuberibacillus_calidus
754485389_Bacillus_thermoamylovorans
495056180_Brevibacillus_sp-_CF112
651512544 _Bacillus_sp- NSP2-1
Secondary_structure_for 651512544_(Jpred)
€54874074_Desulfatirhabdium butyrativorans
652569729 _Alicyclobacillus_herbarius
€52509403_Alicyclobacillus_contaminans
411770298 _Citrobacter_freundii_aTCC_8090
€96372964_Citrobacter_freundii
492410745_Brevibacillus_agri
492410748_Brevibacillus_agri
495062547_Brevibacillus_sp-_CF112
506407588_Methylobacterium nodulans
219945206_Methylobacterium_nodulans_ORS_2060
760065057_Methylobacterium_nodulans
CONSENSUS_0.8

RuvC-like motifs
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544884152 Alicyclobacillus_acidoterrestria
65258959€_Alicyclobacillus_contaminans
€52932457_Desulfovibrio_inopinatus
€67765471_Desulfonatronum_thiodismutans
497199019_Opitutaceae_bacterium TAVS
€54153037_Tuberibacillus_calidus

7544853859 _Bacillus_thermoamylovorans
495056180_Brevibacillus_sp-_CF112
€51512544_Bacillua_sp-_NSP2-1
Secondary_structure_for_ 651512544 _(Jpred)
654874074 _Desulfatirhabdium_butyrativorans
652569729_Alicyclobacillus_herbarius
652509403_Alicyclobacillus_contaminans
411770298_citrobacter_freundii_ATCC_8090
€96372964_Citrobacter_freundii
492410745_Brevibacillus_agri
492410748_Brevibacillus_agri

495062547_| B:ev;b.:xllua _sp-_CF112
506407588_Methylobacterium_nodulans
219945206_Methylobacterium_nodulans_ORS_2060
760065057_Methylobacterium_nodulans
CONSENSUS 0.8

RuvC-like motifs

544B84152_Alicyclobacillus_acidoterrestris
652589596_Alicyclobacillus_contaminana
€52932497_Desulfovibrio_inopinatus
€€7765471_Desulfonatronum thicdismutans
497199019_Opitutaceae_bacterium_TAVS
€54153037_Tuberibacillus_calidus
754485389_Bacillus_thermoamylovorans
495056180_Brevibacillus_sp-_CF112
€51512544_Bacillus_sp-_ NSP2-1
Secondary_structure_for_651512544_(Jpred)
€54874074 :D--ulf-txxh.hd.x.un hutyz-t:.vux-ns
652569729_Alicyclobacillus_herbarius
€52589403_Alicyclobacillus_contaminans
411770298_Citrobacter_freundii_ ATCC_B8090
696372964_Citrobacter_freundii
452410745_Brevibacillus_agri
492410748_Brevibacillus_agri

219945206 Methylobacterium_nodulans_OR3_2060
760065057_Methylobacterium_nodulana
CONSENSUS_0.8

Ruvc-like motifa

544884152 Alicyclobacillus_acidoterrestris
652589596_Alicyclobacillus_contaminans
652932497_Desulfovibrio_inopinatus
€67765471_Desul £ thiodi t,
497199019 _Opitutaceae_bacterium_TAVS
€54153037_Tuberibacillus_calidus
754485389_Bacillua_thermoamylovorana
495056180_Brevibacillus_sp-_CF112
651512544 _Bacillus_sp- NSP2-1
Secondary_structure_for_651512544_(Jpred)
654874074_Desulfatirhabdium_butyrativorans
€52569729_Alicyclobacillus_herbarius
€52589403_Alicyclobacillus_contaminans
411770298_Citrobacter_freundii_ ATCC_8090
6963729€4_Citrobacter freundii
492410745_Brevibacillus_agri
492410748_Brevibacillus_agri
495062547_Brevibacillus_sp-_CF112
506407588_Methylobacterium_nodulans
215945206_Methylobacterium_nodulans_ORS_2060
7€0065057_Methylobacterium nodulans
CONSENSUS_0.8

RuvC-like_motifs

544884152_Alicyclobacillus_acidoterrestris
€5258959€_Alicyclobacillus_contaminans
652932497 Desulfovibrio_inopinatus
667765471_Desulfonatronum_thicdismutans
497199019_Opitutaceae_bacterium TAVS
£€54153037_Tuberibacillus_calidus
754485389_Bacillus_thermoamylovorans
495056180_Brevibacillus_sp-_CF112
€51512544_Bacillua_sp-_NSP2-1
Secondary_structure_for_651512544_(Jpred)
654874074 _] Desulfatirhabdium butytlbtﬁotnm
652569‘?29_A.‘u.cy|:19b-c111uu_he:buzlu=
€52589403_Alicyclobacillus_contaminans
411770298_citrobacter freundii ATcC 80950
696372964_Citrobacter_freundii

492410745 _Brevibacillus_agri
492410748_Brevibacillua_agri

495062547 lxevlblcxlku p-_CF112
506407588 mthylnb-cnrxu. nodulans
219945206_Methylobacterium nodulans_ORS_2060
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Figure 2.84: Multiple alignment of C2c1 protein family

The alignment was built using MUSCLE program and modified manually on the basis of local
PSI-BLAST pairwise alignments. Each sequence is labelled with GenBank Identifier (GI)

number and systematic name of an organism. Secondary structure was predicted by Jpred and
shown underneath the sequence which was used as a query (designations: H- alpha helix

, E-beta strand). CONSENSUS was calculated for each alignment column by scaling the sum-of pairs
score within the column between those of a homogeneous column (the same residue in

all aligned sequences) and a random column with homogeneity cutoff 0.8. Active site motifs of

RuvC-like domain are shown below alignment.
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10.1.5 Figure 2.S5

100000002 CEPX01008730.1
100020996 AUX0013399408.1
100022927 CEQE01148443.1
100000004 CEVA01036528.1
100021577 CEPS01188136.1
Jpred Secondary structure
CONSENSUS_0.8
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Jpred Secondary structure
CONSENSUS_0.8
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RuvC-like motifs
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Figure 2.85: Multiple alignment of C2c3 protein family

The alignment was built using MUSCLE program. Each sequence is labelled with local assigned

number and the Genbank ID for metagenomics contig coding for respective C2c3 protein. Secondary
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structure was predicted by Jpred and shown underneath the alignment (designations: H- alpha helix,
E - beta strand). CONSENSUS was calculated for each alignment column by scaling the sum-of-pairs
score within the column between those of a homogeneous column (the same residue in all aligned
sequences) and a random column with homogeneity cutoff 0.8. Active site motifs of RuvC-like

domain are shown below alignment for the C-terminal domain.
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10.1.6 Figure 2.56

564875111 Rhodobacter capsulatus R121 T8EFGD- 330 PRALIGOM.
769144435 Lachnospiraceas bacterium MA2020
551041827 Lachaospiracese bacterium NK4ALTS
£71463455 Clostridium amino;

Secondary structure for 671463455 (Jpred)
€52029190 Lachnospiraceas bactsrium NR4A144
736546968 Carncbacterium gallinarum
736550707 Caznabactesiua gallinasum
50320904% Paludibacter propicmicigenes  --=-—-
502750493 Listeria seeligeri IRHLGVLY
738100542 Listeria weihenstephanensis
738133341 Listeria newycrkensia
544240864 Leptotrichia wadei FO279
738101035 Leptotrichia wadei

545623740 Leptotrichis wadei
545623306 Leptotrichia wadei
506250229 Leptotrichia bucealis

EREE

TR

8econdary structure for 506250229 (Jpred) EEEEE
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Figure 2.S6: Multiple alignment of C2c2 protein family.

The alignment was built using MUSCLE program and modified manually on t he basis of local
PSIBLAST pairwise alignments. Each sequence is labelled with GenBank Identifier (GI) number and
systematic name of an organism. Secondary structure was predicted by Jpred and shown underneath
the sequence which was used as a query (designations: H- alpha helix, E - be ta strand). CONSENSUS

was calculated for each alignment column by scaling the sum-of-pairs score within the column
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between those of a homogeneous column (the same residue in all aligned sequences) and a random

column with homogeneity cutoff 0.8. A ctive site motifs of HEPN domain are shown below alignment.
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10.1.7 Figure 2.7

C2c1

C2c2

bacterium N 4A179

Listeria seeligeri serovar 1/2b str

Clostridium aminophilum DSM 10710

O moremon

Leptotrichia shahil DSM 19757

W
(>&/’

Figure 2.87: Additional functional validation off type V-B (C2clloci) and type VI(C2c2 loci)
CRISPR-Cas systems.

A. Predicted structures of tracrRNAs base-paired with the repeats. TracrRNA for Alicyclobacillus
acidoterrestric was identified using RNAseq. For the remaining loci, putative tracrRNAs were
identified based on presence of an anti-direct repeat (DR) sequence. Anti-DRs were identified using
Geneious (www.geneious.com) by searching for sequences within each respective CRISPR locus that

are highly similar to the DR. The 5" and 3’ ends of each putative tracrRNA was determined by
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computational prediction of bacterial transcription start and termination sites using BPROM
(www.softberry.com) and ARNOLD (rna.ig-mors.u-psud.fr/toolbox/arnold/) respectively. Co-
folding predictions were generated using Geneious. 5’ ends are colored blue and 3’ ends are colored

orange.

B. Heterologous expression of the Alicyclobacillus acideoterrestris C2c1 locus in pACYC-84
transformed into E. coli shows identical results to the expression observed in the endogenous strain
(Fig. 4A). Processed crRNAs have a 5’ 14-nt DR and 20-nt spacer and a putative 79-nt tracrRNA is

expressed robustly.

C. The Bacillus thermoamylovorans locus was heterologously expressed in E. coli. The putative
tractRNA is robustly expressed and processed to 91 nt. Processed crRNAs are also present with a 5’

14 nt DR and 19 nt spacer.

D.In silico co-folding of the crRNA direct repeat and putative tracrRNA shows stable secondary
structure and complementarity between the two RNAs. 5" bases are colored blue and 3’ bases are

colored orange.

E. Depletion from the 5’ left PAM library reveals a 5 ATTN PAM. Depletion is measured as the
negative log2 fold ratio and PAMs above a threshold of 3.5 are used to calculate the entropy score at

each position.

F. In silico folding of the L. shahii crRNA DR predicts stable secondary structure and RNA-
sequencing of the L. shahii DSM 19757 locus expressed in E. coli. Processing of the CRISPR array in
the 3’ to 5’ direction (direction of the locus) is observed. crRNAs are processed to have a 5 DR that is

28nt in length and spacers with lengths 14-28 nt.

G. RNA-sequencing of the endogenous L. shahii DSM 19757 C2c2 locus shows results to those in E.
coli (F).
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10.2 Chapter 3 Supplementary Figures

10.2.1 Figure 3.1

Leptotrichia shahil DSM 19757 locus expressed in E. coli

reads < 55nt
111,115,

AUAACCCCACC-5'

u 1111
CGAAGGGGACUAAAAC -3’ 0
113,229
LshC2¢2 crRNA
direct repeat (DR)

all reads

Figure 3.51: RN A-sequencing of the Leptotrichia shahii locus heterologously expressed in E. coli

and spacer analysis.
Heterologous expression of the LshC2c2 locus reveals processing of the array. Insert: In silico co-

folding analysis of a mature direct repeat.
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10.2.2 Figure 3.52
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Figure 3.52: MS2 phage screen replicates show agreement and do not have a 5’ PFS
(A) Rank correlation (Kendall) of normalized crRNA count distributions between replicate

conditions in the screen. (B) Information coefficient representing the mutual information between

247



the normalized crRNA count distributions of replicate conditions in the screen. This metric
highlights how similar the 10! and 107 dilution conditions are and how little information is shared
between 1071/10 and 10°/no phage groups. A higher information coefficient represents strong
correlation and is computed as previously described (Konermann et al., 2015; Liberzon et al., 2015).
(C) Box plot showing the distribution of normalized crRNA frequencies for the phage-treated
conditions (107!, 103, and 10° dilutions) and control screen (no phage) biological replicates (n = 3).
The box extends from the first to third quartile with whiskers denoting 1.5 times the interquartile
range. The mean is indicated by the red horizontal bar. The 10" and 10 phage dilution distributions
are significantly different than each of the control replicates (****, p < 0.0001). (C) Box plot showing
the distribution of normalized crRNA frequencies (normalized to no phage condition) for targeting
and non-targeting guides from the 107 diluted phage conditions (n=3). (D) (E) Sequence logo of 5’
sequences from enriched spacers in each of the phage dilutions. (F) Sequence logos of 3’ sequences
from enriched spacers in the 107! and 107 phage dilutions show a PFS. (G) The number of targeting
and non-targeting control spacers that are consistently enriched (the exact number is above each bar).
A spacer is considered enriched only if it has a log, normalized crRNA fold change > 1.25 in all three
replicates. Within the consistently enriched crRNAs, there are 84 sequences that are shared between

the 10! and 107 conditions.
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10.2.3 Figure 3.83
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Figure 3.83: MS2 phage screen spacer representation across each PFS.

(A) Box plot showing the distribution of spacer frequencies with spacers grouped by their 3’ PFS for
107 phage treated conditions. Box extends from the first to third quartile with the whiskers denoting

1.5 times the interquartile range. ****, p < 0.0001. (B) Multiple comparison test (ANOV A with Tukey
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correction) between all possible PFS pairs for the 107 phage treated spacer distributions. Plotted are
the 95% confidence intervals for difference in means between the compared PFS pairs. (C) Box plot
showing the distribution of spacer frequencies with spacers grouped by their 3’ PFS for non-phage
treated conditions. Box extends from the first to third quartile with the whiskers denoting 1.5 times
the interquartile range. (D) Multiple comparison test (ANOV A with Tukey correction) between all
possible PES pairs for the non-phage treated spacer distributions. Plotted are the 95% confidence
intervals for difference in means between the compared PFS pairs. (E) Cumulative frequency plots
for the log, normalized spacer counts. Spacers are separated by respective PFS to show the
enrichment differences between the 107 phage and control PFS distributions. (F) The enriched
spacers from the 107 dilution condition are plotted according to their position along the MS2
genome. The corresponding gene positions are mapped below. (G) Frequency distributions of the
non-redundant nearest-neighbor pairwise-distances between all 150 enriched guides in the 107
phage dilution condition (blue) and in a bootstrapped simulation of 150 randomly chosen guides
(n=10,000) (red). A significant difference between both distributions is observed using a two-sample
Kolmogorov-Smirnov statistic (****, p < 0.0001). Inset: the cumulative frequency distributions for
the non-redundant nearest-neighbor pairwise-distance distributions for the 103 phage dilution

condition (blue) and bootstrapped simulation (red).
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10.2.4 Figure 3.54
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Figure 3.54: Top hits from MS2 phage screen show interference in plaque assay

(A) Images from validation of MS2 screen by plaque assay showing reduced plaque formation in top
hits. Phage dilutions were spotted on bacteria plates at decreasing numbers of plaque forming units
(PFU). Spacer targets are shown above images; biological replicates are labeled BR1, BR2, or BR3.

Non-targeting control is the native LshC2c2 locus. (B) Quantitation of MS2 plaque assay
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demonstrating interference by top hits. Interference was quantified by highest dilution without

plaques. Bars plotted are the mean * s.e.m.

252



10.2.5 Figure 3.S5
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Figure 3.85: MS2 plaque assay validates the 3' H PFS.

Four spacers for each possible 3’ PES (A, G, C, and U) are cloned into the pLshC2c2 vector and tested
for MS2 phage restriction in a plaque forming assay. The images show significantly reduced plaque
formation for A, C, and U PFSs, and less restriction for the G PFS. Phage dilutions were spotted on
bacteria plates at decreasing numbers of plaque forming units (PFU). Spacer targets are shown above
images; three biological replicates are vertically stacked under each protospacer sequence. Non-

targeting controls are the native LshC2c2 locus and the pACYC184 backbone.
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10.2.6 Figure 3.56
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Figure 3.56. A PFS screen in the B-lactamase mRNA reveals a 3’ H PFS

(A) Comparison of the normalized crRNA count distributions for the pACYC control and LshC2c2
replicates (n=2). Box plots are shown with boxes extending from the first quartile to third quartile
and whiskers denoting 1.5 times the interquartile range. Significant enrichment and depletion is
observed in the LshC2c2 replicates (****, p < 0.0001). (B) A 3’ PES is observed from the depleted PFSs
(-logz normalized PFS count fold change >6.0).
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10.2.7 Figure 3.87
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Figure 3.S7: Protein purification of LshC2c2.

(A) Coomassie blue stained acrylamide gel of purified LshC2c2 stepwise purification. A strong band
just above 150 kD is consistent with the size of LshC2c2 (171 kD). (B) Size exclusion gel filtration of
LshC2c2. LshC2c2 eluted at a size approximately >160 kD (62.9 mL). (C) Protein standards used to
calibrate the Superdex 200 column. BDex = Blue Dextran (void volume), Ald = Aldolase (158 kD),
Ov = Ovalbumin (44 kD), RibA = Ribonuclease A (13.7 kD), Apr = Aprotinin (6.5 kD). (D)
Calibration curve of the Superdex 200 column. Ky is calculated as (elution volume — void
volume)/(geometric column volume - void volume). Standards were plotted and fit to a logarithmic

curve.
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10.2.8 Figure 3.58
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Figure 3.88: Further in vitro characterization of the RNA cleavage kinetics of LshC2c2.
(A) Denutaring gel of a time series of LshC2c2 ssRNA cleavage using a 5'- and 3-end-labeled target 1.
(B) A denaturing gel after 1 hour of RNA-cleavage of 5- and 3-end-labeled target 1 using LshC2c2-

crRNA complex that is serially diluted in half-log steps. Reported band lengths are matched from
RNA sequencing.
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10.2.9 Figure 3.89
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Figure 3.89: Characterization of the metal dependence of LshC2c2 RNA cleavage.

A variety of divalent metal cations are supplemented for the LshC2c2 cleavage reaction using 5-end-
labeled target 1 incubated for 1 hour. Significant cleavage is only observed for Mg*%. Weak cleavage

is observed for Ca*? and Mn*? Reported band lengths are matched from RNA sequencing.
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10.2.10 Figure 3.510
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Figure 3.510: LshC2c2 has no observable cleavage activity when using dsRNA, dsDNA, or

ssDNA substrates.

(A) A schematic of the partial dsRNA target. 5'-end-labeled target 1 is annealed to two shorter RNAs
that are complementary to the regions flanking the protospacer site. This partial dsSRNA is a more
stringent test for dsSRNA cutting since it should still allow for LshC2c2 complex binding to ssRNA.
(B) LshC2c2 cleavage activity after 1 hour of incubation with a dsSRINA target shown in (A) compared
to the ssRNA target 1. No cleavage is observed when using the dsRNA substrate. Reported band
lengths are matched from RNA sequencing. (C) LshC2c2 cleavage of a dsDNA plasmid library
incubated for 1 hour. A plasmid library was generated to have seven randomized nucleotides 5" of

protospacer 14 to account for any sequence requirements for dsDNA cleavage. No cleavage is
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observed for this dsDNA library. (D) A ssDNA version of target 1 is tested for cleavage by LshC2c2

after 1 hour of incubation. No cleavage is observed.
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10.2.11 Figure 3.511
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Figure 3.S11: LshC2c2 has no observable cleavage activity on dsDNA targets in a co-
transcriptional cleavage assay

(A) Schematic of co-trahscriptional cleavage assay. C2c2 was incubated with E. coli RNA polymerase
(RNAP) elongation complexes and rNTP as previously described (Samai et al., 2015). (B) LshC2c2

cleavage of DNA target after co-transcriptional cleavage assay. No cleavage is observed.
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10.2.12 Figure 3.512
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Figure 3.812: Figure 4. LshC2c2 prefers cleavage at uracil residues.

(A,C) The cleavage sites of non-homopolymer ssRNA targets 4 (A), and 5 (C) were mapped with
RNA-sequencing of the cleavage products. The frequency of cleavage at each base is colored according
to the z-score and shown on the predicted crRNA-ssRNA co-fold secondary structure. Fragments
used to generate the frequency analysis contained the complete 5’ end. The 5’ and 3’ end of the ssRNA
target are indicated by blue and red outlines, on the ssRNA and secondary structure, respectively. The

5’and 3’ end of the spacer (outlined in yellow) is indicated by the blue and orange residues highlighted
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respectively. (B,D) Plot of the frequencies of cleavage sites for each position of ssRNA targets 4 and 5
for all reads that begin at the 5’ end. The protospacer is indicated by the blue highlighted region. (E)
Schematic of homopolymer ssRNA targets. The protospacer is indicated by the light blue bar.
Homopolymer stretches of A (green) and U (red) bases are interspaced by individual bases of G
(orange) and C (purple). (F) Denaturing gel showing C2c2-crRNA-mediated cleavage patterns of
each homopolymer after 3 hours of incubation. (G) Schematic of ssSRNA 4 modified with a
hompolymer stretch in the highlighted loop (red) for each of the four possible nucleotides (left).
Denaturing gel showing C2c2-crRNA-mediated cleavage for each of the four possible homopolymer

targets after 3 hours of incubation. Reported band lengths are matched from RNA sequencing.
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10.2.13 Figure 3.513
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Figure 3.513: MS2 restriction assay reveals that single HEPN mutants abrogate LshC2c2
activity.

All four possible single HEPN mutants were generated in the pLshC2c2 vector (R597A, H602A,
R1278A, and H1283A) with protospacer 1. Images from plaque assay testing these HEPN mutant loci
show similar plaque formation to the non-targeting locus and is significantly higher than the WtC2c2
locus. Phage dilutions were spotted on bacteria plates at decreasing numbers of plaque forming units
(PFU). Spacer targets are shown above images; biological replicates are labeled BR1, BR2, or BR3.

Non-targeting control is the native LshC2c2 locus.
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10.2.14 Figure 3.514
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Figure 3.514: Quantitation of LshC2c2 binding

(A) Calculation of binding affinity for wildtype LshC2c2-crRNA complex and on-target ssRNA.
Fraction of protein bound was quantified by densitometry from Fig. 4D and Kp was calculated by
fitting to binding isotherm. (B) Calculation of binding affinity for HEPN mutant R1278A LshC2c2-
crRNA complex and on-target ssRNA. Fraction of protein bound was quantified by densitometry
from Fig. 4E and Kp was calculated by fitting to binding isotherm. (C) Electrophoretic mobility shift
assay with HEPN mutant R1278A LshC2c2 against on-target ssRNA in the absence of crRNA. EDTA
is supplemented to reaction condition. (D) Electrophoretic mobility shift assay crRNA against on-
target ssSRNA. EDTA is supplemented to reaction condition. (E) Calculation of binding affinity for

HEPN mutant R1278A LshC2c2 and on-target ssRNA in the absence of crRNA. Fraction of protein
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bound was quantified by densitometry from Fig. S12C and Kp was calculated by fitting to binding
isotherm. (F) Calculation of binding affinity for crRNA and on-target ssRNA. Fraction of crRNA
bound was quantified by densitometry from Fig. S12D and Kp was calculated by fitting to binding

isotherm.

266



10.2.15 Figure 3.815
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Figure 3.515. LshC2c2-crRNA complex has little binding affinity for ssDNA targets.

Electrophoretic mobility shift assay with HEPN mutant R1278A LshC2c2 against on-target ssDNA

and non-complementary ssDNA (reverse complement). EDTA is supplemented to reaction condition.
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10.2.16 Figure 3.516
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Figure 3.516. Spacer and direct repeat lengths affect the RNA-guided RNase activity of

LshC2c2.

(A) Denaturing gel showing crRNA-guided cleavage of ssRNA 1 as a function of spacer length after
3 hours of incubation. Reported band lengths are matched from RNA sequencing. (B) Denaturing gel

showing crRNA-guided cleavage of ssRNA 1 as a function of the direct repeat length after 3 hours of
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10.2.17 Figure 3.5817
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Figure 3.517. RN A-guided RNase activity of LshC2c2 is dependent on direct repeat structure

and sequence.

(A) Schematic showing modifications to the crRNA direct repeat stem (top). Altered bases are shown
in red. Denaturing gel showing crRNA-guided cleavage of ssRNA 1 by each modified crRNA after 3
hours of incubation (bottom). Reported band lengths are matched from RNA sequencing. (B)
Schematic showing modifications to the loop region of the crRNA direct repeat (top). Altered bases
are shown in red and deletion lengths are indicated by arrows. Denaturing gel showing crRNA-

guided cleavage of ssRNA 1 by each modified crRNA after 3 hours of incubation (bottom). Reported
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10.2.3 Figure 3.518
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Figure 3.518. The effect of 3’ modifications to the crRNA DR.

Schematic shows the modifications made to the 3’ end of the DR: single mutations (top-left) or
deletions (top-right). Altered bases are shown in red and deletion lengths are indicated by arrows.
Denaturing gel depicting LshC2c2 cleavage activity by each modified crRNA after 3 hours of

incubation (bottom). Reported band lengths are matched from RNA sequencing.
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10.2.19 Figure 3.519
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Figure 3.519: Effect of RNA target-crRNA mismatches on LshC2c2 RNase activity.

(A) Quantification of MS2 plaque assays testing single mismatches at various positions in the spacer.
Single mismatches have minimal effect on phage interference. Locations and identity of mismatches

are shown in red. . (n=3 biological replicates. **, p < 0.01 ; ***, p < 0.001 compared to pACYC184 by
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t-test. Bars represent mean * s.e.m). (B) Quantification of MS2 plaque assays testing double
mismatches at various positions in the spacer. Consecutive double mismatches in the middle of the
spacer eliminate phage interference. Locations and identity of mismatches are shown in red. (n=3
biological replicates. ***, p < 0.001 compared to pACYC184 by t-test. Bars represent mean = s.e.m).
(C) Schematic showing the position and identity of single mismatches (red) in the crRNA spacer (top).
Denaturing gel showing cleavage of ssRNA 1 guided by crRNAs with single mismatches in the spacer
after 3 hours of incubation (bottom). Reported band lengths are matched from RNA sequencing. (D)
Schematic showing the position and identity of pairs of mismatches (red) in the crRNA spacer (top).
Denaturing gel showing cleavage of ssRNA 1 guided by crRNAs with pairs of mismatches in the
spacer after 3 hours of incubation (bottom). Reported band lengths are matched from RNA

sequencing.
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10.2.20 Figure 3.520
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Figure 3.520: MS2 restriction assay testing the effect of single and double mismatches on
LshC2c2 activity.

pLshC2c2 with protospacer 41 was modified to have a series of single mismatches and consecutive
double mismatches as shown. Images from plaque assay testing these mismatched spacers reveals
reduced plaque formation for the single-mismatch spacers on-par with the fully complementary
spacer. The double mismatch spacers show increased plaque formation for a seed region in the middle
of spacer sequence. Phage dilutions were spotted on bacteria plates at decreasing numbers of plaque
forming units (PFU). Spacer targets are shown above images; biological replicates are labeled BR1,

BR2, or BR3. Non-targeting control is the native LshC2c2 locus.
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10.2.21 Figure 3.S21
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Figure 3.S21. The effect of triple mismatches on LshC2c2-crRNA cleavage activity.

(A) Schematic showing the position and identity of non-consecutive triple mismatches (red) in the
crRNA spacer (top). Denaturing gel depicting LshC2c2 cleavage activity with crRNAs bearing triple
non-consecutive mismatches between the spacer and ssRNA target region after 3 hours of incubation
(bottom). Reported band lengths are matched from RNA sequencing. (B) Schematic showing the
position and identity of consecutive triple mismatches (red) in the crRNA spacer (top). Denaturing
gel depicting LshC2c2 cleavage activity with crRNAs bearing triple consecutive mismatches between
the spacer and ssRNA target region after 3 hours of incubation (bottom). Reported band lengths are

matched from RNA sequencing.

274



10.2.22 Figure 3.522

RFP mRNA protospacer 36 PFS

5' — . AUCAAGUUAGEGUECEEUGCCGUUCECUUGGEACAUCCUGUCCAGACAACGUGCA . ~ 3'
FECEEEEEL TR e e

3' = GLCGACGLCAAGE GAACCCUGUAGGACACAAAAUCAGGGGAAGT

\ 11 u  crBNA

5' — ccaccccaaua

percent RFP+ cells

Figure 3.522: HEPN mutant LshC2c2 are tested for RFP mRNA targeting activity.

The pLshC2c2 vector with protospacer 36 was modified to have the single HEPN mutants R597A
and R1278A (one in each of the HEPN domains). These mutations resulted in little detectable RFP
knockdown as measured by flow cytometry on the E. coli. (n=3 biological replicates. ***, p < 0.001

compared to wtLshC2c2 by t-test. Bars represent mean + s.e.m).
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10.2.23 Figure 3.823
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Figure 3.823: Biochemical characterization of the collateral cleavage effect.

(A) LshCc2 is incubated for 3 hours with a cTRNA targeting protospacer 14 with and without
unlabeled ssRNA target 1 (contains protospacer 14). When LshC2c2 is in the presence of target 1,
significant cleavage activity is observed for 5" fluorescently labeled non-complementary targets 6-9.
(B) HEPN mutant collateral activity is compared to WT C2c2. The proteins are incubated for 3 hours
with crRNA complementary to protospacer 14 and with and without unlabeled homopolymer targets
2 or 3 (both containing protospacer 14). The collateral effect is no longer observed with the HEPN

mutant proteins on the 3’ fluorescently labeled non-complementary target 8.
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10.2.24 Figure 3.524
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Figure 3.524. In vivo collateral effect reveals a 3' H PFS with a PFS screen in a transcribed

region.

(A) Schematic for a transcribed and non-transcribed PFS screen. (B) 3° PFS motif for a PFS screen

designed in a transcribed plasmid region. (C) No PFS is observed for a PFS screen in a non-transcribed

region.
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10.3 Chapter 4 Supplementary Figures

10.3.1 Figure 4.S1
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Figure 4.S1. LwCas13a is capable of RNA-guided RNA interference and cleavage.
(A) Schematic of the CRISPR/Casl13a locus from Leptotrichia wadei. Representative crRNA
structures from LwCas13a and LshCas13a systems are shown.
(B) Schematic of in vivo bacterial assay for Cas13a activity. A protospacer is cloned upstream of
the beta-lactamase gene in an ampicillin-resistance plasmid, and this construct is transformed

into E. coli expressing Cas13a in conjunction with either a targeting or non-targeting spacer.

Successful transformants are counted to quantify activity.
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(C) Quantitation of LwCas13a and LshCas13a in vivo activity. (n=2 biological replicates; bars
represent mean * s.e.m.)

(D) Final size exclusion gel filtration of recombinant LwCas13a protein.

(E) Coomassie blue stained acrylamide gel of LwCas13a stepwise purification.

(F) Activity of LwCasl3a against different PFS targets. LwCas13a was targeted against
fluorescent RNA with variable 3’ PFS flanking the spacer, and reaction products were

visualized on denaturing gel. LwCas13a shows a slight preference against a G PFS.
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10.3.2 Figure 4.52
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Figure 4.52. Detection with LwCasl3a is quantitative.
(A) Fluorescence measurements from Casl3a detection without amplification are correlated

with input RNA concentration. (n=2 biological replicates; bars represent mean + s.e.m.)
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10.3.3 Figure 4.S3
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Figure 4.53. Nucleic acid amplification with NASBA followed by Casl3a detection.
A. Schematic of the NASBA reaction.
B. Detection of nucleic acid target ssRNA 1 amplified by NASBA with three different primer
sets and then subjected to Cas13a collateral detection using a quenched fluorescent probe.

C. Comparison of detection of ssRNA 1 by NASBA with primer set 2 and SHERLOCK. (n=2

technical replicates; bars represent mean + s.e.m.)
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10.3.4 Figure 4.4
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Figure 4.84. Nucleic acid amplification with RPA and single-reaction SHERLOCK.

(A) Schematic of the RPA reaction, showing the participating components in the reaction.

(B) Digital-droplet PCR quantitation of ssRNA 1 for dilutions used in Fig. 1C. Adjusted

concentrations for the dilutions based on the ddPCR results are shown above bar graphs.

(C) Digital-droplet PCR quantitation of ssDNA 1 for dilutions used in Fig. 1D. Adjusted

concentrations for the dilutions based on the ddPCR results are shown above bar graphs.

(D) The RPA, T7 transcription, and Cas13a detection reactions are compatible and achieve single

molecule detection of DNA 2 when incubated simultaneously. (n=3 technical replicates, two-

tailed Student t-test; n.s., not significant; **, p < 0.01; **** p < 0.0001; bars represent mean

+s.e.m.)
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10.3.5 Figure 4.S5
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Figure 4.85. Comparison of SHERLOCK to other sensitive nucleic acid detection tools.
(A) Detection analysis of ssDNA 1 dilution series with digital-droplet PCR. (n=4 technical
replicates, two-tailed Student t-test; n.s., not significant; *, p < 0.05; *¥, p < 0.01; ****, p <
0.0001; red lines represent mean, bars represent mean + s.e.m. Samples with measured

copy/uL below 107 not shown.)
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(B) Detection analysis of ssDNA 1 dilution series with quantitative PCR. (n=16 technical
replicates, two-tailed Student t-test; n.s., not significant; **, p < 0.01; ****, p < 0.0001; red
lines represent mean, bars represent mean + s.e.m. Samples with relative signal below 107"
not shown.)

(C) Detection analysis of ssDNA 1 dilution series with RPA with SYBR Green II. (n=4 technical
replicates, two-tailed Student t-test; *, p < 0.05; **, p < 0.01; red lines represent mean, bars
represent mean = s.e.m. Samples with relative signal below 10° not shown.)

(D) Detection analysis of ssDNA 1 dilution series with SHERLOCK. (n=4 technical replicates,
two-tailed Student t-test; **, p < 0.01; **** p < 0.0001; red lines represent mean, bars
represent mean + s.e.m. Samples with relative signal below 10° not shown.)

(E) Percent coefficient of variation for a series of ssDNA 1 dilutions for four types of detection
methods.

(F) Mean percent coefficient of variation for the 6e2, 6el, 6€0, and 6e-1 ssDNA 1 dilutions for

four types of detection methods. (bars represent mean + s.e.m.)

284



10.3.6 Figure 4.56
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Figure 4.56. Development of SHERLOCK as a point-of-care diagnostic.
(A) Freeze-dried Cas13a is capable of sensitive detection of ssSRNA 1 in the low femtomolar
range. (n=2 technical replicates; bars represent mean + s.e.m.)
(B, C) Cas13a is capable of rapid detection of a 200 pM ssRNA 1 target on paper as spotted as
liquid (B) or freeze-dried form (C). (n=3 technical replicates; bars represent mean + s.d.)
(D, E) The SHERLOCK reaction is capable of sensitive detection of synthesized ZIKV RNA
fragments in solution (D) and in freeze-dried form (E) (n=3 technical replicates; bars represent

mean + s.e.m.)
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(F) Quantitative curve for human ZIKV cDNA detection with SHERLOCK showing significant
correlation between input concentration and detected fluorescence.
(G) Cas13a detection of ssRNA 1 performed in the presence of varying amounts of human serum.

(n=2 technical replicates; bars represent mean + s.e.m.)
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10.3.7 Figure 4.87
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Figure 4.S7. Detection of carbapanem resistance in clinical bacterial isolates.

Detection of two different carbapenem-resistance genes (KPC and NDM-1) from five clinical
isolates of Klebsiella pneumoniae and an E. coli control. (n=4 technical replicates, two-tailed Student t-

test; **** p < 0.0001; bars represent mean + s.e.m.; n.d., not detected)
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10.3.8 Figure 4.8
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Figure 4.58. Engineering Casl13a to have single-base specificity.

(A) Casl3a is not sensitive to single mismatches, but can distinguish between single nucleotide
differences in target when loaded with crRNAs with additional mismatches. ssRNA 1-3 were
detected with 11 crRNAs, with 10 spacers containing synthetic mismatches at various
positions in the crRNA. Mismatched spacers did not show reduced collateral cleavage of
ssRNA 1, but showed inhibited collateral cleavage of mismatched targets ssRNA 2 and ssRNA
3.

(B) Schematic of the process for rational design of single-base specific spacers with synthetic
mismatches. Synthetic mismatches are placed in proximity to the SNP or base of interest.

(C) Highly specific detection of strain SNPs allows for the differentiation of ZIKV African versus

American RNA targets differing by only one nucleotide using Cas13a detection with
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truncated (23 nt) crRNAs. (n=2 technical replicates, one-tailed Student t-test; *, p < 0.05; **,

p < 0.01; **** p < 0.0001; bars represent mean + s.e.m.)
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10.3.9 Figure 4.89
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Figure 4.89. Characterization of LwCasl3a sensitivity to truncated spacers and single
mismatches in the target sequence.

(A) Sequences of truncated spacer crRNAs used in (B)-(G). Also shown are sequences of ssRNA

1 and 2, which has a single base-pair difference highlighted in red. crRNAs containing
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(B)

synthetic mismatches are displayed with mismatch positions colored in red.

Collateral cleavage activity on ssSRNA 1 and 2 for 28 nt spacer crRNA with synthetic
mismatches at positions 1-7. (n=4 technical replicates; bars represent mean + s.e.m.)
Specificity ratios of crRNA tested in (B). Specificity ratios are calculated as the ratio of the
on-target RNA (ssRNA 1) collateral cleavage to the off-target RNA (ssRNA 2) collateral
cleavage. (n=4 technical replicates; bars represent mean + s.e.m.)

Collateral cleavage activity on ssRNA 1 and 2 for 23 nt spacer crRNA with synthetic
mismatches at positions 1-7. (n=4 technical replicates; bars represent mean + s.e.m.)
Specificity ratios of crRNA tested in (D). Specificity ratios are calculated as the ratio of the
on-target RNA (ssRNA 1) collateral cleavage to the off-target RNA (ssRNA 2) collateral
cleavage. (n=4 technical replicates; bars represent mean + s.e.m.)

Collateral cleavage activity on ssRNA 1 and 2 for 20 nt spacer crRNA with synthetic
mismatches at positions 1-7. (n=4 technical replicates; bars represent mean * s.e.m.)
Specificity ratios of crRNA tested in (F). Specificity ratios are calculated as the ratio of the
on-target RNA (ssRNA 1) collateral cleavage to the off-target RNA (ssRNA 2) collateral

cleavage. (n=4 technical replicates; bars represent mean + s.e.m.)
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10.3.10 Figure 4.510
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Figure 4.510. Identification of ideal synthetic mismatch position relative to mutations in the

target sequence.

(A) Sequences for evaluation of the ideal synthetic mismatch position to detect a mutation

between ssRNA 1 and ssRNA 2. On each of the targets, crRNAs with synthetic mismatches

at the colored (red) locations are tested. Each set of synthetic mismatch crRNAs is designed

such that the mutation location is shifted in position relative to the sequence of the spacer.

Spacers are designed such that the mutation is evaluated at positions 3, 4, 5, and 6 within the

spacer.

(B)

Collateral cleavage activity on ssRNA 1 and 2 for crRNAs with synthetic mismatches at

varying positions. There are four sets of crRNAs with the mutation at either position 3, 4, 5,

or 6 within the spacer:target duplex region. (n=4 technical replicates; bars represent mean +

s.e.m.)
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(C) Specificity ratios of crRNA tested in (B). Specificity ratios are calculated as the ratio of the
on-target RNA (ssRNA 1) collateral cleavage to the off-target RNA (ssRNA 2) collateral

cleavage. (n=4 technical replicates; bars represent mean + s.e.m.)
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10.3.11 Figure 4.511
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Figure 4.511. Genotyping with SHERLOCK atan additional locus and direct genotyping from

boiled saliva.
(A) SHERLOCK can distinguish between genotypes at the rs5082 SNP site. (n=4 technical
replicates, one-tailed Student t-test; *, p < 0.05; ***, p < 0.001; ****, p < 0.0001; bars represent
mean + s.e.m.)
(B) SHERLOCK can distinguish between genotypes at the rs601338 SNP site in genomic DNA
directly from centrifuged, denatured, and boiled saliva. (n=4 technical replicates, two-tailed

Student t-test; **, p < 0.01; ***¥*, p < 0.001; bars represent mean + s.e.m.)
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10.3.12 Figure 4.S12
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Figure 4.512. Development of synthetic genotyping standards to accurately genotype human
SNPs.

(A) Genotyping with SHERLOCK at the rs601338 SNP site for each of the four individuals
compared against PCR-amplified genotype standards. (n=4 technical replicates; bars
represent mean t s.e.m.)

(B) Genotyping with SHERLOCK at the rs4363657 SNP site for each of the four individuals

compared against PCR-amplified genotype standards. (n=4 technical replicates; bars

represent mean  s.e.m.)

(C) Heatmaps of computed p-values between the SHERLOCK results for each individual and the
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synthetic standards at the rs601338 SNP site. A heatmap is shown for each of the allele-
sensing crRNAs. The heatmap color map is scaled such that insignificance (p > 0.05) is red

and significance (p < 0.05) is blue. (n=4 technical replicates, one-way ANOVA)

(D) Heatmaps of computed p-values between the SHERLOCK results for each individual and the

synthetic standards at the rs4363657 SNP site. A heatmap is shown for each of the allele-
sensing crRNAs. The heatmap color map is scaled such that insignificance (p > 0.05) is red
and significance (p < 0.05) is blue. (n=4 technical replicates, one-way ANOVA)

A guide for understanding the p-value heatmap results of SHERLOCK genotyping.
Genotyping can easily be called by choosing the allele that corresponds to a p-value > 0.05
between the individual and allelic synthetic standards. Red blocks correspond to non-
significant differences between the synthetic standard and individual's SHERLOCK result
and thus a genotype-positive result. Blue blocks correspond to significant differences
between the synthetic standard and individual's SHERLOCK result and thus a genotype-

negative result.
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10.3.13 Figure 4.513
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Figure 4.513. Detection of ssDNA 1as a small fraction of mismatched background target.

(A) SHERLOCK detection of a dilution series of ssDNA 1 on a background of human genomic
DNA. Note that there should be no sequence similarity between the ssDNA 1 target being
detected and the background genomic DNA. (n=2 technical replicates; bars represent mean +
s.e.m.)

(B) Schematic of SHERLOCK detection of ssDNA 1 (mutant DNA) on a background of ssDNA
2, which differs from ssDNA 1 by only a single mismatch (wild-type background DNA).

(C) SHERLOCK achieves single nucleotide specificity detection of ssDNA 1 in the presence of
ssDNA 2, which differs by only a single mismatch. Various concentrations of ssDNA 1 were

combined with a background excess of ssDNA 2 and detected by SHERLOCK.
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10.4 Chapter 5 Supplementary Figures

10.4.1 Figure 5.51
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Figure 5.51: Cas13b orthologs evaluated for in vitro collateral activity.
Tree of 15 Cas13b orthologs purified and evaluated for in vitro collateral activity. Cas13b

gene (blue), Csx27 gene (red), Csx28 gene (yellow), and CRISPR array (grey) are shown.
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10.4.2 Figure 5.52
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Figure 5.52: Protein purification of Casl3 orthologs
A) Chromatograms of size exclusion chromatography for Cas13b, LwCas13a and LbaCas13a.
Measured UV absorbance (mAU) is shown against the elution volume (ml)
B) SDS-PAGE gel of purified Cas13b orthologs. Fourteen Cas13b orthologs are loaded from left

to right. A protein ladder is shown to the left.
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Final SDS-PAGE gel of LbaCas13a and LbuCas13a. Two dilutions of LbaCas13a and LbuCas13a are

shown.
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10.4.3 Figure 5.83
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Figure $3: Base preference of Cas13b ortholog collateral cleavage.

A) Schematic of assay for determining hompolymer preferences of Cas13a/b enzymes.
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F)

Heatmap of the base preference of 15 Cas13b orthologs targeting ssRNA 1 with reporters
consisting of a homopolymer of A, C, G, or U bases.

Cleavage activity of fourteen Cas13b orthologs targeting ssSRNA 1 using a homopolymer
adenine sensor five nucleotides long.

Cleavage activity of fourteen Cas13b orthologs targeting sSRNA 1 using a homopolymer
uridine sensor five nucleotides long.

Cleavage activity of fourteen Cas13b orthologs targeting ssSRNA 1 using a homopolymer
guanine sensor five nucleotides long.

Cleavage activity of fourteen Cas13b orthologs targeting ssRNA 1 using a homopolymer

cytidine sensor five nucleotides long.
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10.4.4 Figure 5.54

A B
30000~ Bl Target
Bl No target
g
(]
5 8 20000"
=
w
Ly
=5
o9
& 10000
[5]
&
0_
Tris Tris  Tris Tris
buffer HCl HCl  HCI HCl HEPES HEPES
[buffer] (mM) 40 40 40 40 20 20
pH 7.5 6.8 6.8 6.8 6.8 6.8
salt NaCl NaCl NaCl NaCl NaCl KCI
[salt] (mM) 60 60 120 30 60 50
[MgCL] (mM) & 6 6 6 6 5
glycerol (%) 0 0 0 0 0

Background subtracted
fluorescence

200004

15000+

10000+

5000+

B HEPES pH 6.8 buffer

] HEPES pH 6.8 buffer no input
Bl Tris pH 7.5 buffer

[ Tris pH 7.5 buffer no input

45 90 225
[PsmCas13b-crRNA complex] (nM)

Figure 5.54: Buffer optimization of PsmCas13b cleavage activity.

A) A variety of buffers are tested for their effect on PsmCas13b collateral activity after targeting
ssRNA 1.

B) The optimized buffer is compared to the original buffer at different PsmCas13b-crRNA

complex concentrations.
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10.4.5 Figure 5.85
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Figure 5.55: Ion preference of Casl13 orthologs for collateral cleavage.

A) Cleavage activity of PsmCas13b with a fluorescent poly U sensor for divalent cations Ca, Co,

Cu, Mg, Mn, Ni, and Zn. PsmCas13b is incubated with a crRNA targeting a synthetic ssSRNA

1.
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B) Cleavage activity of PsmCas13b with a fluorescent poly A sensor for divalent cations Ca, Co,
Cu, Mg, Mn, Ni, and Zn. PsmCas13b is incubated with a crRNA targeting a synthetic ssRNA
1.

C) Cleavage activity of Pin2Cas13b with a fluorescent poly U sensor for divalent cations Ca, Co,
Cu, Mg, Mn, Ni, and Zn. Pin2Cas13b is incubated with a crRNA targeting a synthetic ssRNA
1.

D) Cleavage activity of Pin2Cas13b with a fluorescent poly A sensor for divalent cations Ca, Co,
Cu, Mg, Mn, Ni, and Zn. Pin2Cas13b is incubated with a crRNA targeting a synthetic ssSRNA
1.

E) Cleavage activity of CcaCas13b with a fluorescent poly U sensor for divalent cations Ca, Co,
Cu, Mg, Mn, Ni, and Zn. CcaCas13b is incubated with a crRNA targeting a synthetic ssRNA
1.

F) Cleavage activity of CcaCas13b with a fluorescent poly A sensor for divalent cations Ca, Co,
Cu, Mg, Mn, Ni, and Zn. CcaCas13b is incubated with a crRINA targeting a synthetic ssRNA
1.
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10.4.6 Figure 5.86
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Figure 5.56: Testing Cas13 ortholog reprogrammability with crRNAs tiling ssRNA 1.
A) Schematic of locations tiled crRNA targeting ssRNA 1.
B) Cleavage activity of LwaCas13a and CcaCas13b with crRNAs tiled across ssRNA1.
C) Cleavage activity of PsmCas13b with crRNAs tiled across ssRNAT.
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10.4.7 Figure 5.87
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Figure 5.87: Effect of crRNA spacer length on Cas13 ortholog cleavage
A) Cleavage activity of PsmCas13b with ssRNA1-targeting crRNAs of varying spacer lengths.
B) Cleavage activity of CcaCas13b with ssRNA1-targeting crRNAs of varying spacer lengths.
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10.4.8 Figure 5.S8
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Figure 5.88: Comparison of cleavage activity for Casl3 orthologs with adenine cleavage

preference

A) Cleavage activity of PsmCas13b and LbaCas13a incubated with respective crRNAs targeting

the ZIKV ssRNA target at different concentrations (n=4 technical replicates, two-tailed
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B)

Student t-test; n.s., not significant; *, p < 0.05; **, p < 0.01; ***, p < 0.001; ***¥, p<0.0001;
bars represent mean + s.e.m.).

Cleavage activity of PsmCas13b and LbaCas13a incubated with respective crRNAs targeting
a synthetic DENV ssRNA target at different concentrations (n=4 technical replicates, two-
tailed Student t-test; n.s., not significant; *, p < 0.05; **, p < 0.01; ***, p < 0.001; ***¥

p<0.0001; bars represent mean * s.e.m.).
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10.4.9 Figure 5.89
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Figure 5.8%: Di-nucleotide preferences of Casl13a/b enzymes
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A) Heatmap of the di-nucleotide base preference of 10 Cas13a/b orthologs targeting ssRNA 1,
unless otherwise indicated, with reporters consisting of a di-nucleotide of A, C, G, or U RNA
bases. (*) represent non-background subtracted orthologs with high background activity.

B) Heatmap of the di-nucleotide base preference of the high background activity orthologs
LbuCas13a and PinCas13b tested on indicated targets.

C) Cleavage activity of LbuCas13a on AU di-nucleotide motif with and without 20nM DENV
ssRINA target tested with varying spacer lengths.

D) Cleavage activity of LbuCas13a on UG di-nucleotide motif with and without 20nM DENV

ssRINA target tested with varying spacer lengths.
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10.4.10 Figure 5.510
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Figure 5.510: Relationship of Cas13 families with di-nucleotide cleavage preferences
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10.4.11 Figure 5.511
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Figure 5.511: Kinetics of cleavage activity for Casl3 enzymes with orthogonal cleavage
preferences
A) Orthogonal base preferences of PsmCas13b and LwaCas13a targeting ssRNA 1 with either a
Us or Ag reporter.

B) Orthogonal base preferences of CcaCas13b and LwaCas13a targeting DENV RNA with either
a AU or UC reporter.
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10.4.12 Figure 5.S12
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Figure 5.512: Random motif cleavage screen for testing Casl13 base preferences
A) Schematic of cleavage motif preference discovery screen for comparing random motif
prefences.
B) Bioanalyzer traces for LwaCas13a-, PsmCas13b-, CcaCas13b-, and RNase A-treated library

samples showing changes in library size after RNase activity. Cas13 orthologs are targeting
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C)

E)

DENV ssRNA and cleave the random motif-library due to collateral cleavage. Marker
standards are shown in the first lane.

Box plots showing motif distribution of target to no-target ratios for LwaCas13a, PsmCas13b,
CcaCas13b, and RNase A at 5 minute and 60 minute timepoints. RNase A ratios were
compared to the average of the three Cas13 no-target conditions. Ratios are also an average
of two cleavage reaction replicates.

Number of enriched motifs for LwaCas13a, PsmCas13b, CcaCas13b, and RNase A at the 60
minute timepoint. Enrichment motif was calculated as motifs above -logz(target/no target)
thresholds of either 1 (LwaCas13a, CcaCas13b, and RNase A) or 0.5 (PsmCas13b). A
threshold of 1 corresponds to at least 50% depletion while a threshold of 0.5 corresponds to
at least 30% depletion.

Preferred two-base motifs for LwaCas13aand PsmCas13b. Values represented in the heatmap
are the the counts of each two-base across all depleted motifs. Motifs are considered depleted
if the -log2(target/no target) value is above 1.0 in the LwaCas13a condition or 0.5 in the
PsmCas13b condition. In the -log2(target/no target) value, target and no target denote the

frequency of a motif in the target and no target conditions, respectively.

316



10.4.13 Figure 5.513
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Figure 5.513: Motifs and orthogonal sequences from random motif cleavage screen
A) Sequence logos generated from enriched motifs for LwaCas13a, PsmCas13b, and CcaCas13b.
LwaCas13a and CcaCas13b show a strong U preference as would be expected, while

PsmCas13b shows a unique preference for A bases across the motif, which is consistent with

homopolymer collateral activity preferences.
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B) Collateral activity of LwaCas13a and CcaCas13b targeting DENV ssRNA on most depleted
motifs from the RNA collateral motif screen.
C) Collateral activity of PsmCas13b targeting DENV ssRNA on most depleted motifs from the

RNA collateral motif screen.

318



10.4.14 Figure 5.514
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Figure 5.514: Comparison of top collateral activity motifs from the RNA motif collateral
activity screens.
A) Heatmap showing the orthogonal motif preferences of LwaCasl13a, PsmCasl13b, and

CcaCas13b. Values represented in the heatmap are the -logz(target/no target) value of each
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shown motif. In the -logz(target/no target) value, target and no target denote the frequency
of a motif in the target and no target conditions, respectively.

B) Cleavage activity of LwaCas13a and CcaCas13b on top orthogonal motifs derived from the
motif preference discovery screen

C) Collateral activity of LwaCas13a and CcaCas13b targeting DENV ssRNA on top orthogonal
RNA motifs.
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10.4.15 Figure 5.515
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Figure 5.515: Comparison of random motif library screen on different targets and enzymes
A) Pair-wise comparison of enrichment scores for different activating targets with LwaCas13a.
B) Heatmaps showing two-base preference for LwaCas13a with the ZIKV ssRNA target as
determined by the random motif library cleavage screen. Values represented in the heatmap
are the the counts of each 2-base across all depleted motifs. Motifs are considered depleted if
the -logz(target/no target) value is above 1.0.
C) Heatmaps showing two-base preference for LwaCas13a with the DENV ssRNA target as

determined by the random motif library cleavage screen. Values represented in the heatmap

321



are the the counts of each 2-base across all depleted motifs. Motifs are considered depleted if
the -loga(target/no target) value is above 1.0.

D) Heatmaps showing two-base preference for LwaCasl3a with the ssRNAI target as
determined by the random motif library cleavage screen. Values represented in the heatmap

are the the counts of each 2-base across all depleted motifs. Motifs are considered depleted if

the -loga(target/no target) value is above 1.0.
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10.4.16 Figure 5.516
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Figure 5.516: Multiplexed detection of ZIKV ssRNA and DENV ssRNA targets.
A) In-sample multiplexed detection of 20 nM ZIKV and DENV ssRNA targets with LwaCas13a

and PsmCas13Db collateral activity.

B) In-sample multiplexed detection of 20 pM ZIKV and DENV ssRNA targets with CcaCas13a
and PsmCas13b collateral activity.
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10.4.17 Figure 5.517
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Figure 5.817: Attomolar detection of CcaCas13b-SHERLOCK

Comparison of collateral activity and pre-amplification enhanced collateral (SHERLOCK) of
CcaCas13b.
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10.4.18 Figure 5.518
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Figure 5.518: Triplex detection using orthogonal CRISPR enzymes

I) Schematic of in-sample 3 channel multiplexing using orthogonal Cas13 and Cas12a enzymes.
J) In-sample multiplexed detection of ZIKV ssRNA, DENV ssRNA, and dsDNA 1 with
LwaCas13a, PsmCas13b, and Cas12a.
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10.4.19 Figure 5.519
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Figure 5.819: In-sample multiplexed RNA detection of ZIKV ssRNA and DENV ssRNA

targets and human genotyping.
A) In-sample multiplexed RPA and collateral detection at decreasing concentrations of ZIKV and
DENV ssRNA targets with PsmCas13b.
B) In-sample multiplexed RPA and collateral detection at decreasing concentrations of ZIKV and
DENV ssRNA targets with LwaCas13a.
C) Schematic of crRNA design and target sequences for multiplexed genotyping at rs601338 with

LwaCas13a and PsmCas13b.
D) Multiplexed genotyping with human samples at rs601338 with LwaCas13a and PsmCas13b.
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10.4.20 Figure 5.520
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Figure 5.520: Optimizing primer concentration for quantitative SHERLOCK
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A)

B)

C)

G)

SHERLOCK kinetic curves of LwaCasl3a incubated with ZIKV ssRNA targets of
different concentration and a complementary crRNA at an RPA primer concentration of
480nM.

SHERLOCK kinetic curves of LwaCasl13a incubated with ZIKV ssRNA targets of
different concentration and a complementary crRNA at an RPA primer concentration of
240nM.

SHERLOCK kinetic curves of LwaCasl13a incubated with ZIKV ssRNA targets of
different concentration and a complementary crRNA at an RPA primer concentration of
120nM.

SHERLOCK kinetic curves of LwaCasl13a incubated with ZIKV ssRNA targets of
different concentration and a complementary crRNA at an RPA primer concentration of
24nM.

SHERLOCK detection of ZIKV ssRNA of different concentrations at with four different
RPA primer concentrations: 480nM, 240nM, 120nM, 60nM, and 24nM.

The mean R? correlation between background subtracted fluorescence of SHERLOCK
and the ZIKV ssRNA target RNA concentration at different RPA primer concentrations.
Quantitative SHERLOCK detection of ZIKV ssRNA targets at different concentrations in
a 10-fold dilution series (black points) and 2-fold dilution series (red points). An RPA

primer concentration of 240nM was used.
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10.4.21 Figure 5.521
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Figure 5.521: Large volume SHERLOCK reactions with sub-attomolar sensitivity

A) Schematic of large reactions for increased sensitivity single molecule detection.

B) Single molecule SHERLOCK detection with LwaCasl13a in large reaction volumes for
increased sensitivity targeting ssRNA target 1. For 250uL reaction volumes, 100uL of sample
input is used and for 1000pL reaction volumes, 540puL of sample input is used.

C) Single molecule SHERLOCK detection with PsmCas13b in large reaction volumes for
increased sensitivity targeting ssRNA target 1. For 250pL reaction volumes, 100uL of sample

input is used.
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10.4.22 Figure 5.522
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Figure 5.522: Profiling of cleavage ends generated by LwaCasl3a and PsmCas13b
A) Schematic for detection of 2,3 cyclic phosphate ends via PNK labeling and gel electrophoresis.
B) Electrophoresis gel demonstrating 2,3 cyclic phosphate ends generated by LwaCas13a or
PsmCas13b cleavage of ssRNA target 2 or 3 (homopolymer loops). The Cas13 enzyme is
incubated with the appropriate crRNA targeting the ssSRNA target and the cleavage products

are 5’ labeled with a dye IR800 with or without alkaline phosphatase treatment.
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10.4.23 Figure 5.823
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Figure 5.823: Protein purification of Csmé6 orthologs
A) Chromatograms of size exclusion chromatography for EiCsmé6, TtCsmé6, LsCsmé and
SaCsm6 used in this study. Measured UV absorbance (mAU) is shown against the elution
volume (ml).
B) SDS-PAGE gel of EiCsmé6, TtCsmé6 and LsCsmé fractions prior to size exclusion
chromatography. Fractions show the bacterial lysate supernatant (1) after streptactin
incubation, streptactin resins after cleavage with SUMO protease (2), as well as released,

untagged Csmé6 protein (3).
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C) Final SDS-PAGE of concentrated Csmé proteins after size exclusion chromatography. BSA
standard curve (left) is used to quantify Csmé proteins (right). Five dilutions of BSA and two

dilutions of EiCsmé6, TtCsmé6 and LsCsmé6 are shown.
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10.4.24 Figure 5.524
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Figure 5.824: Base preference and activation of Csmé6 orthologs
A) Schematic for Csmé6-mediated positive feedback in a SHERLOCK reaction.
B) Activation of EiCsmé by 2',3'-cyclic phosphate-terminated adenine oligomers of different
lengths. Csmé cleavage is measured using an RNA reporter consisting of A, C, G, or U

homopolymer with ends labeled with a fluorophore and quencher.

C) Base preference of LsCsmé6 cleavage activated by 2',3'-cyclic phosphate-terminated adenine

oligomers.

D) Base preference of TtCsmé6 cleavage activated by 2',3'-cyclic phosphate-terminated adenine

oligomers.
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10.4.25 Figure 5.825
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Figure 5.825: Size analysis and representation of various motifs after Csmé6 cleavage.
A) Schematic of cleavage motif preference discovery screen for Csmé6 orthologs.
B) Bioanalyzer traces for EiCsmé samples showing changes in library size after RNase activity

that is activator dependent.
C) Box plots showing motif distribution of target to non-target motif ratios for Csmé, Csmé

with activator, Csmé with activator and rNTPs, or background library at 5 minute and 60

minute timepoints.

D) Number of depleted motifs for Csm6, Csmé6 with activator, Csmé with activator and rNTPs,

or background library at the 60 minute timepoint.

333



10.4.26 Figure 5.526
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Figure 5.826: Single- and two-base preferences of Csmé conditions determined by random
motif library screen.

A) Sequence logo of preferred sequence motif for EiCsmé cleavage activity.

336



B)

C)

D)

E)

F)

Heatmaps showing single base preferences for Csmé6, Csmé with activator, and Csmé with
activator and rNTPs at the 60 minute timepoint as determined by the random motif library
cleavage screen. Values represented in the heatmap are the the counts of each single-base
across all depleted motifs. Motifs are considered depleted if the -log(target/no target) value
is above 0.5. In the -log;(target/no target) value, target and no target denote the frequency of
a motif in the target and no target conditions, respectively.

Heatmaps showing two-base preferences for Csmé6, Csmé with activator, and Csmé with
activator and rNTPs at the 60 minute timepoint as determined by the random motif library
cleavage screen. Values represented in the heatmap are the the counts of each two-base across
all depleted motifs. Motifs are considered depleted if the -log(target/no target) value is above
0.5. In the -loga(target/no target) value, target and no target denote the frequency of a motif
in the target and no target conditions, respectively.

Heatmap of preferred 3-base motifs for EiCsmé6 cleavage activity. Values represented in the
heatmap are the the counts of each 3-base across all depleted motifs. Motifs are considered
depleted if the -logz(target/no target) value is above 0.5. In the -logz(target/no target) value,
target and no target denote the frequency of a motif in the target and no target conditions,
respectively.

Cleavage activity of EiCsm6 on top reporter sequences derived from the random motif library
screen.

Activation of LsCsmé6 by LwaCas13a cleavage of adenine-uridine activators with different

length adenine tracts. LwaCas13a is targeting synthetic DENV ssRNA.
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10.4.27 Figure 5.827
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Figure 5.527: Mass spectrometry analysis of cleavage ends from LwaCas13a.
A) Schematic of LwaCasl3a dige_stion and mass spectrometric analysis to verify cleavage
products.
B) Mass spectrometry analysis of digestion products from LwaCas13a collateral cleavage (left) or
2,3 cyclic phosphate activator alone (right). Dominant peaks are labeled with mass and

corresponding structure.
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C) Chromatographic traces showing elution profiles for LwaCas13a-digested activator (top) or
2,3 cyclic phosphate activator (bottom). Blue highlighted peaks were analyzed for mass
spectrometry in Fig. 5.

D) Table of abundances for different compounds detected by mass spectrometry in LwaCas13a-

digested activator (left) or 2,3 cyclic phosphate activator (right) samples.
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10.4.28 Figure 5.528
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Figure 5.528: Effect of reporter and activator optimizations on Csmé-enhancement of
LwaCasl3a activity.
A) Schematic of different activator designs for Csmé enhancement of Cas13a activity.

B) Performance of EiCsm6 enhancement of LwaCas13a detection for different activator designs.
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Figure 5.529: Effect of reporter and activator concentrations on Csmé-enhancement of

LwaCasl3a activity.

A) EiCsmé6 enhancement of LwaCasl3a detection at various ratios of poly A and poly U

reporters.

B) EiCsmé6 enhancement of LwaCasl3a detection at various concentrations of (A)s-(U)s

activator.
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10.4.30 Figure 5.830
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Figure 5.830: Effect of in vitro transcription components on Csmé activity.
A) EiCsmé activity in the presence of IVT components, with and without 2,3 cyclic phosphate
activator. Components include 3mM additional MgCl2, ImM rNTP mix, 30U T7 polymerase

B) EiCsmé6 and LwaCas13a activity with (A)s-(U)s activator and poly-A reporter in the presence

of various concentrations of ribonucleotides
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)

D)

E)

F)

Combined EiCsmé and LwaCas13a activity with (A)s-(U)s activator and poly-A/RNaseAlert
reporter combination in the presence of various concentrations of ribonucleotides
Combined EiCsmé and LwaCasl3a activity with (A)e-(U)s activator and poly-A/5x
RNaseAlert reporter combination in the presence of various concentrations of
ribonucleotides

Combined EiCsmé6 and LwaCasl3a activity with 5x(A)s-(U)s activator and poly-
A/RNaseAlert reporter combination in the presence of various concentrations of
ribonucleotides

Combined EiCsmé and LwaCasl3a activity with cyclic phosphate activator and poly-
A/RNaseAlert reporter combination in the presence of various concentrations of

ribonucleotides
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10.4.31 Figure 5.5831
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Figure 5.531: Colorimetric detection of RNase activity with gold nanoparticle aggregation.
A) Schematic of gold-nanoparticle based colorimetric readout for RNase activity. In the absence
of RNase activity, RNA linkers aggregate gold nanoparticles, leading to loss of red color.
Cleavage of RNA linkers releases nanoparticles and results in a red color change.
B) Image of colorimetric reporters after 120 minutes of RNase digestion at various units of

RNase A.

C) Kinetics at 520nm absorbance of AuNP colorimetric reporters with digestion at various unit

concentrations of RNase A.
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D) The 520nm absorbance of AuNP colorimetric reporters after 120 minutes of digestion at
various unit concentrations of RNase A.
E) Time to half-Asz0 maximum of AuNP colorimetric reporters with digestion at various unit

concentrations of RNase A.
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Figure 5.832: SHERLOCK lateral flow detection of ssRNA 1

A) Detection of ssRNA 1 using lateral flow SHERLOCK at various concentrations.

B) Quantitation of band intensity from detection in (A).
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10.4.33 Figure 5.833
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Figure 5.533: One-pot lateral-flow genotyping of genomic DNA from saliva

A)
B)

C)
D)
E)

Schematic for rapid extraction and one-pot detection of genomic DNA from patient saliva.
Detection of rs601338 genotypes in from crude genomic DNA extraction compared to water
input.

Lateral-flow detection of rs601338 genotypes in from crude genomic DNA extraction.
Quantitation of band intensity from detection in (C)

Detection of patient DNA in 25 minutes from crude saliva.
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10.4.34 Figure 5.834
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Figure S34: SHERLOCK lateral flow detection of synthetic cfDNA samples

A) Detection of EGFR exon 19 deletion mutation in synthetic DNA samples with either exon 19
deletion or WT genotype using LwaCas13a.

B) Lateral-flow detection of EGFR exon 19 deletion mutation in synthetic DNA samples with
either exon 19 deletion or WT genotype using LwaCas13a.

C) Quantitation of band intensity from detection in (B).

D) Detection of EGFR exon 19 deletion mutation in 4 patient cfDNA samples with either exon
19 deletion or WT genotype using LwaCas13a.

E) Detection of EGFR T790M deletion mutation in synthetic DNA samples with either T790M
or WT genotype using LwaCas13a.
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Detection of EGFR T790M deletion mutation in patient cfDNA samples with either T790M or WT
genotype using LwaCas13a. (*, p < 0.05; n.s., not significant; bars represent mean + s.e.m.). In this
case, patient 4’s T790M allelic fraction, as verified by targeted sequencing, was 0.6%. We were still
able to see significant detection of this low allelic fraction due to the sensitivity and specificity of
SHERLOCKV2, agreeing with our previous results showing that we could detect greater than 0.1%
allelic fraction samples(Gootenberg et al., 2017c). Additionally, because the Bsu polymerase in RPA
has a minimum error rate of 107 errors per base incorporated per cycle(Chen, 2014), we can expect
about 0.02% of amplicons to contain an error at the mutation we are trying to sense. Because spurious
signal will only be detected if the correct mutation is formed on a wild-type amplicon, then only
0.0067% of amplicons will have a mutation that causes spurious detection of the mutation. As most

patients do not have below 0.01% allelic fraction of cfDNA mutations, this error rate is acceptable.
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10.4.35 Figure 5.835

band guantification

reporter sA 1A C G sAlC 'AF M Bl water input EE RPA input

50000+
z
@ 40000
Q
S
= 30000
3
3 20000-
2
RPA = 10000
input @©
0_
O O
x ¥ H» § %‘1@’ \Y‘p A
C D
acyltransferase = I
target RPA ¢ 30 min 80000
) == sample band — ’§
pre-amplificaion |\ 2
- 8
U-} _:I‘ ‘ -..I‘ %
Cas13/Csmé control band =+ B
digestion MM §
_//@_}% Csmé - - + o+ Csmb — - + +
.
Lateral flow i acyltransferase , _ ,  _ target + - + -
detection target

Figure 5.835: Lateral flow Csmé-enhanced SHERLOCK with different reporter

combinations

A) Lateral-flow detection of Csmé6-enhanced SHERLOCK with various reporter designs. sA:
short poly-A sensor; lA: long poly A sensor; sC: short poly C sensor; IC: long poly C sensor;
sA/C: short poly-A/C sensor; 1A/C: long poly-A/C sensor; M: mixed RNase alert-like sensor.

B) Quantitation of band intensity from detection in (A)

C) Schematic of lateral flow readout of EiCsmé6-enhanced LwaCas13a SHERLOCK detection of
acyltransferase ssDNA with separate RPA and IVT steps

D) EiCsmé6-enhanced lateral flow SHERLOCK of P. aeruoginosa acyltransferase gene in

combination with LwaCas13a. Band intensity quantitation is shown to the right.
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Figure 5.536: Non-multiplexed theranostic detection of mutations and REPAIR editing

A) Detection of APC alleles from healthy- and disease-simulated samples with LwaCas13a.

B) Detection with LwaCas13a of editing correction at the APC alleles from REPAIR targeting

and non-targeting samples.
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10.5 Chapter 6 Supplementary Figures

10.5.1 Figure 6.1
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Extended Data Figure 6.1 | Evaluation of LwaCas13a PFS preferences and comparisons to

LshCasi3a.

a, Sequence comparison tree of the fifteen Cas13a orthologs evaluated in this study. b, Ratios of in

vive activity from Fig. 1B. ¢, Distributions of PFS enrichment for LshCasl3a and LwaCas13a in
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targeting and non-targeting samples. The 25 and 75™ percentiles are shown as grey dotted lines and
the median is shown as a red dotted line. The minimum and maximum are marked by the ends of the

distribution. Each distribution represents 976 PFS sequences (n = 976). d, Number of LshCas13a and

LwaCas13a PFS sequences above depletion threshold for varying depletion thresholds. Values are

mean + SEM with n = 2. e, Distributions of PFS enrichment for LshCas13a and LwaCasl3a in

targeting samples, normalized to non-targeting samples. The 25" and 75 percentiles are marked by
the ends of the box and the median is shown as a red line within the box. Whiskers denote 1.5 times
the interquartile range. +, outliers that are beyond the 1.5 times the interquartile range. Each

distribution represents 976 PFS sequences (n = 976). f, Sequence logos and counts for remaining PFS
sequences after LshCas13a cleavage at varying enrichment cutoff thresholds. g, Sequence logos and

counts for remaining PFS sequences after LwaCasl3a cleavage at varying enrichment cutoff

thresholds.

353



10.5.2 Figure 6.2
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Extended Data Fig. 6.2 | Biochemical characterization of LwaCasl13a RNA cleavage activity.

a, Gel electrophoresis comparison of LwaCas13a and LshCas13a RNase activity on ssRNA 1. b, Gel

electrophoresis of ssRNA1 after incubation with LwaCas13a with or without crRNA 1 for varying

amounts of times. ¢, Gel electrophoresis of ssSRNA 1 after incubation with varying amounts of
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LwaCas13a-crRNA complex. d, Sequence and structure of ssRNA 4 and ssRNA 5. crRNA spacer
sequence is highlighted in blue. e, Gel electrophoresis of ssRNA 4 and ssRNA 5 after incubation with
LwaCas13a and crRNA 1. f, Sequence and structure of ssRNA 4 with sites of poly-x modifications
highlighted in red. crRNA spacer sequence is highlighted in blue. g, Gel electrophoresis of ssRNA 4
with each of 4 possible poly-x modifications incubated with LwaCas13a and crRNA 1. h, Gel
electrophoresis of pre-crRNA from the L. wadei CRISPR-Cas locus showing LwaCas13a processing

activity. i, Cleavage efficiency of ssRNA 1 for crRNA spacer truncations after incubation with

LwaCas13a.
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10.5.3 Figure 6.3
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Extended Data Fig. 6.3 | Engineering and optimization of LwaCasl3a for mammalian

knockdown.

a, Knockdown of Gluc transcript by LwaCas13a and Gluc guide 1 spacers of varying length. b,

Knockdown of Gluc transcript with Gluc guide 1 and varying amounts of transfected LwaCasl3a

plasmid. ¢, Knockdown of Gluc transcript by LwaCas13a and varying amounts of transfected Gluc

guide 1 and 2 plasmid (n = 2 or 3). d, Knockdown of Gluc transcript using guides expressed from

either U6 or tRNAV promoters (n

2 or 3). e, Knockdown of KRAS transcript using guides
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expressed from either U6 or tRNA"? promoters (n = 2 or 3). f, Knockdown of KRAS and CXC4

transcripts by LwaCas13a using guides transfected in A375 cells with position-matched shRNA

comparisons (n = 2 or 3). g, Knockdown of Gluc transcript and endogenous transcripts PPIB, KRAS,
and CXCR4 with active and catalytically inactive LwaCas13a. h, Validation of the top three guides
from the arrayed knockdown Gluc and Cluc screens with shRNA comparisons (n = 2 or 3). i, Arrayed

knockdown screen of 93 guides evenly tiled across the XIST transcript. All values are mean + SEM
with n = 3, unless otherwise noted (n represents the number of transfection replicates). **p < 0.01;

*p < 0.05. ns = not significant. A two-tailed student’s T-test was used for comparisons.
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10.5.4 Figure 6.4
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Extended Data Fig. 6.4 | LwaCasl13a targeting efficiency is influenced by accessibility along

the transcript.
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a, First row: Top knockdown guides are plotted by position along target transcript. Top knockdown

guides are defined as top 20% of guides for Gluc and top 30% of guides for Cluc, KRAS, and PPIB.
Second row: Histograms for the pairwise distance between adjacent top guides for each transcript (blue)
compared to a random null-distribution (red). Inset shows the cumulative frequency curves for these
histograms. A shift of the blue curve (actual measured distances) to the left of the red curve (null

distribution of distances) indicates that guides are closer together than expected by chance. b, Gluc,

Cluc, PPIB, and KRAS knockdown partially correlates with target accessibility as measured by
predicted folding of the transcript. The correlation was computed using a Pearson’s correlation

coefficient and two-tailed significance test. ¢, Kernel density estimation plots depicting the

correlation between target accessibility (probability of a region being base-paired) and target

expression after knockdown by LwaCas13a. d, First row: Correlations between target expression and

target accessibility (probability of a region being base-paired) measured at different window sizes (W)
and for different k-mer lengths. Second row: P-values for the correlations between target expression
and target accessibility (probability of a region being base-paired) measured at different window sizes
(W) and for different k-mer lengths. The color scale is designed such that p-values > 0.05 are shades

of red and p-values < 0.05 are shades of blue.
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10.5.5 Figure 6.5
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Extended Data Fig. 6.5 | Detailed evaluation of LwaCasl3a sensitivity to mismatches in the
guide:target duplex at varying spacer lengths.

a, Knockdown of KRAS evaluated with guides containing single mismatches at varying positions
across the spacer sequence (n = 2 or 3). b, Knockdown of PPIB evaluated with guides containing single
mismatches at varying positions across the spacer sequence (n = 2 or 3). ¢, Knockdown of Gluc

evaluated with guides containing non-consecutive double mismatches at varying positions across the
spacer sequence. The wild-type sequence is shown at the top with mismatch identities shown below.

d, Collateral cleavage activity on ssRNA 1 and 2 for varying spacer lengths. e, Specificity ratios of
guide tested in (d). Specificity ratios are calculated as the ratio of the on-target RNA (ssRNA 1)

collateral cleavage to the off-target RNA (ssRNA 2) collateral cleavage. f, Collateral cleavage activity
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on ssRNA 1 and 2 for 28-nt spacer crRNA with synthetic mismatches tiled along the spacer. g,
Specificity ratios, as defined in (e), of crRNA tested in (f). h, Collateral cleavage activity on ssRNA 1
and 2 for 23-nt spacer crRNA with synthetic mismatches tiled along the spacer. i, Specificity ratios,
as defined in (e), of crRINA tested in (h). j, Collateral cleavage activity on ssRNA 1 and 2 for 20-nt
spacer crRNA with synthetic mismatches tiled along the spacer. k, Specificity ratios, as defined in (e),
of crRNA tested in (j). For (a-c), all values are mean + SEM with n = 3, unless otherwise noted (n
represents the number of transfection replicates). For (d-k), all values are mean + SEM with n = 4 (n

represents the number of technical replicates).
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10.5.6 Figure 6.6
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Extended Data Fig. 6.6 | LwaCasl3a is more specific than shRNA knockdown for endogenous

targets.

a, Left: Expression levels in log,(transcripts per million (TPM)) values of all genes detected in RNA-

seq libraries of non-targeting shRNA-transfected control (x-axis) compared to KRAS-targeting
shRNA (y-axis). Shown is the mean of three biological replicates. The KRAS transcript data point is
colored in red. Right: Expression levels in logz(transcripts per million (TPM)) values of all genes
detected in RNA-seq libraries of non-targeting LwaCasl3a-guide-transfected control (x-axis)

compared to KRAS-targeting LwaCasl13a-guide (y-axis). Shown is the mean of three biological

ShANA Gluc rep 3

shRNA Gluc rep 3

362

guide Gluc rep 3

guide Gluc rep 3

guide Gluc rep 3



replicates. The KRAS transcript data point is colored in red. b, Left: Expression levels in

loga(transcripts per million (TPM)) values of all genes detected in RNA-seq libraries of non-targeting
shRNA-transfected control (x-axis) compared to PPIB-targeting shRNA (y-axis). Shown is the mean
of three biological replicates. The PPIB transcript data point is colored in red. Right: Expression levels
in logz(transcripts per million (TPM)) values of all genes detected in RNA-seq libraries of non-
targeting LwaCas13a-guide-transfected control (x-axis) compared to PPIB-targeting LwaCasl3a-
guide (y-axis). Shown is the mean of three biological replicates. The PPIB transcript data point is

colored in red. ¢, Comparisons of individual replicates of non-targeting shRNA conditions (first row)
and Gluc-targeting shRNA conditions (second row). d, Comparisons of individual replicates of non-
targeting guide conditions (first row) and Gluc-targeting guide conditions (second row). e, Pairwise

comparisons of individual replicates of non-targeting shRNA conditions against the Gluc-targeting

shRNA conditions. f, Pairwise comparisons of individual replicates of non-targeting guide conditions

against the Gluc-targeting guide conditions.

363



10.5.7 Figure 6.7
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Extended Data Fig. 6.7 | Detailed analysis of LwaCasl13a and RNAi knockdown variability

(standard deviation) across all samples.
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a, Heatmap of correlations (Kendall’s tau) for loga(transcripts per million (TPM+1)) values of all

genes detected in RNA-seq libraries between targeting and non-targeting replicates for shRNA or

guide targeting either luciferase reporters or endogenous genes. b, Heatmap of correlations (Kendall's

tau) for logs(transcripts per million (TPM+1)) values of all genes detected in RNA-seq libraries

between all replicates and perturbations. ¢, Distributions of standard deviations for log(transcripts

per million (TPM+1)) values of all genes detected in RNA-seq libraries among targeting and non-

targeting replicates for each gene targeted by either shRNA or guide.
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10.5.8 Figure 6.8
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Extended Data Fig. 6.8 | LwaCas13a knockdown is specific to the targeted transcript with no
activity on a measured off-target transcript.

a, Heatmap of absolute Gluc signal for first 96 spacers tiling Gluc. b, Heatmap of absolute Cluc signal
for first 96 spacers tiling Gluc. ¢, Relationship between absolute Gluc signal and normalized luciferase
for Gluc tiling guides. d, Relationship between absolute Cluc signal and normalized luciferase for
Gluc tiling guides. e, Relationship between PPIB 2" levels and PPIBknockdown for PPIBtiling guides.
f, Relationship between GAPDH 2" levels and PPIBknockdown for PPIBtiling guides. g, Relationship
between KRAS 2" levels and KRAS knockdown for KRAS guides. h, Relationship between GAPDH
2" levels and KRAS knockdown for KRAS guides. i, Bioanalyzer traces of total RNA isolated from

cells transfected with Gluc-targeting guides 1 and 2 or non-targeting guide from the experiment with
active LwaCas13a in Extended Data Fig. 3g. The RNA-integrity number (RIN) is shown and 18S
rRNA and 28S rRNA peaks are labeled above. A student’s t-test shows no significant difference for
the RIN between either of the targeting conditions and the non-targeting condition. The curves are
shown as a mean of three replicates and the shaded areas in light red around the curves show the

s.e.m. j, The Bioanalyzer trace for the RNA ladder with peak sizes labeled above.
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10.5.9 Figure 6.9
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Extended Data Fig. 6.9 | dLwaCas13a-NF can be used for ACTB imaging.
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a, Comparison between localization of dLwaCas13-GFP and dLwaCasl3a-GFP-KRAB
(dLwaCas13a-NF) constructs for imaging ACTB. Scale bars, 10um b, Additional fields of view of

dLwaCas13a-NF delivered with a non-targeting guide. Scale bars, 10um. ¢, Additional fields of view
of dLwaCas13a-NF delivered with ACTB guide 3. Scale bars, 10um. d, Additional fields of view of

dLwaCas13a-NF delivered with ACTB guide 4. Scale bars, 10pum.
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10.5.10 Figure 6.10
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Extended Data Fig. 10| dLwaCas13a-NF can image stress granule formation in living cells. a,

Representative images from RNA FISH of the ACTB transcript in dLwaCas13a-NF-expressing cells

with corresponding ACTB-targeting and non-targeting guides. Cell outline is shown with a dashed
line. Scale bars, 10pm b, Overall signal overlap between ACTB RNA FISH signal and dLwaCas13a-

NF quantified by the Mander’s overlap coefficient (left) and Pearson’s correlation (right). Correlations
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and signal overlap are calculated pixel-by-pixel on a per cell basis. n = 10-25 cells per condition. ***¥*p
< 0.0001; ***p < 0.001; **p < 0.01. A two-tailed student’s T-test was used for comparisons. c,

Representative images from live-cell analysis of stress granule formation in response to 400 uM

sodium arsenite treatment. Scale bars, 20pm d, Quantitation of stress granule formation in response

to sodium arsenite treatment. Quantitation is based on overlapping dLwaCas13a-NF and G3BP1
puncta. n = 54-72 cells per condition. All values are mean + SEM. ****p < 0.0001; ***p < 0.001; **p
< 0.01; *p < 0.05. ns = not significant. A two-tailed student’s T-test was used for comparisons.
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10.6 Chapter 7 Supplementary Figures

10.6.1 Figure 7.81
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Figure 7.51: Bacterial screening of Casl3b orthologs for in

determination.

vivo efficiency and PFS

A) Schematic of bacterial assay for determining the PFS of Cas13b orthologs. Cas13b orthologs

with beta-lactamase targeting spacers are co-transformed with beta-lactamase expression

plasmids containing randomized PFS sequences and subjected to dual antibiotic selection. PFS
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sequences that are depleted during co-transformation with Cas13b suggest targeting activity
and are used to infer PFS preferences.

Quantification of interference activity of Cas13b orthologs targeting beta-lactamase as
measured by colony forming units (cfu). Values represent mean +/- S.D.

PFS weblogos for Cas13b orthologs as determined by depleted sequences from the bacterial
assay. PFS preferences are derived from sequences depleted in the Cas13b condition relative

to empty vector controls.
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10.6.2 Figure 7.2
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Figure 7.82: Relative expression of Casl3 orthologs in mammalian cells and correlation of
expression with interference activity.

A) Expression of Cas13 orthologs as measured by msfGFP fluoresence. Casl3 orthologs C-
terminally tagged with msfGFP were transfected into HEK293FT cells and their fluorescence

measured 48 hours post transfection.
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B) Correlation of Casl3 expression to interference activity. The average RLU of two Gluc
targeting guides for Cas13 orthologs, separated by subfamily, is plotted versus expression as
determined by msfGFP fluoresence. The RLU for targeting guides are normalized to RLU
for a non-targeting guide, whose value is set to 1. The non-targeting guide is the same as in

Figure 1B for Cas13b.
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10.6.3 Figure 7.83
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Figure 7.83: Optimization of Cas13b knockdown and further characterization of mismatch
specificity.
A) Gluc knockdown with two different guides is measured using the top two Cas13a and top

four Cas13b orthologs fused to a variety of C-terminal nuclear localization and nuclear

export tags.
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B) Knockdown of KRAS is measured for LwaCas13a, RanCas13b, PguCas13b, PspCas13b and
shRNA with four position-matched guides. Non-targeting guide is the same as in Figure 1B.

C) Schematic of the single and double mismatch plasmid libraries used for evaluating the
specificity of LwaCas13a and PspCas13b knockdown. Every possible single and double
mismatch is present in the target sequence as well as in three positions directly flanking the
5"and 3’ ends of the target site.

D) The depletion levels of transcripts with the indicated single mismatches are plotted as a
heatmap for both the LwaCas13a and PspCas13b conditions. The wildtype base is outlined
by a green box.

The depletion levels of transcripts with the indicated double mismatches are plotted as a heatmap for
both the LwaCas13a and PspCas13b conditions. Each box represents the average of all possible double

mismatches for the indicated position.
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10.6.4 Figure 7.54
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Figure 7.84: Characterization of design parameters for REPAIRv1.

A)

B)

C)

E)

Knockdown efficiency of Gluc with wild-type Cas13b or catalytically inactive
H133A/H1058A Cas13b (dCas13b).

Quantification of luciferase activity restoration by dCas13b fused to either the wild-type
ADAR2 deaminase domain (ADAR2pp) or the hyperactive E488Q mutant
ADAR2pp(E488Q) deaminase domain, tested with tiling Cluc targeting guides.

Guide design and sequencing quantification of A to I editing for 30-nt guides targeting Cluc
W85X.

Guide design and sequencing quantification of A to I editing for 50-nt guides targeting PPIB.
Influence of linker choice on luciferase activity restoration by REPAIRv1. Values represent

mean +/- S.E.M.
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10.6.5 Figure 7.S5
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Figure 7.85: Comparison of RNA editing activity of dCas13b and REPAIRv1.
A) Schematic of guides used to target the W85X mutation in the Cluc reporter.
B) Sequencing quantification of A to [ editing for indicated guides transfected with dCas13b. For
each guide, the region of duplex RNA is outlined in red. Values represent mean +/-
S.E.M. Non-targeting guide is the same as in Fig2C.
C) Sequencing quantification of A to I editing for indicated guides transfected with REPAIRv1.
For each guide, the region of duplex RNA is outlined in red. Values represent mean +/-

S.E.M. Non-targeting guide is the same as in Fig2C.

379



D) Comparison of on-target A to [ editing rates for dCas13b and dCas13b-ADAR2pp(E488Q)

for guides tested in panel B and C.
E) Influence of base identify opposite the targeted adenosine on luciferase activity restoration by

REPAIRvVI1. Values represent mean +/— S.E.M.
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Figure 7.56: ClinVar motif distribution for G>A mutations.

The number of each possible triplet motif observed in the ClinVar database for all G>A

mutations.
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10.6.7 Figure 7.87
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Figure 7.87: Truncations of dCas13b support functional RNA editing.

H []targeting guide
[l non-targeting guide
H
H
—
T T T 1
i 2 3 4
Cluc/Gluc RLU

N-terminal and C-terminal truncations of dCas13b allow for RNA editing as measured by

restoration of luciferase signal for the Cluc W85X reporter. Values represent mean +/-

S.E.M. The construct length refers to the coding sequence of the REPAIR constructs.
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Figure 7.88: REPAIR V1 editing activity evaluated without a guide and in comparison to
ADAR2 deaminase domain alone.

A) Quantification of A to I editing of the Cluc W 85X mutation by REPAIRv1 with and without
guide as well as the ADAR2 deaminase domain only without guide. Values represent mean
+/- S.E.M. Non-targeting guide is the same as in Fig2C.

B) Number of differentially expressed genes in the REPAIRv1 and ADAR2pp conditions from
panel A.

C) The number of significant off-targets from the REPAIRv1 and ADAR2pp conditions from
panel A.

D) Overlap of off-target A to I editing events between the REPAIRv1 and ADAR2pp conditions

from panel A. The values plotted are the percent of the maximum possible intersection of the

two off-target data sets.
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10.6.9 Figure 7.89
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Figure 7.89: Comparison of REPAIR V1 to other programmable ADAR systems.

A) Schematic of two programmable ADAR schemes: BoxB-based targeting (top) and full length
ADAR?2 targeting (bottom). For BoxB-based targeting, ADARpD(E488Q) is fused to the viral

protein lambda N (BoxB-2), and the fusion protein is recruited to target adenosines by a guide
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B)

C)

D)

E)

RNA containing homology to the target site and hairpins that BoxB-Z binds to. Full length
ADAR? targeting utilizes a guide RNA with homology to the target site and a motif
recognized by the double strand RNA binding domains of ADAR2.

Transcriptome-wide sites of significant RNA editing by BoxB-ADAR?2 pp(E488Q) with a
guide targeting Cluc and a non-targeting guide. The on-target Cluc site (254 A>I) is
highlighted in orange.

Transcriptome-wide sites of significant RNA editing by full length ADAR2 with a guide
targeting Cluc and a non-targeting guide. The on-target Cluc site (254 A>I) is highlighted in
orange.

Transcriptome-wide sites of significant RNA editing by REPAIRv1 with a guide targeting
Cluc and a non-targeting guide. The on-target Cluc site (254 A>I) is highlighted in orange.
The non-targeting guide is the same as in Fig2C.

Quantification of on-target editing rate percentage for BoxB-ADAR2 pp(E488Q), ADAR2,
and REPAIRv1 for targeting guides against Cluc.

Overlap of off-target sites between different targeting and non-targeting conditions for
programmable ADAR systems. The values plotted are the percent of the maximum possible

intersection of the two off-target data sets.
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10.6.10 Figure 7.510
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Figure 7.810: Efficiency and specificity of dCas13b-ADAR2 pp(E488Q) mutants.
A) Quantification of luciferase activity restoration by dCas13b-ADAR2pp(E488Q) mutants for
Cluc-targeting and non-targeting guides. Non-targeting guide is the same as in Fig2C.
B) Relationship between the ratio of targeting and non-targeting guide RLU and the number of
RNA-editing off-targets as quantified by transcriptome-wide sequencing
C) Quantification of transcriptome-wide off-target RNA editing sites versus on-target Cluc

editing efficiency for dCas13b-ADAR2 pp(E488Q) mutants.
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10.6.11 Figure 7.511
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Figure 7.511: Transcriptome-wide specificity of RNA editing by dCas13b-ADAR2 pp(E488Q).
A) Transcriptome-wide sites of significant RNA editing by dCas13b-ADAR2 pp(E488Q)
mutants with a guide targeting Cluc. The on-target Clucsite (254 A>I) is highlighted in orange.

B) Transcriptome-wide sites of significant RNA editing by dCas13b-ADAR2 pp(E488Q)

mutants with a non-targeting guide.
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10.6.12 Figure 7.512
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Figure 7.812: Characterization of motif biases in the off-targets of dCas13b-ADAR2 pp(E488Q)

editing.

A) For each dCas13b-ADAR2 pp(E488Q) mutant, the motif present across all A>I off-target edits

in the transcriptome is shown.

B) The distribution of off-target A>I edits per motif identity is shown for REPAIRv1 with

targeting and non-targeting guide.

C) The distribution of off-target A>I edits per motif identity is shown for REPAIRv2 with

targeting and non-targeting guide.
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10.6.13 Figure 7.513
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Figure 7.513: Further characterization of REPAIR vl and REPAIR v2 off-targets.
A) Histogram of the number of off-targets per transcript for REPAIRv1.
B) Histogram of the number of off-targets per transcript for REPAIRv2.

C) Variant effect prediction of REPAIRvV1 off targets.

D) Distribution of REPAIRvV1 off targets in cancer-related genes. TSG, tumor suppressor gene.
E) Variant effect prediction of REPAIRv2 off targets.

Distribution of REPAIRV2 off targets in cancer-related genes.
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Figure 7.514: Evaluation of off-target sequence similarity to the guide sequence.
A) Distribution of the number of mismatches (hamming distance) between the targeting guide
sequence and the off-target editing sites for REPAIRv1 with a Cluc targeting guide.
B) Distribution of the number of mismatches (hamming distance) between the targeting guide

sequence and the off-target editing sites for REPAIRv2 with a Cluc targeting guide.
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10.6.15 Figure 7.515
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Figure 7.515: Comparison of REPAIRv1, REPAIRv2, ADAR2 RNA targeting, and BoxB RNA
targeting at two different doses of vector (150ng and 10ng effector).

A) Quantification of RNA editing activity at the Cluc W85X (254 A>I) on-target editing site by
REPAIRv1, REPAIRv2, ADAR2 RNA targeting, and BoxB RNA targeting approaches. Each
of the four methods were tested with a targeting or non-targeting guide. Values shown are
the mean of the three replicates.

B) Quantification of RNA editing off-targets by REPAIRv1, REPAIRv2, ADAR2 RNA targeting,
and BoxB RNA targeting approaches. Each of the four methods were tested with a targeting
guide for the Cluc W85X (254 A>I) site or non-targeting guide. For REPAIR constructs,

non-targeting guide is the same as in Fig. 2C.
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10.6.16 Figure 7.S16
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Figure 7.816: RNA editing efficiency and genome-wide specificity of REPAIRv1 and
REPAIRv2.

A) Quantification of RNA editing activity at the PPIB guide 1 on-target editing site by
REPAIRv1, REPAIRv2 with targeting and non-targeting guides. Values represent mean +/—-
S.E.M.

B) Quantification of RNA editing activity at the PPIB guide 2 on-target editing site by
REPAIRv1, REPAIRv2 with targeting and non-targeting guides. Values represent mean +/—
S.E.M.

C) Quantification of RNA editing off-targets by REPAIRv1 or REPAIRv2 with PPIB guide 1,
PPIB guide 2, or non-targeting guide.

D) Overlap of off-targets between REPAIRv1 for PPIB targeting, Cluc targeting, and non-
targeting guides. The values plotted are the percent of the maximum possible intersection of

the two off-target data sets.
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10.6.17 Figure 7.517
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Figure 7.517: High coverage sequencing of REPAIR vl and REPAIRv2 off-targets.

A) Quantitation of off-target edits for REPAIRv1 and REPAIRv2 as a function of read depth
with a total of 5 million reads (12.5x coverage), 15 million reads (37.5x coverage) and 50
million reads (125x coverage) per condition.

B) Overlap of off-target sites at different read depths of the following conditions: REPAIRv1
versus REPAIRv1 (left), REPAIRv2 versus REPAIRv2 (middle), and REPAIRv1 versus
REPAIRvV2 (right). The values plotted are the percent of the maximum possible intersection
of the two off-target data sets.

C) Editing rate of off-target sites compared to the coverage (log2(number of reads)) of the off-

target for REPAIRv1 and REPAIRv2 targeting conditions at different read depths.
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D) Editing rate of off-target sites compared to the log2(TPM+1) of the off-target gene expression
for REPAIRv1 and REPAIRV2 targeting conditions at different read depths.
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10.6.18 Figure 7.518
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Figure 7.518: Quantification of REPAIRv2 activity and off-targets in the U20S cell line.
A) Transcriptome-wide sites of significant RNA editing by REPAIRv2 with a guide targeting
Cluc in the U20S cell line. The on-target Cluc site (254 A>I) is highlighted in orange.
B) Transcriptome-wide sites of significant RNA editing by REPAIRv2 with a non-targeting
guide in the U20S cell line.
C) The on-target editing rate at the Cluc W85X (254 A>I) by REPAIRv2 with a targeting guide
or non-targeting guide in the U20S cell line.

D) Quantification of off-targets by REPAIRv2 with a guide targeting Cluc or non-targeting guide
in the U20S cell line.
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10.6.19 Figure 7.819
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Figure 7.519: RNA editing efficiency and specificity of REPAIR vl and REPAIRv2.

A) Quantification of percent editing of KRAS with KRAS-targeting guide 1 at the targeted
adenosine (blue triangle) and neighboring sites for REPAIRv1 and REPAIRv2. For each
guide, the region of duplex RNA is outlined in red. Values represent mean +/- S.E.M. Non-
targeting guide is the same as in Fig. 2C.

B) Quantification of percent editing of KRAS with KRAS-targeting guide 3 at the targeted
adenosine and neighboring sites for REPAIRv1 and REPAIRv2. Non-targeting guide is the
same as in Fig. 2C.

C) Quantification of percent editing of PPIB with PPIB-targeting guide 2 at the targeted
adenosine and neighboring sites for REPAIRv1 and REPAIRv2. Non-targeting guide is the

same as in Fig. 2C.
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10.6.20 Figure 7.520
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Figure 7.820: Demonstration of all potential codon changes with an A>I RNA editor.

A) Table of all potential codon transitions enabled by A>I editing.

B) A codon table demonstrating all the potential codon transitions enabled by A>I editing.
Adapted and modified based on (Watson, 2014).

C) Model of REPAIR A to | editing of a precisely encoded nucleotide via a mismatch in the guide
sequence. The A to I transition is mediated by the catalytic activity of the ADAR2 deaminase
domain and will be read as a guanosine by translational machinery. The base change does not
rely on endogenous repair machinery and is permanent for as long as the RNA molecule exists
in the cell.

D) REPAIR can be used for correction of Mendelian disease mutations.
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E) REPAIR can be used for multiplexed A to I editing of multiple variants for engineering
pathways or modifying disease. Multiplexed guide delivery can be achieved by delivering a
single CRISPR array expression cassette since the Cas13b enzyme processes its own array.

F) REPAIR can be used for modifying protein function through amino acid changes that affect
enzyme domains, such as kinases.

G) REPAIR can modulate splicing of transcripts by modifying the splice acceptor site.
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