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A bstract

In this thesis, I propose concretizing the Piagetian view of children as 'gifted learners' to

children as 'gifted language builders', who construct and learn many languages to reduce their

uncertainty about the world. These include languages such as, the language of geometry, the

language of music & rhythm, even a child playing with blocks (eg: LEGO) is actually learning

or rather building a language for themselves. As a specific case, I introduce an experimental

paradigm and tool, Finding GoDot, for studying the cognitive language of geometry. Using the

above lens, I model constructive actions as a language, specifically looking at the task of

drawing shapes.

Next, majority of this thesis deals with the problen; of calculating the entropy and

redundancy of such a language for which there is no readily available language data. For this,

I utilize Shannon's insight of accessing our implicit statistical knowledge of the structure of a

language by converting it to a reduced text form, through a prediction experiment. I generalize

Shannon's experiment design to make it applicable for a wide variety of languages, beyond just

text-based, especially those lacking existing language data.

Finally, I compute entropy (average information per letter) values for individual shapes

to show evidence of subjects using a rich forward model to mentally simulate incomplete shapes,

thus gaining information about the underlying shape more than is visible. I also share results

on bounds for the entropy and redundancy of the proposed language of actions for generating

shape drawings.

Thesis Supervisor: Joshua Tenenbaum Thesis Supervisor: Laura Schulz

Title: Professor of Computational Cognitive Science Title: Professor of Cognitive Science
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0 Key ideas and their flow

The current version of this thesis lives at:

m anui dhariw al.github.io/S M Thesis

In this thesis, I propose looking at a lot of different kinds of

human learning as form of language learning. The flow of

thoughts and ideas in this thesis are as follows:

* One of the key hypothesis of Piaget was seeing

children as gifted learners, building their own

intellectual structures.

* Learning in general can be seen as reducing

uncertainty.

" Shannon gave us a method to objectively measure

uncertainty through his notions of Entropy and

Redundancy.

* Looking at the results from the experiments that I

did with both young children and adults as shared

in this thesis, I propose looking at a lot of different

kinds of human learning through the lens of
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language learning. For instance, using this lens, one

can view a child playing with LEGO blocks as -+

learning a language. To tackle the task of learning

to reduce their uncertainty about the world,

children cognitively construct their own languages,

identifying and creating both the alphabet for a

language and iteratively building its probabilistic

grammars. The alphabet of these various languages

can be composed of not just typical letters, but also

actions, sounds, and various other sets of building

blocks. As a specific case in this thesis, I introduce

an experimental paradigm, Finding GoDot, for

studying one of these languages -4 the cognitive

language of geometric concepts.

* Here I specifically tackle the task of approximating

the entropy and redundancy that this language

might have. It is a non-trivial problem to define and

verify the specifics of our cognitive language of

geometry. So here I create and propose a possible

sub-language, 'Sketch-O' (as a language of actions

to generate shape drawings) and argue why it might

be more apt than other sub-language possibilities.

* One of Shannon's key insights was about translating

the English language into a reduced text form

9



through his prediction experiment and using that to

calculate the bounds on the entropy and

redundancy of English. Although we can directly

calculate these values for a language like English

with its ton of readily available language data, I

note that the real value of Shannon's experiment is

for languages for which there is no such readily

available data or for which the only source for this

kind of language statistics is our own cognitive

machinery! And the first step to access this is to

have a broader view of a lot of human learning as

being a kind of language learning. Next, to be able

to extract the statistics for these languages, I

generalize Shannon's experimental method to be

applicable to a wide variety of other languages. As a

specific test case, I use it for calculating the entropy

and redundancy of a universal language of actions

for generating shape drawings.

Lastly, I use entropy values for individual shapes, to

show evidence of participants using a rich forward

model to mentally simulate incomplete shapes, thus

gaining information about the underlying shape

more than is visible. I further prove it by showing

that subjects were not able to mentally simulate

random non-sensical shapes and thus limit their

information to what is visible.

10



* As my next steps, I briefly argue why a global

prediction experiment, as proposed by Shannon,

and extended in this thesis, is a stronger indicator

of one's knowledge of a language than the Turing

test which relies on testing a learner (a language

model - AI system) by evaluating the instances

created by them, using the alphabet of that

language.

Children as gifted learners

I
Children as gifted 'ianguage' learners

'I

11
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1 Testing a game with Shannon, Piaget, and a 5-year-

old

1.1 Piaget++

I believe we build/learn a hundred and one languages during our

childhood, and the one we use for reading and writing is just one of them.

These include languages such as, the language of geometry or the

language of forms, the language of music and rhythm, even a child

playing with blocks (eg: LEGO) is learning a language or rather building

a language for themselves. In fact, a child taking in the myriad forms of

inputs in the form of visuals, sounds, words, objects and their forms,

colors, textures, faces, other agents and their goals and behaviors etc. is

constantly building up many languages and sub-languages to make sense

of it all. The activity of constructing a language can be thought of as

both - identifying the building blocks of that language and the inductive

constraints that govern the composition of those building blocks i.e. the

grammar of the language. I would go as far as to claim that the insightful

hypothesis made by Piaget, Papert, and others about -* viewing children

as gifted learners, can be equated to viewing children as gifted language

builders! The activity of building and learning languages for oneself is the

ultimate hallmark of early childhood development.

1.2 Shannon not nonnahS

Claude Shannon in his seminal paper [3] (A mathematical theory of

communication), introduced the notion of redundancy and his measure of

12



uncertainty of an information source - 'Entropy'. The concept of entropy

provides an objective measure to study the statistical structure of a

language. A simple way to get a picture about these notions is:

* Redundancii
due to constraints like q follows a u

Possible 5 letter words
using the below alphabet

N = 5, Alphabets: [a, b, c,......., zJ

Figure 1 Visual representation of the concept of Redundancy in the English Language

The bigger circle in Figure 1 denotes the space of all the possible 5 letter

words that can be made using the alphabet of English. The smaller circle

is the five letter words one would find in an English dictionary. The

measure of this compression in the possible sequences in a language to

the ones used by the learners of a language is the Redundancy of the

language. It is caused by the constraints placed on the alphabet of the

language due to its grammar.
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The Entropy of a language can be thought of as the optimal number of

questions one needs to ask an expert in that language, to learn/know the

sequence they have in mind. For a detailed outlook on these topics,

please refer to the chapter on Entropy and Redundancy.

1.3 The Child

It is astonishing how a child takes in all the babble i.e. the sounds and

words being generated in their environment, and slowly build for

themselves the underlying structure of the language, its possible alphabet

and probabilistic grammar, and thus start to speak approximate words,

then words, and soon full meaningful sentences by the early age of 2-2.5

years.

The question that I was curious about was -- what kind of language is a

child building from all the visual input they take in constantly day in

and out - input in the form of shapes, color, textures, patterns of

objects and tangible material around them both living, non-living,

natural and man-made; what might be the possible alphabet sets and the

rules/grammar they abstract in the process of building their cognitive

language of geometry, as they see (and/or feel for children without

eyesight) thousands of material instances every single day.

I was lucky to have an entire afternoon to spend with a five-year-old, and

I started by asking him to draw instances of common shapes and objects,

observing both his stroke order and abstract properties in his instances.
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Having drawn 7-10 shapes for me, I saw him getting bored of the

activity. Given my experience of previously building dozens of board

games and card games for children, I flipped the activity on its head, and

made a game out of it. This is the base mechanic for the experimental

paradigm that I share in this thesis.

1.4 The Game

I showed the child a grid made of over 100 removable blocks and told

him: "I have hidden a shape underneath these blocks, it could be any

shape in the world, you have to find the shape by removing the least

number of blocks!".

* 41

errors, zero entropy -+ no fun! both as a

I had hidden a gaussian curve,

made from N=21 dots. I

discretized the shape into dots

as otherwise, finding a

continuous shape (given its

starting point) would lead to no

game and as an experiment.

The way the five-year-old went about this search task was quite

intriguing. Below are some snapshots of him uncovering the gaussian

shape (from Feb 2017):

15



Figure 2 Makes his 1st prediction - "I think you hid a L"

Figure 3 He seems to know that most shapes around him are symmetrical,

and uses that to reduce his uncertainty

16



He started the game by randomly clicking around, until he fell upon the

1st yellow dot. Then, his search area became much more concentrated

around that dot (he expects shapes to be continuous entities). Then he

finds the next dot and continues looking for others along that direction

(direction of momentum). After uncovering 5-7 dots he starts making

predictions about what the shape might be - "you hid a 'L"'. By the time

he uncovers ~half of the shape (although he does not know the number of

dots in the shape beforehand) something quite surprising happens -÷ he

knows most shapes are symmetrical! and starts to click at symmetrically

opposite blocks along the mirrored curve of the right half of the shape.

Stt*

Figure 4 His final result-- 21 Dots hidden amongst 112 blocks,

he removed 60 blocks to reveal the entire shape.
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Starting from the right half and ending at the left most bottom corner,

we can see how he becomes increasingly sure about the next dot in the

shape and finds the last 7 dots without making any errors!

1.5 Children as gifted 'language' builders!

We could now essentially apply the same lens of 'Redundancy in a

language' as discussed in section 1.2 and think of the child doing the

above experiment as using their cognitive language of geometry to make

predictions about the next dot conditional on the earlier ones already

discovered.

SRedundancm
due to constraints like:
- continuit-U,
- -various kinds of symmetries,
- repeating patterns/rules in a shape

word kength N=21

ibthe 5 b-

he Possible so

18
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So, of all the possible millions of shapes made of N dots (N=21 here), we

see the child searching for regular shapes as shown in the smaller circle

above. This compression of his search space, or the redundancy in the

language, is caused by the probabilistic rules he has built for his language

of geometry. This grammar includes properties like the various kinds of

symmetries, continuity of shapes, expecting regularity or repeating

patterns in shapes etc.

To summarize, Piaget and Papert gave us the notion of children as gifted

learners building their own intellectual structures. Shannon provided us

with an objective way to quantify uncertainty of an information source

and use his measure to capture the statistical structure in the English

language (1951). And lastly, the child playing the game - showed us how

he used these built/learnt cognitive structures to significantly lower his

uncertainty in searching for a hidden shape out of million possibilities.

So, we can think of learning as a way of reducing uncertainty.

Specifically, I propose looking at this learning from the lens of language

learning - a child constantly building and learning a wide variety of

languages to make sense of the seemingly disparate and myriad input

streaming in through their senses.
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2 Building a Language

2.1 Internal representation vs external expression of a

language

It is possible that the way we represent and express a language

externally, is not its representation internally in our mind. If we think of

the purpose of a language to be communication, then a language requires

a tool or a medium for us to communicate with. For example, we use our

mouth to communicate using a spoken language like English. Similarly,

we use our hands to draw using our internal language of geometry or

language of forms. The learnt structures lie within - the language is not

in the hand. But if one was to only look at the sequence of actions as

taken by the hand as it draws a shape, that sequence undoubtedly has a

lot of structure in it. So, we can say the hand's actions are an outer

representation of our cognitive 'language of geometry'.

By defining a language, we can represent an information source (in this

case -+the person drawing the shape) as a statistical process that

generates the sequences to draw shapes or that correspond to the drawn

shape. Now, one can create many possible sub-languages that can express

(generate instances) like a human, thus it is advisable to choose

primitives for such a sub-language that are both amenable to analysis

and make common sense, as ultimately, we want it to be a close replica

of an actual cognitive language that a human is using.

20



I present below two sub-languages for generating shapes and my

reasoning of why one is. better suited than the other. But let us first

categorize the type of shape drawings one comes across in a typical

sketchbook:

1. Single Continuous Strokes w/o repetition

2. Continuous Strokes with repetition

3. Multiple continuous strokes w/o repetition

4. Multiple continuous strokes with repetition

TjpQs of Pr.W ings

Single Continuous Continuous Strokes
Strokes w/o repetition with repetition

Multiple continuous
strokes w/o repetition

eg: smiley face

Multiple continuous
strokes with repetition

eg: boy & tree

Before coming up with a language, it is helpful to think of a simplistic

process of drawing shapes as follows: Our cognitive language of geometry

guides the movements of our pen-holding hand to draw shapes on the

sketchbook. And, since we do not know the structure of this language of

geometry, we are trying to approximate it by creating possible sub-

languages.

21



2.2 D.O.G: The Dots on Grid Language

Sub-Language Option 1

Sketchbook based 'Dots on Grid' or D.O.G language:
In my experiment I used a 9X13 grid - made of 117 cells or blocks. We
could make each of these 117 blocks as a letter of the D.O.G language as
shown below:

Sample Words using D.O.G Alphabets:

"Hexagon" is [112, 111, 11t, 109, 108, 94, 81, 67, 54, 41, 29, 16, 4, 5, 6, 7,

8 22, 35, 49, 62, 75, 87, 100J,

"Butterfly" is 184, 71, 58, 45, 31, 17, 29, 28, 41, 54, 68, 81, 94, 95, 96, 98,

99, 100, 87, 74, 62, 49, 36, 35, 21, 33]

22



--A

A hexagon of the given size is uniquely represented by the above tile

pattern (not the actual line sketch of hexagon but a dotted version of it

as used in the experiment).

Although this language can represent any shape as drawn on the

sketchbook, by specifying the location of ink on the sketchbook (one

could theoretically use the specific {x, y} coordinates instead of

approximate grid numbers, but that would lead to an impractically large

alphabet set), but it is not an apt choice for a sub-language as it:

1. Fails Scramble Test: Even if the letters that make the Hexagon

are scrambled, we would still get the same shape in the end,

meaning it is read the same regardless of how it was written.

This is contrary to how we draw shapes, where order of drawing a

stroke is of importance.

2. Depends on grid size: The letters of this language are

dependent on the grid size.

3. Fails Transform Test: Simple transforms on the shapes like

moving them up, changes how the word is spelled even though it

looks the same to a human observer.

4. Fails Scale Test: for same reasons as above

One benefit of using the above language is easy access to a lot of training

data, as an existing shape image can easily be converted to this language,

which could give us the probability distribution of the tiles in the

language. But this would just be the monogram data as order is of no

consequence in this language.
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2.3 Sketch-O: Constructive actions as a language

Sub-language Option 2: Sketch-O is a universal language of actions

for drawing shapes, with the following alphabet:

It is universal as regardless of culture, demographics etc. everyone draws

shapes by holding a writing instrument and moving their hands. We can

approximate a person's hand actions as they draw the shape as shown:

These sequence of actions correspond to the below sketch

24

0

* 0

* 0

0

* 0

* 0

0



The above is the case of a single continuous stroke without repetition.

The above 8 arrow letter-set can generate any continuous stroke on our

grid. To take care of shapes with multiple strokes, we add an added

'jump' symbol ('0') to our language, as shown below:

These sequence of
actions correspond
to this sketch -+

0 1 2 3 4 5 6 .

. .s 1

[starti, stroke 1..., space, start2, stroke2..]

The Jump symbol ('0') can be thought of as a 'start of a new stroke'. So,

given a starting point (cell 2 in the above grid), if one were making a 'T'

shape, they would make a horizontal stroke as shown, and then press the

Jump symbol and select a new starting point from amongst the existing

array of points just drawn, and begin drawing the next stroke, going

vertically downwards in the above case.

25



Sketch-O is a much better language than D.O.G:

1. Passes Scramble Test

2. Independent of Sketchbook size

3. Passes Transform Test

4. Passes Scale Test

The sequences generated by the language can be made compact by

adding abstractions like Repeat (/, n=5) would stand for //

which would translate to a line at a 45-degree angle on the sketchbook.

Many such abstractions could be made like Rotate, Scale etc. typical of

operations one comes across in vector graphic generation software

programs.

Looking at one's own hand actions, rather than the sketchbook seems

more in-sync with ones internal 'Language of Geometry'.

Language of Geometry

<Hand Actions>
Sketch-O

a language of hand
actions Other possible

sub-languages

Ai <Sketchbook>

D.O.G
based on ink location

on sketchbook

Sub-Languages
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2.4 Role of cognitively rich & affectively diverse tools in

helping children build languages

Children use their gift of constructing languages and constantly update

their grammars to reduce their uncertainty about the world and make

sense of the myriad inputs coming in from their senses. Thinking in this

way, a child's brain can be thought of as a big language learning engine,

and tools of all sorts play a significant role in helping them. For example,

the mouth and the ears help to initialize, tune-up, and build their

grammar engine for spoken languages. Similarly, children are not

explicitly taught to play with LEGO blocks, but are just given as a

material to play with. The blocks, the child's imagination, their hands,

all act in tandem, like a tool as they go about building 2.5D/3D

structures mimicking things around them or trying new experimental

forms, thus helping solidify their visual language grammar engine. Similar

is the role of tools like a sketchbook and a pen, clay, playdoh, and even

digital tools like Scratch - a tool for children to tinker with code.

A brief side note inspired from reading

chapters from the book Mindstorms:

I believe Seymour Papert's book Mindstorms [1] is word for word as

relevant today as it was in 1980, with just an ever-expanding definition of

what the word 'Computer' stands for - today, it being 'Computer +

Sensors + AI/ML'. Building upon Papert's insight of using the affective

to hone the cognitive, I wonder what form would have Turtle taken

27



today, given the task of representing even richer computing models and

paradigms?

As I read Mindstorms, one of the images that I got was of - kids living

on the streets in urban cities, in close physical proximity with artifacts of

modern science and technology (like cars, planes, and smartphones) but

mentally, far divergent and alienated in their understanding of principles

behind these. For me, the 'Poverty of Materials' that Papert talked

about is one of the important reasons behind what I think of as the real

poverty, the 'Poverty of Models' - models that we all assimilate and

acquire rapidly in our early years. The richer the environment (filled with

right, challenging, and fascinating tools & materials) that one grows in,

the more sophisticated and diverse their toolkit of cognitive languages or

models, which then act like compositional building blocks that lay the

foundations of our future learning, development, and growth, ultimately

affecting the very cultures and society that we grew up in.

28



3 Experiment Design Methodology & Software Tools

The question that I was curious about was -- what kind of language is a

child building to make sense of all the visual input streaming in through

their eyes such as, the forms of thousands of objects, their shapes, color,

patterns, etc. What might be the possible alphabet sets and the grammar

they abstract in building the cognitive language of geometry.

3.1 Global search-based task vs analyzing instances

The problem with the usual approach of asking a person to create

common instances from a language (drawing common shapes in this case)

and analyzing those to study underlying aspects of the language, is:

Short Answer: Instances are heavily influenced by temporal and spatial

context of the user and thus they are not necessarily representative of the

underlying grammar or higher-level principles and knowledge of the

language. Whereas for solving a global search-based task in the language,

one is much more likely to use these higher-level strategies and abstract

knowledge about the grammar of the language.

Long Answer: Our aim is to learn the grammar learnt by the child

based on all the input data (visual input in terms of objects in the world

and their shapes and form). Now let us compare these two tasks:

Task A: Create few instances from the language -- draw 5-7 common

shapes that you know of.

Task B: Find the shape that is hidden behind a set of blocks.
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I argue that Task B is much more apt when it comes to finding higher

level grammars and principles learnt by the learner of the language. Task

A will be heavily dependent on the user's spatial and temporal context,

i.e. the shapes they draw are highly likely to be influenced by objects in

their surrounding or fresh in their memory, e.g. remembering the 'donut'

they ate yesterday.

But for Task B - which is a task about guessing the underlying shape,

when it could be any possible shape of a given length - the user's guesses

will be informed by the underlying probability distributions (i.e. P(next

dotiprevious dots), that have been distilled from their input visual data

over time.

3.2 General Experiment - 'Finding GoDot'

A 'Finding GoDot' experiment broadly consists of deducing the output of

a generative process. So instead of asking a user to generate instances of

a language for us (which are likely to suffer much more from spatial and

temporal biases), we directly test their knowledge of learned inductive

constraints for the language without introducing biases of any form.

And as I argue in this thesis - to look at a lot of human learning as a

form of language learning, thus broadening our typical understanding of

languages beyond the ones used for reading and writing, we can create

versions of the above task for a wide variety of data and information

sources. These can include constructive action sets of any kind (from
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drawing, to building LEGO structures, to dancing), to sounds (musical

notes, song sequences, bird songs...) etc.

As a specific case, I implemented the above for studying aspects of the

language of geometric concepts. The experiment as shared in section 1.4

consisted of asking a subject to uncover a hidden shape by removing the

least number of blocks, one at a time. Below are results from a 5-year-

old, a 32-year-old, and a random agent doing the same task of finding a

hidden shape (~a gaussian in this case).

32-yr-old 5-yr-old

35 cicks 60 dicks

Random Play

111 elcks

30

*

e a~e U a.
31



A test version of the experiment can be played at:

https://manuidhariwal.github.io/Finding GoDot SM/

Figure 5 below shows the initial UI design for the experiment's WebApp.

Figure 5 initial UI design
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Choose a Username:

[IiI]
Birthday (month and year):

------- ----

Do you write with:
Right-Hand Left-Hand

Gender
Male Female Other

Both

than a right-handed person,

hidden dot is likely to vary.

The users are asked to enter their birth

month and year, so we can compare

data across users on a more continuous

scale.

They are also asked to enter their

dominant hand information, as that

might influence their search behavior, as

a left-handed person is likely to draw

certain shapes in a different stroke order

and thus their expectation of the next

3.3 Observations from playtesting & design revisions

I tested the experiment's web app with both children (ages 2-7 years) and

adults to test the design and verify if it served the goals behind the

experiment. Below are some of my observations from the first playtesting

sessions.
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0 anmas

Pause Continue

Figure 6 Game State: Pink tiles show correct tiles, Green indicates initial state

of a tile and Cream tiles are empty or incorrect tiles. This is a visualization showing

a 2 yr. old finding the hidden shape (~mountain)

taamar
0

UPause, tinue

Figure 7 Endgame State: The 2 yr. old removes almost all

the green tiles before finding the pink tiles.

Child Name: Gaga I Age: 2.3 yrs. I Accompanied with her mother

Observations:

As it is hard to fully communicate to a 2-year-old what the

objective/goal of the experiment/game is, they end up forming their

own goals & reward functions out of the experiment.
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Initially, Gaga (~2 yr. old) was unsure and took her time in clicking

tiles to hide them. But as time progressed and she had removed quite

a few tiles, she inferred the goal of the game as removing all the green

tiles from the screen, and she was enjoying the sound that came when

she removed a tile (whether correct or incorrect).

Her Inferred Simple Goal:

Remove all the green tiles off the screen!

Actual Goal: Uncover the pattern formed by the dots by removing

the least number of tiles.

Her Reward Function: Sound of clicking the tile + Joy of clearing

up green tiles

With other 2-3 yr. olds, I saw the same pattern of them liking the

sound the game made when they clicked on an incorrect tile (tile

which has no dots hidden behind it). Also, I was finding it hard to

make sure if they understood that they needed to click the least

number of tiles to uncover the hidden shape.

Based on the above, I changed the game UI as shown below, plus I

changed the incorrect tile sound and added a subtle animation which

both acted as negative feedback for them.
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3.4 Setup: Prediction and entropy for the language of

geometric concepts

As said before, it is a non-trivial problem to specify the building blocks of

our cognitive language of geometry. But approximations can be made by

proposing possible sub-languages that have a subset of the expressivity of

the more complex cognitive counterpart.

Shannon in his paper "Prediction and entropy of printed English" from

1950, had proposed an interesting experimental method to calculate the

bounds on entropy of the English language. Unlike his objective

approach, the experimental method very cleverly taps into every English

language speaker's enormous statistical knowledge about the structure of
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the language. Details on both his objective and experimental methods are

shared in Chapter 4.

We can similarly tap into a person's statistical knowledge about the

cognitive language of geometry and at least get rough bounds of its

entropy and redundancy. The general experiment as proposed in this

thesis, can be modified to a sequential version, where a user's search is

constrained to find dots in the order in which they were drawn. The

figure below shows this new setup.

0 0 0 0 .

41
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0
0
0

0
0

The entropy calculated using this experimental setup and Shannon's

method will be a joint function of people's brains and the material (here

shapes) they were shown. It is not an objective property of either people's

brains or of the stimuli. But if we have a well-defined population of

stimuli (shapes) than the entropy bounds calculated will also be well-
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defined and could stand as an approximation for people's language of

geometry.

I used a set of 18 different shapes for the experiment, each of which were

tested with over 60 participants (divided between mTurk and friends &

family). The shapes were chosen based on the below'three criteria:

1. Shapes with varied kinds of symmetries

2. Shapes that subjects are likely to have strong priors for, like

numbers, letters 2,5,8, M, Z, R

3. And shapes with one or more repeating pattern/rule eg: spiral (to

draw a square spiral we follow the repeating rule of increasing the

count of dots by one and taking a 90-degree turn)

Below if a snapshot of the shapes used for the sequential experiment.
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Circle.png
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Rhombus.png

Telephone.png
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Double Diamond.png

Mountain.png

Spiral.png
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Big House.png

Heart.png

Octagon.png

Star.png

Based on the calculations (detailed out in the next chapter), shapes on an

average have a high redundancy (roughly between 60%-80%).

For a detailed analysis of various kinds of symmetries (Mirror Symmetry;

Rotational Symmetry & Translational Symmetry) in a shape and how to

go about quantifying how symmetrical a shape is, please refer to [61, [7],

[8] & Mach (1906/1959).

For a qualitative discussion on some informational aspects of Visual

Perception, please refer to 151.
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3.5 Extending Shannon's experiment to a wide variety of

languages

One of Shannon's key insights was, about translating the English

language into a reduced text form (details in Chapter 4), through his

prediction experiment, and using that to calculate the bounds on the

entropy and redundancy of English. Although these values can be

directly calculated for a language like English with its ton of readily

available language data, I note, that the real value of Shannon's

experiment is for languages for which there is no such readily available

data or for which the only source for this kind of language statistics is

our own cognitive machinery!

The first step to access this is to have a broader view of a lot of human

learning as being a kind of language learning. Next, we can apply the

'guess the hidden instance' paradigm to that language's output. The

above method is directly portable for languages whose outputs are

inherently discrete like English text. But languages whose expressions

have a continuous form (like drawings), must be cleverly discretized such

that each discrete unit is self-contained and does not carry obvious

information about other units. The sequential experiment implemented

for the language of geometry is a good example of the same. Had the

shape drawings not been discretized, the experiment would have fetched

us no information, as the average information per dot (entropy) would

have been zero!
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Using the above, one can generalize Shannon's method to calculate the

entropy and redundancy bounds on many kinds of languages like

language of music, or cases where one thinks of constructive actions as a

language such as, LEGO blocks, Tetris, and others, even forms of dance

and many more.

3.6 Communicating the Most Probable Shape

Another set of questions that can be answered using the Finding GoDot

paradigm are of the form:

3.6.1 GoDot Cavemen Problem:

Most Probable Shape
Cornrnunication (0 Cuernern

Your friend is desperately trying to
communicate a shape to you. But he can only
send 3 dots to you. Given that he has sent these
three dots, which of the following shapes is he
trying to communicate?

0
0
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3.7 RePlay Tool: Visualizing user's data generation process

I created a simple tool that lets one watch the replay of a user's game

session. Such dynamic visualization of the generation of a user's data

gives one much better insights and leads to asking newer deeper

questions from the underlying task.

This tool also visualizes the sequence of user's actions using the alphabet

of Sketch-O language and compares them with the correct Sketch-O

sequence for the given shape.

42



81705
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Figure 8 Sketch-O actions sequence data for a shape. Left-handed, 33 yr. old user.

Figure 9 Sketch-O actions sequence data on the same shape for a 2.5 yr. old
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4 Calculating Entropy & Redundancy of a language

4.1 What exactly is 'Entropy' a measure of?

Now to use Shannon's method for calculating approximate complexity

measures for our language of geometric concepts we designed one good

possible sub-language Sketch-O. Using Sketch-O we could represent the

information source, the person drawing the shape, as a statistical process

that generates Sketch-O letter sequences to draw shapes.

The Entropy(H) then is:

H = average information produced for each dot of the shape

So, when we think of the person drawing a shape as an information

source, who produces information at each step as he goes about drawing

the shape (we can think in this manner for any generative process), then

the entropy basically is a measure of average information that is

produced for each dot.

Important Note & Clarifications:

I: It is actually the average information produced for 'each

letter' of our language of actions-4 Sketch-O. The dot is merely

an outer visible manifestation of our having taken the

underlying action, from the 8 available actions that form the

alphabet of our language.
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II: Here the word 'Information' does not stand as a measure of meaning

or semantics being conveyed by the source. Please refer to section 4.3 for

further clarifications on this.

H = average information produced for each letter of our language shape

H = average information produced for each constructive action (from

amongst the alphabet of our language Sketch-O) when drawing a shape.

So, the same letter could give us different amounts of information

depending on 'where' and in 'which' sequence it comes in at. This is what

leads to structure in a language. And hence entropy is a good measure of

the statistical structure in a language.

4.2 What is meant by a language being 'redundant'?

Now more the structure in a language, i.e. more the correlation between

letters of a sequence (not just amongst adjacent ones but even long-range

correlations), the more redundant that language is. Which is not always a

bad thing! So, Redundancy is related to the extent to which it is possible

to compress the language. Hence a random sequence of letters has zero

redundancy, as each letter is independent of others.
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4.3 Note on Kolmogorov Randomness

The central idea behind this measure of complexity is that a string

of bits is random if and only if it is shorter than any computer program

that can produce that string (Kolmogorov randomness)-this means that

random strings are those that cannot be compressed.

Eg: The decimal digits of pi form an infinite sequence and never repeat in

a cyclical fashion. From this point of view, a 3000-page encyclopedia has

less information than 3000 pages of completely random letters, even

though the encyclopedia is much more useful.

The information content or complexity of an object can be measured by

the length of its shortest description. For instance, the string

"10101010101010101010101010101010101010101010101010101010101010101"

has the concise description "32 repetitions of '01', while

"1100100001100001110111101110110011111010010000100101011110010110"

presumably has no simple description other than writing down the string

itself.

4.4 Calculating Entropy & Redundancy

To calculate Entropy & Redundancy, we need lot of language statistics in

forms of various probability distributions of letters, pairs of letters, words

etc. of the language.

For details on calculating entropy from existing statistical data on the

language, please refer [21 - Prediction and Entropy of Printed English by

CE Shannon.
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But as discussed in sections 3.4 & 3.5, Shannon devised his prediction

experiment method to overcome this limitation, by devising a clever

method to tap into the detailed language statistics that people

accumulate (~in their brains) and refine, as their language skill increases

over time.

The experiment translates a sequence written in Sketch-O (eg: a sequence

that draws an Octagon) to the reduced text format. And by repeating the

experiment with a good enough representative population of shapes, with

many people, we can get frequencies for letters of the reduced text.

For example:

The figure below shows the data of a real user, trying to uncover the

hidden shape (an Octagon here).

* *e Replay

* 0

* 0

* 0

Now by using the following language legend for the eight Sketch-O

actions:
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Language Legend:

t b I r ti bi tr br

An Octagon, as shown above, is represented by the below sequence of

actions:

And the figure below shows the sequence of actions as taken by the user

as he uncovered the shape. The black arrows stand for - the errors in

predicting the location of the next dot or the prediction errors made by

the user, while guessing the next letter in the actual Octagon forming

sequence above.

Side Note: Looking at this user's data, he has an extremely good

understanding of shapes (~small no. of errors) - incidentally while talking

with users after they had completed the game, this user turned out of be

an experienced visual designer and painter!!

To summarize:
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Sketch-O Sequence:

(A) -
Reduced Text Sequence:

(B) 4 2 1 2 1 1 2 1 1 1 1 1 2 1 ........................... 1

From the data in the second line B, it is possible to set upper and lower

bounds for the entropy of the language in (A). Line B can be thought of

as a translation of line A. There is a theorem on stochastic processes that

the redundancy of a translation of a language is identical with that of the

original, if it is a reversible translating process going from the first to the

second [4]. Consequently, an estimation of the redundancy of the line B

gives an estimate of the redundancy of the original language. Line B is

much easier to estimate than line A since the probabilities are more

concentrated. The symbol 1 has an extremely high probability, and the

symbols 2 to 8 have subsequently smaller probabilities.

Shannon had proved that if the probability of taking r guesses until the

next letter in the correct sequence (eg: sequence A above) is guessed is

Pr, then the entropy, H (in bits per letter) is:

Er r(Pr - r+1 ) * 102 r H (1 Er Pr 102)

where for SketchO alphabet of 8 letters, r: 1 : r 5 8
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For details please refer to equation 17 in [2].

From the above equation (1), one can get the bounds on the Redundancy

of the language as follows:

1 - HUpper < R 51 - HLower (2)
H Max H Max

,where:
Hmax= log 2 8 =3
and Hup per and HLower are from equation (1)

Using the experiment setup as discussed in Section 3.4, participants were

required to guess the various shapes, dot by dot (in the likely order they

would have been drawn while drawing the shape). There was a total of

18 shapes used in the experiment (details on criteria for including various

shapes are shared in section 3.4). A total of 750 samples were collected -

250 from friends and family and 500 from mechanical Turk. The below

data is using only the data from friends and family. This was done,

because the lower bound of entropy as calculated by Shannon assumes of

ideal prediction, and I noticed that friends and family had done the

experiment with much more seriousness and thought than many of the

mTurk users. (Although this should not have a significant impact on the

end results either way).

Table I shows summary of data for 240 samples corresponding to all

shapes of sizes (N=13 to 35). The column corresponds to the number of
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preceding dots known to the participants; the row is the number of the

guess. The entry in column N at row S is the number of times a subject

guessed the right dot (or letter) at the Sth guess when (N-1) dots (or

letters) were known.

Smoothed frequencies of Reduced Text with N

1 2 3 4 5 6 7 8 9 10 11 12
63. 56.

55.2 57.7 7 5 58.6
26.

27.4 23.1 22.7 5 18.9

10.7 9 7.3 8.2 9.5

1.4 2.1 1.3 1.8 2.7

1.4 2.1 1.3 1.8 2.7

1.4 2.1 1.3 1.8 2.7

1.4 2.1 1.3 1.8 2.7

1.4 2.1 1.3 1.8 2.7
Figure 10 Table I

62.
59 71.4 4

20.
17.1 9.5 6

10.7 5.6 8.6

2.7 5.6 1.8

2.7 2.8 1.8

2.7 2.8 1.8

2.7 2.8 1.8

2.7 2.8 1.8

For example, the entry 18.9 in column 8, row 2, means that with

preceding 7 dots known, the correct dot was obtained on the second guess

~nineteen times out of hundred. Some other points worth noting are:

- The first dot (1) above corresponds to the 2nd dot of the shape, as the

starting dot (from where the pen would have started drawing the shape)

is given to the user.

-Smaller values of frequencies have been uniformly smoothed, especially

for values in the right lower part of the table. This is done to somewhat

overcome the worst sampling fluctuations. The lower numbers in this

table are the least reliable and these were averaged together in groups.
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The upper and lower bounds given by Eq (1) above, were then calculated

for each column giving the following results:

1 2 3 4 5 6 7 8 9 10
Lower 2.66 0.99 1.07 1.1 1.1 0.9 1.1 1.14 1.15 0.96
Upper 2.93 1.75 1.85 1.75 1.83 1.58 1.79 1.92 1.92 1.7

Figure 11 Lower and Upper Bounds on Entropy in Bits per Letter

LoAei & Uppei Bounds ou Entropy of Sketch 0 Language

Case II: -240 samples all Shapes
3

2.5

2

0
1.5

1

0.5

11 12
0.97 0.44

1.7 0.99

5 6 7

D o - rUmbk (N)

8 9 10 11 12

Figure 12 Upper and Lower experimental bounds for the

entropy of 8-letter Sketch-O language for N E [1,12
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And the upper and lower bounds on the Redundancy given by Eq (2)

above, came out to be as:

Upper 11.24 66.88 64.44 63.18 63.22 70 63.37 61.83 61.8 68.03 67.51 85.22
Lower 2.3 41.74 38.21 41.56 38.89 47.41 40.39 36 35.88 43.35 43.39 67.06

In general we can say that the redundancy for Sketch-O language or for a

language of shapes (single stroke shapes) has an upper bound between

60%-80% and a lower bound between 40%-60%.

Below is a snapshot of Non-smoothed data for shapes with length (21,22

& 23) amounting to ~100 samples.
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Frequency of Reduced Text Symbols with N (number of dots)
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The upper and lower bounds given by Eq (1) above, for this case of ~100

samples of similar sized shapes (shape length = [21,22,231) came out to be

as:

Lower

Upper

Lower

Upper

1

2.61

2.93

11
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1.43
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12
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Figure 13 Lower and Upper Bounds on Entropy in Bits per Letter

for 100 samples of shapes with sizes 21, 22 & 23.
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Looking at the graphs for experimental bounds on the Entropy, we see:

- The first two dots give a lot of information about a shape drawing,

as we can connect the dots mentally and get an idea about the

direction of the drawing stroke.

-The graph for subsequent dots rises and falls, as knowing one dot,

we have a fairly good idea about the next. But then after the next
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dot, the shape might change its contour (these results are an

aggregate of 17 different shapes in Case I (with ~250 samples) and

7 in the above case with ~100 samples)

4.5 Most Information Rich Dots of a shape

By calculating the average information gained per dot (or Entropy) for

individual shapes, we can get a ranking of the most informative dots of a

shape. This gives us the most efficient way to communicate maximum

information about the underlying shape with the least number of dots.

Below I share the most information rich dots for two shapes: a) Square

Spiral b) Heart:

a) Square Spiral

Avg. Inf
per Dot 2.7 2.4 2.3 2.3 2.1 1.6 1.3 1.1 0.9 0.7

Rank 1 2 3 4 5 6 7 8 9 10

Average Redundancy: 79.6%
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This gives us the first steps to answer the general question in section 3.6

(GoDot Cavemen Problem).

4.6 M ental Simulation: getting more Information than is

45.5% 87%

@ 10

5
66%

32.5% 4
How much information (%), do

you know about the hidden
shape at various points

2

15.9%*

Figure 14 By dot 9 you are highly likely to guess that the hidden shape is a Heart!

Shape by Dot 4 By Dot 6 By Dot 8 By Dot 9

Figure 15 Increasing likelihood of the underlying shape being a Heart at various stages.
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Dot Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Amnmt of
b.dmtmab (%) 15.9% 15.9% 16.3% 32.5% 32.5% 45.5% 54.9% 66% 87% 88.2% 88.2% 91.8% 98.8% 100% 100%

4.6.1 Three Cases: Evidence of Mental Simulation

By plotting the running total of the 'average information per dot' with

the number of dots revealed (currently visible), we get evidence that

people use a forward model of possible underlying shapes to simulate

incomplete shapes beyond what is visible.

Let us see three different cases of the above phenomenon by making plots

for three individual shapes:

Case I: Square Spiral

Case II: Heart

Case III: Random Scribble (a non-sensical placement of dots)

Case I: Square Spiral

Visible Information Vs Information from Mental Simulation
(Shape = Spiral)

Nwnbes 00 10

-- M3M5.jSmlton -V4 ,ilfr

Figure 16 Plot showing Information from Mental Simulation, with Sketch-O sequence of

shape below. By comparing the both we can see at what points of the sequence there is

an upsurge in information from mental simulation!
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A square spiral is a regular shape with a repeating pattern of dots

increasing by a count of 1 at every turn. In the above plot we can see at

what points in the Sketch-O sequence of the shape there is an upsurge in

the information one gets from Mental Simulation.

Case II: Heart

The Heart is an interesting case, where in the beginning of the shape, we

have lesser information about the shape than is visible, this is a form of

mis-information due to many contours the shape can converge to at that

point. After dot 7 the user reaches the tipping point where he starts

simulating the underlying shape as a Heart!

Visible Information Vs Information from Mental Simulation

(Shape = Heart)

100. ....

2-- Met. imlaton--* * --ilel'

0

0 -

Case III: Random Scribble
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The Random Scribble is a non-sensical dot pattern. It was generated by

me, so it cannot be called a fully random shape. By looking at the

AZ

Stroke Start

Stroke
S* 0 End

plot for the 'Random Scribble' shape we can easily see that a user is not

able to simulate and gain a lot of information than what is being revealed

to him.

Visible Information Vs Information from Mental Simulation

(Shape = Random Scribble)
100

90
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E20
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2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Number of Dots

-*-Mental Simulation -4-Visible Inf
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For a completely random scribble, points for both the parameters would

have completely overlapped.

The same plot when made for aggregate data from 100 samples of 7

shapes (with shape lengths E [21, 22, 23]) is as follows:

Actual Visible Information Vs Information from Mental Simulation

(Case I, Shapes N=21,22,23, ~100 samples)
100

90

go

70

60

so

40

30

20

10-

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Number of Dots

--- information -e-RealDots%

5 Next Steps

5.1 Multi Stroke Shape Drawings

The immediate next step would be to extend this study for multi stroke

shape drawings, which include most letters, numbers, and common

objects. Single stroke shapes form the compositional blocks that form

multi stroke shapes. In section 2.3 the jump alphabet had already been

defined as part of the Sketch-O language. With the Jump symbol, in

addition to the 8 arrow symbols, Sketch-O can generate any multi stroke

shape on our sketchbook grid. Next, we can calculate bounds on the

entropy and redundancy of multi stroke shapes by using a similar
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experimental procedure as described in this thesis. These bounds will be

much better at approximating the entropy bounds for the cognitive

language of geometric concepts, then the ones calculated for single stroke

shapes.

5.2 Modeling the task

5.2.1 Bayesian Program Learning framework

A good first step to start modeling the task of generating shape drawings,

would be to take cues from the work on - Concept learning as motor

program induction 19], 110]. It is closely aligned with the approach taken

in this thesis of modeling constructive actions as a language to generate

shapes.

5.2.2 Training Dot RNN + refining using RL

Since this thesis thinks of shapes as coming from a language (Sketch-0),

using RNN's (recurrent neural network) seems like a good approach for

training a dot-RNN that can learn rules of this language. For the training

data, I propose using the Google Draw dataset to act as the shape

language corpus. Then this RNN could be further tuned using RL

(reinforcement learning) as described in the RL Tuner Model from 111].

Reinforcement Learning will help learn domain specific constraints (eg:

searching for the next dot near a found dot, as shapes are continuous-

this is for the modeling task as described in the general version of the

experiment) and the RNN will reflect the information learned from the

data.
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6 Conclusion

In this thesis I develop a rich, novel experimental paradigm for studying

various aspects of the cognitive language of geometric concepts. I propose

looking at constructive actions as a language and create a sub-language

Sketch-O for generating shape drawings. Then I use a sequential

modification of the broader experiment to calculate the bounds on

entropy and redundancy of this language. The experimental setup thus

used generalizes Shannon's prediction experiment for a wide variety of

languages, beyond only text-based. The approximate entropy bounds for

single stroke shape drawings, lie between 0.4 bits/letter to 0.8 bits/letter,

and our further reduced with longer shape lengths. I then compute

entropy (average information per letter) values for individual shapes and

use them to show evidence of subjects using a rich forward model to

mentally simulate incomplete shapes, thus gaining information about the

underlying shape more than is physically visible. I further show evidence

by testing subjects with a non-sensical shape (~a random scribble) and

use its data to show that unlike regular everyday shapes, subjects fail to

mentally simulate the random shape and almost no information beyond

what is visible.
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