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Abstract

We consider queueing systems with n parallel queues under a Join the Shortest Queue (JSQ)
policy in the Halfin-Whitt heavy traffic regime. We use the martingale method to prove that
a scaled process counting the number of idle servers and queues of length exactly 2 weakly
converges to a two-dimensional reflected Ornstein-Uhlenbeck process, while processes counting
longer queues converge to a deterministic system decaying to zero in constant time. This limiting
system is comparable to that of the traditional Halfin-Whitt model, but there are key differences
in the queueing behavior of the JSQ model. In particular, only a vanishing fraction of customers
will have to wait, but those who do will incur a constant order waiting time.

1 Introduction.

In this paper we consider queueing systems with many parallel servers under a heavy-traffic
regime where the workload scales with the number of servers. Such systems are well understood
when a global queue is maintained (i.e. M/M/n and similar queues [10]), but in many practical
situations it may be advantageous to instead maintain parallel queues. Even if a global queue
is itself not problematic, it may be necessary to keep queued customers close to the server who
will eventually serve them. Consider for example an airport setting with arriving passengers
who need to have their passports checked with one of a large number of passport controllers. In
this situation having only a global queue can lead to significant walk times between the front
of the queue and the server, leaving servers idle while they wait for their next customer. This
idle time can be avoided by routing customers to individual queues for each server before earlier
customers finish service.

At the same time, a parallel scheme will necessarily allow servers to idle if their own queue
is empty, even if customers are waiting in another queue, thus sacrificing some efficiency. To
analyze this tradeoff, we will study a parallel queueing system in which each arriving customer
is immediately routed to the queue containing the smallest number of customers, namely the
Join the Shortest Queue (JSQ) policy. We consider the system in (Halfin-Whitt) heavy traffic
by allowing the arrival rate λn to depend on n, letting the quantity (1 − λn)

√
n have a non-

degenerate limit, which we denote β > 0. Note that JSQ is a logical first step for understanding
the tradeoffs involved in maintaining parallel queues, because Winston [20] proved that among
policies immediately assigning customers to one of n <∞ parallel queues, JSQ is optimal in the
case of Poisson arrivals and exponential service times. That is, it maximizes, with respect to
stochastic order, the number of customers served in a given time interval. Weber [18] extended
this result to the more general class of service times with non-decreasing hazard rate, with no
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assumptions on the arrival process. We will consider Poisson arrivals and exponential service
times, and denote this system M/M/n-JSQ, distinguishing it from the traditional M/M/n
system which maintains a global queue.

Our main result describes the behavior of processes counting the number of idle servers
and of queues with one customer waiting to enter service, along with auxiliary processes to
count the number of longer queues. We prove that a system that initially has a fixed maximum
queue length, appropriately scaled, converges weakly to a diffusion process as n approaches
infinity. The coordinates of this diffusion process representing queues with more than 1 customer
in service are deterministic and show that any longer queues present in the initial condition
disappear in fixed time and do not form again. The coordinates corresponding to the number
of idle servers and number of queues with exactly one customer waiting correspond to a two-
dimensional reflected Ornstein-Uhlenbeck process. The entire limiting system will be defined in
terms of a stochastic integral equation which we prove has a unique solution. This existence and
uniqueness result is stated in Theorem 1 and the weak convergence result is stated in Theorem
2, which is our main result.

As a proof technique, we will introduce a truncated variant of the M/M/n-JSQ system in
which no queues of length longer than 2 are created, though such long queues are allowed in the
initial condition. This system is more easily analyzed because it is finite dimensional and has
limited interaction between many of the dimensions. In this truncated system, we show that
the probability the system hits the truncation barrier decreases to zero as n approaches infinity,
and thus in the limit the behavior of the truncated and untruncated systems are the same.

One consequence of our result is that both the number of idle servers and the number of
queues with exactly one customer waiting in the M/M/n-JSQ system are of the order O (

√
n).

Another feature of interest in this queueing system is the waiting time experienced by arriving
customers. We prove that in the transient system the aggregate waiting time experienced by
all customers is of the order O (

√
n), and since the number of customers arriving in that time is

order n, the waiting time per customer is O (1/
√
n). We also observe that any arriving customer

who has to wait will incur a waiting time which is exponentially distributed with parameter 1,
which is the service time of the customer in service when they enter a queue. Since any waiting
customers must incur a constant order waiting time and the aggregate waiting time is O (

√
n),

the fraction of customers who end up waiting is of the order O (1/
√
n).

Next we review prior literature. The JSQ model was initially studied in the special case
of 2 queues by Haight [8]. Kingman [12] proved stability results along with considering the
stationary distribution of the system, and Flatto and McKean [5] also examine the stationary
distribution. Further work on the n = 2 case includes bounds on the distribution of the number
of people in the system by Halfin [9].

Foschini and Salz [6] consider diffusion limits for the heavy traffic case of the M/M/2-JSQ
system, first proving that the queue-length processes for the two queues are identical in the
limit and then deriving the limiting distribution. The limiting behavior of the waiting time
is the same as the standard M/M/2 system in heavy traffic. Their results extend to the case
of k parallel queues, but they do not consider the case where the number of queues grows as
the traffic intensity increases. Zhang and Wang [11] and Zhang and Hsu [21] look at a similar
problem but drop the assumption of Poisson arrivals and exponential service times, deriving
functional central limit theorems for the heavy traffic JSQ system with s servers.

Thus our paper is the first study of JSQ systems in the asymptotic regime as n → ∞.
Observe that for fixed λ < 1 as n increases the probability of any customer arriving to find all
servers busy will decrease to zero. In this case the JSQ nature of the system becomes irrelevant
as customers will be assigned to an idle server immediately upon arrival. In particular we see
that the limiting behavior of the system will essentially be that of the M/M/∞ system, and
thus it is of interest to consider this model in heavy traffic with λ approaching unity. There has
been some work on models similar to ours, most notably Tezcan [16], who considers a variant
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of the JSQ system with multiple pools of servers who each have their own queue. He uses a
state-space collapse argument based on a framework of Dai and Tezcan [2] to prove diffusion
limits under the Halfin-Whitt heavy traffic regime. In this case that regime has the number of
servers and traffic intensity increasing together in the limit, but the number of pools of servers is
fixed so the number of queues is also fixed. Therefore our model is similar to Tezcan’s but is not
a special case of it. The state-space collapse argument implies that in the limit the system can
be fully described by the total number of people in the system (rather than the queue lengths in
the individual pools) and the diffusion limit of that process is very similar to the original Halfin
and Whitt result [10].

Another branch of analysis of JSQ-like queueing systems has focused on the “supermarket
model” in which arriving customers join the shortest queue from among d randomly selected
queues rather than from the entire system. It was proved independently by Mitzenmacher [13]
and Vvedenskaya, Dobrushin, and Karpelevich [17] that this system achieves an exponential im-
provement in expected waiting time over a system with n independentM/M/1 queues. Versions
of this system where d depends on n are particularly closely related to our JSQ model, which
essentially sets d = n. Brightwell and Luczak [1] give a set of d and λ values depending on n
for which they prove the steady-state system is usually in a particular state with most queues
having the same (known) length. Their conditions require (1 − λ)−1 > d, which excludes the
d = n, (1−λ)√n→ β case considered in this paper. Dieker and Suk [4] prove fluid and diffusion
limits for queue length processes when when d increases to infinity at a rate slower than n and
with fixed λ < 1.

The remainder of the paper is laid out as follows: Section 2 defines the model and states our
main result. In Section 3 we will prove Theorem 1, verifying that the integral representation
of the limiting system is well defined. This result will also be the key to proving convergence
via a continuous mapping theorem (CMT) argument. Section 4 will construct a representation
of the system as a combination of martingales and reflecting processes. In Section 5 we will
establish the convergence properties of these martingales, and then apply the CMT to translate
the convergence of martingales to the convergence of the scaled queue length processes. This
section will conclude our proof of Theorem 2. In Section 6 we discuss the waiting time in the
M/M/n-JSQ system. We will conclude in Section 7 with a brief discussion of the implications
of Theorem 2 and possible extensions.

We use ⇒ to denote weak convergence, 1{A} to denote the indicator function for the event
A, (x)+ = max(x, 0). We let R+ = R+ ∪ {∞} represent the extended positive real line. We will
equip R+ with the order topology, in which neighborhoods of ∞ are those sets which contain a
subset of the form {x > a} for some a ∈ R. Most processes in this paper will live in the space
D = D([0,∞),R) of right continuous functions with left limits mapping [0,∞) into R. We also
consider Dk = D([0,∞),Rk) for k ≥ 2, which we will treat as the product space D×D×· · ·×D
(see, e.g., [19] §3.3). We will denote the uniform norm

||x||t = sup
0≤s≤t

|x(s)|

for x ∈ D and the max norm

||(x1, . . . , xk)||t = max
1≤i≤k

||xi||t

for x ∈ Dk. Similarly we will use the max norm

|b| = max
1≤i≤k

|bi|

for b ∈ R
k.
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2 The model and the main result.

We consider a M/M/n-JSQ queueing system with n servers where each server maintains a
unique queue, with service proceeding according to the first-in-first-out discipline. Service time
is exponentially distributed at each server, with the rate fixed at 1. Arrivals occur in a single
stream, as a Poisson process with rate λnn, where 0 < λn < 1 and

lim
n→∞

√
n(1 − λn) = β (2.1)

for fixed β > 0. Upon arrival, each customer is routed to the server with the shortest queue. In
the event of a tie, one of the options is selected uniformly at random.

The state of the system will be represented via the process Qn(t) = (Qn
1 (t), Q

n
2 (t), . . .), with

Qn
i (t) representing the number of queues with at least i customers (including any customer in

service) at time t ≥ 0. We note that for the system as described we have

n ≥ Qn
1 (t) ≥ Qn

2 (t) ≥ · · · ≥ 0, ∀t ≥ 0, (2.2)

and that we can recover the number of queues with exactly i customers in service via the quantity
Qn

i (t)−Qn
i+1(t), including the number of idle servers n−Qn

1 (t).
To state our weak convergence results, we also introduce a scaled version Xn(t) of this

process defined as

Xn
1 (t) =

Qn
1 (t)− n√

n
and Xn

i (t) =
Qn

i (t)√
n
, i ≥ 2. (2.3)

The i = 1 case is treated differently because the number of queues with length 1 behaves
differently than the number of queues of all larger lengths. In particular, there will be O (

√
n)

idle servers, and thus the number of servers with at least one customer in service will be order
n.

Our diffusion limit will be the solution to a system of k integral equations for some k ≥ 3, so
we first introduce this system and prove that it has a unique solution. Furthermore, we prove that
the system defines a continuous map from R+×R

k×Dk to Dk×D2 with respect to appropriate
topologies. This continuity, along with the further fact that the function maps continuous
functions to continuous functions, allows us to use the CMT to prove weak convergence once we
show the weak convergence of the arguments.

Theorem 1. Given integer k ≥ 3, B ∈ R+, b ∈ R
k, and y ∈ Dk, consider the following system:

x1(t) = b1 + y1(t) +

∫ t

0

(−x1(s) + x2(s))ds − u1(t), (2.4)

x2(t) = b2 + y2(t) +

∫ t

0

(−x2(s) + x3(s))ds + u1(t)− u2(t), (2.5)

xi(t) = bi + yi(t) +

∫ t

0

(−xi(s) + xi+1(s))ds, 3 ≤ i ≤ k − 1, (2.6)

xk(t) = bk + yk(t) +

∫ t

0

−xk(s)ds, (2.7)

x1(t) ≤ 0, 0 ≤ x2(t) ≤ B, xi(t) ≥ 0, t ≥ 0, (2.8)

with u1 and u2 nondecreasing nonnegative functions in D such that
∫ ∞

0

1{x1(t) < 0}du1(t) = 0,

∫ ∞

0

1{x2(t) < B}du2(t) = 0.
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Then (2.4)-(2.8) has a unique solution (x, u) ∈ Dk ×D2 so that there is a well defined function
(f, g) : R+ × R

k × Dk → Dk × D2 mapping (B, b, y) into x = f(B, b, y) and u = g(B, b, y).
Furthermore, the function (f, g) is continuous on R+ × R

k × Dk with respect to the product
topology when R+ is equipped with the order topology and D is equipped with the topology of
uniform convergence over bounded intervals. Finally, if y is continuous, then so are x and u.

We will prove this theorem in Section 3. One implication of Theorem 1 is that the limiting
system we find in our main result below is well defined because, as we will see, it is an application
of the function (f, g) with specific arguments b, y, and B = ∞ augmented with Xi(t) = 0 for
i > k. Note that B = ∞ implies u2 = 0. Our main result is the following:

Theorem 2. In the sequence of M/M/n-JSQ models described above, suppose there exists k
and a random vector X(0) = (X1(0), . . . , Xk(0)) ∈ R

k such that

Xn
i (0) ⇒ Xi(0) in R as n→ ∞, 1 ≤ i ≤ k, (2.9)

and Xn
i (0) = 0 for i > k. Then for any t ≥ 0,

Xn
i ⇒ Xi in D as n→ ∞, i ≥ 1,

where X1 ≤ 0 and Xi ≥ 0 for i ≥ 2 are unique solutions in D of the stochastic integral equations

X1(t) = X1(0) +
√
2W (t)− βt+

∫ t

0

(−X1(s) +X2(s)) ds− U1(t), (2.10)

X2(t) = X2(0) + U1(t) +

∫ t

0

(−X2(s) +X3(s))ds, (2.11)

Xi(t) = Xi(0) +

∫ t

0

(−Xi(s) +Xi+1(s))ds, 3 ≤ i ≤ k − 1, (2.12)

Xk(t) = Xk(0) +

∫ t

0

−Xk(s)ds, (2.13)

Xi(t) = 0, i ≥ k + 1, (2.14)

where W is a standard Brownian motion and U1 is the unique nondecreasing nonnegative process
in D satisfying

∫ ∞

0

1{X1(t) < 0}dU1(t) = 0. (2.15)

Remark 1. The integral equations (2.12)-(2.13) are deterministic and have an explicit solution:

Xi(t) = e−t



Xi(0) +

k−i
∑

j=1

1

j!
tjXi+j(0)



 , 3 ≤ i ≤ k − 1,

Xk(t) = Xk(0)e
−t.

Thus the number of queues of length at least i for i ≥ 3 decays exponentially in time.

We note that condition (2.9) does place significant but not unreasonable restrictions on the
starting state of the finite systems Qn. In particular, Qn

1 (0) − n = O (
√
n) so the number of

customers initially in service must be sufficiently near n. Similarly, (2.9) requires Qn
2 (0) =

O (
√
n) and therefore Qn

i (0) = O (
√
n) for 3 ≤ i ≤ k. Also note that the longest queue allowed

in the initial condition has length k.
Our result shows that the M/M/n-JSQ system in the heavy traffic limit becomes essentially

a two-dimensional system. If queues with more than one customer waiting are present initially,
they disappear and do not form again. There are O (

√
n) idle servers and O (

√
n) queues

with exactly one customer, and the behavior of processes counting these correspond to a two-
dimensional Ornstein-Uhlenbeck process.
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3 Integral representation.

We will now prove Theorem 1, showing that the representation of the limiting system in Theorem
2 is a valid and unique representation. We will also show that it defines a continuous map from
R+×R

k×Dk to Dk×D2. The continuity of the map in the topology of uniform convergence over
bounded intervals will allow us to use the continuous mapping theorem (CMT) to demonstrate
the convergence Xn

i ⇒ Xi once we write Xn
i in the appropriate integral form.

Note that by using R+ in the domain of this map we allow the upper barrier B for the
function x2 to take the value ∞, which corresponds to there being no upper barrier on the

√
n

scale.
Our approach to proving Theorem 1 will involve two main lemmas, one dealing with the first

two dimensions, where reflection plays an important role, and a one dimensional lemma that we
will apply to the higher dimensions.

3.1 Lower dimensions.

To deal with the reflection terms in the first two dimensions of Theorem 1 it is convenient to
consider those dimensions completely decoupled from the rest of the system. To that end we
will prove the following:

Lemma 1. Given B ∈ R+, b ∈ R
2, and y ∈ D2, consider

x1(t) = b1 + y1(t) +

∫ t

0

(−x1(s) + x2(s))ds− u1(t), (3.1)

x2(t) = b2 + y2(t) +

∫ t

0

(−x2(s))ds + u1(t)− u2(t), (3.2)

x1(t) ≤ 0, 0 ≤ x2(t) ≤ B, t ≥ 0, (3.3)

with u1 and u2 nondecreasing nonnegative functions in D such that
∫ ∞

0

1{x1(t) < 0}du1(t) = 0,

∫ ∞

0

1{x2(t) < B}du2(t) = 0.

Then (3.1)-(3.3) has a unique solution (x, u) ∈ D2 ×D2 so that there is a well defined function
(f, g) : R+ × R

2 × D2 → D2 × D2 mapping (B, b, y) into x = f(B, b, y) and u = g(B, b, y).
Furthermore, the function (f, g) is continuous. Finally, if y is continuous, then so are x and u.

3.1.1 The reflection map.

In several places we will make use of the well known one-dimensional reflection map for an upper
barrier. Given upper barrier κ ∈ R+, we let (φκ, ψκ) : D → D2 be the one-sided reflection map
with upper barrier at κ (see, e.g., [19] §5.2 and §13.5). In particular for x ∈ D with x(0) ≤ κ
we have z = ψκ(y) ≥ 0, z nondecreasing,

x = φκ(y) = y − z ≤ κ,

and
∫ ∞

0

1{x < κ}dz = 0.

Recall that these functions can be defined explicitly by

ψκ(x)(t) = sup
0≤s≤t

(x(s) − κ)+ (3.4)
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and
φκ(x)(t) = x(t)− ψκ(x)(t). (3.5)

We will also make use of a slight variant of the usual Lipschitz condition for these functions to
allow for different values of κ. In particular, for x, x′ ∈ D, κ, κ′ ∈ R, and t ≥ 0 we have

||ψκ(x) − ψκ′(x′)||t ≤ ||x− x′||t + |κ− κ′|, (3.6)

||φκ(x)− φκ′(x′)||t ≤ 2 ||x− x′||t + |κ− κ′|. (3.7)

These follow straightforwardly from (3.4) and (3.5). Note that for κ = κ′ we recover the usual
Lipschitz constants of 1 for ψκ and 2 for φκ.

We also define a trivial reflection map for κ = ∞ by letting (φ∞, ψ∞) = (e, 0) where e is the
identity map. That is, the reflection map leaves the argument unchanged and the regulator is
identically zero. We prove the following:

Lemma 2. The function (φ, ψ) : R+ × D → D2 defined by (3.4)-(3.5) for finite κ and by
(φ∞, ψ∞) = (e, 0) for κ = ∞ is continuous with respect to the product topology when R+ is
equipped with the order topology and D is equipped with the topology of uniform convergence
over bounded intervals.

Proof. By (3.6)-(3.7) the function is continuous at any finite κ ∈ R+. For x ∈ D and xκ ∈ D
such that xκ → x as κ→ ∞,

lim
κ→∞

||ψκ(x
κ)||t = lim

κ→∞
sup

0≤s≤t

|ψκ(x
κ)|

= lim
κ→∞

sup
0≤s≤t

(xκ(s)− κ)+

= sup
0≤s≤t

lim
κ→∞

(xκ(s)− κ)+

= 0,

where we have made use of the fact that ||x||t <∞. Therefore ψκ(x
κ) → ψ∞(x) and by (3.5) we

conclude φκ(x
κ) → φ∞(x). Thus the function is continuous at κ = ∞, completing the proof.

With these facts about the reflection map in hand, we will now prove a result similar to
Lemma 1 for a related system:

Lemma 3. Given B ∈ R+, b ∈ R
2 and y ∈ D2, consider

w1(t) = b1 + y1(t) +

∫ t

0

(−φ0(w1(s)) + φB(w2(s))) ds, (3.8)

w2(t) = b2 + y2(t) + ψ0(w1(t)) +

∫ t

0

(−φB(w2(s))) ds ≥ 0. (3.9)

Then (3.8)-(3.9) has a unique solution w ∈ D2 so that there is a well defined function ξ :
R+ × R

2 × D2 → D2 mapping (B, b, y) into w = ξ(B, b, y). Furthermore, the function ξ is
continuous. Finally, if y is continuous, then so is w.

Before proceeding with the proof we introduce a version of Gronwall’s inequality first proved
by Greene [7] and proved in the form we use by Das [3]:

Lemma 4 (Gronwall’s inequality). Let K1 and K2 be nonnegative constants, let hi be real
constants, and let f, g be continuous nonnegative functions for all t ≥ 0 such that

f(t) ≤ K1 + h1

∫ t

0

f(s)ds+ h2

∫ t

0

g(s)ds,

g(t) ≤ K2 + h3

∫ t

0

f(s)ds+ h4

∫ t

0

g(s)ds

7



for all t ≥ 0. Then
f(t) ≤Meht and g(t) ≤Meht

for all t ≥ 0 where M = K1 +K2 and h = max{h1 + h3, h2 + h4}. In particular, if K1,K2 = 0,
then f(t), g(t) = 0 for all t.

Proof of Lemma 3. We will show existence via a contraction mapping argument. First we will
show that for t ≥ 0 there exists a solution w̃ = (w̃1, w̃2) to the system of integral equations

w̃1(t) = b1 + y1(t) +

∫ t

0

(

−φ0(w̃1(s)) + φB
(

w̃2(s) + ψ0(w̃1(s))
))

ds, (3.10)

w̃2(t) = b2 + y2(t) +

∫ t

0

(

−φB
(

w̃2(s) + ψ0(w̃1(s))
))

ds ≥ 0. (3.11)

Once we have such a solution, it follows immediately that

w = (w1, w2) = (w̃1, w̃2 + ψ0(w̃1))

is a solution to (3.8)-(3.9).
We first show that the map defined by the right hand side of (3.10)-(3.11) is a contraction

for small enough t. We define T : D2 → D2 by

T (w̃)1(t) = b1 + y1(t) +

∫ t

0

(

−φ0(w̃1(s)) + φB
(

w̃2(s) + ψ0(w̃1(s))
))

ds, (3.12)

T (w̃)2(t) = b2 + y2(t) +

∫ t

0

(

−φB
(

w̃2(s) + ψ0(w̃1(s))
))

ds. (3.13)

For w̃, ṽ ∈ D2 we have

||T (w̃)1 − T (ṽ)1||t ≤
∫ t

0

||−φ0(w̃1) + φ0(ṽ1)||s ds

+

∫ t

0

||φB(w̃2 + ψ0(w̃1))− φB(ṽ2 + ψ0(ṽ1))||s ds

≤ 2

∫ t

0

||w̃1 − ṽ1||s ds

+ 2

∫ t

0

||w̃2 + ψ0(w̃1)− ṽ2 − ψ0(ṽ1)||s ds

≤ 2t ||w̃1 − ṽ1||t + 2t ||w̃2 − ṽ2||t +
∫ t

0

||w̃1 − ṽ1||s ds

≤ 2t ||w̃1 − ṽ1||t + 2t ||w̃2 − ṽ2||t + t ||w̃1 − ṽ1||t
≤ 5t ||w̃ − ṽ||t

and

||w̃2 − ṽ2||t ≤
∫ t

0

||−φB(w̃2 + ψ0(w̃1)) + φB(ṽ2 + ψ0(ṽ1))||s ds

≤ 2t ||w̃2 + ψ0(w̃1)− ṽ2 − ψ0(ṽ1)||t
≤ 2t ||w̃2 − ṽ2||t + t ||w̃1 − ṽ1||t
≤ 3t ||w̃ − ṽ||t .

We therefore conclude that
||T (w̃)− T (ṽ)||t ≤ 5t ||w̃ − ṽ||t ,

8



so for t0 <
1

5
, T is a contraction onD([0, t0],R

2). Therefore by the contraction mapping principle
(see, e.g., [15, p.220]), T has a unique fixed point w̃ on D([0, t0],R

2) such that T (w̃) = w̃. This
fixed point solves (3.10)-(3.11) for t ∈ [0, t0]. Now we extend the fixed point argument to
t ∈ [t0, 2t0], [2t0, 3t0], . . . and repeat to find a solution w̃ to (3.10)-(3.11) for t ≥ 0. As noted
above, this provides a solution w to (3.8)-(3.9).

To prove uniqueness of this solution, suppose w and w′ are two solutions to (3.8)-(3.9). We
consider

||w1 − w′
1||t ≤

∫ t

0

||−φ0(w1) + φ0(w
′
1) + φB(w2)− φB(w

′
2)||s ds

≤ 2

∫ t

0

(||w1 − w′
1||s + ||w2 − w′

2||s) ds (3.14)

and

||w2 − w′
2||t ≤ ||ψ0(w1)− ψ0(w

′
1)||t +

∫ t

0

||φB(w2)− φB(w
′
2)||s ds

≤ ||w1 − w′
1||t + 2

∫ t

0

||w2 − w′
2||s ds. (3.15)

To match the form of Gronwall’s inequality (Lemma 4) we rewrite (3.15) as

||w2 − w′
2||t − ||w1 − w′

1||t ≤ 2

∫ t

0

||w2 − w′
2||s ds

and note that the right hand side is nonnegative so the inequality remains true as

(||w2 − w′
2||t − ||w1 − w′

1||t)
+ ≤ 2

∫ t

0

||w2 − w′
2||s ds. (3.16)

We now define

u1(t) = ||w1 − w′
1||t ,

u2(t) = (||w2 − w′
2||t − ||w1 − w′

1||t)
+

and note
||w2 − w′

2||s ≤ u2(s) + u1(s) s ≥ 0. (3.17)

Then (3.14), (3.16), and (3.17) imply

u1(t) ≤ 4

∫ t

0

u1(s)ds+ 2

∫ t

0

u2(s)ds,

u2(t) ≤ 2

∫ t

0

u1(s)ds+ 2

∫ t

0

u2(s)ds.

Now by Gronwall’s inequality we have

u1(t) = 0 and u2(t) = 0,

so by the definition of u1 and (3.17) we have

||w1 − w′
1||t = ||w2 − w′

2||t = 0

for all t ≥ 0 and therefore the solution w is unique.
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We now establish the continuity of ξ. Suppose

(Bn, bn, yn) → (B, b, y) as n→ ∞.

Fix ǫ > 0 and suppose wn and w satisfy (3.8)-(3.9) for (Bn, bn, yn) and (B, b, y), respectively.
Choose N such that for all n ≥ N ,

|bn − b|+ ||yn − y||t + ||φBn(w2)− φB(w2)||t < δ

for some δ > 0 which is yet to be determined. Note that such an N exists by Lemma 2 and the
assumption Bn → B. We have

||wn
1 − w1||t ≤ |bn − b|+ ||yn − y||t

+

∫ t

0

||−φ0(wn
1 ) + φ0(w1) + φBn(wn

2 )− φB(w2)||s ds

≤ δ +

∫ t

0

(

2 ||wn
1 − w1||s + ||φBn(wn

2 )− φBn(w2)||s
+ ||φBn(w2)− φB(w2)||s

)

ds

≤ δ +

∫ t

0

(2 ||wn
1 − w1||s + 2 ||wn

2 − w2||s + δ) ds

≤ δ(1 + t) + 2

∫ t

0

(||wn
1 − w1||s + ||wn

2 − w2||s) ds (3.18)

and

||wn
2 − w2||t ≤ δ(1 + t) + ||wn

1 − w1||t + 2

∫ t

0

||wn
2 − w2||s ds. (3.19)

As in the uniqueness argument above, we will apply Gronwall’s inequality, with functions

u1(t) = ||wn
1 − w1||t and u2(t) = (||wn

2 − w2||t − ||wn
1 − w1||t)

+
.

Then we have

u1(t) ≤ δ(1 + t) + 4

∫ t

0

u1(s)ds+ 2

∫ t

0

u2(s)ds,

u2(t) ≤ δ(1 + t) + 2

∫ t

0

u1(s)ds+ 2

∫ t

0

u2(s)ds,

so Gronwall’s inequality implies

u1(t) ≤ 2δ(1 + t)e6t and u2(t) ≤ 2δ(1 + t)e6t

and we have

||wn
1 − w1||t ≤ 2δ(1 + t)e6t and ||wn

2 − w2||t ≤ 4δ(1 + t)e6t.

We choose δ = 1

4+4t
ǫe−6t to establish the desired continuity.

For the proof of continuity of w we note

|w1(t+ s)− w1(t)| ≤ |y1(t+ s)− y1(t)|+
∫ t+s

t

|φB(w2(z))− φ0(w1(z))|dz

and

|w2(t+ s)− w2(t)| ≤ |y2(t+ s)− y2(t)|+ |w1(t+ s)− w1(t)|+
∫ t+s

t

|φB(w2(z))|dz

The boundedness of w1 and w2 proved in Lemma 9 imply that w1 and w2 are continuous if y1
and y2 are continuous.
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We are now prepared to prove Lemma 1.

Proof of Lemma 1. Our key insight is to see that a solution is found by setting x1 = φ0(w1),
u1 = ψ0(w1), x2 = φB(w2), and u2 = ψB(w2) where (w1, w2) is the unique solution defined by
Lemma 3.

To see that it is unique, note that the conditions on u1 and u2 imply that they can be written
as ψ0(z1) and ψB(z2) for some functions z1, z2 ∈ D. Then x1 and x2 are φ0(z1) and φB(z2) for
the same z1 and z2. Then (2.4)-(2.8) imply that z = (z1, z2) must be a solution of (3.8)-(3.9).
By Lemma 3 this solution is unique. In particular, this solution is

x1 = f1(b, y) = (φ0 ◦ ξ1)(b, y),
u1 = g1(b, y) = (ψ0 ◦ ξ1)(b, y),
x2 = f2(b, y) = (φB ◦ ξ2)(b, y),
u2 = g2(b, y) = (ψB ◦ ξ2)(b, y).

The reflection maps (φ0, ψ0) and (φB , ψB) are continuous in the uniform topology and also
preserve continuity. Since ξ also has these properties by Lemma 3, we conclude that (f, g) are
continuous and preserve continuity.

3.2 Higher dimensions.

Because of the lack of reflection terms for i ≥ 3, the higher dimensional terms in Theorem 1
behave in primarily one-dimensional ways. Therefore we will note an existence, uniqueness, and
continuity result for a one-dimensional system that we will use in our proof of Theorem 1. This
lemma is a special case of a slightly more general result proved by Pang, Talreja, and Whitt [14,
Theorem 4.1], namely letting h(x) = −x.
Lemma 5. Given b ∈ R, and y ∈ D, consider

x(t) = b+ y(t) +

∫ t

0

−x(s)ds (3.20)

x(t) ≥ 0, t ≥ 0 (3.21)

Then (3.20)-(3.21) has a unique solution x ∈ D so that there is a well defined function
f : R×D → D mapping (b, y) into x = f(b, y). Furthermore, the function (f, g) is continuous.
Finally, if y is continuous, then so is x.

With this lemma in hand, we can prove Theorem 1:

Proof of Theorem 1. We first prove existence, uniqueness, and preservation of continuity by
induction on k ≥ i ≥ 3.

As the base case, observe that Lemma 5 implies there exists a unique solution xk(t) which
preserves continuity of yk(t).

As an induction hypothesis, suppose for some i ≥ 3 there exist unique solutions xi+1(t), . . . , xk(t)
which are continuous if yi+1, . . . , yk are continuous, and consider xi(t).

We have the integral equation

xi(t) = bi + yi(t) +

∫ t

0

(−xi(s) + xi+1(s))ds

= bi + yi(t) +

∫ t

0

xi+1(s)ds+

∫ t

0

−xi(s)ds.
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By the induction hypothesis xi+1(t) exists and is unique, so we let

ŷ(t) = yi(t) +

∫ t

0

xi+1(s)ds

and apply Lemma 5 with y = ŷ to conclude that there exists a unique solution xi(t). This
solution is continuous if yi, . . . , yk are continuous because in that case that ŷ(t) is continuous.

By induction, we conclude that there exist unique solutions x3, . . . , xk which preserve conti-
nuity of y3, . . . , yk. From this, we can define

ŷ2(t) = y2(t) +

∫ t

0

x3(s)ds

and apply Lemma 1 with y2 = ŷ2 to complete the proof of existence, uniqueness, and preservation
of continuity.

To verify that the map (f, g) is continuous, suppose xn(t) and x(t) solve (2.4)-(2.8) for
(Bn, bn, yn) and (B, b, y), respectively, and further suppose (Bn, bn, yn) → (B, b, y).

We again proceed by induction on k ≥ i ≥ 3.
For the base case note Lemma 5 implies xnk → xk.
As an induction hypothesis, suppose for some i ≥ 3 we have xnj → xj for i ≤ j ≤ k.
By the induction hypothesis we have

yni (t) +

∫ t

0

xni+1(s)ds→ yi(t) +

∫ t

0

xi+1(s)ds,

and thus, again by Lemma 5, xni → xi.
By induction we conclude xni → xi for 3 ≤ i ≤ n. This further implies

yn2 (t) +

∫ t

0

xn3 (s)ds→ y2(t) +

∫ t

0

x3(s)ds,

so Lemma 1 implies (xn1 , x
n
2 ) → (x1, x2), and continuity is established.

4 Truncation and martingale representation.

To use Theorem 1 in a CMT argument, we want to write the process Xn in the appropriate
integral form. Instead of directly considering the full M/M/n-JSQ system, however, we will
introduce a truncated variant which we will later show has the same behavior as Xn in the
limit. It is this truncated system that will be shown to take the integral form of Theorem 1.

4.1 Truncation.

An important feature of the behavior of the M/M/n-JSQ system is that queues with more than
one customer waiting are formed only if all queues have at least one customer waiting already.
One of our goals is to show that Qn

2 , the number of queues with a customer waiting, is of the
order O (

√
n) and thus it is unlikely for longer queues to form. With this in mind, as a proof

technique, we now introduce a truncated version of the system in which no queues with length
greater than 2 are created, though they are allowed to exist in the initial condition. This system
will be significantly easier to analyze and will be shown to have stochastic behavior exactly
matching the untruncated system with high probability. See Figure 1 to see a sample path of
an original untruncated system which starts with order Θ (

√
n) queues of length 4. Note that

the number of queues length 3 and length 4 decrease monotonically.
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Figure 1: A simulated sample path of an M/M/n-JSQ system, showing the scaled number of idle
servers (a) and queues of length at least two (Xn

2
), three (Xn

3
), four (Xn

4
), and five (Xn

5
). Simulated

with n = 105, β = 2.0.

Now we make this more precise. Consider a system in which any arrival that would create
a queue of length 3 or longer is rejected. That is, if an arrival occurs when all queues contain
at least two customers, that arriving customer does not enter the system. We will denote this
system Q̂n = (Q̂n

1 , Q̂
n
2 , . . .). We also introduce scaled versions

X̂n
1 (t) =

Q̂n
1 (t)− n√

n
and X̂n

i (t) =
Q̂n

i (t)√
n
, i ≥ 2. (4.1)

It will also be convenient for us to adopt the condition from Theorem 2 that Q̂n
k+1(0) = 0

for some k ≥ 2. Since queues of length 3 or longer are never created in this system, this implies
Q̂n

i (t) = 0 for i ≥ k + 1, and thus analysis of Q̂n(t) can be limited to the first k dimensions.

We will now construct the truncated process X̂n(t) and show that it has the integral form
in Theorem 1. Our representation will be similar to the first martingale representation of [14];
in particular it will rely upon random time changes of rate-1 Poisson processes.

4.2 Random time change.

We let A,Di for 1 ≤ i ≤ k be rate-1 Poisson processes and write

Q̂n
1 (t) = Qn

1 (0) +A (λnnt)−D1

(∫ t

0

(

Q̂n
1 (s)− Q̂n

2 (s)
)

ds

)

− Ûn
1 (t), (4.2)

Q̂n
2 (t) = Qn

2 (0) + Ûn
1 (t)−D2

(∫ t

0

(

Q̂n
2 (s)− Q̂n

3 (s)
)

ds

)

− Ûn
2 (t), (4.3)

Q̂n
i (t) = Qn

i (0)−Di

(∫ t

0

(

Q̂n
i (s)− Q̂n

i+1(s)
)

ds

)

, (4.4)

Q̂n
k (t) = Qn

k (0)−Dk

(∫ t

0

Q̂n
k (s)ds

)

, (4.5)

where Ûn
1 (t) is the number of arrivals in [0, t] when every server has at least one customer, and

Ûn
2 (t) is the number of arrivals in [0, t] when every server has at least one customer and all n
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servers have two customers. Formally, we define

Ûn
1 (t) =

∫ t

0

1

{

Q̂n
1 (s) = n

}

dA(λnns), (4.6)

Ûn
2 (t) =

∫ t

0

1

{

Q̂n
1 (s) = n, Q̂n

2 (s) = n
}

dA(λnns). (4.7)

We can understand (4.2) term-by-term: first we record the initial state of the system with Qn
1 (0),

then arrivals are counted at their full rate λnn. The D1 term represents departures, which occur
as a Poisson process with rate equal to the number of customers in service. Since Q̂1 includes
queues of length 1 and length 2, however, Q̂1 will only decrease when a customer departs a
queue and leaves the server empty. Therefore the instantaneous rate at time s in the D1 term
is Q̂n

1 (s) − Q̂n
2 (s), the number of queues of length exactly 1 at time s. Through the first three

terms of (4.2) we have recorded what the value of Q̂1 would be if it were not constrained to
be at most n, so the final term will represent this barrier. The process Ûn

1 records any arrival
which would increase Q̂1 above n, balancing the overcounting we get from A(λnnt).

We can understand (4.3) in much the same way, with the key difference being in the arrival
process. Since arriving customers will always join the shortest available queue, the number of
length 2 queues will increase only when all servers are busy. Such arrivals are exactly recorded
by Ûn

1 , so this will be the process we use to record potential increases to Q̂n
2 . The process Ûn

2

provides the upper barrier n on Q̂n
2 .

The remaining equations (4.4)-(4.5) are the same except that we record no arrivals, as our
truncated approximation does not create queues of length 3 or longer.

As in [14, Lemma 2.1], we can verify that this construction is well defined and generates an
element of Dk by conditioning on the starting state Qn(0) and processes A,Di then constructing
recursively.

4.3 Martingales.

Because our approach to (4.2)-(4.5) will be to apply the functional central limit theorem (FCLT)
for Poisson processes, we will now rewrite the time changes of Poisson processes as time changes
of scaled Poisson processes. To that end, we define scaled martingales

M̂n
0 (t) =

1√
n
A (λnnt)− λn

√
nt, (4.8)

M̂n
i (t) =

1√
n
Di

(∫ t

0

(

Q̂n
i (s)− Q̂n

i+1(s)
)

ds

)

− 1√
n

∫ t

0

(

Q̂n
i (s)− Q̂n

i+1(s)
)

ds, 1 ≤ i < k,

(4.9)

M̂n
k (t) =

1√
n
Dk

(
∫ t

0

Q̂n
k (s)ds

)

− 1√
n

∫ t

0

Q̂n
k(s)ds. (4.10)

Via an argument exactly analogous to that of in §7.1 of [14] leading to Theorem 7.2 we obtain
that M̂n

i for 0 ≤ i ≤ k are square-integrable martingales with respect to an appropriate filtration.
We note for later use that this argument also supplies the predictable quadratic variations

〈

M̂n
0

〉

(t) = λnt, (4.11)

〈

M̂n
i

〉

(t) =
1

n

∫ t

0

(Q̂n
i (s)− Q̂n

i+1(s))ds, (4.12)

〈

M̂n
k

〉

(t) =
1

n

∫ t

0

Q̂n
k (s)ds. (4.13)
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We also define

V̂ n
1 (t) =

Ûn
1 (t)√
n

and V̂ n
2 (t) =

Ûn
2 (t)√
n
.

Then we have

X̂n
1 (t) =

Q̂n
1 (t)− n√

n

=
Qn

1 (0)− n√
n

+
1√
n
A (λnnt)

− 1√
n
D1

(∫ t

0

(Q̂n
1 (s)− Q̂n

2 (s))ds

)

− Ûn
1 (t)√
n

= Xn
1 (0) + M̂n

0 (t) + λn
√
nt− V̂ n

1 (t)

− M̂n
1 (t)−

1√
n

∫ t

0

(

Q̂n
1 (s)− Q̂n

2 (s)
)

ds

= Xn
1 (0) + M̂n

0 (t)− M̂n
1 (t) + λn

√
nt− V̂ n

1 (t)

−
√
nt−

∫ t

0

(

Q̂n
1 (s)− n√

n
− Q̂n

2 (s)√
n

)

ds

= Xn
1 (0) + M̂n

0 (t)− M̂n
1 (t)− (1− λn)

√
nt (4.14)

−
∫ t

0

(X̂n
1 (s)− X̂n

2 (s))ds − V̂ n
1 (t),

and

X̂n
2 (t) = Xn

2 (0) + V̂ n
1 (t)− M̂n

2 (t)−
∫ t

0

(

X̂n
2 (s)− X̂n

3 (s)
)

ds− V̂ n
2 (t), (4.15)

X̂n
i (t) = Xn

i (0)− M̂n
i (t)−

∫ t

0

(

X̂n
i (s)− X̂n

i+1(s)
)

ds, 3 ≤ i ≤ k − 1, (4.16)

X̂n
k (t) = Xn

k (0)− M̂n
k (t)−

∫ t

0

X̂n
k (s)ds. (4.17)

At this point we can also note that (4.14)-(4.17) put X̂n(t) in the integral form of Theorem
1. The only difference is the processes V̂ n, which are not described in exactly the same way.
We see, however, that by (4.6) we have

0 =

∫ ∞

0

1{Q̂n
1 (s) < n}dÛn

1 (s)

=

∫ ∞

0

1{X̂n
1 (s) < 0}dÛn

1 (s)

=

∫ ∞

0

1{X̂n
1 (s) < 0}dV̂ n

1 (s). (4.18)

Similarly by (4.7) we have

0 =

∫ ∞

0

1{Q̂n
1 (s) < n or Q̂n

2 (s) < n}dÛn
2 (t).
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which implies

0 =

∫ ∞

0

1{Q̂n
2 (s) < n}dÛn

2 (t)

=

∫ ∞

0

1{X̂n
2 (s) <

√
n}dV̂ n

2 (t). (4.19)

Thus by (4.14)-(4.17) and (4.18)-(4.19) X̂n is the unique solution of (2.4)-(2.8) for b = Xn(0),
y1 = M̂n

0 (t)− M̂n
1 (t)− (1 − λn)

√
nt, yi = −M̂n

i (t), 2 ≤ i ≤ k, and B =
√
n. Thus to apply the

CMT it remains to prove the convergence of the martingales (4.8)-(4.10).

5 Martingale convergence.

We will now prove the convergence of M̂n
i to Brownian motions.

Lemma 6. For the sequences of scaled martingales M̂n
i defined in Section 4.3 we have the

convergence
(

M̂n
0 , M̂

n
1 , M̂

n
2 , . . . , M̂

n
k

)

⇒ (W1,W2, 0, . . . , 0) in D as n→ ∞, (5.1)

where W1 and W2 are independent standard Brownian motions.

To prove this lemma we will rely upon the CMT and the FCLT for Poisson processes ([14,
Theorem 4.2]), which we restate here convenience.

Lemma 7. (FCLT for independent Poisson processes) If A and Di are independent rate-1
Poisson processes and

MC,n(t) =
C(nt)− nt√

n

for C = A,Di, then

(MA,n,MD1,n, . . . ,MDk,n) ⇒ (W1,W2, . . . ,Wk+1) in Dk+1 as n→ ∞

where Wi are independent standard Brownian motions.

To apply Lemma 7 we will define random and deterministic time changes such that the
martingales M̂n

i can be written as a composition of a time change and the scaled Poisson
processes MC,n. Specifically, let

ΦA,n(t) = λnt, (5.2)

ΦDi,n(t) =
1

n

∫ t

0

Q̂n
i (s)ds−

1

n

∫ t

0

Q̂n
i+1(s)ds, (5.3)

ΦDk,n(t) =
1

n

∫ t

0

Q̂n
k (s)ds, (5.4)

so that we have

M̂n
0 = M̂A,n ◦ ΦA,n, M̂n

i = M̂Di,n ◦ ΦDi,n, 1 ≤ i ≤ k.

To apply the CMT with the composition map ◦, we need to determine the limits of the time
changes (5.2)-(5.4).

First we note that (2.1) implies λn → 1, which in turn implies

ΦA,n ⇒ e as n→ ∞, (5.5)
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where e is the identity function in D.
Next we note that the terms of (5.3) interleave over i, so for 1 ≤ i ≤ k − 1 we have

ΦDi,n ⇒ fi − fi+1 as n→ ∞,

where fi is the limit of Φ̃Di,n with

Φ̃Di,n(t) =
1

n

∫ t

0

Q̂n
i (s)ds.

To find fi we will first show fluid limits for Q̂n
i .

Lemma 8. Let Ψn
i for 1 ≤ i ≤ k be defined by

Ψn
i (t) =

Q̂n
i (t)

n
, t ≥ 0.

Then for 2 ≤ i ≤ k,
Ψn

1 ⇒ ω and Ψn
i ⇒ 0 as n→ ∞ (5.6)

where ω(t) = 1 for t ≥ 0.

The proof of this lemma is found in Section 5.1. To use Lemma 8 we define a continuous
function h : D → D by

h(x)(t) =

∫ t

0

x(s)ds

for t ≥ 0. The Φ̃D1,n = h ◦Ψn so by the CMT and Lemma 8 we know f1 = h ◦ ω. Namely,

f1(t) =

∫ t

0

1ds = t

so f1 = e is the identity function in D. Therefore we have

Φ̃D1,n ⇒ e as n→ ∞.

For 2 ≤ i ≤ k we have fi(t) =
∫ t

0
0ds = 0 so fi = 0 on D. We conclude that

ΦD1,n ⇒ e as n→ ∞, (5.7)

and for 2 ≤ i ≤ k
ΦDi,n ⇒ 0 as n→ ∞. (5.8)

Therefore once we establish Lemma 8 we can prove Lemma 6:

Proof of Lemma 6. We apply the CMT with Lemma 7 and the limits (5.5), (5.7), and (5.8) to
obtain
(

M̂n
0 , M̂

n
1 , M̂

n
2 , . . . , M̂

n
k

)

= (MA,n ◦ ΦA,n,MD1,n ◦ ΦD1,n,MD2,n ◦ ΦD2,n, . . . ,MDk,n ◦ ΦDk,n)

⇒ (W1 ◦ e,W2 ◦ e,W3 ◦ 0, . . . ,Wk+1 ◦ 0)
= (W1,W2, 0, . . . , 0).
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5.1 Fluid limit.

We will prove Lemma 8 by showing that X̂n is stochastically bounded in D. Namely, we will

prove that the sequence of real-valued random variables
∣

∣

∣

∣

∣

∣
X̂n

i

∣

∣

∣

∣

∣

∣

t
is tight for every t > 0 and

i ≥ 1. For a more complete discussion of stochastic boundedness as we use it here see §5 of [14].
The stochastic boundedness of X̂n

1 and X̂n
2 will follow from the stochastic boundedness of

M̂n
0 , M̂

n
1 , M̂

n
2 , and X̂

n
3 . To see this, we prove

Lemma 9. Given (Bn, X
n
i (0), Y

n
i ) a random element of R+×R×D for each n ≥ 1 and i = 1, 2,

recall that Lemma 1 implies that the system

X̂n
1 (t) = Xn

1 (0) + Y n
1 (t) +

∫ t

0

(−X̂n
1 (s) + X̂n

2 (s))ds − V̂ n
1 (t),

X̂n
2 (t) = Xn

2 (0) + Y n
2 (t) +

∫ t

0

(−X̂n
2 (s))ds+ V̂ n

1 (t)− V̂ n
2 (t) ≥ 0,

0 =

∫ ∞

0

1{X̂n
1 (t) < 0}dV̂ n

1 (t),

0 =

∫ ∞

0

1{X̂n
2 (t) < Bn}dV̂ n

2 (t),

has a unique solution (X̂n, V̂ n). If the sequences (Xn(0), n ≥ 1) and (Y n
i , n ≥ 1) are stochasti-

cally bounded for i = 1, 2, then the sequence (X̂n, n ≥ 1) is stochastically bounded in D.

Note that we do not require boundedness for Bn.

Proof. We fix t > 0. We will establish the bound

∣

∣

∣

∣

∣

∣X̂n
∣

∣

∣

∣

∣

∣

t
≤ 8e6t (|Xn(0)|+ ||Y n||t) , (5.9)

from which the result follows.
To show (5.9), we will prove a similar bound for the unreflected process Wn defined by

Lemma 3. Then (5.9) will follow from the Lipschitz continuity of the reflection maps φ0 and
φBn

.
Just as in Lemma 1 and Lemma 3 we write X̂n

1 (t) = φ0(W
n
1 (t)) and X̂n

2 (t) = φBn(Wn
2 (t))

where Wn
1 (t) and W

n
2 (t) satisfy

Wn
1 (t) = Xn

1 (0) + Y n
1 (t) +

∫ t

0

(−φ0(Wn
1 (s)) + φBn(Wn

2 (s)))ds, (5.10)

Wn
2 (t) = Xn

2 (0) + Y n
2 (t) +

∫ t

0

(−φBn(Wn
2 (s)))ds + ψ0 (W

n
1 (t)) . (5.11)

We now use Gronwall’s inequality as stated in Lemma 4. Using the Lipschitz property for
φ0,φBn

, and ψ0 we have for t ≥ 0

||Wn
1 ||t ≤ |Xn

1 (0)|+ ||Y n
1 ||t + 2

∫ t

0

(||Wn
2 ||s + ||Wn

1 ||s) ds,

||Wn
2 ||t ≤ |Xn

2 (0)|+ ||Y n
2 ||t + ||ψ0(W

n
1 )||t +

∫ t

0

||Wn
2 ||s ds.

Now we note that we have
||ψ0(W

n
1 )||t ≤ ||Wn

1 ||t .
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We define

u1(t) = ||Wn
1 ||t and u2(t) = (||Wn

2 ||t − ||Wn
1 ||t)

+
.

Finally we note
||Wn

2 ||t ≤ u2(t) + u1(t), (5.12)

so we can write the inequalities

u1(t) ≤ |Xn
1 (0)|+ ||Y n

1 ||t + 4

∫ t

0

u1(s)ds+ 2

∫ t

0

u2(s)ds,

u2(t) ≤ |Xn
2 (0)|+ ||Y n

2 ||t +
∫ t

0

u1(s)ds+

∫ t

0

u2(s)ds.

Let |Xn(0)|+ ||Y n||t = K. Then Lemma 4 implies

u1(t) ≤ 2Ke6t and u2(t) ≤ 2Ke6t.

From (5.12) and the definitions of u1 and u2 we obtain

||Wn
1 ||t ≤ 2Ke6t and ||Wn

2 ||t ≤ 4Ke6t.

Since φ0 and φBn are Lipschitz continuous with constant 2 this implies

∣

∣

∣

∣

∣

∣X̂n
1

∣

∣

∣

∣

∣

∣

t
≤ 4Ke6t and

∣

∣

∣

∣

∣

∣X̂n
2

∣

∣

∣

∣

∣

∣

t
≤ 8Ke6t,

which proves (5.9).

Note that this proof also provides the boundedness of w that we use in the proof of continuity
of w in Lemma 3, and that it does not use any of the continuity properties proved using that
boundedness.

In our application of Lemma 9 we will have Y n
1 = M̂n,1

1 − M̂n,2
1 − (1− λn)

√
nt and Y n

2 (t) =

M̂n,2
2 (t) +

∫ t

0
X̂n

3 (s)ds, so it remains to prove that
∫ t

0
X̂n

3 (s)ds and each martingale M̂n,i
k is

stochastically bounded.
To show that

∫ t

0
X̂n

3 (s)ds is stochastically bounded we need only show that X̂n
3 is stochasti-

cally bounded. This follows from the fact that Qn
3 (0) is stochastically bounded by assumption

(2.9) and

X̂n
3 (t) =

Q̂n
3 (t)√
n

≤ Qn
3 (0)√
n

because no queues of length 3 or longer are ever created. An identical argument proves stochastic
boundedness of X̂n

i for 4 ≤ i ≤ k.
To prove the stochastic boundedness of these martingales we will use the following lemma

from [14]:

Lemma 10 ([14] Lemma 5.8). Suppose that, for each n ≥ 1, Mn is a square integrable mar-
tingale with predictable quadratic variation 〈Mn〉. If the sequence of random variables 〈Mn〉(T )
is stochastically bounded in R for each T > 0, then the sequence of stochastic processes Mn is
stochastically bounded in D.

We now prove that the predictable quadratic variations of M̂n
i are stochastically bounded.

In the case of M̂n
0 this is immediate since by (4.11) the quadratic variation is deterministic.
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For M̂n
1 we refer to (4.12) and apply crude bounds to see

〈

M̂n
1

〉

(t) =
1

n

∫ t

0

(Q̂n
1 (s)− Q̂n

2 (s))ds

≤ 1

n

∫ t

0

Q̂n
1 (s)ds

≤ t

n
(Qn

1 (0) +A(λnnt)) .

It suffices to show stochastic boundedness of each term in the sum. For Qn
1 (0) this follows from

assumption (2.9).
For A(λnnt) we note λn → 1 so by the strong law of large numbers (SLLN) for Poisson

processes we have
A(λnnt)

n
→ e(t)

with probability 1, which implies stochastic boundedness, so we conclude that M̂n
1 is stochasti-

cally bounded.
For M̂n

2 we have

〈

M̂n
2

〉

(t) ≤ t

n

(

Qn
2 (0) + Ûn

1 (t)
)

≤ t

n
(Qn

2 (0) +A(λnnt)) ,

and stochastic boundedness follows.
We now return to the proof of Lemma 8:

Proof of Lemma 8. We have for i ≤ 2 ≤ k that

X̂n
1 =

Q̂n
1 − n√
n

and X̂n
i =

Q̂n
i√
n

are stochastically bounded. Therefore

X̂n
i√
n

⇒ 0 in D as n→ ∞.

From the definition of X̂n this is equivalent to

Ψn
1 =

Q̂n
1

n
⇒ ω and Ψn

i =
Q̂n

i

n
⇒ 0 in D as n→ ∞

for 2 ≤ i ≤ k.

5.2 Proof of Theorem 2.

Now that we have the convergence of the martingale processes M̂n
i , we can apply the CMT to

prove Theorem 2.

Proof of Theorem 2. We first show X̂n ⇒ X .
In Theorem 1, in the pre-limit regime we set Bn =

√
n, bi = Xn

i (0) for 1 ≤ i ≤ k,

y1(t) = M̂n
0 (t)− M̂n

1 (t)− (1− λn)
√
nt,
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and yi(t) = −M̂n
i (t) for 2 ≤ i ≤ k. Equations (4.18) and (4.19) show that V̂ n

1 and V̂ n
2 are

appropriately acting as u1 and u2 in the integral representation, so xi(t) = X̂n
i (t) for 1 ≤ i ≤ k.

For application of the CMT we need only determine the limits of B, b and y. We have Bn → ∞,
so in the limit u2 = 0.

By assumption we have
X̂n

k (0) ⇒ Xk(0),

so in the limiting system we let bi = X̂i(0). Next we have by (2.1) and (5.1)

M̂n
0 (t)− M̂n

1 (t)− (1− λn)
√
nt⇒W1(t)−W2(t)− βt

d
=
√
2W (t)− βt,

where W is a standard Brownian motion and
d
= indicates equivalence in distribution. Another

application of (5.1) implies
−M̂n

i ⇒ 0

for 2 ≤ i ≤ k so in the limiting system we have y1(t) =
√
2W (t)−βt and yi(t) = 0, for 2 ≤ i ≤ k.

The CMT then implies that for 1 ≤ i ≤ k, X̂n
i ⇒ Xi in D as n→ ∞ where Xi is described

by (2.10)-(2.15). We can augment the truncated system with X̂n
i (t) = 0 for i > k and note that

0 = X̂n
i ⇒ Xi = 0 for such i. Therefore X̂n ⇒ X .

Now we consider the untruncated system described by Xn. By an argument like that Section
4, we have

Qn
1 (t) = Qn

1 (0) + A (λnnt)−D1

(∫ t

0

(Qn
1 (s)−Qn

2 (s)) ds

)

− Un
1 (t), (5.13)

Qn
i (t) = Qn

i (0) + Un
i−1(t)−Di

(∫ t

0

(

Qn
i (s)−Qn

i+1(s)
)

ds

)

− Un
i (t), i ≥ 2, (5.14)

where Un
i (t) is the number of arrivals in [0, t] when every server has at least i customers. Note

that we introduce extra rate one Poisson processes Di for i > k.
Now define

t∗n = inf{t ≥ 0 : Qn
2 (t) = n} (5.15)

and note that for t ∈ [0, t∗n) we have Un
i (t) = 0 for i ≥ 2. This, along with Qn

i (0) = 0 for i > k,
implies that for such t, the system (5.13)-(5.14) becomes

Qn
1 (t) = Qn

1 (0) +A (λnnt)−D1

(∫ t

0

(Qn
1 (s)−Qn

2 (s)) ds

)

− Un
1 (t),

Qn
2 (t) = Qn

2 (0) + Un
1 (t)−D2

(∫ t

0

(Qn
2 (s)−Qn

3 (s)) ds

)

− Un
2 (t),

Qn
i (t) = Qn

i (0)−Di

(∫ t

0

(

Qn
i (s)−Qn

i+1(s)
)

ds

)

,

Qn
k(t) = Qn

k(0)−Dk

(∫ t

0

Qn
k(s)ds

)

,

which precisely matches (4.2)-(4.5). Thus for t ∈ [0, t∗n), X
n(t) and X̂n(t) are identical.

It only remains to show for all t ≥ 0 that P(t∗n ≤ t) → 0 as n→ ∞. Because the systems are
identical up to time t∗n, we can replace Qn

2 (t) in (5.15) with Q̂n
2 (t) to see

P(t∗n ≤ t) = P

(

sup
0≤s≤t

Q̂n
2 (s) ≥ n

)

= P

(

sup
0≤s≤t

X̂n
2 (s) ≥

√
n

)

≤ P

(

sup
0≤s≤t

X̂n
2 (s) ≥ C

)
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for constant 0 < C ≤ √
n. By the weak convergence X̂n

2 ⇒ X2 and the fact that
{

sup0≤s≤t X̂
n
2 (s) ≥ C

}

is closed, we have

lim sup
n

P

(

sup
0≤s≤t

X̂n
2 (s) ≥ C

)

≤ P

(

sup
0≤s≤t

X2(s) ≥ C

)

By continuity of probability we have

lim
C→∞

P

(

sup
0≤s≤t

X2(s) ≥ C

)

= P

(

sup
0≤s≤t

X2(s) = ∞
)

= 0.

We therefore have

lim sup
n

P(t∗n ≤ t) ≤ lim
C→∞

lim sup
n

P

(

sup
0≤s≤t

X̂n
2 (s) ≥ C

)

≤ lim
C→∞

P

(

sup
0≤s≤t

X2(s) ≥ C

)

= 0

and thus P(t∗n ≤ t) → 0 as n→ ∞. We conclude Xn ⇒ X .

6 Waiting time.

An important performance measure of a queueing system is the expected time that customers
will have to wait before entering service. In the M/M/n system with a single queue in the
Halfin-Whitt regime, the expected waiting time is of the order O (1/

√
n). We will now show

that the M/M/n-JSQ system has the same order of aggregate waiting time in the transient
regime, and thus seems to have a minimal loss of efficiency as measured by waiting time.

Notice that our representation of the system allows us to directly consider the total time
any customers in the system will wait. In particular, the instantaneous number of customers
waiting to be served at a given time t is precisely

∑

i≥2
Qn

i (t). This quantity can be integrated
over time to compute the aggregate waiting time in the system. With this insight, we prove the
following:

Theorem 3. The aggregate waiting time of customers who arrived over the time period [0, t],
which we denote Zn

t , satisfies

lim
C→∞

lim sup
n

P(Zn
t ≥ C

√
n) = 0. (6.1)

Since the total number of arrivals to the system in this time is Θ(n) with high probability, the
waiting time per arrival is O (1/

√
n) with high probability.

Proof. As noted above, the aggregate waiting time over the period [0, t] is

Zn
t =

∫ t

0

∑

i≥2

Qn
i (s)ds.

We consider a scaled version Y n
t = Zn

t /
√
n. Note that Y n

t ≤ t sup0≤s≤t

∑

i≥2
Xn

i (s), and thus

P (Y n
t ≥ C) ≤ P



t sup
0≤s≤t

∑

i≥2

Xn
i (s) ≥ C





for any constantC > 0. By the weak convergenceXn
i ⇒ Xi and the fact that {t sup0≤s≤t

∑

i≥2
Xn

i (s) ≥
C} is closed, we have

lim sup
n

P



t sup
0≤s≤t

∑

i≥2

Xn
i (s) ≥ C



 ≤ P



t sup
0≤s≤t

∑

i≥2

Xi(s) ≥ C
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By continuity of probability and Xi = 0 for i > k we have

lim
C→∞

P



t sup
0≤s≤t

∑

i≥2

Xi(s) ≥ C



 = 0.

Therefore we conclude

lim
C→∞

lim sup
n

P (Y n
t ≥ C) ≤ lim

C→∞
P



t sup
0≤s≤t

∑

i≥2

Xi(s) ≥ C



 = 0,

which proves (6.1). We note that this implies Y n
t = O (1) with high probability, and thus

Zn
t = O (

√
n) with high probability.

Because customers arrive according to a Poisson process with rate λnn = Θ(n), this implies
the waiting time per arrival is O (

√
n/n) = O (1/

√
n) with high probability, completing the

proof.

Theorem 3 does not directly tell us anything about the distribution of the waiting time.
We can see from considering the system that this waiting time is distributed in a qualitatively
different way than the standard M/M/n system. Customers immediately enter service if there
are any idle servers and otherwise wait a constant order amount of time for the previous customer
in their queue to finish service. Because the aggregate waiting time is of the order O (

√
n) and

and any arriving customers who wait at all incur a constant order waiting time, the total number
of customers who have to wait is also O (

√
n). As noted above, the total number of arriving

customers is order n, so the fraction of customers who have to wait is of the order O (1/
√
n).

7 Open questions.

Theorem 2 proves that the behavior of the M/M/n-JSQ system in the Halfin-Whitt regime is
best understood on the order of O (

√
n). In particular, the numbers of idle servers and waiting

customers will both be O (
√
n). If long queues are initially present, they will empty in fixed

time, and no additional long queues will be created.
Significant questions remain about the steady state behavior of our system. In particular,

we do not characterize the distribution of the steady state of the limiting system or show that
the steady state of the n-th system converges to the steady state of the limiting diffusion process
(interchange of limits).

Finally it is always of interest to analyze our system for general interarrival and, especially,
general service times distribution. We conjecture that the qualitative behavior established in
this paper in the transient domain and the conjectures above regarding the steady-state behavior
and the interchange of steady-state limits remain true in this case as well.
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