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In this work, we use Floquet theory to theoretically study the influence of monochromatic circularly and
linearly polarized light on the Hofstadter butterfly—induced by a uniform perpendicular magnetic field—for
both the kagome and triangular lattices. In the absence of laser light, the butterfly has a fractal structure with
inversion symmetry about magnetic flux, φ = 1/4, 3/4, and reflection symmetry about φ = 1/2. As the system
is exposed to an external laser, we find that circularly polarized light deforms the butterfly by breaking the mirror
symmetry at flux φ = 1/2. By contrast, linearly polarized light deforms the original butterfly while preserving
the mirror symmetry at flux φ = 1/2. We find the inversion symmetry is always preserved for both linearly
and circularly polarized light. For linearly polarized light, the Hofstadter butterfly depends on the polarization
direction. Further, we study the effect of the laser on the Chern number of the lowest band in the off-resonance
regime (laser frequency is larger than the bandwidth). For circularly polarized light, we find that low laser
intensity will not change the Chern number, but beyond a critical intensity the Chern number will change. For
linearly polarized light, the Chern number depends on the polarization direction. Our work highlights the generic
features expected for the periodically driven Hofstadter problem on different lattices.

DOI: 10.1103/PhysRevB.98.245145

I. INTRODUCTION

The Hofstadter butterfly—the energy spectrum of a two-
dimensional lattice model as a function of static magnetic
flux through the unit cell—exhibits a complex fractal structure
resembling a butterfly [1]. The original butterfly was based
on a tight-binding model for the two-dimensional square
lattice. Subsequent work generalized the square lattice result
to triangular, honeycomb, and kagome lattices, in addition to
bilayer graphene and twisted bilayer graphene [2–6]. Even
though there exist some differences in detail, the fractal pat-
tern is observed for all of the above lattices. On the square
or honeycomb lattice with an isotropic hopping parameter,
the system exhibits particle-hole symmetry, which makes the
Hofstadter butterfly symmetric about the zero-energy axis.
Further, a reflection symmetry about 1/2 flux (in units of the
fundamental flux quantum hc/e, where h is Planck’s constant,
c is the speed of light, and e is the charge of the electron) is
observed.

The number of plaquettes enclosed by a unit may influ-
ence the electronic properties. Compared to the square lattice
(where the smallest possible plaquette coincides with one
unit cell), there are two triangles in the triangular lattice, and
two triangles and a hexagon in the kagome lattice. Moreover,
tight-binding models of electrons on two-dimensional (2D)
triangular and kagome lattices exhibit rich and interesting
phenomenology even without an external magnetic field [7].
A triangular plaquette is often a basic building block of
geometrical frustration. The kagome lattice is composed of
corner-sharing triangles in a 2D plane. Flatbands appear in a
nearest-neighbor hopping model. In the presence of a mag-
netic field, the phenomenology is even richer. The energy
momentum relation and the density of states on a triangular

lattice with a uniform magnetic field have been investigated in
Ref. [8]. The kagome systems have a frustrated ground state
[9], and the flatband is destroyed at finite magnetic flux [10].
In both the triangular and kagome lattices (the two lattices
have isotropic hopping terms), the particle-hole symmetry is
broken, and the reflection symmetry about the zero-energy
axis disappears while the reflection about the 1/2 flux axis
is preserved [5]. Moreover, an additional central (inversion)
symmetry about the point with zero energy and 1/4 (or 3/4)
flux is observed [5].

The strength of the magnetic field required to observe the
Hofstadter butterfly depends on the spacing between atoms
in the lattice (i.e., the lattice constant) [1]. For conventional
materials, the magnitude of the magnetic field required to
observe the fractal pattern is on the order of 104 T, well above
the field generated by the best magnets currently available
(about 100 T).

One way to circumvent this problem is to use artificial
superlattices, where the lattice spacing can be an order of
magnitude larger than in conventional materials. In 1998,
the Hofstadter butterfly was reproduced in experiments with
microwaves transmitted through a waveguide equipped with
an array of scatterers [11]. In 2013, several experimental
groups independently reported evidence of the Hofstadter but-
terfly spectrum in graphene devices fabricated on hexagonal
boron nitride substrates [12–14]. In 2017, a simulation of two-
dimensional electrons in a magnetic field using interacting
photons in nine superconducting qubits exhibited a Hofstadter
butterfly [15].

Recently, light-driven materials have attracted considerable
interest from the physics community. At the noninteracting
level, dramatic changes in the band structure can occur, in-
cluding a change from a nontopological band structure to a
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topological one [16–29]. Two commonly discussed physical
scenarios for periodically driven systems include periodic
changes in the laser fields that establish the optical lattice po-
tential for cold-atom systems [30,31], and solid-state systems
that are driven by a monochromatic laser field [32–39].

The effect of light (a periodic drive in the Hamiltonian)
on the Hofstadter butterfly has not been studied extensively
[40–48]. The pioneering works are focused on the kicked-
Harper model or the double kicked rotor model [40–43]. Prior
work based on the square-lattice Hofstadter model found that
periodic driving leads to pairs of counterpropagating chiral
edge modes, which are protected by the chiral symmetry and
robust against static disorder [44,45]. By irradiating a honey-
comb lattice (graphene) subjected to a uniform perpendicular
magnetic field with a laser, the driven Hofstadter butterfly
(Floquet Hofstadter butterfly) exhibits an even richer structure
than its static counterpart [46–48]. In Ref. [46], a transition
from the half-integer to the integer quantum Hall effect in
graphene has been theoretically proposed to occur with strong
elliptical driving. In Ref. [47], the driven Hofstadter butterfly
on the honeycomb lattice was numerically studied under the
influence of circularly and linearly polarized light, and the
Chern number of the “ground state” of the Floquet-Hofstadter
spectrum was studied for an off-resonant laser. Recently, the
formation of the Hofstadter butterfly at low magnetic fields
by adding a periodic driving was studied systematically [48].
By decreasing the laser frequency from the off-resonant to the
on-resonant regime, the authors of [48] found that the “top”
two bands do not hybridize with the bands of the “upper”
Floquet copy. The observed phenomenon is well explained
using a low-energy effective Hamiltonian.

As stated before, the equilibrium Hofstadter butterfly is
considerably different for the triangular or kagome lattices
when compared to that of the square or honeycomb lattices.
Previous out-of-equilibrium (periodically driven) studies of
the Hofstadter butterfly have focused on the square lattice or
honeycomb lattice. In this work, we focus our attention on
the effect of circularly and linearly polarized light on the
Hofstadter butterfly—and the corresponding Chern
numbers—for the kagome and triangular lattices.

The organization of this paper is as follows. We study tight-
binding Hamiltonians on the kagome and triangular lattices
exposed to a perpendicular magnetic field and monochromatic
laser. In Sec. II, we introduce the model Hamiltonian on
these two lattices. The effect of the laser on the Hofstadter
butterfly is studied systematically in Sec. III, and the Chern
number is calculated in Sec. IV. The numerical results for the
triangular lattice are presented in Sec. V. Finally, in Sec. VI,
we summarize our main results and conclusions.

II. MODEL AND METHOD

The model Hamiltonian we study, defined on a two-
dimensional kagome or triangular lattice, is based on the
isotropic nearest-neighbor hopping model,

H = −th
∑
〈ij〉,σ

c
†
iσ cjσ , (1)

where th is the isotropic hopping integral between nearest
neighbors, c†iσ (cjσ ) creates (annihilates) an electron with spin
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FIG. 1. The kagome lattice with the three (for the case of zero
magnetic field) sites (A, B, C) in one unit cell labeled. Three nearest-
neighbor unit vectors are �δ1 = (1, 0)a, �δ2 = (1/2,

√
3/2)a, and �δ3 =

�δ2 − �δ1 = (−1/2,
√

3/2)a, with a the nearest-neighbor distance in
the kagome lattice. The translational vectors are �a1 = 2�δ1 and �a2 =
2�δ2. The reciprocal-lattice vectors are �b1 = (1,−1/

√
3)π/a and

�b2 = (0, 2/
√

3)π/a. When the system is exposed to a perpendicular
magnetic field, the magnetic unit cell must be enlarged (to recover
the translational symmetry) by an amount that depends on the value
of magnetic flux φ. For example, the magnetic cell is the pink area
(shaded parallelogram) for magnetic flux φ/φ0 = 1/8q with q = 2
(φ0 is defined as magnetic flux quantum).

σ on site i (j ) of the two-dimensional lattice, and 〈ij 〉 limits
the summation to nearest neighbors.

A. Equilibrium Hamiltonian without a magnetic field

The three-band kagome lattice model (three sites in one
unit cell) we study is based on the nearest-neighbor hopping
model, Eq. (1). The kagome lattice is a two-dimensional
corner-sharing network of triangles, as shown in Fig. 1. To
make the translational symmetry apparent, the Hamiltonian
in real space can be rewritten (omitting the spin index for
clarity),

Hkagome =
∑
m,n

c†m,nam,n + c†m,nam,n+1 + H.c.

+
∑
m,n

c†m,nbm,n + c†m,nbm−1,n+1 + H.c.

+
∑
m,n

b†m,nam,n + b†m,nam+1,n + H.c., (2)

where the first term in each line above denotes a hopping term
in one unit cell, while the second term in each line denotes a
hopping term between neighboring unit cells. We define the
position of an arbitrary unit cell as

R(m, n) = m�a1 + n�a2, (3)

where m, n are integers, and am,n, bm,n, cm,n define anni-
hilation operators on the three basis sites A,B,C in one
unit cell shown in Fig. 1. The nearest-neighbor vectors
are �δ1 = (1, 0)a, �δ2 = (1/2,

√
3/2)a, and �δ3 = �δ2 − �δ1 =

(−1/2,
√

3/2)a with a the nearest-neighbor distance. The
translational lattice vectors are �a1 = 2�δ1 = (2, 0)a and �a2 =
2�δ2 = (1,

√
3)a.

Fourier-transforming the real-space Hamiltonian
Eq. (2) to momentum space, the Hamiltonian becomes
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H = ∑
k ψ

†
kHkψk with ψk = (ak, bk, ck )T ,

Hk = −th

⎛
⎝ 0 1 + e−ik1 1 + e−ik2

1 + e+ik1 0 1 + e−ik3

1 + e+ik2 1 + e+ik3 0

⎞
⎠, (4)

where we used ki = k · �ai .

B. Equilibrium Hamiltonian with a static magnetic field

In the presence of a magnetic field, the hopping parameter
th gets modified by the Peierls phase,

th �→ the
iθij , (5)

where the phase is the integral over the vector potential along
the hopping path,

θij = − e

h̄

∫ rj

ri

�A(�r ) · d�r = −2π

φ0

∫ rj

ri

�A(�r ) · d�r, (6)

where φ0 ≡ h/e = 1 is the magnetic-flux quantum. We define
φ = BS as the magnetic flux through the smallest triangle in
one unit cell, with S the area of the triangle. The Landau gauge
�A(�r ) = (0, Bx, 0) is adopted and the corresponding magnetic

unit cell (enlarged parallelogram) is shown in Fig. 1. The
hopping phases are

θ1 = 8mφ × (2π ), θ2 = φ × (2π ),

θ3 = (8m − 1)φ × (2π ), (7)

and θ = 0 for the hopping along other bonds. Here the
subindex 1 denotes the bond starting from site C in unit cell
R(m, n) to site A in unit cell R(m, n + 1), the subindex 2

denotes the bond starting from site B to site C in the same
unit cell R(m, n), and subindex 3 denotes the bond starting
from site C in unit cell R(m, n) to site B in unit cell R(m −
1, n + 1). The three bonds are shown in Fig. 1 with labels
1,2,3 and an arrow in the middle of the bonds. The calculation
details can be found in Ref. [5], where a topological equivalent
lattice is used. To satisfy the periodic boundary conditions, the
uniform-flux strength for the kagome lattice is given by

φ = p/(8q ), (8)

where p, q are coprime integers and the magnetic unit cell will
be q times larger than the original unit cell without a magnetic
field.

To recover the translational symmetry of the lattice, we
enlarge the unit cell along the translational vector �a1 of the
original unit cell by a factor of q, and we rewrite the position
of each unit cell as

R̃(m, n) = m�a1 × q + n�a2. (9)

The relation between the original, Eq. (3), and the enlarged,
Eq. (9), unit cell vectors is

R(m, n) = R̃(m′, n) + (l − 1)�a1, (10)

with m′ = (m − 1)/q + 1 and l = mod(m − 1, q ) + 1. The
Hamiltonian in Eq. (2) can be rewritten in the enlarged unit
cell as

H = H (1) + H (2) + H (3), (11)

where

H (1) = − th
∑
mn

q∑
l=1

c
†
(m,n),la(m,n),l − th

∑
mn

q∑
l=1

c
†
(m,n),la(m,n+1),l , (12)

H (2) = − th
∑
mn

q∑
l=1

c
†
(m,n),lb(m,n),l − th

∑
mn

1∑
l=1

c
†
(m,n),1b(m−1,n+1),q − th

∑
mn

q∑
l=2

c
†
(m,n),lb(m,n+1),l−1, (13)

H (3) = − th
∑
mn

q∑
l=1

b
†
(m,n),la(m,n),l − th

∑
mn

q−1∑
l=1

b
†
(m,n),la(m,n),l+1 − th

∑
mn

q∑
l=q

b
†
(m,n),qa(m+1,n),1. (14)

Consider the magnetic phase (a gauge choice),

H (1) = − th
∑
mn

q∑
l=1

c
†
(m,n),la(m,n),l − th

∑
mn

q∑
l=1

c
†
(m,n),la(m,n+1),le

−i2π (8l)φ, (15)

H (2) = − th
∑
mn

q∑
l=1

c
†
(m,n),lb(m,n),le

+i2πφ − th
∑
mn

1∑
l=1

c
†
(m,n),1b(m−1,n+1),qe

−i2π (8l−1)φ − th
∑
mn

q∑
l=2

c
†
(m,n),lb(m,n+1),l−1e

−i2π (8l−1)φ,

(16)

H (3) = − th
∑
mn

q∑
l=1

b
†
(m,n),la(m,n),l − th

∑
mn

q−1∑
l=1

b
†
(m,n),la(m,n),l+1 − th

∑
mn

q∑
l=q

b
†
(m,n),qa(m+1,n),1. (17)

After Fourier transformation,

H (1) = − th
∑

k

q∑
l=1

c
†
k,lak,l − th

∑
k

q∑
l=1

c
†
k,lak,le

+ik·R̃(0,1)e−i2π (8l)φ, (18)
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H (2) = − th
∑

k

q∑
l=1

c
†
k,lbk,le

+i2πφ − th
∑

k

1∑
l=1

c
†
k,1bk,qe

+ik·R̃(−1,1)e−i2π (8l−1)φ − th
∑

k

q∑
l=2

c
†
k,lbk,l−1e

+ik·R̃(0,1)e−i2π (8l−1)φ,

(19)

H (3) = − th
∑

k

q∑
l=1

b
†
k,lak,l − th

∑
k

q−1∑
l=1

b
†
k,lak,l+1 − th

∑
k

q∑
l=q

b
†
k,qak,1e

+ik·R̃(1,0), (20)

where

R̃(+0, 1) = k · �a2, (21)

R̃(−1, 1) = − k · q�a1 + k · �a2, (22)

R̃(+1, 0) = k · q�a1. (23)

The energy spectrum is obtained by numerically diagonalizing the 3q × 3q Hamiltonian matrix for each wave vector k.

C. Time-dependent Hamiltonian with a laser and a static magnetic field

When the system is exposed to laser light, the Hamiltonian for the kagome lattice is rewritten as

H (1) = − th
∑

k

q∑
l=1

c
†
k,lak,le

iA(t )·δ2 − th
∑
mn

q∑
l=1

c
†
k,lak,le

+ik·R̃(0,1)e−i2π (8l)φe−iA(t )·δ2 , (24)

H (2) = − th
∑

k

q∑
l=1

c
†
k,lbk,le

+i2πφeiA(t )·δ3 − th
∑

k

1∑
l=1

c
†
k,1bk,qe

+ik·R̃(−1,1)e−i2π (8l−1)φe−iA(t )·δ3

− th
∑

k

q∑
l=2

c
†
k,lbk,l−1e

+ik·R̃(0,1)e−i2π (8l−1)φe−iA(t )·δ3 , (25)

H (3) = − th
∑

k

q∑
l=1

b
†
k,lak,le

+iA(t )·δ1 − th
∑

k

q−1∑
l=1

b
†
k,lak,l+1e

−iA(t )·δ1 − th
∑

k

q∑
l=q

b
†
k,qak,1e

+ik·R̃(1,0)e−iA(t )·δ1 , (26)

where A(t ) is the vector potential of the laser. The ef-
fect of the laser is incorporated into the Hamiltonian
through Peierls substitution. For a circularly polarized light
A(t ) = A0(+ sin(�t ), cos(�t )), the time-reversal partner is
A(t ) = A0(− sin(�t ), cos(�t )), which will be polarized in
a different direction compared to the original one. As
a result, the circularly polarized light will break time-
reversal symmetry. For a linear polarized light A(t ) =
A0 sin(�t )(cos α, sin α), its time-reversal partner will be
A(t ) = −A0 sin(�t )(cos α, sin α), where there exists a phase
shift compared to the original one. As a result, linear polarized
light will preserve time-reversal symmetry.

The time-dependent Hamiltonian can be solved numer-
ically within the framework of Floquet theory. The stan-
dard process for generating the time-independent Floquet
Hamiltonian can be found in Ref. [17]. One subblock of the
Floquet Hamiltonian is given by,

Hn,m = 1

T

∫ T

0
dt exp{i(n − m)�t}H (t ), (27)

where n,m are the Floquet replica numbers. We need to
calculate the expression with the general form

fnm = 1

T

∫ T

0
dte−i(n−m)�t exp[−iA(t ) · d]. (28)

Here we use d = Rj − Ri , and we define dx/|d| = cos θ ,
dy/|d| = sin θ . For nearest-neighbor hopping terms, |d| = 1,
θ = 0, 2π/3,−2π/3.

Substituting the vector potential of circularly polarized
light A(t ) = A0(sin(�t ), cos(�t )) into the above equation,

1

T

∫ T

0
dt e−i(n−m)�t exp[−iA0(dx sin �t + dy cos �t )]

= Jm−n(A0|d|) exp[i(n − m)θ ], (29)

where Jn(x) is a Bessel function of the first kind.
Substituting the vector potential for linearly polarized

light A(t ) = A0 sin(�t )(cos α, sin α) into the above equation
gives

1

T

∫ T

0
dt e−i(n−m)�t

× exp[−iA0(dx cos α + dy sin α) sin(�t )]

= Jm−n[A0|d| cos(θ − α)], (30)

which describes the renormalization of the hopping parame-
ters along the different directions at lowest order.
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FIG. 2. The Hofstadter butterfly for the kagome lattice, deformed by circularly polarized light with frequency fixed at an off-resonant
regime � = 9.0. The representative laser intensities are chosen as (a) A0 = 0.0, (b) A0 = 1.0, (c) A0 = 2.0, and (d) A0 = 3.5. The calculations
are done with five Floquet copies. The magnetic flux is defined as φ = p/8q, with p ranging from 1 to 8q − 1 and q = 199.

III. HOFSTADTER BUTTERFLY
ON THE KAGOME LATTICE

In the equilibrium case (without laser light), we calcu-
late the Hofstadter butterfly on the kagome lattice by set-
ting q = 199 [Eq. (8)] in Fig. 2(a). The energy spectrum
versus static magnetic flux (the Hofstadter butterfly) is cal-
culated by diagonalizing the Hamiltonian, Eq. (20), at the
� point (kx = 0, ky = 0) for varying flux φ = p/8q(p =
1, 2, . . . 8q ). There exist 3q magnetic minibands in one unit
cell. Previous studies on the square and honeycomb lattices
with an isotropic hopping integral describe rich symmetries in
the Hofstadter butterfly, e.g., a reflection symmetry about flux
φ = 1/2 and a reflection symmetry about energy E = 0.

For the kagome lattice, we observe that the reflection
symmetry about the energy axis E = 0 is lacking. This can
be easily understood, because the particle-hole symmetry is
broken on the kagome lattice with isotropic hopping terms [5].
The reflection symmetry about the flux φ = 1/2 is observed,
E(φ) = E(1 − φ), where we used E(φ) to denote the energy
spectrum of the Hamiltonian [Eq. (20)] with magnetic flux φ.
This reflection symmetry about φ = 1/2 can be understood as
follows. The time-reversal partner of the Hamiltonian at flux
φ is the one with flux −φ, i.e., T H (φ)T −1 = H (−φ), where
T is the time-reversal operator, which is antiunitary. Further,
one can see H (1 − φ) = H (−φ) from Eq. (20), which is due
to the periodicity in magnetic flux [49,50]. So we have

T H (φ)T −1 = H (−φ) = H (1 − φ). (31)

Since the two operators that are time-reversal partners will
have the same eigenvalues, the symmetry about φ = 1/2
is explained. We further observe the inversion symmetry
about φ = 1/4 and 3/4, which is E(φ) = −E(1/2 − φ) and
E(1/2 + φ) = −E(1 − φ), respectively. We do not have a
simple physical picture to explain this symmetry property in
the spectrum.

In equilibrium studies, Hofstadter’s butterfly is often plot-
ted over the flux region 0 < φ < 1/2, because the remaining
part, 1/2 < φ < 1, is just the mirror image of the previous
part [5]. In the driven system, by contrast, the external drive
can break the time-reversal symmetry. For example, circularly
polarized light breaks time-reversal symmetry, while linearly
polarized light preserves it. We show the full Hofstadter
butterfly in the magnetic flux region 0 < φ < 1.

The effects of off-resonant (h̄� = 9.0) circularly polarized
laser light are shown in Figs. 2(b), 2(c) and 2(d) for laser
amplitudes A0 = 1.0, 2.0, and 3.5, respectively. As the laser
intensity increases, the bandwidth first decreases. Afterward,
the bandwidth then increases, but the bands are inverted
(there is a sign change in the effective hopping parameter).
This behavior can be understood using the Floquet-Magnus
expansion in the high-frequency regime,

Heff = H0 + 1

h̄�
[H1,H−1] + · · · , (32)

where Hn = 1
T

∫ T

0 e−in�tH (t )dt . In the theoretical infinite
frequency limit, the Floquet-Bloch band is the original one
scaled by a zeroth-order Bessel function (zeroth-order term in
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FIG. 3. Hofstadter’s butterfly for the kagome lattice exposed to a linearly polarized laser with vector potential A(t ) =
A0 sin(�t )(cos α, sin α) where the aser frequency is fixed at the off-resonance region ω = 9.0. (a) A0 = 1.0, α = 0; (b) A0 = 1.0, α = π/2;
(c) A0 = 2.0, α = 0; (d) A0 = 2.0, α = π/2; (e) A0 = 2.0, α = π/12; and (f) A0 = 2.0, α = π/3. The calculations are done with five Floquet
copies. The magnetic flux is defined as φ = p/8q, with p ranging from 1 to 8q − 1 and q = 199.

the Floquet-Magnus expansion). The Floquet butterfly spec-
trum will have decreased bandwidth with increasing laser
intensity until A0 = 2.404, which is the first zero point of the
zeroth-order Bessel function. After that point, the band will
be inverted with increasing bandwidth up to A0 = 3.8. Our
Floquet butterfly is consistent with the high-frequency analy-
sis, except some structural details are different. A systematic
analysis needs to include the higher-order terms in the Magnus
expansion.

Let us dive into the details of the effects of circularly
polarized light on the Hofstadter butterfly. The reflection
symmetry about flux φ = 1/2 is broken. This phenomenon
is explained qualitatively by

T H (φ, �AL(t ))T −1 = H (−φ, �AR (t )), (33)

where the time reversal of left circularly polarized light is
its right-polarized partner, as indicated by the subscript on
the vector potential, �A. From the numerical data, one can
see that the central symmetry about φ = 1/4 is preserved for
circularly polarized light.

In Fig. 3, we plot the energy spectrum as a function
of magnetic flux for light linearly polarized along the x

[Figs. 3(a) and 3(c)] or y [Figs. 3(b) and 3(d)] direction, and
for laser intensity A0 = 1.0 or 2.0. From the numerical data
shown, we conclude that the energy spectrum is polarization-
direction-dependent. Compared to the energy spectrum with
x-direction polarized light, the y-direction polarized light has
a much more evenly distributed set of energies. To further
study the spectrum dependence on the polarization direc-
tion, we compute the energy spectrum with the same laser
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FIG. 4. The Hofstadter butterfly for the kagome lattice exposed to circularly (a,c) and linearly (b,d) polarized lasers with the laser frequency
fixed at on-resonance value � = 4.0. (a) Circularly polarized light A0 = 1.0. (b) Linearly polarized light A0 = 1.0, α = 0. (c) Circularly
polarized light A0 = 2.0. (d) Linearly polarized light A0 = 2.0, α = 0. The red points denote the energy spectrum from upper and lower
Floquet copies. The calculations are done with nine Floquet copies. The magnetic flux is defined as φ = p/8q, with p ranging from 1 to
8q − 1 and q = 199.

intensity A0 = 2.0 but with smaller polarization directions:
α = π/12, π/3. From the numerical data, we find the energy
spectrum will have a higher degeneracy if the polarization
direction is along one of the bonds. The α = π/3 data have the
same energy spectrum as α = 0. This can be understood from
the C3 symmetry of the original lattice (without an electric
field). The energy spectrum will be the same if the polarization
direction is at nπ/3 with integer n.

In Fig. 4, we plot the energy spectrum as a function of
magnetic flux for laser frequency in the on-resonance regime
(h̄� = 4.0). The data plotted with black dots are the spectrum
of the central (in energy) Floquet copy. The data plotted with
red dots are the spectrum of the upper and lower Floquet
copies. In Figs. 4(a) and 4(c), the spectrum as a function of
magnetic flux for circularly polarized light is plotted for laser
intensity A0 = 1.0 and 2.0, respectively. The reflection sym-
metry is broken about φ = 1/2, while the inversion symmetry
about φ = 1/4, 3/4 is preserved, as we have observed in the
off-resonance laser frequency region.

As a comparison, the spectrum as a function of magnetic
flux for linearly polarized light is plotted for laser intensity
A0 = 1.0 and 2.0 in Figs. 4(b) and 4(d), respectively. For
linearly polarized light, both the reflection symmetry about
φ = 1/2 and the inversion symmetry about φ = 1/4, 3/4 are
preserved.

IV. SPIN CHERN NUMBER FOR THE KAGOME LATTICE

The topological invariant can be calculated using the Streda
formula [51],

σH = 2
e2

h

∂N

∂φ
, (34)

which relates the Hall conductivity σH to the density-of-states
N dependence on the flux φ, with e2/h the conductance
quantum. Identical results will be obtained from the calcu-
lation of the Chern number [47,48,52]. The resulting values
of Chern number C are identical to the number of chiral
edge states (in equilibrium) in a ribbon-geometry calculation
[48]. As stated in Ref. [17], the topological invariant of
Floquet systems can be different from the static case. Here,
in the high-frequency regime (the photon energy is larger than
the bandwidth of a static system), the Streda formula will give
the correct conductivity values due to the fact that a trivial gap
opens between different copies of the original spectrum [48].

Following Refs. [47,53], we calculate the Chern number of
the ground state of the Hofstadter butterfly, where the “ground
state” in Floquet-Bloch band structure shall be understood
as the lowest-energy band of the central Floquet copy. The
Chern number data are calculated using Fukui’s method [52].
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FIG. 5. The ground-state Chern number of the Floquet Hofstadter butterfly spectrum for the kagome lattice. Laser frequency is fixed
at an off-resonance value of � = 9.0. (a) Circularly polarized light with A0 = 0.0, 1.0, 2.0. (b) Linearly polarized light along x (α = 0.0),
A0 = 0.0, 1.0, 2.0. (c) Linearly polarized light along y (α = π/2), A0 = 0.0, 1.0, 2.0. (d) Linearly polarized light A0 = 1.0 along x and y as
a comparison. The calculations are done with nine Floquet copies. The magnetic flux is defined as φ = p/8q, with p ranging from 1 to 8q − 1
and q � 13.

To avoid the band crossing between different Floquet copies,
we fix the laser frequency to be in the off-resonance region.

In Fig. 5, we plot the Chern number for the “ground
state” of the Hofstadter butterfly with laser frequency fixed
at h̄� = 9.0. In these Chern number plots, we also plot the
data with vanishing laser intensity as a reference point. First,
consider the reference point at A0 = 0. Because H (φ) is the
time-reversal partner of H (1 − φ), we have the symmetry
structure of the Chern numbers as C(φ) = −C(1 − φ).

In Fig. 5(a), the data are shown for circularly polarized
light with parameter A0 = 1.0 and 2.0. From the numerical
data, one sees that the Chern numbers calculated with laser
intensity A0 = 1.0 are the same as those for vanishing laser in-
tensity, which means that while the band structure is deformed
under the circularly polarized light, the Chern numbers still
preserve the properties of “time-reversal symmetry” about
φ = 1/2 (as discussed earlier in the paper) for low laser in-
tensity. Further increasing the laser intensity to A0 = 2.0 will

FIG. 6. Chern number |C| as a function of the magnetic flux φ for the kagome lattice exposed to circularly (a) and linearly (b,c) polarized
lasers with the laser frequency fixed to be in the off-resonant regime, � = 9.0. (a) Circularly polarized light A0 = 1.0. (b) Linearly polarized
light A0 = 1.0, α = 0. (c) Linearly polarized light A0 = 1.0, α = π/2. The calculations are done with nine Floquet copies. The magnetic flux
is defined as φ = p/8q, with p ranging from 1 to 8q − 1 and q � 13.
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12 1̄2̄ ¯̄1¯̄2

FIG. 7. In the case without a magnetic field, the triangular lat-
tice with nearest-neighbor vectors �δ1 = (1, 0)a, �δ2 = (1/2,

√
3/2)a,

�δ3 = (−1/2,
√

3/2)a, where a is the nearest-neighbor distance in a
triangular lattice, is plotted. The translational vectors are �a1 = �δ1 and
�a2 = �δ2. The reciprocal-lattice vectors are �b1 = (1, −1/

√
3)2π/a

and �b2 = (0, 2/
√

3)2π/a. When the system is exposed to a perpen-
dicular magnetic field, the magnetic unit cell must be enlarged (to
recover the translational symmetry) depending on the value of the
magnetic flux, φ. For example, the magnetic cell is the blue area
(shaded parallelogram) for magnetic flux φ/φ0 = 1/2q, with q = 3
(φ0 is defined as magnetic flux quantum).

show some difference; the Chern numbers differ somewhat
from the reference points, especially at larger magnetic fluxes.

We now consider the effect of linearly polarized light.
Figures 5(b) and 5(c) show the data for linearly polarized light
with parameter A0 = 1.0, 2.0, and the polarization direction
along the x (b) and y (c) directions, respectively. In contrast to

the circularly polarized light, the linearly polarized light will
preserve time-reversal symmetry (in the absence of the static
magnetic flux on the lattice): we have C(φ) = −C(1 − φ).
When the polarization direction is along the x axis, we find
that the Chern numbers for different laser intensities are dif-
ferent. On the other hand, if the polarization direction is along
the y axis, the data for A0 = 1.0 appear numerically similar,
while the data for A0 = 2.0 differ around φ = 1/2. As pointed
out in Ref. [47], for circularly polarized light the “ground
state” is uniquely defined, whereas for linearly polarized light
it is not uniquely defined for all flux values. Here we find
that a band crossing with the “ground state” occurs at mag-
netic flux p/8q = 39/88, 45/104, 46/104, 49/104, 50/104.
For clarity, Fig. 5(d) compares Chern numbers for linearly
polarized light along the x and y directions for fixed laser
intensity.

Since the magnetic-translation symmetry is preserved as
the system is exposed to an external laser, the topological
invariant must satisfy the Diophantine equation [44,48,54],

s = 1

q
+ p

q
C, (35)

for flux φ = p/8q, where C is the topological invariant and
s is an integer. We have verified that our calculated Chern
numbers satisfy the Diophantine equation; a representative
subset is displayed in the graphs in Fig. 6. Following Ref. [53],
we connect all the points (φ = p/8q, |C|) that are associated
with the same number |s| with a colored line. As |s| increases,
the color changes progressively from fuchsia to teal.

FIG. 8. The Hofstadter butterfly on the triangular lattice, deformed by circularly polarized laser light with frequency fixed to be in the
off-resonance regime � = 9.0. Laser intensity (a) A0 = 0.0, (b) A0 = 1.0, (c) A0 = 2.0, and (d) A0 = 3.5. The calculation is done with nine
Floquet copies. The flux is used as p/2q, with N = 299 and p ranging from 1 to 2N − 1.
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FIG. 9. The Hofstadter butterfly for the triangular lattice exposed to a linearly polarized laser with vector potential A(t ) =
A0 sin(�t )(cos α, sin α) with laser frequency fixed to be in the off-resonance regime, � = 9.0. (a) A0 = 1.0, α = 0; (b) A0 = 1.0, α = π/2;
(c) A0 = 2.0, α = 0; and (d) A0 = 2.0, α = π/2. The calculation is done with nine Floquet copies. The flux is used as p/2q, with N = 299
and p ranging from 1 to 2q − 1.

FIG. 10. The Hofstadter butterfly for the triangular lattice exposed to a circularly (a,c) and a linearly (b,d) polarized laser with laser
frequency fixed to be in the on-resonance regime, � = 4.0. (a) Circularly polarized light A0 = 1.0. (b) Linearly polarized light A0 = 1.0,
α = 0. (c) Circularly polarized light A0 = 2.0. (d) Linearly polarized light A0 = 2.0, α = 0. The red points denote data from the upper and
lower Floquet copies. The calculation is done with nine Floquet copies. The flux used is p/2q, with q = 299 and p ranging from 1 to 2q − 1.
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FIG. 11. Chern number of the Hofstadter butterfly for the triangular lattice exposed to a circularly (a,c) and linearly (b,d) polarized laser
with laser frequency fixed to be in the on-resonance regime, � = 9.0. (a) Circularly polarized light with A0 = 0, 1, 2. (b) Linearly polarized
light along x, α = 0, A0 = 0.0, 1.0, 2.0. (c) Linearly polarized light along y, α = π/2, A0 = 0.0, 1.0, 2.0. (d) Linearly polarized light A0 =
1.0. The calculation is done with nine Floquet copies. The flux used is p/2q, with q = 299 and p ranging from 1 to 2q − 1.

V. HOFSTADTER BUTTERFLY
ON THE TRIANGULAR LATTICE

Because the triangular lattice has the same Bravais lattice
as the kagome lattice, and there is only one atom in each unit
cell (in the absence of a static magnetic field), the Hofstadter
butterfly on the triangular lattice can have features similar to
the kagome lattice butterfly [5]. Here we have studied the
Floquet Hofstadter butterfly on the triangular lattice, and the
results are indeed qualitatively similar to those for the kagome
lattice.

In Fig. 7, the triangular lattice and a magnetic unit cell
(shaded zone) are shown for magnetic flux φ = 1/(2 × 3).
In Fig. 8, the Hofstadter butterfly deformed by off-resonance
circularly polarized light is plotted with laser intensities A0 =
0.0, 1.0, 2.0, 3.5. The laser frequency is fixed at h̄� = 9.0.
In Fig. 9, the Hofstadter butterfly deformed by off-resonance
linearly polarized light is plotted with laser intensity A0 =
1.0, 2.0. The laser frequency is fixed at h̄� = 9.0. The di-
rection of polarization is also considered: we find that x (y)
-polarized light will have different effects on the spectrum.
The same study with different laser frequencies is given in
Figs. 10 and 11. Finally, we study the Chern numbers for the
Floquet “ground state.”

VI. CONCLUSION

In this paper, we study the energy spectrum as a function of
magnetic flux on the kagome and triangular lattices subjected
to a uniform perpendicular magnetic field in the presence
of either circularly or linearly polarized light. We find that

circularly polarized light deforms the Hofstadter butterfly
by breaking the reflection symmetry about magnetic flux
φ = 1/2, while linearly polarized light preserves that mirror
symmetry. This contrasting behavior is explained by the fact
that circularly polarized light breaks time-reversal symmetry
(in the absence of the static magnetic flux on the lattice),
while linearly polarized light preserves the symmetry (in the
absence of the static magnetic flux on the lattice). Further, the
inversion symmetry about φ = 1/4, 3/4 is always preserved
for both circularly and linearly polarized light. Focusing on
linearly polarized light, we find that the energy spectrum
depends on the polarization direction because the lattice is not
isotropic in the x and y directions.

The ground-state spin-Chern number of the Hofstadter
butterfly, where the “ground state” in Floquet-Bloch band
structure shall be understood as the lowest-energy band of
the central Floquet copy given a gauge choice, is studied. For
circularly polarized light, we conclude that the Chern numbers
will coincide with a reference point of vanishing laser inten-
sity for low laser intensity. However, for high laser intensity,
the Chern numbers differ. For linearly polarized light, the
polarization direction of the light will play a significant role
in determining the spin-Chern number. These behaviors hold
for both the kagome and triangular lattices because the two
share the same underlying triangular Bravais lattice.
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