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Abstract

We report on the detection of a kilohertz quasi-periodic oscillation (QPO) with the Neutron Star Interior Composition
Explorer (NICER). Analyzing approximately 165 ks of NICER exposure on the X-ray burster 4U 0614+09, we detect
multiple instances of a single-peak upper kHz QPO, with centroid frequencies that range from 400 to 750Hz. We
resolve the kHz QPO as a function of energy, and measure, for the first time, the QPO amplitude below 2 keV. We find
the fractional amplitude at 1 keV is on the order of 2% rms, and discuss the implications for the QPO emission process
in the context of Comptonization models.
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Supporting material: data behind figure

1. Introduction

Kilohertz quasi-periodic oscillations (QPOs; Strohmayer
et al. 1996; van der Klis et al. 1996) are the fastest variability
signatures observed from accreting neutron star X-ray binaries.
Ubiquitous across source types, these QPOs may appear as a
single or double (twin) peak in the power spectrum, with
centroid frequencies that can move from 200 Hz up to 1200 Hz
in correlation with rising X-ray luminosity (van der Klis 2006).

Given the very short timescale variability that they represent,
it is clear that kHz QPOs must originate from close to the
neutron star surface, and hence they have drawn much
attention. Many of the suggested models for kHz QPOs
associate either the lower or upper peak with orbital motion at
the inner edge of the accretion disk (Miller et al. 1998; Stella &
Vietri 1999; Alpar & Psaltis 2008; Bachetti et al. 2015).
Alternative mechanisms have also been proposed (Kato 2004;
Kluźniak et al. 2004; Zhang 2004), but so far no single model
can account for all of the observed properties of these
oscillations.

Both observational and theoretical studies of kHz QPOs
have focused on their centroid frequencies, and how these
change with respect to system parameters such as luminosity or
the neutron star spin frequency. Comparatively little attention
has been given to how the emergent X-ray flux is being

modulated. The reason for this disparity is clear; frequencies
provide a direct handle on the dynamics in the accretion
system, whereas the modulation mechanism depends also on
uncertainties in interpretations of the spectrum.
A path forward is offered by the joint analysis of both

spectral and timing characteristics (Gilfanov et al. 2003; Barret
2013; de Avellar et al. 2013). Considering the energy
dependence of kHz QPO amplitudes and time lags has the
potential to tightly constrain the size and geometry of the
modulating medium (e.g., Kumar & Misra 2016), and thereby,
indirectly, also the driving dynamical mechanism. Degenera-
cies in spectral models, however, remain a limiting factor.
Many spectral models for the emission process of kHz QPOs

make indistinguishable predictions for the kHz QPO amplitude
at high photon energies. At low photon energies, however, a
specific class of spectral models makes a divergent prediction.
If the kHz QPO is generated by a coherent oscillation within
some property of the Comptonizing medium, such as the
temperature or optical depth, then the QPO amplitudes should
rise at energies below 2 keV (Lee et al. 2001). By contrast,
models that associate the QPO emission process with
luminosity variations, for instance from a boundary layer,
predict that the QPO amplitude should continue to decrease
toward lower energies (see, e.g., Miller et al. 1998).
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Measurements of kHz QPO properties below 2 keV, however,
have so far not been possible due to instrument limitations.

Launched in 2017 June, the Neutron Star Interior Composi-
tion Explorer (NICER; Gendreau & Arzoumanian 2017)
provides good spectral and timing capabilities combined with
large collecting area at 1 keV. In this Letter, we present NICER
observations of the neutron star low-mass X-ray binary
(LMXB) 4U0614+09, a low-luminosity burster (Swank
et al. 1978) known to show type I X-ray bursts with 415 Hz
burst oscillations (Strohmayer et al. 2008) and kHz QPOs (Ford
et al. 1997) over a wide range of frequencies (Méndez
et al. 1997). Leveraging NICER’s low energy passband, we
report on the first measurements of kHz QPOs in soft X-rays.

2. Observations

The NICER X-ray Timing Instrument (XTI; Gendreau
et al. 2016) consists of 56 co-aligned X-ray concentrator optics,
each paired with a silicon drift detector sensitive in the
0.2–12 keV band (Prigozhin et al. 2012). The 52 operating
detectors collectively provide an effective area of 1900 cm2 at
1.5 keV, with an energy resolution of ∼100 eV.

As part of its main science program, NICER has extensively
monitored the low-luminosity X-ray burster 4U0614+09. In
this Letter, we analyze the data collected during the first three
months of this campaign, specifically between 2017 August 15
and October 30 (ObsID 1050020101 through 1050020131).
We processed these data using HEASOFT version 6.23 and
NICERDAS version 2018-03-01_V003, using standard filtering
criteria: we selected only data collected with a pointing offset
less than 54″, more than 40° away from the bright Earth limb,
more that 30° away from the dark Earth limb, and outside the
South Atlantic Anomaly.

We then constructed an 8 s resolution light curve using the
12–15 keV energy band. This energy range is higher than the
nominal passband of the instrument because the performance of
the optics and detectors diminishes such that essentially no
astronomical signal is expected above 12 keV. Whenever this
light curve had a rate greater than 1 ct s−1, we observed a
correlated increase in the 0.4–12 keV rate. We therefore
attributed those epochs to high-background intervals, and
removed them from our analysis. About 2.5 ks of high-
background exposure was removed in this way. After filtering
we were left with approximately 165 ks worth of good time
exposure.

Because NICER does not provide imaging capabilities, we
determined the background contribution from NICER observa-
tions of the blank-field Rossi X-ray Timing Explorer (RXTE)
background region 8 (Jahoda et al. 2006), using the same
filtering criteria. Here we note that our source count-rate was
much higher than the background rate, such that the analysis
does not depend on our choice of background region. After
filtering we obtained 74 ks of good time exposure for the
background field with an averaged background rate of
approximately 0.04 counts/s/det in the 0.4–10 keV band.

During these observations, NICER detected a single type I
X-ray burst on 2017 September 7 (MJD 58003). We excluded
this X-ray burst from our analysis. We used a burst epoch
starting 50 s prior to the burst onset, and approximately 375 s in
length, such that it extended to the end of the exposure.

3. Analysis and Results

Classified as an “atoll” type source (Hasinger & van der
Klis 1989), the variability properties of 4U0614+09 have been
well established by RXTE (see, e.g., van Straaten et al.
2000, 2002). As the source luminosity changes, it moves
through a series of accretion states, each with distinct timing
and spectral characteristic. The extreme island state shows
spectrally hard emission and strong low-frequency variability.
At higher luminosity the island state (IS) has a softer spectrum
and somewhat faster variability. At still higher luminosity the
soft emission starts to dominate the spectrum and the source
moves into the “banana” branch. This branch is sub-divided
into three regions: the lower-left “banana” (LLB), where twin
kHz QPOs appear; the lower “banana” (LB), which may have
only one kHz QPO at a higher frequency; and the upper
“banana” (UB), where kHz QPOs are no longer observed.
The evolution of accretion states is reproduced across many

accreting neutron stars (van Straaten et al. 2005; Altamirano
et al. 2008; Bult & van der Klis 2015b), and gives a reliable
handle on how to search for kHz QPOs. The accretion state
identification for RXTE observations, however, is usually
guided by a color ratio centered about 10 keV, which is not
readily accessible to NICER. Hence, we first consider a color
analysis that is more appropriate to the NICER passband.

3.1. Color Analysis

We constructed a light curve for the NICER data using a
1/8192 s time resolution. We then divided this light curve into
128 s segments, and for each segment, computed a soft
(1.1–2.0 keV/0.5–1.1 keV) and hard (3.8–6.8 keV/2.0–3.8 keV)
color ratio, as well as the averaged count-rate (0.5–6.8 keV) in
that segment.19 We find that our hard color shows little variation
with respect to intensity, and provides a poor diagnostic of the
system’s accretion state. Our soft color, on the other hand, traces
out a pronounced curve as a function of count-rate (Figure 1, see
Section 3.2 for data grouping).
Over the span of our 74 days light curve the observations of

4U0614+09 sample approximately 10 loops up and down the
soft-color-intensity diagram (SID) track, although some loops
reverse before the highest count-rates are reached. The stable
recurrence pattern of this color evolution suggests that a color
ratio centered about 1 keV may be a good diagnostic of the
accretion state. In this Letter, therefore, we use the SID track as
our primary indicator for data grouping.

3.2. Timing Analysis

For each 128 s light curve segment in the 2–10 keV band we
computed Fourier transforms, and constructed Leahy-normal-
ized (Leahy et al. 1983) power spectra. We used only events
above 2 keV to allow for a clean comparison with results
obtained using RXTE (van Straaten et al. 2002), as the low-
energy power spectrum can show very different properties
(Bult et al. 2018). We then grouped segments based on their
SID position and the shape of their low-frequency power
spectrum. This results in six contiguous data groups along the
SID track. We designate these groups alphabetically, from the
lowest to highest count-rates, as “A” through “F.” The SID and

19 We point out that the NICER hard color corresponds approximately with the
usual RXTE soft color.
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light curve for this data grouping are shown in Figure 1, along
with the hardness-intensity diagram.

For each data group A through F we averaged the individual
segments to a single power spectrum. Inspecting the
2000–4000 Hz frequency range we find, in each case, a mean
Leahy power of 2, as expected for Poisson noise, with no
evidence for high-frequency signals. Indeed, due to NICER’s
modular design, deadtime should not be an issue at the
observed count-rates, so we subtract a constant power level of 2
from our spectra. Finally, we renormalized the averaged power
spectra in terms of fractional rms amplitude with respect to the
total source count-rate (van der Klis 1995).

Comparing the averaged NICER power spectra (Figure 2)
with results obtained from RXTE (van Straaten et al. 2002), we
can now identify the positions on the SID track with the “atoll”
type accretion states. At the lowest count-rates (groups A and
B) the source populates the island state. Toward higher count-
rates (groups C and D) we observe a transition into the lower-
left “banana,” and finally, at the higher count-rates (groups E
and F), we observe “banana” branch-type variability.

We quantify the power spectra by fitting a multi-Lorentzian
model (Belloni et al. 2002), with each Lorentzian profile
defined as L(ν; r, Q, νmax), for a characteristic frequency

Q1 1 4max 0
2n n= + , quality factor Q, and centroid fre-

quency ν0. The fractional rms amplitude, r, is defined by
integrating over the positive frequency domain as

r L d . 12

0ò n n=
¥

( ) ( )

For all six data groups this model provides an adequate
description of the power spectrum. Our best-fit results are listed
in Table 1, and the associated power spectra are shown in
Figure 2.

We clearly detect kHz QPOs in groups A through D (>3σ).
In all cases only a single kHz peak is observed. Based on the
morphology of the power spectrum, the quality factors of the
QPOs, and the comparison with RXTE results (van Straaten
et al. 2002; Altamirano et al. 2008), we can identify this single
peak as the “upper” kHz QPO. The measured frequency

correlates with count-rate, and moves from 400 Hz in group A
to 750 Hz in group D.
No kHz QPOs are detected in groups E and F. Assuming

kHz QPO properties similar to those reported for RXTE
observations at the highest luminosities for this source, that is
Q;10 and νmax;1000 Hz (van Straaten et al. 2002), we
obtained a 95% upper limit on a kHz QPO amplitude of ∼8%
rms in either group.
Although interesting in their own right, a full analysis of the

broad band power spectrum is beyond the scope of this Letter.
Instead we focus our analysis on the energy-dependent
properties of the kHz QPO.

3.3. Spectral Timing

Using the same data grouping described above, we
investigated the spectral-timing properties of the kHz QPO
by computing time lags and fractional covariance as a function
of energy. We calculated these measures by cross-correlating a
narrow (∼1 keV) energy band with a broad 0.4–10 keV
reference band, where we excluded the band of interest from
the reference band (Uttley et al. 2014). For each data group we
then integrated the cross spectra over frequency intervals the
size of the QPO FWHM, W=ν0/Q, centered on the measured
kHz QPO centroid frequency.
The energy-dependent time lags are statistically consistent

with zero, with uncertainties on the order of 50 μs.
The energy dependence of the fractional covariance is shown

in Figure 3. For data groups A through C, we found that the
fractional covariance generally increases as a function of
energy. For data group D, the kHz QPO amplitude was too low
to meaningfully constrain the covariance. The increasing trend
in amplitude shows some variations, and appears to flatten off,
and even turn over above 4 keV. We warn, however, that the
these changes in amplitude are all smaller than the measure-
ment uncertainty. Hence, a larger data set will be needed to
determine if such variations are real or merely statistical
fluctuations.
Most notably, we detected the kHz QPO in the lowest energy

band, which we defined between 0.4 and 1.5 keV, with a
fractional covariance of 1.8±0.5% rms in group A (4σ) and at

Figure 1. Color evolution of 4U 0614+09, with left: the soft-color intensity diagram; middle: the hard-color intensity diagram; and right: the light curve. All panels
show the 0.5–6.8 keV flux. Each point represents a 128 s bin. Color definitions are given in Section 3.1. See Section 3.2 for a description of the data grouping and
accretion state identification. The data used to create this figure are available.
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2.7±0.6% rms in group C (4.3σ). At a 2σ level, the group B
measurement is not formally significant. We also attempted to
perform our measurement at a narrower energy resolution by
splitting the 0.4–1.5 keV bin into two equal parts. However, the
kHz QPO was not significantly detected in either sub-bin, with
upper limits of 3% rms.

4. Discussion

We analyzed NICER observations of the low-luminosity
burster 4U0614+09, and detected, for the first time, a kHz
QPO at photon energies below 2 keV. We argued that this
feature corresponds to the upper-frequency component of the
kHz QPO pair previously identified in RXTE observations of
accreting neutron stars. We found that the kHz QPO amplitude
decreases rapidly toward low photon energies, with a fractional
covariance of approximately 2% rms around 1 keV. Above
2 keV we observed increasing fractional covariance consistent
with previous findings for the upper kHz QPO (de Avellar
et al. 2013) and with 4U0614+09 in particular (Troyer
et al. 2018). The measured time lags are consistent with zero,
again in accordance with other work (de Avellar et al. 2013).

We only detected the upper kHz QPO, and only in the island
state and the lower-left portion of the “banana” branch of the
atoll-type classification. We did not detect kHz QPOs in groups
E and F, with an upper limit on the QPO amplitudes of ∼9%.
Compared to the results of RXTE observations, our upper limits
are similar to reported amplitudes (van Straaten et al. 2002),
hence we cannot rule out the possibility that a narrow kHz QPO
is present at the highest source luminosities observed with
NICER.

We further note that our data groups cover a large timespan,
and are potentially susceptible to an observational bias. In
particular, the combination of NICER’s soft passband and
diminishing QPO amplitudes toward lower energies oblige us
to average a large number of observations over week-long
intervals to detect the kHz QPO above the noise level. It is well
known that, on such timescales, the secular evolution of the
accretion system causes the QPO to appear at different
frequencies for the same luminosity, giving rise to parallel
tracks in flux versus frequency diagrams (Méndez et al. 1999).
In averaging many segments, this frequency drift causes the
QPO to be smeared out, making it more difficult to detect. This
effect is particularly pronounced for narrow QPOs, for which
the frequency drift may be larger than the QPO width. Due to
our sampling, this NICER data set is therefore more sensitive to
the broader kHz QPOs of the island state than it is to the narrow
kHz QPOs of the lower “banana” branch.
Our measurements provide a strong challenge to models that

associate the kHz QPO with a coherent oscillation of the
coronal properties, such as temperature or optical depth (Lee
et al. 2001). Any such model predicts that there is a pivot
energy, EP, above and below which the QPO amplitude
increases. The EP can be anywhere between 1 and 20 keV, with
the temperature, optical depth, and geometry of the Comp-
tonizing medium setting the specific value (see, e.g., Miller &
Lamb 1992; Lee & Miller 1998; Kumar & Misra 2014). Hence,
at the lowest energies, the QPO amplitude should have turned
over and begun increasing. In contrast to this prediction, we do
not observe any such turnover in QPO amplitude.
In principle it is possible that the spectrum of the kHz QPO

pivots within the boundaries of our lowest energy bin. In this

Figure 2. Power spectra of the six data groups as indicated. The red line shows the best-fit multi-Lorentzian model, and the remaining colored lines show the model
components: break 2 (blue), break (green), hump (purple), hHz (orange), and kHz QPO (teal).
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scenario, the QPO phase above and below the pivot energy
would be 180° apart, leading to artificial deconstructive
interference in our measurement. To test this possibility we
have split the lowest energy bin of group C in two equal parts,
and computed the fractional covariance in each. If the QPO
indeed pivots, then one would expect either or both of these
sub-bins to show an increase in amplitude. Contrary to this
prediction, we do not detect the QPO at a significant level in
either sub-bin, with upper limits of 3% fractional covariance.

A possible way of reconciling the Comptonization model
with our measurements comes from allowing a feedback
between the Comptonizing medium and the thermal component
that provides the seed photons (Kumar & Misra 2014, 2016). If
a large fraction of the hard photons impinge back on and raise
the temperature of the soft photon source, then the emergent
spectrum no longer shows a low-energy pivot. Under these
conditions, however, the QPO amplitudes would continuously
increase toward high energies (>10 keV), which conflicts with

observational evidence that shows a flattening of the amplitude
instead (Berger et al. 1996; Peille et al. 2015).
In summary, we have detected the upper kHz QPO below

2 keV, and we see no evidence for a low-energy pivot in QPO
amplitude. This detection poses a challenge to models relying on
coherent oscillations of coronal properties to explain the radiative
process responsible for the QPO. Instead, the current body of
evidence favors an upper kHz QPO associated with an azimuthal
oscillation, at the inner edge of the disk (Bult & van der Klis
2015a), that modulates the luminosity of a boundary layer
(Gilfanov et al. 2003; Peille et al. 2015; Troyer & Cackett 2017).
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Table 1
Power Spectrum Fit Parameters

Frequency Quality Fractional χ2/dof
(Hz) Factor Amplitude

(% rms)

group A—4 ks

break 1.6(0.4) 0 (fixed) 11.6(1.4) 143/128
hump 16.2(2.8) 0 (fixed) 24.0(1.0)
kHz QPO 458(52) 1.9(1.2) 19.0(3.5)

group B—41 ks

break 0.9(0.3) 0.06(0.14) 7.5(1.4) 195/180
break 2 4.0(0.3) 0.6(0.2) 11.8(2.0)
hump 17.2(1.1) 0.41(0.14) 18.5(1.6)
hHz 222(49) 0.5(0.3) 18.9(3.1)
kHz QPO 548(24) 2.7(1.3) 13.8(1.7)

group C—35 ks

break 2 0.71(0.12) 0(fixed) 4.3(0.3) 137/159
break 4.7(0.5) 0.7(0.3) 6.0(1.7)
hump 21.0(1.9) 0.27(0.19) 13.2(1.5)
hHz 117(11) 1.0(0.5) 8.9(1.5)
kHz QPO 637(26) 2.7(0.9) 10.3(1.1)

group D—41 ks

break 2 0.44(0.07) 0(fixed) 3.8(0.2) 97/117
break 26.3(2.6) 0(fixed) 15.9(0.7)
hHz 159(36) 0.8(0.7) 8.2(2.2)
kHz QPO 748(27) 4.2(2.0) 9.5(1.5)

group E—15 ks

break 2 0.29(0.05) 0(fixed) 3.5(0.2) 80/95
break 21.5(1.0) 2.5(0.9) 5.4(0.6)
hHz 144(16) 1.7(1.0) 7.5(1.4)

group F—11 ks

break 2 0.32(0.04) 0.5(0.2) 3.1(0.3) 82/95
break 29.3(2.6) 1.0(0.3) 7.7(0.6)

Note. Best-fit parameter values for the multi-Lorentzian models that describe
the power spectra of the six data groups discussed in Section 3.2. The exposure
per data group is indicated. Values in parentheses indicate 1σ uncertainties.

Figure 3. Fractional covariance of the kHz QPO as measured in groups A, B,
and C. Some of the high-energy data points for group A and B are not shown as
their upper limits are not constraining.
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