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Abstract Modern society is mostly dependent on on-
line activities like official or social communications, fund

transfers and so on. Unauthorized system access is one

of the utmost concerns than ever before in cyber sys-

tems. For any cyber system, robust authentication is

an absolute necessity for ensuring security and reliable
access to all type of transactions. However, more than

80% of the current authentication systems are password

based, and surprisingly, they are prone to direct and in-

direct cracking via guessing or side channel attacks.
The inspiration of Negative Authentication System (NAS)

is based on the negative selection algorithm. In NAS,

the password based authentication data for valid user-

s is termed as password profile or self-region (positive

profile); any element other than the self-region is de-
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fined as non-self-region in the same representative s-
pace. The anti-password detectors are generated which

covers most of the non-self-region. There are also some

uncovered regions left in the non-self-region for induc-

ing uncertainty to the attackers. In this work, we de-

scribe the design and implementation of three approach-
es of NAS and its efficacy over the other authentication

methods. These three approaches represent three differ-

ent ways to achieve obfuscation of password points with

non-password space. The experiments are conducted
with both real and simulated password profiles to jus-

tify the efficiency of different implementations of NAS.

Keywords Cyber-security · levels of abstraction ·

security event · passwords · authentication · negative

authentication · hashing · salting

1 Introduction

Online activities, sensitive data transfers, official com-

munication, activities containing delicate personal in-

formation are increasing every day. Authenticity is the

highest significant issue than ever before because of in-
herent insecurity in online communication and trans-

actions. For any computing systems, servers or online

storage, proper authentication is an absolute necessi-

ty for ensuring legitimate access, privacy, security, and
reliability.

Although password-based authentication systems are
the oldest and most popular among all other methods

of authentication, it is very vulnerable to a wide variety

of attacks. The majority of the password-based authen-

tication systems store the positive authentication data
(password profile) in the database server, and every ac-

cess request to that server is authenticated by compar-

ing that request with the existing password data [33].
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One of the basic problems of positive authentication is

the risk of malicious access to the password profile. Any

person who has stolen files of hashed passwords can of-

ten use brute-force methods to find out a password p

whose hash value H(p) is equal to the hash value s-
tored for a given user’s password, thus allowing him/her

to impersonate the legitimate user. Various password

cracking methods have been reported to be successful in

cracking hashed passwords. Also, a side-channel attack
of stealing password profiles is a severe threat to secure

authentication and access control. A recent report from

SANS Institute [27] illustrates the statistics of cracking

different hashed passwords using different approaches.

Password cracking was also instrumental, in a recent
cyber espionage campaign against the New York Times

[30]. A 2008 study [19] of online black markets found

a vibrant economy trading in stolen passwords. Due to

the widespread re-use of passwords across multiple web-
sites [4], an emerging attack model is to compromise

accounts by a guessing attack against a low-security

website and attempt to re-use the credentials at criti-

cal internet sites [2]. In addition to that, other possible

scenarios can trigger the attacks on passwords. A large
number of naive users choose passwords very poorly.

There are many cases that some anonymous person suc-

cessfully impersonates at least some users of a system

by attempting logins with common passwords [3]. This
situation can be avoided by requiring users to use un-

common passwords [31].

This paper focuses on designing and implementing
a negative authentication system that can easily be in-

tegrated with the current password based authentica-

tion system by providing an additional layer before the

positive password database. The details of different ver-

sions of NAS and their implementations are illustrated
in this paper. The experiments are conducted with real-

world password data, and the results are described to

justify the three different designs of NAS. The paper is

separated into seven parts. Section 2 covers the overall
concept of Negative Authentication System. Section 3

highlights the three different approaches of NAS at the

high level. Section 4 demonstrates the detail insights

of these three approaches. Section 5 demonstrates the

architectural design to implement the NAS algorithm-
s. Section 6 covers the experimental design and dis-

cussion of the results. Section 7 shows some significant

difference of the NAS approach with Positive Authenti-

cation. Section 8 illustrates the reliability and validity
of NAS approaches and comparison of other contem-

porary password based approaches. Section 9 provides

concluding remarks regarding NAS approach.

2 Negative Authentication System (NAS)

The idea of Negative Authentication System (NAS) is

based on the negative selection algorithm [18, 13, 22,
11]. This idea of the negative selection algorithm is in-

spired from the T-cell maturation procedure in the im-

mune system. A T-cell is eliminated before deploying

functionality if a T-cell in thymus recognizes any self-
cell. The fundamental principle of the Negative Selec-

tion Algorithm is as follows [10]:

1. Define the set S (Self ) as the regular pattern of

activity of a system which needs to be monitored.
2. Generate a set D (Detector); those must not match

any element from S.

3. The set S is continually monitored for changes. The

detector set D is adjusted if any change occurs in
S.

Likewise, the negative selection algorithm generates

a set of ’detectors’ where no detector has any similari-

ty with the ‘self ’set. Here, the ‘self’set consists of the
authentication data denoted as ‘password points’and

hence ‘detector’set consists of other elements exclud-

ing the proper authentication data. Now, the generated

detectors are used to detect any other element than

the authentication data. These detectors consequently
recognize malicious access request by using the same

matching rule used for authentication purpose. So, this

algorithm requires only available training data, and af-

ter that, it can be used as an anomaly detection algo-
rithm [10]. Valid credentials or ‘self’set are termed as

‘positive information’, and ‘detector’set are the creden-

tials that are non-valid are termed as ’negative informa-

tion’. Briefly, user identities are confirmed not by using

valid or positive information rather by using of negative
information.

Fig. 1: The password space (Self region) and

anti-password space (Non-self region) shown in

the total username-password space
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In NAS, ‘self’set or data that contains the password

based authentication data for valid users is termed as

either password file, self-space or self-region. All other

elements that do not belong in the self-region creates

the non-self-space or non-self-region. Some elements are
created by using NAS to cover those non-self-regions.

These elements are either called detectors, anti-passwords

or anti-password region. Some areas in the non-self-

region are left uncovered to induce ambiguity to the
attackers. It is desired to generate detectors to cover

most of the non-self-region and thereby increase the

detection rate of invalid access requests (Fig. 1).

Fig. 2: Different security layers of NAS
separating the detector region and self-region

NAS uses two servers for the validation of the ac-

cess request. The self-region and anti-password region

are kept in separate servers for enhancement of securi-

ty of the authentication system (Fig. 2). The negative
detectors that check for guessing attacks are stored on

the first server that handles all incoming requests. The

first server contains only the detectors and no other in-

formation (Fig. 2). Every access request arrives at the
first server and is checked with the detectors. If any ac-

cess request information is matched with any detector,

then that access request is marked as an invalid request.

Otherwise, that request is sent to the next server that

contains the password based authentication data. This
server checks the request, and if it finds a match, then

it marks it as a valid request (Fig. 3). In this way, there

is no direct communication between the requests and

the positive authentication server (second server). But,
the communication between the first server and the sec-

ond server is transparent to the users. So, the user ex-

perience remains the same as the previous method of

positive authentication.

This profile represents the negative abstraction of

valid credentials and is the problem specific realization
of the negative database described by [14]. This nega-

tive authentication for a system login application has

been tested successfully workable [8]. This negative ap-

Fig. 3: Logical view of negative (anti-password
space) and positive (password space)

authentication NAS layers

proach has some benefits over the traditional positive

authentication approach. The negative authentication
module is supposed to detect and filter out most of

the invalid requests, therefore, such guessing request-

s have a low probability of accessing the positive au-

thentication module. Furthermore, negative detectors

are placed in the front security perimeter. So, the neg-
ative detectors become vulnerable to malicious access

and hence more vulnerable to offline guessing attacks.

But,getting a copy of the negative detectors does not

reveal any information to the positive password file due
to the ambiguity introduced intentionally in their (de-

tectors) generation. Therefore, exposing the negative

detector upfront reduces the overall password crack-

ing risk. Hence NAS can significantly benefit from side

channel attacks of passwords. Also, the password file
that contains the authentication data resides in the sec-

ond server and is never exposed to the outside of NAS

which ensures that the positive profile is safer than be-

ing compromised.

3 Different Approaches of NAS

There are different approaches of the Negative Authen-

tication System (NAS)based on representation of pass-

word space. The main focus of these approaches is to

generate negative detectors to cover most of the non-
self-region and increase the detection rate of invalid ac-

cess requests. Each approach maps the information in

different representation space. In this current research,

we consider three representational space and develop
three approaches for NAS: Real-valued, Binary-valued,

and Grid-based. In this paper, the first two approaches

are considered non-deterministic in terms of detector
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creation while the third approach is a deterministic ap-

proach to create the set of detectors. Various approach-

es create various sized detectors and provide a different

layer of obfuscation against compromise of password

data.The details of each of these approaches are dis-
cussed in the following subsections.

3.1 Real-valued NAS (R-NAS)

The real valued space model is a hypersphere based

non-deterministic model of NAS. This model uses n di-

mensional real space model to represent self-region and

detectors. Both detectors and self-regions are some hy-
percube of n ∈ Z

+ dimensions [23, 24]. Non-self-region,

not covering any detectors is also of n dimensions. Here,

dimension means the encrypted and segmented login

information which is clearly shown in Fig. 4a. From

Fig. 4a, it is clear that the initial login information are
the username and the password. Then using the tech-

nique described in Fig. 8, the hashed (encrypted) lo-

gin information can be generated. The encrypted login

information are then divided into n segmented, which
can be considered as the dimension. For example, if the

length of the encrypted login information is 128 bits and

it is segmented into four 32 bit segments, then the di-

mension of the space is 4. The normalized value of each

segment in the real valued space model is spread over
[0,1]. To create the set of detectors, points are chosen

from the non-self-region that is not covered by any ex-

isting detectors. The radius of the detector is chosen in

such a way so that the hypersphere will not overlap with
the self-region. The Overlap may be allowed among the

detectors. Fig. 4b also shows a 2-dimensional projection

of a real space model implementation with self-points

(self-region) and detectors. However, the remaining por-

tion of Fig. 4b demonstrates the 2-dimensional non-
self-region. Here, the real valued space implementation

uses Euclidean distance for calculation of the distance

between any two points in the space.

3.2 Binary-valued NAS (B-NAS)

The binary valued space model is hypercube based non-

deterministic model of NAS. This model is inspired

from the original V-Detector algorithm [24]. Binary val-
ued space model is a discrete space model and uses on-

ly two values for each dimension; either 0 or 1. This

model uses n-dimensional binary space, where n is the

length of the representation string (encrypted user in-
formation). Therefore, different username-password in-

formation will not be mapped to a same point in the

represented binary space. A Total number of elements

in the binary valued space model is 2n, where n is the

dimension of the space. A sample illustration of binary

space is shown in (Fig. 5), where n=3. To create the

detectors, points are chosen from the non-self-region of

the binary space that is not covered by any existing
set of detectors. The radius of a detector is chosen in

such a way that the hypercube representing that detec-

tor will not overlap with the existing self-region. These

generated detectors cover some portion of the non-self-
region. Overlaps among the detectors may be allowed.

This model uses Hamming distance as a distance mea-

sure between any two points in the space. The Ham-

ming distance between two entities of equal length is the

number of positions at which the corresponding bits are
different. An example of Hamming distance calculation

is shown in (Fig. 6).In Fig. 6, the two eight binary dig-

it numbers have four positions where the bits differ to

each other. Hence, the hamming distance between these
two numbers are 4.The differed positions are shown in

bold in the figure.

Fig. 5: Binary Space in three dimensional space.

Fig. 6: Hamming Distance calculation as a

distance measure.

3.3 Grid-based NAS (G-NAS)

Grid based implementation is a deterministic model of

NAS [9]. The idea of Grid based approach for NAS is
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Fig. 7: Sample display of self-region and

detector region in Grid Space. Here gray boxes

are detectors and white boxes are self-points.

inspired from work by Williams et al. 2004. This Grid-

based NAS model is designed in a way so that, there is

no overlap among the detectors. It represents the pass-
word space in a square grid (N × N matrix, where

N ∈ Z
+). The Grid is stored as a 2-dimensional in-

teger array with a specified dimension. We can choose

the optimum grid size to divide the space according

to the obfuscation level to be achieved. For example,
the size of the grid can be considered as 512 × 512 or

256×256 etc. Self-points that are mapped to particular

cells are identified by row number and column number),

increases the value of that position by 1. Hence, any cel-
l as value M >= 1, means M self-points are mapped

to that particular grid. The cells for non-self-points are

easily identified with the value that they contain (here

the value is 0).

We store the (x, y) coordinates of the cell for each
username-password for the positive space, for N username-

passwords we store N coordinates and the grid size is

stored once for the entire space. The complexity of the

algorithm to generate the negative detectors is O(N)
or less. We start at a cell occupied by a positive cell

(where M > 0) and define a run connecting series of

cells (say along the x-axis) until we hit another positive

cell. We encode the run-length of cells using only the

beginning and end cell ids. Thus, the storage we require
to define the complete negative space will be no greater

than 2 × N + some small constant brought in by runs

that end on boundaries of the space. If we combine x

and y co-ordinate runs, we will get even larger com-
pression. Thus, even though the negative space is much

bigger than the positive space we can define it for our

purposes in terms of the N cells of the positive space.

Detectors are created by scanning the Grid once and

keeping track of the cells that have their corresponding

M equal to zero. Consecutive cells of corresponding “M

equal to zero” in a row are considered as one detector

and its run-length is calculated with the number of con-
secutive cells. In the Grid based implementation, it is

possible to increase or decrease the detectors’ coverage

by changing the grid dimension.

Detectors generated from this implementation are

stored with their run-length and the starting index. In

our implementation, the detectors are saved in row-wise
format and each row, the detector is stored with the s-

tarting column index and run length. The benefit of

using row-wise format is, to find a particular point in

the space, the row of that point can be determined eas-
ily from the hashing of the password and the search s-

pace is reduced to that specific row to check whether it

falls in a detector cell or self-point grid. This approach

also compresses the space required to store the total
detector region, and the region can be reconstructed

easily from the saved information of the detector space.

A sample grid based representation is shown in Fig. 7.

Fig. 7 shows the self-region and detector region in Grid

space. The gray boxes are detectors (negative space)
and the white boxes are self-points (positive space) in

the sample representation of the grid space. The details

of the grid space and generation of positive grids and

detector grids are discussed in later section.

4 Implementation of Negative Authentication
System (NAS)

All of the approaches discussed in the previous sections

were implemented and tested in the lab environmen-
t. The self-regions in these implementations consist of

username-password points termed as self-points. The

Implementation details of the approaches are discussed

in the following sections.

Hashed string generation

The username and password pairs are converted to cor-

responding self-point of the representing space model.

Password is hashed with the specified hashing algorith-
m. Unique (dynamic) salts are added with hashed pass-

words and hashed again. The Corresponding username

is added with last hashed output and hashed for the

last time after adding a fixed (static) salt. The process
is shown in Fig. 8. Self-points are created from these

hashed string output using the implementation specific

approaches.
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Confusion parameter

The derived self-points are usually a single point in the

model space. To induce some level of obfuscation, each

self-point is surrounded by some of its neighboring re-

gions. For real and binary valued space models, every
self-point forms a hypersphere having a radius spec-

ified in implementations and center as the self-point

itself. The higher confusion parameter shrinks the non-

self-region but the total number of detectors does not

decrease significantly. The number of detectors depends
on the interleaving gaps between hyperspheres, rather

than by the total area of non-self-region, as long as this

total area does not become too small. As the random-

ness of hashed self-points are uniformly distributed [35]
within the required n-dimensional space (because of the

one-way hash function property), the confusion param-

eter appears to have little effect on the detector set size

[12]. For grid space model, every self-point is mapped

to a grid cell and the whole cell is defined as self-cell or
self-grid, the size of the self-grids (depends on the grid

size) is considered as the confusion parameter for the

grid model.

Detector Coverage

Detector coverage can be defined as the volume of the

non-self-space covered by the detectors. In the present

work, the detector coverage has been normalized be-

tween 0 and 1. In this work, the detector coverage has
been calculated using the Monte-Carlo simulation tech-

nique [28].

4.1 R-NAS Implementation

In real space implementation of NAS, a 4-dimensional
real space model is implemented to map the total s-

pace. Though the real space model is a continuous space

model, in the implementation, only predefined places

after the decimal point are considered (typically 3 to

5 places). Self-region is defined by self-points that are
hashed output of username and password. Every hashed

string is divided into four segments to be mapped into

the 4-dimensional real space. Coordinates of the self-

point are calculated by normalizing each part of the
hashed strings from 0 to 1 (Fig. 9). Each self-point

forms a hypersphere with a small radius. This radius

is defined as confusion parameter.

The non-self-region is created by the implemented
R-NAS algorithm. This algorithm generates the detec-

tors to cover the non-self-region. Each detector consists

of a center, and a radius and so defines a hypersphere

of 4-dimension. Both self-points and detectors form hy-

perspheres. The radius of self-points is defined as con-

fusion parameter. The center and radius of detectors

are generated in such a way so that detectors can over-

lap with each other, but they cannot overlap with the
region of any self-points. The pseudo-code for the real

space implementation algorithm is given in appendix

(Fig. 26).The input and output of the detector genera-

tion algorithm are mentioned in the pseudo-code. Code
block in line 8-12 checks whether candidate detector,

’x’ falls in the existing list of detectors. If that falls,

the failed count will be increased to keep track of to-

tal failed attempts. Code block in line 13-18 computes

the minimum distance among all the self-points and the
candidate detector, x. Code block in line 20-28 checks

the overlap with the candidate detector, x with other

existing detectors and decides whether it can be includ-

ed in the existing detector set. Code block in line 29-32
adds the candidate detector, x to the detector set and

checks the termination criteria to exit or not. The final

set of detectors is then returned.

4.1.1 Confusion Parameter for R-NAS

This term defines the radius of the self-spheres creat-

ed using the self-points in the real space. Accordingly,

the value of the confusion parameter controls the vol-

ume of self-point. Usually, a small value is chosen for

the confusion parameter so that the self-region remains
negligible compared to the total space [12]. In the re-

al space implementation, confusion parameter is set as

the minimum value possible (e.g. if four places after a

decimal point is considered, then confusion parameter
is set as 0.0001).

4.1.2 Expected Coverage of Non-self space

Expected coverage is the term that controls the portion

of non-self-region covered by the detectors and it can
be defined as the following ratio:

Sum of detectors’ regions coverage excluding overlap

1 - sum of all self regions’ coverage
In NAS, some region from the non-self-region is not

covered by the detectors to induce some obfuscation for
the attackers. Generally 98% coverage is targeted while

creating the detectors. As the detectors are created with

allowing overlap, the actual coverage is smaller than

98%.

4.2 B-NAS Implementation

In binary valued space implementation of NAS, no two

points will map to a single point in binary space. Based
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on the password points (self-points), which are hashed

output of username and password pair, the implement-

ed algorithm calculates the non-self-detectors. Each de-

tector consists of a center a(∈ non-self-region) and ra-

dius r, where all the points from a with r hamming
distance are the members of that detector. These gener-

ated detectors cover some portion of the non-self-space

(negative space). In this implementation, it is assumed

that both the self-points and detectors are hyper-cube.
Detectors can overlap with each other but they cannot

overlap with the volume of self-points. Because of this

radius, a self-point or a detector is not a single point

in the space; in fact, it is composed of many points in

the space. A sample scenario of self-point and detectors
in reference to the NAS are given below (Fig. 10). In

Fig. 10, two self-points are mentioned with their radius

1. If we set the detectors’ coverage to 60 percent, the

count of detectors required to covered the anti-password
region is 13, which is shown in the figure along with

their individual detector radius.

The pseudo-code for the binary space implementa-

tion algorithm is given in Appendix (Fig. 27).

The input and output of the detector generation al-
gorithm are mentioned in the pseudo-code. Code block

in line 8-12 checks whether candidate detector, ’x’ falls

in the existing list of detectors. If that falls, the failed

count will be increased to keep track of total failed at-
tempts. Code block in line 13-18 computes the mini-

mum distance among all the self-points and the candi-

date detector, x point. Code block in line 20-26 checks

the overlap with the candidate detector, x with other

existing detectors and decides whether it can be includ-
ed in the existing detector set. Code block in line 28-31

adds the candidate detector, x to the detector set and

checks the termination criteria to exit or not. The final

set of detectors is then returned. Some relevant terms
of B-NAS is discussed in the following subsections:

4.2.1 Confusion Parameter for B-NAS

This term defines the radius of self-points in the binary
space. In the binary space implementation, confusion

parameter is set to 5 (subtle value in comparison with

the total dimension of the space).

4.2.2 Expected Coverage of Non-self space

In binary space, detector coverage is approximated as a

normal distribution [26]. For this distribution, mean is

N/2 and Standard Deviation is
√

N/2, where N is the

dimension of the space. The coverage of a detector of
radius ’r’ (r << N) is shown pictorially in the Fig. 11.

The gray area denotes the coverage (or volume) of the

detector in the total representative space.

Fig. 10: Sample detector space Generated using

binary implementation of NAS. The

configuration are Dimension=8, total
self-points=2, Detectors minimum

coverage=0.60, self-point radius=1.

Fig. 11: The gray area shows the volume of the

detector with radius r.

4.3 Modification of the self-region for R-NAS and

B-NAS

To remove some existing self-points in real and bina-

ry space implementations, the marked to be removed

self-points are simply removed from the existing set of

self-points. If the number of removed self-points exceeds
a threshold, then the detector set is generated again to

cover up the empty spaces and to create larger detector

spheres. The pseudo-code is given in appendix for re-

moving a self-point(Fig. 28). According to pseudo-code,
if the total number of self-points after the removal is

less than a given threshold value, the detector set will

be generated again with the given list of self-points.

Otherwise, existing detector set can be considered as

current detector set.

The case is slightly different if some new self-points

are added in the self-region. All detectors are removed
that collide with the new self-points and then detectors

are generated again with the new self-point set and the

existing detector set to cover the vacant non-self-region.
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When the number of added self-points crosses a thresh-

old limit, the detector set is generated again from the

scratch to get rid of the smaller detectors and merge

them in larger ones. This idea is shown in the given

pseudo-code in Appendix (Fig. 29).

To update some existing self-points, the old self-

point entries are removed and the updated self-point

entries are added in the self-region. Corresponding step-

s for removal and addition of self-points are taken as
described previously. Again, the total detector set is re-

generated when the number of self-point update crosses

a threshold to minimize the number of smaller detec-

tors. This concept is shown in the given pseudo-code in
Appendix (Fig. 30).

4.4 G-NAS Implementation

As discussed in the previous section, grid approach uses

a two-dimensional N ×N Grid to model the total space.

At first, the self-region is mapped to the grid space

and later the detectors are formed from the un-occupied
non-self-region.

4.4.1 Represent the space in Grid

The Grid is stored as a two dimensional array of in-

tegers with a specified dimension. Self-points that are

mapped to particular grids (grids are identified by row

number and column number), increases the occupancy
value of that grid by 1. Hence, any grid of ith row and

jth column having occupancy value (Mi,j ) greater than

1 means the grid is not empty and some Mi,j self-points

are mapped to that particular grid. The non-self-region
grids are easily identified when their occupancy value is

0; indicating no self-points being mapped to that grid.

4.4.2 Confusion parameter in G-NAS

In grid space implementation, there are space size for a

two-dimensional N × N Grid is N2grids, but, the total

possible space size is 2n, where n is the length of the
representation string of a self-point. Therefore, every

grid is mapped by (2n/N2) possible points. For every

grid containing m self-points, ((2n/N2) -m) ≈(2n/N2)

points are considered as the confusion parameter.

4.4.3 Detection of Non-Self-Region in G-NAS

The grids that are not covered by the self-points are
considered as the non-self-region. Hence, the non-self-

region is created in constant time after getting the grids

occupied by self-points. This is one of the advantages of

grid based implementation over other implementation-

s of NAS. Detectors can be generated by scanning the

grid once and having consecutive grids in a row with oc-

cupancy value 0 considered as one detector. Run-length

of each detector is determined by the count of consec-
utive grids in the detector.

In grid implementation, non-self-grids cover the to-

tal non-self-region. If only a fixed percentage of the anti-

password region is desired to be covered, some detectors

are marked for removal. In order to do that, detectors
with minimum run-length are removed from detector

list at first and the new achieved coverage is calculat-

ed. This process will go on until the expected coverage

is achieved. This whole process can be performed with
a single scan of the whole Grid and removing the de-

tectors with the given run-length calculated at first. In

the Grid based implementation, it is possible to increase

or decrease the detectors’ coverage with only a single

scan through the Grid. It also indicates another advan-
tage over the hypersphere based implementations [24],

where the detectors are required to be generated from

the beginning to get the necessary coverage value.

4.4.4 Saving the Detector Space

Detectors generated from the grid space implementa-

tion are stored by their run-length and starting index.

In the implementation presented in this work, the de-
tectors are saved in row-wise format and, in each row,

the detector is stored with the starting column index

and run length. The benefit of using row-wise format

is, to find a particular point in the space, the row of
that point can easily be determined and the search s-

pace is reduced to that row only to check whether it

falls in a detector grid or self-point grid. This approach

also does the compression of the space to store the w-

hole detector region and it can be easily reconstructed
from the saved information of the detector space.

4.4.5 Visual representation of a simulation of G-NAS

As discussed above, initially self-points are mapped in

the grid space. The simulation involves a grid with

32 × 32 dimension and 500 self-points. It uses 256 bit

SHA-256 encryption algorithm to get self-points. Then,

the detectors are created to cover the non-self-space.
After the creation of detectors, some detectors are re-

moved from the detector list. This is done so that de-

tectors do not cover the entire non-self-region. Some re-

gions are left uncovered to induce ambiguity for attack-
ers so that they cannot find out the self-region quickly.

Fig. 12 shows the generated self-points (dark gray), de-

tectors (black) and candidate detector for removal from
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detector list (light gray - all detectors with run-length

1 and 2 in this example) in the grid. Only the surviving

detectors (black blocks) will be saved for the NAS. To

increase the obfuscation level, smaller detectors (light

gray blocks) can be omitted for saving space.

Fig. 12: Self-points (dark-gray), detectors(black), and

candidate detectors marked for removal (light gray) of
run-length up to 2 in the 32 × 32 Grid. Here 390 grids

are dark gray grids, 412 grids are black grids, and 222

grids are light-gray grids with run-length 1 and 2.

4.4.6 Mapping of Self-points to Grid

Three different approaches of grid based implementa-
tion have been implemented and tested. They are:

– Mod-based approach
– Two-layer approach

– XOR-based approach

All grids are 2-dimensional with dimensions of 2i × 2i,

where the value of i is dependent on the number of

user information (self-points). In each of the cases, the

hashed self-point string is divided into two halves. But
the data in each half is processed differently in these

implementations.

4.4.7 Mod-based G-NAS

In this method, each part of the divided hashed string

of the self-point is considered. Last i bits are taken from

the binary representation of each of the parts. This
value denoted by these i bits provides the modulus if

the string was divided by 2i. Then both of the part-

ed string is converted into corresponding values. This

self-point is mapped in the grid using those comput-

ed values. Other bits are simply discarded from any

computation. Here the projection scheme is fixed for

every possible self-points unless the grid dimension is

changed.The pseudo-code of the Mod-based projection
algorithm showing the above concept is given in ap-

pendix (Fig. 31).

An example of the mod based approach of the Grid

based implementation is illustrated in the Fig. 13. For
example, it is assumed that the hashing function pro-

duces a binary string of length 16. The string is divid-

ed in two parts. Suppose the dimension of the grid is

16 × 16 (= 24 × 24). So, the last four bits from each

part is considered. The value of these four bits resem-
bles the reminder if the part is divided by 16( =24). In

this example, the first part produces (1101)2 i.e. 13 and

the second part produces (1001)2, i.e. 9, so, the string

will map to the cell (13, 9) in the grid.

Fig. 13: Mod based approach of mapping points

in the Grid.

4.4.8 Two-layer based G-NAS

Each part of the divided hashed string is further divid-
ed in two equal sub-parts. Last i/2 bits are taken from

the binary representation of each of the sub-parts. Both

of the i/2 bit length binary substrings are concatenated

to from a i bit length binary string. This binary string
is converted into corresponding value. The same proce-

dure is done with the other part of the hashed string.

Both the values are then used to map the self-point in

the grid. All other bits are discarded. Again, the projec-

tion scheme is fixed for every possible self-points unless
the grid dimension is changed. The pseudo-code of the

two-layer based projection algorithm showing the above

concept is given in appendix (Fig. 32).

An example of the two layer based approach of the
Grid based implementation is illustrated in the Fig. 14.

For example, it is assumed that the hashing function

produces a binary string of length 16. The string is
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divided in two parts. Each part is again divided into

two equal sub-parts. Suppose the dimension of the grid

is 16×16 (= 24×24). So, the last two bits from each sub-

parts is taken in consideration. The same procedure is

repeated in the other part of the string. In this example,
the first part produces (0101)2, i.e. 5 and the second

part produces (0101)2, i.e., 9. So, the string will map

to the cell (5,9) in the grid.

Fig. 14: Two-layer based approach of mapping

points in the Grid.

The pseudo-code of the two-layer based projection

algorithm is given in appendix (Fig. 32).

4.4.9 XOR-based G-NAS

Initially, i positions are randomly selected from the

hashed string. Then, for each half of the hashed string,
every j (power of 2) consecutive bits are XOR-ed and

replaced by the result. That leaves each of the halved

hashed binary string compressed in a ratio of j to 1.

From the compressed string, bits from the selected po-

sitions are concatenated. That produces a binary string
of length i. This binary string is converted into corre-

sponding value. Both values are used to map the self-

point mapped in the grid. All the self-point hashed

string uses the same i positions selected at the begin-
ning. More bit information is involved in the mapping

of self-points in this projection approach. This projec-

tion scheme chooses new random positions every time

the scheme is initiated. So this scheme will also produce

different projection for the same password in separate
implementations. The pseudo-code of the XOR- based

projection algorithm showing the above concept is giv-

en in appendix (Fig. 33).

An example of the XOR-based approach of the Grid
based implementation is illustrated in the Fig. 15. For

example, it is assumed that the hashing function pro-

duces a binary string of length 32. This example shows

a scenario with a compression ratio of 2: 1. Every two

consecutive bits are XOR-ed to produce the new string.

So the new string has a length of 16. The string is di-

vided into two parts. Suppose the dimension of the grid

is 16×16 (= 24 ×24) and four random bit positions are
1, 4, 6 and 7. So, bits from those positions are taken in

order. The same procedure is repeated in the other part

of the string. In this example, the first part produces

(1111)2 i.e. 15 and the second part produces (0101)2
i.e. 5. So, the string will map to the cell (15, 5) in the

grid.

The pseudo-code of the XOR based projection algo-

Fig. 15: XOR based approach of mapping points

in the Grid.

rithm is given in appendix (Fig. 33).

5 Architectural Details about Implementing

Prototype System

For prototype purposes, all the implementation has been

designed and implemented in a virtual infrastructure.

Every server and access terminal is deployed as a virtual

machine with network interfaces. Through these inter-
faces, each VM is connected to virtual switches that

represent the network segments as shown in Fig. 16.

In the network layout, there are three main net-

work segments, which are administrative network, data-

center internal network, and access network. These net-
work segments are created using three Firewalls (FW) /

Intrusion Prevention Systems (IPS), which are present

in all three segments.

The administrative network is basically a private
network consisting of an administrator machine, router-

s, FW/IPS Segment 3, and FW/IPS Management In-

terface. The administrator device has access to Lv2
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Fig. 16: Different Components shown in the

Network Layout.

NAS App server to create user accounts as well as to

create or update the anti-password database. Any new-
ly created or modified user accounts are stored in Lv2

Positive Authentication Server (PAS). These user ac-

counts are used to generate anti-password data using

Lv2 NAS App server and pushed to Lv1 NAS Server.

The data-center internal network has four compo-

nents which are: Logging Server, Lv2 NAS App Serv-

er, Lv2 PAS, and FW/IPS Segment 2. Lv2 NAS App

Server and Lv2 PAS are mentioned while describing the

administrative network, whereas these two components
are crucial for the functionality of the system.

As for the access network, it has direct access to

the clients from the outside network such as the Inter-

net. This network has three components which are Lv1
NAS Server, FW/IPS Segment 1, and router. As men-

tioned above, Lv1 NAS Server receives anti-password

data from Lv2 NAS App server, and this data is used

to validate the authenticity of the clients at the access

network.

The NAS is composed of seven different compo-

nents. These are as follows:

1. NAS Clients

2. Lvl1 NAS Detector Server
3. Lvl2 NAS Application Server

4. Lvl2 Positive Authentication Server

5. NAS Log Server

6. NAS Scheduler Database

7. NAS Database

The details of each of these components are discussed

in the next sections.

5.1 Layer 1 Components

5.1.1 NAS Clients

NAS Web Client

The login page requests username and password for
users that want to access the system. After the creden-

tials are submitted, the page then uses them to generate

the self-point for that user using the same process that

was used by the Level two server that created the de-
tectors. The dynamic salt for each user is looked-up in

memcached using the digest that results from hashing

the concatenation of user and static salt. After obtain-

ing the dynamic salt, it is concatenated to the input

password, then it is hashed and the result is concate-
nated to the username and hashed again to obtain the

digest. Depending on the type of implementation cho-

sen, the appropriate algorithm to process the digest is

used. The resulting self-point is then compared against
the set of detectors to look for a match. If a match is

found, the login is unsuccessful. If it does not match

any detectors, it passes on to the next layer. The same

web page executes a call to a stored procedure on the

second layer to get the positive authentication of the
user.

The login page returns the result of both the neg-

ative and positive authentications along with the sum-

mary of the detector results and the self-point. In a
production implementation, this data should only be

used for diagnostic purposes and the user should only

see the result of the authentication, either success or

failure.

NAS Windows Client

The Windows 8 Client is running the pGina Creden-

tial Provider replacement to allow easy access to the
login interface. We have coded a pGina plugin in C#

to contact the Lvl1 NAS Detector Server and the Lvl2

Positive Authentication Server. This allows us to use

any authentication mechanism on the server and re-

turn if the user is allowed or denied access. Due to the
simple socket connection of the client, the Lvl1 NAS

Detector Server can be reused from previous proof of

concept with only minor code changes.

5.1.2 Lvl1 NAS Detector Server

Lvll1 NAS Detector Server is a PHP server that com-

municates with Memcached to get the current NAS De-
tectors. The user account information that is provided

to NAS Windows Client is validated against the detec-

tors. If there is a match, the user access is not allowed.
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If there is not a match, the user credentials are then

compared to the Lvl2 Positive Authentication Server-

s (PAS) user account information. Currently, we are

using a Microsoft Active Directory server for positive

authentication.

5.2 Layer 2 Components

5.2.1 Lvl2 NAS Application Server

We implemented the Layer2 Negative Authentication

Application (L2NAA) for Linux 2.4/2.6 platform in-

cluding CentOS 6.4. The implementation of the L2NAA
is designed to manage user account, create an anti-

password database, push the anti-password database to

Layer 1 Server, view statistics, and logs, and configure

input and preference parameters.

5.2.2 Lvl2 Positive Authentication Server

In the NAS architecture, Microsofts Active Directory

Server fulfills the requirement of a positive authentica-

tion source. As part of the NAS implementation, Ac-

tive Directory LDIF entries were updated to contain

the userPassword attribute. This attribute was used to
provide the user accounts hashed password. The hashed

password will be used to create the self-points needed by

the NAS application. In order to use the userPassword

attribute (i.e., to make it retrievable by the directory
search), we had to set the dSHeuristic to false for the

fUserPwdSupport entry.

5.2.3 NAS Log Server

This module shows the number of anti-password based

on different algorithms. Logs are stored in ArcSight
Logger. Logs stored in ArcSight Logger can be used

for future forensic analysis. Arcsight Logger dashboards

have been configured to show the most relevant infor-

mation from the status messages. Column graphs show

users trying to log in in Lvl1NAS and Lvl2PAS. Pie
charts show the successful vs. failed login attempts in

Lvl1 and Lvl2. Going forward, a better coverage of Lvl1

will reduce the failures in Lvl2.

5.2.4 NAS Scheduler Database

The quartz framework is used to schedule and run the
jobs in the system. We have a fixed number of jobs in

the system. These jobs are configurable based on the

valid ’cron’ expression.

5.2.5 NAS Database

This module is used to generate and store anti-password

database using different algorithms such as BNAS, R-

NAS, and GNAS.

5.3 Account Creation and Authentication Flow

The account creation and authentication processes are
shown in Fig. 17. There are two sections below that give

a description of the account creation and authentication

flow. To achieve an account creation, the administrator

must complete the five steps mentioned below to upload
the negative database to NAS L1 Server.

When clients request to access resources they go

through layers 1 and 2, which is called a client authen-

tication process. Below there is a description of this

process given in three steps, and there is also an illus-
tration found in Fig. 17.

Fig. 17: The Steps of Authentication process in
NAS.

5.3.1 Account Creation Flow

The administrator creates user accounts using steps 1,

2, 3, 4, and 5, and these steps are described below:

– 1: After the user account is created, static salt is

concatenated with User-name (ID) and password for
self-point creation.

– 2: Hashed ID (i.e. static salt, user name, and pass-

word) passed to NAS Database.
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– 3: User account information is passed to the Positive

Authentication System (PAS).

– 4: Detectors are created using the Hashed user in-

formation from NAS Database.

– 5: Detector list is passed to NAS L1.

5.3.2 Authentication Process Flow

The clients are authenticated using steps 1’, 2’, and 3’,

and these steps are described below:

– 1’: ID and password are provided to NAS Ll for

authentication.
– 2’: ID and password are concatenated with static

salt (i.e. application private key).This information

is converted to a point and checked with the list

of detectors. If the point does not fall into any de-
tectors, the user credentials are passed through the

firewall. Otherwise, this access request is denied.

– 3’: PAS user credentials are validated, and if valid,

an authentication token is passed.

6 Experimental Design and Results

6.1 Experimental Setup

A dataset of 33 million user passwords is used as the

source of the passwords used for simulations. This dataset

is extracted from SkullSecurity [32] website. This is a

dataset of exposed user password of RockYou site [7].
As these passwords belonged to a real authentication

system, so this dataset can be used to simulate a re-

al password-based authentication system. To generate

the usernames, another dataset of most common sur-
names of U.S. is used [5]. This dataset includes all sur-

names with over 0.001% frequency in the US popula-

tion during the 1990 census. The performances of each

configuration are indicated by the detector coverage.

Detector coverage is the percentage of spaces covered
by the algorithms. In other sense, it is the probabili-

ty of a particular algorithm configuration of detecting

an unauthorized user. All rates are calculated from the

average of 20 runs by using Monte Carlo Simulation
[28] with one hundred thousand trials for each configu-

ration. The coverage by the detectors is calculated by

using the following ratio:

total number of trials detected by the generated detectors

total number of trials

The False rate can also be calculated by subtracting the

coverage from 1 (one).

6.2 Evaluation Criteria

Three different implementations of NAS presented in

this paper are evaluated based on the following criteri-

a:

- The coverage of the approaches with different num-
ber of self-points (positive password) with varying their

confusion parameter.

- False positive rate.

- The time required generating the set of detectors.

- Detection time.
- Detectors’ storage size.

The details results for three different approaches are

discussed separately in later subsections. The compari-

son of three implemented approaches are illustrated in
6.6.

6.3 R-NAS Results

Experiments for real space implementation of NAS are

done with different number of self-points generated from

the mentioned dataset. The First experiment was con-

ducted to show the relationship between self-point ra-
dius and the detector coverage. This experiment was

carried out with 1000, 3000 and 5000 self-points. The

result is summarized in Table 1 and showed in Fig. 18.

From Fig. 18, it can be seen that detector coverage

Fig. 18: Scatter diagram for coverage by

detectors with different self-point radius.

decreases slightly with the increment of the self-point

radius. This self-point radius is also known as the con-

fusion parameter. The reason behind this result is as
follows: self-point radius with larger value will occupy

more spaces leaving less free spaces, causing detectors

to have slightly smaller radius. So the detector cover-
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Table 1: Difference in detector coverage with different self-point radius.

Detector Coverage(%)
Self-point radius With 1000 self-

points
With 3000 self-
points

With 5000 self-
points

0.001 79.11 70.25 65.04
0.002 79.23 70.13 64.04
0.004 78.33 67.97 62.93

age decreases a slightly with the increase of self-point

radius.

Next result shows the relationship between the ac-
tual detector coverage achieved with the expected de-

tector coverage by the R-NAS algorithm. The expected

coverage was varied from 85% to 98% for 1000, 3000

and 5000 self-points. The result is summarized in Ta-

ble 2 and graphically represented in Fig. 19. We get
the lower detector coverage value as many detectors

are overlapped one another and the overlapping region

covers the same space. But in our coverage calculation,

only overlaps with two detectors are measured. Hence
the actual detector coverage value is lower in compari-

son with the expected coverage value.

Fig. 19: Scatter diagram for achieved detector

coverage by the generated detectors with

different expected detector coverage.

6.4 B-NAS Results

For binary space implementation, the average count of

detectors is compared with different coverage value for

detectors. The simulation is done with 1000 and 3000

self-points and two different hashing algorithms. The
result is shown in Fig. 20. It is evident from the figure

that, with the increase of the password points (self-

points), the total number of detectors increases. Also, it

is noted that with the increase of the minimum coverage

for a fixed number of self-points, the total number of

detectors are increased. Additionally, the dimension of
binary space plays a role in the total detector count.

It is derived from the figure that, for 256 dimension

space, the total number of detectors is less in number

than that of 128 dimension space.

The reason is as follows. As the number of self-points

and confusion parameter are fixed, for changing 256 di-

mension from 128 dimension, the total number of points
covering the non-self-space are increased exponentially.

Hence the detectors created in 256 dimensions have a

higher radius which covers more space in comparison

with that of 128 dimensions. So the total numbers of

detectors are going down in 256 dimensions to cover
the same minimum coverage. One further observation

is with the increase of self-points, the total number of

detectors are also increasing for different encryption al-

gorithms.

Fig. 20: Scatter diagram for total number of
detectors with different expected coverage

value.

Mean detection rate for B-NAS implementation is

compared with various values of minimum coverage.

The results are shown in Fig. 21. From Fig. 21, it is
clear that the detection rate increases linearly with the

increase of minimum coverage. However, the rate of in-

crease is not constant in different scenarios. This is ob-
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Table 2: Difference in achieved detector coverage with different expected detector coverage

Detector Coverage(%)
Self-point radius With 1000 self-

points
With 3000 self-
points

With 5000 self-
points

85 38.12 31.15 30.08
90 52.08 48.47 47.98
95 67.15 60.32 63.18
98 79.11 70.25 65.04

vious in the sense that with the increase in dimension

and number of self-points; the total points covered are
increased not in a fixed ratio.

Fig. 21: Scatter diagram for mean detection rate

with different expected coverage.

For a fixed dimension, the mean detection rate is

higher for smaller self-points. With the increase of the
number of self-points, the total non-self-space is re-

duced and hence, the generated detectors has more over-

lap for higher self-points which causes the detection rate

to go down. For a fixed number of self-points, the mean

detection rate is higher for 128 dimension than 256 di-
mension space. This result can be explained with the

help of a total number of detectors count. As the to-

tal number of detectors is high for 128 dimensions, the

proportion of not covered non-self-space is reduced for
this scenario and hence the detection rate goes high.

6.5 G-NAS Results

Experiments were carried out using the dataset men-

tioned above to generate the statistical properties of the

discussed algorithms. For each simulation, 20000 pass-

words and usernames are randomly chosen from the
datasets and combined to form the authentication cre-

dential (Self-points). SHA-256 is used to hash the au-

thentication credentials so that the spread of the hashed

string is even over the space. Along with detector cov-

erage, detection rate and false rate are also calculated
to indicate the performance of the implementation. The

detection rate is the calculated detector coverage with

trials. False rate is the percentage of invalid credentials

not detected by the detectors. Grid dimension is varied

from 26 to 211 to get the detection rates and false rates
for each algorithm.

Different sizes of self-point samples were projected

into grids of different dimensions to get the appropriate

dimension for a particular size of self-point list. The
dimensions of grids are varied from (25 × 25) to (211 ×

211). Coverage of the self-region is calculated in each

simulation and results of these simulations are shown

in Fig. 22. These simulations are done with the mod
based approach. Other two approaches also show very

similar pattern with the mod based approach. Another

important point is that encryption size does not matter

in the self-grid coverage in Grid implementation for any

approach. The reason is, always, some specific bits are
used from the whole encrypted bit string for mapping.

From Fig. 22, the appropriate grid dimension for some

specific size of self-points can be found. For example, if

the targeted coverage by self-region is below 10%, then
for a self-region of 10000 points, the grid dimension will

be 29 × 29 or 512 × 512.

For a given number of password points, the detec-

tion rate (the percentage of non-password points is de-
tected by the available detectors) increases with the

increase of grid dimension. Also, the false positive rate

(the percentage of non-password points falls in the self-

grids) decreases with the grid dimension.

The trend for detection rate and false positive rate

follow the same pattern in the case of removing of some

small detectors (ex: removal of detectors with run-length

1 and 2). The Fig. 23 shows the effect of change of Grid

size on Detection Rate and False Positive Rate (FPR)
without any removal of detectors and removal after de-

tectors of RL 1 and RL 2 for a fixed set of 20000 pass-

word points in mod based projection. From the Fig. 23,

it can be seen that the detection rate graphs before re-
moval of any detector, after removal of RL 1 detectors

and after removal of RL 2 detectors almost overlapped

over each other. It is also true for the false positive rate
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Fig. 22: Coverage of self-region in different grid

sizes for various sample sizes of self-points for
256 bit encryption.

Fig. 23: Effect of grid size on detection rate and

false positive rate without any removal of

detectors and removal after detectors of RL 1

and RL 2 for a fixed set of 20000 password
points in mod based projection.

graphs. Therefore, from the Fig. 23, it can be concluded

that, after removing the small length detectors the grid

still shows the same pattern for detection rate and false

positive rate as before.

6.6 Comparison Among Approaches of NAS

Each of the different implementations of NAS has its
own advantages and disadvantages. Table 3 summarizes

the comparison of different methods of NAS. As shown

in Table 3, real space and binary space model use prob-

abilistic approach for detector generation and maps the
same region of the model space for the self-points ev-

ery time if the parameters to create the self-points re-

main the same. Detectors are generated as hyperspheres

for both models and detectors may overlap each other.

To update the existing detectors and self-points, com-

parison with all available self-points and detectors is

needed for both real and binary space model. The grid

space model uses a deterministic approach for detec-
tor generation and some variant implementation (XOR

method) of grid space model maps different regions for

the same set of self-points each time the self-points are

generated. Detectors and self-points are generated as
non-overlapping grid cells in the grid space and only

one comparison with a grid cell is needed to update an

existing grid space model.

Table 3 shows the coverage by detectors and num-

ber of detectors generated for each space model imple-
mentations for ten thousand self-points with SHA-256

hashing. The real and binary space based implemen-

tations generate a lot of detectors but achieves detec-

tor coverage of about 68%. These two implementations
need more space to store higher number of detectors

in compared with grid implementation. The grid im-

plementation generates relatively small number of de-

tectors and achieves great detector coverage of about

90%. Binary and real space implementation have very
low false positive while grid space implementation has

a relatively higher false positive rate. Grid space imple-

mentation generates the same set of detectors for same

set of self-points with same configuration parameters
but real and binary space implementation will generate

different sets of detectors in every run of the algorithm.

However, in various runs of G-NAS, the configuration

can be changed to set different sets of detectors for the

same login information. Binary space implementation
maps each different username-password pair to a unique

point in the model space. Real space implementation

maps 2216 different username-password point to a sin-

gle point (for 4 dimensional model considering 4 points
after decimal point). Grid implementation maps 2238

different username-password points to a single grid cell

(for a 29 × 29 grid) in the corresponding space mod-

els. B-NAS and R-NAS approach require more space

and time to generate detectors than G-NAS. G-NAS
approach (deterministic solution) can be configured to

a specific grid size that can control the amount of space

used by the detectors and self-points. Hence, system ad-

ministrators can easily tune the parameter (grid size)
that best fit the requirement of any system. Moreover,

the detection rates of the G-NAS is 95% with 95% level

of significance that can be found using χ2-test of the

goodness of fit, which proves the effectiveness and va-

lidity of the proposed approach.

In this current implementation, we tested the time

requirement (third evaluation criteria) for generating a

large number of negative detectors using three different
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Table 3: Comparison among different NAS approaches

Binary Space Real Space Grid Based
Approach Non-deterministic Non-deterministic Deterministic
Mapping All info Curtailed info. (Can be

varied)
Curtailed info. (Can be varied

Update of password profile Comparison with all ex-
isting Self-Point and De-
tectors

Comparison with all ex-
isting Self-Point and De-
tectors

Comparison with at most one Self
Grid or one Detector

Regeneration of password pro-
file

Maps same region for fix
points

Maps same region for fix
points

Maps different region for self
points (Random bit)

Space size Fixed Can be Varied (Decimal
places)

Varied (On password profile size) -
Small

Detector and Self-point Hypercube Hypersphere Rectangle
Overlap of detectors Considered Considered (50% of ra-

dius)
No Overlap

Coverage 62.26% 68.17% 95%(95% level of significance)
Dimension of Space 256 4 2
No. of Detectors 116,382 100,000 514

Total Password Space 2256 points 10004 points 218 cells

Mapping of points 1:1 1:2216 1:2238

Self-Region Coverage(%) or
False Positive Rate (%)

7.85 × 10−22 4.93 × 10−6 1.42

Table 4: Time required to create 1 million negative

detectors using three versions of NAS

Three Implementa-
tions of NAS

Time Taken

R-NAS 53.17 ms
B-NAS 135.35 ms
G-NAS 3 ms

Table 5: Time Statistics for verifying 100k

authentication requests in the First layer of NAS

approaches

Three Im-
plemen-
tations of
NAS

Detection time

R-NAS Average: 7.8 ms and Standard
deviation: 2.3 ms

B-NAS Average: 6.3 ms and Standard
deviation: 2.5 ms

G-NAS Average: 5.2 ms and Standard
deviation: 1.3 ms

Table 6: The space required to store 100k detectors in

the first layer by three different NAS approaches

Three Implemen-
tations of NAS

Required Space

R-NAS 100k *(5*4 bytes) ≈ 200 MB
B-NAS 100k*(32 + 4) bytes ≈ 360 M-

B
G-NAS 100k*(8 bytes) ≈ 8 MB

versions of NAS. The negative detectors are created in
the server side applications and pushed to the first lay-

er of NAS to handle all the incoming password request-

s. To test the time requirement, we used DELL Pow-

erEdge R530 Server with 44 cores at 2.2 GHz and 320
GB RAM. The results are shown in Table 4. According

to the table, the required time is quite reasonable for

generating 1 million detectors. These generated detec-

tors will be stored in the server side and hence, there is

no burden on the client side regarding storage space. In

addition, due to lower requirement of detectors’ gener-
ation time, system administrators can easily generate a

new set of detectors and thereby reduce the chance of

compromise the mapping of detector space in the first

layer.

To test the average detection time (fourth evalu-

ation criteria) required for an authentication request,

an experiment is conducted with 1 million detectors

in the first layer for 100k authentication requests in
three different versions of NAS implementation. This

test determines the efficacy of adding one more layer

in the actual authentication process. Same server con-

figuration is used to run this experiment. The results

are shown in Table 5. According to the table, the re-
quired time to test 100k authentication requests takes

couple of milliseconds. These values signifies that in-

corporating a negative layer does not make significant

overhead in detecting the authentication attempts for
verification.

To compare the usability of NAS approaches, the

required space (fifth evaluation criteria) is calculated

to store 100k detectors and the results are shown in
Table 6. According to the Table, it is clear that there is

not much overhead of space for implementing NAS as

an authentication approach. As these created detectors

will be stored in the server side, the client application

performing authentication does not experience any dif-
ference in terms of memory requirements.

In summary,the overall detectors coverage is higher

with lesser number of detectors in G-NAS in compared
with B-NAS and R-NAS for the considered dataset. The

coverage values of three approaches can be increased

with the decrease of the confusion parameter for B-
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NAS and R-NAS and with the increase of the grid di-

mension for G-NAS. Reducing the confusion parameter

triggers a higher number of detectors to be generated

in B-NAS and R-NAS. Similarly, increasing the grid di-

mension requires generating more grid cells in G-NAS.
These issues play a role in determining the value of the

last three evaluation criteria mentioned in section 6.2.

Table 4 highlights the comparison of three approach-

es based on third evaluation criteria. According to the
table, G-NAS takes the lowest time to generate the re-

quired number of detectors to achieve better negative

space coverage. Table 5 and Table 6 show the com-

parison of these approaches based on fourth and fifth

evaluation criteria respectively. In both cases, G-NAS
takes lesser time and space in compared with B-NAS

and R-NAS implementation. B-NAS and R-NAS per-

form almost equally for last three evaluation criteria.

The above mentioned experimental results proves
the efficiency of NAS concept in terms of various e-

valuation criteria. These results also demonstrate the

validity and reliability (in terms of false positive rate

mentioned in Table 3) of the three different implemen-

tations of NAS.

6.7 Password cracking test

In order to verify the efficacy of the proposed NAS ap-

proach, the password cracking test is designed to simu-
late the guessing attacks. 100k different access requests

are made to test the NAS approaches and the number of

times these requests fall into the self-region are count-

ed. Generally, the first layer detects and block all the
invalid requests (those which fall into the anti-password

space or negative space). The results of password crack-

ing test for R-NAS and B-NAS are shown in Table 7

and Table 8.

In R-NAS scenario, for 100k test points, only 1 point
pass through the second layer and falls into the self-

region. It means one invalid request is considered as a

valid request. This scenario happens if the dimension of

the space is small (here 3 points) but with the increase
of the space dimension, no invalid request has fallen in-

to the self-region. For B-NAS no invalid requests fall

into the self-region. In general, If the self-radius (confu-

sion parameter) is significantly small, the possibility of

mapping of the invalid requests fall into the self-points
region is very less. Hence, with the proper tuning of

the confusion parameter for B-NAS and R-NAS, the

password guessing attack can be fully prevented in the

proposed approach.
The proposed NAS approach also prevents the side

channel attacks. All the access requests are initially ver-

ified in the first layer of NAS. If the first layer cannot

catch an incoming request, it moves the request to the

second layer for additional checking. From an intruder

perspective, the information contained in the first layer

is the commonly available information to be compro-

mised. First layer of NAS contains only the detectors
information and no information regarding the positive

password space. In the proposed three implementations

of NAS, the total number of detectors are exponential-

ly larger in comparison with the number of self-points
(passwords). The created set of detectors is hashed out-

put. Hence, compromising the set of detectors provide

the attackers a list of hashed outputs. The strength of

the hashed output can be increased by choosing the

higher valued hash functions (SHA-256 or SHA-512).
As the chance of hash collision is very few, the proba-

bility of the valid passwords having the same hash as

the compromised detector points is close to zero. Again

as the hashing is considered as an irreversible process, it
is not possible for the attackers to get the actual string

of characters that construct the detectors.

In addition, the set of detectors are updated on a

regular basis (they will change after every run of B-NAS

and R-NAS due to the non-deterministic approach) and

hence, any extracted information regarding the possible
password space may not be applicable after a particular

period. Hence, with the incorporation of two layers in

NAS and putting only the non-self-information in the

first layer, the side channel attack can be significantly
reduced. It is true that the proposed NAS may not pre-

vent all the types of side-channel attacks but with the

two layer based approach, it makes harder to access and

compromise the positive information of the legitimate

users.Another advantage of this two layer approach is
that the unsuccessful access requests can be later be

used for forensic analysis to extract any pattern of the

attackers to further strengthen the design of NAS.

7 Comparison with Positive Authentication

System (PAS)

In our proposed system, the first layer composed of anti-

password information (negative detectors). The more

secured second layer contains the positive password s-

pace. In general, passwords are first hashed and rep-

resented in a high dimensional space. According to our
design, anti-passwords are less risky to reveal passwords

as compared to a hashed password file.

In the case of an offline attack on the first layer, when

the attacker gets access to the identification information
file, the Anti-P file is less vulnerable to the revelation of

the password than the password file. From the password

file, the attacker knows which hashes are valid so that
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Table 7: Result of Password Cracking Test for R-NAS implementation of NAS

Hash Di-
mension

Hashing Al-
gorithm

Points con-
sidered af-
ter decimal

Number of
Self Points
(passwords)

Self-radius Coverage No of at-
tempts
falling on
self-point

256 SHA-256 3 1000 0.001 76.87 1
256 SHA-256 4 1000 0.0001 75.734 0
256 SHA-256 5 1000 0.00001 76.58 0
128 MD5 3 1000 0.001 76.476 1
128 MD5 4 1000 0.0001 77.24 0
128 MD5 5 1000 0.00001 76.982 0

Table 8: Result of Password Cracking Test for B-NAS implementation of NAS

Hash Di-
mension

Hashing Al-
gorithm

Total
Number of
self-points
(password-
s)

Confusion
Parameter or
self-radius

Expected
Coverage

Detectors’
actual cov-
erage

No of at-
tempts
falling on
self-point

256 SHA-256 1000 5 0.8 0.612402 0
256 SHA-256 1000 5 0.85 0.636626 0
256 SHA-256 1000 5 0.9 0.656294 0
256 SHA-256 1000 5 0.95 0.676946 0
128 MD5 1000 5 0.8 0.624925 0
128 MD5 1000 5 0.85 0.647056 0
128 MD5 1000 5 0.9 0.667413 0
128 MD5 1000 5 0.95 0.687952 0

he/she can try with a rainbow file. In the case of Anti-

P file, the attacker can know about the region where
valid hash exists; however, he/she has no idea, which

are valid ones or how many of them are valid. This is

shown in Fig. 24. In this figure, the left-side diagram

shows password file and the right-side diagram shows
the anti-password file containing detectors. In our pro-

posed design, the negative space is not exactly com-

plimentary of positive password space. For example, if

93% of total possible password space is covered by de-

tectors or anti-passwords, it does not imply that the
remaining 7% region falls into a valid password region.

If the actual password space lies in 4% of the total pass-

word space, it is almost impossible to the attackers to

find out which actual 4% of total 7% space contains the
actual passwords. Hence, the proposed system provides

more obfuscation to the attackers to compromise on the

actual positive password space.

In the case of an online attack on the first layer and

compromised of the negative layer, the attacker can on-
ly see the output decisions from the negative authen-

tication module. Through Capturing successful guess-

es from the negative authentication layer, the attacker

cannot be sure to have guessed a real valid password.
However, he/she may get an idea of positioning of pass-

word and anti-password space from those successful and

unsuccessful guesses. But, this does not come to help,

Fig. 24: Comparison of Information from password file

and anti-password file. Exact valid hashes are found
from the password file. But, anti-password file only

reveals a region, from which any point (a point

corresponds to a hash) can be valid or invalid.

as long as the hash function used in the system is irre-

versible, randomized, and uniform.

In addition, due to the lower requirement of detectors’

generation time in NAS approaches, system adminis-

trators can quickly generate a new set of detectors and
thereby reduce the chance of compromise the mapping

of detector space in the first layer. This is also appli-

cable for password reset scenario as system administra-

tors can easily generate the new set of detectors with-
in very short time and push the new detector set in

the first layer. All these aspects prove the efficiency of

NAS in terms of computational cost, and the proposed
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approaches can perform better than existing positive

password based methods.

8 Related contemporary Authentication

Systems

Three implementations of NAS model are designed to

deny illegal access requests and provide an invisible
shield against various password based attacks in order

to secure positive authentication information. Binary

and real space based implementations provide non de-

terministic approaches to generate detectors while grid-
based implementation provide a deterministic process

to generate the set of detectors. Hence, system admin-

istrators can choose different implementations of NAS

based on their coverage and detector generation princi-

ple. In general, G-NAS achieves higher coverage of non-
self space with lower required time (3 ms) to generate

the set of detectors as well as lower space to store the

detectors (8 MB to store 100k detectors) and to pro-

vide less time ( on average 5.2 ms for 100k requests) to
check authentication requests. However, with the same

configuration of the user accounts, the G-NAS approach

always generate the same set of detectors, while B-NAS

and R-NAS generate different detectors’ set with every

run of the algorithm. Hence, the non-deterministic ap-
proaches provide more diversity in the first layer and

provide more obfuscation to the attackers in case of

breach of the first layer.

The reliability of the proposed NAS approaches are

measured. The reliability values of the proposed NAS

approaches are extremely high like 99.89% for R-NAS,

99.78% for G-NAS and B-NAS (using the same dataset)
with very nominal standard deviation of 0.013%. For

this purpose, we have collected 20,000 random samples

from the set of 100K password data and conducted the

χ2 test for the variance (σ2) using the following hypoth-
esis: H0 : σ2 = σ2

0

Ha : σ2 < σ2
0 (for a lower one tailed test); σ2 > σ2

0 (for

an upper one tailed test), and σ2 6= σ2
0 (for a two tailed

test) with T statistic, T = (N − 1)( s

σ2

0

), where N is

the sample size and s is the sample standard deviation.

Here, ( s

σ2

0

) compares the ratio of the sample standard

deviation to the target standard deviation. Hence, the
proposed NAS methodologies are extremely reliable in

almost all considered circumstances and datasets. This

test thus proves reliability of the NAS approaches and

the corresponding reliability values follow the normal
distribution, i.e., the probability of major fluctuations

in the reliability values is very small (almost tending

to 0). Apart from that, the NAS approaches are fea-

tured in MIT Geospatial Lab 1 2 and it is thoroughly

tested (both practically and statistically) for reliability

with various datasets and found the methods are ex-

tremely reliable with insignificant deviations from the

above-mentioned reliability values.

Moreover, the proposed NAS approaches can accu-

rately detect the imposters in a significantly less amoun-

t of time (see Table 7 and Table 8), which makes these

proposed approaches very reliable and feasible ways to

do user authentication. In our prototype implementa-
tions of the G-NAS, B-NAS and the R-NAS approaches,

the execution times are 2.4ms, 6ms and 3ms respective-

ly (from the second execution onwards) in local-area

settings along with the higher throughput rates in sev-
eral standard HTTPS servers with very less standard

deviation of 0.006% (tested using the χ2 test for the

variance with T statistic with 99% confidence) which

are significantly better than the other contemporary ap-

proaches. The efficient time requirements for detector
generation and verifying authentication requests and

the lower overhead of storing the detectors in the first

layer make the proposed NAS approach more viable to

be used as a contemporary password based approaches.

Honeywords [25] system is considered as one of the
related approach which uses some extra false creden-

tials information along with positive password informa-

tion. This system does not have any preliminary checks

for authentication requests like NAS first layer. Again,

both the actual and honeywords are stored in the same
location or server. Only honeyword checker is stored on

the separate server. In the proposed NAS approach (G-

NAS for example), there is no chance of false negative.

But for honeyword model, an alarm may be raised by
a valid user by mistake if she chooses one of the honey-

word as her password. Some other implementations use

decoy passwords [1] as false credentials like honeywords

which suffer the same issue as honeywords.

Shadow password concepts in UNIX [16] is one type

of protection mechanism that stores the encrypted pass-
word file in a different location and only is accessed from

system’s root directory by an administrative user. This

approach prevents an attacker who gains access to a

system as a regular user and tries to steal the password
file containing all the hashed passwords of the users.

But the actual password and the shadow password file

both locate on the same server. Hence, if that server

is compromised, the password credential are compro-

mised as well. On the other hand, the design of NAS
is motivated to create a secure layer before the actual

(positive) authentication information to prevent invalid

1 http://geospatial.mit.edu/
2 https://vimeo.com/98054594
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access requests to pass through into the system in the

first place.

Prior works of PYTHIA system [15] have explored

the use of remote cryptographic services to harden keys

derived from passwords or otherwise improve resilience
to compromise.However, the modern PYTHIA system

transcends existing designs to simultaneously support

granular rate limiting, efficient key rotation, and cryp-

tographic erasure. This set of features, which stems

from practical requirements in applications such as en-
terprise password storage, proves to require a new cryp-

tographic primitive that we refer to as a partially oblivi-

ous PRF [15]. Other related work on optimal distribut-

ed password verification system [6] mainly represents
a highly efficient cryptographic protocol to protect us-

er passwords against server compromise by distributing

the capability to verify passwords over multiple server-

s. It is primarily a single-round password verification

protocol and requires from each server only one expo-
nentiation in a prime-order group.

On the other hand, our proposed NAS approach-

es present three different extremely reliable contempo-

rary approaches for preventing guessing and side chan-

nel attacks by incorporating the concepts of negative
and positive password spaces, which would significant-

ly increase the level of obfuscation against all illegit-

imate users. The present NAS approaches have been

implemented in two layers of which, the first layer is
occupied by the detectors (non-self) and the second

layer is occupied by the self-region( hashed and salt-

ed passwords). All the three NAS approaches are rigor-

ously implemented and tested for performance, which

establishes their better reliability. Hence, the NAS ap-
proaches could be considered as potential alternative

approaches to defend users from the guessing and the

side channel attacks.

An experiment is designed using a publicly avail-

able dataset [17] on three different NAS implementa-
tions and Pythia to show the wide applicability of both

of these technologies as a robust authentication system.

8.1 Dataset Description and Conducted Experiment

This dataset contains mouse dynamics for ten different

users[17].It consists of mouse movement events and left
and right mouse button pressed and released events of

various users. Two separate datasamples for each user

were collected, one containing origianal owners of the

respective accounts and the other where the identity of
the current user is not known. For convenience, they

will be referred to as S1 and S2 respectively. As men-

tioned by Fulop et al. [17], any illegal activities present

in S2 do not reflect malicious activities but instead us-

ages by unauthorized users performing unspecified ad-

ministrative tasks.

Several labels were found in the dataset that de-

scribes if a session was legal or not. These labels contain
only labels for the ’public’ part of S2. As such, during

the cleaning of the data, we ignore unlabeled samples

that were found in S2 since we would not know the iden-

tity of the user for that session. Hence, for the training
data, we would only label the samples as according to

who is belonging to whereas for the test set, we will

include an additional label, which describes the legality

of the sample.

The experiment with this dataset proves the appli-
cability of the NAS approaches (B-NAS, R-NAS, and

G-NAS) in a different domain called the mouse dynam-

ics analysis that involves monitoring the way a user

moves the mouse and the corresponding data have been

used for authentication purpose. Here, we are main-
ly focusing on a specific single-stage action called the

”mouse move,” which is defined as the general mouse

movement between two points [20]. The experiment can

be extended to the other multi-stage mouse actions like
drag and drop, point and click, etc. Table mentioned

in [20] shows the values (mainly, numbers) of the ex-

tracted features from the data set. The user specific

mouse movement action can be uniquely identified us-
ing sixty-six features [20] that have been extracted from

the Balabit data set. Using these features, a specific

users can be identified (active authentication). Next,

these extracted feature values are user specific and must

be protected from any type of adversarial intervention,
and hence, we have used the NAS approaches for this

purpose. Simultaneously, we have also used the PYTHI-

A approach for a comparative study.

Using the NAS approaches mentioned before, we

have created positive and negative spaces for storing
all the features (related to the mouse move action for

all the 10 users) with suitable obfuscations (see sec-

tion 7. In this experiment, we have kept all the feature

values of a specific user together (positive spaces) and
generate the corresponding negative spaces using the

NAS approaches. If an adversary wants to replicate the

legitimate user’s mouse movement action, he must have

a clear idea about the specific feature values with which

the user action can be regenerated and, consequently,
the adversary can be misclassified as a legitimate user.

Quite similarly, using the PYTHIA approach [15], we

have tried to hide the user specific mouse movement ac-

tion related features (for given users) and the resulting
encrypted values are stored (shown in Fig. 25). This

experiment has been performed using a system with

Intel core i7 (7th Gen, 32 GB RAM) processor with
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Fig. 25: Outline of the proposed experiment; a.
Experiment with the NAS approaches, where the

feature values have been stored in the positive spaces

(blue circles), and the negative space encircles the

self-regions; b. Experiment conducted using the
PYTHIA approach

GTX 1070. The Balabit dataset[17] has been divided

in training and the testing sets. Here, we have used the

scikit-learn library to train a Random Forest classifier

in Python that uses 512 number of trees and we used

the Gini impurity splitting criterion. We have also fixed
the maximum depth of a tree in the Random Forest to

be 60, with the minimum samples per leaf node to be 1

and the minimum samples required for any node split-

ting to be 2. All these values were derived empirically
through testing on the training and validation sets.

Now, we have tried to breach the user specific fea-
ture values stored using the NAS approaches and the

PYTHIA system. The result of these two approaches

are presented in Table 9. This comparative study is

mainly focused on the accuracy, false positive, false neg-

ative and turnaround time (aka detection time). Howev-
er, both of the approaches (NAS and PYTHIA) show al-

most similar accuracy in authenticating users. In some

cases, we found the accuracy of the G-NAS is slightly

better than the other approaches. This result can be
data specific and may be different for some other data

sets. However, in the accuracy of the NAS approaches

is quite in conformity with the previous experimental

results (see Section 6.6). Additionally, the turnaround

times for the NAS approaches are similar to the results
shown in Table 5. Hence, it can be concluded that the

NAS approaches are quite resilient for various types of

datasets and can be considered as very trusted and al-

ternative defensive methods against the adversarial in-
terventions. Finally, both of these methods are trusted

and can be used as the potential alternative approaches.

One intrinsic limitation of NAS implementations is

the creation of higher number of anti-passwords (detec-

tors) because of the sparsity of hashed passwords in the

representation space. Some other techniques are also

existing to obfuscate information like Collisionful hash-

ing [21], Bloom Filter [34], Cuckoo Hashing [29], etc.

Although these methods are somehow space efficient

in comparison with our NAS approach, some security
issues still exist with those methods. Hashed output

of login information can easily be changed or altered

for these methods. But in NAS, encrypted negative in-

formation (use of static and dynamic salt along with
one-way hash functions) is comparatively harder to al-

ter and any compromise of this negative information

will not reveal the positive password (user credentials)

information. The relevance of Negative Authentication

remains valid in the case of compromising of password
database.

8.2 Attack Scenarios

Two attack scenarios relating to passwords are described

here:

8.2.1 Side channel Attacks

If an adversary somehow compromises the first layer

of NAS, all the negative space (i.e. non-self-space cov-

ered by the detectors) are revealed. But these leaked

information do not contain any information regarding

the positive password space. As in the design of NAS,
obfuscation is added for the attackers by not covering

the complete negative space with the detectors. Hence,

complementing the compromised negative space with

the possible total password space (this process will take
a significant amount of time depends on the dimen-

sion of the password space and all the configuration

parameters are stored in the second layer) will not dis-

close the actual password space. To reveal the actual

password space, the attackers has to try brute force ap-
proach to check which areas of the complemented space

is the actual positive space. Again, the randomness of

the mapping of all self-points in the password space is

uniformly distributed (as one of the properties of one-
way hash function). This design approach makes the

process harder for the attackers to pinpoint the exac-

t location of the password point to reveal the actual

password for a particular user.

In the case of Honeyword based system, the first

layer contains the set of Honeywords and the actual

password for all the users. If the attackers compromise

that layer, they will actually get the real password along
with some Honeywords and they will know the length

of the passwords which provide a vital information to

reduce their time to try brute-force attack.
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Table 9: A comparison among the NAS approaches and the PITHYA system.G-NAS has been found to be

performing the best (in fact, slightly better than the PYTHIA system). However, the result can be data specific

and may be different for other data sets.

NAS Approaches PYTHIA
G-NAS R-NAS B-NAS

Accuracy (ap-
prox.)

98% 95% 95% 97%

False positive 0.12 0.21 0.19 0.19
False Negative 0.12 0.36 0.39 0.23
Detection time
(approx.)

5.27 ms (avg.)
with standard
deviation: 1.35
ms

7.85 ms (avg.)
with standard
deviation: 2.63 ms

6.3 ms (avg.)
with standard
deviation: 2.85 ms

6.17 ms (avg.)
with standard
deviation: 1.81 ms

8.2.2 Guessing Attacks

Guessing attack is the most common attack in the pass-

word based systems. For NAS approach, the password

cracking test is designed to check how well it is per-

formed against the guessing attacks, which is shown
in earlier section. For Honeyword systems, if two user-

s have the same password, this is very likely that the

Honeywords of them are also very similar according to

the design of Honeywords. Hence, revealing the Honey-

words for all the users provide more useful knowledge
to the attackers to apply guessing attacks. On the other

hand, for NAS, for the same password for two differen-

t users, the randomness of hashed output is uniformly

distributed in the representative password space which
make the job harder for the attacker to detect the same

password.

9 Conclusion

The negative authentication approach can detect and

filter out most of the invalid requests, and hence lower

the probability of making guessing requests to access

the positive authentication data. In case of comprise of

first layer (negative detector region), an attacker can
have access of file containing anti-password informa-

tion. From there, he can only know about the region

where valid hash exists; however, he has no idea, which

of them are valid and how many of them are valid.
Hence, exposing the negative detector upfront reduces

the overall password cracking risks. Also, the password

file that contains the authentication data is kept in an-

other secure server and is not exposed to the outside

of NAS, which assures the security of the password file
(positive information). More rigorous security analysis

of these three approaches will be done in future.

Three implementations of NAS described in this pa-

per explore the details of negative information based
authentication system through the context of current

cyber-attacks. All these models of NAS reduce the false

positive rate of authentication requests (deterministic

method performs best among the three) and increase

the detection rate of invalid requests. The approached

design, integration, and deployment of these three mod-

els clearly show the applicability of these new ways of
authentication system with all types of existing pass-

word based authentication systems. The results demon-

strated that combining the negative approach with the

existing authentication system provides significant ben-
efits to overcome certain password based attacks.
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Fig. 31: Pseudo-code for detector generation
algorithm in NAS using mod based G-NAS

model.The ‘convertToInteger’function takes a

string input consisting only numbers and

produce the integer value of the string.

Fig. 32: Pseudo-code for detector generation

algorithm in NAS using two layer based
G-NAS model. The ‘convertToInteger’function

takes a string input consisting only numbers

and produce the integer value of the string.

The ‘concate’function concatenates two strings

into one single string.
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Fig. 33: Pseudo-code for detector generation

algorithm in negative detection using XOR

based G-NAS. The ‘convertToInteger’function

takes a string input consisting only numbers
and produce the integer value of the string.

The ‘concate’function concatenates two strings

into one single string.
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Fig. 4: The dimension concept of the real space based implementation in figure 4a and two

dimensional projection of self-regions and detectors in Real Space in figure 4b.

Fig. 8: Creation of hash string from the username-password pair. ’+’ sign indicates concatenation

operation among strings and ’z’ represents the derived hashed string. For hashing SHA-128,
SHA-256, SHA-512 can be used.

Fig. 9: Formulation of a self-point in four dimensional real space from a 256 bit hashed self-point

string.
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Fig. 26: Pseudo-code for detector generation algorithm in NAS using real space model.

Fig. 27: Pseudo-code for detector generation algorithm in NAS using binary space model.
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Fig. 28: Pseudo-code for deletion of existing self-points from the set of self-points in R-NAS and
B-NAS

Fig. 29: Pseudo-code for adding of existing self-points to the set of self-points in R-NAS and B-NAS
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