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Abstract

Triple negative breast cancers (TNBC) are genetically characterized by aberrations in TP53 and a 

low rate of activating point mutations in common oncogenes, rendering it challenging in applying 

targeted therapies. We performed whole exome sequencing (WES) and RNAseq to identify 

somatic genetic alterations in mouse models of TNBCs driven by loss of Trp53 alone or in 

combination with Brca1. Amplifications or translocations that resulted in elevated oncoprotein 

expressions or oncoprotein-containing fusions, respectively, as well as frame-shift mutations of 

tumor suppressors were identified in approximately 50% of the tumors evaluated. While the 

spectrum of sporadic genetic alterations was diverse, the majority had in common the ability to 

activate the MAPK/PI3K pathways. Importantly, we demonstrated that approved or experimental 

drugs efficiently induce tumor regression specifically in tumors harboring somatic aberrations of 
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the drug target. Our study suggests that the combination of WES and RNAseq on human TNBC 

will lead to the identification of actionable therapeutic targets for precision medicine guided 

TNBC treatment.
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Introduction

Targeted therapies for breast cancer treatment using estrogen receptor (ER)-antagonists, 

monoclonal antibodies or small molecules directed against HER2 for tumors expressing 

these cognate targets have resulted in great improvement in patient survival in ER+, PR+ and 

HER2 amplified patient populations (1–3). By contrast, there are no similar specific targeted 

therapies available for triple negative breast cancer (TNBC), which is defined by the absence 

of ER, progesterone receptor (PR) and HER2. This disease occurs more commonly in 

younger women and in women of African and Hispanic descent, and patients are at higher 

risk of local or distant recurrence and worse prognosis when compared to other breast cancer 

subtypes (4). Despite significant efforts, little progress has been made, and chemotherapy 

remains the standard of care for TNBC patients.

TNBC patients exhibit highly variable responses to chemotherapy, which is likely linked to 

the significant molecular differences observed among these tumors (4). Recent profiling of 

the tumor transcriptomes have highlighted the heterogeneity in TNBC (5,6), and 

transcriptional profiling allowed the classification of TNBC into discrete subgroups, each 

with distinct expression profiles and, importantly, clinical implications (5,7). Large-scale 

whole exome sequencing (WES) and whole genome sequencing projects further 

demonstrated the molecular basis for TNBC tumor heterogeneity, revealing a diverse range 

and number of mutations, chromosomal number variations and translocations (7–9). While 

over 80% of TNBC patients harbor point mutations or deletions in the TP53 locus and a 

smaller subset have point mutations in genes controlling the PI3K pathway (PTEN, PIK3CA 

and INPP4B), gain of function point mutations that are common in other cancers such as 

those found in BRAF, KRAS and EGFR are rare events in TNBCs (8–11). Several of these 

oncogenic drivers are potentially targetable using small molecules that are either FDA-

approved or currently undergoing clinical evaluation. However, the low frequency of each 

oncogenic mutation in TNBC patients precludes the broad usage of any single targeted agent 

in this patient population. Rather, these data provide a rationale for pursuing a precision 

medicine approach to identify potential drivers, and to tailor treatment regimens based upon 

the somatic alteration spectrum specific to each patient’s tumor.

Several issues confound applying precision medicine approaches to TNBCs. Most trials do 

not require genomic profiling on biopsies at the time of enrollment, rendering correlations 

between clinical responses and genetic aberrations difficult to establish. In recent years, 

patient-derived-xenografts (PDXs) have been used to test personalized medicine approaches 
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in treating patient-derived breast cancers (12). However, these models use immuno-

compromised mice and their clinical applicability remains unclear.

Here, we took a complementary approach to establish genetically engineered mouse models 

(GEMMs) harboring breast-specific Tp53 deletion with or without concomitant Brca1 
deletion. We carried out whole exome sequencing (WES) and RNAseq on the tumors that 

these TNBC models developed and confirmed that they faithfully recapitulated features of 

human TNBC disease. We were able to identify putative driver aberrations, including 

chromosomal amplifications and deletions, chromosomal translocations, mutations and 

proto-oncogene overexpression specific to individual tumors. Interestingly, although 

different tumors harbor different genetic aberrations, many of these share the ability of 

enhancing MAPK and PI3K pathway activation. In addition, when a particular tumor was 

treated with frontline therapeutic drugs targeting predicted oncogenic drivers specific to that 

tumor, sustained tumor remission was achieved. These data further support the tumor-

promoting functions of these genetic events and support the paradigm of genomics-guided 

treatment in TNBC. Our results suggest that the combination of whole exome sequencing 

and RNAseq on human TNBC can reveal genetic aberrations that would be missed by 

conventional approaches that evaluate mutational events in panels of known oncogene. 

Importantly, our results suggest that this approach can significantly extend the use of 

approved or experimental drugs for TNBC patients who progress on standard of care 

treatments.

Results

Establishment of Brca1-deficient and Brca1-WT TNBC mouse models

The majority of TNBC tumors possess TP53 mutations and approximately 15% of patients 

carry germ-line BRCA1 mutations (4). We generated two cohorts of mice to model both 

BRCA1-germline mutation carriers and sporadic TNBCs: K14cre; p53flox/flox; Brca1flox/flox, 

defined as Brca1-deficient cohort; and K14cre; p53flox/flox; Brca1 wt/wt, defined as Brca1-

WT cohort. (Figure S1A). The majority of tumors developed from these mouse models were 

ER-, PR- and HER2-negative, with histopathological characteristics reminiscent of human 

TNBCs (Figure 1A, and S1B). To further investigate whether these mouse models resembled 

human TNBC, we performed RNAseq on RNAs isolated from tumors and from age-matched 

normal mammary glands to analyze their transcriptional profiles. Both AIMS and PAM50 

classifier algorithms (13,14), as well as unsupervised hierarchical clustering were used to 

identify the intrinsic subtypes of these mouse tumors. AIMS assigned almost all mouse 

tumors with high probability into basal-like breast cancer tumor subtypes, while all three 

normal mammary glands were assigned to the “normal-like” subtype (Figure 1B). Similarly, 

PAM50 assigned most of the tumors to the basal-like breast cancer subtype, which is the 

subtype most commonly associated with TNBC (15) (Figure S1C). In addition, unsupervised 

hierarchical clustering of the mouse tumors with RNAseq expression profiles from TCGA 

breast cancer samples on the 138 shared genes between mouse and human revealed that the 

mouse tumors segregated with human TNBCs, and not with other breast cancer subtypes 

(Figure S1D, Supplemental Table 1). Therefore, both immunohistological analysis and 

Liu et al. Page 3

Cancer Discov. Author manuscript; available in PMC 2019 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



transcriptional profiling indicated that these mouse tumors, developed on a Tp53-deficient 

background with or without Brca1, provide reasonable models for human TNBC.

RNAseq and WES revealed heterogeneous aberrations in murine TNBC

To identify spontaneous genetic aberrations that potentially are oncogenic drivers of these 

tumors, we performed WES on tumor DNA and matched germ-line DNA. We observed low 

somatic mutation rates; an average of 30 somatic mutations (and 17 non-synonymous 

mutations) were found in the coding exons per tumor, ranging from 0 to 104 mutations 

across our set (Figure 1C and supplementary Table 2). Among all non-synonymous 

mutations, we only identified Kras Q61H and Hras Q61K as potential oncogenic driver 

mutation in two of the primary tumors. Both mutations have been observed in human tumors 

and have been shown to drive transformation in cell lines ((16,17) and http://

cancer.sanger.ac.uk/cosmic/mutation/overview?id=554). Although other mutations were 

identified, they were not at hotspots in human oncogenes and their oncogenic potential 

remains to be determined (Figure S1E). We compared the mouse tumor mutational 

signatures to the 21 mutation signatures identified in human cancers (18), and found that 

Brca1-deficient tumors were most similar to signature 3, which is associated with BRCA1/2 

mutations in human breast cancer (Figure 1D)(8). We also found that the mutation signature 

for Brca1-WT tumors were most similar to signature 17, which has an unknown etiology 

(Figure 1D and S1F).

Next, we analyzed somatic copy number alterations (CNAs) to investigate chromosomal 

gains and losses in these murine tumors. Overall, the CNA profiles exhibited marked 

variability among the tumors (Figure 1E and Supplementary Table 3). Consistent with 

human breast cancer (19), the Brca1-deficient subgroup exhibited more amplifications and 

deletions than the Brca1-WT subgroup (Figure S1G), supporting that loss of Brca1 

contributes to genomic instability. The most recurrent events were focal amplifications on 

chromosome 6 centered on the Met locus and amplifications on chromosome 9 centered on 

the Yap1 locus (Figure 1F and Fig. S1H). Amplification of the Met gene was observed in 10 

out of the 32 Brca1-WT primary tumors but none in Brca1-Deletion tumors. Amplifications 

in the Yap1 gene were found in 8/32 Brca1-WT and 1/30 Brca1-Deletion tumors. We also 

observed recurrent chromosomal gain at the Myc locus on chromosome 15, and deletion of 

the Rb locus within a broad region on chromosomal 14 (Figure S1H). In addition to these 

recurrent amplification events, we identified sporadic high focal amplification on 

chromosome 7 that includes the Fgfr2 locus, on chromosome 11 that includes Egfr locus, 

and a bi-allelic deletion on chromosome 19 that includes the Pten locus in one tumor (Figure 

1G and S1I).

We integrated WES data with RNAseq data to investigate whether CNA alterations lead to 

changes in the expression levels of the affected genes. Among the recurrent amplifications, 7 

of the 10 Met amplified tumors indeed showed increased Met transcript levels, and 6 of the 9 

Yap1 amplifications resulted in elevated mRNA expression (Figure 1F). In addition, we 

found that tumor #1 with the Fgfr2 amplification expressed significantly higher level of 

Fgfr2 mRNA compared to other tumors that were CNA-neutral at this locus. The tumor with 

a focal amplification of Efgr was among the ones expressing the highest Egfr mRNA levels. 
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The tumor harboring a bi-allelic Pten deletion expressed the lowest Pten mRNA levels 

among all tumors (Figure 1G). It has been shown that over-expression of MET (20,21), 

EGFR (22–24), YAP1 (25–27), or FGFR2 (28,29), as well as deletion of PTEN (30,31) 

contribute to TNBC tumorigenesis, and our data suggest that through combined RNAseq and 

WES data analyses, potential oncogenic drivers of TNBC tumors can be identified.

Chromosomal rearrangements in primary and transplanted tumors

Analysis of RNAseq data also revealed the presence of chromosomal translocation events, 

which varied from tumor to tumor (Figure S2A) and a subset of these rearrangements 

resulted in mRNA fusions (Figures 2A and 2B). Several of the fusions involved genes 

encoding proto-oncogenic protein kinases (Fig. S2B and Supplementary Table 4). Three 

different Ffgr2-fusions were observed, Fgfr2-Dnm3 (Dynamin 3) in tumor #1 and Fgfr2-
Tns1 (Tensin 1) in tumor #6, and Fgfr2-Zmynd8 where the distal portion of the Fgfr2 gene 

was replaced by the translocation partners, potentially generating fusion proteins (Figure 

2C) with intact kinase domains. Proteins generated from these Fgfr2-fusion transcripts share 

the same domain architecture as FGFR2-fusions identified in human breast cancer (32,33). 

Notably, in tumor #1 where Fgfr2-Dnm3 translocation was observed, the chromosomal 

region encoding Fgfr2 was highly amplified, while in tumor #6 with an Fgfr2-Tns1 fusion, 

the chromosomal region covering Fgfr2 exhibited some gain in copy number (Figure S1I). 

Translocations involving the Raf family kinases were also detected, including a Dlg1 (disc 

large 1)-B-Raf fusion in tumor #3, Dhx9 (DEAH-Box Helicase 9)-Raf1 fusion in tumor #5, 

and Rpl32 (Ribosomal Protein L32)-Raf1 fusion in tumor #25. In all cases, the fusion 

proteins had an intact RAF kinase domain while the RAF N-terminal regulatory domain was 

replaced by the fusion partners, similar to BRAF-fusions identified in metastatic breast 

cancer (34) and other BRAF- and RAF1-fusions found in different human tumor types (35–

37) (Figure 2C and Figure S2C).

We validated the presence of fusion transcripts in tumors harboring Fgfr2- and Raf1-fusions 

by RT-PCR and traditional Sanger Sequencing using primer pairs that either match the input 

RNAs (match primers) or not (mismatch primers). PCR products of expected sizes were 

observed for matching RNA/primers, but not for mismatch RNA/primers (Figure 2D). When 

RT-PCR products were gel extracted and sequenced by traditional Sanger sequencing, the 

junctions were confirmed (Figure 2E, and S2D–F).

Thus, through combined WES and RNAseq analyses, we detected spontaneous 

chromosomal amplifications of Met, Yap1, Egfr and Fgfr2, a bi-allelic deletion of Pten, 

oncogenic mutations in Kras and Hras, as well as sporadic fusions of Fgfr2-Dnm3, Fgfr2-
Tns1, Fgfr2-Zmydn8, Dhx9-Raf1, and Rpl32-Raf1and Dlg1-Braf in distinct tumors.

Aberrant genetic events possess oncogenic activity by enhancing MAPK and/or PI3K 
pathway activations

We next investigated whether the fused transcripts resulted in functional fusion proteins. We 

detected the Fgfr2-Dnm3 fusion protein in tumor #1 at the predicted size of 99 kDa using 

antibodies recognizing the N-terminus of Fgfr2 and the C-terminus of Dnm3. Importantly, 

the presence of Fgfr2-Dnm3 coincided with elevated phosphorylation of the Fgfr2 substrate 
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Frs2 (Figure 3A and Figure S3A for sample key). To confirm the presence of Fgfr2-Tns1 

fusion proteins, we immunoprecipitated Fgfr2 and subjected proteins at the predicted 

molecular mass (265 kDal) for mass spectrometry, and identified peptides from both Fgfr2 

and Tns1 (Figure 3B and Figure S3B for peptide sequences matching Fgfr2 or Tns1). We 

also confirmed the presence of the Dhx9-Raf1 fusion protein in tumor #5 at the expected 

molecular weight (51 kDa) (Figure 3C), and this tumor exhibited elevated activation of the 

MAPK signaling pathway as measured by ERK phosphorylation, compared to tumors that 

lacked Raf fusions (Figure 3C, and Figure S3C).

The tumor with high Met mRNA expression had elevated tyrosine-phosphorylated Met 

compared to tumors that lacked Met overexpression (Fig. 3D and Fig. S3D). The tumor with 

bi-allelic deletion of Pten (#17) exhibited low levels of Pten protein and elevated PI3K-

pathway activation detected by high levels of phospho-AKT and high levels of 

phosphorylation of the AKT substrate, PRAS40 (Figure 3E and S3E).

Fgfr2-, Braf- and Raf1-Fusion kinases exhibit enhanced MAPK and/or PI3K pathway 
activation and oncogenic activity

To evaluate the oncogenic potential of the novel fusion proteins, we cloned HA-tagged 

Fgfr2-Dnm3, Dhx9-Raf1 and Rpl32-Raf1 into pBabe-puro and generated stable NIH3T3 

cells and carried out signaling analyses and soft-agar colony formation assays. FGFR2 

fusions, similar to the ones we observed in mice albeit with different translocation partners, 

have been reported in human breast and thyroid cancers (32,33) and we included one of 

these fusions, FGFR2-CCDC6 (coiled-coil domain containing 6, Figure S4A) in our assays.

Expression of the fusion proteins was confirmed by blotting for the HA-tag, Fgfr2, and 

Raf1, (Figure S4B and S4C). We found that expression of Fgfr2-Dnm3 and FGFR2-CCDC6 

resulted in FGFR2 activation detected by phospho-Tyr653/654 of FGFR2, and substrate 

phosphorylation detected by phospho-FRS2 at Tyr436. As a consequence, downstream PI3K 

activation was enhanced as measured by phospho-AKT (Figure 4A and Figure S4B, S4C). 

Moreover, both Fgfr2-Dnm3 and FGFR2-CCDC6 induced anchorage-independent growth of 

NIH3T3 cells in soft agar (Figure 4B). To understand the mechanisms for enhanced pathway 

activation, we transiently expressed epitope-tagged FGFR2-fusions in HEK293T cells and 

assayed for ligand-independent oligomerization/dimerization by co-immunoprecipitation in 

serum-free condition, and we found both FGFR2-CCDC6 and Ffgr2-Dnms3 undergo homo-

oligomerization in the absence of FGF but fail to oligomerize with endogenous FGFR2s 

(Figure 4C). These results are consistent with a model in which the C-terminal fusion 

partner (CCDC6 and Dnms3) mediates the homo-multimerization.

By contrast, expression of Dhx9-Raf1 and Rpl32-Raf1 stimulated MAPK pathway activation 

with minimal impact on PI3K pathway activation in NIH3T3 cells (Figure 4D), and this also 

resulted in the significantly increased capacity to form colonies in soft agar (Figure 4E).

We also analyzed the effects of these fusion proteins in immortalized human mammary 

epithelial cells (HMECs). Consistent with the results obtained in NIH3T3 cells, Fgfr2-Dnm3 

expression increased both MAPK and PI3K signaling in epithelial cells (Figure S4D). 

Surprisingly, Dhx9-Raf1 expression in epithelial cells also enhanced activation of the PI3K 
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pathway (Figure S4D). Previous studies have shown autocrine production of various growth 

factors contribute to Raf1-mediated PI3K activation in mammary epithelial cells (38–41), 

which may explain the signaling differences observed between NIH3T3 cells and HMECs. 

In addition, expression of the fusion proteins resulted in increased proliferation of HMECs 

(Figure 4F). cMet-overexpression resulted in spontaneous cMET phosphorylation in the 

absence of growth factors and enhanced pAKT and pERK levels (Figure 4G), as well as 

increased cell proliferation (Figure S4E).

Altogether, our results identify a likely driver event in approximately 50% of the 72 tumors 

evaluated (Figure 4H). Our data show that the majority of the genetic alterations we 

identified have in common the ability to enhance activation of MAPK and/or PI3K 

signaling.

Tumors harboring Fgfr2 fusion proteins are responsive to FGFR2-inhibition in vivo, 
resulting in complete tumor regression

Next, we asked whether the murine TNBC tumors that spontaneously acquired the Fgfr2 or 

Raf1 translocations would respond to drugs that target these protein kinases. To this end, we 

transplanted mouse TNBC tumors with identifiable potential genetic drivers in cohorts of 

nude mice, and each mouse received a designated treatment regimen (Figure S5A). Targeted 

agents were selected based on (i) high specificity and high competence indicated by low 

IC50, (ii) good in vivo bioavailability with low in vivo dosing, and (iii) approved for cancer 

therapy or currently in phase II or III clinical trials. Based on these criteria, NVP-BGJ398 

was chosen as an FGFR-inhibitor (Figure S5B), Trametinib (GSK1120212) as a MEK-

inhibitor (Figure S6A), and Crizotinib as a MET-inhibitor (Figure S6D) for in vivo 
treatments.

For tumor #1, which is Brca1-deficient with a spontaneous Fgfr2-Dnm3 translocation, we 

evaluated the efficacy of FGFR-inhibitor BGJ398 alone, or in combination with Olaparib (a 

PARP-inhibitor approved for BRCA1 mutant cancers) (Figure 5A), anticipating that tumors 

may become resistant on monotherapy. We also included Crizotinib in this trial, reasoning 

that Met is not the driver in this particular tumor and it should therefore not respond to this 

treatment. We determined that the dose of BGJ398 needed to suppress Frs2 phosphorylation 

was 30mg/kg (Figure 5B), which is estimated to be equivalent to a human dose of 2.4mg/kg 

(42), and the dose of Olaparib had previously been reported (43). We did not observe general 

toxicity over prolonged treatment (Figure 5C). At this dose, BGJ398 alone was sufficient to 

induce complete tumor regression (Figure 5D). This outcome was a significant improvement 

compared to a pan-PI3K inhibitor BKM120 treatment, which only resulted in slower rate of 

tumor progression (Figure S5C). Importantly, Crizotinib had no effect on the growth of 

tumor #1 (Figure 5D), although it was capable of delaying tumor progression when Met 

levels are elevated (Figure 6F), supporting the notion that the choice of treatment should be 

based on the genetics of the tumor. At early time points (up to 33 days), BGJ398 and the 

combination of BGJ398 and Olaparib were equally effective in inducing tumor remission. 

However, three of six tumors on BGJ398 monotherapy developed resistance, and on average 

at day 43 (day 36, 47 and 57) tumors relapsed to the initial volume (Figure 5E). By contrast, 

tumors treated with BGJ398 and Olaparib combination therapy did not relapse when the 
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experiment ended, and all tumors reached complete response (CR) (Figure 5E). Using a 

second PARP-inhibitor BioMarine BMN673 (44) in combination with BGJ398, no tumor 

relapse was observed for up to 80 days (Figure S5D). Our data suggest that spontaneous 

Fgfr2-Dnm3 fusions can drive tumorigenesis in the breast.

For tumor #6, which is Brca1-WT with a spontaneous Fgfr2-Tns1 translocation, we 

compared BGJ398 alone to the PI3K-inhibitor BKM120 (Figure S5E) since Brca1-WT 

murine tumors are less sensitive to PARP-inhibition relative to PI3K-inhibition (Figure 

S5E). We treated tumor-bearing mice with BGJ398, BKM120 alone, or in combination 

(Figure S5F). We observed that BKM120 treatment resulted in stable disease (SD), although 

with general toxicity (Figure S5G). However, BGJ398 alone induced tumor regression, and 

the combination of both drugs caused fast and complete tumor remission until no tumor 

tissue could be detected (Figure 5F). The combination did not cause further toxicity beyond 

what was elicited by BKM120 alone (Figure S5G). Our data show that spontaneous tumors 

with Fgfr2 aberrations are responsive to FGFR2-inhibitor treatments, suggesting complete 

tumor regression can be achieved when genetic alterations of each tumor are carefully 

considered.

Tumors with Raf1-fusion or overexpressing Met responded to specific inhibitors targeting 
these pathways

Since MEK inhibitors have been shown to effectively treat human tumors driven by mutated 

Raf family members, we treated tumor # 5 that expresses the Dhx9-Raf1fusion protein with 

the MEK inhibitor Trametinib (GSK1120212). A 3mg/kg/day dose of Trametinib was 

effective in blocking Erk phosphorylation (Figure 6A). Mice implanted with tumor #5 were 

given Trametinib as either a single agent, or in combination with Olaparib since tumor #5 is 

a Brca1-deficient tumor (Figure 6B). Either single agent or combination therapy did not 

cause general toxicity at the doses used (Figure S6B). Consistent with our hypothesis, 

Trametinib alone significantly delayed tumor growth, with an initial phase of stable disease, 

which transitioned to progressive disease after 14 days (Figure S6C). Olaparib alone initially 

did not halt tumor growth, but slowly resulted in tumor regression. When mice were treated 

with a combination of both the MEK and PARP inhibitors, tumor #5 completely regressed 

without relapse upon extended treatment for up to 50 days till the experiment ended (Figure 

6C). It is also important to note that when treated with the FGFR-inhibitor BGJ398, tumor 

#5 (Dhx9-Raf1 fusion) failed to respond (Figure 6C and S6C), further supporting the 

importance of identifying and suppressing specific oncogenic activities in specific patient 

subpopulations.

RNAseq revealed that a group of tumors derived from the same primary tumor (Tumor #2)

(Figure 1F) exhibited approximately a 30-fold increase in cMet mRNA levels compared to 

other tumors evaluated, despite no amplification in the Met locus. Since Met overexpression 

enhances spontaneous MET activation in cells, we evaluated the effect of Crizotinib, an 

inhibitor of both MET and ALK tyrosine kinases, on the growth of these tumors. At 

50mg/kg, Crizotinib completely blocked cMET phosphorylation in tumors, as well as 

downstream AKT, ERK and S6 phosphorylation (Figure 6D) without general toxicity 

(Figure S6D). While overall survival for mice receiving control treatment is only 8 days, 
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Crizotinib treatment delays tumor progression and tripled survival to 24 days (Figure 6E). 

Combining Crizotinib with BKM120 (Figure 6F) achieved stable disease in this particularly 

aggressive tumor (Figure 6E). The effect of Crizotinib on the tumor was probably a 

consequence of inhibiting MET since, as discussed above, Crizotinib had little effect on 

Tumor #1 (Fig. 5D), which does not overexpress MET.

The results presented in Figures 5 and 6 indicate that either complete tumor regression or 

stable disease can be achieved, using monotherapy or combination therapy with inhibitors 

that target the pathways that are affected by the genetic aberrations specific to individual 

tumors. These in vivo treatment results not only confirm the functional importance of these 

genetic events in tumor development, but also provide evidence that individualized treatment 

design based on genomic information can lead to significantly improved outcomes.

Human TNBCs harbor a broad range of targetable genetic alterations

Our data show that despite the use of highly inbred mice and common initiating events 

(breast-specific deletion of Tp53 alone or deletion of both Tp53 and Brca1), tumors took 

diverse evolutionary pathways to become TNBC. Yet the majority of the tumors converged 

on genetic alterations enhancing MAPK and PI3K signaling pathways. Therefore, we 

analyzed TCGA human breast cancer data to investigate genetic alterations known to 

enhance MAPK and/or PI3K pathway activation.

We first interrogated 82 tumors in the TCGA database that were annotated as TNBC. 

Specifically, we searched for mutations and amplifications in KRAS, BRAF and RAF1 
genes; mutation, amplification and overexpression in genes encoding for receptor tyrosine 

kinases (RTKs); as well as genes involved in the PI3K pathway. We found that 

approximately 90% of all TNBCs have at least one such genetic aberration (Figure 7A and 

Figure S7A). To determine whether this high prevalence is specific to TNBC, or is generally 

true for all breast cancer, we investigated the TCGA breast cancer database (816 cases) and 

the METABRIC database (Molecular Taxonomy of Breast Cancer International Consortium, 

2509 cases), and found that 72% and 56% of breast tumor samples show at least one of these 

changes, with the majority of the tumors displaying two or more alterations (Figure 7A and 

S7B). The result from this search suggests that while genetic changes leading to potential 

MAPK/PI3K activation are common, such alterations may be particularly important for 

TNBC development.

Since mouse tumors with spontaneous Fgfr-signaling pathway activation are sensitive to the 

FGFR-inhibitor BGJ398, we were interested in further investigating genetic alterations of 

the FGFR-family of receptor tyrosine kinases and their ligands. In addition to translocations, 

mutations and focal amplifications can also activate the FGFR family (32,33,45,46). 

Therefore, we also analyzed the COSMIC databases as well as TCGA and METABRIC 

databases to identify mutations for FGFR and FGF family members. We found that 

chromosomal amplifications of the FGFR1, FGFR2 and FGF3/4/19 loci (Figure 7B and 

S7C) resulted in increased mRNA levels of FGFR1, FGFR2 and FGF4/19 (Figure 7C and 

S7D). Overall, 34% and 26% of all breast cancer patients showed FGFR1, FGFR2 and/or 

FGF3 mutation/amplification/overexpression in TCGA and METABRIC, respectively 

(Figure S7E). Mutations in FGFR1 are rare, but 1.2% of all breast cancer patients have 
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FGFR2 mutations, including known activating mutations such as S252W, N549K and 

K659E (Figure 7D).

These data indicate that in both genetically engineered mouse models and in human patients, 

the genetic alterations in TNBC are quite diverse but converge on a relatively limited 

number of ways to activate the MAPK and/or PI3K pathways (Figure 7E).

Discussion

In this work, we generated two GEMM models that are Tp53-deficient, with or without 

Brca1-deficiency, and carried out whole exome sequencing and RNAseq on these 

spontaneously developed tumors. We found that these TNBC mouse models recapitulate 

many aspects of human TNBC, including the overall transcriptional profile, mutational 

burden and signature as well as heterogeneous CNAs. We identified spontaneous genetic 

aberrations that were likely drivers of the evolution of these tumors. These genetic 

aberrations include both recurrent chromosomal amplifications of the Met and Yap1 loci, 

and sporadic amplification at the Fgfr2 and Egfr loci, a bi-allelic deletion of Pten in 
individual tumors. In addition, spontaneous Fgfr2-Dnm3, Fgfr2-Tns1, Fgfr2-Zymnd8, 

Dhx9-Raf, Rpl32-Raf1 and Dlg1-BRaf translocations that generate overexpressed, and/or 

constitutively active protein kinases were also discovered as oncogenic drivers. Point 

mutations of known oncogenes were rare; however, we identified tumors with activating 

mutations in Kras and Hras. Our results also showed that the majority of these genetic 

aberrations have in common the ability to enhance MAPK and PI3K pathway signaling. 

Next we asked to what extent these pathways are activated by genetic alterations known to 

occur in human breast cancer. We searched TCGA breast cancer database for KRAS, BRAF, 
and RAF1 mutations and amplifications, RTK gene mutations, amplifications and 

overexpressions, YAP1 amplification/gain/overexpression, PIK3CA mutations and 

amplifications, as well as PTEN and INPP4B deletions, all of which can potentially activate 

the MAPK and/or PI3K pathways. More than 60% of breast tumors bear at least one of these 

aberrations, while over 90% of the TNBC subgroup of breast cancers exhibit these genetic 

lesions, suggesting the importance of MAPK and PI3K signaling pathway activation in 

TNBC tumorigenesis.

Through combined WES and RNAseq analyses, we identified potential oncogenic drivers in 

approximately 50% of tumors against which frontline drugs are also available 

(Supplementary Table 5). It is worth noting that almost all of these genetic driver fusions 

would not be detected by conventional targeted sequencing approaches that only investigate 

mutational events in panels of known oncogenes. The mutational burden of murine tumors is 

relatively low, averaging 30 somatic mutations per tumor with 17 non-synonymous 

mutations. These numbers are comparatively lower than those of human TNBC, which 

average 127 somatic mutations per tumor with 107 being non-synonymous (TCGA data 

analysis and (9)), reflecting cross-species/age differences. Nevertheless, we do observe 

similar mutational patterns between Brca1-deficient murine tumors and Brca1-mutant 

human breast tumors (Figure 1).
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We found recurrent Met and Yap amplification in 20% and 22% of primary mouse tumors 

investigated, as well as individual tumors showing increased mRNA levels without 

chromosomal amplification. Overall, approximately 25% of the primary tumors show 

amplification/gain/overexpression of Met or Yap (Figure 1 and S1). Our data are consistent 

with human TCGA data, where 27% or 29% of TNBC patients show amplification/gain/

overexpression of MET or YAP, supporting the importance of these genetic events in TNBC 

development (20,21,27). Current data also point to the role of YAP1 in activation of the 

PI3K/MAPK pathway via increased PIK3CB, HRAS or GAB2 expression, or increased IRS 

phosphorylation in diverse types of tumors (47–50). We also observed recurrent c-Myc 
amplification and Rb1 deletion in the mouse tumors, although both tend to occur in broader 

chromosomal regions. These data are consistent with a report by Holstege in mouse tumors 

(19), and also CBIO Portal analyses of human TNBC (http://www.cbioportal.org/index.do?

session_id=59edd065498e5df2e29710eb&show_samples=false&). In addition to these 

recurrent CNAs, sporadic amplifications and deletions that affect cancer-related genes were 

identified, including high amplification of Fgfr2 and Egfr loci, and deep deletion of the Pten 
locus, as well as shallow amplification of the Cdk6, Aurka, and Jun loci, and deletion of the 

Nf1 loci (Supplementary Table # 3). Our data suggest that although normal mouse and 

human chromosomes bear major differences in their architectures, mouse tumors developed 

over 7-12 months exhibited similar changes in their cognate regions to human tumor 

genomes.

In addition to chromosomal amplifications and deletions at known oncogenic loci, 

chromosomal translocations were found to be the oncogenic drivers in a subset of the murine 

tumors. Interestingly, although mutational burden is low in human breast cancer, ranking 

20th among 30 different cancer types (18), the chromosomal rearrangement frequency ranks 

among the highest (Figure S7F and data generated based on “TCGA Fusion gene Data 

Portal” http://54.84.12.177/PanCanFusV2/), although the frequency of recurrent 

translocations is low. Traditionally viewed as important oncogenic drivers for hematological 

cancers (51), chromosomal rearrangement events have been identified and increasingly 

recognized as potent drivers in human solid tumors (33,34,36,52–54). Through next 

generation sequencing, a number of gene fusions with low frequency were identified in 

breast cancer patients, including FGFR2, FGFR3, BRAF, NTRK3, and MET (32,33,36,53–

55). We also identified chromosomal translocations involving Fgfr2, Braf and Raf1 that 

resulted in constitutively active fusion kinases in the mouse tumors. We noticed that the 

fusion partners in the mouse tumors are different from those found in the human 

counterparts. However, it has been shown that these kinases tend to fuse with different 

partners in human tumors, while maintaining similar domain architecture. Typically, fusion 

events involving FGFR2 and FGFR3 occur at the C-terminus, replacing the C-terminus of 

FGFRs with different fusion partners that provide the ability of the fused protein to undergo 

spontaneous homo-multimerization (Figure S7G) (33,45,54). Our data confirmed that the 

fusion partner found in mouse tumors has similar functions (Figure 4C). Similarly it is 

commonly observed that a diverse set of genes can fuse with Raf family members, 

generating fusion kinases where the N-terminal regulatory domain of Raf is replaced by the 

fusion partner, resulting in constitutive activation of the Raf family kinases (Figure S7H)

(34–37,53).
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Further evidence for the oncogenic function of a genetic alteration is provided when such 

alterations confer sensitivity to targeted therapy that results in an objective response only in 

patients harboring the genetic alteration. This, in fact, represents the litmus test for the 

precision medicine approach in cancer treatment. We carried out individualized treatment 

studies based on the specific driver(s) present in a particular tumor. This allowed us to 

confirm that these predicted drivers indeed are important for tumor growth in vivo. We show 

that two tumors with Fgfr2 fusions responded to the FGFR inhibitor BGJ398, a tumor with a 

Raf1 fusion responded to the MEK-inhibitor Trametinib and a tumor with overexpressed 

MET responded to the MET inhibitor Crizotinib, verifying that these spontaneous genetic 

aberrations were driving tumor growth in each of the individual tumors. Importantly, the 

tumor with Fgfr2-Dnm3 fusion did not respond to Met inhibition, nor was the FGFR2-

inhibitior BGJ398 effective on the Met overexpressing tumor, highlighting the importance of 

matching therapeutic drugs with oncogenic drivers.

Our study indicates that although the evolutionary courses that lead to breast tumor 

formation in the context of Tp53 deletion, with or without Brca1 deletion, are diverse, they 

have in common the ability to activate the MAPK and/or PI3K pathway. However, targeting 

both PI3K and MAPK pathways resulted in high toxicity and is not a viable option for 

patients. Our study suggests approved drugs or experimental drugs could be effective 

therapies when targeting upstream driver events, which can be identified by combined WES 

and RNAseq efforts.

One such upstream driver event is the FGFR activation. The importance of FGFR pathway 

in tumorigenesis has increasingly been recognized (56,57), and FGFR fusions have been 

found in bladder, thyroid, prostate, lung cancer, glioblastoma and cholangiocarcinomas 

(Figure S7H) (33,45,54). We demonstrated that mouse Fgfr2-Dnm3 and human FGFR2-

CCDC6 fusion kinases share similar oncogenic potential and activation mechanism. Our 

result that the FGFR-inhibitor BGJ398 (58) is effective in treating murine tumors harboring 

Fgfr2-fusions is also consistent with recent data obtained in a cholangiocarcinomas PDX 

model harboring FGFR2-CCDC6 fusion treated with BGJ398 (59). Together these results 

support ongoing clinical trails targeting the FGFR in various cancers (https://

clinicaltrials.gov), and some of which have shown therapeutic benefits. A phase II trial 

evaluating the efficacy of the TKI258 FGFR-inhibitor in patients with or without FGFR2 

mutations showed increased overall survival when mutations are detected (20.2 months with 

mutations vs 9.3 months without) (Clinical Trial # NCT01379534). A recently published 

basket trial targeting patients with potential FGFR pathway activations also found BGJ398 

provided disease control in 37% of patients (49 of 132 patients) who have failed all available 

standard therapies. And for breast cancer patients with FGFR1/2 amplification or mutation, 

BGJ398 alone resulted in stable disease in 31% (10 of 31) patients, although the disease 

eventually progressed on this treatment (60). These data support the potential of FGFR 

inhibitors in cancer treatment, but also highlights their limitation as monotherapy in long-

term disease management.

Similar to available human trials, we found that although tumors harboring FGFR2 fusions 

responded well initially to BGJ398 monotherapy, this response is not sustained and tumors 

relapsed despite continuous treatment (60). Given our success with the FGFR inhibitor 
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BGJ398 as part of combination therapy with PARP inhibitor in treating Brca1-deficient 

tumors, or with BKM120 in treating Brca1-WT tumors, we suggest that including BGJ398 

as part of combination treatment regimens warrants further investigation in patients with 

FGFR family genetic aberrations and either germline or sporadic defects in DNA repair 

pathways.

Fusion kinases involving the RAF family members (B-RAF and RAF1) have been found 

with high frequency in pilocytic astrocytomas(61,62) and at low frequency in 

melanoma(63,64), pancreatic(35), prostate(37), thyroid (65)and metastatic breast 

cancer(34,66). We reasoned that although RAF1-fusions have not been found in human 

TNBC, Dhx9-Raf1 identified in the murine models share the same architecture as fusion-

RAF1s discovered in other tumor types. Therefore, it is important to consider and evaluate 

fusion kinases involving the Raf family members as therapeutic targets in vivo, and identify 

effective treatments for these fusion-containing tumors in breast cancer and beyond. We 

reported here that a TNBC tumor with Raf1-fusion kinase is responsive to Trametinib as a 

single agent, and note that since this tumor was Brca1-deficient the efficacy of Trametinib 

was improved when combined with Olaparib. Our data suggest the potential of treating 

RAF1 fusion containing tumors with MEK inhibitors.

Given that cMet overexpression synergizes with Tp53-loss to induce basal-like breast cancer 

(typically TNBCs) (20,21), and cMet amplification and overexpression correlate with 

TNBC, it is encouraging that the murine tumor with Met overexpression responded to the 

MET-inhibitor Crizotinib either as monotherapy or in combination with the PI3K-inhibitor 

BKM120. This result is consistent with reports that targeting MET in MET-amplified TNBC 

mouse tumors results in an initial complete response (67). Combining MET and PARP 

inhibitor has been shown to suppressed Olaparib-resistant TNBC tumor cell growth in vivo 

(68).

Another potential therapeutic target in TNBC that emerged from this study is YAP1, a 

transcription factor that is normally suppressed by the Hippo tumor suppressor pathway. 

YAP1 collaborates with other transcription factors including TEAD and AP1 to promote 

tumorigenesis and metastasis (26,69,70). In fact, Verteporfin, which inhibits YAP1 and 

TEAD interaction and thus transcriptional activity, has been used in vitro and in vivo 
(49,71). It will be interesting to investigate the efficacy of this approach in our TNBC mouse 

model.

In summary, we have generated mouse models that recapitulate human TNBC. Through 

combined WES and RNAseq, we identified amplifications and fusions of oncogenic drivers 

that would have been missed by evaluating mutations in panels of known oncogenes. We 

investigated the efficacy of this precision medicine approach by treating each tumor as an 

individual patient using frontline drugs targeting specific oncogenic drivers. Our results 

indicate the importance of performing RNAseq and whole exome sequencing on TNBC in 

order to identify the genetic aberrations driving the disease. These data also underscore the 

importance of combination therapy in order to elicit prolonged treatment efficacy. This work 

provides a proof-of-principle evidence for on-going basket trials, NCI-MATCH 

(NCT02465060), My Pathway Trial (NCT02091141) and the European ESMART 
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(NCT02813135), which are designed to match the specific abnormalities with therapeutic 

drugs.

Methods

Endogenous tumor generation

All animal studies were reviewed and approved by the Institutional Animal Care and Use 

Committee (IACUC) at the Beth Israel Deaconess Medical Center. K14cre; Brca1flox/flox; 
Tp53flox/flox mice were obtained from Dr. Jos Jonkers’ lab (Netherlands Cancer Institute).

Orthotopic tumor implantation

Tumor pieces were cut into 2 mm in diameter and inserted into the 4th mammary fat pad of 

8-week old recipient mice via a 0.5cm incision in the skin and the skin was closed with 

VetBond as described (43).

Tumor treatment and tumor measurement

Once tumors reached 8mm in diameter as measured by electrical caliper (Fisher Scientific), 

mice were treated with indicated drugs obtained from MedChemExpress, LLC. For oral 

gavage, 100ul of drug suspension was administrated daily for six consecutive days, followed 

by one drug holiday. Tumor sizes were measured twice a week (length and width), and 

tumor volume was calculated as (3.14*length*width*width/6).

RNA and library preparation

Total RNA was prepared following the protocol for Promega ReliaPrep RNA Tissue 

Miniprep System (Z6111), and RNA integrity and concentration were measured using the 

Agilent 2100 Bioanalyzer (Agilent Technologies). cDNA libraries were prepared from 15–

35 ng RNA starting material (RIN values >6.0), using the TruSeq RNA Sample Preparation 

Kit (Illumina) according to the manufacturer’s instructions, and quality was checked on an 

Agilent 2100 Bioanalyzer (Agilent Technologies). Sequencing was carried out on the HiSeq 

2500 (Illumina) using paired end clustering and 51×2 cycles sequencing.

Genomic DNA and library preparation

Genomic DNA from tumor or liver samples was prepared following the protocol for 

Promega ReliaPrep Tissue DNA Miniprep System (A2051). SureSelect or NimbleGen 

Mouse exome capture kits were used to generate DNA library according to manufacturer’s 

instructions. Sequencing was carried out using HiSeq4000 (Illunima) using paired end 

clustering and 51×2 cycles sequencing. The NCBI BioProject accession number for both 

RNAseq and WES sequences reported in this paper is PRJNA398328.

Sequence Analysis

The quality of the raw FASTQ files was checked with FastQC. RNAseq reads were mapped 

to GRCm38 using STAR and expression levels (FPKMs) quantified using Cufflinks with 

default parameters. WES reads were mapped to GRCm38 using BWA then de-duplicated, 

realigned around indels, and base recalibrated. We classified the mouse tumors into the 
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breast cancer intrinsic subtypes using AIMs and PAM50 classifiers after conversion of 

mouse gene symbols to human Entrez gene IDs and human gene symbols, respectively. 

PAM50 centroids were re-computed using RNAseq expression profiles from TCGA breast 

cancer data and their associated, published PAM50 classification as gold standard. Gene 

fusions were called using FusionCatcher and filtered for false positives.

Mutation and copy number analysis

Somatic mutations were identified upon removing any mutations found in any tail, liver or 

normal mammary control samples, in mouse dbSNP, or with insufficient coverage in the 

control samples. Mutations were annotated with SnpEff. Copy number variants were called 

using CNVkit after removing low-quality reads. Sample-specific thresholds were computed 

to call amplifications and deletions.

Cell culture

Primary human mammary epithelial cells (HMECs) were isolated and immortalized on 

passage 3 as described (72) upon informed consent (DFHCC-IRB legacy 04-405). Cells 

were maintained in MEGM medium (Lonza, Walkersville, MD) and used within 10 

passages. NIH3T3 cells were obtained from and authenticated by ATCC in 2014 and 

cultured in DMEM medium with 10% fetal calf serum and were used within 10 passages. 

Retrovirus and lentivirus preparation and infection were carried out as described (73) using 

Lipofectamine 2000 (ThermoFisher).

Protein lysis, western Blots, immunoprecipitation (IP), silver staining and mass 
spectrometry (MS)

Tumors and cells were lysed in RIPA lysis buffer with protease inhibitors and phosphatase 

inhibitors (Sigma), and protein quantifications were performed using BCA Protein Assay 

(Pierce). Equal amount of total proteins were used for Western blots or IP, and gels were 

stained using Pierce Silver Staining kit (# 24612), while MS was carried out as described 

(74). See supplementary material and methods for detailed antibody information.

Cell Proliferation and soft agar formation assay

For cell proliferation assay, 1500 cells were plated in 96-well plates and measured with 

CellTiter-Glo (Promega, G7572). For soft agar colony assay, 10,000 cells were resuspended 

in 0.4% agar (SeaPlaque low melting agar, Lonza) in cell growth medium and plated on 

0.8% agar in 6-well plates. Medium was changed every week and after 3 weeks, cells were 

fixed and stained in 0.005% Crystal Violet in 20% Methanol in PBS.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Significance

Using combined whole exome sequencing and RNAseq analyses, we identified sporadic 

oncogenic events in TNBC mouse models that share the capacity to activate the MAPK 

and/or PI3K pathways. Our data support a treatment tailored to the genetics of individual 

tumors that parallels the approaches being investigated in the ongoing NCI-MATCH, My 

Pathway Trial and the ESMART clinical trials.
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Figure 1. 
Establishment of TNBC mouse models that recapitulate many aspects of human TNBC 

including heterogeneous genomic alterations A) H&E and IHC staining of ER, PR and 

HER2 for tumors developed in GEMM models. B) Transcriptional classification using 

AIMS reveals endogenous tumors developed in the mouse models are most similar to basal-

like breast cancer. C) Endogenous mouse tumors show a range of mutations. D) Mutational 

signature for each Brca1 genotype. The six boxes show the relative frequency of each of the 

six substitution types, and within each box are the 16 substitution contexts depending on the 

5′ and 3′ base pair context. E) Global CNA profile shows heterogeneous amplifications and 

deletions among different tumors. F) Recurrent amplification at the Met and Yap1 loci in the 

mouse tumors and their corresponding mRNA levels. Amplified samples are in red. G) 
Individual tumors with Egfr or Fgfr2 amplification express higher mRNA levels (expressed 

as Fragments Per Kilobase Million or PRKM) of Egfr or Fgfr2, respectively, while a tumor 
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with Pten deletion shows low Pten transcript level. Arrows indicating amplified or deleted 

samples are in red.
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Figure 2. 
Next generation sequencing of the endogenous TNBC tumors from GEMM models 

identifies multiple chromosomal rearrangement events. A) An overall view of fusion events 

in mouse breast tumors. B) Representative Circos plots show different numbers and pattern 

in chromosomal translocations among different tumors. C) Domain structure of Fgfr2-, 

Braf- and Raf1-fusion kinases. D) RT-PCR and E) Sanger sequencing confirming the 

presence of Fgfr2-Dnm3, Fgfr2-Tns1, and Dhx9-Raf1 fusion transcripts in each of the 

spontaneous tumors.
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Figure 3. 
Western blotting confirming the presence of fusion proteins in tumor lysates and showing 

increased signaling pathway activation in respective tumors. A) Tumor #1 series express 

Fgfr2-Dnm3 fusion proteins at expected molecular weight (left). At the same molecular 

weight, its fusion partner Dnm3 is also detected. Fgfr2-Dnm3 expression coincides with 

enhanced FRS2 phosphorylation. B) Detection of Fgfr2-Tns1 in tumor #6 by mass 

spectrometry (MS) upon Fgfr2-immunoprecipitation. Short gray blocks show the locations 

of peptides identified by MS. C) Tumor #3 series express Dhx9-Raf1 fusion proteins at the 

expected molecular weight with increased pERK signals. D) Tumor #2 express high level of 

cMet at the protein levels, which coincide with increased Met phosphorylation. E) Tumor 

#17 that harbors bi-allelic Pten deletion expresses undetectable Pten at the protein levels, 

and high Akt- and Pras40-phosphorylation.
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Figure 4. 
Kinase fusions function as oncogenic drivers via enhanced activation of the MAPK and/or 

PI3K pathways. A) Expression of FGFR2-CCDC6 or Fgfr2-Dnm3 results in increased 

Fgfr2, Frs2 and downstream Akt phosphorylation in NIH3T3 cells. B) FGFR2-CCDC6 and 

Fgfr2-Dnm3 confer soft-agar colony formation capacity in NIH3T3 cells. C) Both Fgfr2-

Dnm3 and FGFR2-CCDC6 dimerize/oligomerize in a ligand-independent manner with 

fusion kinases but not with endogenous Fgfr2. D) Expressing of Dhx9-Raf1 or Rpl32-Raf1 

fusion kinases significantly enhances the MAPK pathway in NIH3T3 cells. E) Dhx9-Raf1 

and Rpl32-Raf1 fusion kinases confer soft-agar colony formation ability. F) Expression of 

FGFR2-CCDC6, Fgfr2-Dnm3, Dhx9-Raf1 or Rpl32-Raf1 increases HMEC proliferation. G) 
MET overexpression in HMECs induces spontaneous MET phosphorylation. H) Potential 

oncogenic driver events identified through combined WES and RNAseq analyses.
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Figure 5. 
Targeting Fgfr2-fusion containing tumors with the FGFR-inhibitor BGJ398 results in 

complete response. A) Treatment designs for tumor #1 that is Brca1-deficient and harbors 

Fgfr2-Dnm3 translocation. B) In vivo dosing of BGJ398 at 30mg/kg achieves target 

inhibition measured by pFrs2 and pErk levels. C) BGJ398 alone, or in combination with 

Olaparib does not cause general toxicity in nude mice. D) BGJ398 alone or in combination 

with Olaparib results in complete tumor remission. E) Spider plot showing tumor responses 

to each treatment over long duration. F) BGJ398 alone results in slow tumor regression 

while BKM120 and BGJ398 causes fast tumor remission.
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Figure 6. 
Targeting Dhx9-Raf1 and cMet with MEK- and MET-inhibitor, respectively, result in tumor 

regression or delayed progression. A) MEK inhibitor Trametinib (GSK1120212) achieves 

target inhibition at 3mg/kg. B) Treatment designs for Brca1-deficient tumor #5 harboring 

Dhx9-Raf1 translocation. C) Trametinib alone delays tumor progression while Trametinib 

and Olaparib result in complete tumor remission. D) At 50mg/kg, Crizotinib inhibits MET 

phosphorylation and downstream signaling pathway activation. E) Targeting Met-

overexpressing endogenous tumor with MET-inhibitor delays tumor progression, and 

combination therapy results in stable disease. F) Treatment designs for tumor #2 that is 

Brca1-WT and overexpresses cMET.
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Figure 7. 
Multiple, different genetic aberrations lead to common elevated MAPK and/or PI3K 

pathway activation in human breast cancer patients. A) Frequent genetic alterations that are 

known to activate the MAPK and/or PI3K pathways in TNBC patients (CbioPortal TCGA 

data). B) Frequency of amplification at the FGFR1, FGFR2 and FGF19 loci. C) Genomic 

amplification of FGFR1 and FGFR2 results in increased mRNA expression levels. D) 
Location and frequency of mutations found in FGFR1 and FGFR2 in breast cancer. E) A 

model showing multiple genetic aberrations in TNBC leading to the activation of MAPK 

and/or PI3K pathways.
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