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ABSTRACT

Transcriptional profiling of thousands of single cells
in parallel by RNA-seq is now routine. However, due
to reliance on pooled library preparation, targeting
analysis to particular cells of interest is difficult.
Here, we present a multiplexed PCR method for tar-
geted sequencing of select cells from pooled single-
cell sequence libraries. We demonstrated this molec-
ular enrichment method on multiple cell types within
pooled single-cell RNA-seq libraries produced from
primary human blood cells. We show how molecular
enrichment can be combined with FACS to efficiently
target ultra-rare cell types, such as the recently iden-
tified AXL*SIGLECG6* dendritic cell (AS DC) subset, in
order to reduce the required sequencing effort to pro-
file single cells by 100-fold. Our results demonstrate
that DNA barcodes identifying cells within pooled se-
quencing libraries can be used as targets to enrich
for specific molecules of interest, for example reads
from a set of target cells.

INTRODUCTION

Intensive interest exists in applying single-cell genomic anal-
yses including gene expression, chromatin accessibility, and
DNA copy number variation to resolve differences between
cells in a population. Pooled analysis of thousands of single
cells is now routinely practiced by introducing cell-specific
DNA barcodes early in cell processing protocols to pro-
duce a pooled library that is sequenced as a single sample
and deconvoluted in silico. While such pooled experimental
workflows are now a mainstream approach in life science re-
search including cell atlasing efforts (1-8), these workflows
do not currently enable cell targeting, even in cases when
only a few rare cells are of interest (9—11).

As cell type and cell state discovery moves towards rare
target populations (12-14), the challenge of identifying and
accessing rare cells in pooled sequence libraries becomes in-
creasingly important. In instances where rare cells are of in-

terest, investigators must cope with applying extremely high
sequencing effort or the sample loss and perturbation asso-
ciated with enrichment by fluorescence-activated cell sort-
ing (FACS), which ultimately limits the types of samples
that can be processed (15). Here, we introduce a PCR-based
approach to enrich pooled single-cell sequence library for
reads from individual cells of interest. This approach en-
ables investigators to selectively access relevant information
out of such libraries with reduced sequencing effort. For ex-
ample, cells that initially lack sequence coverage can be tar-
geted for deeper follow-up sequencing and rare cell popu-
lations too small in quantity or too sensitive to perturba-
tion for pre-selection by FACS can be enriched from the
original pooled sequence library. Alternatively, the PCR en-
richment approach can be combined with complementary
enrichment approaches like FACS to target ultra-rare cell
types.

Here, we apply PCR enrichment to populations of pri-
mary human B-cells, monocytes and dendritic cells from
blood, which represent 15-35%, 10-15% and 1-2% of to-
tal peripheral blood mononuclear cells (PBMCs), respec-
tively. We pre-enriched these populations by FACS using
the following cell surface markers: B cells, CD19" subset,
from here on referred to as CD19" cells; monocytes and
dendritic cells, Lineage (Lin") HLA-DR™ cell subset, from
here on referred to as HLA-DR™ cells. We demonstrate be-
low how FACS pre-enrichment can be combined with PCR
enrichment from large pooled sequence libraries to focus se-
quencing effort on an ultra-rare cell type of interest such as
the AS DCs within the HLA-DR™ subset, which represents
only 1-3% of human blood DCs and 0.01-0.06% of total
PBMCs.

MATERIALS AND METHODS
Sample sourcing and FACS

This study was performed in accordance with protocols
approved by the institutional review board at Partners
(Brigham and Women’s Hospital) and the Broad Insti-
tute. Healthy donors were recruited from the Boston-based
PhenoGenetic project, a resource of healthy subjects that
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are re-contactable by genotype (16). The donors had no
family history of cancer, allergies, inflammatory disease, au-
toimmune disease, chronic metabolic disorders, or infec-
tious disorders. Each donor provided written informed con-
sent for the genetic research studies and molecular testing.

For profiling HLA-DR* and the CD19" cells, PBMCs
were first isolated from fresh blood within 2 h of collection
using Ficoll-Paque density gradient centrifugation as de-
scribed previously (17). PBMC suspensions were immunos-
tained with an antibody panel according to the manufac-
turer’s protocol (Suppliers listed in Supplementary Table
S3) designed to target live HLA-DR™ cells and deplete other
blood lineages (CD235a, CD3, CD4, CDS8, CD19, CD56)
or to target live CD19" cells and deplete other blood lin-
eages (CD235a, CD3, CD4, CDS8, HLA-DR, CD56) (Sup-
plementary Table S3). Cells were sorted in a solution of 1 x
PBS and 0.04% of BSA and resuspended at a concentration
of 1000 cells/pl.

Single-cell library preparation and target cell enrichment

Single-cell RNA-seq library preparation was performed
with the Chromium Single Cell 3’ method (10X Genomics)
according to the manufacturer’s protocol. Pooled single-cell
RNA-seq libraries were diluted and combined in equal vol-
ume with KAPA 2x high fidelity hot start PCR master mix.
The final DNA template and total primer concentrations
were 0.1 nM and 0.1 uM, respectively. For multiplex (10 —
15-plex) barcode amplification, forward primers consisted
of sequencing adapters (62 bp) and cell barcode specific se-
quence (16 base pairs) whereas reverse primers were compli-
mentary to the fixed truseq adaptor sequence. Hemi-specific
PCR was performed with an initial hot start at 95°C for 5
min, followed by 25 cycles of (95°C — 0.5 min, 68°C — 1 min,
72°C — 1 min), and ended with a final 4 min extension at
72°C. The reaction products were confirmed on an agarose
gel. As few as 15 cycles of PCR and lower annealing temper-
atures were also tested and produced good results, although
care should be taken when reducing cycle number to ensure
that sufficient product quantity is obtained to enable pu-
rification and any desired quality control steps prior to se-
quencing. Each PCR was performed in triplicate to assess
replicability. The PCR products were then purified by SPRI
(Agentcourt, 1:1 sample:reagent ratio) and quantified with
the Qubit fluorescence assay (Qubit dSDNA HS Assay Kit,
ThermoFisher Scientific).

Sequencing and primary data processing

Target-enriched single-cell RNA-seq libraries were loaded
at 1.8 pM on a DNA sequencer (Illumina Miniseq) where
read 1 (26 bp) sequenced bases in the cell barcode and
UMI and read 2 (124 bp) sequenced bases in the tran-
script. Primary processing of the raw data was conducted
using the CellRanger pipeline (10x Genomics). Secondary
analyses were carried out using custom Python scripts. The
custom scripts used for secondary analysis can be found
at (https://github.com/nranu/SC_enrichment). Replicate se-
quence reads were aggregated by unique molecular iden-
tifier (UMI) with secondary analysis operating on UMI
counts. Any UMI that received two or fewer reads was re-
moved prior to secondary analysis.
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Correlation analysis and Bootstrapping

Gene expression profiles of a given cell were compared be-
fore and after enrichment by computing Pearson correla-
tion coefficients. Correlation coefficients were calculated us-
ing the expression profiles of targeted single cells in the en-
riched libraries and the corresponding expression profiles
within the original library. One thousand Bootstrap read
samples were then generated from each dataset to enable
comparing pre-enriched single-cell datasets against them-
selves. Bootstrap samples of both pre- and post-enrichment
data matched the read depth present in the pre-enrichment
library for each cell. To determine the highest expected
correlation coefficient values given the statistical noise
from read and UMI counting, correlations were computed
among Bootstrap replicates from the pre-enrichment data
derived from the same cells.

Principal components analysis (PCA) and clustering

Feature selection was performed by excluding genes de-
tected in fewer than three cells and removing genes that had
low coefficients of variation with a nonparametric Loess re-
gression using a window of 33%. This selection identified
~1000 highly variable genes that were well-represented in
the dataset. Next, the UMI counts per cell were normalized
by the median of UMI counts across all cells and log, trans-
formed with a pseudocount of 1 and finally, Z-transformed.
PCA was performed with the original deeply sequenced li-
brary as a training set with the enriched data subsequently
projected onto the components defined in analysis of the
original library.

Targeting putative AXL* SIGLEC6* DC (AS DC) cells

To identify AS DC “purity scores’, we used a previously de-
scribed signature scoring system (11). Briefly, we assigned
a quantitative score to each cell based on the overall ex-
pression of a pre-defined signature gene set after correcting
for ‘drop-out’ effects that commonly characterize single cell
data (10). The reported AS DC population purity score was
based on the top 10 most discriminative genes previously
reported: AXL, PPPIRI14A, SIGLEC6, CD22, DAB2,
S100A10, FAM105A, MEDI2L, ALDH?2 and LTK. This
‘purity score’ was used to identify the most likely AS DC
candidate cells in the HLA-DR™ 10X library. Note that not
all of the 10 classifier-genes were expressed across the puta-
tive AS DC candidates in the 10X library, which could be
explained by different dropout rates characterizing the 10X
library and Smart-Seq? libraries, the latter having been used
in the original AS DC discovery and characterization study

(11).

RESULTS

Target cell enrichment by multiplexed hemi-specific PCR en-
ables a 100-fold decrease in sequencing effort

To preferentially amplify molecules representing target cells
in the pooled sequence library, we carried out multiplexed
hemi-specific PCR with forward PCR primers cognate to
the barcodes of target cells (up to 15-plex tested; Figure
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Figure 1. Targeted enrichment of single cells within a pooled RNA sequence library. (A) Workflow showing enrichment based on single cell barcodes
on the 5" end of sequence library molecules. Target cells (barcodes) of interest are identified based on shallow sequencing of the original pooled library.
PCR with barcode-specific primers is used to create a new sequence library enriched for reads from the target cells. (B) Example enrichment plot for a
single target cell from a multiplex-enrichment reaction. The original library was deeply sequenced as a control to identify gene expression profiles in the
target cell. Enrichment fold is the fold-difference in overall sequencing effort to detect 50% of the maximum detectable number of genes. (C) Distribution
of enrichment-fold values for 65 targeted cells amplified in multiplex PCR enrichments. (D) the pairwise correlation of gene expression profiles before and
after PCR enrichment for CD19% cells (top) and HLA-DR™ cells (bottom) libraries. The upper dashed line and shaded region in each plot represent the
mean =+ two standard deviations of Bootstrap replicates of the original gene expression profiles against themselves (which represents the best correlation
achievable given the read sampling, UMI sampling, and distribution of expression levels across genes in these specific cells). Red points show the correlation
for targeted cells (post-enrichment profiles versus pre-enrichment profiles for the same cell). Gray box plots show distribution of correlation coefficients for
control (non-target) cells existing in the library (post-enrichment profiles of the subject control cell versus pre-enrichment profiles of all cells). The dotted
line shows the mean correlation for the cell barcodes that had at least 6 mismatches at the 3’ end. Control comparisons are shown as a function of the
number of mismatches (Hamming distance) between the six most 3’ base pairs of the 16-base pair subject control cell barcode and the six most 3’ base
pairs of the 16-base pair barcode of compared targeted cells.

1A, Supplementary Tables S1,S2) and a common reverse
P7 primer. To test the method, we targeted 19 cells in a
sequence library representing 1760 CD19" cells, and 46
cells within a sequence library representing 2397 HLA-DR™*
cells. The forward PCR primers were designed to target the
16 base pair (bp) cell barcode appended to each cDNA
3’ tag sequence in the pooled RNA-seq libraries (Supple-
mentary Figure S1). Target barcodes were selected to repre-
sent cells with higher (~25 000) and lower (~1000) counts
of unique transcript molecules (Supplementary Figure S2,
Supplementary Tables S1 and S2). We define target cell en-
richment as the ratio in sequencing effort needed to ac-
cess a specific level of information from a particular cell,
here quantified as the number of detected genes. The li-
braries produced by our PCR protocol were enriched ap-
proximately 100-fold for the group of targeted cells (Fig-
ure 1B, C and Supplementary Figure S2). This enriched

pooled library can be further sequenced to achieve deep
coverage of high-quality target cells at far lower overall se-
quencing effort than would have been required in sequenc-
ing the original library. We found that the majority of reads
in the enriched libraries corresponded to the targeted cells
(Supplementary Figure S3, medians across replicates were
70-90%).

Gene expression profiles of target cells are faithfully recapit-
ulated after PCR enrichment

To evaluate the reliability of our method, we compared
the expression profiles of cells targeted in the enriched li-
braries to each cell in the original library. RNA abun-
dances in the enriched libraries quantitatively recapitu-
lated RNA abundances from the original libraries, which
were deeply sequenced and computationally resampled to
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provide matched control datasets for statistical compari-
son. We hypothesized that the base sequence at the 3’ end
of the barcode PCR primer would be critical for main-
taining specificity during amplification. Although 0.1% of
cell barcodes share the same six base sequence at the 3’
end and are at risk for mis-priming events, we find that
data from cells enriched in the CD19* and HLA-DR™ li-
braries show expression profiles that are well-correlated
with the corresponding pre-enrichment profiles (mean cor-
relation of ~0.82; as good as resampled replicates of the
pre-enrichment profiles compared with themselves) (Figure
1D, Supplementary Figure S4). Further, the pairwise com-
parison of correlations across all targeted barcodes show
the highest correlation for the intended target cell (Supple-
mentary Figure S5). We observed a slight increase (statis-
tically significant for the CD19 and HLA-DR subset) in
the correlation to non-targeted cells when the 3’ end of the
barcode has perfect complementary (hamming distance of
0). This effect is presumably caused by cross-priming, but
does not significantly affect our final results as our filter-
ing procedure (Materials and Methods) is designed to re-
move spurious UMI counts. In addition to barcode mis-
priming, PCR chimeras have the potential to add noise
to the measured gene expression profiles (BioRxiv: https:
/Ihttp://doi.org/10.1101/093237). We estimated that PCR-
driven chimeras increase the UMI+gene collision rate by
only a few percent above the statistically expected collision
rate (Supplementary Figure S6). An additional source of
noise can arise due to polymerase error during PCR am-
plification of UMI sequences, which might lead to inflated
UMI counts. Although we did observe an increase in the
number of UMIs at small Hamming distances (d, =1 - 2)
that could be explained by polymerase errors, more than
99.9% of inter-UMI distance counts were at Hamming dis-
tances of 3 or more (Supplementary Figure S7), indicating
that UMI inflation has only a minor potential effect on the
data and that our filtering procedures likely exclude an ef-
fect. We note here that noise from all four sources: shared
3’ barcode sequence, statistical UMI+gene collisions, PCR-
driven chimerism, and UMI sequence errors can likely be
reduced by increasing the barcode/UMI complexity and re-
designing the primers used for enrichment.

Principal components analysis results in congruent cluster as-
signments

Next, we sought to quantify differences in gene expression
profiles before and after enrichment with principal compo-
nents analysis (PCA). Post-enrichment expression profiles
localized cells to similar locations as found in the original
libraries in principal components space when we projected
post-enrichment data onto the principal components de-
fined using the original dataset (Figure 2A, B and Supple-
mentary Figure S8). We used Euclidean distance as a metric
to quantify how much the position of cells shifted relative
to the underlying distribution of cell locations (Supplemen-
tary Figure S9). Data clustering by k-means resulted in the
same cluster assignments for most cells before and after en-
richment (16/19 for CD19*, adjusted mutual information
score (AMI) =0.81; and 43/46 for HLA-DR*, AMI =0.75,
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where AMI = 0 indicates the expected score for random re-
clustering, and AMI = 1 indicates identical re-clustering).

Marker gene expression profiles for AS DCs are reproduced
with good fidelity

We then applied this framework to target putative AS DCs
by combining enrichment of HLA-DR™* cells by FACS
with PCR-based multiplexed molecular enrichment from a
pooled RNA-seq sequence library to target the extremely
rare AS DCs. In the enriched library, only 1 million reads
were needed to reliably identify key discriminating genes
(11) expressed in the nine putative AS DCs captured in
the enriched HLA-DR™ library (Figure 2C). Expression
of these AS DC-discriminating genes were either not de-
tectable or showed in extremely low counts at the same level
of sequencing effort in the original library, which was en-
riched only by FACS (Supplementary Figure S10). While
the biological role of AS DCs remains to be fully elucidated,
the discovery study (11) reported several properties relevant
to the design of new therapeutic and vaccination modalities,
highlighting the need to develop new strategies to enrich
and profile rare cell populations like the AS DCs from many
different samples to further decipher their unique proper-
ties.

DISCUSSION

Our results demonstrate that individual cells can be en-
riched at the molecular level from complex pooled single-
cell libraries and that the enriched libraries faithfully rep-
resent the targeted cells’ original expression profiles. Our
PCR approach for targeted enrichment requires a single-
cell sequencing library where cell origin is identified by a
short barcode sequence, a list of barcode sequences that
corresponds to cells of interest, and a set of PCR primers
that complement the listed barcodes. Currently, investiga-
tors can select cells to target based on initial analysis of a
shallow sequence dataset. For many cases, as few as 1000—
5000 RNA-seq reads per cell are sufficient to identify cell
types of interest (18-21). In other cases, where target cells
can only be identified by signatures reliant on detecting
the expression of low-abundance transcripts, desirable tar-
get cells can be enriched by depleting cells identifiable as
other, non-target cell types and low-quality cells (e.g. those
with fewer detected UMIs). Approaches that target signa-
ture genes specifically would be highly efficient for the pos-
itive identification of target cells defined by the expression
of low-abundance transcripts, (22-24).

Although the noise sources in aggregate do not have a sig-
nificant effect on the precision of the expression profiles ob-
tained from the enriched libraries (Figure 1D, Supplemen-
tary Figure S4), modifications to the barcode and UMI se-
quences would enable these noise sources to be further sup-
pressed. In our work, the cell barcode targeting primer had
complementarity to the full 16 base pair sequence allow-
ing for the greatest target cell specificity. Lengthening the
barcode sequence to add downstream bases that extend be-
yond the 3’ terminus of the enrichment primer (or alterna-
tively, shortening the enrichment primer) would allow the
extension reaction to pick up a portion of the target cell
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Figure 2. Single-cell expression profile before and after enrichment. Reduced dimensionality representations of 19 cells from CD19" cells (A) and 46
cells from HLA-DR™ cells (B) showing the position of targeted cells based on the expression profiles from the original deep sequenced library (closed
circles) and the enriched library (open circles), where each color represents one cell/barcode. The gray data points show all cells within the two original
deeply sequenced libraries and make visible the major clusters of cells with related expression profiles. Principal components analysis (PCA) and t-SNE, a
nonlinear dimensionality reduction approach, are used to represent the high-dimensional datasets with corresponding color schemes. (C) AS dendritic cell
signature analysis. Bar plots at top show the fraction of cells with at least one UMI count for the corresponding gene (number of cells above the dashed
gray line in bottom panel, with black for all non-target cells, and red for target cells in the original library, middle bar, and red for target cells in the enriched
library, right bar). Bottom panel: the expression of the classifier genes for all non-target cells in the original library (black points, left group for each gene),
target cells in the original library (colored points, middle group), and enriched target cells (colored points, right). The same color is used for each targeted
cell across the different classifier genes to facilitate comparison. The total number of cells in the HLA-DR™ cells library was 2397 cells and nine putative

AS DC cells were targeted for enrichment.

barcode from the library molecule independent of primer
hybridization. Extending the length of the UMI sequence,
hence its complexity, would increase the average distances
between UMI sequences in the final read set and enable
more stringent sequence filtering procedures to exclude er-
roneous reads. Primer modifications, such as 3’ phospho-
rothioate linkages, could help maintain barcode fidelity and
be combined with other design changes. Lastly, while we
recommend 25 cycles of PCR in the enrichment PCR, op-
timization to fewer PCR cycles could potentially improve
the quality of enriched sequence libraries when the input li-
brary is of high quality and contains a sufficient fraction of
on-target content.

Target enrichment is most advantageous when targeting
rare populations and the potential enrichment-fold achiev-
able by targeting is large. In this work, we utilized individ-
ual oligonucleotide primers to enrich the target cells, which
is convenient for targeting small numbers of cells as would
be needed for rare population studies. To explore the trade-
off in sequencing effort and the need for primer synthesis,
we plotted results from a simple model representing a typ-
ical contemporary use case as a function of the abundance
of the target cell population (SI and Supplementary Figure
S11). Within the assumptions of our model, targeting is fa-
vorable for target cell abundances as high as 5%. Emerging

advances including those in small custom oligonucleotide
primer pool production are likely to accelerate PCR en-
richment workflows and make PCR enrichment practical
for target populations at abundances >5% by reducing the
cost per custom primer (25). In addition, technologies and
approaches for pooled single cell library construction are
improving rapidly (26) which promise to make sequencing,
rather than pooled sample preparation, the overall work-
flow bottleneck, and bring attention to the need for cell tar-
geting approaches. Our enrichment protocol depends pri-
marily on the presence of cell-specific barcodes and is read-
ily extensible to a wide variety of pooled single-cell appli-
cations beyond expression profiling that are read out using
DNA sequencing and encode cell of origin using a com-
pact sequence barcode (27-29). Compatible sScRNA-seq ap-
proaches include 10X Genomics (used here), Drop-seq, and
Seq-well. Further development of the protocol described
here or alternative approaches would be required for ap-
plications that distribute the cell identity information more
sparsely across the library molecules, for example those that
use dual end barcoding or long barcodes.

Importantly, target cell enrichment may have future
biomedical applications. For example, our enrichment
method may allow comparison of rare cell types across cel-
lular mixtures from many subjects, such as tracking rare
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malignant cell states, non-malignant cell states in tumor
samples, and circulating tumor cells (CTCs) in blood. In-
depth analyses of particular cells of interest may enable ac-
cess to more precise single-cell expression profiles and en-
able diagnostic, prognostic, or theranostic tests informed
by quantitative (rather than binary) gene expression states
that are invisible to current analytics like flow cytometry
or imaging. Targeted molecular enrichment of target cells
from large pooled single-cell sequence libraries promises to
reduce the sequencing effort required to profile rare cells
by one to two orders of magnitude while simultaneously
enabling selective deep sequencing of high-information-
content cells.

DATA AVAILABILITY

The custom scripts used for secondary analysis can be found
at (https://github.com/nranu/SC_enrichment).

Processed scRNA-seq data are available through the
Gene Expression Omnibus, (GSE116683).

Raw RNA sequencing data are available through
Database of Genotypes and Phenotypes (dbGaP), acces-
sion number phs to be assigned.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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