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The thalamic reticular nucleus (TRN) is the main source of inhibition to the somatosensory
thalamus (ventrobasal nucleus, VB) in mice. However, the functional topography and
development of these projections with respect to the VB barreloids has been largely
unexplored. In this respect, to assist in the study of these projections, we have utilized
a vesicular gamma-aminobutryic acid (GABA) transporter (VGAT)-Venus transgenic
mouse line to develop a brain slice preparation that enables the rapid identification of
inhibitory neurons and projections. We demonstrate the utility of our in vitro brain slice
preparation for physiologically mapping inhibitory reticulothalamic (RT) topography, using
laser-scanning photostimulation via glutamate uncaging. Furthermore, we utilized this
slice preparation to compare the development of excitatory and inhibitory projections
to VB. We found that excitatory projections to the barreloids, created by ascending
projections from the brain stem, develop by postnatal day 2–3 (P2–P3). By contrast,
inhibitory projections to the barreloids lag ∼5 days behind excitatory projections to the
barreloids, developing by P7–P8. We probed this lag in inhibitory projection development
through early postnatal whisker lesions. We found that in whisker-lesioned animals,
the development of inhibitory projections to the barreloids closed by P4, in register
with that of the excitatory projections to the barreloids. Our findings demonstrate both
developmental and topographic organizational features of the RT projection to the VB
barreloids, whose mechanisms can now be further examined utilizing the VGAT-Venus
mouse slice preparation that we have characterized.

Keywords: VGAT, critical period, somatosensory, thalamus, laser-scanning photostimulation

INTRODUCTION

The thalamus represents an ideal structure to assess aspects of developmental plasticity of both
excitatory and inhibitory projection systems. The thalamus is the obligate neural structure
conveying sensory information to the cortex (Sherman and Guillery, 2002; Jones, 2007; Erzurumlu
and Gaspar, 2012; Imaizumi and Lee, 2014) and receives feedforward excitatory projections from
subthalamic structures and feedback excitatory corticothalamic (CT) projections from neurons in
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FIGURE 1 | The somatosensory pathway from the whiskers to the barrel
cortex in mice. Ascending and descending excitatory projections are
illustrated by black arrows, whereas descending inhibitory projections from the
thalamic reticular nucleus (TRN) are illustrated by the green line, respectively.
Intrinsic inhibitory circuits are not illustrated. Each number (e.g., P3–P5 or E12)
denotes the developmental age for establishing the brainstem barrelettes,
thalamic barreloids and barrel cortex and the development of ascending and
descending axons that reach the target station.

layer 6 of the neocortex (Sherman, 2016; Figure 1). In addition,
the thalamus receives feedback inhibitory reticulothalamic (RT)
projections from the thalamic reticular nucleus (TRN), which
along with the zona incerta, are sources of inhibition to the
ventrobasal nucleus (VB) in mice that lack local VB interneurons
(Guillery and Harting, 2003; Pinault, 2004; Lam and Sherman,
2005; Sherman, 2016; Figure 1). Thus, the thalamus integrates
excitatory and inhibitory projections in a thalamo-cortico-
thalamic loop.

Despite its functional importance, structural plasticity in the
thalamus has been much less appreciated than in the neocortex.
Moreover, most ascending projections from the brainstem
and thalamocortical (TC) projections are excitatory, such that
studies of developmental plasticity in the thalamus have focused
similarly on those excitatory projections. Interestingly, local
inhibitory synapses can also be altered with excitatory synapses
in developmental plasticity of the neocortex (Froemke, 2015).
However, it remains unclear whether long-range inhibitory
projections are similarly altered.

Even the seemingly rigid topographic maps of sensory space
are amenable to structural plasticity in the developing nervous
system (Sur and Leamey, 2001; Winer et al., 2004; Schreiner
and Winer, 2007; Espinosa and Stryker, 2012). The well-defined
whisker barrel maps in the primary somatosensory barrel
cortex have demonstrated experience-dependent structural
plasticity of developing TC projections (Inan and Crair,
2007; Lokmane and Garel, 2014). The mechanisms underlying
such remodeling of excitatory projections involve the activity-
dependent strengthening and pruning of excitatory synapses.

By comparison, similar structural plasticity of inhibitory neural
projections in the thalamus has not been intensively investigated,
in part due to the lack of amenable preparations for investigating
such changes.

Here, we take advantage of a vesicular gamma-aminobutryic
acid (GABA) transporter (VGAT)-Venus transgenic mouse
line to examine the developmental organization of inhibitory
projections from the TRN to the barreloid field in the
somatosensory thalamus (the VB nucleus). We demonstrate
the utility of this preparation for in vitro slice physiological
recordings to map the topographic organization of inhibitory
projections to thalamic barreloids identified online. In addition,
we demonstrate the development and structural plasticity of
inhibitory projections to the barreloids using this preparation.
Overall, we demonstrate a new preparation for studying the
organization, development and structural plasticity of inhibitory
projections to the barreloid region of the somatosensory
thalamus.

MATERIALS AND METHODS

Slice Preparation
All experimental procedures were approved by the Institutional
Animal Care andUse Committee (IACUC) of the Louisiana State
University School of Veterinary Medicine and the Committee
on Animal Care of the Massachusetts Institute of Technology.
Live slices were prepared from VGAT-Venus transgenic mice at
P11–P13. These transgenic mice express the Venus fluorescent
protein (pCS2-Venus developed in the laboratory of Dr. Atsushi
Miyawaki at RIKEN, Wako, Japan) in VGAT—positive neurons
(mouse line developed and shared by Dr. Yuchio Yanagawa at
Gunma University) and obtained from Dr. Janice R. Naegele at
Wesleyan University (Nagai et al., 2002; Wang et al., 2009).

Animals were deeply anesthetized under isoflurane. After
decapitation, the brains were quickly removed and submerged
in ice cold, oxygenated, artificial cerebral spinal fluid (ACSF;
125 mM NaCl, 3 mM KCl, 25 mM NaHCO3, 1.25 mM
NaH2PO4, 1 mMMgCl2, 2 mMCaCl2, 25 mM d-glucose). Brains
were blocked to preserve the thalamic barreloids (Figure 2).
The blocking cuts were similar to the blocking angles for
the auditory TC slice (Cruikshank et al., 2002; Lee and
Sherman, 2008). A key distinction with our preparation to
that previously described for the auditory TC slice is an
initial 30◦ dorsoventral coronal blocking cut, followed by the
15◦ semi-horizontal blocking cut, which was found to well
preserve the barreloid architecture (Figure 2). The blocked
brains were glued on a stage with instant glue adhesive, ethyl
cyanoacrylate (Elmers Krazy Glue, High Point, NC, USA),
and then 500 µm thick sections were collected in ice-cold,
oxygenated ACSF or sucrose-rich brain slice solution using a
vibratome (World Precision Instruments, Sarasota, FL, USA;
Lee et al., 2013). Collected slices were transferred to a holding
chamber for 1 h at 32◦C in oxygen-saturated ACSF and moved
to a recording chamber perfused with oxygen-saturated aCSF
at 32◦C on a microscope stage (Siskiyou, Grants Pass, OR,
USA).
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FIGURE 2 | Preparation of the brain slice, as illustrated in a schematic drawing
depicting the relevant blocking cuts. (A,B) Sagittal view of first blocking cut.
(A) The brain was cut at the midbrain perpendicular to the midline (red broken
line 1). Then, the brain was blocked at ∼30◦ dorsoventrally (as illustrated by
red broken line 2) from the rostral forebrain. (B) The blocked brain was then
rested on the rostral blocked face (broken line 2 in A). (C,D) Rear view of
second blocking cut. (C) From the rear, the blocked brain was blocked at 15◦

off the horizontal plane in the right cortex. (D) The blocked brain was then
rested on the dorsal blocked surface and sectioned ventrodorsally.

Slice Physiological Recordings and
Laser-Scanning Photostimulation
Inhibitory projections from the TRN to the VB barreloids
in the live slice preparation were imaged with a Retiga-EX
camera (QImaging, Surrey, BC, Canada), using StreamPix5
(Norpix, Montreal, QC, Canada), mounted on an Olympus
BX-51 upright microscope (Olympus, Tokyo, Japan) through a
Chroma filter (41026; HQ495-30×, HQ 545-50 m, Q516 LP;
Chroma, Rockingham, VT, USA; Lee and Imaizumi, 2013).
Barreloids were identified and targeted on-line (Van Der Loos,
1976). Recordings were made from VB neurons at P11–13,
when intrinsic membrane properties were relatively constant. To
assist in isolating inhibitory currents, whole-cell recordings were
made in voltage clamp mode using recording pipettes with tip
resistances of 4–8 MΩ filled with a cesium intracellular solution
(110 mM d-gluconic acid, 110 mM CsOH, 10 mM CsCl2, 1 mM
CaCl2, 1 mM EGTA, 1 mMMg-ATP, 10 mMHEPES, pH 7.3) to
hold the cell at 0 mV.

Uncaging of glutamate by laser-scanning photostimulation
was used to identify synaptic input locations in the TRN
eliciting inhibitory postsynaptic currents (IPSCs) in the recorded
barreloid cells. After patching, a recirculating ACSF bath
containing 0.37 mM nitroindolinyl (NI)-caged glutamate
(Sigma-Aldrich, St. Louis, MO, USA) was switched in place
of the regular ACSF bath. Photolysis of the caged glutamate
was made focally with a pulsed UV laser (DPSS Lasers Inc.,
Santa Clara, CA, USA). We used an 8 × 16 stimulation
array with 80 µm spacing between stimulation spots. We
repeated the mapping procedures 3–5 times for each neuron
and averaged the resultant maps using the mapAnalysis and
mapAverager programs in Ephus (Janelia Farms, Jupiter, FL,

USA; Suter et al., 2010). Detailed procedures were described
elsewhere (Lee and Imaizumi, 2013).

Imaging VGAT-Venus in Barreloids in Fixed
Tissue
After deep anesthesia under isoflurane, brains from juvenile
VGAT-Venus mice (at P4–P14) were removed and blocked
as described above (Figure 2; Cruikshank et al., 2002;
Lee and Sherman, 2008), and fixed by submerging in 4%
paraformaldehyde (PFA, ElectronMicroscopy Sciences, Hatfield,
PA, USA) in 10 mM phosphate buffered saline (PBS, pH
7.3) for a few days (Lee et al., 2013). For cryoprotection, the
brains were kept in 30% sucrose for 2–4 days. The blocked
brains were mounted on OCT compound (Sakura Finetek,
Tokyo, Japan) and sectioned at −20◦C using a Leica cryostat
(Leica Microsystems, Buffalo Grove, IL, USA). Sections (50
µm) were collected in 10 mM PBS (Lee et al., 2013) and
coverslipped with Hardset Mounting Medium (Vector Labs).
Images of VGAT-Venus expression in barreloids in the left
hemisphere were captured using a Leica TCS SP2 confocal
microscope (Leica Microsystems, Wetzlar, Germany) or a
Retiga-EX camera mounted on an Olympus BX-51 upright
microscope (Olympus, Shinjuku, Tokyo, Japan). Contrast of
digitized images was enhanced in Fiji (Schindelin et al., 2012;
biological image software based on ImageJ, National Institutes of
Health, Bethesda, MD, USA) using same parameters.

Vessicular Glutamate Transporter 2
(VGLUT2) Immunohistochemistry
For vessicular glutamate transporter 2 (VGLUT2) staining,
sections were blocked with 10% normal goat serum (Vector
Laboratories) and 0.5% Triton X-100 in PBS for 30 min, and
incubated with 1:5,000 guinea pig anti-VGLUT2 antibody
(Millipore, Bedford, MA, USA) overnight and 1:400 Alexa 568
conjugated goat anti-guinea pig IgG (Life Technologies,
Carlsbad, CA, USA) for 2 h. Counterstaining was performed
for nuclear staining using 1–2 µM To-Pro-3 Iodide (Life
Technologies, Carlsbad, CA, USA) for 15 min. These sections
were covered with Hardset Mounting Medium (Vector
Laboratories, Burlingame, CA, USA) and imaged as described
above.

DiI Deposit
Brains were removed, blocked and fixed at P3, as described above.
The blocked brains were mounted on a stage with instant glue
adhesive and submerged in 10 mM PBS. Then, 200–300 µm
sections were collected in 10 mM PBS using a vibratome (Ted
Pella, Redding, CA, USA). Selected sections containing the TRN
and the thalamic barreloid border (e.g., Figure 5A) were further
fixed in 4% fresh PFA/PBS overnight. To estimate whether RT
fibers were present at P3 in this slice preparation, small crystals
of DiI (Life Technologies, Carlsbad, CA, USA) were manually
deposited on the TRN in our slice preparations using an insect
pin visually guided under a dissecting microscope (AmScope,
Irvine, CA, USA). DiI enables fiber tracing in postmortem, fixed
tissue (Chua et al., 1990; Ozaki and Wahlsten, 1992). These
sections were incubated at 37◦C in 4% PFA/PBS for a month
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and mounted on a slide using spacers (Electron Microscopy
Sciences, Hatfield, PA, USA) and Fluoro-Gel mounting medium
(Electron Microscopy Sciences) after washing in PBS. Images
were captured by an Olympus Fluoview FV1000 confocal
microscope (Olympus).

Whisker Lesion
Pups were anesthetized by inhalation of isoflurane (1%–5%).
Before the surgery, meloxicam (1 mg/kg) was injected
subcutaneously. Under a dissection microscope, whiskers
in C1-C3 on the right side of the snout were carefully plucked
out using a pair of sharp tweezers (Takeuchi et al., 2014), and
these whisker follicles were surgically removed using a pair of
sharp tweezers after making small incisions along the C barreloid
row at P2–P3 or P5, respectively. Whiskers in these animals
were observed to confirm no whisker growth before sacrificing
animals. At P10, these animals were deeply anesthetized under
isoflurane and fixed by 4% PFA/PBS. The brains were collected,
postfixed, cryoprotected, sectioned, processed and imaged, as
described above.

Analysis
For offline analysis of electrophysiological recording locations,
we identified each barreloid based on the position of the dorsal
edge of the TRN (illustrated by an arrow head in Figures 3, 4),
which is usually aligned with B barreloid row. However, four
recording locations could not be unambiguously identified due
to technical problems with our alignment. The inhibitory input
field (IIF) was defined as the region of the TRN that elicited
responses from the recorded VB neuron. This was estimated as
pixel numbers using Fiji as follows:

overlapped IIF (pixels)
sum of two IIFs (pixels)

× 100 (%)

Distance between locations in the barreloids was estimated as
pixel numbers in a linear measure using Fiji (Schindelin et al.,
2012). To understand the relationship between overlapped IIFs in
the TRN and the distance of recording locations in barreloids, we
performed a non-linear regression analysis using an exponential
decay model (Figure 3D). To assess topographic organization
between IIFs in the TRN and recording locations in barreloids,
IIF centers and recording locations were collapsed along an
abscissa (Figure 3E) or an ordinate (Figure 3F), respectively, and
a linear regression analysis was performed separately.

To quantify development of inhibitory projections to the
barreloids, we introduce a barreloid development index (BDI).
VGAT-Venus labeled barreloids and VGLUT2 labeled barreloids
were scored by identifying shared barreloids. The BDI indicates
when barreloids were labeled by both VGAT and VGLUT2:

the number of VGAT barreloids
the number of VGLUT2 barreloids

BDI indices of zero indicate that no VGAT-labeled barreloids
are found, while indicies near one indicate complete overlap of
VGAT-labeled and VGLUT2-labeled barreloids. We quantified
BDI in two to three sections from each brain, and the mean

BDI score from each brain was plotted in Figure 4D. Complete
barreloids appear only in a few sections at P8 or older animals.
Raw data from all experiments are freely available for sharing
upon request.

RESULTS

A major problem with studying barreloids in the somatosensory
thalamus is the technical difficulty with accurately and
unambiguously delineating the barreloid architecture. To solve
this problem, we developed a slice preparation (Figure 2) that
enables the straightforward identification of each barreloid.
Our preparation takes advantage of transgenic-labeling of
VGAT-positive inhibitory neurons, i.e., the VGAT-Venus mouse
line (Wang et al., 2009). VGAT-Venus mice have been widely
used to identify inhibitory neurons with Venus-labeled neuronal
somata in various studies (Inada et al., 2011; Arami et al.,
2013; Henderson et al., 2014; Bolton et al., 2015; Lee et al.,
2015a,b). In addition, Venus is expressed in inhibitory axonal
projections (Saito et al., 2015). We fully utilized these Venus-
labeled projections from the TRN to understand synaptic and
structural properties of the RT inhibitory projections. The
structure of thalamic barreloids in a fixed slice is unambiguously
delineated by Venus labeled RT projections from the TRN, since
there are practically no intrinsic local inhibitory neurons in
the rodent somatosensory thalamus (Cox et al., 1996; Guillery
and Harting, 2003; Figure 3A). Using this preparation, each
barreloid can also be easily identified in a live brain slice,
for targeted physiological recordings from specific barreloids
(Figure 3B).

Structural Basis of Topographic
Projections
To physiologically map the RT projections to specific barreloids,
we made whole-cell recordings from barreloid neurons in an
in vitro brain slice preparation. We confirmed the recording
locations in each barreloid by offline examinations of the
recording pipette placement. The inhibitory projections of the
TRN were assessed by uncaging glutamate using laser-scanning
photostimulation while making whole-cell recordings from a
neuron in an identified barreloid (Lee et al., 2013). To isolate
inhibitory currents, the resting membrane potentials of neurons
were held at 0 mV using a cesium intracellular solution.
Recorded barreloid neurons exhibited IPSCs responding to
photostimulation of neurons within the TRN (Figure 3B inset).
For all recorded barreloid neurons, the projection origin in the
TRN was localized to 1–2 stimulation spots (80 µm separation
between adjacent stimulation spots; Figure 3B inset). These
stimulation loci were generally elongated along the long-axis of
the TRN. Thus, these 1–2 activated stimulation spots in the TRN
constitute the inhibitory TRN IIF of each barreloid neuron (see
‘‘Materials and Methods’’ section).

As an example, four recorded cells in B1, C3, D3 and
E4 barreloids from the same live slice preparation received
inhibitory RT input from topographically segregated but
overlapped IIFs (5%–17%) in TRN (Figure 3C). However,
no overlapped IIF was found when the recording locations
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FIGURE 3 | Functional topography of inhibitory projections to the barreloids. (A) Confocal image of inhibitory projections to the barreloids in a fixed brain slice (50 µm
thickness) at P12. Arrowhead indicates alignment of the edge of the TRN with the B barreloid row. Scale: 100 µm. (B) Inhibitory projections to the barreloids as
observed in the live in vitro brain slice (500 µm thickness). (A–C) Illustrates barreloid rows for reference. For identifying barreloids, the dorsal edge of the TRN
(illustrated by the arrowhead) is a landmark, which is often aligned with the B barreloid row. Scale: 100 µm. (inset) Representative inhibitory postsynaptic currents
elicited by photostimulation of the TRN. (C) Four representative inhibitory input fields (IIFs) in the TRN and their corresponding recording locations in thalamic
barreloids from a same slice. Overlapped IIFs in TRN are 17% (B1-C3), 5% (B1-D3), 17% (C3-D3) and 0% with E4. (D) Significant relationship between overlapped
IIFs in the TRN and distance between recording locations in thalamic barreloids. Sixteen recording pairs from the same slices (n = 4) were analyzed using non-linear
regression. (E) Topographic organization between IIFs in TRN and recording locations in thalamic barreloids along the abscissa. Fourteen IIFs and the corresponding
recording locations from all recorded neurons are aligned on a single map. IIF centers in TRN and recording locations in barreloids are significantly correlated in a
linear regression. (F) Same as (E) except for analysis along the ordinate.
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FIGURE 4 | Postnatal development of inhibitory projections to the barreloids. (A) Development of inhibitory projections to the barreloids from P4 to P12. For
illustration purposes, brightness and contrast of the images are enhanced. (B) Different development of inhibitory and excitatory projections to the barreloids. Left
panels: inhibitory projections to the barreloids expressed by vesicular gamma-aminobutryic acid (GABA) transporter (VGAT)-Venus. Right panels: excitatory
projections to the barreloids expressed by vessicular glutamate transporter 2 (VGLUT2) with Alexa 568 (A568). At P5–6, development of inhibitory projections to the
barreloids exhibit large individual variability, which is also evident in the large SEM of the barreloid development index BDI scores in (E). BDI scores: 0 (top), 0 (middle)
and 0.63 (bottom). (C) Existence of reticulothalamic (RT) projections before P4. Small crystals of DiI were placed on the TRN in fixed sections (200–300 µm) at
P3 and incubated in 4% paraformaldehyde (PFA) at 37◦C for a month. DiI Labeling show an exponential decrease in intensity in the thalamus and striatum, likely
representing the edge of transport for the dye, or the termination of these fibers in this slice preparation. In addition, since the borders of the barreloids observed
using VGAT are not discernable at P3, we only indicate an approximate area for the barreloids. More precise delineation with VGLUT2 staining was not feasible in the
thick slice prior to DiI labeling. The approximate TRN and barreloid regions are illustrated by white broken line and white line, respectively. RT projections are red.
CPu, caudate putamen. (D) Identification of inhibitory projections to the barreloids (VGAT-Venus) shared with excitatory projections to the projections to the barreloids
(VGLUT2-A568). A white line illustrates barreloid border analyzed for BDI. BDI score: 1. This section was obtained from the brain at P7. (E) Establishment of inhibitory
projections to the barreloids. BDI scores are plotted as a function of postnatal day (mean ± SEM). Sigmoidal fitting reaches a plateau at P7–P8, indicating that
inhibitory projections to the barreloids are established by P7–8. Number of animals: n = 3 (P4), n = 5 (P5), n = 3 (P6), n = 6 (P7) and n = 3 (P8). Scale bars in each
panel: 100 µm (A–D).
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were sufficiently separated, such as in three barreloids and
the E4 barreloid (Figure 3C). Overlapped IIFs in the TRN
vary from 0% to 40%, which are significantly and inversely
correlated with distance between recording locations: the shorter
the distance between recording locations in VGAT-labeled
barreloids, the more the IIFs overlapped in the TRN (Figure 3D).
We decomposed 14 TRN IIFs in a single map. Similar to
that previously reported for projections from the TRN and
somatosensory thalamus (Lam and Sherman, 2005, 2011; Lam
et al., 2006), we found a topographic organization between IIF
centers in the TRN and recording locations in thalamic barreloids
(Figures 3E,F).

Development of Inhibitory Projections to
the Barreloids
Brainstem barrelettes, thalamic barreloids and cortical barrels
are defined by functional clusters of ascending excitatory axons.
We distinguished the VGAT-Venus labeled barreloids formed
by inhibitory RT projections from those formed by feedforward
excitatory projections using immunohistochemical labeling for
VGLUT2, which is expressed on the ascending excitatory
terminals.

The excitatory projections to the barrelette, barreloid and
barrel structures are consecutively established by postnatal day
0–1 (P0–P1), P2–P3 and P3–P5, respectively, which follows the
arrival of ascending excitatory axons from the lower to the higher
station by embryonic day 12 (E12), E17, and P0, respectively (Ma,
1993; Erzurumlu andGaspar, 2012;Mizuno et al., 2014; Takeuchi
et al., 2014; Yamasaki et al., 2014; Figure 1). However, inhibitory
projections to the barreloids are formed by feedback inhibitory
RT axons from the TRN that receives collateral excitatory CT
input from layer 6 of the barrel cortex (Figure 1). Ascending
excitatory axons from the brainstem developmentally reach
the thalamus by E17 (Erzurumlu and Gaspar, 2012), whereas
descending CT as well as RT axons reach the thalamus at
E18–E19 (Mitrofanis and Baker, 1993; Jacobs et al., 2007; Grant
et al., 2012; Figure 1). It is also generally accepted that inhibitory
circuits in the central sensory system developmentally lag behind
excitatory circuits (Chang et al., 2005; Tao and Poo, 2005; Dorrn
et al., 2010). Thus, we hypothesized that development of the
inhibitory projections to the barreloids also lags behind that of
the excitatory projections to the barreloids.

To test this hypothesis, first, we examined the development
of inhibitory projections to the barreloids at different postnatal
developmental periods (P4–P12) in fixed brain slices and
quantified their development, as described below (Figure 4A).
At P4, the outline of barreloids is formed, but VGAT-labeled
barreloids are not yet visible. At P5–P6, individual VGAT-labeled
barreloids are more visible. By P7–P8, VGAT-labeled barreloids
clearly separated by septa are recognizable. At P12, the fully
formed structure of the VGAT-labeled barreloids is clearly
evident.

To confirm this developmental delay for the establishment of
inhibitory projections to the barreloids compared to excitatory
projections to the barreloids, we immunohistochemically stained
for VGLUT2 in the developing brain at P4–P8. VGLUT2 is
expressed in the ascending excitatory axonal projections from

the brainstem (Kivrak and Erzurumlu, 2013). Whereas excitatory
projections to the barreloids are established by P4 (Figures 1,
4B), inhibitory projections to the barreloids are not yet fully
developed at P4 and exhibits individual variability at P5 during
development (Figure 4B). Previous studies in the rat have
reported that RT projections already exist before birth, but are
immature and not fully functional until the second postnatal
week (De Biasi et al., 1996, 1997; Figure 1). However, it is not
clear whether RT projections also exist in the mouse even at
P4 from our preparations. We investigated the existence of RT
projections before P4 (before the appearance of VGAT-labeled
barreloids). We placed a fluorescent lipophilic indocarbocyanine
orange-red dye, DiI, in the TRN in fixed brain slices at P3 and
found labeled fibers that emanated from the deposit site toward
the region of VB and the striatum (Figure 4C). These fibers were
consistent with the suggested early presence of RT projections
from prior studies (De Biasi et al., 1996, 1997), although it is also
likely that labeling of TC and/or CT fibers also contributed to the
observed labeling.

To quantify the different developmental time course of
excitatory and inhibitory projections to the barreloids, we
identified the number of VGAT-labeled barreloids shared with
VGLUT2-labeled barreloids at P4–P8 (Figure 4D). BDI (see
‘‘Materials and Methods’’ section) varies from zero (a ratio
between identical inhibitory and excitatory projections to the
barreloids) indicating no developed inhibitory projections to the
barreloid to one, indicating a full establishment of inhibitory
projections to the barreloids. A sigmoidal fitting of BDI scores
reaches a plateau by P7–P8 (Figure 4E), suggesting that
inhibitory projections to the barreloids are established by P7–P8
and lag 5 days behind excitatory projections to the barreloids.
This is not an artifact caused by slow expression of VGAT-Venus
because VGAT-Venus is already expressed in cell bodies as well
as neurites at P0 (Inada et al., 2011).

Critical Period of Structural Plasticity in
Inhibitory Projections to the Barreloids
We next sought to understand structural plasticity of the
inhibitory projections to the barreloids. It has been well
documented that the critical period of structural plasticity
of the thalamic excitatory projections to the barreloids and
the barrel cortex closes by P4 (Yamakado, 1999; Erzurumlu
and Gaspar, 2012). This period is after the establishment of
excitatory projections to the barreloids (P2–P3) and during the
establishment of the barrel cortex (P3–P5; Figure 1). Given the
slow development of inhibitory projections to the barreloids
(P7–P8; Figure 4), the critical period of structural plasticity in
the inhibitory projections to the barreloids might extend beyond
P4, similar to that found in the visual system, where the critical
period of inhibitory neurons in ocular dominance plasticity of
the mouse primary visual cortex lags behind that of excitatory
neurons (Gandhi et al., 2008).

Here, we lesioned whisker follicles in the C row (C1, C2 and
C3) on the right side of the snout at P2–3 or P5, respectively,
in separate animals. We assessed the outcome of barreloid
structure following whisker lesions by examining the barreloid
architecture at P10. When the whiskers were lesioned at P3, the
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FIGURE 5 | Structural plasticity of inhibitory projections to the barreloids.
Whiskers and follicles in C1–C3 barreloids were removed at P3 (P3W) or P5
(P5W). Structural organization of the barreloids was assessed at P10. C1–C3
barreloids are missing following deafferentation at P3W (A), but not at P5W (B;
illustrated by white arrow heads). Left panels: barreloids labeled by
VGAT-Venus. Right panels: barreloids labeled by VGLUT2 with Alexa 568
(A568). Letters and Greek symbols indicate barreloid rows.

original thalamic area of the excitatory and inhibitory inputs
to C1–C3 barreloids was replaced by D barreloids (Figure 5A).
We then tested whether similar structural plasticity occurs by
the same whisker lesions at P5. Based on our finding that the
developmental period of inhibitory projections to the barreloids
lagged behind that of the excitatory projections (Figure 4D),
we posited that the critical period for the inhibitory projections
might also lag behind that of the excitatory projections. However,
we found that whisker lesions at P5 did not result in structural
plasticity for either the excitatory or inhibitory projections to the
barreloids (Figure 5B). Thus, we found a similar critical period
prior to P5 for both the excitatory and inhibitory projections to
the barreloids.

DISCUSSION

In this study, we developed a preparation that preserves
inhibitory projections to the barreloids in a live slice for
investigating functional topography. Unlike the barrel cortex, the
barreloids are much less appreciated as a model system due to
the difficulty of delineation. However, by using VGAT-Venus
transgenic mice, we were able to capitalize on the rapid and
unambiguous visualization of barreloid architecture in both live
and postmortem slices.

Barreloid Basis of Topographic
Organization
Feedback RT projections are topographically organized (Lam
and Sherman, 2005, 2011; Lam et al., 2006). Since our

preparations allowed us to identify each barreloid online using
epifluorescent microscopy, we extended previous studies of
RT architecture that were unable to assign recording location
to specific barreloids (Lam et al., 2006). We found that
different barreloids have overlapped IIFs in TRN, potentially
explained by the previous finding that individual TRN
neurons have axon terminal bundles in more than one
barreloid (Cox et al., 1996). Thus, these divergent projections
from the TRN match the convergent projections to the
barreloids in our results. The topography of RT barreloid
projections was well preserved from recordings in single
sections. However, when data were combined from separate
experiments, this barreloid projection topography was less
(yet highly significant statistically) preserved, perhaps due to
different barreloid size and alignment artifacts across different
animals. In the current study, we made recordings from
neurons in up to four separate barreloids in a single slice
preparation.

Future studies can utilize this preparation to understand the
topographic organization within a single barreloid as well as
along a single barreloid row or column. Moreover, the ability to
identify and target specific barreloids for in vitro recordings can
greatly simplify future studies of whisker sensation that combine
slice physiology with in vivo experimentation.

Delayed Development of Inhibitory
Projection to the Barreloids
A surprising finding from our study is the delayed development
of inhibitory projections to the barreloids compared to that
of excitatory projections to the barreloids. The barrel system
(e.g., the excitatory projections to the barreloids and the barrel
cortex) is formed a few days after the arrival of ascending
axons (Figure 1; Erzurumlu and Gaspar, 2012). Both excitatory
axons from the brainstem and inhibitory axons from the
TRN arrive at the thalamus before birth (E17 for excitatory
axons and E18–E19 for inhibitory axons; Erzurumlu and
Gaspar, 2012; Grant et al., 2012). Whereas the excitatory
projections to the barreloids are formed at P2–P3, the inhibitory
projections to the barreloids are formed at P7–P8, which
lags 5 days behind that of the excitatory projections to the
barreloids. This delay in the formation of the inhibitory
projections to the barreloids cannot be simply accounted for by
different axonal arrival time (Figure 1; Erzurumlu and Gaspar,
2012).

Development and maturation of inhibitory circuits in sensory
systems lags behind that of the excitatory circuits (Chang
et al., 2005; Tao and Poo, 2005; Dorrn et al., 2010). Indeed,
prior ultrastructural studies of the developing RT projection
to VB indicate that GABAergic synaptic terminals are present,
but immature at birth and only reach full maturity by the
second postnatal week in rats (De Biasi et al., 1996, 1997).
Therefore, additional mechanisms likely account for delayed
development of the inhibitory projections to the barreloids.
One possibility is feedback excitatory input from cortical
layer 6. Layer 6 CT projections reach the barreloids as
early as E18 (Jacobs et al., 2007), but take longer to fully
innervate the barreloids between P2 and P6 (Grant et al.,
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2012). The later time of this period (P5–P6) roughly matches
the developmental period of the inhibitory projections to the
barreloids. Perhaps, during this period, a balance between
excitation and inhibitory inputs can be established for developing
feedback projections (Froemke, 2015). Interestingly though,
cortical layer 6 receives direct TC projections (Wimmer
et al., 2010; Lee et al., 2012; Lee and Imaizumi, 2013),
which form barrel-like fields in layer 6a, termed infrabarrels
(Crandall et al., 2017). In the future, it will be necessary
to examine how these infrabarrel layer 6 neurons affect
development and formation of the inhibitory projections to the
barreloids.

Fixed Critical Period of Structural Plasticity
in Inhibitory Projections to the Barreloids
Another surprising finding from this study is the fixed critical
period of structural plasticity in the inhibitory projections to
the barreloids. It has been well documented that the critical
period of structural plasticity in the excitatory projections to
the barreloids closes by P4 (Yamakado, 1999; Erzurumlu and
Gaspar, 2012). In our study, whisker lesions before P4 resulted in
structural plasticity both in excitatory and inhibitory projections
to the barreloids (Figure 5). The same procedure was performed
at P5 after the closure of the excitatory critical period but
still during the development period of inhibitory projections to
the barreloids. We found that the critical period of structural
plasticity in the inhibitory projections to the barreloids had
already closed despite the delayed development of the inhibitory
projections to the barreloids. This suggests that the critical
period of structural plasticity closes at the same time for
both the excitatory and inhibitory projections to the barreloids
and that delayed development of the inhibitory projections
to the barreloids does not affect timing of critical period
closure.

The molecular mechanisms underlying the critical period
changes appear to be in part dependent on NMDA receptors,
in particular NR2B, which affects barreloid development
and the critical period closure of structural plasticity:
early or delayed development corresponds to early or late
closure of the critical period, respectively (Yamasaki et al.,
2014). However, other NMDA receptors, NR2A and NR2D
appear less important in this regard (Lu et al., 2001). It
remains to be determined whether analogous effects are
mediated through different GABA receptor subtypes, or other
neurotransmitter receptors. These receptors are known to exhibit
a developmental switch in the immature thalamus (Peden et al.,
2008).

Physiologically, RT projections are able to elicit relatively
weak responses at ages up through P5, whereas afterwards
the strength of inhibitory responses increases dramatically
(Evrad and Ropert, 2009). Thus, it is likely, as suggested
from prior ultrastructural studies, that weak inhibitory RT to
VB barreloid connections are present to be refined through
signaling in the same critical window (De Biasi et al., 1996,
1997). Alternatively, as a group, thalamic reticular neurons are
composed of chemically distinct subtypes, among which several
express the calcium binding protein, calretinin (Lizier et al.,

1997), which has also been shown to be poorly labeled in
VGAT-Venus mice (Uematsu et al., 2008). Thus, a subset of
RT projections may be present earlier, but not revealed in our
VGAT-Venus preparation.

Potential insight into the formation of inhibitory projections
to the projections to the barreloids may be drawn from
related studies of the critical period of ocular dominance
plasticity in the primary visual cortex, where a number of
neural mechanisms underlying ocular dominance plasticity
have been proposed (Hensch, 2005; Levelt and Hübener,
2012). Local inhibitory neurons may undergo structural and
synaptic refinement, largely to regulate excitatory synaptic
inputs. More recent studies have also proposed a contribution of
microglia to synaptic pruning of excitatory projections (Schafer
et al., 2012, 2013). Overall though, the focus is generally on
the development of excitatory projections. And, it remains
to understand whether similar synaptic pruning mechanisms
underlie development, structural plasticity, and critical period of
inhibitory projections.

Perspectives
Our study raises several questions regarding the inhibitory
projections to the barreloids that can be addressed using our
slice preparation in the VGAT-Venus transgenic mouse line:
canonical topographic organization, effects of cortical layer 6 on
the development of inhibitory projection to the barreloids, and
temporal pattern of synaptic pruning on inhibitory projections.
In the future, it is also possible to observe excitatory and
inhibitory synaptic projection-interactions with excitatory axons
(e.g., from the brainstem or cortical layer 6) by crossing
with relevant transgenic mouse lines. Such detailed studies
should shed light not only on the development and structural
plasticity of the barreloids but also their relevance to the neural
mechanisms underlying related psychiatric disorders.
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