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Abstract— Robot warehouse automation has attracted signif-
icant interest in recent years, perhaps most visibly in the Ama-
zon Picking Challenge (APC) [1]. A fully autonomous ware-
house pick-and-place system requires robust vision that reliably
recognizes and locates objects amid cluttered environments,
self-occlusions, sensor noise, and a large variety of objects.
In this paper we present an approach that leverages multi-
view RGB-D data and self-supervised, data-driven learning to
overcome those difficulties. The approach was part of the MIT-
Princeton Team system that took 3rd- and 4th- place in the
stowing and picking tasks, respectively at APC 2016.

In the proposed approach, we segment and label multiple
views of a scene with a fully convolutional neural network,
and then fit pre-scanned 3D object models to the resulting
segmentation to get the 6D object pose. Training a deep neural
network for segmentation typically requires a large amount of
training data. We propose a self-supervised method to generate
a large labeled dataset without tedious manual segmentation.
We demonstrate that our system can reliably estimate the 6D
pose of objects under a variety of scenarios. All code, data, and
benchmarks are available at http://apc.cs.princeton.edu/

I. INTRODUCTION

The last two decades have seen a rapid increase in ware-
house automation technologies, satisfying the growing de-
mand of e-commerce and providing faster, cheaper delivery.
Some tasks, especially those involving physical interaction,
are still hard to automate. Amazon, in collaboration with the
academic community, has led a recent effort to define two
such tasks: 1) picking an instance of a given a product ID out
of a populated shelf and place it into a tote; and 2) stowing
a tote full of products into a populated shelf.

In this paper we describe the vision system of the MIT-
Princeton Team, that took 3rd place in the stowing task
and 4th in the picking task at the 2016 Amazon Picking
Challenge (APC), and provide experiments to validate our
design decisions. Our vision algorithm estimates the 6D
poses of objects robustly under challenging scenarios:

· Cluttered environments: shelves and totes may have
multiple objects and could be arranged as to deceive
vision algorithms (e.g., objects on top of one another).

The authors would like to thank the MIT-Princeton APC team members
for their contribution to this project, and ABB Inc. for hardware and
technical support. This project is also supported by the Google Faculty
Award and Intel Gift Fund to Jianxiong Xiao. Andy Zeng and Daniel Suo
are supported by the Gordon Y.S. Wu fellowship. Shuran Song is supported
by the Facebook fellowship. Kuan-Ting Yu is supported by award [NSF-
IIS-1427050] through the National Robotics Initiative. Alberto Rodriguez
is supported by the Walter Henry Gale (1929) Career Development Profes-
sorship.

Fig. 1. Top: The MIT-Princeton robotic picking system. Bottom-left: The
gripper mounted with an Intel RealSense camera (outlined in red). Bottom-
right: Predicted 6D object poses from our vision system during the stow-task
finals of the APC 2016. Each prediction is highlighted with a colored 3D
bounding box.

· Self-occlusion: due to limited camera positions, the
system only sees a partial view of an object.
· Missing data: commercial depth sensors are unreliable

at capturing reflective, transparent, or meshed surfaces,
all common in product packaging.
· Small or deformable objects: small objects provide

fewer data points, while deformable objects are difficult
to align to prior models.
· Speed: the total time dedicated to capturing and pro-

cessing visual information is under 20 seconds.

Our approach makes careful use of known constraints
in the task—the list of possible objects and the expected
background. The algorithm first segments the object from
a scene by feeding multiple-view images to a deep neural
network and then fits a 3D model to a segmented point cloud
to recover the object’s 6D pose. The deep neural network
provides speed, and in combination with a multiple-view
approach boosts performance in challenging scenarios.
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Fig. 2. Overview of the vision algorithm. The robot captures color and depth images from 15 to 18 viewpoints of the scene. Each color image is fed into
a fully convolutional network [2] for 2D object segmentation. The result is integrated in 3D. The point cloud will then go through background removal
and then aligned with a pre-scanned 3D model to obtain its 6D pose.

Training a deep neural network for segmentation requires
a large amount of labeled training data. We have developed a
self-supervised training procedure that automatically gener-
ated 130,000 images with pixel-wise category labels of the 39
objects in the APC. For evaluation, we constructed a testing
dataset of over 7,000 manually-labeled images.

In summary, this paper contributes with:

· A robust multi-view vision system to estimate the 6D
pose of objects;
· A self-supervised method that trains deep networks by

automatically labeling training data;
· A benchmark dataset for estimating object poses.

All code, data, and benchmarks are publicly available [3].

II. RELATED WORK

Vision algorithms for robotic manipulation typically out-
put 2D bounding boxes, pixel-level segmentation [4, 5], or
6D poses [6, 7] of the objects. The choice depends primarily
on manipulation needs. For example, a suction based picker
might have sufficient information with a 2D bounding box or
with a pixel-level segmentation of the object, while a grasper
might require its 6D pose.

Object segmentation. While the 2015 APC winning team
used a histogram backprojection method [8] with manually
defined features [5, 4], recent work in computer vision
has shown that deep learning considerably improves object
segmentation [2]. In this work, we extend the state-of-the-
art deep learning architecture used for image segmentation
to incorporate depth and multi-view information.

Pose estimation. There are two primary approaches for
estimating the 6D pose of an object. The first aligns 3D
CAD models to 3D point clouds with algorithms such as
iterative closest point [9]. The second uses more elaborated
local descriptors such as SIFT keypoints [10] for color data
or 3DMatch [11] for 3D data. The former approach is mainly
used with depth-only sensors, in scenarios where lighting
changes significantly, or on textureless objects. Highly tex-
tured and rigid objects, on the other hand, benefit from local
descriptors. Existing frameworks such as LINEMOD [12] or
MOPED [13] work well under certain assumptions such as
objects sitting on a table top with good illumination, but

underperform when confronted with the limited visibility,
shadows, and clutter imposed by the APC scenario [14].

Benchmark for 6D pose estimation. To properly evalu-
ate our vision system independent from the larger robotic
system, we have produced a large benchmark dataset with
scenarios from APC 2016 with manual labels for objects’
segmentation and 6D poses. Previous efforts to construct
benchmark datasets include Berkeley’s dataset [15] with a
number of objects from and beyond APC 2015 and Rutgers’s
dataset [16] with semi-automatically labeled data.

III. AMAZON PICKING CHALLENGE 2016
The APC 2016 posed a simplified version of the general

picking and stowing tasks in a warehouse. In the picking task,
robots sit within a 2x2 meter area in front of a shelf populated
with objects, and autonomously pick 12 desired items and
place them in a tote. In the stowing task, robots pick all 12
items inside a tote and place them in a pre-populated shelf.

Before the competition, teams were provided with a list
of 39 possible objects along with 3D CAD models of the
shelf and tote. At run-time, robots were provided with the
initial contents of each bin in the shelf and a work-order
containing which items to pick. After picking and stowing
the appropriate objects, the system had to report the final
contents of both shelf and tote. Competition details are in [1].

IV. SYSTEM DESCRIPTION

Our vision system takes in RGB-D images from multiple
views, and outputs 6D poses and a segmented point cloud
for the robot to complete the picking and stowing tasks.

The camera is compactly integrated in the end-effector of a
6DOF industrial manipulator ABB IRB1600id, and points at
the tip of the fingers (Figure 1). This configuration gives the
robot full controllability of the camera viewpoint, and pro-
vides feedback about grasp or suction success. The camera
of choice is the RealSense F200 RGB-D because its depth
range (0.2m–1.2m) is appropriate for close manipulation, and
because it is a consumer-level range sensor with a decent
amount of flexibility on the data capture process.

Due to the tight integration of the camera, the gripper
fingers, even when fully open, occupy a small portion of the
view frustum. We overcome this limitation by combining
different viewpoints, making use of the accurate forward
kinematic reported by the robot controller.



Fig. 3. Camera viewpoints of the RGB-D frames captured for bins and tote,
and captured color images from 6 selected viewpoints. The 15 viewpoints
of a shelf bin (upper-left) are arranged in a 3x5 grid. The 18 viewpoints of
a tote (upper-right) are arranged in a 3x6 grid.

V. 6D OBJECT POSE ESTIMATION

The algorithm estimates the 6D pose of all objects in
a scene in two phases (Figure 2). First, it segments the
RGB-D point clouds captured from multiple views into
different objects using a deep convolutional neural network.
Second, it aligns pre-scanned 3D models of the identified
objects to the segmented point clouds to estimate the 6D
pose of each object. Our approach is based on well-known
methods. However, our evaluations show that when used
alone, they are far from sufficient. In this section we present
brief descriptions of these methods followed by in-depth
discussions of how we combine them into a robust vision
system.

A. Object Segmentation with Fully Convolutional Networks

In recent years, ConvNets have made tremendous progress
for computer vision tasks [17, 2]. We leverage these advance-
ments to segment camera data into the different objects in
the scene. More explicitly, we train a VGG architecture [18]
Fully Convolutional Network (FCN) [2] to perform 2D object
segmentation. The FCN takes an RGB image as input and
returns a set of 40 densely labeled pixel probability maps–
one for each of the 39 objects and one for the background–of
the same dimensions as the input image.

Object segmentation using multiple views. Information
from a single camera view and from a given object, is often
limited due to clutter, self-occlusions, and bad reflections.
We address the missing information during the model-fitting
phase by combining information from multiple views so that
the object surfaces are more distinguishable. In particular, we
feed the RGB images captured from each viewpoint (18 for
stowing from the tote and 15 for picking from the shelf)
to the trained FCN, which returns a 40 class probability

Fig. 4. Pose estimation for objects with no depth. 2D object segmentation
results from a fully convolutional network are triangulated between the
different camera views to create a 3D convex hull (green) of the object. For
simplicity, only two camera views (yellow) are illustrated. The centroid and
aspect ratio of the convex hull are used to estimate the geometric center of
the object and its orientation (from a predefined set of expected orientations).

distribution for each pixel in each RGB-D image. After
filtering by the list of expected objects in the scene, we
threshold the probability maps (three standard deviations
above the mean probability across all views) and ignore any
pixels whose probabilities for all classes are below these
thresholds. We then project the segmented masks for each
object class into 3D space and directly combine them into
a single segmented point cloud with the forward kinematic
feedback from the robot arm (note that segmentation for
different object classes can overlap each other).

Reduce noise in point cloud. Fitting pre-scanned models
to the segmented point cloud directly often gives poor
results because of noise from the sensor and noise from the
segmentation. We address this issue in three steps: First, to
reduce sensor noise, we eliminate spatial outliers from the
segmented point cloud, by removing all point farther than
a threshold from its k-nearest neighbors. Second, to reduce
segmentation noise, especially on the object boundaries, we
remove points that lie outside the shelf bin or tote, and those
that are close to a pre-scanned background model. Finally,
we further filter outlier points from each segmented group of
points by finding the largest contiguous set of points along
each principal axis (computed via PCA) and remove any
points that are disjoint from this set.

Handle object duplicates. Warehouse shelves commonly
contain multiple instances of the same object. Naively seg-
menting RGB-D data will treat two distinct object with
the same label as the same object. Since we know the
inventory list in the warehouse setting, we know the number
of identical objects we expect in the scene. We make use of
k-means clustering to separate the segmented and aggregated
point cloud into the appropriate number of objects. Each
cluster is then treated independently during the model-fitting
phase of the algorithm.

B. 3D Model-Fitting

We use the iterative closest point (ICP) algorithm [19] on
the segmented point cloud to fit pre-scanned 3D models of



Fig. 5. To automatically obtain pixel-wise object labels, we separate the
target objects from the background to create an object mask. There are a
2D and a 3D component in this data process. Both use color and depth
information. The 2D pipeline is robust to thin objects and objects with no
depth, while the 3D pipeline is robust to an unstable background.

objects and estimate their poses. The vanilla ICP algorithm,
however, gives nonsensical results in many scenarios. We
describe here several such pitfalls along with our solutions.

Point clouds with non-uniform density. In a typical RGB-
D point cloud, surfaces perpendicular to the sensor’s opti-
cal axis have often denser point clouds. The color of the
surface changes its reflectivity on the IR spectrum, which
also affects the effective point cloud density. These non-
uniformities are detrimental to the ICP algorithm because
it biases convergence toward denser areas. By applying a
3D uniform average grid filter to the point clouds, we are
able to give them consistent distributions in 3D space.

Pose initialization. ICP is an iterative local optimizer, and as
such, it is sensitive to initialization. The principal directions
of the segmented point cloud, as estimated by PCA, give us
a reasonable first approximation to the orientation of objects
with uneven aspect ratios. We have observed experimentally
that the choice of initial orientation for objects with even
aspect ratios has little effect on the final result of ICP.
Analogously, one would use the centroid of the point cloud
as the initial guess for the geometric center of the object,
however we have observed that since captured point clouds
are only partial, those two centers are usually biased from
each other. To address this, we push back the initial pose
of the pre-scanned object back along the optical axis of the
RGB-D camera by half the size of the object’s bounding box,
under the naive assumption that we are only seeing “half”
the object. This initialization has proven more successful in
avoiding local optimums.

Coarse to fine ICP. Even after reducing noise in the
segmentation step, the resulting point cloud may still have
noise (e.g., mislabeled points from adjacent objects). We
address this with two passes of ICP, acting on different
subsets of the point cloud: we define the inlier threshold of
an ICP iteration as the percentile L2 distance above which we
ignore. ICP with a 90% inlier ratio keeps the closest pairs of
points between the two point clouds up to the 90th percentile.

The main assumption is that regions of the point cloud that
are correctly labeled are denser than regions with incorrect
label. A first pass with a high inlier threshold (90%) moves
the pre-scanned complete model closer to the correct portion
of the partial view than the noisy portion. Starting now from
a coarse but robust initialization, the second pass uses a lower
inlier threshold (45%) to ignore the noisy portion of the point
cloud and converge to a more accurate pose.

C. Handling Objects with Missing Depth.

Many objects in the APC, as it is typical in retail ware-
houses, have surfaces that challenge infrared-based depth
sensors, e.g., with plastic wrapping returning noisy or mul-
tiple reflections, or transparent or meshed materials which
may not register at all. For these objects the captured point
cloud is noisy and sparse, and our pose estimation algorithm
performs poorly.

Our solution leverages the multi-view segmentation to
estimate a convex hull of the object by carving a 3D gridded
space of voxels with the segmented RGB images. This
process results in a 3D mask that encapsulates the real
object. We use the convex hull of that mask to estimate the
geometric center of the object and approximate its orientation
(assuming that the object is axis-aligned).

VI. SELF-SUPERVISED TRAINING

By bringing deep learning into the approach we gain
robustness. This, however, comes at the expense of amassing
quality training data, which is necessary to learn high-
capacity models with many parameters. Gathering and manu-
ally labeling such large amounts of training data is expensive.
The existing large-scale datasets used by deep learning (e.g.
ImageNet [20]) are mostly Internet photos, which have very
different object and image statistics from our warehouse
setting.

To automatically capture and pixel-wise label images, we
propose a self-supervised method, based on three observa-
tions:

· Batch-training on scenes with a single object can yield
deep models that perform well on scenes with multiple
objects [17] (i.e., simultaneous training on cat-only or
dog-only images enables successful testing on cat-with-
dog images);
· An accurate robot arm and accurate camera calibration,

gives us at will control over camera viewpoint;
· For single object scenes, with known background and

known camera viewpoint, we can automatically obtain
precise segmentation labels by foreground masking.

The captured training dataset contains 136,575 RGB-D im-
ages of 39 objects, all automatically labeled.

Semi-automatic data gathering. To semi-autonomously
gather large quantities of training data, we place single
known objects inside the shelf bins or tote in arbitrary poses,
and configure the robot to move the camera and capture
RGB-D images of the objects from a variety of different
viewpoints. The position of the shelf/tote is known to the



robot, as is the camera viewpoint, which we use to transform
the collected RGB-D images in shelf/or tote frame. After
capturing several hundred RGB-D images, the objects are
manually re-arranged to different poses, and the process is
repeated several times. Human involvement sums up to re-
arranging the objects and labeling which objects correspond
to which bin/tote. Selecting and changing the viewpoint,
capturing sensor data, and labeling each image by object
is automated. We collect RGB-D images of the empty shelf
and tote from the same exact camera viewpoints to model the
background, in preparation for the automatic data labeling.

Automatic data labeling. To obtain pixel-wise object seg-
mentation labels, we create an object mask that separates
foreground from background. The process is composed of 2D
and 3D pipelines. The 2D pipeline is robust to thin objects
(objects not sufficient volume to be reliably segmented in 3D
when placed too close to a walls or ground) and objects with
no depth information, while the 3D pipeline is robust to large
miss-alignments between the pre-scanned shelf bin and tote.
Results from both pipelines are combined to automatically
label an object mask for each training RGB-D image.

The 2D pipeline starts by fixing minor possible image
misalignments by using multimodal 2D intensity-based regis-
tration to align the two RGB-D images [21]. We then convert
the aligned color image from RGB to HSV, and do pixel-
wise comparisons of the HSV and depth channels to separate
and label foreground from background.

The 3D pipeline uses multiple views of an empty shelf bin
and tote to create their pre-scanned 3D models. We then use
ICP to align all training images to the background model,
and remove points too close to the background to identify the
foreground mask. Finally, we project the foreground points
back to 2D to retrieve the object mask.

Training neural network. To leverage features trained
from a larger image domain, we use the sizable FCN-VGG
network architecture from [18] and initialize the network
weights using a model pre-trained on ImageNet for 1000-way
object classification. We fine-tune the network over the 40-
class output classifier (39 classes for each APC object and 1
class for background) using stochastic gradient descent with
momentum. Due to illumination and object viewpoint biases,
we maximize performance by training two such segmentation
networks: one for shelf bins and one for the tote. The
segmentation labels automatically generated for the training
data can be noisy. However, we find that the networks are
still capable of working well during test time due to the sheer
size of available training data.

VII. IMPLEMENTATION

All components of the vision system are modularized into
reusable ROS packages, with CUDA GPU acceleration. Deep
models are trained and tested with Marvin [22], a ROS-
compatible and lightweight deep learning framework. Train-
ing our models takes up to 16 hours prior to convergence.

Our robot is controlled by a computer with an Intel
E3-1241 CPU 3.5 GHz and an NVIDIA GTX 1080. The

Fig. 6. Examples from our benchmark dataset. The dataset contains 477
scenes with 2,087 unique object poses seen from multiple viewpoints. In
total, there are 7,713 images with manually-annotated ground truth 6D
object poses and segmentation labels.

run-time speeds per component are as follows: 10ms for
ROS communication overhead, 400ms per forward pass of
VGG-FCN, 1200ms for denoising per scene, and 800ms
on model-fitting per object. On average, pose estimation
time is 3-5 seconds per shelf bin and 8-15 seconds for the
tote. Combined with multi-view robot motions, total visual
perception time is 10-15 seconds per shelf bin and 15-20
seconds for the tote.

VIII. EVALUATION

We evaluate variants of our method in different scenarios
in the benchmark dataset to understand (1) how segmentation
performs under different input modalities and training dataset
sizes and (2) how the full vision system performs.

A. Benchmark Dataset

Our benchmark dataset, ‘Shelf&Tote’, contains over 7,000
RGB-D images spanning 477 (Figure 6) scenes at 640 ×
480 resolution. We collected the data during practice runs
and competition finals for the APC and manually labeled 6D
object poses and segmentations using our online annotator
(Figure 7). The data reflects various challenges found in the
warehouse setting: reflective materials, variation in lighting
conditions, partial views, and sensor limitations (noisy and
missing depth) over cluttered environments.



Fig. 7. The 3D online annotation tool used to label the benchmark. The
drag-and-drop UI allows annotators to navigate in 3D space and manipulate
point clouds with ease. Annotators are instructed to move and rotate a
pre-scanned object model to its ground truth location in a 3D point cloud
generated from RGB-D data. Labeling one object takes about 1 minute.

Tables I and II summarize our experimental results and
highlight the differences in performance over different over-
lapping scene categories:

· cptn: during competition at the APC finals.
· environment: in an office (off); in the APC competition

warehouse (whs).
· task: picking from a shelf bin or stowing from a tote.
· clutter: with multiple objects.
· occlusion: with % of object occluded by another object,

computed from ground truth.
· object properties: with objects that are deformable,

thin, or have no depth from the RealSense F200 camera.

B. Evaluating Object Segmentation

We test several variants of our FCN on object segmenta-
tion to answer two questions: (1) can we leverage both color
and depth segmentation? (2) is more training data useful?

Metrics. We compare the predicted object segmentation from
our trained FCNs against the ground truth segmentation
labels of the benchmark dataset using pixel-wise precision
and recall. Table I displays the mean average F-scores (F =
2 · precision·recall

precision+recall ).

Depth for segmentation. We use HHA features [23] to
encode depth information into three channels: horizontal
disparity, height above ground, and angle of local surface
normal with the inferred direction of gravity. We compare
AlexNet trained on this encoding, VGG on RGB data, and
both networks concatenated in Table I.

We find that adding depth does not yield any notable
improvements in segmentation performance, which could be
in part due to the noisiness of the depth information from
our sensor. On the other hand, we observe that the FCN
performs significantly better when trained on color data, with
the largest disparity for deformable objects and thin objects,
whose textures provide more discriminative power than their
geometric structure.

Size of training data. Deep learning models have seen
significant success, especially if given large amounts of

training data. However in our scenario—instance-level ob-
ject segmentation on few object categories—it is not clear
whether such a large dataset is necessary. We create two
new datasets by randomly sampling 1% and 10% of the
original and use them to train two VGG FCNs (Table I).
We confirm marked improvements in F-score across all
benchmark categories going from 1% to 10% to 100% of
training data.

C. Evaluating Pose Estimation

We evaluate several key components of our vision system
to determine whether they increase performance in isolation.

Metrics. We report the percentage of object pose predictions
with error in orientation smaller than 15◦, and the percentage
with error in translation smaller than 5cm. The metric also
recognizes the structural invariance of several objects, some
of which are axially-symmetric (cuboids), radially-symmetric
(bottles, cylinders), or deformable (see web page [3] for
further details). We have observed experimentally that these
bonds of 15◦ and 5cm are sufficient for picking with sensor-
guarded motions.

Multi-view information. With multiple views the system
overcomes missing information due to self-occlusions, other-
object occlusions, or clutter. Multi-view information also
alleviates problems with illumination on reflective surfaces.

To quantify the effect of the multiple-view system, we test
the full vision system on the benchmark with three different
subsets of camera views:
· [Full] All 15 views for shelf bins a1shelf = {0 . . . 14} and

all 18 views for the tote a1tote = {0 . . . 17}.
· [5v-10v] 5 views for shelf a2shelf = {0,4,7,10,14} and 10

views for tote a2tote ={0,2,4,6,8,9,11,13,15,17}, with a
sparse arrangement and a preference for wide-baseline
view angles.
· [1v-2v] 1 view for shelf bins a3shelf = {7} and 2 views

for the tote a3tote ={7,13}.
The viewpoint ids are zero-indexed in row-major order as
depicted in Figure 3. Our results show that multiple views
robustly address occlusion and heavy clutter in the warehouse
setting (Table II [clutter] and [occlusion]). They also present
a clear contrast between the performance of our algorithm
using a single view of the scene, versus multiple views of
the scene (Table II [Full] v.s [1v-2v]).

Denoising. The denoising step described in Section V proves
important for achieving good results. With this turned off, the
accuracy in estimating the translation and rotation decreases
by 6.0% and 4.4% respectively (Table II).

ICP improvements. Without the pre-processing steps to
ICP, we observe a drop in prediction accuracy of 0.9% in
translation and 3.1% in rotation (Table II).

Performance upper bound. We also evaluated how well
the model-fitting part of our algorithm alone performs on
the benchmark by using ground truth segmentation labels
from the benchmark as the performance upper bound.



Fig. 8. Example results from our vision system. 6D pose predictions are highlighted with a 3D bounding box. For deformable objects (cloth in a,c,i) we
output the center of mass. We additionally illustrate successful pose predictions for objects with missing depth (water bottle, black bin, green sippy cup,
green bowl)

Fig. 9. Several common failure cases. These include low-confidence predictions due to severe occlusion (missing object labels in m,o,p), completely
incorrect pose predictions due to confusion in texture (m,p,r) or bad initialization (n,q), and model-fitting errors (o).

D. Common Failure Modes

Here we summarize the most common failure modes of
our vision system, which are illustrated in Figure 9:

· The FCN segmentation for objects under heavy occlu-
sion or clutter are likely to be incomplete resulting in
poor pose estimation (Fig. 8.e), or undetected (Fig. 9.m
and p). This happens with more frequency at back of
the bin with poor illumination.
· Objects color textures are confused with each other.

Figure 9.r shows a Dove bar (white box) on top of a
yellow Scotch mail envelope, which combined have a
similar appearance to the outlet plugs.
· Model fitting for cuboid objects often confuses corner

alignments (marker boxes in Fig. 9.o). This inaccuracy,
however, is still within the range of tolerance that the
robot can tolerate thanks to sensor-guarded motions.

Filtering failure modes by confidence score. We compute
a confidence score per object pose prediction that favors high
precision for low recall. Specifically, the confidence score of
a pose prediction equals the mean value of confidence scores
over all points belonging to the segmentation of the object.
We observe that erroneous poses (especially those due to
partial occlusions) more often have low confidence scores.
The robot system uses this value to target only predictions
with high scores.

We evaluate the usefulness of the confidence scores by
recalling the output of the perception system to only consider
predictions with confidence scores larger than 10% and 70%
respectively (see Table II). These confidence percentages
are important thresholds, because the full robot system,
predictions with < 10% confidence (conf-10, at 78% recall)
are ignored during planning, and prediction with > 70%
confidence (conf-70, at 23% recall) trigger a pick attempt.

IX. DISCUSSION

Despite tremendous advances in computer vision, many
state-of-the-art well-known approaches are often insufficient
for relatively common scenarios. We describe here two
observations that can lead to improvements in real systems:

Make the most out of every constraint. External constraints
limit what systems can do. Indirectly they also limit the
set of states in which the system can be, which can lead
to opportunities for simplifications and robustness in the
perception system. In the picking task, each team received
a list of items, their bin assignments, and a model of the
shelf. All teams used the bin assignments to rule out objects
from consideration and the model of the shelf to calibrate
their robots. These optimizations are straightforward and
useful. However, further investigation yields more opportu-
nity. By using these same constraints, we constructed a self-
supervising mechanism to train a deep neural network with
significantly more data. As our evaluations show, the volume
of training data is strongly correlated with performance.

Designing robotic and vision systems hand-in-hand. Vi-
sion algorithms are too often designed in isolation. However,
vision is one component of a larger robotic system with
needs and opportunities. Typical computer vision algorithms
operate on single images for segmentation and recognition.
Robotic arms free us from that constraint, allowing us to
precisely fuse multiple views and improve performance in
cluttered environments. Computer vision systems also tend
to have fixed outputs (e.g., bounding boxes or 2D segmenta-
tion maps), but robotic systems with multiple manipulation
strategies can benefit from variety in output. For example,
suction cups and grippers might have different perceptual
requirements. While the former might work more robustly
with a segmented point cloud, the latter often requires



TABLE I
2D OBJECT SEGMENTATION EVALUATION (PIXEL-LEVEL OBJECT CLASSIFICATION AVERAGE % F-SCORES).

environment task clutter (# of objects) occlusion (%) object-specific properties
network all cptn off whs shelf tote 1 - 3 4 - 5 6 + < 5 5 - 30 30 + dfrm. no depth thin

color 45.5 42.7 46.8 44.2 47.7 43.7 53.0 46.0 42.2 49.9 41.4 33.3 54.0 47.9 41.7
color+depth 43.8 41.5 44.8 42.6 45.8 41.9 52.2 43.5 40.0 47.5 39.1 32.6 51.1 47.7 37.2

depth 37.1 35.0 38.6 35.5 39.8 34.9 45.5 37.0 33.5 40.8 33.2 26.3 44.1 42.3 29.1
10% data 20.4 18.8 19.5 21.3 21.7 20.3 36.0 21.6 18.0 21.2 25.5 0.0 41.9 17.2 33.3
1% data 8.0 9.2 7.2 8.8 15.8 6.5 17.3 7.5 6.0 7.7 8.3 7.8 10.1 5.7 3.5

TABLE II
FULL VISION SYSTEM EVALUATION (AVERAGE % CORRECT ROTATION AND TRANSLATION PREDICTIONS FOR OBJECT POSE)

environment task clutter (# of objects) occlusion (%) object-specific properties
algorithm all cptn off whs shelf tote 1 - 3 4 - 5 6 + < 5 5 - 30 30 + dfrm. no depth thin
Full (rot.) 49.8 62.9 52.5 47.1 50.4 49.3 56.1 54.6 45.4 56.9 43.2 33.9 - 55.6 54.7

Full (trans.) 66.1 71.0 66.3 65.9 63.4 68.1 76.7 66.7 61.9 79.4 57.4 27.3 75.4 63.3 58.1
5v-10v (rot.) 44.0 48.6 50.9 35.9 50.9 38.9 53.9 53.1 34.4 47.6 40.0 26.7 - 47.4 42.4

5v-10v (trans.) 58.4 50.0 63.7 52.1 61.0 56.5 69.4 63.0 50.3 66.2 49.8 21.3 54.7 67.3 35.4
1v-2v (rot.) 38.9 60.0 41.1 36.5 45.0 35.3 45.7 45.2 32.7 43.6 33.9 14.8 - 40.9 35.4

1v-2v (trans.) 52.5 50.0 56.3 48.2 53.8 51.8 60.4 56.5 46.7 58.2 47.8 16.7 52.9 55.9 33.3
conf-70 (rot.) 58.3 77.3 65.0 49.0 64.2 53.2 63.8 69.3 49.0 63.7 43.1 36.4 - 64.5 81.6

conf-70 (trans.) 84.5 95.5 84.7 84.2 82.6 86.1 86.2 84.1 83.2 87.1 77.1 72.7 83.1 77.4 85.7
conf-10 (rot.) 55.0 70.8 57.0 52.7 54.9 55.0 58.6 59.3 51.0 59.8 50.0 34.2 - 53.1 60.2

conf-10 (trans.) 76.5 81.2 76.7 76.3 73.4 79.1 80.8 74.4 75.4 84.0 70.0 40.0 78.1 72.0 70.1
no denoise (rot.) 43.8 45.6 46.9 40.6 45.3 42.7 52.0 46.7 39.5 51.1 37.3 28.1 - 48.8 54.1

no denoise (trans.) 61.7 66.4 61.9 61.5 60.4 62.6 74.8 62.7 56.4 76.5 52.9 19.9 75.0 62.3 53.8
no ICP+ (rot.) 48.9 60.8 51.2 46.7 49.1 48.8 55.4 54.1 44.4 55.8 41.9 36.2 - 53.6 52.5

no ICP+ (trans.) 63.0 67.2 63.2 62.9 59.7 65.4 72.1 64.4 59.1 75.2 57.0 24.6 67.3 62.8 53.2
gt seg rot. 63.4 74.4 65.8 60.9 68.1 60.1 69.1 68.8 59.1 67.6 60.0 53.5 - 58.0 74.1

gt seg trans. 88.1 90.4 85.7 90.4 86.9 88.9 88.3 88.0 88.0 90.7 90.3 71.4 90.5 71.5 79.8

knowledge of the object pose and geometry.

X. CONCLUSION

In this paper, we present the vision system of Team MIT-
Princeton’s 3rd- and 4th-place entry in the 2016 Amazon
Picking Challenge. To address the challenges posed by
the warehouse setting, our framework leverages multi-view
RGB-D data and data-driven, self-supervised deep learning
to reliably estimate the 6D poses of objects under a variety of
scenarios. We also provide a well-labeled benchmark dataset
of APC 2016 containing over 7,000 images from 477 scenes.
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