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ABSTRACT

A linear least squares inversion, based on analytic partition coefficient expressions, is
developed to estimate the fluid and formation shear wave q values from spectral ratio
measurements-of the guided wave arrivals of full waveform acoustic logs recorded in open
boreholes. The method provides excellent results when applied to synthetic data. Real
data applications provide useful results, but noise reduces the resolution and increases
the variance of the estimates. Permeability related losses and transmission losses (if in­
terfaces are present) can have large effects on the estimated values. A similar procedure
is developed for cased hole geometries. In this situation, the guided wave measurements
are used to provide estimates of the fluid, formation shear wave, and cement shear wave
q values. Application of the method to synthetic data indicates that the formation
shear q estimate is extremely sensitive to the pseudo-Rayleigh wave data quality very
close to the cutoff frequency.

INTRODUCTION

Although surface geophysical measurements can provide much information on the nature
of the earth's interior, data collected from boreholes drilled into the shallow crust provide
direct knowledge about the geology of the subsurface. Rock cores extracted along the
course of a borehole allow the actual geologic record to be examined in detail. Borehole
geophysical measurements provide complementary information on the in-situ physical
properties of the rocks in the subsurface, and also provide much needed calibration for
any surface geophysical measurements. Borehole acoustic measurements are particularly
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useful in providing information about the in-situ physical properties of the subsurface
formations. Acoustic measurements are obtained by generating a pressure pulse along
the axis of a fluid filled borehole and measuring the resulting pressure at several receivers
situated on the axis some distance away. The most common method measures the travel
time of the first arrival which travels at the P wave velocity of the formation along the
borehole wall. By recording the entire wavefield, however, much additional information
is gained. The first arrival of the full waveform acoustic log is the compressional head
wave which propagates along the borehole wall. In most situations two other prominent
arrivals are present: the pseudo-Rayleigh and Stoneley waves. These are borehole guided
waves. The pseudo-Rayleigh wave is a dispersive wavetrain which is related to the
fundamental and harmonic resonances of the borehole. The onset of this wave arrives
at the shear wave velocity of the formation. The Stoneley wave is an interface wave
which propagates along the borehole wall and is sensitive to the borehole fluid properties
and the rigidity of the subsurface formations.

In most fast formation situations (that is, formation shear wave velocity greater than
the borehole fluid velocity), the shear head wave is lost in the high amplitude pseudo­
Rayleigh arrival, while in slow formations, no shear head wave (or pseudo-Rayleigh
wave) is generated. As a result, the guided waves must be used to obtain formation
shear wave q (Qp) estimates. The use of the guided waves is actually preferred since
no corrections for geometrical spreading losses are required.

A knowledge of the in-situ P and S wave attenuation factors can provide qualitative
information on the formation lithology, degree of consolidation, rock quality or fracture
index, and possibly, the pore fluid saturation conditions (Johnston, 1978; Winkler and
Nur, 1979; Toksoz et aI., 1979; Johnston et al., 1979). The guided wave attenuation
(both Stoneley and pseudo-Rayleigh) is controlled by the fluid q value and the shear
wave q values of all solid layers in the borehole geometry. Estimates of the formation
P wave q value (Qa), therefore, must be obtained by other means. The formation
Qa is generally estimated by spectral ratio methods applied to the earliest part of the
P wave arrival (with appropriate spreading corrections applied) (Cheng et aI., 1982).
Cheng et a!. (1986) have used the entire P - PL packet to obtain Qa estimates from full
waveform acoustic logs. In addition to the body wave q effects, the Stoneley and pseudo­
Rayleigh wave attenuation may also be affected by fluid flow in permeable formations
(Rosenbaum, 1974; Williams et aI., 1984; Schmitt, 1985; Cheng et aI., 1987). Such
losses are ignored in this paper. As will be demonstrated later, ignoring permeability
related losses can result in errors being introduced in the calculated formation and fluid
q estimates. By assuming that the body wave q values are frequency independent,
partition coefficient expressions derived in Cheng et al.(1982) can be used to estimate the
q values of interest. In this paper an inverse problem, utilizing partition coefficients as
the model, is formulated to obtain formation Q~l and the fluid Q-l from the measured
attenuation (spectral ratios) of the Stoneley and pseudo-Rayleigh waves in open or cased
boreholes.
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The attenuation of a guided wave is composed of a linear combination of the body wave
attenuation values of the layers present in the borehole geometry, assuming all losses
are due to layer anelasticity (Cheng et al., 1982). It is further assumed that all body
wave Q values are frequency independent. By obtaining measurements of Stoneley and
pseudo-Rayleigh wave attenuation over as broad a frequency range as possible, estimates
of the body wave attenuation values can be obtained. As was shown in Burns et al.
(1985), the guided waves are not sensitive to all Q values in a given layered model.
In an open hole configuration, the guided wave attenuations are insensitive to the Qa
of the formation, while in cased hole geometries, they are insensitive to the Qa of the
cement, casing, and formation. Such insensitivity helps to simplify the inverse problem
by reducing the number of parameters being solved for.

Previous Work

Cheng et a!. (1982) and Willis (1983) outlined a method of estimating the formation
shear wave attenuation (Qpl) in open boreholes by using calculated partition coefficient
expressions and measured spectral ratios of a given guided wave. Previous applications
of the method, however, had two major problems. First, in order to separate the guided
wave arrivals from the total trace, tapered variable length windows were used on the
time domain record. Because of the relatively short receiver separations used in most
full waveform acoustic logging tools (1 to 3 m), the arrivals are often interfering and
difficult to separate. If, for example, the pseudo-Rayleigh wave has a well developed
Airy phase, it will, in most cases, arrive after the Stoneley arrival. The pseudo-Rayleigh
wave, then, arrives both before and after the Stoneley wave, resulting in the need for
two windows to separate the wave from the remainder of the trace. The dispersive
nature of the guided waves also requires that the time domain window lengths change
between the near and far receiver traces. These complications make the application of
such windowing extremely difficult.

The second problem faced in previous applications was narrow band data. In the
past few years, the frequency band used in full waveform logging has increased in width.
In particular, lower frequencies are being included which results in much more efficient
excitation of the Stoneley wave. In the following section a method is proposed which
can be applied to both open and cased hole geometries. The guided waves are separated
in the frequency domain, and both the Stoneley and pseudo-Rayleigh waves are used
simultaneously.
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It has been demonstrated (Burns, 1986) that the viscosity of the borehole fluid has
a negligible effect on the guided wave propagation for the frequencies of interest in
acoustic logging and reasonable values of fluid viscosity. In particular, the attenuation
due to viscous drag along the borehole wall was found to be a minor component of the
total guided wave attenuation. These results indicate that the assumption of frequency
independent q values is justified even for the borehole fluid. Using this assumption,
then, the temporal Q-l of a guided wave in a borehole can be represented (for small
attenuation) by a linear combination of dissipation factors (body wave Q-l values) for
each layer through which it propagates. The weighting factors corresponding to these
Q-l values are the partition coefficients or normalized phase velocity partial derivatives.
In Burns et al. (1985) analytic expressions, derived by Cheng et al. (1982), were
presented and calculations were made for the Stoneley and pseudo-Rayleigh modes in a
number of multilayered borehole geometries.

The temporal Q-l, at angular frequency w, for either guided wave in an open bore­
hole can be represented by:

and for a well bonded cased borehole by:

Q-l(W) = [at~] Q-l + [ae,.~] Q-l + [P"'~] Q-l
c 8at t c 8a a ••, C 8" fJ..,

til etlg til }JC8g W

+ [aem.~] Q-l + [P,m.~] Q-l +'
C a..... Qemt C 8 R (j(nrs.t

~emt til Pcmt til

where the subscripts refer to:

(1)

(2)
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f = borehole fluid
csg = casing
cmt = cement
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(parameters with no subscripts refer to the formation). The partial derivatives, or
partition coefficients, are functions of frequency. The results of Cheng et al. (1982) and
Burns et al. (1985) allow us to simplify these equations. In the open borehole situation,
only about 5% (or less) of the guided wave energy is in the form of compressional strain
energy in the formation. The Q;:;l term in Equation (1) can therefore be eliminated with
minimal resulting errors. Similarly, in cased boreholes, the formation P-wave partition
coefficient is small « 5 - 10%) and can be ignored. In addition, because steel casing
has very high q values in comparison to the other layers ( Q"••• = Qfi••• = 1000 is the
usual assumption), the casing terms in Equation (2) will have little affect on predicted
dissipation of the guided wave and can be eliminated. Finally, the term in Equation (2)
corresponding to the P-wave energy in the cement layer will also be eliminated because
of its negligible effect (about 1% in most models). The resulting linear approximation
for the open borehole geometry, then, is:

(3)

and for the cased borehole:

The error in guided wave Q-l due to these simplifications is about 2-3 percent for the
open hole geometry, and about 5-7 percent for the cased hole geometry.

In a fast formation (open or cased), the Stoneley wave is most sensitive to the fluid
q value, while the pseudo-Rayleigh wave, near the cutoff frequency, is most sensitive
to the formation shear wave q value. In a slow formation, the Stoneley wave becomes
quite sensitive to the formation shear wave q. In general, we are most interested in the
estimation of the formation shear wave q value. In fast formation situations, then, both
the Stoneley and pseudo-Rayleigh wave amplitude information will be used, while in a
slow formation, only the Stoneley wave information is available. It should also be noted
that the shear wave q value of the cement layer in the cased borehole formulation may
be of some interest as an indicator of the cement quality or the presence of channeling
(i.e., zones of non-existent or poorly cured cement along which fluids may migrate).
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The inverse problem can now be set up. By using Stoneley and pseudo-Rayleigh
wave information (when available) simultaneously and measuring spectral ratios for each
wave over as wide a frequency range as possible, an over determined system of linear
equations results which takes the form:

where:

Ax=b

A = N x M matrix composed of calculated partition coefficients
x = M x 1 parameter vector (layer dissipation factors)
b = N x 1 data vector (guided wave dissipation values)

(5)

The N equations represent N frequency values of the Stoneley wave for a slow formation.
For a fast formation, however, the structure of the system is:

where:

N l
N2

bS t
b pR
Ast

ApR

[
ASt ] x = [ bS t ]
ApR bpR

= number of Stoneley wave frequency values
= number of pseudo-Rayleigh wave frequency values
= Stoneley wave dissipation data
= pseudo-Rayleigh wave dissipation data
= Stoneley wave partition coefficients
= pseudo-Rayleigh wave partition coefficients

(6)

A solution to Equation (5) is obtained by using a special case of the stochastic
inverse (Aki and Richards, 1980). The stochastic inverse is a least squares solution
which includes the statistical aspects of both the data and the model. If the model
and data covariances can each be represented by a constant variance times the identity
matrix, the damped least squares solution emerges (Aki and Richards, 1980):
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and:
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oo~ = data variance
00; =0 model (parameter) variance
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(7)

The damping factor(e2) ensures that the matrix (ATA) is non-singular by sup­
pressing the contributions of eigenvectors whose eigenvalues are less than e2 (Wiggins,
1972; AId and Richards, 1980). The damped least squares solution can also be derived
by solving the least squares problem subject to a bounding constraint on the sum of
squared errors. This approach is referred to as the Levenburg-Marquardt method (Lines
and Treitel, 1984). The addition of a damping term prevents the solution from being
dominated by small eigenvalue directions which are very sensitive to the presence of
noise.

Several additional calculations can be made to try to characterize the solution Xo
First, the parameter resolution is calculated. Substituting Equation (5) into Equation
(7) results in:

x=Rx (8)

The parameter resolution matrix (R) provides a measure of how well the parameter
estimation x matches the actual (unique) least squares solution. The second calculation
to be performed is to see how well the model response matches the data. The predicted
model behavior is given by:

Ax=b (9)
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which, together with Equation (7), yields:

b=Sb (10)

S is a measure of the model resolution in data space (Wiggins, 1972). The closer the
matrix is to the identity matrix, the better the agreement between the model and data.
Finally, the parameter covariance matrix (<Ti) is calculated to give some measure of the
error in parameters due to errors (noise) in the data (AId and Richards, 1980).

The parameter and data resolution matrices and the covariance matrix for the
damped least squares solution are given by:

S = A(ATA + ~I)-lAT

The data variance can be estimated by (Wiggins, 1972):

(11)

(12)

(13)

(14)

That is, the final squared error between the model and data is assumed to be due to
noise or errors in the data.

As ,2 increases, the parameter covariance dec~eases, but the resolution of the solution
is also reduced. The selection of an appropriate damping factor is made by weighing
the trade off between parameter resolution and variance. As will be seen in the next
section, the inversion of noise free synthetic data can be carried out with ,2 = 0 , but
real data will usually require some damping due to the presence of noise.
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In order to fully explain the exact procedure used to obtain attenuation estimates, and
to investigate the accuracy and sensitivity of the results in a controlled situation, the
inversion procedure is first carried out on synthetic data for an open and cased borehole
geometry. A flow chart of the computational procedure is given in Figure 1. The data
vector is constructed from the spectral ratios of the Stoneley and pseudo-Rayleigh waves
over a range of frequency values. The spectral ratios are converted to temporal Q-l
values by:

(15)

where:

= frequency
= near receiver spectral amplitude at frequency f
= far receiver spectral amplitude at frequency f
= receiver separation
= group velocity at frequency f

The group velocity used in Equation (15) is calculated analytically from the input
model parameters. The model matrix, which consists of calculated partition coefficients,
is then generated. The resulting system of linear equations is solved for the parameters
of interest (Qt and Q;l in an open hole geometry; Q1\ Q;l and Q"p.1m. in a cased
hole geometry) by using the damped least squares method.

Synthetic data from Tubman (1984) is used to test the routine. The data was
generated by the discrete wavenumber method (White and Zechman, 1968; Cheng and
Toksiiz, 1981) for a fast formation in an open and cased hole situation. The open hole
data for two offsets is shown in Figure 2, while the cased hole data is given in Figure 6.
The parameters used to generate the data are given in Table 1. The source wavelet is a
13kHz center frequency damped sinusoidal signal used by Tsang and Rader (1979). In
both examples, the 3.05m (10') and 4.57m (15') source-receiver offsets are used as the
near and far receiver traces for input into the inversion procedure.



134 Burns and Cheng

1
WINDOW

WAYUORMa

r
AMPLITUDE

ISPECTRA

SELECT ST,PR

FREOUENCIElI

SPECTRAL RATlOal

I MODEL CA LCULATIONII I

DAMPED
LEAST SQUARElI

Q ESTIMATElI

CHANGE
Y DAMPING

FACTOR?

N

Figure 1: Flow chart of the computational procedure used to estimate attenuation
factors
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Table 1: Modelling parameters used to generate the synthetic data

LAYER Vp V, p Q" QiJ
(m/sec) (m/sec) (g/cm3)

fluid 1676 a 1.2 20 a
formation 4878 2601 2.16 60 60
casing 6098 3354 7.5 1000 1000
cement 2823 1729 1.92 40 30

Open Hole
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The two trac~s used in the open hole inversion are shown in Figure 2 with the start of
the guided wave window noted on each trace. The amplitude spectra of the two traces
are shown in Figure 3. Note that although the Stoneley and pseudo-Rayleigh waves are
difficult to separate in the time domain, separation in the frequency domain is fairlY
straight forward. The spectral ratios are given in Figure 4 with the selected frequency
ranges for each wave indicated. The inversion results obtained for this example are:

Qi = 19.5

Q~ = 59.1

(16)

As noted in Table 1, the actual q values used to generate the synthetic traces are:

QiJ = 60

(17)

The predicted results are in excellent agreement with the actual values. The small
differences can be attributed to the fact that the formation compressional wave Q ef­
fects have been neglected in the model. The predicted values were calculated without
damping, and as such, are perfectly resolved (Equation 11).

The frequency ranges chosen for the spectral ratios of the two wave types warrant
some discussion. For the Stoneley wave, the frequency range chosen is not critical (for
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Figure 2: Synthetic microseismograms for an open borehole with a fast formation. The
two offsets are 3.05m (10') and 4.57m (15'). The start of the guided wave window is
noted on each trace
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Figure 3: Amplitude spectra for the guided wave portions of the synthetic microseis­
mograms given in Figure 2



138 Burns and Cheng

9

1-- p-R---I
-<.....
N -I
<
Z
...I

-2 {

t 0000 12000 I 4000 I6000890069994099

-3-l--r---I--.-t-.,....-t-....-t---,-+---r-I--r--;
2999

FREQUENCY (Hz)

Figure 4: Spectral ratios obtained from the spectra in Figure 3. The frequency ranges
for the Stoneley and pseudo-Rayleigh waves are indicated
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the fast formation situation) since the partition coefficients show very little variation
with frequency (Figure 5). The partition coefficients for the pseudo-Rayleigh wave,
however, change rapidly for frequencies between the cutoff frequency and the Airy phase
frequency (Figure 5). The pseudo-Rayleigh wave is very sensitive to the formation shear
wave q value at frequencies close to the cutoff frequency. As a result, a better estimate
of the formation Q /3 can be obtained if spectral ratio values close to the cutoff frequency
are used in the inversion. The cutoff frequency of the fundamental mode of the pseudo­
Rayleigh wave is calculated within the inversion routine based on the model parameters
supplied. (This calculation is performed by solving the period equation for the frequency
at which the phase velocity equals the formation shear velocity.) The spectral ratios
of the pseudo-Rayleigh wave can then be chosen as close to the cutoff frequency as
possible. The calculation of the cutoff frequency also provides a check on the accuracy
of the input model parameters, particularly the borehole radius, fluid velocity, and shear
velocity, since the calculated cutoff frequency can be compared with the value which is
evident from the amplitude spectrum of the data. In Figure 3, the amplitude spectra
of the data traces indicate that the cutoff frequency is between 8 and 9 kHz, while the
calculated value is 8044kHz, indicating that the input parameters are in good agreement
with the data.

The inversion results for this open hole synthetic example are excellent, but the data
is noise free and all the model parameters are exactly known. Although the presence of
noise in the data will certainly degrade the results, this degradation will be reflected in
the calculated solution variances. A more critical question involves the degradation of
the solution due to errors in the 'known' model parameters, that is, the parameters used
to generate the partition coefficients. These parameters are (for the open borehole): the
fluid velocity and density, the formation P and S wave velocities and density, and the
borehole radius. The partition coefficient curves (Figure 5) indicate that the Stoneley
wave attenuation is primarily controlled by the fluid attenuation at all frequencies (for
a fast formation), while the pseudo-Rayleigh wave is controlled by the formation shear
wave attenuation at low frequencies and the fluid attenuation at high frequencies. The
estimated values of Q/3, then, will be controlled by the low frequency behavior of the
pseudo-Rayleigh wave partition coefficients, and any errors in model parameters which
affect the partition coefficient calculations in this region could greatly affect the forma­
tion shear wave q estimates. The fluid q, on the other hand, should be very robust to
errors in model parameters since the estimated value is controlled by the Stoneley wave
partition coefficient behavior which is quite insensitive to model variations.

To quantify the sensitivity of the q estimates to model parameter errors, the inver­
sion procedure has been repeated with the key model parameters perturbed by 5-10%
about their actual values. The resulting solutions are given in Table 2. Again, no damp­
ing was utilized in the inversion. In general, the estimated fluid q, as expected, is very
insensitive to parameter errors, while the formation Q/3 value is very sensitive to errors
in parameters which change the predicted cutoff frequency or shape of the partition
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Figure 5: Partition coefficient curves for the open borehole synthetic example. (a) Stone­
ley wave and (b) pseudo-Rayleigh wave. P,m and S'm refer to the compressional and
shear wave partition coefficients in the formation, and fluid refers to the compressional
wave partition coefficient in the fluid
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Table 2: Sensitivity of synthetic data estimated q values to model parameter pertur­
bations

none 19.5 59.1
v. (-5%) 19.05 51.9

v. (+5%) 19.9 68.9
V, (-5%) 20.6 985.
V, (-10%) 21.2 -31.7
R (-5%) 19.7 38.9
R (+5%) 19.0 171.1
P (-5%) 19.3 65.5
P (+5%) 19.6 54.5

Iparameter varied I Q I I Q f3 I

coefficient curves. The Q f3 estimates are particularly sensitive to the fluid velocity and
borehole radius.

All of these calculations were carried out for parameter variations of 5-10% about
the actual values to compare the relative effects of errors in different parameters. The
expected errors for these parameters, however, are generally less than 5%. Formation
shear velocity can be measured with an accuracy of a few percent (Willis and Toksoz,
1983). Fluid velocity, although seldom measured, is fairly well constrained and can be
estimated based on the fluid composition and density (which are measured). The fluid
velocity generally varies between about 1480 m/sec for fresh water to about 1680 m/sec
for very dense drilling fluid, a difference of 12%. Given knowledge of the fluid density
and composition, however, the velocity can be estimated to within a few percent. The
formation Qf3 estimates are also very sensitive to errors in the borehole radius. Caliper
logs, however, are routinely available to provide information on the hole size. Data from
zones displaying large borehole size variations should be avoided.

Cased Hole

The second synthetic example is for a cased hole geometry. The parameters used to
generate the synthetic data are given in Table 1. The two traces used in the inversion
are shown in Figure 6. The start of the guided wave window is also noted on this
figure. The amplitude spectra for these traces are given in Figure 7, while the spectral
ratios and selected frequency ranges are shown in Figure 8. The inversion results (no
damping) for this example are:
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Figure 6: Synthetic microseismograms for a cased borehole with a fast formation. The
two offsets are 3.05m (10') and 4.57m (15'). The start of the guided wave window is
noted on each trace
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Figure 7: Amplitude spectra for the guided wave portions of the synthetic microseis­
mograms given in Figure 6
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Figure 8: Spectral ratios obtained from the spectra in Figure 7. The frequency ranges
for the Stoneley and pseudo-Rayleigh waves are indicated
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Qi = 20.7

Q'P = 43.8

Q~ = 29.
/-'llmt

Q/3 = 60

145

(18)

(19) .

The estimates in this case are excellent for the fluid and cement shear q values, but
in error by about 25% for the formation shear q value. This error is the result of not
selecting frequencies close enough to the cutoff frequency. The cutoff frequency for this
example is about 13kHz, although the identifiable pseudo-Rayleigh mode in Figure 7
appears to have a cutoff frequency of about 15kHz (it is possible that the notch in the
amplitude spectrum at about 13kHz may represent the pseudo-Rayleigh wave cutoff).
Data resolution calculations (Equation 12) indicate that the model can only match the
average of the Stoneley wave data attenuation. The Stoneley wave Q-l is invariant
with frequency in a cased hole situation and is controlled by the fluid Q-l value. The
pseudo-Rayleigh wave provides the information for estimating the formation and cement
q values due to its varying depth of investigation. At frequencies very close to the cutoff
frequency, the pseudo-Rayleigh attenuation is most sensitive to the formation shear wave
q, at intermediate frequencies it is most sensitive to the cement shear wave q, and at
high frequencies it is most sensitive to the fluid q value. The presence of the casing
and cement layers results in a rapid decrease in the sensitivity to formation Q /3 as the
frequency increases. This behavior is seen in the partition coefficient curves shown in
Figure 9. Such a rapid change in the partition coefficient values for the pseudo-Rayleigh
wave indicates that the Q /3 estimate in a cased hole situation will be very sensitive to
the data quality near the cutoff frequency.
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Figure 9: Pseudo-Rayleigh wave partition coefficient curves for the cased borehole syn­
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partition coefficient in the fluid
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It is clear from the results of the synthetic cased hole example that the cutoff fre­
quency may not be easily identified in multilayered borehole situations. By using data
for frequencies higher than the cutoff frequency, the formation shear wave q estimates
become less reliable, although the fluid and cement q estimates remain quite good.

Real Data Applications

In this section the inversion procedure is applied to actual field data. Two sets of full
waveform acoustic log data collected in an open hole geometry are used, one collected
in a sand-shale lithologic sequence, and a second collected in a limestone-dolomite se­
quence.

Sand/Shale Example

The first example consists of a data set which was collected in a small diameter borehole
(0.13 m (5")) which penetrated a fairly low velocity sand-shale sequence. The borehole
was drilled as part of a uranium leaching project. Full waveform data was selected
throughout the interval between 588 m (1930') and 640 m (2100') representing both the
sand and shale intervals. Figure 10. shows the full waveform traces corresponding to a
single source receiver offset for this total interval. The data are relatively noise free so the
data selection process was based on the reliability of supporting data (such as formation
velocity values) rather than careful screening based on data quality. Table 3 provides
a list of the depths chosen for analysis, together with the input model parameters for
each depth. Formation shear wave velocity was obtained from a shear wave logging
tool (Zemanek et aI., 1984) run in the same borehole. The borehole was reported to
contain only water which is estimated to have a velocity of 1475 m/sec and a density of
1.05 gm/cc. The formation density has been estimated to be 2.16 gm/cc for the sand
units and 2.4 gm/cc for the shale units. The density of the sand zones is based on an
assumed porosity of 30% and a quartz matrix material having a density of 2.65 gm/cc.
The source-receiver offsets for the near and far receivers are 4.57m (15') and 6.1m (20')
respectively. The near and far offset data traces for two of the depths analyzed are
shown in Figure 11. In some of the traces in Figure 10 an arrival is present before the
Stoneley wave which is similar in appearance to a pseudo-Rayleigh wave. The velocity
of this arrival is consistent with the formation shear wave velocity as measured with
the shear wave acoustic logging tool, and is most likely a shear head wave arrival. The
shear head wave arrival is usually overwhelmed by the high amplitude pseudo-Rayleigh
wave arrival but is visible in this data because of the small borehole radius. The small
radius results in a high cutoff frequency for the pseudO-Rayleigh wave (12-14kHz) which
is not excited by the low frequency source of the tool (centered at 3-6kHz). The shear
head wave is visible in the zones having shear velocity greater than the borehole fluid
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Figure 11: Near (4.57m, 15') and far (6.1m, 20') offset traces for two depths of the
sand/shale example full waveform acoustic log data: (a) depth 1970 and (b) depth
2020. Both traces in each example are normalized to the maximum amplitude of the
near offset trace
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Table 3: Depth and model parameters used for the sand/shale data example

DEPTH Vp V. p

(m/sec) (m/sec) (g/cm3)

1920 2772 1463 2.4
1930 3278 1524 2.4
1946 2772 1463 2.4
1970 3209 1591 2.4
2000 3314 1925 2.16
2003 3388 1829 2.16
2010 3278 1829 2.16
2020 3314 1742 2.16
2035 3504 1663 2.4
2040 3587 1709 2.4
2050 3388 1663 2.16
2070 3504 1829 2.16
2090 3426 1742 2.16

velocity and not present in the 'slow' shale intervals (Figure 10). Figure 12 shows the
amplitude spectra and spectral ratios at one depth to illustrate the frequency band and
the quality ·of the data.

The inversion results for these data are given in Table 4. In each case, a smaIl
amount of damping was used to stabilize the inversion. The amount of damping, which
was generaIly less than 1-2% of the largest diagonal element of ATA, was chosen to
maintain positive q values and keep the resolution as high as possible. Figure 13
is a plot of the calculated Q-l values with error bars representing +- one standard
deviation about the estimated value. Borehole measurements of spontaneous potential
and resistivity are also shown in this figure.

The inversion results for this data set are very dependent on the lithology. In the
shale sections, the fluid q estimates are high (150-250) and the formation shear wave q
estimates are fairly low (20-30). In the sand sections, however, both estimates are low
(fluid q = 20-40; formation shear q = 20-40). It is reasonable to expect the fluid q
value to be high in this weIl because the borehole was fiIled with water. Even the fluid
q values obtained in the shale sections are lower than one would expect (q of water
is on the order of 10000). However, it is likely that the borehole fluid is more like a
suspension containing clay and sand particles entrained in the fluid during the drilling
and logging operations. It is disturbing, however, that the fluid q estimates in the sand
intervals are not consistent with the shale results. This inconsistency can be attributed

(
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Table 4: Inversion results for the sand/shale data example

1920 3.64 +- 0.550 1.59 +- 0.756
1930 0.468 +- 0.69 2.87 +- 0.927
1946 0.557 +- 1.38 9.83 +- 1.99
1970 0.449 +- 1.01 4.97 +- 2.10
2000 4.72 +- 0.513 4.49 +- 1.33
2003 4.57 +- 0.483 3.51 +- 0.934
2010 4.68 +- 0.431 3.61 +- 0.817
2020 5.20 +- 0.442 4.37 +- 1.01
2035 4.10 +- 0.477 3.57 +- 0.755
2040 4.69 +- 0.717 5.20 +- 1.40
2050 2.51 +- 0.592 4.07 +- 1.01
2070 4.53 +- 0.601 2.31 +- 0.364
2090 4.01 +- 0.426 4.26 +- 0.720
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to both physical and numerical inadequacies in the model. The sand intervals in this
well have shear wave velocities which are greater than the fluid velocity, that is they are
fast formations. The shale intervals have lower shear velocity values, and in most cases
can be classified as 'slow' formations. The model behavior (partition coefficients) is very
dependent on the ratio of the shear wave velocity to the fluid velocity (Burns, 1986).
In 'a 'slow' formation, the Stoneley wave attenuation is sensitive to both the fluid and
formation shear q values in approximately equal measure, with the formation shear q
becoming more dominant with increasing frequency. In a fast formation, however, the
Stoneley wave attenuation is much more sensitive to the fluid q value and the partition
coefficients are almost invariant with frequency. In such situations, the Stoneley wave
amplitude information can provide good estimates of the fluid q value, but the pseudo­
Rayleigh wave is needed to estimate the formation shear wave q with any confidence.
The small diameter of the borehole in this example, together with the low frequency
source, resulted in no pseudo-Rayleigh wave excitation. It is not too surprising, then,
that the Stoneley wave attenuation in the fast formation sand units is not adequate to
estimate both the fluid and formation shear wave q values. Data resolution calculations
indicate that the model can only match the average Stoneley attenuation value of the
data in the frequency range used. The partition coefficient values in these zones are
about 0.7 for the fluid compressional energy and about 0.25 for the formation shear
energy, with variations of only a few percent over the frequency band used. The inversion
routine, in these zones, is basically trying to fit two unknowns (Q,l and Q:B1) to a single
data point, with the result being very poor parameter resolution.
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The Stoneley wave attenuation does a much better job in the slow formation shales.
In these intervals, the fluid and formation shear wave partition coefficients are of the
same order (0.4 - 0.55) and show greater variation with frequency. The resulting pa­
rameter estimates are better resolved and more reliable.

The damping factor can be adjusted in the sand intervals to force the fluid q values
to agree with those obtained in the shale zones. The resulting formation shear wave q
values, however, become unrealistically low (QII = 4 -10). This leads to the second reason
for the inconsistencies between the sand and shale zone inversion results: losses due to
fluid flow in the permeable sand units. The sandstone intervals (depth interval 1990 ­
2100) in this well have extremely high permeability values (100 - 3000 millidarcies(md)).
Several authors (Williams et aI., 1984; Zemanek et a!., 1985) have shown that very
good correlations exist between Stoneley (tube) wave attenuation (amplitude ratio) and
permeability in field recorded data. Correlations exist between the tube wave velocity
and permeability as well. Several other authors (Schmitt, 1985; Hsui et aI., 1986; Cheng
et a!., 1987; Burns and Cheng, 1986) have used the Biot theory of wave propagation in
porous and permeable formations to try to explain these correlations with some success.
The very high permeability associated with the sandstone intervals of this well results
in additional attenuation of the Stoneley wave due to energy coupling between the
borehole fluid and the pore fluid of the permeable formation. The model used in the
inversion procedure, however, does not explicitly address this attenuation mechanism.
The increased attenuation in these zones, therefore, is reflected in the much lower fluid
q value estimates.

Limestone/Dolomite Example

The second real data application involves full waveform acoustic logs recorded in a
deep borehole that penetrated a limestone-dolomite lithologic section. The borehole
diameter is 0.219 m (8.625"), and the drilling fluid in this example was reported to
consist of a dispersed gel (in water) with a density of 1.2 gm/cc and an estimated velocity
of 1525 m/sec (5000 ft/sec). The lithology varies between low porosity limestone (0­
3%) and higher porosity dolomite (5-15%) in the interval from 1570 m (5150') to 1616
m (5300') (note: the depths are relative to an arbitrary reference and not the actual
values). Again, data from a number of depths have been selected through this interval.
The depths and model input parameters are given in Table 5. Formation P and S
wave velocities were obtained from the full waveform acoustic logs. The data from this
borehole was collected with the same downhole tool as the previous example (source­
receiver offsets of 4.57m (15') and 6.1m (20')). The data traces for two of the depths
used are shown in Figure 14. Because this example consists of a fast formation, and
the borehole radius is sufficiently large to result in the excitation of the pseudo-Rayeigh
wave in the source frequency band, both the Stoneley and pseudo-Rayleigh wave spectral

l
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Table 5: Depth and model parameters used for the limestoneldolomite data example

DEPTH Vp V. P
(m/sec) (m/sec) (g/cmS

)

5165 6353 3388 2.71
5180 5543 3388 2.65
5210 5349 3388 2.57
5213 5543 3278 2.57
5225 5256 3143 2.50
5230 5276 3278 2.55
5239 5863 3243 2.62
5250 6353 3388 2.72
5265 6098 3783 2.62
5275 6353 3465 2.70
5290 5752 3388 2.70

ratios are used in the inversion.

The results of the inversion for this data set are given in Table 6. A five point cen­
tered running average has been used to smooth the amplitude spectra in this example.
As in the previous example, a small amount of damping has been used in some cases.
The fluid Q estimates are very consistent (fluid Q = 25 - 40) and very well resolved
(fluid Q resolution = 0.9 - 1.0). This is due to the Stoneley wave attenuation which is
completely dominated by the fluid attenuation value for this very rigid, fast formation
(fluid partition coefficients = 0.93 - 0.95). The data resolution is similar to what was
seen for the cased hole synthetic example. The Stoneley wave Q-l data is basically
invariant with frequency and is completely dominated by the fluid attenuation. The
pseudo-Rayleigh wave attenuation is sensitive to the formation shear wave attenuation
at frequencies very close to the cutoff frequency (about 9kHz), but the sensitivity de­
creases rapidly with increasing frequency. This rapid drop off of sensitivity results in the
formation shear Q estimates being very sensitive to the spectral ratio data in a narrow
frequency band near the cutoff frequency. Figure 15 shows the amplitude spectra for
one representative depth with and without the running average imposed. The Stoneley
wave data is very stable, but the pseudo-Rayleigh wave data is very noisy, especially
in the vicinity of the cutoff frequency. The low frequency source (centered around 3­
6kHz) has low energy in the pseudo-Rayleigh frequency band, making the amplitude
information in this band sensitive to the background noise level. This fact, coupled with
the lower excitation amplitude of the pseudo-Rayleigh wave near the cutoff frequency
(Burns, 1986), results in spectral ratios which are noisy in this critical frequency band.
The result of this noise sensitivity is generally poor resolution of the formation shear
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Figure 14: Near (4.57m, 15') and far (8.1m, 20') offset traces for two depths of the
limestone example full waveform acoustic log data: (a) depth 5165 and (b) depth 5290.
Both traces in each example are normalized to the maximum amplitude of the near
offset trace
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Table 6: Inversion results for the limestone/dolomite data example

5165 2.015 +- 0.255 2.54 +- 1.47
5180 2.80 +- 0.382 1.25 +- 1.26
5210 4.55 +- 0.322 1.97 +- 0.86
5213 2.21 +- 0.264 0.497 +- 0.805
5225 2.44 +- 0.482 3.28 +- 2.05
5230 2.79 +- 0.374 1.67 +- 1.07
5239 2.75 +- 0.394 3.20 +- 1.39
5250 1.83 +- 0.290 1.49 +- 1.10
5265 1.30 +- 0.117 4.89 +- 0.489
5275 1.03 +- 0.158 2.28 +- 0.35
5290 3.85 +- 0.266 1.11 +- 0.658
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wave q values. The spectral smoothing, however, helps reduce the noise problems and
improves the resolution of the solutions.

The estimated q values for this example are fairly consistent. The fluid q estimates
are well resolved and consistent in both the limestone and dolomite sections. The values
are lower than the values found in the last example (fluid q = 25 - 40), reflecting the
differences in the borehole fluid for the two examples. The formation shear wave q
estimates also show consistency within the data set. The QIi values in this example are
much higher than in the previous example (shear q = 60 - 120). Little variation in
QIi values between the limestone and dolomite intervals is evident. Figure 16 gives the
estimated q values with error bars over the interval of interest. Borehole measurements
of formation density and natural gamma radiation are also given in this figure.

The porous dolomite intervals in this example are also permeable. The permeability
values in this well, however, are much lower than in the previous example (0 - 20 md).
The q estimates in the porous interval (5200 - 5250) do not show a dramatic decrease
over the values in the non-porous limestone, although the fluid q estimates do show a
slight decrease which may be attrib!1ted to the fluid flow losses in these zones.

CONCLUSIONS

The energy partition coefficient model, developed by Cheng et al. (1982) and adapted
to multilayered borehole geometries by Burns et al. (1985), was applied to the problem
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of estimating formation Q Ii from borehole guided waves. A linear damped least squares
inversion routine was developed to simultaneously invert Stoneley and pseudo-Rayleigh
wave spectral ratio data for Q/l and Q-pl in open hole geometries, and Q/1, Q-Pl,
and QIi-1 in cased hole geometries. Inversion of synthetic waveform data indicated,me
that in open hole situations the procedure provides excellent results although the fluid
velocity, formation shear wave velocity, and the borehole radius parameters must be
known with an accuracy of a few percent. Synthetic cased hole data inversion resulted
in excellent estimates of the fluid q and cement shear wave q values, but the accuracy
of the formation shear wave q estimate is especially dependent on the spectral ratio
measurements very close to the cutoff frequency.

The inversion method was also applied to field data examples in two different litho­
logic sections. In the first example, fluid q and formation shear wave q estimates were
obtained in a sand-shale sequence using the Stoneley wave only. The formation S wave
velocities in this data set were fairly low, varying between values just below the fluid
velocity to values just above the fluid velocity. The Stoneley wave attenuation in this
data was quite sensitive to the formation shear wave q in the 'slow' formation regions,
but less sensitive in the faster sandstone units. The q estimates in the 'slow' shale units
were quite reasonable, while the estimates in the highly permeable sandstone intervals
were substantially lower due to fluid flow losses. The second field data example was in
limestone-dolomite sequence. The formation velocities in this example were very high,
and the Stoneley and pseudo-Rayleigh wave spectral ratios were used simultaneously in .
the inversion. The results of this example were similar to the cased borehole synthetic
result: the Q Ii estimates are sensitive to the quality of the pseudo-Rayleigh spectral ra­
tio data very close to the cutoff frequency. The pseudo-Rayleigh wave in this frequency
region has low excitation amplitude, and is very sensitive to noise contamination. Spec­
tral smoothing helped to alleviate some of the noise problems. The fluid q estimates
obtained in this example were well resolved and consistent, as were the formation shear
wave q estimates.
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