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Abstract

Hydrocarbon exploration is especially concerned with two phase media. Following Biot,
such finite porosity rocks are modeled as statistically isotropic materials composed of a
solid elastic matrix permeated by a network of interconnected pores saturated with a
compressible viscous liquid.
In a first step, the constitutive equations of a saturated porous medium are reviewed,
using mixtures theory and homogenization theory. This study focuses on the assump­
tions which are necessary but not always explicit. Biot's formulation is then modified
by the introduction of a unified definition of the viscous and mass coupling coefficients
which are both frequency dependent. The continuity equations at different kinds of
interfaces are also analyzed.
The body wave velocities and attenuations are then computed, using the cylindrical duct
model for pores. The effects of the saturant fluid, the permeability and the porosity are
studied.

INTRODUCTION

Beyond the study of the macroscopic dynamic behavior of a fully saturated porous
medium, Biot's theory (1956a, b; 1962) allows the analysis of the propagation of a
total wavefield as for the solid elastic media. The porous formation is modelled by a
statistically isotropic two phase medium composed of a solid elastic matrix permeated
by a network of interconnected pores saturated by a compressible viscous liquid. The
seismic '."avelength is assumed to be large compared to the characteristic pore dimension
(i.e., no diffraction). Although this model has been the basis for numerous theoretical
studies, it was not until recently that Plona (1980) and Plona and Johnson (1980)
experimentally demonstrated the validity of the theory. It predicts the existence of three
types of body waves: a compressional wave of the first kind, which displays high velocity
and quasi-elastic properties; a compressional wave of the second kind, associated with
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low velocity and quasi-viscous characteristics; and a shear wave. All three body waves
are dispersive and dissipative: their velocities are complex and frequency dependent.

Energy dissipation is due to the fluid flow related to the relative motion of the
two phases which are coupled through friction and inertial forces. These forces are of
the same order of magnitucl.e for a so called "critical frequency" which depends on the
saturant fluid characteristics, the porosity, and the permeability of the medium. Below
this frequency, i.e., in the low frequency range, the viscous forces are predominant
and the (laminar) flow follows Poiseuille's law. When the inertial forces are no longer
negligible, a given repartition function of the stress in the fluid occurs (the flow is no
longer uniform). In the high frequency range, the viscosity effects take place in only
a very thin layer close to the pore wall. The dissipation of energy, in the sense of the
inverse of the quality factor, is maximum around the critical frequency.

One has to keep in mind that Biot's model is a model which accounts for only
one attenuation mechanism. It should not be applied universally. It is only a tool,
among several others, for the interpretation in terms of lithology and petrophysics of
the information produced by the P and S waves.

The description of the dynamic behavior of a saturated porous medium is essentially
phenomenological in the sense that the exact motion of the fluid is not described. Biot's
formulations (1956a, b; 1962) are based on the Hamilton principle, the Lagrangian de­
scription of the medium in the frame of continuum mechanics. As pointed out by Coussy
and Bourbie (1984) and Bonnet (1985), the approaches are a priori phenomenological
and heuristic. The problem consists in the formulation of the kinetic energy, the po­
tential (deformation) energy and the dissipated energy. The two formulations of Biot
(1956a, b; 1962) differ by the choice and the meaning of the generalized coordinates.
The constitutive equations obtained are physically reasonable but the theoretical proof
is not well established.

Homegenization theory (Auriault, 1980, 1981) allows a more rigorous approach. The
basic assumption is that the medium is composed of spatially recurring fine (micro­
scopic) structures. With constitutive equations for both components at the microscopic
scale (the saturant fluid being Newtonian) as well as the pore geometry, the homoge­
nization process leads to an exact expression of the constitutive equations at the macro­
scopic scale, provided that the pores are small (i.e., no diffraction). This technique is
very mathematical. The resultant law of filtration corresponds to a generalized Darcy's
law where a complex permeability function, which is frequency dependent and related
to the pore shape, arises. The real and imaginary parts of this function can be phys­
ically interpreted in terms of dissipated viscous power and kinetic energy. Then, for
a given pore geometry, the inertial and viscous coupling coefficients, required for the
description of the dynamic behavior of a saturated porous medium, can be evaluated
(Avallet, 1981; Borne, 1983; Auriault et aI., 1985).

In this review, Bonnet's (1985) and Schmitt's (1985) formulation which uses the
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Biot's Theory 107

mixtures theory (Truesdell and Toupin, 1960) is followed. The constituents are sep­
arated and the macroscopic constitutive equations, related to the irreversible process,
are deduced from the analysis of the forces exerted by one another. The constitutive
equations obtained include a frequency dependence of the mass coupling coefficient, in
accordance with the homogenization theory. The continuity equations at the different
kinds of interfaces are also reviewed.

With the pores modelled as cylindrical ducts with an unidirectional flow, the prop­
erties of the body wave velocities and attenuations as a function of the saturant fluid,
the permeability and the porosity are then studied.

5-3



108 Schmitt

NOTATIONS

The phenomenological variables are defined at the macroscopic scale.

• 1>: porosity of the material.

• k: intrinsic permeability of the porous medium.

• TJ: dynamic viscosity of the saturant fluid.

• Ps: density of the constitutive grains (i.e., the solid).

• Pf: density of the saturant fluid.

• PI = (1 - 1»Ps: solid phase density per unit volume of the porous medium.

• P2 = 1>Pf: liquid phase density per unit volume of the porous medium.

The total density of the porous material is:

• iI = (UI, U2, us)T: mean displacement vector of the solid

• tJ = (UI , U2 , us)T: mean displacement vector of the fluid.

(1)

These displacements are defined so that the products PIUi and P2Ui by a surface element
dB represent the mass flux through this surface.
The internal force of each constituent is characterized by a stress tensor:

• !l. for the solid (O'ij)

• S for the fluid (Bij)

• eij = HBiUj + BjUi) is the strain in the solid (elements of a tensor E).

• eij = HBiUj + BjUi) is the strain in the fluid.

Einstein's convention is used so that the respective dilatation for the solid and the fluid
are:

e - eu = aiUi

g - €ii = aiUi

The dot convention is also used, i.e. : dx / dt = :i: and dx2 / dt2 = x

• Oij is the Kronecker delta (i.e., the unit tensor)
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Biot's Theory

ASSUMPTIONS

1. The porous medium is saturated and statistically isotropic.

2. The matrix is elastic and isotropic.

3. The saturant fluid is a Newtonian viscous liquid.

109

4. The liquid phase is continuous. The occluded pores are then implicitly included
in the matrix.

5. The study is made in the frame of the linear theory of elasticity (i.e., small per­
turbations).

6. The process is purely mechanical (no thermomechanical coupling, for example, is
considered) .

7. The physical system is at equilibrium when at rest.

8. The wavelength is supposed to be large compared to the characteristic pore di­
mension (i.e., no diffraction).

9. The stress, as well as the densities, of the solid and the liquid are of the same
order of magnitude.

The above are the usual assumptions. In addition,

10. As for a viscous Newtonian liquid, the stress tensor of the saturant fluid can be
separated in an elastic part and in a viscous part. Thus,

where

Bii = sOii + ~ii (4)

• s depends only on the state variables Ui, Ui (e, e). This is the "partial"
tension of the saturant fluid, related to the pressure p in the pores by:

s = -</>p (5)

• ~ii only depends on the velocities tii, Ui (e, e). This is the viscous stress.

11. The constitutive equation of the saturant fluid is analogous to the one of a New­
tonian fluid. Then, the viscous stress is given by:

(6)

where AD and /10 are the viscous constants of the fluid.
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DYNAMICS EQUATIONS

(

Balance of momentum

The balance of momentum is evaluated through the Lagrange equations because mix­
tures theory does not allow a formulation which could be easily explained physically
(Bonnet, 1985). The generalized coordinates are the displacement coordinates Ui and
Ui as in Biot (1956a).

Denoting T the kinetic energy of the system per unit volume, the equations are (for
the i-th coordinate):

(

(7)

where

• ft(gf) represents the "acceleration" of a constituent per unit volume (Xi = Ui for
•

the solid; Xi = ifi for the fluid) .

• lli (f2i) is the force per unit mass exerted at distance on the solid (the fluid) .

• -.Ali (-.A2i) is the force exerted per unit volume on the solid (the fluid) by the
fluid (the solid). Following mixtures theory it is called the "source of momentum".

In a reference system related to the solid, and for a motion in the j direction, the
kinetic energy can be written (O! denoting the inhomogeneity of the velocities):

(8)

where Vl represents the mean quadratic velocity of the fluid:

V2 = va (ifi - Ui) with O! > 1

The local field velocity and O! term depend on the angular frequency w.

In a fixed reference, the kinetic energy, in the j direction, is then:

(9)
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(10)

Because of the isotropy of the material, for a motion in any direction, the kinetic
energy may be written in a fixed reference:

333
"\' z "\" "\' . z

2T = "'11 L..J Ui + 2"'12 L..J U;Ui + "'22 L..J Ui
i=l i;;;::;l i=l

where
Pi + Pz('" - 1)
pz(l - ",)

Pz'"

The "'ii parameters, which are frequency dependent through "', characterize the
inhomogeneity of the velocities and the notion of apparent volumetric mass.

When the fluid is at rest (Ui = ri;), the kinetic energy is simply:

3 3

2T = (pi + pz) L ti;Z = PL Ui Z

i=l i=l

Introducing the expression (10) in the equations (7), the dynamic's law in its most
general form is obtained:

(11)- "'11Ui + "'lZUi - Pi/li + Ali
"'lZUi + "'zzUi - pzfzi + AZi{

BifIii
BiSii -

Subsequently, the forces at distance (i.e., lli = lu = 0) are not taken into account.
The reference equations are then:

- "'11Ui + "'lZUi + Ali
- "'lZUi + "'ZZUi + AU

(12)

Stress-strain relations

Biot's presentation (1956a) is here followed. In the frame of the linear theory of elasticity,
the stresses (fIii and sOii) are linearly related to the strains (eii and e). The porous
medium being statistically isotropic, the directions of the principal stress and principal
strains coincide. As for the isotropic elastic media, one then can write in these directions:

(

fIIJ

SOIJ

= 2NeIJ + (Ae + Qe)oIJ

(Qe+Re)oIJ
(13)

In the absence of dissipation, the system is conservative and stable. The strains
are small perturbations with respect to a minimum potential energy state. The total
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differential of this energy W is:

Schmitt

aw aw
dW = -ade;j + -ade

eij g
(14)

where aw--=8ae

W is a positive definite quadratic form which can be expressed, especially, in terms
of the invariants of the strain tensor E. One then can rewrite equations (13) for any
orientation of the coordinates axes. In addition, because of the tensor's invariants, the
matrix of the system has to be symmetric so that Q= Q. Then:

(

- 2Ne;j + (Ae + Qe)o;j

(Qe+Re)o;j
(15)

A and N are then equivalent to Lame's coefficients. R is a measure of the fluid
pressure needed to move a given fluid volume into the porous aggregate, the total
volume being constant. Q is related to the fluid and solid volume variations.

Following Biot and Willis (1957) and Chandler and Johnson (1981), Bonnet (1985)
presents experiments which allow interpretation of the physical meaning of these pa­
rameters. They can be easily expressed as functions of the bulk modulii of the solid Kg,
the skeleton Kb and the fluid K f , the shear modulus of the skeleton J.Lb and the porosity
"4>. Following Plona and Johnson (1980), one has:

- - K b - Kg
(1 - 4>)(1 - 4> - -)Kg + 4>-K b

2Kg K fA
- Kb - Kg 3

1- 4>- -+4>- (Kg Kf

- Kb-

Q
(1 - 4> - K.J4>Kg

- K b - Kg
1- 4>- -+4>-

(16)Kg Kf

R 4>2 Kg
-

- Kb - K.1- 4>- -+4>-
Kg K f

N = J.Lb
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Denoting Ctm and (3m, the compressional and shear wave velocities of the dry rock, one
can write:

while for the fluid

Kb - (1 - ~)P.(Ct;" - 4(3;"/3)
N - (1 - ~)P.(3;'

(17)

If one assumes an anelastic attenuation for the P and S waves in the skeleton char­
acterized by quality factors Q"'= and Q13= and a frequency dependence e;wt, it implies
a velocity dispersion of the form, (e.g. Aki and Richards, 1980):

c(w) = 1 c(wo) .

( 1- -Log(~)) (1- -')
ll'Q Wo 2Q

where

• Wo is a reference angular frequency

• c(w) is the body wave velocity (Ctm or (3m) at angular frequency w,

• Q is the corresponding quality factor (Q"'= or Q13=).

(18)

In these conditions, Ctm and (3m become complex and frequency dependent as well as
K b and the coefficients A, N, Q and k

Expression of the source of momentum

The complete resolution of the equations (12) needs the expression of the force per unit
volume exerted by the fluid (the solid) on the solid (the fluid), i.e. ->'li (->'2;).

Assuming that the porous medium is granular, the force exerted by the fluid on
an assumed spherical grain is studied. Classical hydrodynamics (Landau and Lifschitz,
1971) states that the force exerted on a sphere with harmonic motion in a Newtonian
fluid is given by:

1= -a(w)v - rna(w)-)'

where

• v and -)' are, respectively, the sphere velocity and acceleration,

• w is the angular frequency,

• a is a coefficient proportional to the viscosity at low frequencies,

5-9
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• rna is the "associated mass" .

Schmitt

(

a and m. are constant at low frequencies.

The existence of these two types of forces may then be predicted in the case of
a porous medium. The viscous forces are related to the velocity while the inertial
(coupling) forces are related to the acceleration. The force exerted per unit volume on
the solid skeleton may be written:

(

(20)

The inertial coupling, related to the notion of apparent volumetric mass, is already
taken into account (implicitly) in the kinetic energy formulation (eq. 10) through the
aij parameters which are frequency dependent.

Darcy's law (quasi-static) given by:
(

_ k
V=--'i1p

'7

where

• V is the filtration velocity of the fluid

• p is the pore pressure,

must be verified at low frequencies so that :

Dynamic equations

Putting equations (20) and (4) into the system (12) one obtains:

(21)

(22)

PnU; + Pl2Ui + b(Ui - iTi)

- Pl2Ui + P22Ui - b( iti - iTi)
(23)

where

{Pn - an Pl - P2(1- a)
Pl2 al2 - P2(1 - a)

P22 - a22 P2 a

5-10
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Using equations (6) and (15), Bonnet (1985) demonstrated that the terms related
to the fluid viscosity can be considered as negligible with respect to the elastic terms.
An additional assumption is then:

12. The viscous stress of the saturant fluid is negligible with respect to its tension.

The equations (23) may thus be written:

{

aj(Tij = Pll~i + P12~; + b(~ - ~i)
ais = P12Ui + P22Ui - b(Ui - Ui )

(24)

In this system of equations, the viscous coupling forces (related to b) and the inertial
coupling forces (related to the parameters Pij) are characterized. The equations are
identical to those of Biot (1956a) because of the identical notations. The system (24),
however, contains important differences:

• b is frequency dependent so that the variations of the stress repartition in the fluid
are implicitly taken into account. It is unnecessary to distinguish the low and high
frequency ranges to establish the equations.

• The coefficients Pij are frequency dependent through only one function: Ct.pz.

• The coefficients Pij include two different physical phenomena through the param­
eters Ct.ij: the inhomogeneity of the velocities and the notion of apparent density.

• Last, assumption 12 was necessary.

Two situations are interesting:

a. The fluid is at rest: Ui = a
The second equation of the system (24) becomes, using equation (5)':

- "(paiP = P12Ui - biLi (25)

(26)

Therefore, a force, including an inertial and a viscous part, has to be exerted on
the fluid so that it is at rest.

b. No relative fluid-solid motion: it; = Ui = di

The equation relative to s becomes (using equation (5)):

- "(pa;p = (P12 + P22)di

The equation of motion of a perfect fluid whose density is pt is:

- aiP = pjdi l.e. - "(pa;p = "(Pptdi

5-11
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Equation (26) may be obtained using equation (21) with b = 0 (i.e., 1) = 0: perfect
fluid), so that:

epp! = P2 = P12 + P22 (28)

Using the expressions of the a;j coefficients, the kinetic energy (equation (10))
becomes:

2T = (pi + P2)d;di = (pu + 2P12 + P22)d;d;

Therefore, using equation (28)':

Pi = PU + P12

(29)

(30)

(

(

(

These are Biot's equations (1956a) relating the P;j coefficients to the densities per
unit volume of the porous medium (pi and P2).

In a way, the similarity ofthe resulting dynamic equations with those of Biot (1956a),
despite the physical meaning of some parameters, makes up an a posteriori proof of the
introduction by this author of a "pseudo" -potential of dissipated energy given by:

D = b (iL; - iT;)(iLl - iT;)

which is a function of the relative motion between the two phases.

If the present demonstration is also axiomatic, it is, however, more physically based.

Discussion

In equation (24), with a classical frequency dependence of the form e;wt, the "viscous"
terms are proportional to w while the inertial terms vary as w2 • Therefore, at low fre­
quencies, the latter terms are negligible. For example, Rice and Cleary (1981) demon­
strated that at extremely low frequencies, for a plane radial flow in a homogeneous
medium, the equations (24) are uncoupled. Therefore, it is interesting to characterize
the porous medium by a characteristic frequency, I" which defines the high and low
frequency ranges.

When the solid is motionless or "unconstrained", the equation (24) gives:

(

(

-¢a;p =
~ -¢a;p =

The inertial terms will be negligible for:

~ I

.. .
P22U; + bU;

(-P22W2 + iwb) U;

« wb
b

«lei = -2-­
1rP22
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Taking into account the "compatibility" relation (22) and considering that P22 and
P2 are of the same order of magnitude, one obtains the classical expression of the char­
acteristic frequency:

(33)

In terms of flow, the definition is different. It brings in a characteristic pore di­
mension (a), perpendicular to the sense of the fluid motion, on account of the viscous
drive phenomena. An acceleration of the rock produces tangential stresses in the fluid.
These stresses decay exponentially away from the pore walls and are characterized by
a "viscous skin depth" given by:

(34)

It decreases when the frequency increases (unlike the stress). The flow will be
uniform (Poiseuille's law) only at low frequencies when {j is much greater than the
characteristic pore dimension (the viscous forces are predominant). If {j is of the order
of magnitude of a, the flux is disturbed. The "criticaP' frequency is then:

(35)

This expression differs from Biot's equation (1956a). It corresponds to the frequency
used by homogenization theory for a nondimensional formulation (Avallet, 1981; Borne,
1983; Auriault et al., 1985) and to the value given by Mavko and Nur (1979).

Intuitively, it is easy to predict that f; is lower than fe. In the case of cylindrical
ducts, a simple proof can be given. Darcy's law, in its most well known formulation,
may be written:

k P
Q= -8­

'1 L
(36)

where Q is the flow through a surface 8 of a medium of thickness L for a pressure
difference P.

For cylindrical ducts of radius a, the classical form of Poiseuille's law is:

lI'a4 P
Q=-­

8'1 L

The compatibility of the last two equations leads to:

5-13
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so that f; < f •.

Schmitt

(

In the following, because the formulation explicitly includes the frequency depen­
dence of the coefficient b, and the energy dissipation related to the forces present is the
interesting feature, the characteristic frequency will correspond to equation (33) while
the critical frequency will correspond to equation (32).

Contribution of homogenization theory

Homogenization theory justifies the stress-strain relations (eq. 15) and assumption 12
through the equations of motion that come from it. Assumption 11 is not explicit but
implicit (Auriault, 1980, 1981). In addition

• In the case of a motionless solid, the constitutive equation of the liquid at the
macroscopic scale is:

(

~iJi = -K(w)V'p (39)

(40)

where p is the pore pressure.
K(w) is a complex permeability function ("equivalent" to the hydraulic permeabil­
ity k/rl because of Darcy's law) which may be computed for a given pore geometry
by integration of the Navier-Stokes equations over a period. In the most general
case, K(w) is a symmetric complex tensor of order two, which is also positive and
definite, and thus can be inverted.
If

H(w) = K~W) = Hl(w) + iH2(w)

then Hl(W) and H2(W) can be physically interpreted in terms of dissipated viscous
power and kinetic energy (Avallet, 1981; Borne, 1983, Auriault et aI., 1985) .

• In the general case of a moving solid, the dynamic equations are identical to
expressions (23) and (24). The coupling coefficients are then given by:

P22(W)
~2

= -H2(w)
w

P12(W) - P2 - P22(W)
(41)

pu(w) Pl - Pl2(W)

b(w) = ~2Hl(w)

Beyond the frequency dependence and the relations between Pij and the densities
Pl, P2 already established, equations (41) show that the viscous and mass coupling
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coefficients are related to one another, contrary to what IS usually stated, and are
dependent on the pore shape.

From the practical point of view, P22, which is assumed to be constant and frequency
independent, is often related to a tortuosity factor O. Plona and Johnson (1980) define:

P22 = O;PPf with 0 ~ 1

and give the tortuosity, following Berryman (1980), as:

1 1
0=2(~+1)

(42)

(43)

Brown (1980) uses the formation factor F obtained from the resistivity measure­
ments:

(44)

where

• Ro is the resistivity of the fully saturated permeable formation

• R f is the fluid resistivity

As a matter of fact, these two definitions are very close to one another as the
experiments showed that:

F = y;p-m
where

• m is a cementing factor (or tortuosity)

• y is a constant which depends on the lithology.

(45)

In addition, Sen et a!. (1981) define P22 with equation (42) but with a 0 equal to
;p-. (x = ~ for identical spheres).

All these expressions come from high frequency measurements independent of b(w)
which is estimated through computation in the case of cylindrical pores. Bonnet (1985)
carried out measurements of both b(w) and P22(W) at low frequencies, up to the char­
acteristic frequency, for a medium made of fused glass balls. If the results do not show
any obvious differences with the high frequency measurements for P22 (only one pore
geometry has been analyzed and the results are highly dependent on the precision of
the measurements), the coefficient b(w) does not correspond to the one of the cylindrical
ducts. These results are confirmed by the measurements made by Borne (1983) (see
also Auriault et a!., 1985) in the whole frequency range for a synthetic porous medium
where the pores are loop-holes.
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Equations of motion

Schmitt

WAVE EQUATIONS

(

The- equations of motion are obtained by putting the system (15) into the equations
(24)_ The porous medium being statistically isotropic, 8;N = 8;Q = 8;R = 8;A = O.
One then obtains:

{
(A + N)graddiviI + N"12 iI + ~graddiv~ _

QgraddiviI + RgraddivU

where "12 is the Laplacian operator.
The divergence of the system (46) is:

or

{
N(8j8;uj + 8 j8ju;) + A8;8kUk + Q8;8kUk

Q8;8kUk + R8;8kUk

- Pu u; + P12U; + b(it; - U;)
P12U; + P22U; - b(it; - U;)

.. .
Pu ii + P12q + b(iI - ~)

P12ii + P22U - b(iI - U)

(46)

(47)

(

(

(A + N)8;8;8kUk +

82

= Pu 8t2 (8;u;) +

N8 j8 j8jUj + Q8;8;8kUk

82 8
P12 -(8'U-) + b-(8'u· - 8'U-)8t2 '& '& at '& '& '& 't

Q8;8;8kUk

82

= P12 8t2 (8;u;)

+ R8;8;8kUk

82 8
+ P22 8t2(8;U;) - b8t (8;u; - 8jUj)

or
Pue+p12e+b(e- e)
P12e+ P22e- b(e- e)

(48)

(

where P = A + 2N.

Taking the curl of the equations (46) written for the j-th coordinate, one obtains:

(A + N)e;jk8;8j8IUI + N e;jk8;8j8IUj + Qe;jk8;8j8IUI
,

8 2 82 8
Pu 8t2(e;jk8 jUj) + P12 8t2 (e;jk 8;U;) + b8t e;jk(8;uj - 8;Uj)

Qe;jk8;8j8IUI + Re;jk8i8j 8 lUI

82 82 8
- P12 8t2(e;jk 8 ;Uj) + P22 8t2 (e;jk8;Uj) - b8te;jk(8;uj - 8;Uj)

or

l

82 82
- 8 -

pll 8 2 (curliI) + P12 8 2 (curlU) + b-(curliI - curlU)
t t 8t

82 8 2
- 8 -

P12 8t2 (curliI) + P22 8t2 (curlU) - b8t (curliI - curlU)
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(50)

The systems (48) and (49) bring in only dilatations and rotations. The compression­
nal and shear waves of the porous medium are then uncoupled, just as for the isotropic
elastic media.

Wave propagation

In order to solve the wave equation, as in the elastic case, the scalar (<!?) and vector (qf)
displacement potentials are introduced. They are defined by:

{
it _ (grad<!?(s) + curlqf(s))eiwt

tJ = (grad<!?(l) + curlqf(l»)eiwt

with divqf(s) = divqf(l) = o.

Compressional waves

Using equations (50), the divergence of equations (46) may be written:

{
p\72<!?(s) + Q\72<!?(l) = -W2(-rll <!?(s) + 112<!?(l»)

Q\72<!?(s) + R\72<!?(l) = -W2(-r12<!?(s) + 122<!?(l»)

where
Iii = Pii(W) - ib(w)/w 112 = P12(W) + ib(w)/w

After some algebraic manipulations, one obtains from the last equations:

- 2 -
<!?(l) = 1 P R - 9 \72 <!?(s) + Rill - ~112 <!?( s)

w2 QI22 - R I 12 QI22 - R I 12

so that <!?(s) is the solution of:

(51)

(52)

(PR - Q 2)\74<!?(S) + W2(P122 + Rill - 2QI12)\72<!?(s) + W4(-r1l122 - '"d2)<!?(s) = a (53)

<!?(s) may then be expressed as the sum of two potentials, i.e. <!?(s) = <!?1 + <!?2, which
satisfy Helmoltz type equations:

(54)

for which the velocities Otj are solutions of the bi-quadratic equation deduced from
relation (53):

4 2 2 - - 2Ot (122111-112) - Ot (PI22 + Rill - 2QI12) + PR - Q = a (55)

Because the lij terms are complex and frequency dependent, the velocities Ot1 and Ot2 are
also complex and frequency dependent. The associated waves are then dispersive and
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dissipative. PI will denote the wave corresponding to the greater velocity al (analogous
to the P wave of a single phase medium), and P2 the other wave, usually called the slow
P wave.

The scalar potential <t>(l) relative to the saturant fluid is then:

(

2

<t>(l) = I: E;<t>;
;=1

where

(56)

- 2 -1 P R - Q R"{ll - Q"{12
2 - + -

a; Q"{22 - R"{12 Q"{22 - R"{12

The PI and P2 waves are not respectively related to the solid and to the fluid. They
correspond to singular motions of the fluid-solid system. In the absence of dissipation
(i.e. b = 0 case) the velocities are real. Biot (1956a) demonstrated that:

• The PI wave corresponds to an in phase motion of the fluid and the solid,

• The P2 wave corresponds to an out of phase motion of the fluid and the solid.

Plona and Johnson (1980) experimentally demonstrated the existence of the slow P
wave using artificial porous materials. Their results, especially from the point of view
of the velocity, agree well with theory (see Dutta, 1980; Berryman, 1980).

Shear wave

Using equations (50), the curl of equations (46) may be expressed as: l

-W2 (-Yll>li(') + ''(12 )li(l))

= _ "(12 >li(') = x>li(')
"{22

(57)

so that the S wave velocity of the porous material is:

2"{12 1 .
(3 = (N/(-yll - -))2

"{n
(58)

The fluid does not support any shear displacement.
through inertial effects.
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Summary

The system (50) may be finally written:

~ grad<i'>j + cUrliii} e
iwt

~ (jgrad<i'>j + xcurliii} eiwt

123

(59)

where the potentials <i'> j and iii satisfy Helmoltz type equations relative to the three
complex body wave velocities (see equations (55) and (58)). (j and X are complex
frequency dependent factors which characterize the influence of one phase on the other
one due to dynamic and viscous forces.
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CONTINUITY EQUATIONS

(

(61)

Few authors discuss the conditions at the interface between two porous media. Using
the working rate of the forces acting on a saturated porous medium, Deresiewick and
Skalak (1963) established sufficient conditions which ensure the uniqueness of the wave­
field. They obtained a theorem similar to the one of Neumann for the elastic media.
Rosenbaum (1974) and Feng and Johnson (1983a, b) applied these conditions to the
case of a fluid-saturated porous medium interface.

Bonnet (1985) stated the continuity equations at the interface betweeen two porous
media saturated by the same fluid. He separated the equations that can be inferred
from the general principles of mechanics (using mixtures theory, porous media can be
considered as a continuum) from the others. Here, this formulation is followed and
extended to different situations.

Let ii, whose components are nj, be the normal of the interface between two media
indicated by the superscripts (1) and (2). Subsequently, the indices nand s will denote
the normal and tangential components of the displacements or the stress. For simplicity,
[XU)] will denote X(l) - X(2).

Porous-porous interface. Saturation by the same fluid

General principles of mechanics

Balance of mass The balance of mass along a surface of discontinuity in the bosom
of a medium, which is a continuum in other respects, may be written (Truesdell and
Toupin, 1960):

(60)

where

• the superscript U) denotes the parts on both sides of the discontinuity surface

• pU) is the density of the medium,

• vV) is the medium velocity,

• v!!) is the (normal) velocity of the discontinuity.

Using this expression in the case of two porous media considered as mixtures, one obtains
(Truesdell and Toupin, 1960):

{

pU)

pU)vli ) =
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vVl is then the "inertial center" velocity.
Bonnet (1985) writes: "the discontinuity surface between two porous media moves with
the velocity of the solid constituent" so that:

(62)

In fact, this means:

Assumption 19.
(63)

This assumption is physically reasonable if the solid parts are supposed to keep in welded
contact.

Using equations (61) and (62), the relation (60) may be written:

(64)

which becomes, with p~i) = '1>U) Pf :

(65)

I.e. the flux is balanced.

Deresiewick and Skalak (1963) obtained the same relation (with the same assumption
13), but they do not say that this is only true for porous media saturated by equal density
fluids.

Balance of momentUlD From Truesdell and Toupin (1960), the balance of momen­
tum may be written:

[n)~lnk+ pU)viflv)i)] = 0

where nltl is the stress tensor of the medium with:

(66)

nUl - ~U) + SU)
ik - Vik ik (67)

Using equations (61) and (62), one gets:

[(q)~l + Si~))nk Pl(UV) - vVl)(uV) - v1i ))nk
P2(UV) - v)il)(Uli ) - v1i ))nk

+ (P1UV) +P2UJi))uV)nk] = 0
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14. The terms which are a function of the constituent velocities are neglected with
respect to their own stress.

This assumption is also made by homogenization theory.

Then, the equation (68) reduces to the continuity of the sum of each constituent
stress. Using assumptions 10 and 12:

[IT!!J + sUl] = 0

[IT!!)] = 0

(69)

(70) (

Deresiewick and Skalak (1963) also obtained these equations but they pass over
assumptions 1, 12 and 14 (this last one comes only from the present formulation).

Other relations

The solid parts have been already assumed to keep in welded contact. As for the solid
elastic media, they are assumed to be well bonded so that the continuity of the solid
displacements is ensured:

[u!!l] = 0

[u~jl] = 0

"Five" continuity equations have now been set up.
the saturant fluid pressures:

(71)

(72)

The last one needed concerns

(73)

(

Bonnet (1985) notices that there appears to be no effect of a pressure jump at
the interface between two porous media within the dynamic state when the solid is
motionless. When the solid cannot be distorted and within the steady state, the pressure
jump is on the order of Pia} where af is the fluid velocity. Assuming that this relation
is still valid for the dynamic motion of a deformable saturated porous medium, and
taking into account the fourteenth assumption, the equation (73) is justified. It assumes,
however, that the pores of both media are fully connected.

Without any theoretical demonstration, Deresiewick and Skalak (1963) state:

(74)

where i is a resistance coefficient (or impedance, see Rosenbaum 1974).

The case for which the pores are fully connected corresponds to i = 0 ( see Figure
la). When the pores do not connect i is infinite (see Figure lc). There is no continuity
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of the saturant fluid pressures and thus no relative motion (i.e. U!/l = itWl j = 1,2)
similar to the case of a solid-porous interface. A non zero finite value of <; should
correspond to a partial communication of the pores (see Figure 1b) and thus a pressure
jump. This intermediate situation is difficult to take into account: what is the value of
<; ? How can it be practically determined ?

General porous-porous interface: Summary

When the porous media are saturated by two different fluids, only equations (65) and
(73) need a demonstration. As a matter oHact, they are proved at the scale of the pores.
Assuming that the interface between both fluids lies within a very short distance of the
interface between the porous media, the same equations are obtained. The meaning is,
however, different: there is no longer balance of the mass. Whatever the nature of the
saturant fluid is, the combination of equations (63) and (65) leads to:

(75)

which corresponds to balance of the fluid volume.

The general continuity equations may be written finally (with a temporal dependence
of the form eiwt ):

1)
2)
3)
4)
5)
6)

[uWl] = 0

[u~il] = 0

[uWJ +8U)] = 0

[u0] = 0
[pUl] = 0

[¢U)(UAil - uWl)] = 0

(76)

These are the classical continuity equations used at a porous-porous interface.

Elastic solid-porous interface

(77)

1)

2)
3)
4)
5)

A solid elastic material can be considered as a zero porosity porous medium. Denoting
by the superscript (2) the elastic medium, one obtains from the relations (76):

u~l) = u!?)

u~ll = u~2l

u~~ + 8(1) = u~~ + 8(2)

u21 = u~~
U(l) _ (1) - 0

n U n -
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Fluid-porous interface (

In such a situation, two cases arise. The first one corresponds to a permeable interface
(i.e., free fluid flow) while the second is relevant to the absence of relative motion
between the two phases (i.e., impermeable interface). Contrary to what is stated by
Rosenbaum (1974), this last case does not correspond, in the borehole configuration, to
the presence of a mudcake. It is a limiting case for a zero thickness solid layer at the
interface.

Permeable interface: free fluid flow (

(
(78);;'(1) (U(l) _ it(l)) = U(2) _ ,',(1)

'¥ n n n n

A fluid medium can be considered as a unit porosity porous medium. Therefore, follow­
ing the same reasoning as for a porous-porous interface with q;,(2) = 1 and V~2) = it!;-),
equation (64) becomes:

This equation is still valid when the saturant fluid differs from the fluid medium,
following the same reasoning as previously. Using a temporal dependence of the form
eiwt , the continuity equations may be written from (69)' (70), (73) and (78):

I
1)
2)
3)
4)

u!;-) + q;,(l) (UJ.1) _u~l)) = UJ.2)

<1~~ + 8(1) = <1~~

<1~~ = a
p(l) = p(2)

(79)

Equation (3) comes from the fact that the fluid medium is assumed to be perfect.

Impermeable interface: occluded pores

The continuity equations can be easily inferred from the solid-porous relations (77).
One simply needs to write the classical equations relative to a fluid-solid interface i.e.

U(2) = u(3). <1(2) = <1(3). <1(3) = a
n n 1 nn nnl ns

and to neglect the terms related to the zero thickness solid. The superscript (2) denoting
the fluid medium, one then obtains:

I
1)
2)
3)
4)

(80)
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In the systems (79) and (80), the tangential displacements are not taken into account
as there is no coupling of them between a solid and a fluid. In addition, the obtained
relations are identical to those used by Rosenbaum (1974) and Feng and Johnson (1983a,
b) although the process had been different (the equation (74) has not been used).

This section could be considered as painstaking, including numerous assumptions
not so well warranted. This is the image of reality. Whatever the process is, no demon­
stration is really satisfactory. It also occurs if the dynamic equations are stated using
the macroscopic variables u and 4>(u - U), u being the displacement of the matrix
of a continuum (Biot, 1962; Stoll and Bryan, 1970; Dutta and Ode, 1979a, b; Dutta
and Ode, 1983; Coussy and Bourbie, 1984). Auriault (1985, personnal communication)
proved the pressure continuity of the saturant fluids at the interface between two porous
media, using homogenization theory. This result may demonstrate the "power" of such
a process.
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CHARACTERISTICS OF A SATURATED POROUS MEDIUM.

In this section, the properties of the body wave velocities and attenuations are studied
as a; function of the saturant fluid, the permeability and the porosity. The parameters
given by Rosenbaum (1974) are used for the constitutive grains (K. and P.) and the
skeleton (Kb and Jlb). In addition, the velocities of the solid matrix are considered as
the ones of the dry rock (am and fJm). Tables 1.1 and 1.2 give all the parameters.

Pore shape: cylindrical ducts

Following homogenization theory, the viscous coupling coefficient b(w) and the inertial
coupling coefficient P22(W) can be evaluated for a given pore shape. The classical model
of cylindrical ducts with a unidirectional flux (perpendicular to the borehole wall, for
instance) is considered. The analytical expression of the complex permeability function
K(w) is obtained through the evaluation of the flow velocity in a cylindrical duct whose
radius is " a " related to the application of a pressure gradient in the case of a motionless
solid (the expression is the same when the solid moves). One then obtains (cf., Appendix,
after Biot, 1956b and Borne, 1983):

(

(

(81)

(

where

• l/ = '1/PI is the kinematic viscosity of the fluid

• I n denote the Bessel functions of the first kind of the n-th order.

The radius a is given by the low frequency limit of b(w) which must be compatible
with Darcy's law (i.e., b(O) = '11>2lie, see Appendix). The relation (38) is again verified:

2 k
a = 8.,.-

<P

The expression of b(w) deduced from the equation (81) is equivalent to the one of Biot
(1956b) with a "structural factor" equal to y'8. In the high frequency range b(w) is

. I 1proportlOna to w'i.
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The low and high frequency limits of the inertial coupling coefficient P22(W) are (see
Appendix):

lim P22(W)
4- 4

- -<PP! = -P2w_o 3 3 (82)
lim P22(W) - ¢P! = P2w-co

These relations are again analogous to those of Plona and Johnson, 1980, (see eq. 42).
Here the tortuosity 0 is frequency dependent.

Discussion

Several assumptions are made when using the cylindrical duct model. The major
topics are:

• Using the relation (38) for the pore radius, it is implicitly assumed that it is still
valid for the dynamic state although evaluated for the quasi-static state. The
real and modeled formations of equal porosity and permeability are considered
as equivalent from the point of the dynamic filtration of a given fluid when the
relation (38) is verified.

• No relation of the Kozeny-Carman type relating the porosity, the permeability
and the pore radius is used (see, for example, Ogushwitz, 1985; Pape et aI., 1985)
nor any semi-empirical relations. In other respects, these equations are only valid
in the quasi-static domain of uniform saturant fluid flow.

• The mass coupling coefficient P22(W) as well as the viscous coupling coefficient
b(w) depend only on the pore shape.

The cylindrical duct model with a unidirectional flow implies numerous assumptions.
However, it leads to a coherent definition of all parameters for given permeability and
porosity. The effects of the pore shape and pore geometry on the dynamic behavior
of a saturated porous medium are investigated in Part III of this study. It has to be
mentioned that the pore models do not change the relative variations of the medium
behavior related to permeability, porosity or saturant fluid properties modification.

Coupling coefficients and body waves

The formation used is a Berea sandstone (see Table 1.1). The calculations are made in
the frequency range [1, 107] Hz. The mass coupling coefficient, P22(W) and the viscous
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coefficient b(w)) are given in a nondimensional form: (

ph(w) -

b*(w)

P22(W)
P2

- b(w)/ ( 'If ) (83)

(

Following Dutta and Ode (1983), the body wave (Pl , P2 , S) attenuations are given in
decibels per wavelength. Denoting k j the wavenumber related to a body wave:

k
w .

j = -(-) + I "Ij
Cj W

where

• Cj is the phase velocity (al, a2,13)

• "Ij is the attenuation coefficient.

j = 1, 2, 3 (84)

The attenuation in dB/A (or dB/Hz-sec) is given by:

Aj = 8.686 "1;'/ = 27.286 x 2~Cj (85)

This value is proportional to the inverse of the quality factor Qj' When Qj » 1, the
following classical relation is verified:

27.286
Aj = --:::--

Qj

The attenuation coefficient will be given in dB/m.

(86)

The phase velocities are dispersive. The group velocities gj are numerically evaluated
using the fact that at the low frequency limit gl = al; g2 = 2a2; gs = 13 and that at the
high frequency limit gj = cj, j = 1,2,3 ( see Boutin, 1983).

Saturant fluid effects

Besides the pore shape, the saturant fluid properties affect both velocity and attenuation
of the body waves. In the following, the porosity is 19 % and the permeability is equal
to 200 md. To begin with, only "homogeneous" saturant fluids are considered: -heavy
oil (1), water (2) and gas (3) (see Table 1.2). The characteristic frequency is very high
for heavy oil (e! 31360 kHz). The coupling coefficients are then almost constant in the
whole frequency range (P;2(w) = 4/3; b*(w) = 1, Figure 2a). In the cases of water and
gas saturations, they depart from the static values for a frequency around fe/8. This
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is due to the expression of the argument of the complex permeability function which
includes the pore radius. As previously stated, b* (w) is then proportional to .;w and
P22 (w) tends to 1.

The nature of the saturant fluid modifies the wave velocities of the porous medium
(Figure 2b). In the low frequency range, the distribution is:

alG < ala < alW

(30 < (3w < (3G

(G = gas; 0 = oil; W = water)

while for Poisson's ratio:
VG < va < Vw

As indicated by the scale of the figures, the dispersion is rather weak for the PI and
S waves. It occurs in correlation with the disconnecting of the coupling coefficients (i.e.,
for I ~ 1e/8 ). The characteristic frequency is underlined by the first inflexion point of
the group velocities. The low and high frequency expressions for the S wave are easy to
evaluate analytically (see Schmitt, 1985, for example):

- 2
lim (32 = (1 -:: </»Ps(3'!' (87)
w_o (1- </»Ps + </>Pf

lim (32 - N (88)
w-+oo - PI2

Pll- -
P22

The relation (87) explains the velocity distribution as a function of the saturant fluid.
However, only its density plays a part: the greater it is, the lower the S wave velocity
IS.

The equation (88) is general. With the unidirectional cylindrical ducts model, it
becomes:

lim (32 = (32
w-oo m

which is independent of the porosity and the saturant fluid.

(89)

The behavior of the slow P2 wave is completely different. The phase velocity is very
dispersive: nearly equal to zero for very low frequencies, it tends to the saturant P wave
velocity (within 10%). This corresponds to the limit indicated by Plona and Johnson
(1980). The first horizontal tangent of the group velocity occurs at 1= le/8.

Looking at the PI and S wave attenuations (Figures 2c, 2d), the "low frequency"
range, for which the viscous forces are dominant, is clearly separated from the "high
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frequency" range for which the inertial forces are no longer negligible. The limit cor­
responds to the critical frequency of the porous media as given by the equation (32)
l.e.:

b
fei = =--­

2". P22

Neglecting the variations of b(w) and P22(W) yields:

(

(

(90)

Each of these ranges is characterized by a frequency dependence:

f < fei Ap, (Qpn ex f iP, ex f2

AS(Q:sl) ex f is ex f2

Ap,(Qp;) ex r ,!
1

(91)f> fei ip, ex f.
1

As(Q:s1
) ex r' is ex f.

f = fei Ap,(Qp;) and As(Q:s1
) are maXImum

Whatever the saturant fluid is, the S wave attenuation is greater than the P1 wave
attenuation. The difference increases from gas to water saturation.

Contrary to what is generally stated, the PI and S wave attenuations are not char­
acteristic of the saturant fluid in the whole frequency range.

Below the critical frequency relative to the gas saturation case (i.e., ~ 18 kHz), the
"usual" distribution occurs:

(

Ap,(G) > Ap,(W) > Ap,(O)
As(G) ~ As(W) > As(O)

It is identical for the attenuation coefficient.

(92)

(

Up to its critical frequency (~ 114 kHz), the water saturated porous medium is the
most attenuating one. Beyond this value, the heavy oil leads to the greatest attenuation.

Although the "low frequencies" practically correspond to the application ranges of
the varied exploration techniques, one should not make any generalization. In addition
to the saturant fluid viscosity, its compressibility plays a part in energy dissipation
related to the fluid-solid differential motion.

Finally, the attenuations shown in these cases are relatively weak, especially for the
P1 wave.

Below the critical frequency fei, the P2 wave is quasi diffusive. Whatever the satu­
rant is, its attenuation Ap, is equal to 54.6 dB. Beyond this value, it decreases as f-!.
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Contrary to the Pi and S waves, the attenuation coefficient is always proportional to
the square root of the frequency. The relations (91) have to be completed by:

{
f < fei

f> fe;

1

"iP, ex f2
1

"iP, ex f2
(93)

In the low frequency range, the saturant fluid is characterized only through the atten­
uation coefficient variations:

"iP, (0) > "iP, (W) > "iP, (G) (94)

(95)

Despite the title of this section, only the absolute variations of the different attenuations
have been shown. Only some trends, related to the nature of the saturant fluid, have
been pointed out. Even if, following Biot (1956b), it is assumed that the energy dissi­
pation can be characterized by a function D equal to tb(iL; - U;)(u; - U;), no general
rules related only to fluid viscosity can be established.

The study of "inhomogeneous" fluids (i.e., mixtures) may show the complexity of
the phenomenon. To do so, the bulk parameters of the resulting fluid are necessary.

Domenico (1977) quantifies the effects of gas presence in water through the density
(p) and the compressibility (C):

Pf - Swpw + (1- SW)PG
Cf SwCw + (1- Sw)CG

where

• the subscripts f. W. G denote the resulting fluid, the water and the gas,

• Sw is the water saturation degree of the fluid.

These formulas implicitly asssume that the water and the gas are mixed in the same
proportions everywhere in the pore space. In addition, laboratory experiments (Foster
Allen et al., 1980) showed that a 10% presence of air reduces the compressional wave
velocity in the water by about a quarter. At this value, there are a small number of
gas bubbles in the water. Dutta and Ode (1979a, b) have analyzed the attenuation and
dispersion of compressional waves in fluid filled porous rocks with partial gas saturation.
They used White's model (1975) au"d the classical Biot's theory in the low frequency
range since their work concerned the seismic exploration band, i.e. 10-150 Hz. It cannot
be therefore directly applied to the high frequency domain and to the well logging
situation. Arditty (1978) also chang"es the viscosity in accordance with practical tables
(Carr et al., 1954; Standing and Katz, 1942a, b).

Cases of water-gas mixtures are studied in the following section. The velocities and
attenuations are relative to:
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• pure water (1)

• "gaseous water" (2). Only the compressional wave velocity is lowered (0: = 800
m/s). The coupling coefficients, the critical and characteristic frequencies are then
identical to those of pure water (see Figure 3.a)

• "gaseous water" (3) for which the velocity, the density and the viscosity have been
changed following Arditty (1978) (see Table 1.2). The coupling coefficients are
then less than those of pure water. The compressibility and the critical frequency
are less than those of the previous case.

• pure gas (4)

In the low frequency range (Figure 3b), the PI velocity of the mixtures is less than
the PI velocity of the pure gas saturation. The more compressible the mixture is, the
lower the PI wave velocity is. This result, which may be surprising, is mentioned by
Toksoz et al. (1976). It has been obtained from measurements or calculations using
the Toksoz et al. model, under soine confining pressure conditions. In the very high
frequency range, greater than all the critical frequencies, the velocities are distributed as
the decreasing compressiblities of the saturant fluids. This is due to a greater dispersion
for the "gaseous waters". At intermediate frequencies, various situations can occur.

The modifications and the variations of the shear wave velocities are simpler and
identical in the whole frequency range. In accordance with the equations (87) and (88),
only the saturant fluid density plays a role. The distribution is: .8(1) = .8(2) < .8(3) <
.8(4). This order differs from the PI wave relations. Poisson's ratio is thus changed.

At very high frequencies, the P2 velocities are proportional to those of the saturant
fluids. At intermediate frequencies, the situation is complex, strongly influenced by the
critical frequencies. In the low frequency range, the distribution is 0:2 (4) > 0:2 (3) >
0:2(1) > 0:2(2).

The distribution of the attenuations in dB/A and dB/m of the PI and S waves
(Figures 3c, 3d) is simple only for frequencies less than the gas critical frequency. In
this "low frequency" range, the first effect of the fluid velocity decrease is a greater
attenuation of the PI waves, nearly equal to that of gas despite the viscosity ratio ('="
45). With similar compressibilities, an increase in the viscosity (on the order of 5) leads
to much greater PI and S wave attenuations. These are greater than those obtained
with the gas which is, however, more compressible and less viscous. To summarize, the
distribution is:

(

(

(

(
c

Ap, (3) > Ap, (4)
As(3) > As(2)

and likewise for the attenuation coefficients.

;::: Ap, (2) > Ap, (1)

= As(l) ;::: As(4)
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Correlatively, the maxima associated with the critical frequencies are greater for the
mixtures, all the more when the saturant fluid is less compressible. It has to be noted
that a simple decrease of the saturant fluid velocity does not change the S wave velocity
and attenuation or the critical frequency of the porous medium.

As for the "homogeneous" fluids, the variations of the attenuation in decibels per
wavelength of the slow P2 wave only show the modifications of the critical frequencies.
In the "high frequency" range, the distribution is then:

The attenuation coefficients are distributed in the reverse order of the "low frequency"
velocities, Le.:

')"P2(4) < ')"P2(3) < ')"p,(l) < ')"P2 (2)

For equal viscosity, the more compressible the fluid is the greater the resistance to the
flow. Inversely, for similar compressibilities, the lower the viscosity is the greater the
relative motion between the two phases. The P2 wave is thus more propagative and
less dissipative. This result is still true when the viscosity and the compressibility are
lowered.

In the case ofthe oil-gas mixture, whatever the body wave (PI, P2 or S), the relative
variations of the velocities and attenuations are identical to the ones just described.

It is thus only for the "low" frequencies that the saturant fluid nature can be ap­
proached using only the characteristics of the PI and S waves: velocities (i.e., Poisson's
ratio) and attenuations. One has to be aware of any extreme generalization, especially
for porous media saturated by mixtures.

Permeability effects

For a porosity of 19% and a given saturant fluid, the body wave velocities and atten­
uations are evaluated for different permeabilities: 2 md, 32.5 md, 200 md, 500 md, 1
darcy, 1.5 d and 5 d (respectively (1), (2), (3), (4), (5), (6) and (7) in Figures 4a, b, c,
d and 5a, b, c and d).

Whatever the saturant fluid, an increase in the permeability leads to a decrease of
the critical frequency (see eq. 89) and of the quasi-static value of the viscous coupling
coefficient. At the same time, the pore radius (a) increases. The relative motion between
the two phases is then enhanced. The densities per unit volume of the porous medium
(i.e., PI and P2) remain unchanged. This is also true for the low and high frequency
limits of the mass coupling coefficient and the density of the medium (see Figures 4.a
and 5.a for the water and gas saturations, respectively).

As one could infer from the equations (87) and (88) for the S wave, a permeability
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increase has no effect upon the absolute values of the body wave velocities (Figures 4b;
5b). The shift toward low frequency of the critical frequency results in a lower frequency
occurrence of the noticeable dispersion.

The greater the permeability, the more important the relative motion between the
two phases and thus the two phase character of the porous medium. This leads to an
increase in the P1 and S wave energy dissipation (Figures 4c, 4d; 5c, 5d). However,
because of the discontinuity in slope of the attenuations around the critical frquency, this
characteristic is only valid in the quasi-static range. At best, it is true for frequencies
lower than the critical frequency relative to the highest permeability. This limitation
is all the more drastic in that the maximum of attenuation in decibels per wavelength
is identical. Physically, this is because the mass coupling coefficient P22(W) remains
unchanged. The curves are then just shifted toward the low frequencies when the
permeability increases.

Depending on the frequency range considered, the measurement of the P1 and S wave
attenuations are not always representative of the medium permeability. As a matter of
fact, it is only for a uniform flow that the determinations will not be ambiguous.

The slow P2 wave becomes propagative at lower frequencies in correlation with the
critical frequency decrease and its attenuation coefficient is inversely proportional to the
permeability. This wave is then representative of the permeable character of a saturated
porous medium.

Porosity effects

The porosity is a critical parameter in the sense that it governs the mechanical properties
of the porous medium (velocities and density) as well as the critical frequency.

Several authors use expressions relating the porosity to the skeleton bulk modulus
(Kb). For example, Ogushwitz (1985), after Hamilton (1976), gives:

log K b = x - Y4>

where x and yare constants which depend on the rock and constitutive materials.

K b can also be evaluated using the "Toksoz model" (Kuster and Toksoz, 1974 a,
b; Cheng and Toksoz, 1979; Toksoz et aI., 1976) or the Berryman (1980) model (see
Ogushwitz, 1985).

Semi-empirical formulas also exist. For example, Raymer et al. (1980) give for the
consolidated rocks, i.e. 4> < 35%:
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pV PfV] PmV,;,
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where the subscripts f and m denote the saturant fluid and the matrix, respectively.

In this paper, the dry rock velocities are kept constant. K b varies in accordance
to the equation (17). In the following examples, the porosity values are 5%, 8%, 10%,
19% and 30% (cases (1), (2), (3), (4), (5) respectively). The permeability is equal to
200 millidarcies. Figure 6a shows the normalized coupling coefficients for the water
saturation situation.

Within the quasi-static range, when the porosity increases the PI and S wave veloc­
ities decrease, but not at the same rate (Figure 6b). The Poisson's ratio'also decreases.
At the same time, the dispersion is more important. The high frequency limit of the
S wave velocity is identical for each porosity because of the way the calculations are
done and the chosen pore shape model. The PI velocities, on the contrary, increase
with decreasing porosity.

The behavior of the Pz wave is identical for the low frequencies but the distribution
is reversed for the high frequency limit. The smaller the porosity, the less important
the fluid volume. The Pl and S wave attenuations are then weaker (Figures 6c, 6d). As
the critical frequency varies with the porosity, the attenuation curves are simply shifted
along the x and y axis. The shear wave attenuations in the quasi-static range are very
close to one another. The differences are only clear around the critical frequencies and
beyond these values. Lastly, whatever the porosity is, the S wave attenuation is greater
than the Pl wave attenuation. The difference decreases inversely with porosity.

As with permeability, the attenuation coefficients of the slow Pz wave follow the dis­
tribution of the viscous coupling coefficient. The smaller the porosity, the less important
they are.

The general trends still behave for the gas saturation situation. Only a few differ­
ences occur. They are related, for example, to the difference between the P l and S wave
attenuations (see Schmitt, 1985).

The porosity effects, contrary to permeability, cannot be inferred from the viscous
coupling coefficient and the critical frequency alone.

A porosity increase leads to an increase of:

• the critical frequency

• the viscous coupling coefficient
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• the mass coupling coefficient
and, above all,

• the moving fluid volume

Schmitt

(

It is because of this last feature that the Pi and S wave attenuations increase while the
Pz attenuation decreases: the porous medium is more diphasic.

As with porosity, the velocities of the dry rock modify the maxima of attenuation
of the Pi and S waves as well as the attenuation coefficient of the slow Pz wave. They
also affect the difference between the attenuations of the two "fast" body waves (see
Schmitt, 1985).
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The constitutive equations of a saturated porous media can be obtained through the
use of mixtures theory. Although axiomatic, this formulation emphasizes several as­
sumptions which are not explicit in Biot's papers. It leads to a frequency dependence
of the mass coupling coefficient.

Besides this frequency dependence, homogenization theory leads to a somewhat
unified definition of the viscous and mass coupling coefficients. They are related to one
another through a complex permeability function. This function can be computed for
a given pore geometry by integration of the Navier-Stokes equations.

The continuity equations at different kinds of interfaces (porous/porous, porous/solid,
porous/fluid) can be inferred from the general principles of mechanics but are not so well
proven as one might believe. With several assumptions, the same equations as Dere­
siewickz and Skalak (1963) have been derived. The uniqueness of the wavefield is then
ensured.

Using the formulation previously described, and considering the pores as cylindrical
ducts with a unidirectional flow, the properties of the three body waves have been
analyzed.

The practical results of that study may be summarized as follows:

• The critical frequency of a saturated porous medium is inversely proportional to
the low frequency limit of the mass coupling coefficients P22. It fixes the frequency
for which the attenuations, i.e. the inverse of quality factors, ofthe PI and S waves
are maximum. However, the dynamic behavior of a saturated medium occurs at
lower frequencies, around the characteristic frequency, in correlation with the
propagative character of the slow P wave related to a non uniform flow.

• The frequency dependence of the body wave attenuations (see eqn. 91 and 93)
are general.
Because of the "breaking point" in the attenuation variations of the PI and S
waves, one has to be aware of any general and a priori classification concerning the
saturant fluid nature and permeability effects that is independent of the frequency.

• The maxima of attenuations (in dB/A) of the PI and S waves are independent of
the permeability for a given formation, a given saturant fluid and a given porosity.

• It is only in the low frequency range (i.e., below the critical frequencies) that a
permeability increase leads to an increase of the PI and S wave attenuations.

• The PI and S wave attenuations increase with the porosity for a given formation,
a given saturant fluid, and a given permeability.

5- 37



142 Schmitt (

• The slow P2 wave is inhomogeneous, especially in the low frequency range. Its
characteristics strongly depend, for given permeability and porosity, on the satu­
rant fluid mobility. This last parameter is a function of the compressibility and the
viscosity of the liquid. Its phase velocity is always less than the P wave velocity
of the pore fluid. Therefore, in the borehole configuration, this wave cannot be
critically refracted at the borehole wall, thus it cannot be recorded.
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APPENDIX

COUPLING COEFFICIENTS FOR CYLINDRICAL DUCTS

(

(

(A.l)

Evaluation of the complex permeability function

The analytic expression ofthe complex permeability function K(w) is obtained through
the evaluation of the flow velocity in a cylindrical duct whose radius is " a » related to
the application of a pressure gradient in the case of a motionless solid (the expression
is the same when the solid moves). The developments thereafter follow Biot's (l956b)
and Borne's (1983) presentations.

A pressure gradient is applied along x (see .Figure AI) which is the flow direction.

The flux is assumed to be axisymmetric and (j is considered to be independent of x.
The equation of motion of a viscous Newtonian liquid in the x direction may be written:

.. ap 2'
Pj U = - ax + rJ 'i1 U

where P denotes the pressure and rJ the dynamic viscosity of the fluid.

r·o

•r.ot----'-

(from 8UJt.1956 b)

Setting F = -*, equation (A.l) becomes (for a moving solid, one needs to put

down v = U - uand F = -* -p/u., see Biot, 1956b):

rJ 'i1 2v + F = NV (A.2)

Because of the axial symmetry v = vCr), and assuming a temporal dependence eiwt , the
equation may be written:

(

(

{

(

d2v 1 dv ;WPj F-+ --- --v = -­
dr2 r dr rJ rJ

This is a Kelvin's equation whose solution is (v has to remain finite when r = 0):

(A.3)

1
vCr) = -.-F

lWPj
(AA)
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where

• v = '7/PI is the kinematic viscosity of the fluid,

• Jo is the Bessel function of the first kind of the zero-th order.

The hydraulic permeability K(w) is then given by:

K(w) = 2¢ r" vCr) rdr
a2 Jo F

where

• F is a constantin relation to r

• </> is the porosity

Then, using the recurrence relations of the Bessel functions:

149

(A.5)

d(zn In(z)
dz

2n In(z)
z

one obtains:

K(w) = __¢ _J2--7{_ia-...,I¥=':,T}

iWPI {'I¥w}Jo ta -
V

Low frequency range

For a complex z, :

(A.6)

(A.7)

5- 45



150

Substituting z= iafFi yields:

Schmitt
(

(

8iv
"" a2w

(A.8)

(

so that,

lim H(w}
W~O

_ lim _(1) = lim ( H1 (w) +i H2 (w))
w_O K w w-O

[ ~ + i ( :~ + ;:: ) ]

(A.9)

Using the relations (41), one obtains:

lim b(w) = lim 4>2 H1(w) = 8'724>
w-o w-o a

. . 4>2 H 2(w) 4- 4
lim P22(W) = lim = -,pP! = -P2w-o w_o w 3 3

The compatibility with Darcy's law enforces:

(A.I0)

(A.n)

'74>2 8'74> .--- = -2 I.e.,
k a

- 24>k=a ­
8

(A.12)

where 10 is the medium permeability. This is again the relation (38).

High frequency range

(

For a complex z:

lim In(z) = (2 (
%-00 y;;- cos(z _ 1I"n _ :':.) [1- (4n

2
- 1)(4n

2
- g)]

2 4 128z2

. 1I"n 11" [4,\2-1])-sm(z- ---)
2 4 8z
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Using the same notations as previously:

1 11:

J, ( ) 1+ -tan(z--)
lim ...2..!.- = _ 8z 4._00 J2 (z) 15 11:

1--tan(z-1I:--)
8z 4

then

I¥w .(. ) ifz - ia -=, ,+1 a -
v 2v

z = (i-1)a

so that,
SIn z = i sinh a. cos a - sin a cosh a
cos z = cosh a cos a + i sin a cosh a

When w -+ 00, Z -+ 00, a -+ 00, the above expressions become:

151

(A.13)

(A.14)

(A.15)

so that,

Then

Slnz

cosz

......, eCt
• •= "2 (- sm a +, cos a )

eO: • .
~"2 (cosa+' sma)

i - tana
tan z = 7. .,-----:;­

, tana+ 1
(A.16)

lim tanz = lim tan(z - !:.) = lim tan(z - 11: - !:.) = i
w-+oo w-oo 4 W-+(X) 4

The relations (A.13) may thus be written:

(A.17)

,
1-­

8z
.15

1- ,­
8z (A.18)

so that

wll.~ H(w) - ,wr [1 +~~]

= ,wr [1 + ~(1 - i)~]

Then,

. 24> V'1wpt 1
hm b(w) = - -- = Xw'i

w-+oo a 2

. - 2f!!Pfhm P22(w)=</>Pf(1+- -)
w-+oo a 2w
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TABLES

Physical parameters used in this study

1.1 Formation = Berea sandstone (from Rosenbaum, 1974)

K. P. am 13m if,
(Pa) (kg m -3) (ms -1) (ms -1) %

3.79 10 10 2650 3670 2170 19

1.2 Saturant fluids.

af PI 1/
(ms-1) (kg m -3) (cp)

Oil 1 1455.4 879.4 180
Water 1500 1000 1

Gaseous water 12 800 1000 1
Gaseous water 22 727.5 941 0.211

Gas 3 629.7 139.8 0.022

1 From Kuster and Toksoz (1974b)
2 see text
3 From Rosenbaum (1974)
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(a) (b) (c)

~1edi um ?

Medi urn 1

Interface

t2Z/1solid phase ___~I liquid phase

Figure 1: Simplified diagrams of an interface between two saturated porous media (after
Deresiewick and Skalak, 1963).
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Figure 2a: Berea sandstone. if> = 19%, k = 200md. Saturant fluid effects. 1 = Oil, 2 =
Water, 3 = Gas.
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2 = Gaseous water 1, 3 = Gaseous water 2, 4 = Gas.
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2 = Gaseous water 1, 3 = Gaseous water 2, 4 = Gas.
Phase and group velocities of the body waves (PI, S, P2 )
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Normalized coupling coefficients (p22(w)/(¢pf); b(w)/(T]¢2/k))
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Figure 6a: Berea sandstone. 10 = 200 md. Water saturation. Porosity effects. 1: 1> =
5%, 2: 1> = 8%, 3: 1> = 10%, 4: 1> = 19%, 5: 1> = 30%, Normalized coupling coefficients
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Figure 6b: Berea sandstone. k = 200 md. Water saturation. Porosity effects. 1: ~ =
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Figure 6d: Berea sandstone. k = 200 md. Water saturation. Porosity effects. 1: <P =
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