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ABSTRACT

In order to investigate the effect of borehole fluid viscosity on the attenuation and
dispersion of the guided waves present in full waveform acoustic logs, the problem of
wave propagation in a borehole containing a viscoelastic fluid surrounded by an infinite
elastic formation is solved using boundary layer theory. The results indicate that the
losses due to viscous drag along the borehole wall are a small component of the overall
guided wave attenuation for the frequencies of interest in full waveform acoustic logging
(2-15kHz) and for reasonable viscosity values (1-1000cP). These losses, however, can be
significant at low frequencies. In addition, the variations in viscosity have a negligible
effect on the guided wave dispersion for this range of frequency and viscosity. These
findings indicate that friction between grains in fluid suspension may be the dominant
attenuation mechanism in the drilling fluids present in boreholes.

INTRODUCTION

In most previous formulations of the borehole wave propagation problem, the fluid which
fills the borehole is assumed to be perfectly elastic, that is, inviscid. However, it is of­
ten found that in order to match synthetic mic.roseismograms to actual full waveform
acoustic log field data, the fluid must be lossy. Fluid attenuation is most commonly
included by assuming a constant Q value for the fluid (Cheng et aI., 1982; Tubman,
1984). Although these assumptions simplify the analysis and result in good agreement
with field data, there are physical reasons for questioning their validity. First, by ne­
glecting viscosity in the fluid, there is no boundary condition at the borehole wall for the
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axial displacement, that is, the axial displacement is allowed to be discontinuous. Such
behavior suggests that the fluid molecules can slide past the solid borehole wall more
easily than they can slide past themselves (Lamb, 1945). Fluid mechanical observations
also indicate that the 'no-slip' condition is observed in practice no matter how small
the viscosity (Lu, 1977). It seems reasonable, then, to investigate the effect of imposing
the additional boundary condition on axial displacement. The second reason concerns
the fluid attenuation mechanism. The most reasonable attenuation mechanism for a
fluid in a borehole would be viscous drag at the borehole wall. In the absence of any
viscosity, the assumption of constant Q for the fluid is somewhat difficult to justify. One
possible justification for the use of a constant Q is based on the narrow frequency band
commonly used in full waveform sonic logging. If the frequency dependence of Q for the
fluid is not too great, it is reasonable to approximate it with a constant value over some
limited frequency band. This explanation also carries the implicit assumption that the
axial displacement boundary condition is not critical for the fluids and frequencies of
interest in borehole logging situations. The commonly used drilling fluids, however, are
fairly complicated in composition and dynamic behavior. These fluids can be viewed as
suspensions of barite (or some other high density material) and other compounds (in­
cluding clay minerals). Drilling fluids are also thixotropic, that is, the viscosity of the
fluid is low when the fluid is flowing, as during drilling operations, and is higher when
the fluid is stationary so that cuttings will remain in their proper spatial positions within
the fluid stream. Besides viscous losses, then, attenuation due to frictional sliding of
the suspended grains past one another is one possible loss mechanism. These questions
of boundary conditions and attenuation mechanisms are critical enough to warrant an
investigation of the effects of viscous borehole fluid on full waveform acoustic logs.

There has been very little work done on borehole wave propagation in the presence
of a viscous fluid. Stevens and Day (1986) briefly discussed the possible effects of
fluid viscosity and concluded that the effects would be negligible for any reasonable
values of viscosity and frequency. Schoenberg et al. (1986) quantified the effects of
viscosity by deriving an effective dispersion equation for low frequency Stoneley waves.
The acoustic literature also contains the solution of similar wave propagation problems
(Pierce, 1981). Biot (1956a,b), in his derivation of wave propagation in porous media,
treated energy dissipation due to the relative motion between a viscous pore fluid and the
solid framework of the porous material. He modelled the pore structure by cylindrical
tubes, which is analogous to the present problem. Comparison of the results obtained
for the viscous borehole fluid with those obtained via the Biot theory (Burns and Cheng,
1986) highlights the similarity.

In this paper, the dispersion equation for a simple, open borehole filled with a visco­
elastic fluid will be derived. This is a boundary layer type problem due to the fact
that as viscosity approaches zero, the axial displacement becomes discontinuous at the
borehole wall. Such problems are referred to as singular perturbation problems because
the nature of the problem changes dramatically when some small parameter, viscosity



Viscous Fluid 11

(1)

('7) in this case, becomes zero. If the fluid is assumed to be 'perfectly' elastic, only
three boundary conditions are imposed at the borehole wall: continuity of radial stress
and displacement, and vanishing of axial stress. When viscosity is introduced, the axial
stress is continuous at the borehole wall and it is non-zero in the fluid. In addition, a
fourth boundary condition is imposed: the continuity.of axial displacement. In order to
satisfy this fourth boundary condition, a viscous boundary layer is formed in the fluid
adjacent to the borehole wall. The boundary layer manifests itself in the azimuthal
component of the vector potential of the fluid, that is, the fluid supports shear motion
in the boundary layer. A zeroth order (in '7) uniform solution for this shear potential in
the fluid allows the period equation to be derived and dispersion and attenuation to be
calculated for Stoneley and pseudo-Rayleigh modes. The results are in agreement with
the conclusions of Schoenberg et al. for low frequency Stoneley waves. Calculations of
radial and axial stress and displacement as functions of radial distance from the borehole
axis are also carried out to illustrate the structure of the viscous boundary layer. Higher
order solutions for the shear potential can be obtained, but for the range of viscosities
and frequencies of interest in acoustic logging, the errors (0('7)) are small.

THEORY

In this section, the period equation for guided waves in a borehole containing a viscoelas­
tic fluid is derived. The geometry of the borehole is assumed to consist of a cylindrical
borehole filled with a viscoelastic fluid surrounded by an elastic formation of infinite
extent. The problem is assumed to be axisymmetric. By assuming a viscoelastic fluid,
the stress components in the fluid are proportional to strains and strain rates. More
specifically, the fluid is assumed to be Newtonian viscous, that is the shear stress is
equal to the product of viscosity and shear strain rate:

a.
T = '7 at

Problem Formulation

For the simple open borehole geometry, the dilatational and shear potential solutions
to the wave equation for an elastic formation are:

where:

if> = [A'Ia (IT) + AKa (IT)] e;(kz-wtj

1/1 = [B'II (mT) + BK, (mr)] e;(kz-w'j

(2)
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l=k 1- :2

(
2) 1/2

m=k 1- ;2

= radial distance
= axial distance
= axial wavenumber
= angular frequency
= scalar potential
= azimuthal component of the vector potential
= i'h order modified Bessel function of the first kind
= i'h order modified Bessel function of the second kind
= amplitudes of outgoing waves
= amplitudes of incoming waves

The radiation condition requires that A' and B' both equal o. In order to obtain
the solutions for the fluid, the equations of motion must be reformulated. The equation
of motion based on the radial forces acting on an elementary volume in cylindrical
coordinates is (assuming axial symmetry) (White, 1983):

where:

Pi;
p

= elements of the stress tensor
= density
= radial displacement

(3)

l

For a viscoelastic fluid as described above, the stress-strain "equations of interest are
given by:
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where:

7) = fluid viscosity
>. = Lame's constant of the fluid
u: = axial displacement

Substituting Equations (4) into Equation (3) results in :

13

(4)

a2U r
= p at2

(5)

The dilatational potential in the fluid can be derived by substituting the following
expressions into Equation (5):

Which results in :

at/>
U r = -ar

at/>
U z =-az

(6)
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Solving by separation of variables yields the following solutions:

<P/luid = [Clo (lr) + C'K o(lr)] ei(kz-wt)

where:

[ ]

1/2
2

= k 2 _ W

f ("j _2;;9)

The solution must remain finite on the borehole axis, therefore, C' must equal o.
solution given in Equation (8) reduces to the elastic solution when TJ = o.

(8)

The

(

Because we have four boundary conditions which must be satisfied at the borehole
wall, a solution for the shear potential must also exist in the fluid. The straight forward
approach to finding the shear potential solution is to substitute the following expressions
into Equation (5):

8.p
U r =--

8z

8.p .p
UJr= -+­

8r r

The resulting equation can be solved by separation of variables and yields:

(9)

(10)
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Again, the solution must be finite on the borehole axis, and therefore D' must equal O.

An obvious problem exists with this solution. As '1 gets small the radial wavenumber
(7) gets very large, and the Bessel function becomes infinite. This behavior is not too
surprising since the problem is actually a singular perturbation problem. When '1 = 0,
the axial displacement boundary condition is dropped and tP = 0 in the fluid. As soon as
'1 is non-zero, however, the nature of the problem abruptly changes to include the axial
displacement boundary condition. The problem must be solved by using boundary layer
theory. The fluid develops a thin boundary layer along the borehole wall in which the
viscous drag occurs. In this boundary layer the axial displacement is rapidly changing.
The rapid change in the axial displacement is due to the shear potential of the fluid
rapidly changing in this zone. It is reasonable to expect that the solution outside the
boundary layer will be equal to the non-viscous solution, that is, tP = 0, and only be
non-zero within the boundary layer.

Boundary Layer Formulation

The shear potential is found by substituting Equations (9) into Equation (5). Assuming
an oscillatory function of the form:

tP/luid = e(r) e,(kz-wt)

the resulting ordinary differential equation in terms of the radial distance r is:

d2e 1 de ( 1 2 iwp )- + -- - e - + k - - = 0
dr2 r dr r2 '1

(11)

(12)

To find the outer solution of this equation, that is the solution outside of the boundary
layer (Figure 1), Equation (12) is rewritten as:

(13)
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Letting TJ --+ 0 results in:

or:
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(iwp)e=O

e=o

(14)

The outer solution, then, is the same as the solution for the case of a non-viscous fluid.

The inner solution, that is the solution within the boundary layer, is somewhat more
complicated. Because the solution is rapidly changing in this narrow region it is best to
rescale the problem (Bender and Orzag, 1979). The natural choice is:

where:

R
r
fj

, R - r
r = -fj-

= borehole radius
= radial distance
= boundary layer thickness

(15)

(

In terms of this new variable, as r --+ R, r' --+ 0, and as r --+ 0, r' --> If which approaches
infinity as fj goes to zero. Equation (13) can be rewritten in terms of r' by noting that:

(

The resulting equation in terms of the inner variable, r', is:

(16)

(
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1/ d
2

e 1/ de e ( 1/ + k 2 . ) - 0 (17)
82 dr,2 - 8 (R - 8rl) dr

'
- (R _ 8rl)2 1/ - IWp -

Dominant balance arguments indicate that 8 ~ ;ft. which leaves:

d
2
e 1/1/2 de (1/ 2. )-- - + k -IW =0

dr,2 (R - 8rl) dr' e (R _ 8rl)2 1/ p

Letting 1/ and 8 go to zero reduces the equation to :

d2e .
-2 + IWpe = 0
dr'

The solution of this equation can be written as:

e(r') = Dl eXP[v'-iwpr'] +D2 eXP[-v'-iwpr/]

(18)

(19)

(20) (

The inner solution must match the outer solution as r' approaches 00, therefore
D l = O. Noting that:

~ l-i
V-J,= --

v'2

Equation (20) is reduced to (the subscript on the constant D2 is dropped):

e(r') = D eXP[-(I-i)r/~]

(21)

(22)

(

And, using Equation (15), the inner solution can be recast in terms of the original
variables as follows:

e(r) = D exp [-(1- i) (R- r)~] (23)
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The uniform approximation to shear potential in the fluid is represented by the sum
of the inner and outer solutions minus the matching solution. In our case, the uniform
solution is equal to the·inner solution. The total, zeroth order, uniform approximation
for the shear potential in the fluid, is therefore given by:

<Pjluid = D exp [-(1 - i) (R - r)~] e'(kz-wt)

The boundary layer thickness, or viscous skin depth, is given by:

8= ~
V~

(24)

(25)

The boundary layer thickness is very small for almost any reasonable viscosity and
frequency values of interest. As an example, for a frequency of 1kHz and a viscosity of
1000cP, 8 = 0.0056 of the borehole radius (R). The form of the solution in Equation
(24) indicates that when r=R, <Pfluid takes on its .maximum amplitude, which is the
constant D, and decreases exponentially away from the borehole wall.

Before moving on to the derivation of the period equation, a short discussion of the
approximate nature of the solution obtained for the shear potential is in order. The
solution given in Equation (24) is the zeroth order (in '7) solution which means that
the correction terms to this solution are of order '7 (0('7)). The error introduced by
neglecting these correction terms can be estimated by comparing the magnitude of the
zeroth order solution (Equation (24)) to the magnitude of '7 for the range of parameters
of interest. This has been done by comparing the maximum value of Equation (24), that
is the constant D, to the dimensionless (normalized) value of '7. For a frequency of 1kHz
and a viscosity of 1000cP, the errors are less than 1 percent. Errors are much less than
10 percent even for frequencies as low as 100 Hz with this very high value of viscosity.
These error values indicate that the zeroth order solution is an excellent approximation
for the probable range of viscosities and frequencies of interest in acoustic logging.

Derivation of the Period Equation

In order to derive the period equation for guided waves in a borehole containing a
viscous fluid, four boundary conditions must be satisfied at the borehole wall:

i) continuity of radial displacement
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ii) continuity of radial stress

iii)continuity of axial displacement

iv) continuity of axial stress

Burns

The radial and axial displacement in terms of potentials are given by:

ac/> a.p
u,.=---

ar az

ac/> a.p .p
U z = -+-+-az ar r

and the radial and axial stresses in terms of potentials are:

(26)

(27)

(28)

For the viscous fluid, the rigidity (J1.) in Equations (27) and (28) is replaced by -iwTJ.
By using the potentials given in Equations (8) and (24), the displacements and stresses
in the fluid are (the exponential propagation term is dropped for clarity):

U r = GIII (lr) - ikDet

U z = GikIo(lr) + D [(1- i) J;~ +~] et

(7 = G [- PfW 2 fa (lr) + 2iwTJ [~II (lr) - k 2 fa (lr)]]

+iD [2iWTJ k(1- i) ~et]

(29)

(30)

(31)

(
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(32)

The displacements and stresses in the formation are calculated by using the potentials
from Equation (2):

UT = -A1K1 (lr) - iBkK1 (mr)

U. = AikKo (lr) - BmKo (mr)

(j = A [_pw2 Ko (lr)] + 2J.l [~Kl (lr) + k2Ko (lr)]

+iB [2J.lk [mKo(mr) + ~Kdmr)]]

(33)

(34)

(35)

(36)

Equating terms at the borehole wall (r=R) results in the following system of equations:

where:

Ya=Q (37)

and Y is a 4 x 4 matrix whose elements are given by the terms in Equations 30 - 37. A
non-trivial solution to this system exists when:
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Table 1: Fluid and formation parameters used in calculations

LAYER Vp V, P '7
(m/sec) (m/sec) (g/cm3

) (cP)

fluid 1500 0 1.0 0
1

10
100

1000
formation 3670 2170 2.4

IYI =0 (38)

which is the period equation. By solving for the complex wavenumber roots of Equation
(38) over a range of frequencies, the dispersion and attenuation of Stoneley and pseudo­
Rayleigh waves are found for any given fluid and formation parameters.

RESULTS AND DISCUSSION

The dispersion and attenuation of Stoneley and pseudo-Rayleigh waves are calculated
for a range of viscosity values in the presence of a fast formation (that is, formation
shear velocity greater than the borehole fluid velocity). The parameters are given in
Table 1. Before presenting these results, however, plots of displacement and stress terms
near the borehole wall will be shown. Figures 2 through 5 illustrate the variations in
displacements and stresses in the vicinity of the borehole for the Stoneley wave (lkHz)
and several values of viscosity. The axial displacement profiles (Figure 3) show the
boundary layer behavior of the fluid particularly well. In order to make these calcula­
tions without imposing a source term, the constant C (the fluid dilatational potential
amplitude) was set equal to one. As a result, the displacement and stress values are
arbitrary. In addition, all calculations have been carried out with dimensionless input
parameters, and, as such, the displacement and stress values are also dimensionless.

The complex wavenumber roots of the period equation have been calculated for
viscosity values of 0, 1, 10, 100, and 1000 centipoise (cP). Phase velocity dispersion and
attenuation are calculated from the real and imaginary parts of the roots of the period
equation. The results for the Stoneley wave are given in Figures 6 and 7, while the
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Figure 2: Stoneley wave radial displacement as a function of radial distance (normalized
to the borehole radius) for viscosity values of (a) 1, (b) 100, and (c) 1000 cP
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Figure 3: Stoneley wave axial displacement as a function of radial distance (normalized
to the borehole radius) for viscosity values of (a) 1, (b) 100, and (c) 1000 cP
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Figure 4: Stoneley wave radial stress as a function of radial distance (normalized to the
borehole radius) for viscosity values of (a) 1, (b) 100, and (c) 1000 cP
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results for the fundamental mode of the pseudo-Rayleigh wave are given in Figures 8
and 9.

The dispersion and attenuation curves generated for the Stoneley and pseudo-Rayleigh
waves indicate that the effects of a viscous borehole fluid are quite small. Stoneley wave
dispersion is- only negligibly affected in the normal logging frequency range (2-15kHz)
and the pseudo-Rayleigh wave dispersion is completely unaffected. The Stoneley wave
attenuation due to viscous drag at the borehole wall, although increasing dramatically
at low frequencies (the attenuation varies as w-1/ 2), is quite small even for very large
viscosity values. For a frequency of 1kHz and a viscosity of 1000cP the attenuation
is about 0.005 which corresponds to a Q value of 200. By contrast, studies of guided
wave attenuation in the presence of a fast formation indicate that the Stoneley wave
attenuation is primarily controlled by the fluid attenuation (Cheng et ai, 1982). As
stated earlier, most modelling of acoustic logs requires fluid attenuation values of about
0.05 or a Q of about 20. Viscosity values greater than 10,000 cP are necessary to even
approach Stoneley wave Q values of 20 (for example, for 1/ = 10000 and a frequency of
1000 Hz, the Stoneley wave attenuation is 0.02 (Q = 50)). Comparison of such values
with the viscous loss values computed here indicates that the viscous losses are quite
small and can generally be neglected. The psuedo-Rayleigh wave attenuation values
reach a maximum value less than 0.001 (Q of 1000) for a viscosity value of 1000cP,
again indicating that the viscous losses are much smaller than the attenuation values
normally needed in modelling.

Although 1000cP represents a very viscous fluid ( for example, at 20°0: the viscosity
of glycerin is 1490cP; the viscosity of olive oil is 84 CP; and the viscosity of water is 1cP),
the range of representative viscosity values for drilling fluid must be addressed. The
rheological properties of drilling fluids are of prime importance to the drilling process.
Drilling fluid primarily acts as a medium to transport rock cuttings away from the drill
bit and to the surface. It also maintains pressure on any subsurface pore fluids. Most
drilling fluids contain clay minerals which will adhere to the borehole wall (as the fluid
invades the subsurface formations) creating a mudcake which seals in formation fluids
and aids in maintaining the integrity of the borehole. Drilling fluids, in general, are
either water or oil base mixtures containing clays in suspension, barite or some similar
high density material to add weight, and a host of other possible chemical additives to
adjust the fluid's dynamic or chemical properties. The viscosity of the borehole fluid is of
particular importance. A viscosity value that is too low may not hold the drill cuttings
in their proper relative positions in the flow line when fluid circulation is stopped, while
a value that is too high may result in difficulty in pumping of the fluid. A number
of authors have investigated the dynamic behavior of drilling fluids, with particular
emphasis on viscosity (Hiller, 1963; McMordie et aI., 1975; Messenger, 1963; and Walker
and Mays, 1975). Hiller (1963) performed laboratory measurements of viscosity for a
range of drilling fluids as functions of temperature and pressure. His results indicate
that oil base drilling fluids exhibit Newtonian behavior and have viscosities in the range
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Figure 7: Stoneley wave attenuation ( Q-l) for viscosity values of 0, 1, 10, 100, and
1000 cP
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of 30 to 200 cP, depending on the temperature and pressure. A number of water base
drilling fluids which were tested exhibited Newtonian behavior only at higher strain
rates. That is, these fluids behave in a thixotropic manner, the viscosity values are
higher when the fluid is at rest, and lower when the fluid is flowing. In the Newtonian
regions, the water base fluids have viscosity values between 6 and 30 cPo Hiller (1963)
also studied the effect of clay suspensions in water and found that the amount (and type)
of clay can have a large effect on the viscosity behavior. In most examples he measured
viscosity values of between 5 and 40 cP, however in one example containing a high
concentration of swelling clay, the viscosity at low strain rates increased dramatically
at high temperatures (to 600cP at 150°C) due to clay flocculation.

CONCLUSIONS

In conclusion, published studies of drilling fluid viscosity indicate that values of 5 to 200
cP are typical, with a possibility of values reaching 1000cP in extreme cases. The typical
values (5-200cP) result in viscous losses that are small in magnitude for the Stoneley
and pseudo-Rayleigh waves. This result, coupled with a recent laboratory measurement
of drilling fluid q which was frequency independent {a water based mud containing clay
was found to have a constant q value of 30 over a frequency range from 100kHz - 1MHz
(Tang and Toksoz, personal communication), and the agreement between synthetic
and real microseismograms using a frequency independent fluid Q value, indicates that
friction between solid particles in a suspension may be an important loss mechanism. A
more detailed study of the properties of drilling fluids, particularly their viscosity and
attenuation values over a wide range of frequencies, is needed to fully understand the
actual loss mechanisms involved.
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