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ABSTRACT

In this paper we present a finite difference formulation for Biot's equations for wave
propagation in saturated porous media which vary in range and depth. One objective
of well logging petroleum exploration holes is to determine the permeability of a section.
There are indications that the Stoneley wave in the full waveform acoustic logging tool
is sensitive to permeability, but we need modeling techniques to fully understand the
mechanism. One question to be addressed is how narrow horizontal fissures of varying
permeability affect Stoneley or tube wave propagation in the borehole. Another question
is the trade-off between attenuation due to viscous losses in the pore fluid and due to
scattering. A technique for modeling acoustic logs in two-dimensionally varying Biot
solids will give insight into these problems.

THE WAVE EQUATION FOR AHETEROGENEOUS,
ISOTROPIC BlOT SOLID

Biot (1956a,b; 1962) developed a theory to study wave propagation in porous media
saturated with a viscous fluid. Analysis of his equations has been carried out previously
for homogeneous media and for vertically homogeneous acoustic logging problems. We
present here a finite difference formulation of the Biot equations which can handle two­
dimensional structure. We refer throughout to Schmitt (1986), which is an excellent
review of Biot's theory and discusses applications to acoustic logging. Equation numbers
in Schmitt (1986) will be identified by square brackets.
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We will first derive the Biot wave equations for isotropic, heterogeneous material.
The stress-strain relation for a Biot solid is [15]:

(j,j = 2Ne,j + (Ae + Qe)8'j

s8,j = (Qe+Re)8,j

(1)

where (j,j is the stress tensor for the solid, s is the elastic component of the stress tensor
for the fluid filling pores, e,j is the strain tensor of the solid, and e,j is the strain in the
fluid. A and N are analogous to Lame's coefficients.

The appropriate equations of motion are [24]:

aj(j,j = PUU; + P12U, + btU; - iT,)

a,s = Pl2U; + P22U, - b(U; - iT,)
(2)

where u, are the displacements of the solid, U, are the displacements of the fluid in
the pores, and the coefficients b, PU, P12, and P22 are in general frequency dependent.
Frequency dependent coefficients cannot be handled in a time domain finite difference
formulation as discussed here because frequency is not generally known specifically
(except in the case of a continuous wave source). So for the remainder of this discussion
we will assume that the coefficients b, Pu, Pl2, and P22 are frequency independent, at
least over the band width of the pulse source.

Substituting equations (1) into (2), and maintaining gradients in parameters yields
the wave equations for a heterogeneous, isotropic Biot solid:

(A + N)V(V. it) + NV2 it + QV(V· 0)

+ VA(V . it) + VN x (V x it) + 2(VN . V)t7+ VQ(V, 0)

= PU ii + Pl26 + b(it - 0)
QV(V· it) + RV(V. ti) + VQ(V . it) + VR(V . ti)

= Pl2ii + P226- b(it - 0).

(3)

If parameters are constant in space, these equations reduce to equations [47) in Schmitt
(1986). In turn, if porosity is zero, equations [47) reduce to the elastic wave equation
which reduces further to the acoustic wave equation if N equals O. This hierarchy of
equations is applicable to the well.logging problem which will contain media of all types.
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We solve equation (3) using an explicit, second order finite difference scheme analogous
to the formulations of Bhasavanija (1983) and Nicoletis (1981), as discussed in Stephen
(1985). The equations will be solved in cylindrical coordinates (r,z,O) in which there
is no 0 dependence in the parameters, but only r, z dependence. Figure 1 summarizes
the grid configuration used. The left-hand side is the axis of symmetry in cylindrical
coordinates. A point source is introduced in the upper, left-hand corner, and the top
edge is also an axis of symmetry. Axes of symmetry are easy to formulate and are more
stable than absorbing boundaries. The inside of the grid is separated into three vertical
regions. The left region, into which the source is introduced, is a homogeneous fluid
and represents the borehole. The right region is a homogeneous elastic solid which acts
as a buffer zone along the right absorbing boundary. The center region is a transition
region in which arbitrary, two-dimensional variation of fluids, elastic solids, or Biot
solids can be specified. The bottom part of the transition zone should not contain Biot
solid parameters, since it would complicate the absorbing boundary formulations. All
of the regions except the upper transition region, have been described by Stephen et
al. (1985) and Stephen (1985). The formulation for the upper transition region is given
below.

The finite difference solution can be simplified by considering repeated use of the
elastic wave equation finite difference operator defined by:

8(u; A, N) = F· D . {(A + N)V(V . u) + NV 2u

+ VA(V, u) + VN X (V X u) + 2("1N· V)U}. (4)

where F· D· {} means a finite difference representation of the quantity inside the brace
brackets. For example, the finite difference formulation of the elastic wave equation
used by Stephen (1985) and Hunt and Stephen (1987) can be written:

where A and J.' are Lame's parameters. Equations (3) can be reduced to

(5)

F· D· {pua + P12fi + b(il- fi}

F· D . {P12a + P22fi - b(il- fin
= 8(u;A,N) + 8(U;Q,O) =1/

- - - - -I= 8(u;Q,O)+8(U;R,O)=II
(6)

So the right-hand sides of the above equations, designated II and rl, contain only
spatial derivatives, and in the context of a time marching algorithm can be evaluated
at present time ltJ.t.
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Taking centered finite differences in time of the left-hand side of the first equation
in (6) gives:

[61+1 _ 2fjl + fjl-11,
+ P12 ~t2

[
fjl+l _ fjl-1] _ -I

b 2~t - I ,

(7)

and rearranging yields
(8)

where

Pll b
a1 = ~t2 + 2~t

= P12 b
a2 ~t2 - 2~t

b- = 2Pll -I + (Pll b) -1-1
1 - ~t2 u ~t2 - 2~t u

b- _ 2p12 U-l + (P12 + _b_) U-I-1 .
2 ' = ~t2 ~t2 2~t

Similarly the second equation in (6) becomes:

'C1al+l - d1 + c2fjl+l - d2 = III

where

P12 b
C1 = ~t2 - 2~t

P22 bC2 = ~t2 + 2~t

d1 = _ 2p12 al + (P12 + _b_) a l- 1
~t2 ~t2 2~t

d2 = _ 2P22 fjl + (P22 _ _ b_) fjl-1
~t2 ~t2 2~t .

(9)

(10)

(11)

We want to solve for al+l and fjl+l knowing ai, ai-I, fjl, and fjl-1. Note that jl and
-I col -II I contain only terms in u and U .

Solving (8) and (10) for al+1 and fjl+l then gives:

al+1 = [c2JI - a2 f J'J!(a1 c2 - a2cr)

fjl+l = [a1fJ' - c1 JI J!(a1 c2 - a2cr)
(12)
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JI

f./
(13)

In summary, the displacements in the solid and in the fluid at future time, ;;1+1 and

(il+l, can be computed from (12), using (13) for JI and f./. The a's, b's, e's and d's
-j -I

are given by equations (9) and (11) and I and II are given by (6). The necessary
coefficients are A, N, Q, R, b, Pl!, P12 and P22.

DISCUSSION OF THE COEFFICIENTS

At best the eight new coefficients which replace Vp , V, and P for the elastic wave equation
are difficult to visualize. At worst some are frequency dependent, which makes solutions
difficult. In this section we discuss the new coefficients in more detail.

The coefficients A, N, Q and R can be expressed in terms of the bulk moduli of the
solid matrix (K,), the skeleton (i.e., the dry, porous solid) (Kb) and the fluid (Kf), the
shear modules of the skeleton (I-'b) and the porosity, if, [16]:

- ( - Kb) - K,(1 - </» 1 - </> - - K, + </>-Kb
2

A K, Kf= - Kb - K, - :fl-'b
I-</>- -+¢-

K, Kf
( - Kb)-

Q =
1 - ¢ - K, </>K,

- K b - K, (14)1- ¢- -+</>-
K, Kf

R = if,2K,
- Kb - K,1 - </> - - + </>-

K, Kf

N = I-'b

If porosity is set to zero, it can be shown that A and N reduce to A and I-' for the dry
solid matrix, and Q and R reduce to zero. It is convenient to express the coefficients
Kb, Nand Kf in terms of the compressional and shear velocities of the dry but still
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porous rock, "'m and fJm, and the fluid velocity, "'I [17]:

(15)

(16)

2
= PI"'I'

In general, b, Pu, P12, and P22 are frequency dependent, but in certain cases fre­
quency independence can be justified. For example, at low frequencies the viscous
coupling coefficient is given by ([221 and [Figures 2a-6a]):

'1i2b= -.-
k

where '1 is the dynamic viscosity of the fluid and k is the intrinsic permeability. Similarly
the mass coupling coefficient is ([821 and [Figures 2a-6a]):

4·
P22 = 3<PPI . (17)

Once P22 is established, the other coupling coefficients are obtained by [411:

PI2 = P2 - P22

Pu = PI-P12 ,

where PI and P2 are the liquid and solid phase densities per unit volume [1]:

PI = (1 - 4»p,

P2 = 4>PI'

With. these relationships, equations (18) become:

(18)

(19)

PI2

PU

(20)

Under these assumptions, PI2 is not an independent coefficient.

In summ.:-ry, the coefficients A, Q, R, and N can be obtained from K" "'m, fJm, "'I,
P" PI> and <P using equations (14) and (15). The coefficients Pu, P22 and b (since P12
is not independent) can be obtained from '1, k, 4>, P, and PI using equations (16), (17)
and (20). .
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A finite difference code based on the above equations has been drafted and it is being
tested for stability and accuracy. As for the elastic solid case, there may be problems at
the liquid-solid boundary. In the elastic case we were able to use the wave equation for
heterogeneous media without specifically coding the liquid-solid boundary conditions.
Stephen (1985) showed excellent agreement between the discrete wavenumber method
and the finite difference method using this approach. In this work we will compare our
finite difference solutions with the discrete wavenumber results of Schmitt (1986) to
check if the same will be true for Biot solids.

Ultimately we will apply the code to problems which contain vertical variations in
porosity and permeability such as horizontal, porous fissures.
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Figure 1: The grid configuration used for finite difference synthetic acoustic logs in Biot
solids.
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