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Abstract

We report the discovery of three small transiting planets orbiting GJ 9827, a bright (K=7.2) nearby late K-type
dwarf star. GJ 9827 hosts a 1.62±0.11 ÅR super Earth on a 1.2 day period, a -

+
ÅR1.269 0.089

0.087 super Earth on a 3.6
day period, and a 2.07±0.14 ÅR super Earth on a 6.2 day period. The radii of the planets transiting GJ 9827 span
the transition between predominantly rocky and gaseous planets, and GJ 9827 b and c fall in or close to the known
gap in the radius distribution of small planets between these populations. At a distance of 30 pc, GJ 9827 is the
closest exoplanet host discovered by K2 to date, making these planets well-suited for atmospheric studies with the
upcoming James Webb Space Telescope. The GJ 9827 system provides a valuable opportunity to characterize
interior structure and atmospheric properties of coeval planets spanning the rocky to gaseous transition.
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1. Introduction

With the confirmation of over 3500 planets to date and an
additional ∼4500 candidates from Kepler(Thompson et al.
2017), the focus of studying exoplanets has largely shifted from
pure discovery to understanding planetary demographics,
system architectures, interior structures, and atmospheres. In
particular, planets that transit their host stars are valuable for
understanding the properties of small planets in detail. Like an
eclipsing binary star, combining the transit light curve with
radial velocity observations yields a measurement of the mass
and radius of a planet relative to its star, which constrain the
planet’s interior structure. Planetary atmospheres can also be
studied if the planet transits. The opacity of a planet’s
atmosphere depends on its chemical composition and the
wavelength of the observation. This causes the apparent size of
the planet to change as a function of wavelength. Therefore, by
measuring the depth of the transit as a function of wavelength,
it is possible to gain insight into the composition and
temperature of the planet’s atmosphere (this technique is
known as transit transmission spectroscopy; Seager & Sasselov
2000; Brown 2001; Fortney et al. 2003).

Our ability to study the interior structures and atmospheres
of planets, especially small planets (<3 ÅR ) with small radial
velocity and atmospheric signals, is highly dependent on the
brightness of its host star. The brighter the host star, the easier it
is to attain high enough signal-to-noise ratios to search for the
small signals produced by small planets. The relative size of the
planet to its host star is also highly important for transit
transmission spectroscopy. It is easier to detect the small,
wavelength-dependent changes in transit depth when planets
are larger compared to their host stars, so small stars are more
favorable targets than large stars for transit spectroscopy
measurements. Therefore, nearby bright small stars with

planets are excellent targets for atmospheric characterization
(Burrows 2014).
Multi-planet systems provide the opportunity to compare the

atmospheres and interior structures of different planets while
accounting for many confounding variables, like formation
history and composition. In some cases, like the recently
discovered seven-planet system transiting the nearby late
M-dwarf TRAPPIST-1 (Gillon et al. 2016, 2017), it is possible
to study similarly sized planets across orders of magnitude
in incident flux. In terms of the stellar irradiation of the
seven planets, TRAPPIST-1 c resembles Venus, TRAPPIST-1
d resembles the Earth, and TRAPPIST-1 f is similar to Mars
(Gillon et al. 2017).
However, it would also be desirable to find a multi-planet

system suitable for characterization that has planets with
different sizes in order to understand the compositions of small
planets ranging in size from similar to Earth to about four times
the size of Earth. The Kepler mission has found a nearly
ubiquitous population of planets with radii larger than the Earth
but smaller than Neptune (Howard et al. 2012; Batalha et al.
2013; Petigura et al. 2013; Morton & Swift 2014; Christiansen
et al. 2015; Dressing & Charbonneau 2015) for which we have
no analogue in our own solar system. Recently, the California
Kepler Survey measured precise radii for over 2000 Kepler
planets and found a bimodal distribution in the radii of small
planets, with a deficit of planets with radii between 1.5 and
2.0 ÅR and two peaks in the radius distribution at about 1.3 ÅR
and 2.5 ÅR (Fulton et al. 2017). The deficit in radii around
1.5–2 ÅR is coincident with the transition (Weiss & Marcy
2014; Rogers 2015) between predominantly rocky planets
(typically smaller than 1.6 ÅR ) and planets with substantial
gaseous envelopes (typically larger than 1.6 ÅR ) as determined
from mass measurements of a large number of sub-Neptune-
sized planets discovered by Kepler(Wu & Lithwick 2013;
Hadden & Lithwick 2014, 2017; Marcy et al. 2014). As most
of these planets with mass measurements orbit very close to
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their host stars (P<100 days), they receive a large amount of
high-energy irradiation that can evaporate gaseous envelopes
made of H/He (Yelle 2004; Tian et al. 2005; Murray-Clay
et al. 2009; Owen & Jackson 2012). The observed lack of
planets with radii of 1.5–2.0 ÅR could be due to these gaseous
envelopes being evaporated away and leaving the smaller
denser cores (Jin & Mordasini 2017; Owen & Wu 2017).

In this paper, we present the discovery of three transiting
planets orbiting the nearby (d=30.3± 1.6 pc) star GJ9827 using
data from the K2 mission. The planets transiting GJ9827 are the
closest planets discovered by K2 (surpassing K2-18, at 34± 4 pc
Montet et al. 2015; Crossfield et al. 2016; Benneke et al. 2017).

GJ9827 b, c, and d are all super-Earth-sized with radii Rb=
1.62±0.11 ÅR , Rc= -

+1.269 0.089
0.087

ÅR , Rd=2.07±0.14 ÅR . Pla-
nets b (Pb=1.209 days) and c (Pc=3.648 days) orbit about half
a percent outside of a 1:3 mean motion resonance, while planet d
(Pd=6.201) orbits far from integer period ratios with the other
two planets. The host is a bright (J≈8, H≈7.4, K≈7.2)
nearby late K star, making it an excellent target for atmospheric
characterization with the upcoming James Webb Space Telescope
(Gardner et al. 2006). The planets span the transition from rocky
to gaseous planets, so the characteristics of their atmospheres and
interior structures may illuminate how the structure and composi-
tion of small planets change with radius.

Figure 1. Top panel: the full K2 light curve of GJ9827 from Campaign 12, corrected for systematics using the technique described in Vanderburg & Johnson (2014)
and Vanderburg et al. (2016c). Middle panel: the corrected K2 light curve with best-fit low frequency variability removed. Bottom panel: phase-folded K2 light curves
of GJ9827 b, c.#, and d. The observations are plotted in open black circles, and the best-fit models are plotted in red. The data used to create this figure are available.
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2. Observations and Archival Data

2.1. K2 Photometry

In 2013 May, the Kepler spacecraft experienced a failure of
the second of its four reaction wheels, ending its primary
mission. However, the Kepler spacecraft has been re-purposed
to obtain high precision photometry for ∼80 days at a time on a
set of fields near the ecliptic in its extended K2 mission
(Howell et al. 2014). During K2 Campaign 12, GJ9827 was
observed from UT 2016 December 16 until UT 2017 March 04.
We identified GJ9827 as a candidate planet host after
downloading all of the Kepler-pipeline calibrated target pixel
files from the Mikulski Archive for Space Telescopes,
producing light curves, and correcting for K2 spacecraft
systematics following Vanderburg & Johnson (2014) and
Vanderburg et al. (2016c). We then searched the resulting light
curves for transiting planet candidates using the pipeline
described by Vanderburg et al. (2016c). Among the objects
uncovered in our search were three super-Earth-sized planet

candidates with periods of 1.2, 3.6, and 6.2 days around the
nearby star GJ9827. After we identified the signals, we re-
processed the K2 light curve to simultaneously fit the transits,
stellar variability, and K2 systematics. We flattened the light
curve by dividing away the best-fit stellar variability (which we
modeled as a basis spline with breakpoints every 0.75 days)
from our simultaneous fit to the light curve. The final light
curve has a noise level of 39 ppm per 30 minute cadence
exposure, and a 6 hr photometric precision of 9 ppm. See
Figure 1 for the final light curve.
The K2 light curve shows rotational stellar variability on

GJ9827 with a typical amplitude of about 0.2% peak to peak
(see Figure 1). We calculated the autocorrelation function of
the K2 light curve and found a rotation period of 31±1 days,
although it is possible the true rotation period is at about 16
days, or half our best estimate. The autocorrelation function
preferred a 31 day period most likely because of the flatness at
BJDTDB-2454833=2945 instead of another peak.

Figure 2. Top left panel: archival imaging from the National Geographic Society Palomar Observatory Sky Survey (NGS POSS) of GJ9827 taken with a red
emulsion in 1953. Top middle panel: archival imaging from the ESO/SERC survey of GJ9827 taken with a red emulsion in 1991. Top right panel: summed image of
GJ9827 from K2 observations. The aperture selection is described in Vanderburg et al. (2016a). Bottom panel: the Keck Br-γ contrast curve and image (inset) of
GJ9827. We find no evidence of any additional components in the system.
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2.2. Archival Spectroscopy

As part of a survey of nearby solar-type stars, GJ9827 was
observed on UT 2000 August 31 using the Center for
Astrophysics Digital Speedometer on the 1.5m Wyeth
Reflector at the Oak Ridge Observatory in the town of
Harvard, Massachusetts. The Digital Speedometer measured an
absolute RV of 31.2 km s−1 with an approximate accuracy of
∼0.3 km s−1 (Latham, private communication). GJ9827 was
also observed on UT 2010 October 08 and UT 2011 August 06
using a CORAVEL-type spectrometer at Vilnius University
Observatory, which measured absolute RVs of GJ9827 on
these dates of 32.6 km s−1 and 31.1 km s−1, respectively
(Sperauskas et al. 2016). Using the equations given in Johnson
& Soderblom (1987), the UVW space velocities of GJ9827
were estimated to be (U,V,W)=(−59.2, 20.9, 30.6) km s−1

(Sperauskas et al. 2016). Using the probability distributions of
Reddy et al. (2006), GJ9827 is predicted to be a member of the

Galactic thin disk. From these observations, we see no
evidence of any large RV variation over the span of over 10
years.
GJ9827 was also observed twice in 2004 with the High

Accuracy Radial Velocity Planet Searcher (HARPS)
spectrograph as part of the guaranteed time collaboration’s
planet search, but not enough observations were taken to
identify the small planet candidates we find. Later, Houdebine
et al. (2016) used a principal component analysis-based method
to analyze the HARPS spectra and estimate stellar parameters.
They found: Teff =4270±100, [ ]Fe H =−0.5±0.1 dex,

glog =4.9±0.2, and  = -
+v isin 1.3 1.3

1.5 km s−1. From the
Hipparcos parallax and an analysis of the spectral energy
distribution (SED), Houdebine et al. (2016) estimated the
radius of GJ9827 to be *R of 0.623±0.082 ☉R . In this
paper, we adopt the spectroscopic parameters from Houdebine
et al. (2016) but derive our own stellar mass and radius for our
global modeling (described in Section 3).

2.3. Archival Seeing-limited Imaging

Using archival observations from the National Geographic
Society Palomar Observatory Sky Survey (NGS POSS) from
1953 and 1991 (ESO/SERC), we looked for nearby bright
companions that may dilute our observed transit depths.
GJ9827 has a high proper motion (m =a 374.4 mas and
m =d 215.7 mas) and has moved nearly 30″ from its original
position when the POSS image was taken in 1953 (See
Figure 2). In 1953, GJ9827 was outside of the region of sky
enclosed within the photometric aperture we use to produce its
modern K2 light curve. No background stars are present inside
our K2 photometric aperture down to the POSS limiting
magnitude of about R=20, a full 10 mag fainter than
GJ9827. As all three transit signals around GJ9827 have
depths greater than 100 ppm, the maximum depth of a transit
caused by a background star 10 mag fainter than GJ9827, we
can use “patient imaging” to confidently rule out background
stars as the sources of these transit signals.

2.4. Keck/NIRC2 AO Imaging

Using the Near Infrared Camera 2 (NIRC2) behind the
natural guide star adaptive optics system at the W. M. Keck
Observatory, we obtained high-resolution images of GJ9827
using the Br-γ filter on UT 2017 August 19. NIRC2 has a
1024×1024 pixel array with a 9.942 mas pix−1 pixel scale.
The lower left quadrant of the NIRC2 array suffers from a
higher noise level, and a three-point dither pattern was adopted
excluding this regime of the detector. After flat-fielding and sky
subtraction, each observation was shifted and co-added,
resulting in the final image shown in Figure 2. No other star
was detected in the 10″ field of view. To determine our
sensitivity to companions, we inject simulated sources into the
final image that have a signal to noise of 5. Figure 2 shows the
5σ sensitivity as a function of spatial separation from GJ9827,
and the inset shows the image itself.

3. System Modeling

Making use of the flattened K2 light curves, the Hipparcos
parallax, and stellar parameters, we perform a global fit of the
GJ9827 system using EXOFASTv2 (Eastman et al. 2013;
Eastman 2017, J. D. Eastman et al. 2017, in preparation).
EXOFASTv2 is based heavily on EXOFAST, but a large

Table 1
GJ9827 Magnitudes and Kinematics

Other
identifiers HIP 115752

2MASS J23270480-
0117108
EPIC 246389858

Parameter Description Value Source

aJ2000 Right Ascension (R.A.) 23:27:04.83647 1
dJ2000 Declination (Decl.) −01:17:10.5816 1

BT Tycho BT mag 12.10±0.178 2
VT Tycho VT mag 10.648±0.069 2
B APASS Johnson B mag 11.569±0.034 3
V APASS Johnson V mag 10.250±0.138 3
¢g APASS Sloan ¢g mag 10.995±0.021 3
¢r APASS Sloan ¢r mag 9.845 3
¢i APASS Sloan ¢i mag 9.394 3

J 2MASS J mag 7.984±0.02 4, 5
H 2MASS H mag 7.379±0.04 4, 5
KS 2MASS KS mag 7.193±0.020 4, 5

WISE1 WISE1 mag 6.990±0.041 6
WISE2 WISE2 mag 7.155±0.02 6
WISE3 WISE3 mag 7.114±0.017 6
WISE4 WISE4 mag 6.957±0.107 6

ma NOMAD proper motion 374.4±2.2 7

in RA (mas yr−1)
md NOMAD proper motion 215.7±1.9 7

in DEC (mas yr−1)

v isin Rotational velocity 1.3±1.5 km s−1 8
[ ]m H Metallicity −0.5±0.1 8
Teff Effective Temperature 4270±100 K 8
log(g) Surface Gravity 4.9±0.2 (cgs) 8
π Hipparcos Parallax (mas) 32.98±1.76 1
d Distance (pc) 30.32±1.62 1
Spec. Type Spectral Type K5V 9

References.(1) van Leeuwen (2007), (2) Høg et al. (2000) (3) Henden et al.
(2015), (4) Cutri et al. (2003), (5) Skrutskie et al. (2006), (6) Cutri et al. (2014),
(7) Zacharias et al. (2004), (8) Houdebine et al. (2016), (9) Reid et al. (1995).
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fraction of the code has been rewritten to be more flexible.
EXOFASTv2 can now, among other things, simultaneously fit
multiple planets, incorporate characterization observations (like
Doppler Tomography), and simultaneously perform an SED
within the global fit. EXOFASTv2 has a few major conceptual
changes. First, the error scaling term for the transit photometry
is now fit within the Markov chain Monte Carlo (MCMC).
Also, the fit uses the stepping parameters log( *M ) and age
instead of *a R and glog . EXOFASTv2 has previously been

used to determine parameters for the HD106315 system
(Rodriguez et al. 2017).
Because GJ9827 is relatively low-mass with marginal

applicability to both the Torres relations (Torres et al. 2010)
and YY isochrones (Yi et al. 2001), we disable those constraints
within the global model. To determine the mass and radius of
GJ9827, we interpolated the absolute KS-band magnitude onto a
grid of stellar evolutionary models and the semi-empirical
MK–M* and MK–R* relations from Mann et al. (2015). We

Table 2
Median Values and 68% Confidence Interval for GJ9827

Parameter Units Values

Stellar Parameters

M* Mass ( ☉M ) -
+0.614 0.029

0.030

R* Radius ( ☉R ) -
+0.613 0.034

0.033


*
r Density (cgs) -

+3.76 0.57
0.75

 glog Surface gravity (cgs) -
+4.651 0.050

0.055

Teff Effective Temperature (K) -
+4269 99

98

Planetary Parameters: b c d

a Semimajor axis (au) -
+0.01888 0.00031

0.00030
-
+0.03942 0.00064

0.00062
-
+0.05615 0.00091

0.00089

P Period (days) -
+1.2089802 0.0000081

0.0000084
-
+3.648083 0.000058

0.000060
-
+6.201467 0.000061

0.000062

MP Mass ( ÅM ) -
+3.42 0.76

1.2
-
+2.42 0.49

0.75
-
+5.2 1.2

1.8

RP Radius ( ÅR ) 1.62±0.11 -
+1.269 0.089

0.087 2.07±0.14

i Inclination (Degrees) -
+85.73 0.96

1.2
-
+88.05 0.48

0.64
-
+87.39 0.18

0.20

rP Density (cgs) -
+4.50 0.98

1.5
-
+6.4 1.1

2.0
-
+3.23 0.72

1.1

log gP Surface gravity -
+3.110 0.098

0.12
-
+3.163 0.082

0.11
-
+3.07 0.10

0.12

Teq Equilibrium temperature (K) 1172±43 811±30 680±25
Θ Safronov Number -

+0.00460 0.00096
0.0015

-
+0.0086 0.0016

0.0025
-
+0.0162 0.0035

0.0052

á ñF Incident Flux (109 erg s−1cm−2) -
+0.429 0.060

0.066
-
+0.098 0.014

0.015
-
+0.0485 0.0068

0.0074

TC Time of Transit (BJDTDB) -
+2457738.82588 0.00031

0.00030
-
+2457742.19944 0.00068

0.00063 2457740.96111±0.00044

TP Time of Periastron (BJDTDB) -
+2457738.82588 0.00031

0.00030
-
+2457742.19944 0.00068

0.00063 2457740.96111±0.00044

TS Time of Eclipse (BJDTDB) 2457739.43037±0.00030 -
+2457744.02348 0.00066

0.00061 2457744.06185±0.00041

TA Time of Ascending Node (BJDTDB) -
+2457738.52363 0.00031

0.00030
-
+2457741.28742 0.00069

0.00065 2457739.41074±0.00045

TD Time of Descending Node (BJDTDB) -
+2457739.12812 0.00031

0.00030
-
+2457743.11146 0.00067

0.00062
-
+2457742.51148 0.00043

0.00042

K RV semi-amplitude (m s−1) -
+2.84 0.64

0.97
-
+1.39 0.29

0.44
-
+2.50 0.58

0.86

log K Log of RV semi-amplitude -
+0.45 0.11

0.13
-
+0.14 0.10

0.12
-
+0.40 0.12

0.13

M isinP Minimum mass ( ÅM ) -
+3.41 0.76

1.2
-
+2.42 0.49

0.75
-
+5.2 1.2

1.8

 *M MP Mass ratio -
+0.0000168 0.0000038

0.0000058
-
+0.0000119 0.0000025

0.0000037
-
+0.0000254 0.0000060

0.0000089

 *R RP Radius of planet in stellar radii -
+0.02420 0.00047

0.00040
-
+0.01899 0.00037

0.00034
-
+0.03093 0.00059

0.00065

 *a R Semimajor axis in stellar radii -
+6.62 0.35

0.41
-
+13.83 0.74

0.86
-
+19.7 1.0

1.2

 *d R Separation at mid transit -
+6.62 0.35

0.41
-
+13.83 0.74

0.86
-
+19.7 1.0

1.2

b Impact parameter -
+0.493 0.12

0.080
-
+0.469 0.13

0.085
-
+0.896 0.016

0.012

δ Transit depth -
+0.000586 0.000023

0.000019
-
+0.000361 0.000014

0.000013
-
+0.000957 0.000036

0.000041

Depth Flux decrement at mid transit -
+0.000586 0.000023

0.000019
-
+0.000361 0.000014

0.000013
-
+0.000957 0.000036

0.000041

PT A priori non-grazing transit prob -
+0.1474 0.0086

0.0082
-
+0.0710 0.0042

0.0040
-
+0.0492 0.0029

0.0027

PT G, A priori transit prob -
+0.1547 0.0092

0.0088
-
+0.0737 0.0044

0.0042
-
+0.0524 0.0031

0.0030

TFWHM FWHM duration (days) -
+0.05083 0.00072

0.00080
-
+0.0743 0.0012

0.0011
-
+0.04398 0.00094

0.0010

τ Ingress/egress duration (days) -
+0.00163 0.00022

0.00023
-
+0.00181 0.00024

0.00025
-
+0.00708 0.00094

0.00098

T14 Total duration (days) -
+0.05249 0.00071

0.00074 0.0761±0.0011 -
+0.0511 0.0010

0.0011

Wavelength Parameters: Kepler

u Kepler1, linear limb-darkening coeff -
+0.417 0.053

0.069

u Kepler2, quadratic limb-darkening coeff -
+0.240 0.059

0.075

Transit Parameters: Kepler

s2 Added Variance - -
+0.000000000002 0.000000000036

0.000000000037

F0 Baseline flux -
+0.99999999 0.00000070

0.00000069
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assumed a main-sequence but unknown age (0.5–10 Gyr), a
metallicity of −0.15±0.2, and a solar [α/Fe]. This metallicity
is based on the star’s color–magnitude position (Neves et al.
2012) and JHK colors (Mann et al. 2013; Newton et al. 2014).
However, the K-band is selected specifically because it shows a
weak dependence with M* and R*, so adopting a lower

metallicity as found by our spectral fitting does not significantly
change the result. We tried both the Mesa Isochrones and Stellar
Tracks (Choi et al. 2016; Dotter 2016) and Dartmouth Stellar
Evolution Program (DSEP; Dotter et al. 2008) models, yielding
radii of * R0.60 0.02 and * R0.59 0.03 and masses of

* M0.63 0.03 and * M0.61 0.04 , respectively. The rela-
tions from Mann et al. (2015), which are anchored in radii from
long-baseline optical interferometry (Boyajian et al. 2012),
produced a radius estimate of * R0.64 0.03 and mass of

* M0.66 0.02 . Errors account for uncertainties in the parallax
and KS-band magnitude.
GJ9827lands in a region of parameter space where weak

molecular bands can form, where models are known to
systematically underestimate the radii. However it also lands at
the bright limit of the Mann et al. (2015) relations, around which
the calibration stars are preferentially metal-rich when compared
to GJ9827 (which would lead to an overestimated radius).
Instead, we adopt more conservative parameters of 0.63±0.03

*M and 0.61±0.03R *R for GJ9827, which encompass all
values above with comparable uncertainties. These values for *R
and *M were used as priors for the global fit.
We performed a separate global fit using the broad band

photometry summarized in Table 1, the Hipparcos parallax, an
upper limit on extinction from Schlegel et al. (1998), to derive
the radius of the star. This fit recovered a consistent stellar
radius and uncertainty to Houdebine et al. (2016), but the
stellar metallicity was driven too high, perhaps biased unfairly
by the lack of SED models for such metal-poor stars.
From the Houdebine et al. (2016) analysis of HARPS South

spectra combined with an SED analysis of GJ9827, we set a
prior on Teff of 4270±100 K. Additionally, we imposed a prior
on the parallax from Hipparcos (van Leeuwen 2007). Such a
metal-poor, low-mass star may suffer from systematic biases in
the limb darkening and gaps in the parameter tables. While a
small error in the limb darkening is well within the uncertainty of
the K2 light curve, allowing it to be fit within the global fit may
work backward to bias the glog , Teff , and [ ]Fe H from which
they are derived. Therefore, while the limb darkening values can
be derived within EXOFASTv2 using the Claret & Bloemen
(2011), we place a uniform prior of μ1=0.44±0.1 and
μ2=0.26±0.1. The starting values were determined using the
EXOFAST online tool8 Eastman et al. (2016).
The system parameters determined from our global fit are

shown in Table 2 and a diagram of the system geometry is
shown in Figure 3.

4. Statistical Validation

To validate the planetary nature of the candidates identified
to be transiting GJ9827, we use the statistical techniques of
Morton (2012) implemented in the vespa software package
(Morton 2015). Using the location of the system in the sky and
observational constraints, vespa calculates the astrophysical
false positive probability (FPP) of the transiting planet
candidates. This takes into account the possibility of hierarch-
ical companions or background objects that could lead to a
false identification of a transiting planet. Because GJ9827
hosts multiple planets it is very unlikely that all three planet
candidates are false positives.9 Previous works have calculated

Figure 3. A diagram of the GJ9827 system geometry shown with all planets at
their respective transit centers. From top to bottom, the planets are d, b, and c.
The color of the star matches its effective temperature, the planets are to scale
with respect to each other and the host star, and the limb darkening matches our
best-fit model in the Kepler band. The gray dots trace the orbital path of the
planet, with a dot every three minutes. The curvature of planet b’s orbit is
plainly visible. Ω for each planet (a rotation of the path about the center of the
star) is assumed to be zero. Note the mutual inclinations may be much larger
than implied here due to the ambiguity between the inclination and 180°minus
the inclination. Also note that, while this is the most likely model, the
uncertainty in the impact parameters for planets b and c allow them to be non-
overlapping (see Figure 4).

Table 3
The Best Confirmed Planets for Transmission Spectroscopy with RP<3 ÅR

Planet RP( ÅR ) S/Na References

GJ 1214 b 2.85±0.20 1.00 Charbonneau et al. (2009)
55 Cnc eb 1.91±0.08 0.41 Dawson & Fabrycky (2010)
HD 97658 b -

+2.34 0.15
0.17 0.36 Dragomir et al. (2013)

TRAPPIST-1f 1.045±0.038 0.24 (Gillon et al. 2017)
GJ9827b 1.62±0.11 ÅR 0.14 this work
HD 3167 c -

+2.85 0.15
0.24 0.14 Vanderburg et al. (2016b),

Christiansen et al. (2017)
HIP 41378 b 2.90±0.44 0.14 Vanderburg et al. (2016a)
GJ9827d 2.07±0.14 ÅR 0.13 this work
K2-28 b 2.32±0.24 0.12 Hirano et al. (2016)
HD 106315 b 2.5±0.1 0.10 (Crossfield et al. 2017; Rodri-

guez et al. 2017)

Notes.
a The predicted signal-to-noise ratios relative to GJ 1214 b. All values used in
determining the signal-to-noise were obtained from the NASA Exoplanet
Archive (Akeson et al. 2013). If a system did not have a reported mass on
NASA Exoplanet Archive or it was not a 2σ result, we used the Weiss &
Marcy (2014) Mass–Radius relationship to estimate the planet’s mass.
b Our calculation for the S/N of 55 Cnc e assumes an H/He envelope, as it
falls just above the pure rock line determined by Zeng et al. (2016). However,
55 Cnc e is in an ultra short period orbit, making it unlikely that it would hold
onto a thick H/He envelope.

8 http://astroutils.astronomy.ohio-state.edu/exofast/limbdark.shtml
9 However, the chance that one of them is a false positive is harder to rule out
(Latham et al. 2011).
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a “multiplicity boost” that reduces the FPP for multi-planet
systems transiting a star in the original Kepler and K2 fields
(Lissauer et al. 2012; Sinukoff et al. 2016; Vanderburg et al.
2016b). After applying the multiplicity boost to the vespa
determined FPP for the planets transiting GJ9827, we estimate
an FPP of 2×10−6, 6×10−7, and 6×10−10 for b, c, and d.
Therefore, GJ9827 b, c, and d are validated exoplanets.

5. Discussion

The proximity of GJ9827 and its planetary architecture
make it a compelling system worth further characterization. At
≈30 pc, this is the closest exoplanet system discovered by K2
to date and one of the few stars to have multiple transiting
terrestrial sized exoplanets that are well-suited for both mass
measurements and atmospheric characterization. The host star
is quite bright (V=10.3, J=8) and the measured planet radii
of GJ9827 b, c, and d are 1.62±0.11 ÅR , -

+1.269 0.089
0.087

ÅR , and
2.07±0.14 ÅR . As mentioned before, there is a known
dichotomy in the sizes of short period (<100 days) small
planets where planets are more commonly found to be less than
1.5 ÅR or larger than 2.0 ÅR (Fulton et al. 2017). Based on the
mass measurements of planets in these two regimes, the larger
planets are less dense and consistent with having an H/He
envelope. It is thought that planets smaller than ∼1.6 ÅR have
lost this outer H/He envelope, leaving the rocky core,
explaining their higher densities and a lack of planets with
radii of 1.5–2.0 ÅR (Weiss & Marcy 2014; Rogers 2015). The
three known planets orbiting GJ9827 provide a rare
opportunity to perform a comparative study, as GJ9827 c is
<1.5 ÅR , GJ9827 d is >2.0 ÅR , and GJ9827 b lands right in
this deficiency gap. This system may shed light on the
evolution of planets within this radius regime.

Using the Weiss & Marcy (2014) mass–radius relations, we
estimate the mass of GJ9827 b, c, and d to be -

+4.26 0.49
0.54

ÅM ,

-
+2.63 1.00

1.59
ÅM , and -

+5.32 0.62
0.68

ÅM , respectively. Within our global
model, EXOFASTv2 estimated the masses using the Chen &
Kipping (2017) mass–radius relations to be -

+3.52 0.93
1.4

ÅM ,

-
+2.46 0.75

0.89
ÅM , and -

+5.2 1.5
2.1

ÅM . We note that the Weiss & Marcy
(2014) planet mass uncertainties ignore any uncertainty in the
mass–radius relation itself and are only due to the uncertainty
in the radius. The Chen & Kipping (2017) estimated masses
correspond to RV semi-amplitudes of -

+2.34 0.54
0.90 m s−1, -

+1.08 0.25
0.44

m s−1, and -
+2.01 0.48

0.79 m s−1. Houdebine et al. (2016) measured
the rotational velocity of GJ9827 to be <2 km s−1, making the

planets around GJ9827 well-suited for precise RV observa-
tions with current spectroscopic facilities to measure their
masses. The rotation period of GJ9827 is either 31 days or
16 days, well separated from the orbital periods of the planets,
so it should be possible to filter away signals from stellar
activity using techniques like Gaussian process regression
(Haywood et al. 2014).
To better understand the feasibility of characterizing the

atmospheres of the three planets orbiting GJ9827, we calculate
the atmospheric scale height and an expected signal-to-noise per
transit following the description given in Vanderburg et al.
(2016b). We repeat this calculation for all known planets
where Rp<3 ÅR using NASA’s Exoplanet archive (Akeson
et al. 2013). It is expected that both GJ9827 b and d might have
thick gaseous atmospheres (Weiss &Marcy 2014), while GJ9827
d likely does not have a thick envelope. We find that GJ9827 b
and d are two of the best small (Rp<3 ÅR ) exoplanets for
detailed atmospheric characterization (see Table 3).10 By studying
their atmospheric compositions, we may better understand the
observed dichotomy in planetary composition observed at
∼1.6 ÅR . All calculations are done using the H-band magnitude
of the stars to test the feasibility of characterizing the planet’s
atmosphere with the Hubble Space Telescope’s Wide Field
Camera 3 instrument and the upcoming suite of instruments that
will be available on the James Webb Space Telescope. At a
J-band magnitude of 8, GJ9827 is near the expected saturation
limit of the JWST instruments but should be accessible to all four
instrument suites allowing for a high S/N with a relatively short
exposure time: Near Infared Camera (NIRCam), Near Infrared
Imager and Slitless Spectrograph (NIRISS), Near-Infrared
Spectrograph (NIRSpec), and the Mid-Infrared Instrument (MIRI)
(Beichman et al. 2014). The brightness of the GJ9827 system
makes it a great target for NIRCam’s Dispersed Hartmann Sensor
mode (Schlawin et al. 2017).
The short orbital periods of the three GJ9827 planets and

the near 1–3 period commensurability between GJ9827 b and
c provides opportunities to observe overlapping transits of the
three planets, as shown in Figure 4. The simultaneous transit on
UT 2017 February 11 of GJ9827 b and c shows one discrepant

Figure 4. Left panel: the corrected K2 light curve for GJ9827 showing a simultaneous transit of b and c with the EXOFASTv2 model shown in red. Right panel: the
probability distribution of the impact parameter for GJ9827 b (black), c (red), and d (blue). We cannot rule out the possibility of mutual transits of GJ9827 b and c.

10 We note that signal to noise is not everything. This calculation makes no
assumptions about clouds or the presence of high-mean molecular weight
atmospheres. The potential pitfalls of making these assumptions are illustrated
by GJ 1214, which according to our calculation is the most amenable small
planet to atmospheric characterization, but which shows no atmospheric
features, likely due to the presence of clouds, hazes, or aerosols (Kreidberg
et al. 2014).

7

The Astronomical Journal, 155:72 (9pp), 2018 February Rodriguez et al.



data point that misses the EXOFASTv2 model. This kind of
discrepancy might be explained by a mutual transit, where
GJ9827 c actually transits both GJ9827 and planet b
simultaneously, which is not modeled by EXOFASTv2.
However, at the observed time of this observation, the transit
of planet b likely would have already completed (unless there
was a significant transit timing variation). We do not find any
convincing evidence of mutual transits in our analysis but
based on the probability of each planet’s impact parameters
(see Figure 4), we are not able to rule out this possibility.

6. Conclusion

We present the discovery of three transiting planets orbiting
the nearby late K-type star, GJ9827. Two of the three planets
are in near resonance orbits with periods of 1.2 days and
3.6 days, while the outer planet has a period of 6.2 days. All
three planets are super-Earth in size with radii of
1.62±0.11 ÅR , -

+1.269 0.089
0.087

ÅR , and 2.07±0.14 ÅR , for
GJ9827 b, c, and d, respectively. At only 30 pc from the
Sun, this is the closest exoplanet system discovered by the K2
mission. The proximity and brightness of the host star
combined with the similarity in the size of the three transiting
planets make GJ9827 an excellent target for comparative
atmospheric characterization. The expected radial velocity
semi-amplitudes of the three planets are small but detectable
with current instrumentation, especially given the star’s fairly
bright optical magnitude of V=10.25. Radial velocity
observations should be undertaken to measure the mass of
each planet, to determine their interior structures for compara-
tive studies. Mass measurements will also be critical for
properly interpreting any atmospheric characterization through
transit spectroscopy.
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Note added in review. During the referee process of this paper, our
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