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SUMMARY

Uncovering spatial representations from large-scale
ensemble spike activity in specific brain circuits pro-
vides valuable feedback in closed-loop experiments.
We develop a graphics processing unit (GPU)-pow-
ered population-decoding system for ultrafast recon-
struction of spatial positions from rodents’ unsorted
spatiotemporal spiking patterns, during run behavior
or sleep. In comparison with an optimized quad-core
central processing unit (CPU) implementation, our
approach achieves an �20- to 50-fold increase in
speed in eight tested rat hippocampal, cortical, and
thalamic ensemble recordings, with real-time decod-
ing speed (approximately fractionof amillisecondper
spike) and scalability up to thousands of channels.
By accommodating parallel shuffling in real time
(computation time <15 ms), our approach enables
assessment of the statistical significance of online-
decoded ‘‘memory replay’’ candidates during quiet
wakefulness or sleep. This open-source software
toolkit supports the decoding of spatial correlates
or content-triggered experimental manipulation in
closed-loop neuroscience experiments.

INTRODUCTION

An important task of systems neuroscience is to read out infor-

mation encoded in high-dimensional multi-neuronal spatiotem-

poral spiking patterns. Advances in two- or three-dimensional

multielectrode recording devices enable the collection of in vivo

ensemble spike activity from neocortical and subcortical

circuits, with electrode arrays consisting of hundreds or even

thousands of channels (Berényi et al., 2014; Shobe et al., 2015;

Michon et al., 2016; Rios et al., 2016; Jun et al., 2017a). To
Cell Repo
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deal with large quantity of data, scaling and speeding up neural

data analysis has become an emerging research topic in neuro-

science. The identification of complex spatiotemporal spiking

patterns and their statistical testing are challenging, error prone,

and often time consuming.

The analysis challenge is especially daunting for online brain

machine interface (BMI) applications that use high-density multi-

electrode sensors (Rossant et al., 2016; Jun et al., 2017b) and for

which a real-time deadline has to be met. Such applications

include closed-loop neuroscience experiments that allow scien-

tists to investigate the causal role of specific neural activity pat-

terns by delivering to targeted neural circuits a state-dependent

neurofeedback (Grosenick et al., 2015; Buzsáki et al., 2015; El

Hady 2016; Girardeau et al., 2009). Closed-loop neuroscience

experiments aimed at investigating cognitive processes, like

learning and memory, impose a demand to read out (‘‘decode’’)

neuronal population codes in real time at tens of millisecond

latency (Tsai et al., 2017; Deng et al., 2016; Rothschild et al.,

2017; Ciliberti et al., 2018).

Spatial navigation is a common rodent behavioral task for

studying spatial and episodicmemories. Neural coding of space,

or ‘‘place codes,’’ has been reported in many brain structures,

including the hippocampus, entorhinal cortex, primary visual

cortex (V1), retrosplenial cortex, and parietal cortex (O’Keefe

and Dostrovsky, 1971; Hafting et al., 2005; Whitlock et al.,

2008; Mao et al., 2017, 2018; Ji and Wilson, 2007; Haggerty

and Ji, 2015). The readout of the content of memory reactivation

during rest and slow wave sleep (SWS) is conventionally carried

out in an offline analysis (Davidson et al., 2009; Pfeiffer and Fos-

ter, 2013; Roumis and Frank, 2015; Gomperts et al., 2015). An

‘‘online’’ extension of ‘‘place’’-decoding analysis has been pro-

posed using a Bayesian spike-sorting-free encoding and decod-

ing framework (Chen et al., 2012; Kloosterman et al., 2014; Deng

et al., 2015; Sodkomkham et al., 2016).

Our population analyses of unsorted ensemble spikes consist

of two phases (Figure S1A). The encoding phase estimates the

joint probability density of the feature vector of spike waveform
rts 25, 2635–2642, December 4, 2018 ª 2018 The Author(s). 2635
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Figure 1. GPU Decoding Analysis on Rat

Tetrode Recordings

(A) Illustration of spike peak amplitude features in

two projected channels in rat hippocampal

tetrode recordings. Spikes are color coded ac-

cording to their associated spatial position on a

linear track.

(B) GPU versus CPU decode time with respect to

the compression threshold for KDE training set

(0 meaning no compression) in the T-maze (red),

linear track (green), and open field environment

(blue). The inset shows the cumulative distribution

function (CDF) curve of decoding error derived

from three datasets with a zero compression

threshold (median error: T-maze 7.7 cm; linear

track, 6.46 cm; open field, 8.76 cm; 30 mV BW

used in all cases).

(C) Ten-fold cross-validated median decoding error

in the figure ‘‘8’’ maze derived from V1 or CA1multi-

unit activity or combined (datasets 4 and 5). All re-

sults were produced without kernel compression.

Error bar represents SEM.

(D) Error histograms for separate decoding the

spatial position (median error: 19.23 cm) and head

direction (inset, median error: 8.15�) from the rat

anterior dorsal thalamus (dataset 6).

See also Figures S1 and S2.
and spatial position. The decoding phase reconstructs the

optimal position that yields the maximum likelihood of a tempo-

rally marked point process (STAR Methods; Kloosterman et al.,

2014). The challenge of the online scenario can be resolved using

ultra-flexible multi-threaded software running on a multi-core

central processing unit (CPU) system (Ciliberti and Kloosterman,

2017; Ciliberti et al., 2018). However, the scalability of this sys-

tem and other BMIs running on multi-threaded CPU systems is

dependent on the limited number of CPU cores (Fischer et al.,

2014). Here, we show a significant speedup of the decoding

algorithm by employing a highly customized graphics process-

ing unit (GPU) implementation on a standard quad-core PC,

which greatly enhances the speed and scalability potential

compared to a pure CPU solution. We also extend the applica-

tion of neural decoding of unsorted spikes from tetrode to

high-density silicon probe recordings.

RESULTS

GPU-Powered Decoding Significantly Speeds Up the
Decode Speed
We tested CPU- and GPU-based neural decoding implementa-

tions in eight datasets with rat hippocampal, neocortical, and

thalamic ensemble recordings during spatial navigation in one-

or two-dimensional environments (Figure S1C; Table S1). Re-

cordings were performed using either tetrodes or silicon probes.

As per previous implementations (Kloosterman et al., 2014), for

tetrode recordings, we selected the peak amplitude of recorded

spike waveforms to construct a four-dimensional feature vector

(Figure 1A). The GPU-based implementation showed a signifi-

cant speedup compared to the CPU implementation, confirming
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the benefit of parallelization at multiple levels in the decoding

algorithm. In a representative one-dimensional spatial environ-

ment (dataset 1), a full or uncompressed model achieved good

cross-validated decoding accuracy and a large speed gap

between GPU and CPU. Progressively higher compression

thresholds resulted in less accurate but faster decoding, as

shown previously (Sodkomkham et al., 2016; Ciliberti et al.,

2018). At a compression threshold of 0.5, we achieved a decode

time of �0.02 ms/spike in GPU decoding, as compared to

�0.44 ms/spike in quad-core 8-threaded CPU decoding (Fig-

ure 1B; Table S2), which is equivalent to �20-fold speedup.

Notably, the decode time depended jointly on the compression

threshold and the kernel bandwidth (BW) parameter, but the

compression threshold had a negligible effect on the decode

time when using a small BW parameter (Figure S2A). Meanwhile,

the decoding accuracy was robust with respect to a wide range

of compression thresholds (Figure S2C). The results were robust

and consistent in all rat hippocampal CA1 recordings (datasets

1–3). Notably, our approach performed well not only in decode

time per spike but also in decoding accuracy, as demonstrated

by representing multimodal distributions of two-dimensional tra-

jectories in the open field environment (Figure S2D; Video S1).

The place code is by no means restricted to hippocampal

regions. Next, we tested our approach using simultaneous

tetrode recordings of rat CA1 and V1 (primary visual cortex)

during a continuous spatial alternation task in a ‘‘figure 8’’

maze. We assessed the decoding accuracy using unsorted

multi-unit activity (MUA) of CA1 or V1 or both combined. Our

analysis suggested that V1 ensemble spike activity contained

rich spatial information (Ji and Wilson, 2007; Haggerty and Ji,

2015), and combining CA1 and V1 spike data further improved



0 0.5 1 1.5 2
10-3

10-2

10-1

100

d=5
d=10
CPU
GPU

Ti
m

e 
pe

r s
pi

ke
 (m

s)

2 4 6 8 10
Feature dimension

15

16

17

18

19

20

21

22

M
ea

n 
er

ro
r (

cm
)

7.5

8

8.5

9

9.5

M
ed

ia
n

er
ro

r(
cm

)

mean error
median error

Compression threshold 1 2 3 4 5

Number of samples 105

20

50

100

200

T
im

e 
(m

s)

RUN (1000 channels)
SWS (1000 channels)
CPU
GPU
SWS binsize (20ms)
RUN binsize (250ms)

0 500 1000 1500 2000
Number of channels

100

101

102

103

T
im

e 
(m

s)

RUN
SWS
CPU
GPU
SWS binsize (20ms)
RUN binsize (250ms)

A B

C D
E

Figure 2. GPU Decoding Analysis on Rat Silicon Probe Recordings

(A) Custom high-density silicon probe (inset: representative spike waveforms from 5 channels). Each shank has 10 recording sites or channels.

(B) Mean (red) and median (blue) decoding error of unsorted CA1 multi-unit activity with respect to varying dimensions of feature vectors (dataset 7). At each

condition, the BW parameters were optimized using grid search.

(C) Comparison of CPU versus GPU decode time with respect to varying compression thresholds and two different sets of features (d = 5 and d = 10).

(D) Scalability of GPU decoding for real-time processing in RUN and SWS with respect to the number of channels.

(E) Assuming 1,000 channels, decode time depended on the number of KDE samples.

See also Figures S1 and S3.
the decoding accuracy (Figure 1C). In joint CA1+V1 decoding,

kernel BW parameters for spike amplitude were optimized sepa-

rately for each region based on cross-validation (Figure S2E).

However, the decoding accuracy was robust with respect to a

wide range of BW values (10–40 mV). Generally, in the absence

of compression (i.e., zero compression threshold), the use of a

larger BW parameter resulted in a slower decoding speed, and

this BW-speed relationship was more pronounced in CPU than

in GPU (Figure S2F).

Furthermore, we tested our approach using tetrode record-

ings of rat anterior dorsal thalamus (ATN) while navigating in a

circular maze. The ATN is a central component of Papez’s circuit

and a key neural circuit supporting memory and spatial naviga-

tion (Jankowski et al., 2013). A large fraction of neurons in the

ATN are tuned to the animal’s head orientation and are termed

head direction cells. We evaluated the representation power by

computing the decoding error separately for the head direction

and position based on unsorted thalamic ensemble spikes.

Our results showed that the MUA of anterior thalamus contained

good representations for head direction (median decoding error:

8.15�) and spatial position (median decoding error: 19.23 cm;

Figure 1D). The decoding accuracy of head direction was not

dependent on the run velocity threshold, but the position decod-

ing error was. The relatively larger decoding error in position

stems from the fact that a given head orientation was linked to
two positions as the rat alternated running in clockwise and

counterclockwise trajectories (Figures S2G–S2I). In all tetrode

recordings (datasets 1–6), our GPU-powered approach could

easily handle ultrafast per-spike decoding analyses of unsorted

hippocampal or cortical ensemble spike activity during run

behavior, which scales more favorably with the number of

training samples than the CPU implementation.

In addition to tetrode arrays, custom high-density silicon

probes have been widely used in rodent recordings (Berényi

et al., 2014). We further tested our approach on a large-scale

rat hippocampal recording based on two 64-channel silicon

probes placed in the left and right hippocampi (Figure 2A). We

selected feature vectors of various dimensions by varying the

number of channels (1–10) per shank and the number of principal

components (1–3) per channel during encoding. We assessed

the decoding accuracy under different channel or feature combi-

nations and observed a robust decoding performance (median

decoding error: 7.6 cm; Figures S3A and S3B). Due to high

redundancy of spike waveform features, a low-dimensional

feature vector was sufficient to produce good decoding accu-

racy (Figure 2B). Notably, splitting the channels according to

their spatial sites within a single shank yielded slightly degraded

decoding accuracy (median error: 7.9 cm; one-sided Wilcoxon

signed rank test; p = 0.405). Further increasing the feature

dimension (up to 20) did not improve decoding performance. In
Cell Reports 25, 2635–2642, December 4, 2018 2637



the presence of large training sample size (>126,000 spikes in all

shanks), increasing the feature dimension gradually improved

the decoding accuracy, yet the GPU-powered decoding dis-

played a marked speed advantage (Figure 2C). In addition, em-

ploying kernel compression resulted in a further speedup of

decoding.

GPU-Powered Decoding Scales up to Thousands of
Channels
Our GPU-powered decoding system scales up to accommodate

thousands of channels. To test the scalability, we replicated the

silicon probe dataset to increase the channel count up to 2,000

and repeated the decoding analysis for RUN and SWS periods

(Figure 2D; Table S2). By further optimizing GPU programming

and the memory access strategy, the time required for decoding

was well within the duration of the 250-ms time bin for RUN for all

tested channels counts. For themore demanding case of decod-

ing smaller time bins in SWS, decode time was within 20 ms bin

duration for up to 1,200 channels (assuming no compression in

the encoding model). Furthermore, for a fixed number of chan-

nels, the time needed for decoding increased much faster for

CPU compared to GPU implementation as a function of the num-

ber of training samples (Figure 2E). As a result, in a typical one or

two-dimensional spatial environment (with 50�800 spatial bins),

our GPU-powered decoding system offers a highly scalable

solution for accommodating 4–10 spike feature dimensions,

tens to hundreds of thousands of training samples, and hun-

dreds or even thousands of channels. A multi-GPU implementa-

tion can be readily deployed to accommodate a higher number

of electrode channels.

Real-Time Decoding and Assessment of Memory Replay
Events
Neural decoding approaches are particularly powerful for the

identification of post-experience reactivated ensemble spiking

patterns, such as hippocampal memory replay events. To

reveal the causal contribution of replay events to learning and

behavior, real-time decoding coupled to closed-loop feedback

triggered by the occurrence of specific replay events is

required. To illustrate how our method can be applied in this

scenario, we decoded the unsorted hippocampal ensemble

activity during 741 memory replay candidate events in SWS

(dataset 7; Liu et al., 2018), where the percentage of active

sorted CA1 units was small (�10%–15%; Chen and Wilson,

2017). Decoding unsorted MUA directly may maximize the us-

age of spiking data and improve the decoding accuracy in the

presence of sparse ensemble spiking activity (Kloosterman

et al., 2014). For a fair comparison, we only used the sorted

spikes for unsorted decoding analysis. Compared to the stan-

dard likelihood-based decoding method using offline sorted

ensemble spikes, we observed a trend toward improved recon-

structed spatial trajectories for the replay candidate events

(Figures 3A and S3C) and their associated significance statis-

tics (Figure 3B). The analysis held for both SWS and quiet

wakefulness (QW) conditions, as well as for tetrode and silicon

probe data (Figures 3C and 3D). We also observed similar

findings in decoding and replay analyses from another rat

recording (dataset 8; Figures 3F and S3D).
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As shown above, the GPU-based approach is sufficiently fast

to decode ensembles recorded on a large number of elec-

trodes at a fine timescale needed to detect replay events in

real time. However, it is also desirable to assess the statistical

significance of replayed neuronal ensemble representations

online, either to provide feedback to the experimenter or as

part of closed-loop perturbation experiments. Conventionally,

the assessment of significance relies on computationally inten-

sive operations using repeated independent Monte Carlo shuf-

fles in offline analysis (Davidson et al., 2009; Liu et al., 2018).

Based on our GPU-powered decoding system, we executed

joint random shuffling operations (‘‘shank or tetrode shuffle’’

and ‘‘spike time shuffle’’). Upon decoding a typical candidate

event of 200–300 ms duration with 1–30 spikes in each time

bin, the computation to achieve 1,000 shuffling operations is

ultrafast (<20 ms computation time or within the interval of

next time bin) in both tetrode and silicon probe settings (Figures

3C–3F). Thus, our approach provides a feasible solution for

online statistical assessment of decoded memory reactivation

events within a short time delay.

Our approach provides an efficient solution to problem of

online identification and real-time assessment of hippocampal

memory replay. First, the hippocampal candidate replay event

was detected based on the hippocampal MUA and a predeter-

mined threshold (Figure 4A). Next, starting from the determined

candidate event onset, the spatial position was reconstructed

from unsorted ensemble spike activity at each time bin, and

the ongoing ‘‘spatial trajectory’’ was assessed based on a

weighted distance correlation metric (Liu et al., 2018) using

online shuffling statistics (Figure 4B). Based on the derived

p value, a cumulative score assessment was updated in time

(Figure 4C). Once the cumulative score was above a predeter-

mined threshold, the memory candidate event was deemed

statistically significant. For each time bin, the computation time

for statistical assessment was�5 ms (Figure 4D). The identifica-

tion latency (from the first time point that crossed our MUA

threshold) for online significance assessment of replay events

was �10 to 11 bins (mean ± SEM: 208.0 ± 5.3 ms for dataset

7; 221.8 ± 6.6 ms for dataset 8) In our illustrations based on

the predetermined threshold, the identified significant hippo-

campal replay events might differ between the offline and online

assessment methods (Table S3; Figure S4). Two factors might

contribute to this discrepancy. First, the significance criterion

was based on a single Monte Carlo p value assessment in an

offline setting but based on a cumulative score in an online

setting instead; the choice of cumulative score threshold also

affected the significance criterion. Second, offline assessment

was evaluated on the complete period of a candidate event,

whereas online assessment was evaluated on a shorter period

of the candidate event. For the two investigated hippocampal

datasets (datasets 7 and 8), the statistics varied and no consis-

tent trend was found.

DISCUSSION

We have presented a GPU-powered system that provides an

ultrafast and accurate readout of unsorted place codes from

single or multiple brain regions. On a quad-core CPU-powered
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Figure 3. Decoding Memory Replay Events and Ultrafast Assessment of Statistical Significance

(A) Decoded memory reactivation events during post-SWS (dataset 7) derived from unsorted (left, Rwd = 0.852; Monte Carlo p = 0.01) and sorted (right, Rwd =

0.841;Monte Carlo p = 0.067) CA1 ensemble spike activity. Color bar represents the posterior probability, and dark pixel indicates high probability. Horizontal axis

represents time bin (20 ms bin size), and vertical axis represents the linearized spatial bin (see more examples in Figure S3C). The significance results of two

decoded trajectories were different, although their derived statistics Rwd were similar.

(B) CDF curves of Monte Carlo p value derived from significance testing of 741 hippocampal memory replay candidates during post-SWS. Compared to the

standard decoding analysis based on place receptive fields of sorted units (DecodewRF), our proposedmethod (DecodeKDE) identified more significant events for

memory replay, suggesting an enhanced detection ability of DecodeKDE based on the unsorted hippocampal ensemble spike activity.

(C) Unsorted rat hippocampal ensemble spikes from 9 tetrodes (dataset 2) in a memory candidate event during quiet wakefulness (QW). Shaded area marks a

20-ms bin.

(D) Unsorted rat hippocampal ensemble spikes from 12 silicon probe shanks (dataset 7) in a memory candidate event during SWS.

(E) Computation time needed for statistical assessment for each 20-ms time bin of the two examples shown in (C) and (D). The numbers of KDE components

were 397,493 (with compression threshold 2) for dataset 2 and 126,624 (with compression threshold 0) for dataset 7. The number of random shuffles was 1,000.

(F) Computation time of statistical assessment varied with respect to the number of shanks (12 or 6) and the number of spikes per time bin. Each symbol

represents the result derived from a single time bin (total number of tested bins: n = 9,614 for 12 shanks and n = 9,261 for 6 shanks in dataset 7; n = 14,924

for 12 shanks and n = 14,386 for 6 shanks in dataset 8). The computation time mainly depended on the number of shanks and the number of KDE com-

ponents.

See also Figure S3.
PC, our decoding implementation outperforms the optimized

multi-threaded CPU-based decoding significantly in both speed

and scaling by leveraging multiple levels of parallelization. In

addition to accelerating offline analyses of large datasets, the

GPU-based system enables online decoding and significance
assessment of ensemble spiking patterns for immediate feed-

back to the experimenter and to provide opportunity for con-

tent-based closed-loop experimental manipulation.

Spatial representation plays an important role in spatial navi-

gation, sensorimotor integration, and decision-making tasks.
Cell Reports 25, 2635–2642, December 4, 2018 2639
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Figure 4. Online Identification and Assess-

ment of Hippocampal Memory Replay

(A) Online event detection analysis: unsorted hippo-

campal ensemble spikes and replay burst detection

based on the hippocampal MUA and a pre-

determined threshold (horizontal dashed line). The

marked replay onset (vertical lines) was identified

after three consecutive time bins that crossed the

threshold.

(B) Starting from the candidate event onset, spatial

position was reconstructed from unsorted ensemble

spike activity at each time bin (20 ms). The ongoing

decoded ‘‘spatial trajectory’’ was assessed based on

the weighted distance correlation using online shuf-

fling statistics.

(C) The p value for the online-evaluated replay

(black). An accumulative score (red) was computed

as the assessment was continuously updated.

Finally, a decision was made for online experi-

mental manipulation or intervention based on

the accumulative score. The accumulative score

was set to 0 at the detection onset and reset

to 0 when the cumulative score threshold was

reached.

(D) Computation time for evaluation at each time bin.

The computation time includes both position decoding and statistical assessment involving both CPU and GPU resources. In this illustrated example, the

statistical assessment time was nearly negligible compared to the decode time.

See also Figure S4.
Uncovering representations of place code in a state-dependent

or content-specific neurofeedback provides valuable clues for

closed-loop experimental manipulation during memory reactiva-

tions at the millisecond timescale (Grosenick et al., 2015; El

Hady, 2016; Rothschild et al., 2017; Ciliberti et al., 2018). In addi-

tion, they can provide valuable input on the quality of sampled

spatial representations during the early phase of experimental

recording—for instance, whether the unit yield in targeted brain

regions is sufficient or whether it is time to adapt the strategy

and adjust the electrode placing.

To date, newly developed high-density electrode arrays

have recently allowed us to simultaneously record large-scale

ensemble spike activity from multiple brain regions (Jun

et al., 2017a; Chung et al., 2018). However, population-

decoding approaches based on real-time sorted spikes may

have serious limitations in speed, scale, and accuracy. In

contrast, decoding unsorted ensemble spike activity directly

in our implementation is appealing for a wide range of applica-

tions (Ventura, 2008; Bansal et al., 2012; Kloosterman et al.,

2014; Todorova et al., 2014; Ventura and Todorova, 2015).

More importantly, our kernel density estimation (KDE)-based

population-decoding analysis can be applied to various

spatial or behavioral correlates, including the spatial position

and head direction (Cho and Sharp, 2001; Peyrache et al.,

2015; Jacob et al., 2017), as well as many other brain regions,

such as the retrosplenial cortex, entorhinal cortex, and lateral

septum.

To conclude, this open-source GPU-based neural decoding

toolkit will expand opportunities for closed-loop rodent BMI sys-

tems to probe causal mechanisms of targeted neural circuits and

to investigate memory processing across distributed brain cir-

cuits during various task behaviors (Girardeau et al., 2009;
2640 Cell Reports 25, 2635–2642, December 4, 2018
Ego-Stengel and Wilson, 2010; Jadhav et al., 2012; Roux et al.,

2017).
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

We have used eight rat recordings collected from three laboratories based on various multielectrode arrays. A summary of experi-

mental datasets is shown in Table S1.

Datasets 1-3: Rat CA1 tetrode recording
Young adult Long-Evans rats were running in T-shaped 3-arm maze (�6.4 m), linear track (�10 m) and open field (�1.8 m diameter)

environment (Figure S1C). Custom tetrode arrays were implanted to record neural ensemble spike activity from the dorsal hippocam-

pal CA1 of freely behaving animals. The 6.4-m and 10-m track datasets consisted of 15 and 9 implanted tetrodes, respectively; and

the open field dataset consisted of 9 implanted tetrodes. In the first dataset, the animal protocol was approved by the NERF

Committee on Animal Care. In the remaining two datasets, the animal protocol was approved by the Massachusetts Institute of

Technology (MIT) Committee on Animal Care and followed the National Institutes of Health (NIH) guidelines. Technical details are

referred to a previous publication (Davidson et al., 2009).

Datasets 4 and 5: Rat CA1-V1 tetrode recording
Young adult Long-Evans rats were trained to run an alternation task on a ‘Figure 8’-shaped maze (�4.7 m track length, Figure S1C).

Animals learned to alternate two trajectories (LR: from the left reward site L to the right reward site R, and RL: fromR to L) via a central

track on a figure-‘8’ for food reward. The maze was placed inside a dark curtain without obvious distal visual cues except for the

irregular wrinkles on its wall, but with various local visual cues, mainly stripes with different orientations and simple geometric shapes,

on the maze floors and walls. The animal training and recording protocols were approved by the MIT Committee on Animal Care and

followed the NIH guidelines.

After the animal reached equal or greater than 80% accuracy, a custom tetrode array was implanted to record multiple single units

simultaneously from the dorsal hippocampus CA1 and the visual cortex (deep layers: L5/6). In Dataset 4, ten tetrodes were located in

visual cortex (8 in V1, 2 in V2; AP�7.3 relative to Bregma, ML 3.5 relative to midline) and three tetrodes were located in CA1 (AP�3.8

relative to Bregma, ML 2.2 relative to midline). In Dataset 5, four tetrodes were located in V1 and four tetrodes were located in CA1.

Details of experimental protocols and data have been published (Ji and Wilson, 2007).

Datasets 6: Rat anterior dorsal thalamus tetrode recording
A Long-Evans rat was running back and forth on a circular maze (0.61 m radius; Figure S1C). Themaze had awall divider that defined

start and end points used for reward delivery as follows: the rat was initially placed at the start location and, upon reaching the end

location, the animal received a small amount of liquid chocolate reward (�0.1mL). Then the rat turned around andwhen it reached the

start location, it received additional liquid chocolate reward. This behavior went on for about 17 minutes. Seven tetrodes in a circular
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bundle were aimed at the anterior dorsal thalamus (�2.1 mm AP, 1.3 mm ML, relative to Bregma) and were positioned to maximize

the detection of spiking activity. Position and head direction weremonitored through an overhead camera (30 Hz sampling rate) and a

pair of colored LEDs mounted on the headstage of the rat. The animal protocol was approved by the Massachusetts Institute of

Technology (MIT) Committee on Animal Care and followed the National Institutes of Health (NIH) guidelines.

Datasets 7 and 8: Rat CA1 silicon probe recording
Male Long-Evans rats were bilaterally implanted with two 6-shank silicon probes parallel to the septo-temporal axis of the left and

right dorsal hippocampi, totaling 128 channels. Each shank of the 6-shank silicon probes had 10 sites (or channels). All sites were

vertically staggered along the shank with 20 mm spacing between sites. We selected one recording session of rat (‘Achilles’) on

November 1, 2013. The recording session consisted of a long (�4 hr) pre-RUN sleep epoch in a familiar room, followed by a RUN

epoch (�45 minutes) in a novel circular maze (1 m diameter, Dataset 6) or linear track (1.6 m, Dataset 7; Figure S1C). After the

RUN epoch the animal was transferred back to its home cage in the familiar room where another long (�4 hour) post-RUN sleep

was recorded. The protocol was approved by the Institutional Animal Care and Use Committee of New York University School of

Medicine. Details of the experimental protocol and data have been published (Grosmark and Buzsáki, 2016; Chen et al., 2016).

The electrophysiological data are publicly available (https://crcns.org/data-sets/hc/hc-11/).

METHOD DETAILS

Decoding unsorted neural ensemble spikes
Our population decoding analysis consists of encoding and decoding phases (Figure S1A), and neither phase requires spike sorting.

The essential operation of the encoding phase is to estimate a joint probability density function (pdf) using nonparametric or

semi-parametric density estimation methods (Chen et al., 2012; Kloosterman et al., 2014). Let x denote the 1D or 2D spatial position,

and let a denote the feature vector that is associated with each spike. In the case of tetrode recording, we used the spike peak ampli-

tude of four channels; whereas in the case of silicon probe, we used the spike waveform principal components (PCs) of each channel.

Specifically, we represented the joint pdf pða; xÞ with a kernel density estimation (KDE):

pða; xÞ= 1

N

XN
n= 1

KHax

��
a
x

�
�
�
~an

~xn

��
(1)

where ð~an; ~xnÞ denotes the n-th sample for d-dimensional variables ða;xÞ, N denotes the number of training samples, and KHax
ð,Þ de-

notes the kernel function with a specific bandwidth (BW) parameter Hax. In multielectrode recordings, individual tetrodes (or silicon

probe shanks) were assumed to be mutually independent. At each tetrode (or shank), we ran a kernel compression algorithm to

reduce redundancy in the training samples by progressively merging samples based on a compression threshold and updating

the sample covariance matrix and weight accordingly (Figure S1B; Sodkomkham et al., 2016).

The compression threshold is defined as the Mahalanobis distance below which a new sample is merged with an existing

sample. The threshold is lower bounded by 0: a zero compression threshold represents no compression, and an infinity compression

threshold implies using only one sample in the limit. The higher the compression threshold, the fewer samples were used in KDE and

encoding analysis. To reduce computational cost, we employed an isotropic Gaussian kernel KHax
in KDE, and rewrote Equation 1 as
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where d =da +dx denotes the combined dimension of spike feature vector and spatial position. The d3d covariance matrix

S=

"X
a

0

0
X

x

#
defines the kernel BW.Weassumed a strict diagonal BWstructure in all KDE analyses. In total, f~an; ~xn;SgNn=1 repre-

sent the set of N Gaussian components in KDE representations, and wn is a nonnegative weight coefficient associated with the n-th
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component. If there is no sample compression, thenwn = 1 and N is the number of training samples. Given f~an; ~xngNn=1 and predeter-

minedstimulus vectorx = fxmgMm= 1 (whereMdenotes thenumberof spatial bins), thescaling factor sn andstimulus-dependent compo-

nent gnðxÞ were pre-computed. In summary, the encoding-decoding algorithm (termed ‘DecodeKDE’) consists of the following steps

(Kloosterman et al., 2014; Sodkomkham et al., 2016)

Step 1: Compute sn and gnðxÞ according to Equation 3 and Equation 4 based on f~an; ~xngNn=1.

Step 2: Compute hnðaÞ according to Equation 5 for the feature a associated with the observed spike.

Step 3: Estimate the joint probability distribution pða; xÞ according to Equation 2.

Step 4: Compute the likelihood by accumulating the spikes collected from K independent tetrodes (or shanks). At any time interval

[t, t+Dt), the likelihood is given by
K
( "
Likelihood =
Y
k = 1

ðDtÞnk;t
Ynk;t
i = 1

lkðak;i; xÞ
#�
e�Dtlk ðxÞ�) (6)

where nk,t denotes the number of spikes observed at the k-th tetrode (or shank) during the interval [t, t+Dt). In Equation 6, the gener-

alized rate functions lkða; xÞ and lkðxÞ are defined by the density ratios

lkða; xÞ=mk

pkða; xÞ
pðxÞ and lkðxÞ=mk

pkðxÞ
pðxÞ ;

where pkða; xÞ and pkðxÞ denote the joint and marginal pdfs derived from KDE at the k-th tetrode (or shank), respectively; mk denotes

the mean firing rate at the k-th tetrode (or shank); and pðxÞ denotes the spatial occupancy probability distribution estimated from

KDE. Finally, we sought the decoded estimate of among all candidate positions fxmgMm=1 that produced the maximum likelihood

in Equation 6. We used temporal bin size Dt = 250 ms during RUN and Dt = 20 ms during SWS.

In the KDE-based simulated online decoding analysis, Step 1 was executed offline and reused in decoding. Steps 2-4 were

executed on the fly for each spike collected during online decoding. Since Step 1 does not influence the online performance, we

focused on the implementation and optimization of other steps. The input of the algorithm for a single tested spike included a

pre-computed scaling factor array fsngNn= 1, a stimulus-dependent component array fgnðxÞgNn=1, a total of N Gaussian components

of spike feature, and the feature vector associated with the tested spike. We set a CUTOFF threshold to exclude out-of-range

components.

Spike waveform feature selection
In tetrode recordings, we used the peak amplitude of spike waveform from each channel, yielding a 4-dimensional feature vector for

each spike. The BW parameter was assumed identical for all four dimensions and optimized with grid search. We used an amplitude

threshold (�80-100 mV) to remove putative ‘noisy’ spikes. In rat hippocampal CA1 recordings, we adapted a spike width threshold

criterion to include or exclude putative interneurons. In Datasets 4 and 5, BW parameters were optimized separately for CA1 and V1

tetrode recordings (Figure S2D).

In silicon probe recordings, we conducted principal component analysis (PCA) on the spike waveforms for each channel, and

extracted the first and second principal components (PCs) associated with the greatest variance. We considered two options to

construct the feature vector in encoding analysis. The first and standard option used varying number (1-10) of channels in each

shank, and each channel used one or two PCs, resulting a feature vector with 1-10 (or 2-20) dimensions. The second option used

combinations of local neighboring sites in each shank (e.g., splitting 10 channels into two groups: channels 1-5 and channels

6-10), and treated the divided groups as independent tetrodes. In each combination, two PCs of each channel were used to

construct a 10-dimensional feature vector. The second option was motivated by the fact that distinct units across cortical layers

or cortical structures are spatially distributed. In both options, the BW parameter of each feature dimension was assumed

identical.

Offline identification of sleep replay candidate events
In offline analysis, we used the electromyography (EMG) and LFP for sleep staging. SWS was primarily determined by the low

EMG amplitude and high delta/theta power ratio in LFP activity. For screening the candidate events of memory replay during

SWS, we used the hippocampal LFP ripple band (150-300 Hz) power combined with hippocampal MUA. In offline analysis, we

selected 741 pre-identified candidate events (Dataset 7) and1015 candidate events (Dataset 8) during post-SWS epochs accord-

ing to a previously established criterion (Liu et al., 2018). To assess the significance of decoded trajectories during SWS epochs,

we computed the weighted distance correlation ðRwdÞ of decoded trajectory from each candidate event and the associated Monte

Carlo p-value based on shuffled statistics (Liu et al., 2018). Two types of random shuffling operations were considered: one is

tetrode (or shank) ID shuffle, and the other is spike time shuffle. A total of 1,000 independent random samples were used to

compute the Monte Carlo p-value.
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GPU architecture and optimization
The GPU implementation of our decoding algorithm was based on the parallel nature of KDE, and was further optimized to achieve

the best performance by accounting for GPU features and custom optimization techniques. We designed a three-level hierarchical

parallelism structure with the NVIDIA CUDA programming model and maximized the parallelization benefit, as shown in Figure S5A.

The highest-level parallelism took advantage of the independence between tetrodes (or shanks), and the computation task for each

tetrode (or shank) was assigned to a single CUDA stream. As such, the memory copy between GPU and CPU in one stream could be

executed while the computation continued in a different stream, and we could minimize the majority of memory transfer delay. The

medium and lowest-level parallelisms were based on the independence between the computation of each KDE component, each

spike and each spatial bin; they were mapped to CUDA blocks and threads, respectively.

In CUDA applications, serial codes running on CPU is called ‘host codes’, and the parallel codes running on the GPU device are

called ‘kernels’, which execute the same set of instructions on massive data that are mapped to blocks and threads (Figures S5B–

S5D). Unlike the standard GPU implementation that uses a single kernel, we designed a two-kernel solution to avoid re-computing

hnðaÞ (Equation 5) and to speed up computation. We implemented these operations with two CUDA kernels: Kernel1 for calculating

hnðaÞ, each thread of the kernel calculates the h value of a single component, andKernel2 for calculating the joint pdf pða; xÞ based on

the result of Kernel1. The pseudocodes of two kernel operations are summarized in Algorithm1 and Algorithm2 (Table S4).

Each thread in Kernel1 computed hnðaÞ for a single component for one spike, the execution details are shown in Algorithm1.

Computing for a single position of one spike required looping over all the components. To obtain an optimal performance, we divided

these components into m non-overlapping subsets, and assigned related computations to different threads. As shown in

Algorithm2, each thread in Kernel2 computed pða; xÞ for a single position with one spike. Note that both Kernel1 and Kernel2 could

be launched for computing multiple spikes in parallel. In Figure S5A, we set B1 and B2 to be multiples of 32, which was equal to the

number of threads in a GPU execution warp, in order to maximize the occupancy of GPU cores. Among other factors influencing the

overall occupancy, we obtained the best performance by setting B1 = B2 = 64.

We also applied several optimization tricks to significantly boost the GPU speed. In Kernel2, we used the on-chip shared memory

(as opposed to the off-chip DDR memory) to contain hnðaÞ and sn, both of which were frequently accessed by every thread in this

kernel. The shared memory is accessed over 10 times faster than the device memory. Consequently, moving frequently accessed

data from the device memory to shared memory significantly reduced the memory access cost. This optimization was very effective

when the corresponding memory cost was predominant.

However, the size of shared memory was often limited. When the number of components N was too large (e.g., n = 12K in float

precision or 16K in double precision) to fit hnðaÞ and sn in the shared memory (48 KB for our GPU), we divided the components

into multiple partitions and computed each partition one by one in order to take advantage of the shared memory. The number of

partitions and the size of each partition were determined based on the size of the sharedmemory. We also reduced the floating-point

precision (using 2 bytes instead of 4 bytes) to store these data. As a result, the number of components that can be computed in one

partition doubled. We further rescaled the data within a proper range to minimize the difference induced by precision conversion.

The computational cost of GPU-based decoding analysis mainly depended on four factors: the number of tetrodes (or shanks) K,

the size of sample (or component) N used in KDE per tetrode (or shank), the dimensionality of feature vector d, and the number of

spatial binsM. Among these factors, parallelization in the dimensions ofK andM is straightforward. The order of decoding complexity

is ðK � N � d �MÞ plus additional computational overhead for data processing. Depending on their relative sizes and bin size Dt, the

main memory bottleneck called for different solutions or further optimization.

GPU implementation for online statistical assessment of memory replay events
An important step in analyzing memory replay of decoded spatial trajectories is their statistical assessment using measure that

characterizes the spatial-temporal structure (Davidson et al., 2009). To assess the significance of the decoding result, we need to

shuffle the timestamps and tetrode (or shank) ID of the collected spikes and compare the statistics of the decoding results derived

from the shuffled spikes with those of derived from the raw spikes (Liu et al., 2018). The assessment was performed on the replay

candidate event—-the set of continuous time bins that may contain the memory replay. The hippocampal replay candidate event

(including the onset and offset) was determined by the hippocampal MUA (Figure 4A). Alternatively, we can assess the significance

upon reaching a duration threshold for each candidate event (e.g., 80-100ms). For each candidate event, the online assessment was

performed progressively for each 20 ms of new data from the burst onset and consists of the following three steps:

Step 1: Generate the shuffled samples. Specifically, the shuffling of time stamps is realized by making each shuffled sample as a

random subset of all the collected spikes from multiple time bins, and a random tetrode (or shank) ID is assigned to each spike in

this subset. The size of the subset is set to the number of raw spikes in current time bin.

Step 2: Evaluate the joint pdf pða; xÞ according to KDE (Equations 2–5) for raw spikes and all the shuffled samples generated in

Step 1, and then compute the likelihood of each shuffled sample (Equation 6) based on the evaluated pða;xÞ.
Step 3: Repeat Step 1 and Step 2, while monitoring a criterion (e.g., sufficient time bins collected after a detected MUA burst

onset) for triggering the assessment. When the trigger criterion is met, conduct the assessment based on the likelihood statistics

from Step 2 and other statistical criteria (e.g., weighted distance correlation; Liu et al., 2018).
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Assuming that the number of shuffled samples is S, we have to run the decoding analysis (Step 2) of the same time bin by S times

(typically S R 1,000). Running KDE decoding analyses more than 1,000 times in real time is a challenging task even with GPU,

especially in the case of small time bin (�20ms) duringmemory replay events. Here, we proposed a computationally efficient solution

to significantly reduce the computation load based on the following two observations: (i) The evaluation of pða; xÞ for each spike in

Step 2 only relies on the spike features and the tetrode (or shank) ID that each spike has been assigned to. For each spike, K different

evaluation results are derived from K possible tetrode (or shank) IDs. (ii) When S is large, there is a high probability that many spike-ID

pairs exist inmultiple shuffled samples, resulting in a considerable amount of repeated evaluations of pða;xÞ. Considering the fact that

K � S, we can simply run all possible evaluations of pða; xÞ for every spike and reuse these results based on the spike-ID pair in each

shuffled sample.

In light of these two observations, our online shuffling method is described as follows (Figure S6): Within each time bin, we

evaluated pða; xÞ for each spike with all possible IDs and saved these results sequentially in a pre-allocated buffer space. When a

sufficient number of results were buffered, we executed Step 1 in an alternative way: the shuffled samples were determined by

the randomly shuffled indices for selecting different subsets of buffered results. Since the indices were stored across time bins in

the buffer, the time and tetrode (or shank) ID shuffling could be performed at the same time. In Step 2, the evaluation of the joint

pdf pða; xÞ was only carried out for raw spikes, and the computation of the likelihood of each shuffled sample was executed by

reusing the buffered evaluation results based on the shuffled indices. However, generating shuffled indices remained time

consuming. To resolve this issue, we used a constant set of indices instead of re-generating the shuffled indices online. Since the

new results of each time bin were added to the beginning of the buffer, a constant set of indices still preserved different evaluation

sets for different time bins.

We used the MUA and a predetermined threshold (e.g., mean+s.d.) to detect the onset of candidate event (Figure 4A). The onset

was determinedwhen there were 3 consecutive time bins (i.e., 60ms) above the threshold. From the detected event onset, we run the

unsorted decoding analysis for each time bin (with inclusion of the first 3 time bins that crossed the MUA threshold). From the

decoded probability traces (Figure 4B), we then run the online shuffle (1,000 samples) and computed the p-value (from the weighted

distance correlation) for statistical assessment (Figure 4C). In addition, we computed a cumulative score as follows

Scorei =

(
Scorei�1; if MUA< 2 or pvalueðiÞ> 0:05

Scorei�1 � log
	
pvalueðiÞ



; otherwise

where i denotes the time bin index, and Score0 = 0 at the time of event onset. Once the online cumulative score was above a prede-

termined threshold (e.g.,�3logð0:01Þ used in our demonstration examples and current analyses), the event was deemed statistically

significant and we reset the cumulative score to be 0. It is important to point out that, depending on the goal of online assessment, we

could further optimize the detection and cumulative score thresholds to achieve a desired trade-off (speed versus accuracy).

Interface with the GPU code
Wedeveloped an interface for the GPU codes such that the algorithmwas written in CUDA�C programming language, with C++ and

Cython wrappers that could accommodate user configuration and GPU decoding from C++ and Python environments. All decoding

analyses were run on a PC (Linux Ubuntu OS) with Intel Core i7-7700K CPU (quad core, 8 threads, 4.2 GHz, 32 GB DDR4 RAM).

A single NVIDIA GeForce GTX 1080Ti graphics card with 11 GB memory was used for GPU-based computation.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical tests
The p-valuewas derived fromMonte Carlo shuffling statistics, andMonte Carlo p < 0.05 was considered to be statistically significant.

Other statistical testing involved Mann-Whiteny test.

Assessment of decoding performance
In hippocampal CA1 recordings, we evaluated the decoding accuracy during RUN epochs (velocity threshold: 8.5 cm/s for Datasets

1-3; 5 cm/s for Datasets 4-5; 20 cm/s for Dataset 6, 15 cm/s for Dataset 7-8) by the absolute error between the animal’s actual

position and decoded position: jxtrue � bxdecode j . In the case of V1 decoding (Datasets 4 and 5), we imposed no velocity threshold.

We split the recordings into training and testing data. We assessed the decoding accuracy on the held on data via the median

decoding error and error cumulative distribution function (CDF) curve.

DATA AND SOFTWARE AVAILABILITY

Datasets 2, 4 and 5 are available from https://github.com/wilsonlab/CRCNS_Shared_Data. Datasets 7 and 8 are publicly available

(http://crcns.org). The remaining datasets are available from the lead author upon request. The open-source software for CPU/GPU-

based decoding based on Python/C programming is available upon request and will be distributed at http://www.cn3lab.org/

software.html.
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