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82Instituto de F́ısica Teórica, University Estadual Paulista/ICTP South

American Institute for Fundamental Research, São Paulo SP 01140-070, Brazil
83University of Cambridge, Cambridge CB2 1TN, United Kingdom

84IISER-Kolkata, Mohanpur, West Bengal 741252, India
85Rutherford Appleton Laboratory, HSIC, Chilton, Didcot, Oxon OX11 0QX, United Kingdom

86Whitman College, 345 Boyer Avenue, Walla Walla, WA 99362 USA
87National Institute for Mathematical Sciences, Daejeon 305-390, Korea

88Hobart and William Smith Colleges, Geneva, NY 14456, USA
89King’s College London, University of London, London WC2R 2LS, United Kingdom

90Andrews University, Berrien Springs, MI 49104, USA
91Trinity University, San Antonio, TX 78212, USA

92University of Washington, Seattle, WA 98195, USA
93Kenyon College, Gambier, OH 43022, USA

94Abilene Christian University, Abilene, TX 79699, USA and
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The second-generation of gravitational-wave detectors are just starting operation, and have al-
ready yielding their first detections. Research is now concentrated on how to maximize the scientific
potential of gravitational-wave astronomy. To support this effort, we present here design targets for
a new generation of detectors, which will be capable of observing compact binary sources with high
signal-to-noise ratio throughout the Universe.

I. INTRODUCTION

With the development of extremely sensitive ground-
based gravitational wave detectors [1–3] and the recent
detection of gravitational waves by LIGO [4, 5], exten-
sive theoretical work is going into understanding poten-
tial gravitational-wave (GW) sources [6–15]. In order to
guide this investigation, and to help direct instrument re-
search and development, in this letter we present design
targets for a new generation of detectors.

The work presented here builds on a previous study
of how the fundamental noise sources in ground-based
GW detectors scale with detector length [16, 17], and
is complementary to the detailed sensitivity analysis of
the Einstein Telescope (ET, a proposed next generation
European detector) presented in [18, 19]. The ET anal-
ysis will not be reproduced in this work, but the ET-D
sensitivity curve from [18] is used for comparison. It rep-
resents one 10 km long detector consisting of two inter-
ferometers [20], the detector arms forming a right angle.
The ET design consists of three co-located detectors in
a triangular geometry [21], but for the purpose of this
letter we compare the sensitivity of single detectors, all
with arms at right angles. (A comparison of triangular
and right angled detector sensitivities can be found in
[22].)

From this work two important conclusions emerge.
The first of these is that the next generation of GW detec-
tors will be capable of detecting compact binary sources
with high signal to noise ratio (SNR > 20) even at high
redshift (z > 10). The second is that there are multi-
ple distinct areas of on-going research and development
(R&D) which will play important roles in determining

101 102 103

Frequency [Hz]

10-25

10-24

10-23

10-22

S
tr

ai
n 

[1
/

H
z]

Cosmic Explorer (expected R&D improvements)

ET-D

aLIGO

4km

10km

20km

Quantum
Seismic
Newtonian
Suspension Thermal
Coating Brownian
Coating Thermo-optic
Substrate Brownian
Excess Gas
Total noise

FIG. 1. Target sensitivity for a next generation gravitational-
wave detector, known as “Cosmic Explorer” for its ability to
receive signals from cosmological distances. The solid curves
are for a 40 km long detector, while the dashed grey curves
show the sensitivity of shorter, but technologically similar de-
tectors; lengths are 4, 10 and 20 km. The Advanced LIGO
and Einstein Telescope design sensitivities are also shown for
reference.

the scientific output of future detectors.

In what follows, we start by expressing the sensitivity
of a next-generation GW detector as a collection of target
values for each of the fundamental noise sources. This is
followed by discussions of the R&D efforts that could
plausibly attain these goals in the course of the next 10
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years. We conclude with a brief discussion of science
targets, which will be accessible to a world-wide network
of next-generation detectors.

II. NEXT GENERATION SENSITIVITY

The target sensitivity of a 40 km long next generation
GW detector, known as “Cosmic Explorer”, is shown
in figure 1. The in-band sensitivity and upper end of
the band, from 10 Hz to a few kilohertz, is determined
by quantum noise, while the lower limit to the sensitive
band is determined by local gravitational disturbances
(known as “Newtonian noise” or NN [23]). Other signifi-
cant in-band noise sources are coating thermal noise and
residual gas noise. Seismic noise and suspension thermal
noise, though sub-dominant, also serve to define a lower
bound to the detector’s sensitive band. Each of these
noise sources will be discussed in detail in the following
sections.

The estimated sensitivities presented here are com-
puted from analytical models of dominant noises and in-
terferometer response in the sensitive frequency band of
the detector. All of the contributing noise sources shown
in figure 1 are intended as targets that could plausibly
be attained by a number of on-going research programs,
rather than curves linked to a particular technology. As
such, in each of the following sections we give simple
scaling relationships, which show how these noises scale
relative to the relevant parameters, along with the values
used to produce the target curves.

A. Quantum Noise

Laser interferometer based GW detectors are almost
inevitably limited in their sensitivity by the quantum na-
ture of light. In most of the sensitive band, this limit
comes in the form of counting statistics or “shot noise”
in the photo-detection process. Typically near the low-
frequency end of the band a similar limit appears in the
form of quantum radiation pressure noise (RPN), which
can be thought of as the sum of impulsive forces applied
to the interferometer mirrors as they reflect the photons
incident upon them. A unified picture of quantum noise
is, however, necessary to understand correlations between
shot noise and radiation pressure noise and to appreciate
the possibility of reducing quantum noise through the use
of squeezed vacuum states of light [24–27].

In this letter, we use the now standard “dual recycled
Fabry-Perot Michelson” interferometer (DRFPMI) con-
figuration, which is common to all kilometer-scale sec-
ond generation detectors [1, 28, 29]. While this choice is
considered likely for the next generation of detectors, a
number of plausible alternative designs are being actively
investigated [30–35].

For a DRFPMI, the optical response to GW strain
is essentially determined by the choice of signal extrac-

tion cavity configuration [36]. We will assume for sim-
plicity a “broadband signal extraction” configuration, in
which the signal extraction cavity is operated on reso-
nance, and the detector bandwidth is set by the choice of
signal extraction mirror reflectivity. Figure 2 shows the
effect of increased signal extraction mirror reflectivity rel-
ative to that shown in figure 1; the detector bandwidth
is somewhat wider, but the in-band sensitivity is reduced
[25, 37, 38].

An important technology which will determine the
quantum limited sensitivity of future GW detectors is
squeezed light [26]. Squeezed states of light have been
demonstrated to be effective in reducing quantum noise
in GW interferometers [39, 40], and have been incorpo-
rated into the plans for all future detectors [16, 18]. The
impact of squeezing on the scientific output of GW de-
tectors has been studied in detail in [41]. In this analysis,
we assume frequency dependent squeezing, as described
in [42–44].

For any given DRFPMI configuration choice, the quan-
tum noise is determined by the power in the interferom-
eter, the laser wavelength, the level of squeezing at the
readout, and at low-frequencies (where radiation pres-
sure noise is dominant) by the mass of the interferometer
mirrors. For any fixed detector bandwidth, the in-band
sensitivity scales as

hshot

h0 shot
=

√
2 MW

Parm

√
λ

1.5µm

(
3

rsqz

)√
40 km

Larm
(1)

hRPN

h0 RPN
=

√
Parm

2 MW

√
1.5µm

λ

(
3

rsqz

)(
320 kg

mTM

)(
40 km

Larm

)3/2

,

where Parm is the circulating power in the arm cavities of
length Larm bounded by mirrors of mass mTM, λ is the
laser wavelength and rsqz is observed squeezing level (e.g.,
rsqz = 3 corresponds to approximately a 10 dB noise re-
duction). The values normalizing each parameter in the
above scaling relations are the ones used to produce the
curves shown in figure 1, such that the resulting ratio
(hX/h0X) is relative to the target noise amplitude spec-
tral density. All of the values used to produce the target
sensitivity curves are presented in table I.

The exact choice of laser wavelength, for instance, is
not important as long as longer wavelengths are accom-
panied by higher power. As an important example of
this, consider two future interferometers; one uses fused
silica optics and operates with 1.4 MW of 1064 nm light in
the arms, while the other uses silicon optics and operates
with 2.8 MW of 2µm light in the arms. Both interferom-
eters will have essentially the same quantum noise.

Interestingly, quantum noise does not scale inversely
with length. This is due to the fixed detector band-
width constraint, which requires increased signal extrac-
tion with greater length to maintain a constant integra-
tion time. While the shot noise appears to increase due
to reduced signal gain in the interferometer, the radia-
tion pressure noise is reduced (both relative to 1/L). A
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FIG. 2. Similar to figure 1 but with a more reflective signal
extraction mirror which gives a wider sensitive band, but is
less sensitive in-band. The tradeoff between in-band sensi-
tivity and bandwidth will need to be optimized to maximize
specific science objectives (e.g., testing general relativity with
black hole binaries, measuring neutron star equation of state,
detection of GW from supernovae, etc.). The dashed grey
curves show the sensitivity of shorter, but technologically sim-
ilar detectors; lengths are 4, 10 and 20 km.

hidden dependence which is not included in equation 2
is the dependence of the mirror mass mTM on length;
longer interferometers generally have larger beams and
thus require larger and more massive mirrors.

There are several areas of R&D which will determine
the quantum noise in future detectors. First among these
is work into increasing the measured squeezing levels [45–
54]. Second is prototyping of the alternative configura-
tions to demonstrate suppression of quantum radiation-
pressure noise at low frequencies [55], and to investigate
the influence of imperfections on this ability [56]. Less
easily explored in tabletop experiments, but equally rel-
evant, are thermal compensation, alignment control and
parametric instabilities, which determine the maximum
power level that can be used in an interferometer [57–
59]. Finally, the ability to produce and suspend large
mirrors will be necessary for any next generation GW
detector [18, 60], and will have a beneficial impact on
low-frequency quantum noise.

B. Coating Thermal Noise

Coating thermal noise (CTN) is a determining factor
in GW interferometer designs; in current (second gen-
eration) GW detectors, CTN equals quantum noise in
the most sensitive and most astrophysically interesting
part of the detection band around 100 Hz [28, 61, 62].
For instance, the Advanced LIGO detectors were de-
signed to minimize the impact of CTN by maximizing
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FIG. 3. Similar to figure 2 but with coating and suspen-
sion thermal noise models which assume minimal progress.
The wide-band signal extraction choice is made to minimize
the impact of CTN. The proximity of the dashed grey 4 km
curve to the Advanced LIGO reference curve reflects the fact
that coating technology, which is nearly limiting in Advanced
LIGO, becomes dominant over a range of frequencies given
the reduction of quantum noise assumed for the future.

the laser spot sizes on the mirrors (at the expense of
alignment stability in the interferometer), and the Ka-
gra detector design is dominated by the incorporation
of cryogenics to combat thermal noise [29, 63]. Similarly,
current R&D into cryogenic technologies for future detec-
tors is largely driven by the need to reduce CTN, either
directly through low-temperature operation, or indirectly
through changes in material properties as a function of
temperature.

Holding all else constant, CTN scales as

hCTN

h0 CTN
=

√
T

123 K

√
φeff

5× 10−5

(
14 cm

rbeam

)(
40 km

Larm

)
,

(2)
where T is the temperature, φeff is volume- and direction-
averaged mechanical loss angle of the coating (defined
below in equation 4), and rbeam the beam size on the
interferometer mirrors (1/e2 intensity). Thus, the brute-
force techniques to reducing CTN are lowering the tem-
perature and increasing the beam radius, while finding
low-loss materials is an active and demanding area of re-
search.

To be precise, φeff is the effective mechanical loss angle
of the coating,

φeff =

∑
j bjdjφMj

2
∑

j dj
(3)

in the notation of equation 1 in [62], where the summa-
tions run over all coating layers, dj is the layer thickness,
φMj is the mechanical loss angle, and bj is a factor of
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order unity which depends on the mechanical properties
of the substrate and coating (numerically, bj∼2 for most
coatings). This is related to h0 CTN by (again in the no-
tation of [62])

h2
0 CTN =

8kBT (1− σs − 2σ2
s)

πr2
beamL

2
armωYs

φeff

∑
j

dj , (4)

where the summation gives the total coating thickness
summed over all four test-mass mirrors (for the target
design this is 16.6λ).

It should be noted that a number of important depen-
dencies are hidden in equation 2. In particular, φeff may
have a strong dependence on T , and for a fixed cavity
geometry rbeam grows with Larm such that

hCTN

h0 CTN
=

√
T

123 K

√
φeff(T )

5× 10−5

(
40 km

Larm

)3/2

(5)

is an equally valid scaling relation. Along the same lines,
both rbeam and the coating thickness grow with λ, but
they do so such that the effects cancel for fixed cavity
geometry and finesse.

While the CTN curves in figures 1 and 2 are based
on plausible extrapolations from current lab-scale results
[64, 65], figure 3 shows a family of sensitivity curves which
assume little or no progress is made in reducing CTN.

C. Newtonian Noise

The motion of mass from seismic waves or atmospheric
pressure and temperature changes produce local gravita-
tional disturbances, which couple directly to the detec-
tor and cannot be distinguished from gravitation waves
[23, 66, 67]. The power spectrum of such disturbances,
known as “Newtonian noise” (NN), is calculated to fall
quickly with increasing frequency, such that while it
presents a significant challenge below 10 Hz, it is neg-
ligible above 30 Hz. The level of NN present in a given
detector is determined by the facility location (e.g., local
geology, seismicity and weather) and construction (e.g.,
on the surface or underground), and defines the low-
frequency end of the sensitive band for that facility.

Active research in the area of NN will determine impor-
tant aspects of the design of future GW detector facilities.
Feed-forward cancellation of ground motion NN using a
seismometer array has shown the potential to provide
some immunity [23, 68, 69], whereas concepts for feed-
forward cancellation of atmospheric perturbations still
need to be developed. It is also the case that the spec-
trum of atmospheric infra-sound and wind driven NN is,
as yet, poorly understood and cancellation appears more
challenging than for seismic NN [23]. Ongoing character-
ization of underground sites will also determine the gain
for GW detectors with respect to NN reduction [70, 71],
as future GW detectors may need to be constructed a
few hundred meters underground if the sensitive band is
to be extended below 10 Hz.

CE CE pess ET-D (HF) ET-D (LF)

Larm 40 km 40 km 10 km 10 km

Parm 2 MW 1.4 MW 3 MW 18 kW

λ 1550 nm 1064 nm 1064 nm 1550 nm

rsqz 3 3 3 3

mTM 320 kg 320 kg 200 kg 200 kg

rbeam 14 cm 12 cm 9 cm 7 cm (LG33)

T 123 K 290 K 290 K 10 K

φeff 5 × 10−5 1.2 × 10−4 1.2 × 10−4 1.3 × 10−4

TABLE I. Parameters used to produce the Cosmic Explorer
(CE) target curve. The CE pessimistic and Einstein Tele-
scope, high- and low-frequency (HF and LF) parameters are
included for comparison.

An important aspect of site characterization is to esti-
mate the effectiveness of a NN cancellation system, which
above all depends on the distribution of local sources, and
for sub-10 Hz detectors also on the complexity of local to-
pography [72].

Research in this area is developing quickly, and the NN
estimates presented in this letter assume a factor of 10
cancellation of seismic NN

D. Suspension Thermal Noise and Seismic Noise

Suspension thermal noise and seismic noise, particu-
larly in the direction parallel to local gravity (“vertical”),
can place an important limit on the low-frequency sen-
sitivity of future GW detectors [73]. This is true both
because, like NN, this noise source falls quickly with in-
creasing frequency, but also because the coupling of ver-
tical motion to the sensitive direction of the GW detector
increases linearly with detector length (due to the cur-
vature of the Earth), making the GW strain resulting
from a fixed vertical displacement noise level insensitive
to detector length [17].

Current research into test-mass suspensions is focused
on supporting larger masses (required by detectors with
Larm > 10 km), and longer suspensions for reduced ther-
mal and seismic noise both in the horizontal and verti-
cal directions [73]. Vertical thermal noise can be further
reduced by lowering the vertical resonance frequency of
the last stage of the suspension, possibly by introducing
monolithic blade springs into the suspension designs [60].

E. Residual Gas Noise

Gravitational wave detectors operate in ultra-high vac-
uum to avoid phase noise due to acoustic and thermal
noise that would make in-air operation impossible. The
best vacuum levels in the long-baseline arms of current
detectors are near 4 × 10−7 Pa ' 3 × 10−9 torr and are
dominated by out-gassing of H2 from the beam-tube
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steel. This noise scales with average laser-beam cross-
section and arm length as [74]

hgas

h0 gas
=

√
pgas

4×10−7 Pa

√
14 cm

rbeam

√
40 km

Larm
. (6)

III. COMPACT BINARIES AT HIGH
RED-SHIFT

AND EXTRAGALACTIC SUPERNOVAE

The high sensitivity of future ground-based gravita-
tional wave detectors will considerably expand their sci-
entific output relative to existing facilities. Clearly,
sources routinely detected already by current instruments
in the local universe will be detected frequently with
high SNR, and at cosmological distances. Straightfor-
ward examples are binary systems involving black holes
and neutron stars. These systems, referred to collectively
as “compact binaries” (CBCs), are ideal GW emitters
and a rich source of information about extreme physics
and astrophysics, which is inaccessible by other means
[6–10, 14, 75].

Binary neutron stars (BNS) could yield precious in-
formation about the equation of state (EOS) of neutron
stars, which can complement or improve what can be ob-
tained with electromagnetic radiation [76, 77]. However,
second-generation detectors would need hundreds of BNS
detections to distinguish between competing EOS [78–
80]. New detectors would help both by providing high
SNR events, and increasing the numbers of threshold
events [81].

In general, all studies that rely on detecting a large
numbers of events will benefit from future detectors. Ex-
amples include estimating the mass and spin distribution
of neutron stars and black holes in binaries, as well as
their formation channels [82–84].

Furthermore, a GW detector with the sensitivity
shown in figure 1 could detect a significant fraction of
binary neutron star systems even at z = 6, during the
epoch of reionization, beyond which few such systems
are expected to exist [85]. Those high-redshift systems
could be used to verify if BNS are the main producer of
metals in the Universe [86], and as standard candles for
cosmography [11].

Future instruments could detect a system made of two
30 M� black holes, similar to the first system detected by
LIGO [4], with a signal-to-noise ratio of 100 at z = 10,
thus capturing essentially all such mergers in the observ-
able universe (see figure 4).

Nearby events would have even higher SNRs, allowing
for exquisite tests of general relativity [87], and measure-
ments of black-hole mass and spins with unprecedented
precision. The possibility of observing black holes as far
as they exist could give us a chance to observe the rem-
nants of the first stars, and to explore dark ages of the
Universe, from which galaxies and large-scale structure
emerged.

100 101

Redshift z

101

102

M
ax

im
um

 S
N

R

Binary Black Hole SNR vs. Redshift

Target (fig 1)
Wideband (fig 2)
Pessimistic (fig 3)

FIG. 4. The maximum signal-to-noise ratio (SNR) for which
GW detectors with the sensitivities shown in figures 1, 2 and
3 would detect a system made of two black holes (each with an
intrinsic mass 30 M�), as a function of redshift. Many systems
of this sort will be detected at z < 2 with an SNR > 100,
enabling precision tests of gravity under the most extreme
conditions.

Furthermore, future detectors may be able to observe
GW from core-collapse supernovae, whose gravitational-
wave signature is still uncertain [88, 89]. GWs provide
the only way to probe the interior of supernovae, and
could yield precious information on the explosion mech-
anism. Significant uncertainty exists on the efficiency of
conversion of mass in gravitational-wave energy, but even
in the most optimistic scenario the sensitivity of exist-
ing GW detectors to core-collapse supernovae is of a few
megaparsec [90]. A factor of ten more sensitive instru-
ments could dramatically change the chance of positive
detections. In fact, while the rate of core-collapse super-
novae is expected to be of the order of one per century
in the Milky Way and the Magellanic clouds, it increases
to ∼ 2 per year within 20 Mpc [91, 92].

IV. CONCLUSIONS

We present an outlook for future gravitational wave de-
tectors and how their sensitivity depends on the success
of current research and development efforts. While the
sensitivity curves and contributing noise levels presented
here are somewhat speculative, in that they are based
on technology which is expected to be operational 10 to
15 years from now, they represent plausible targets for
the next generation of ground-based gravitational wave
detectors. By giving us a window into some of the most
extreme events in the Universe, these detectors will con-
tinue to revolutionize our understanding of both funda-
mental physics and astrophysics.
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