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ABSTRACT
We present Marten, a new end to end system for automatically

discovering, exploiting, and combining information leakage and
buffer overflow vulnerabilities to derandomize and exploit remote,
fully randomized processes. Results from two case studies high-
light Marten’s ability to generate short, robust ROP chain exploits
that bypass address space layout randomization and other modern
defenses to download and execute injected code selected by an
attacker.

CCS CONCEPTS
• Security and privacy → Software and application secu-

rity; Software reverse engineering;
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1 INTRODUCTION
Memory corruption vulnerabilities have been a common target

for control flow hijacking attacks for decades [13, 14, 24, 32]. Attack-
ers inject code into a running process, or reuse code that already
exists, to subvert the system. Address Space Layout Randomization
(ASLR) has proven to be an effective defense against these attacks
[29]. While it is possible to apply ASLR to only some parts of the
process, modern systems such as Ubuntu 18.04 apply full ASLR to
all code and data in a process. This paper addresses full ASLR.

1.1 Marten
We present Marten, a novel end to end automated exploitation

system which generates robust control flow hijacking exploits that
bypass full ASLR. A cornerstone of Marten is its ability to auto-
matically find and exploit information leakage vulnerabilities to
exfiltrate information about the layout of the address space of the
target process. This information enables Marten to then generate
payloads that successfully exploit buffer overflow vulnerabilities
by overwriting code pointers (such as return pointers) to point to
selected code sequences in the randomized process. Our current
Marten implementation generates robust ROP chains that enable ar-
bitrary command/code execution even in the presence of full ASLR.
These exploits work against fully stripped binaries compiled in
different environments and running in different varieties of Linux.

To the best of our knowledge, Marten is 1) the first system to
automatically find and exploit buffer overread vulnerabilities to
derandomize reusable code (i.e., find the addresses of the code in the
randomized address space) and 2) the first system to automatically
generate control-flow hijacking exploits that download and execute
code of the attacker’s choice into processes protected with full
ASLR.

1.2 Scope
Marten targets open-source software for which source and be-

nign inputs are available. Starting with the benign inputs, Marten
automatically deploys a vulnerability discovery algorithm that
works with an instrumented version of the application to iden-
tify target sites and craft inputs that expose buffer overread and
buffer overflow vulnerabilities.

Marten is designed to exploit processes running on remote servers,
accessing these processes via their network interfaces. We empha-
size that even though Marten works with an instrumented version
of the application to discover the vulnerabilities, it generates ex-
ploits that work on stripped binary versions of the source code
compiled by others and running on remote servers.

Upon discovering a buffer overread vulnerability, Marten crafts
an input that causes the target process to send regions of its address
space back to the process that sent the input without crashing
the target process. Marten then examines the returned data to
derandomize addresses (such as the location of standard libraries
like libc) within the victim process.

Marten leverages this address space layout information to synthe-
size short ROP chains that achieve the desired goal of the attacker.
Our current implementation, for example, synthesizes ROP chains
that download and run a program of the attacker’s choice from a
remote server. These ROP chains are designed to be short enough
to fit into a single TCP packet and contain padding that makes them
robust against environment differences.

To execute the ROP chain, Marten automatically discovers a
buffer overflow vulnerability and generates payloads that use this
vulnerability to inject the ROP chain into the running process and
exploit it. Once given the source code and benign inputs, Marten
is fully automatic — it generates the exploit with no human inter-
vention. We emphasize that the exploits it generates are effective
against stripped binaries compiled on different systems than our
testing environment.
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The exploits generated byMarten bypass more defenses than just
full ASLR. In fact, the use of information leakage gives us enough
ROP gadgets that we can bypass three other widely deployed de-
fenses such as NX, Full RELRO, and Fortify Source. We discuss these
defenses in greater detail in Section 2.

1.3 Case Studies
We apply Marten to exploit four vulnerabilities in two processes.

The first process is Dnsmasq-2.77, a commonly used DHCP Server.
Dnsmasq-2.77 has CVE-2017-14494, a buffer overread, and CVE-
2017-14494, a buffer overflow. Starting with benign inputs, Marten
automatically discovers both vulnerabilities. It crafts an input that
targets the buffer overread to leak the desired data (an address from
libc). Working with gadgets from the derandomized libc code,
Marten crafts a ROP chain that exploits the process. Finally, Marten
crafts an input that exploits the buffer overflow to inject the ROP
chain into the target process. The final output is a Python file which
takes the IPv6 address of the target and automatically executes an
exploit that downloads and runs a program from a server that the
attacker controls.

The second is Nginx-1.4.0, a popular reverse proxy, compiled
using the SSL library OpenSSL-1.0.1. Here Marten automatically
discovers CVE-2014-0160 (the infamous Heartbleed buffer overread
vulnerability in OpenSSL-1.0.1) and CVE-2013-2028 (a buffer over-
flow vulnerability in Nginx). As for Dnsmasq, Marten exploits the
buffer overread to derandomize libc, builds the ROP chain, and
exploits the buffer overflow to inject the ROP chain.

For both processes, Marten automatically generates exploits that
bypass full ASLR, NX, full RELRO, and Fortify Source. Our exploits
are initially generated and tested on Ubuntu. We also test exploits
that target stripped binaries compiled on Debian and Red Hat to
verify their robustness across different environments.

1.4 Contributions
This paper makes the following contributions:

• Marten: It presents Marten, a novel end to end system that
automatically targets information leakage and buffer over-
flow exploits to generate exploits that bypass full ASLR,
NX, full RELRO, and Fortify Source. Marten generates these
exploits automatically with no human intervention to ex-
ploit remote stripped binaries compiled and run in different
environments.

• Information Leakage: It presents a new algorithm and
approach to automate the exploitation of information leak-
age vulnerabilities, with the information used to deran-
domize attacker reusable code in remote processes. This
approach is built on a mature program instrumentation
system that combines taint analysis and targeted symbolic
execution to obtain symbolic equations and input byte
constraints that enable Marten to generate inputs that ex-
filtrate derandomization information without crashing the
target process.

• Chain Generation: It presents an end to end ROP chain
generation approach that leverages the availability of de-
randomized libraries to produce short, effective ROP chains

that fit into a single TCP packet and contain enough padding
to make the chains effective across different environments.

• Case Studies: It presents case studies using Marten to
exploit vulnerabilities in three large codebases, Nginx-1.4.0,
Dnsmasq-2.77, and OpenSSL-1.0.0. The results highlight
Marten’s ability to combine buffer overreads and buffer
overflows to generate payloads that successfully exploit
processes protected with full ASLR (as well as a range of
other modern defenses).

1.5 Structure
The remainder of the paper is structured as follows. In Section 2,

we provide an overview of Marten and discuss the defenses it cir-
cumvents. In Section 3, we provide examples of how our system
works when exploiting vulnerabilities in Dnsmasq-2.77 and Nginx-
1.4.0 compiled with OpenSSL-1.0.1. Section 4 presents a technical
analysis of the instrumentation we place on target programs. Sec-
tion 5 presents our approach to vulnerability discovery in detail. In
Section 6 we present our novel approach to automatically generat-
ing information leakage exploits. In Section 7, we present Marten’s
final exploit generation component and ROP chain generation al-
gorithms. Section 8 discusses related work. Section 9 concludes the
paper.

2 OVERVIEW
We discuss challenges incumbent with automatically generating

robust exploits that bypass full ASLR, NX and other defenses present
on modern systems and present an overview of Marten and how it
bypasses these defenses.

2.1 Defenses
This section details the defenses that Marten overcomes. We

discuss how they work at a technical level and briefly detail how
Marten handles with them. All applications presented in Section 3
were compiled with these defenses.

2.1.1 ASLR. Address Space Layout Randomization (ASLR) [29]
randomizes the virtual addresses of a process’s memory pages with
the goal of eliminating the attacker’s ability to locate code in the
address space for code re-use attacks like ROP [25]. Originally,
ASLR did not apply to the text section of an executable [26]. Today,
systems randomize the location of all code and data, including in-
formation located in the text section of the executable. Programs
with full randomization are said to be Position Independent Ex-
ecutables (PIE) [19] on Linux systems. Marten uses information
leakage exploits to bypases this defense.

2.1.2 NX. The non-executable bit (NX) [6] makes it impossible
for memory that is initially mapped into a process (such as the stack
and heap) to be both executable and writable. Thus, it requires an
attacker to reuse code already present in the process to develop an
exploit, rather than injecting their own code. Marten handles this
defense by using ROP. Note that NX does not prevent an application
from mapping in a writable and executable page at runtime. Thus,
Marten can use ROP to map in a page as writable and executable
and read our shellcode into this page. This mechanism allows for
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Figure 1: Workflow of Marten. Marten runs initial analysis on two separate seed inputs, one for the information leak and
one for the buffer overflow. The execution trace data for each input is sent to vulnerability discovery and Marten mutates
the benign inputs until they trigger a bug. Then, Marten finishes the infoleak exploit to spill the desired information from
process RAM. This exploit gets sent to finalize a buffer overflow exploit which bypasses full ASLR and other widely deployed
defenses.

code execution without being constrained to the gadgets present
in a binary or library.

2.1.3 Full RELRO. Relocation Read-Only (RELRO) [18] protects
an executable by rearranging where certain data sections are lo-
cated to prevent overflows into function pointers. Furthermore,
full RELRO makes the Global Offset Table (GOT), a location that is
full of function pointers to library functions, read only. Thus, an
attacker cannot hijack the function pointers located here to take
control of code execution. Additionally, an attacker cannot partially
overwrite these function pointers to access code located nearby.
This is a technique that is commonly used to obtain missing gad-
gets or bypass partial ASLR. None of our generated ROP payloads
attempt to overwrite GOT addresses, allowing us to bypass this
protection.

2.1.4 Fortify Source. Fortify Source [20] places extra checks
in certain dangerous libraries to ensure they do not result in an
overflow. For example, Fortify Source will check at compile time
that calls to memcpy of a fixed size do not overflow the destination
buffer. It is often difficult for the compiler to reason about whether
a function is being used unsafely at compile time. This is especially
true when the size of a memory transfer is decided by data received
at runtime in another function. The exploits generated by Marten
in Section 3 all work against binaries compiled with this defense in
place.

2.2 Marten
Figure 1 presents the overall workflow of Marten. First, Marten

runs initial analysis and vulnerability discovery to find an overread
error. It then generates a finely tuned input file which provides
Marten with an information leakage exploit. Marten then generates
a ROP payload for the target application based on data garnered
from the information leakage exploit. Marten reruns the vulner-
ability discovery algorithm to find a stack buffer overflow. Once
this overflow is found, our ROP payload is fit into our vulnerability
triggering input using the SMT solver Z3 [5]. This final exploit
payload is sent to the target application and used to verify that the
exploit works.

2.2.1 Instrumentation. During vulnerability discovery and ex-
ploit generation, Marten works with an instrumented version of
the application compiled locally. This instrumentation can provide
Marten with full symbolic expressions, in terms of program con-
stants and input bytes, for all values computed by the program.
To make the collection of these expressions tractable, Marten only
computes these expressions for bytes used in sinks, i.e., potential
target locations within the program. Examples of these target loca-
tions include calls to memcpy and recvwhere the length or pointers
are tainted, i.e., influenced by the input. The instrumentation is im-
plemented as an augmented version of LLVM’s Dataflow Sanitizer
(DFSAN) [9] that supports logging information about operations
performed on tainted data as it flows through the program. This
log provides a trace of the program’s execution after it has received
our input. We implement a trace analyzer which operates on these
logs to derive the symbolic expressions.

2.2.2 Vulnerability Discovery. Marten uses a goal directed branch
enforcement algorithm to find vulnerabilities [27]. Marten iterates
through the sinks identified in the initial analysis and try to gener-
ate a vulnerability for each one. To find a vulnerability, Marten adds
constraints one at a time until it triggers the bug or the solver fails
to generate an input file based on the constraints. The main goal
of vulnerability discovery is to generate an operation that either
writes outside of the destination buffer (an overflow), or reads out-
side of the source buffer (an overread). Additionally, vulnerability
discovery ensures data leaked in an overread reaches an output
function that is accessible by the attacker, like a socket send. This is
also achieved using a goal-directed branch enforcement algorithm
which ensures constraints are satisfied between the execution of
the overread and the output function. When looking for a sink to
exploit, Marten iterates through the sinks identified in the initial
analysis to try to generate a vulnerability for each one.

2.2.3 Information Leakage Exploit. The information leakage ex-
ploit spills process RAM and reveals the randomized location of
code pages. Marten parses the output of the program and identifies
the target information it is trying to leak, in our current implementa-
tion the base address of libc. To avoid rerandomization associated
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with restarting the process, Marten generates information leakage
exploits that avoid memory corruption, specifically by ensuring
that the destination buffer is large enough to hold the leaked data.

2.2.4 ROP Payload Generation. The final payload exploits a
buffer overflow. To create this payload, Marten automatically finds
the vulnerability and generates a ROP payload that meets the con-
straints of the target application so that the vulnerable target site
can be reached. Marten supports the generation of multiple types
of chains, each designed with bypassing modern defenses in mind.
The first type of chain we implement, the execve chain, executes a
execve syscall on a command or bash script supplied by the attacker.
This script allows the attacker to execute arbitrary commands on
the target system. The next chain type, the shellcode chain, uses
the mmap syscall to map in a page that is both writable and exe-
cutable. Then, it reads in code specified by the attacker to this page
and executes it.

One challenge is ensuring the ROP payload is small enough to fit
within a single TCP packet and can successfully navigate through
the control flow of the program to reach the target. Marten therefore
formulates a set of SMT constraints that capture the properties
that the input must satisfy, then uses an SMT solver to solve the
constraints and deliver the final attack input.

3 CASE STUDIES
Marten generates working exploits for four vulnerabilities across

three code bases. These exploits have been verified to work against
fully randomized, remotely accessed stripped binaries compiled in
three different environments, specifically Ubuntu 18.04, Debian 9.9,
and Red Hat Enterprise 8.0. All of our final payloads were generated
on a virtual machine with 40 Intel(R) Xeon(R) CPU E5-2690 v2 @
3.00GHz processors and 500 GB of RAM running Ubuntu 18.04.
All exploits generated in under six minutes on this machine. In
general, the offsets of ROP gadgets within libc may be different
for different versions of Linux. Marten therefore works with the
appropriate version of libc when generating the ROP chain for
processes running on the corresponding version of Linux. Figure
2 summarizes the applications, vulnerabilities, bypassed defenses,
and platforms on which the final exploits were verified to work.

3.1 Dnsmasq
CVE-2017-14494: CVE-2017-14494 is an information leak vulnera-
bility caused by a buffer overread. It is triggered when a malformed
DHCPv6 forwarding packet is sent to the target which causes pri-
vate information to be copied into a buffer. This information is then
sent back to the attacker, leaking data to the attacker.

3.1.1 Trace Generation and Analysis. Marten compiles Dnsmasq-
2.77 with our custom instrumentation. It sends a benign DHCPv6
forwarding packet (a provided benign input) to the instrumented
version of Dnsmasq, which creates a trace file that contains informa-
tion about operations performed on tainted data. Marten analyzes
the trace file to discover vulnerable points in the program’s execu-
tion. Examples of vulnerable points include calls to memory transfer
functions (memcpy, memmove, recv) where the size of the transfer
is influenced by the attacker. In this example Marten finds one po-
tentially vulnerable point. Marten uses the information in the trace

1 void ∗ pu t_op t6 ( void ∗ data , s i z e _ t l en )
2 {
3 void ∗ p ;
4
5 i f ( ( p = expand ( l en ) ) && da t a )
6 ▷ memcpy ( p , data , l e n ) ;
7
8 return p ;
9 }

CVE-2017-14494

" s r c _ e xp r " : ( B i tVec 6 4 ) bv548
" s r c _ add r " : 94435196822144
" index_expr " : ( B i tVec 6 4 ) bv94435196822182
" s i z e _ e x p r " : ( B i tVec 1 6 ) ( ( byte_0x24 < <8)+ by te_0x25 )

CVE-2017-14494 Symbolic Expressions

Figure 3: Vulnerable code and generated symbolic expres-
sions for CVE-2017-14494

file to derive symbolic expressions for relevant function parameters
such as the length passed to the memory transfer function. Each
symbolic expression captures the complete computation that gen-
erated the corresponding value as a function of the input bytes and
program constants. Marten also generates any constraints placed
on each of the input bytes by branches that occur in Dnsmasq.

3.1.2 Vulnerability Discovery. Marten iterates over all of the
target locations determined by the trace analyzer. Figure 3 presents
the symbolic expressions for the values of parameters to the call to
memcpy on line 6 of Figure 3 (we present the expressions in Z3 syntax
[5]). The symbolic expressions show why the memcpy is vulnerable.
The src_expr is the size of the buffer Marten is attacking when
it was allocated. The src_addr is the concrete value of the source
buffer’s base address. The index_expr is the pointer into the buffer
used as the source for the memcpy call. Finally, the size_expr is
the symbolic expression which dictates the number of bytes copied
in the memcpy.

The size_expr shows that the value of the size is determined by
the 0x24th and 0x25th bytes in the input. There are no constraints
set on these bytes by the program. There are 38 bytes between the
start of the allocated buffer and the beginning of the source buffer
used in the memcpy. This is determined by the difference between
the index_expr and the src_addr. With these parameters, Marten
generates a symbolic equation of the following form to generate an
overread:

size_expr > src_expr − (index_expr − src_addr )
Marten uses Z3 [5] to solve the resulting symbolic equation to

generate an overflow by setting the size_expr to a value exceeding
510. Address Sanitizer (ASAN) [23] then reports an error. Marten
ensures that the data which is read out of bounds reaches an output
source such as a socket send call. Marten makes this check so that
it knows the data will be sent back. This turns a buffer overread
error into an information leakage vulnerability.

3.1.3 Information Leakage. Marten now tailors the input to leak
desired information. To do this, Marten runs an uninstrumented
version of the application under GDB, using an automated interface
to GDB to stop execution at the memcpy shown in line 7. It then
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Program Vulnerability Type CVE FULL ASLR NX RELRO FORITIFY Chains Generated Verified On

Nginx-1.4.0 Buffer Overflow 2013-2028 ✓ ✓ ✓ ✓
execve
shellcode

Ubuntu 18.04
Debian 9.9

OpenSSL-1.0.1 Buffer Overread 2014-0160 ✓ ✓ ✓ ✓ Red Hat Enterprise 8.0

Dnsmasq-2.77 Buffer Overflow 2017-14493 ✓ ✓ ✓ ✓
execve
shellcode

Ubuntu 18.04
Debian 9.9

Dnsmasq-2.77 Buffer Overread 2017-14494 ✓ ✓ ✓ ✓ Red Hat Enterprise 8.0

1

Figure 2: Results for benchmark applications. Marten generates working exploits for four vulnerabilities and chains them
together to create exploits which bypass full randomization and other defenses.

1 i f ( ( opt = op t 6 _ f i n d ( opts , end , OPTION6_CLIENT_MAC
, 3 ) ) )

2 {
3 s t a t e −>mac_type = op t 6 _u i n t ( opt , 0 , 2 ) ;
4 s t a t e −>mac_len = op t 6 _ l en ( opt ) − 2 ;
5 ▷ memcpy(& s t a t e −>mac [ 0 ] , o p t 6 _p t r ( opt , 2 ) ,

s t a t e −>mac_len ) ;
6 }

CVE-2017-14493

" d e s t _ e xp r " : ( B i tVec 6 4 ) bv16
" d e s t _ add r " : 140735078453168
" index_expr " : ( B i tVec 6 4 ) bv140735078453168
" s i z e _ e x p r " : ( B i tVec 1 6 ) ( ( byte_0x24 < <8)+ by te_0x25 )−2

CVE-2017-14493 Symbolic Expressions

Figure 4: Vulnerable code and generated symbolic expres-
sions for CVE-2017-14493.

inspects thememory near the source buffer, trying to find the largest
code page it can leak that is reachable by the memcpy. It determines
that there is a pointer into libc which can be leaked, giving access
to a huge number of potential ROP gadgets. Marten adjusts the
length of the overread such that the size is greater than the distance
between the start of the memcpy and the desired information. To
ensure that the resulting exploit leaves Dnsmasq in an uncorrupted
state, Marten also uses the symbolic expression for the length of
the destination buffer to ensure that the leaked information fits in
the destination buffer. In this example Marten computes the length
of the overread as 0xFFFF — the length is stored in an unsigned
short, with the maximum value of 0xFFFF less than the length of
the destination buffer. At this point, Marten runs the application
with this specially crafted input. It verifies that the desired target
data is in the output and Dnsmasq continues to execute properly.
Marten now has a successful information leakage exploit.
CVE-2017-14493Marten next finds a buffer overflow vulnerability
that enables remote code execution. Marten’s vulnerability discov-
ery algorithm discovers CVE-2017-14493, which is triggered when
a malformed DHCPv6 packet is sent to the target that causes data
to be written outside of a statically sized stack buffer.

3.1.4 Vulnerability Discovery. Line 5 of Figure 4 presents the
vulnerable call to memcpy. The data in the source buffer and the
number of bytes to copy is controlled by the attacker. To detect this
vulnerability, Marten solves a symbolic equation over the variables

in Figure 4. This equation takes the same form as the equation of
CVE-2017-14494. Marten also ensures that it appends the proper
amount of data to the malformed DHCPv6 packet such that there
is enough to overflow the target buffer. These extra bytes are place-
holder values that Marten replaces with a ROP chain in the next
step. When the vulnerability is uncovered by a crash in ASAN, the
ROP chain generation begins.

3.1.5 ROP Chain Generation. The ROP chain generation takes
as an input the target library whose pointer is leaked in the in-
formation leakage step. In this case, it is the version of libc used
by the target application. From here, the payload generation has
access to a huge number of gadgets and can quickly synthesize both
shellcode and execve ROP chains. Marten minimizes the length
of the ROP chain by searching for gadgets that perform the de-
sired computation with few (three or less) extraneous instructions.
In practice, targeting libc gives Marten access to a wide enough
range of gadgets that Marten is able to find exact matches for each
desired gadget so that the final ROP chains have few extraneous
instructions. The chain generation algorithm also takes special care
to pad the generated payloads with offsets into the library which
point to ret instructions. This is the ROP equivalent of a NOP sled,
which is a technique to improve the robustness of an exploit against
changes to the environment [13]. Then, the payload generation ap-
pends the attack code, which is also a set of offsets pointing to short
code sequences in the leaked library. Marten generates a separate
ROP payload file for each version of libc (one for each version of
Linux) — the offsets of the gadgets are different for each version.

Figure 5 presents statistics for the generated ROP chains for our
target libraries. The ROP chains contain either 62 (execve exploit)
or 22 (shellcode exploit) gadgets. The generated chains contain
four kinds of gadgets: write, load, syscall, and call depending on the
action the gadget performs. The length of the ROP chains varies
between 1496 and 422 bytes, with the amount of padding included
in the ROP chain either 48 or 80 bytes. The padding consists of the
address of a ret instruction in libc. To ensure that the chains fit
within a single TCP packet, Marten generates ROP chains that are
less than 1500 bytes.

The generate ROP payload is placed within the placeholder bytes
appended to the malformed DHCPv6 packet in the vulnerability dis-
covery step. From here, Marten solves any unsatisfied constraints
created by replacing placeholder bytes by the ROP payload and ad-
justs the payload so that it exercises the target memcpy and executes
the ROP payload.
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Libc In Chain Type Gadget count Instruction Count Gadget Type[Number] Length (bytes) Padding (bytes)

Red Hat 8.0 execve 62 138 write[19], load[42]
syscall[1] 1496 48

Red Hat 8.0 shellcode 22 42 write[5], load[15]
syscall[1], call[1] 544 80

Debian 9.9 execve 62 62 write[19], load[42]
syscall[1] 920 80

Debian 9.9 shellcode 22 22 write[5], load[15]
syscall[1], call[1] 422 80

Ubuntu 18.04 execve 62 138 write[19], load[42]
syscall[1] 1496 48

Ubuntu 18.04 shellcode 22 42 write[5], load[15]
syscall[1], call[1] 544 80

1

Figure 5: Statistics of ROP chains generated for each target system’s library.

3.2 Final Exploit
The final exploit is a Python script that receives a target IPv6

address, a payload file for the information leak, and a payload file
for the stack buffer overflow complete with relative offsets for the
ROP gadgets. Marten will generate a Python script using a template
that sends the information leak payload to the server and receives
the leaked data. The script will search for the target pointer using
the offset it saved in the information leak payload generation step
and determine the base address of libc. Once the script has found
this base address, it will add it to all of the relative offsets in the ROP
payload to generate absolute addresses. Then, this final payload
file is sent to the target process. The result is an exploit which can
perform arbitrary commands on the victim system that bypasses
full ASLR and other modern defenses such as NX. We verified that
the exploits work against Dnsmsaq-2.77 compiled on Ubuntu 18.04,
Debian 9.9, and Red Hat Enterprise 8.0.

3.3 Nginx and OpenSSL
Marten begins with the source code for Nginx-1.4.0, OpenSSL-

1.0.1, and two benign inputs to the program. The information leak
vulnerability, CVE-2014-0160, is the infamous Heartbleed bug. Our
seed input for the information leak is a benign Client_Hello and
Heartbeat packet. First, Marten compiles this application with our
LLVM based instrumentation. Marten runs the instrumented pro-
gram and feeds it the benign packets, causing the process to log a
trace of the program’s execution. Our trace analyzer determines the
points in the program that are potentially vulnerable. The analyzer
logs data about these points including symbolic expressions repre-
senting the constraints on the input bytes that had to be satisfied to
reach the target sites and an expression for the size of the vulnerable
memory transfer. As opposed to the other traces which only find
one potentially vulnerable point, Marten finds twenty-five points
that are potentially vulnerable for Heartbleed. There are a greater
number of potentially vulnerable points for this input because the
the Client_Hellomessage contains data that gets used in hashing
functions which have loops over the input data.

Marten enters its vulnerability discovery phase to generate an
input which triggers a bug in the program. Marten iterates through
all of the potentially vulnerable points determined by the trace
analyzer. Eventually, Marten tries to attack the point which is truly
vulnerable.

Marten mutates the input file such that the length of the heart-
beat packet is longer than the source buffer. Marten uses the sym-
bolic expressions previously logged to mutate the file. These ex-
pressions are fed into the Z3 [5] constraint solver that creates the
required length while satisfying the constraints needed to reach
the vulnerable code. Supplying this file to Nginx caused Address
Sanitizer to report an error.

The bug triggering input is supplied to Marten’s information
leakage phase which runs against an uninstrumented version of
the application. Marten’s automated GDB based analysis creates an
input which leaks an address in libc. Our library finding algorithm
determines the location of the library address in the leaked data.
From this address, Marten calculates the base address and created a
ROP chain that is effective irregardless of how the target program
is randomized by full ASLR.

Marten follows a similar approach to obtain a vulnerability trig-
gering input for the buffer overflow bug. Marten is given a benign
chunked Transfer-Encoding request packet. It then recognizes
a signed-unsigned comparison in Nginx which results in an over-
flow vulnerability. This allows Marten to crash the target applica-
tion.

Because of the library address leaked from memory, Marten
has access to a huge number of ROP gadgets and synthesizes an
exploit for CVE-2013-2028, the buffer overflow in Nginx. Our gen-
erated exploit’s gadgets are based on offsets into the leaked library
such that a new base address could be applied to them for any
re-randomized run of the application. Marten automatically syn-
thesizes ROP chains for the vulnerability and fits them into the
symbolic equation for the exploiting input. Marten generates ROP
payloads for each flavor of Linux it attacks, because their versions
of libc are all slightly different. This causes their gadgets to be in
different locations. Our exploits download and run a program from
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a server. Marten verifies that the program is running on the victim
system to ensure the exploit’s success.

The final output of Marten is a Python script and payload files
that will do both the information leakage attack and send a ROP
payload to the target system. Marten verifies this script by using
it against binaries compiled and running on remote systems using
Ubuntu 18.04, Debian 9.9, and Red Hat 8.0. We verified that the
script caused an arbitrary program to be downloaded and run by
verifying that the injected process was executing on the target
system.

4 PROGRAM INSTRUMENTATION
Marten takes the source code of an application and compiles

it using an augmented version of Dataflow Sanitizer (DFSAN) [9].
This program is then run with a given input and Marten traces
its execution while tracking taint as the input flows through the
target application. Finally, we implement a trace analyzer for the
logged information which tracks input bytes and their symbolic
expressions.

4.1 Logging Execution Traces
Our instrumentation creates log files that track information

about how the program computes and uses tainted values. Marten
uses this information to derive symbolic expressions for the tainted
values that the program computes and for the constraints placed on
tainted values by the execution of conditional statements. Systems
like Valgrind [11] do not log data and instead track data at runtime
in memory. Our approach reduces the memory overhead of stor-
ing this data while running an instrumented application. Also, we
minimize the impact that our instrumentation has on the target
program’s runtime by taking advantage of compiler optimizations
to provide faster analysis.

4.2 Trace Analyzer
The Marten trace analyzer reads the log files to find sinks in the

program which Marten will later attack. A sink is a function where
data is used in a way that may cause an overflow, an overread, or
perform transformations on the input bytes. Marten works with
four different kinds of sinks:

• Memtransfer: A function corresponding to a memory
transfer function, such as memcpy, that Marten is trying to
attack. These are generated while Marten is looking for
buffer overflows when the destination or size of a memory
transfer is tainted.

• Input: A function which reads tainted data. These are
generated any time data is read into the program from the
attack input.

• Overread:A function corresponding to a memory transfer
inwhich the source pointer or size is tainted. These are only
generated when Marten is looking for buffer overreads.

• Data: A sink generated to represent tainted data that later
flows into the other types of sinks. These are generated to
support transformations of the data that flows into other
sinks for both ROP chain generation and information leak-
age.

The trace analyzer will generate sinks depending on whether the
parameters are tainted and if the sink type is of interest based on
the type of attack Marten is implementing. When Marten attacks
stack buffer overflows, it is interested in Memtransfer and Input
sinks. In this kind of attack, Marten is targeting a vulnerable memcpy
or recv in the program. When Marten generates information leak
exploits, it is targeting overread sinks and data sinks.

Sinks include important information such as the constraints on
the input bytes which allow us to reach a certain function of in-
terest, the symbolic equations for the input, and concrete values
for function parameters. Furthermore, Marten logs the taint labels
of specific bytes so that it can determine where data that is ma-
nipulated in an overread is used again in an output function like a
socket send.
Symbolic Expressions andConstraints:The trace analyzer keeps
track of the symbolic expressions of individual bytes in the input.
Marten tracks expressions for each of the bytes in the input. Once
an input function, such as read or recv, is activated on a communi-
cation channel that is controlled by Marten, the trace analyzer will
create symbolic variables for the bytes read in. Consider a symbolic
variable called byte which is created when some input is read in.

From this point on, any calculation performed on information
associated with these symbolic variables will propagate symbolic
expressions to the relevant destinations. These calculations are
checked by examining the LLVM bytecode generated at compile
time. For example, say the LLVM register i8 has the symbolic
expression byte. If an LLVM instruction of the following form
takes place :

%i9 = add i32 %i8, 10

Marten now knows that the register i9 will have the symbolic
expression byte + 10. If i9 is later used to determine the size of a
memcpy and Marten knows the size of the destination buffer, it will
be able to determine if a concrete value exists for byte that will
overflow the buffer.

Marten also keeps track of the constraints placed on the input
bytes based on the branches that occur within the program. These
constraints are represented with symbolic expressions that include
a result of True or False. Marten uses the constraints extensively
in vulnerability analysis.

5 VULNERABILITY DISCOVERY
After Marten has generated the relevant symbolic equations

for targets sites triggered by the input, it manipulates the input
into exposing a vulnerability. To do this, Marten follows the same
methodology as the goal directed conditional branch enforcement
algorithm described by Sidiroglou et al. [27]. We extend this tech-
nique by applying their method to buffer overflows and buffer
overreads. Marten continuously runs the target application first
with no constraints and then by adding constraints one by one
until it detect a bug. To detect a bug, Marten recompiles the target
application with Address Sanitizer (ASAN) [23] which will detect
out of bounds reads and writes.

5.1 Vulnerability Discovery Algorithm
We implement an algorithm based on goal directed conditional

branch enforcement to transform a benign input that traverses a
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target site into an input which triggers a vulnerability. Algorithm 1
shows our approach to this problem.

Algorithm 1: Vulnerability Discovery Algorithm
1 input: C: source code of the program L: LLVM

instrumented program S : the target sinks generated from
initial analysis, I : program input

2 output: ρ: an input that triggers the vulnerability or ⊥
3 A← ASAN_compile(C)

4 for s in S do
5 cur_cons ← �
6 while cur_cons , all_cons do
7 if not ρ ← solver_дenerate_input(I , cur_cons )

then
8 break
9 end

10 if buд_f ound(A(ρ)) then
11 return ρ

12 end
13 mod_cons ← дet_constraints(L(ρ)) if

дot_new_constraint(cur_cons ,mod_cons ) then
14 add_new_constraint(cur_cons ,mod_cons )
15 else if

constraint_not_f lipped(cur_cons ,mod_cons )
then

16 f lip_newest_constraint(cur_cons )
17 else
18 break
19 end
20 end
21 return ⊥

Given the source code of a program C , a version of C compiled
with our LLVM instrumentation L, the sinks generated from initial
analysis S , and the benign seed input I , the algorithm will first
compile an ASAN version of the source code. Then, it will iterate
through the sinks in S , trying to attack each of them.

Each sink has constraints associated with it. Marten starts by
mutating I such that the new input triggers a vulnerability without
adding any constraints. If the solver is unable to generate an input
whichmeets the current constraints, Marten breaks and continue on
to the next sink. If this input fails to trigger a bug, Marten will obtain
the branches from the mutated input and add one new constraint
associated with the target sink. If no new constraints have been
generated, Marten will flip the newest constraint and continue
executing. If no new constraints are generated and Marten has
already tried flipping the newest constraint, Marten determines that
it is not possible to generate an input which exercises a vulnerability
for this sink. Thus, Marten moves on to the next sink and tries to
attack it. Marten stops once it has found a bug or if it has tried all
of the sinks in S and was unable to trigger a vulnerability.

5.2 Information Leakage Taint Tracking
Algorithm 1 targets both overread and overflow vulnerabilities.

Onemajor difference between overread and overflow vulnerabilities

is that overreads violate the bounds of the the source buffer, while
overflow bugs violate the bounds of the destination buffer. For a
successful information leak, the data read outside of the source
buffer must be sent back to Marten. Otherwise, this data will just
reside in the application’s RAM and be of little use.

To ensure the information from an overread reaches an output
source which is attacker accessible, Marten reruns our initial anal-
ysis using the input which triggers the overread. This overread
will apply taint to the data that Marten wants to read back. Marten
tracks these taint labels as they flow through the program in the
same way it tracks all other taint, using DFSAN. Once this tainted
data reaches an output source that is accessible to Marten, it deter-
mines that it has a successful exploit. If this data does not reach
an output source, Marten continues to solve constraints similarly
to Algorithm 1 until the data is either read back or the constraints
become unjustifiable.
Preventing Memory Corruption: Marten takes special care to
ensure that it does not crash the target program after triggering
the buffer overread. This goal is achieved by ensuring that the
destination buffer is large enough to hold the data being read into it.
Marten logs the size of the destination buffer in our sinks when it
traces the process’s execution and verifies the buffer is large enough
to hold the data by checking its allocated size against the length of
the overread.

6 INFORMATION LEAKAGE
To bypass full ASLR, Marten takes advantage of information

leakage vulnerabilities. We provide a novel approach for exploiting
these types of bugs. Once the bug is found, Marten crafts an input
that leaks the information it wants. Marten leaks the addresses
of code sections to bypass full ASLR. Marten implements a novel
algorithm to discover target information by inspecting points of
interest in the program and ensuring the desired data is leaked
back to Marten. A scripted version of GDB is invoked by Marten to
inspect the processes at runtime [28].

6.1 Information Discovery Algorithm
Algorithm 2 sets a breakpoint at a location of interest determined

by the vulnerability discovery component of Marten. Next, it runs
the program until it reaches the desired breakpoint. If this is the
point at which the overread occurs, Marten inspects the program’s
state to determine the ranges for its executable memory pages,
otherwise Marten will continue executing. When Marten reaches
the overread, it attempts to find a pointer into the largest code
segment located within reach of the overread and take note of its
value. To find this pointer, Marten obtains the executable memory
maps for the process from the respective /proc/pid/maps where
pid matches that of the target process. This allows us to verify
that the pointer is within an executable code segment. At this
point, Marten mutates the input file to generate an overread which
leaks the greatest amount of information it can obtain without
overflowing the destination buffer.

6.2 Information Leakage Verification
Marten verifies that the information leakage exploit is successful

by first running the target application and stopping execution on
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Algorithm 2: Information Leakage Algorithm
1 input: C: source code of the program, S : the point in the

program Marten is targeting, V : vulnerability triggering
input

2 output: ϵ : leaking input or ⊥
3 P ← DEBUG_compile(C)

4 set_break(S , P )
5 Pi ← run P(V )

6 while break_reached(Pi ) do
7 if correct_point(Pi , S) then
8 X ← executable_seдments(Pi )

9 B ← дet_bits_o f _X_at_point(Pi ,X )
10 break
11 else
12 continue
13 end
14 end
15 ϵ ←mutate_input(V )
16 if veri f y_output(ϵ, P ,B) then
17 return ϵ

18 else
19 return ⊥
20 end

the first instruction after all libraries have been loaded. At this point,
Marten inspects the memory map of the process and gathers the
memory range for the library it intends to leak. After this, Marten
lets the program run to completion. Marten sends the exploiting
input to the program and verifies that there is a pointer in the
response which resides somewhere in the target memory map.
If this is the case, Marten knows that it has generated an input
which successfully leaks critical information for the next stage of
exploitation. Marten can now use all of the code in this section of
the program to break full ASLR.

6.3 Information Identification
One challenge with automating information leakage is deter-

mining what is and what isn’t a library address in the output. This
challenge is compounded by the fact that Marten is finding informa-
tion that is leaked from the heap. This memory section’s layout is
altered due to common operations like garbage collection, writing
to log files, servicing requests from other clients, etc. The attacker
has no control over these operations.

Marten uses a novel method for finding library addresses. It first
generates the largest information leak it can without corrupting
the target, causing the highest probability of the target data being
leaked. It then takes advantage of the bits of entropy used to realize
ASLR. On 64 bit Linux systems, libraries have 28 bits of entropy [10].
A library address takes on the following form for 64 bit systems:

0x00007fXXXXXXXYYY

In the above example, the bits represented with an X are random-
ized and the bits represented with a Y are the bottom 12 bits of an
offset from the library’s base address. Marten determines the value

1 ▷ 0 x442067 <pu t_op t6 +46> mov rdx , qword p t r [ rbp − 0 x20
]

2 0 x44206b <pu t_op t6 +50> mov rcx , qword p t r [ rbp − 0 x18 ]
3 0 x44206 f <pu t_op t6 +54> mov rax , qword p t r [ rbp − 8 ]
4 0 x442073 <pu t_op t6 +58> mov r s i , r cx
5 0 x442076 <pu t_op t6 +61> mov rd i , r ax
6 0 x442079 <pu t_op t6 +64> c a l l memcpy@plt <0 x402a10 >

Figure 6: Disassembly when setting breakpoint in out-
packet.c at line 84 for Dnsmasq-2.77

of YYY when it selects a target to leak from automated analysis
with GDB. From this point, finding the information is a matter of
applying a bitmask to each 8 byte value in the output until Marten
finds a value that matches the form of 0x00007fXXXXXXXYYY. At
this point, Marten subtracts the offset gathered from GDB analysis
and can determine the base address of the target library.

Marten relies on the fact that standard libraries such as libc,
unlike applications, are typically compiled once for each Lunix
release and are then distributed along with the release. The code
offsets within libc are therefore typically the same across all ma-
chines running the same Linux distribution so that the ROP chain
generated for that version of libc will typically work across all of
those machines.

6.4 GDB Scripting
We created a python class, GDBWrapper, which invokes GDB as a

subprocess and provides variousmember functions that perform the
useful functionality of different commands.We extend this function-
ality to create new commands not natively supported by GDB. For
example, we implemented amember function get_params_by_func
which will tell Marten the parameters to a function depending on
what the current function being called is.

One of the challenges with automating GDB is ensuring that
the commands sent generalize to more than one program. This is
why the information we provide in our sinks from initial analysis
is essential. From the LLVM bytecode, we are able to determine the
source file and line of a specific function of interest. Once we have
identified the overread sink we wish to attack, ensuring that we
can analyze the interesting point of this program is as simple as
setting a breakpoint at the proper location.

Breaking at a line number is a higher level of abstraction than
breaking on a specific machine code instruction. As can be seen in
Figure 6, when a breakpoint is set at the target location in the source
code, GDB ends up stopping execution a number of instructions
before the memcpy call. Thus, we ensure that we step for a few
instructions until we are on the call memcpy opcode. This ensures
the registers are properly set up to analyze the state of the program.
Note that we may hit the breakpoint multiple times during the
execution of the program. We therefore check the transfer size and
stop only when the size matches.

Once we reach the location of interest, we have to inspect the
program state to find the useful information. To do this, we rely on
the fact that the x86_64 calling convention places the arguments
in the registers RDI, RSI, and RDX, respectively. Thus, we know
that address of the source buffer in the memcpy of Figure 6 is in
RSI. We can inspect memory located after this pointer to find the
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information we wish to leak and generate an input file that causes
this memory transfer to reach the target information.

7 EXPLOIT GENERATION
Once an information leak has been performed, the results are

used to generate an exploit that bypasses full ASLR and other mod-
ern defenses. This is a three step process consisting of ROP chain
generation, stack offset calculation, and exploit finalization. The
final result is a Python script that takes an IP address for the target
and automatically performs an information leakage attack and a
buffer overflow attack which gives the attacker arbitrary computa-
tion and bypasses full ASLR.

Algorithm 3: execve chain generation
1 input: L: library for the target program, debug info not

needed, O : Offset from base address of library, X :
Command for the chain to execute

2 output: C: ROP chain that executes X
3 G = find_gadgets(L)
4 offset_gadgets(G,O)
5 D = get_data_segment_offset(C)
6 argv_addr = D

7 cmd_addr = D + length(X ) + 0x8
8 null_address = cmd_address + length(X )
9 C += create_command(X , cmd_addr, arvg_addr)

10 C += write_memory(0x0, null_address)
11 C += create_dep_chain(%rax, %rdi, %rsi, %rdx)
12 C += syscall_gadget
13 C = add_padding(C)
14 return C

7.1 ROP Chain Generation
Our system builds on top of Ropper [21] to generate ROP [25]

payloads, which are capable of bypassing NX and RELRO protec-
tions. We built upon the automatic ROP chain creation portion of
Ropper, giving it the ability to generate exploits that are capable of
much more flexible attacks than simply opening a local shell. Our
current approach generates two different chains, the execve and
shellcode chains.
execve: The execve ROPchain writes a command string to memory
and thenmakes an execve() system call using that command string.
The string may be an arbitrarily complex shell script. The only
constraint is that the chain must be small enough to fit within the
process’s memory. The execve chain determines a place to write
the string based on determining which locations in the library are
both writable and readable. These are data sections used by the
process to store information that is needed at runtime.

The create_command() function used during execve chain gen-
eration splits the provided string into architecture appropriate-
sized pieces that are written by sequential write gadgets starting
at cmd_addr, allowing for arbitrary length commands to be passed
by users of Marten. Once the string literals have been written, an
array of pointers to the strings are written to argv_addr.

The create_dep_chain() function takes in a set of register to
value mappings and figures out an ordering of gadgets such that
at the end of their execution, all of the desired registers will be set
to the specified values without any of the registers being acciden-
tally clobbered by previous gadgets. Algorithm 3 implements this
technique.
shellcode: The shellcode ROPchain makes a mprotect() system
call to make a portion of the data section executable, writes a small
shellcode loader to the now executable memory, then jumps to
the loader. The loader copies another shellcode to the addresses
beneath it, then runs it.

As seen in the Algorithm 4, Marten first generates the chain
M , which executes the mprotect system call on a desired memory
range. Then, it generates a simple chain C which writes the loader
to memory. Finally, the M chain is appended to C and returned.
The C chain is generated second even though it executes first, as it
requires the loader to be finished, which requiresM to be finished
so that Marten can check whether an additional pop is needed in
the loader or not.

Algorithm 4: shellcode chain generation
1 input: L: library for the target program, debug info not

needed, O : Offset from base address of library, X :
Command for the chain to execute

2 output: C: ROP chain that executes C , SC : shellcode to be
included in buffer overflow that will be written to an
executable location

3 G = find_gadgets(L)
4 offset_gadgets(G,O)
5 SC = choose_shellcode(X )
6 D = get_data_segment_offset(C)
7 target_addr = D

8 target_addr_aligned = align(target_addr, 0x1000)
9 load_dst = target_addr + 0x100

10 SZ = 0x2000
11 P = 0x7 # (RWX permission)
12 M = create_dep_chain(%rax, %rdi, %rsi, %rdx)
13 M += syscall_gadget
14 jump_addr = target_addr + library_base_address
15 M += jump(jump_addr)
16 loader = build_loader(loader_dst, len(shellcode))
17 C = memwrite_chain(target_addr, loader)
18 C +=M

19 C = add_padding(C) return C , SC

Information Leakage Integration: Marten specifies a base ad-
dress from which gadget addresses are calculated. By feeding in
the base address for the library targeted by information leakage,
Marten is able to generate a ROP chain that uses the randomized
offset that was leaked. This is done by using the gadgets located at
specific offsets from the base address, stitching them into a chain,
and applying the randomized base address once it is determined by
our information leakage exploit.
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7.2 Stack Offset Calculation
Once one or more ROP chains have been generated, Marten fits

this chain into the vulnerability triggering input found in previous
stages of the pipeline. To fit the chain, Marten requests a second
input that contains a long De Bruijn sequence [1] that will overflow
the buffer and overwrite the saved instruction pointer.

If Marten is able to generate the input that hijacks the return
pointer of the program, the instruction pointer will be a portion of
the De Bruijn sequence. This is used to quickly calculate the offset
from the beginning of overflow to the saved instruction pointer.

If Marten was not able to generate such an input, but is able
to find a smaller, non crashing input with specifiable fingerprint
value, it will use our GDB wrapper to find the fingerprint value in
memory. Once the fingerprint is found, Marten can calculate the
difference between the location of the fingerprint and the saved
instruction pointer.

7.3 Exploit Finalization
After one of the two stack offset calculation processes is run,

Marten knows how many bytes need to be written to the buffer to
cause a control flow hijack. For each generated ROP chain Marten
can now ask the solver to assemble a final input that consists of
whatever information is needed to get to the desired memory trans-
fer, place arbitrary content to overflow the buffer, and then the
values of the chain. If an input is able to be generated, Marten now
has an attack file that can be sent to the target program which will
bypass full ASLR and other modern defenses.

The final exploit is a Python script which takes the IP address
of the target server and performs an information leakage exploit
against it. The library base address that is leaked is applied to the
relative offsets present in the attack file. The final attack file is then
sent to the target which exploits the victim server and bypasses full
ASLR.

7.4 Chain Size
Our chains are short for two primary reasons. First, information

leakage gives Marten access to a huge number of gadgets because
it has access to all of the code in large libraries like libc. This
allows Marten to create chains using gadgets with few (three or
less) extraneous instructions. For example, if Marten needs to set
the RDI register, a gadget such as:

pop RDI; ret;

is typically readily available.
The second reason Marten is able to generate short chains is that

it takes a heuristic approach to gadget searching. In Algorithm 3
and Algorithm 4, Marten searches for gadgets that meet very spe-
cific criteria. For example, when Marten wants to load a register it
searches for gadgets that only have a single pop or mov instruction.
This prevents Marten from searching for gadgets that have extra-
neous instructions which perform undesirable computation that is
corrected with adding yet more gadgets to the chain. Our approach
ensures Marten is building chains with gadgets that are compact.
Marten generates chains that fit within a single TCP packet which
is an important capability for generating reliable remote exploits.

7.5 Exploit Reliability
Our exploits are effective against stripped binaries that are com-

piled in different environments. This is due to three main reasons.
First, our chains are short for the reasons listed in 7.4. They are short
enough to fit within a single TCP packet. This prevent the chains
from being split up across multiple packets and is an extremely im-
portant capability for remote exploits. If Marten is sending exploits
to a remote server across a slow network, large chains may not
reach the target server at the same time. If the server is using non-
blocking receives, which is quite common, then this situation would
cause only part of our chain to be loaded into memory. Because
only part of the chain gets executed, our exploit would not finish
and just crashes the target, an undesirable outcome for an attacker.
Because Marten’s chains fit into a TCP packet, they arrive at the
sever as a unit and are loaded into memory all at once, enabling
the exploits to complete their execution.

Marten also adds padding by augmenting its exploits with ret
gadgets. This is the ROP equivalent of a NOP sled [13], a technique
used to improve the reliability of exploits against unpredictable
stack layouts. These extra gadgets at the beginning of our chains
provide a buffer space to account for shifted stack configurations
which may be due to different compilation settings of the target,
different environment variables, etc.

Marten also gathers chains from libraries, not the program’s
code. This is significant, because programs may have different
instruction sequences and offsets when compiled with different
flag settings and optimization levels. From our own experience,
compiling Nginx-1.4.0 in a different directory caused the gadgets
in the binary to change. Libraries, especially libc, are typically
compiled once, then distributed with the operating system release.
Marten’s exploits therefore target code in libc rather than code in
the application.

8 RELATEDWORK
Automatic Exploit Generation: Brumley et al. showed, given
source code access, that it is possible to automatically convert a
patch into an exploit [3]. Their notion of an exploit was an input that
violates the safety checks created by the patch, not one that hijacks
the control flow of the target program. The generated exploits
target standard undefended (unrandomized with executable stack
and heap) binaries.

Marten, in contrast, does not require patches (only source code
access and a benign input that exercises potential attack targets) and
generates fully functional exploits that bypass full ASLR (as well as
other defenses such as NX) to inject and execute attacker code into
remote processes accessible only via a network connection.

AEG and Mayhem use symbolic execution to automatically find
stack buffer overflows and format string vulnerabilities while gen-
erating exploits that target these bugs [2, 4]. Mayhem does this
without access to source code while AEG requires source code. The
exploits generated by these systems only work with unrandomized
binaries where all defenses such as ASLR and NX are disabled. Fur-
thermore, they rely on binaries having the specific compiler and
operating system combinations of their compiled target program.

11



Marten, in contrast, 1) uses goal-directed conditional branch
enforcement to find heap and stack overread and overwrite vulner-
abilities deep within the program, 2) leverages information leakage
vulnerabilities to bypass full ASLR defenses, 3) generates compact
ROP exploits that bypass NX layouts 4) generates final exploits that
work against stripped binaries compiled using different compilers
and operating systems with different stack and heap layouts
Automatic Data Oriented Exploits: FLOWSTITCH is a system
that makes exploits through manipulating the data and not the
control flow of a program [8]. Their system automatically performs
data corruption attacks. These attacks result in privilege escalation
attacks, sometimes allow for command execution on the target
system, and never allow for code execution. Their exploits only
work in the presence of a weak form of ASLR where only the
libraries, stack, and heap are randomized but not the text and bss
segments. FLOWSTITCH can perform information leakage attacks,
but relies on data and code sections which are not protected by
randomization and requires the attacker to specify the data that
they want to leak.

Unlike data oriented exploits, Marten generates remote control
flow hijacking exploits against fully randomized binaries that au-
tomatically allow the attacker to gain arbitrary code or command
execution on the target server. This gives the attacker more flex-
ibility their attack’s consequences and allows them to hijack the
execution of processes that are only accessible through remote
vectors. Marten’s exploits also work in the presence of full ASLR
and do not require small portions of the process’s code or data
segments to be unrandomized. Marten can leak addresses from a
victim process with full randomization enabled and identifies the
target data to leak automatically without requiring any attacker
interaction.
From POC to Exploitable: Revery is a system which takes crash-
ing Proof of Concept (POC) inputs and determines whether they
could lead to exploitable conditions or not when attacking unran-
domized binaries [31]. This system was only tested on unrandom-
ized CTF binaries which are extremely simplified, small programs
designed for hacking competitions. This system stopped when it
could write to an arbitrary address or gained control of the instruc-
tion pointer. Revery cannot perform information leakage attacks.

Marten is an end to end system which finishes the job of develop-
ing a fully functional exploit that is effective against stripped, fully
randomized binaries protected by modern defenses. These binaries
may be generated on other systems and do not need to be compiled
by Marten. Additionally, Marten is able to take a benign input and
convert it into a POC input that exposes a vulnerability using a
goal directed conditional branch enforcement algorithm. Marten
is tested against and succeeds in exploiting real applications, not
simple toy programs. Marten performs information leakage exploits
successfully.
Automatic Exploit Hardening: Q is a system that automatically
hardens POC exploits against modern defenses by replacing shell-
code with ROP chains [22]. Their system’s exploits target the unran-
domized sections of a program protected by a weak form of ASLR
that does not randomize the location of the text and bss sections in
a binary. The exploits generated by their system either call a library
function without control of the arguments, or writes to an arbitrary

address and then stops. Q can only use the gadgets available in the
binary to generate its chains because it cannot perform information
leakage exploits.

Marten does not require an existing POC exploit to develop its
own exploits. Instead, Marten takes a benign input to the target
program and creates a POC input that exercises a vulnerability
automatically. Marten can exploit programs protected by full ASLR
because of its ability to perform information leakage attacks. Addi-
tionally, Marten develops robust. reliable exploits that can achieve
arbitrary code or command execution. Marten generates chains
using libraries, so it has access to many more gadgets and can build
shorter chains because of this. Marten it able to use these libraries
because of its ability to perform information leakage exploits.
Automatic Buffer Overread Discovery: BORG automatically
finds and triggers buffer overreads using symbolic execution and
and static analysis [12]. BORG generates inputs that cause buffer
overreads which do not leak data. Instead, they cause the target
applications to crash. Borg does not generate control flow hijacking
exploits. BORG does not try to generate inputs for programs with
defenses such as full ASLR enabled.

Marten is able to automatically find and trigger buffer overreads.
Marten extends this capability to ensure that the data in the over-
read is sent back to the attacker. From this information, Marten can
generate control flow hijacking exploits that bypass full ASLR and
other defenses.
Goal Directed Conditional Branch Enforcement: DIODE im-
plements a goal-directed conditional branch enforcement algorithm
[27]. DIODE uses the algorithm to find integer overflow vulnerabil-
ities in programs. DIODE does not generate exploits of any kind
after finding these vulnerabilities.

Marten extends the goal-directed conditional branch enforce-
ment algorithm to automatically find and trigger buffer overflow
and buffer overread vulnerabilities as well as integer overflows.
Marten uses this capability to generate information leakage and
control flow hijacking exploits that bypass full ASLR and other
modern defenses.
Automatic ROP Chain Generation: A number of other systems
have explored the automatic ROP chain generation problem [7, 15–
17, 21, 30]. All of these systems are meant to be interactive and to
help a user generate ROP chains. These systems do not generate
complete ROP chains. Instead, they assist the attacker by helping
them find useful gadgets in the target binary. These systems do not
have the capability to integrate with information leakage exploits.
These systems do not attempt to build chains that are robust against
changes to the environment

Marten is totally automatic and does not require user interac-
tion after it begins running. Marten’s ROP chains are able to load
registers for function arguments and finish the job by calling tar-
get functions. Marten’s ROP chains are integrated with its ability
to generate information leakage exploits to generate chains that
bypass full ASLR and other modern defenses. Marten is capable
to generating two types of chains. One that injects and executes
arbitrary shellcode and one that calls the execve system call to
execute arbitrary commands.
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9 CONCLUSION
Address space layout randomization poses a significant obstacle

to the successful exploitation of memory corruption vulnerabilities.
By automatically discovering and exploiting information leakage
vulnerabilities, Marten can successfully derandomize remote ran-
domized target processes. The resulting information about the lo-
cations of remote code enables Marten to generate successful ROP
chains tailored to the specific randomized addresses of the remote
process. Coupled with Marten’s ability to automatically discover
buffer overflow vulnerabilities, these ROP chains enable Marten to
deliver a fully automatic end to end system that combines multi-
ple vulnerabilities to exploit remote randomized processes. Results
from our case studies highlight the success of this approach.
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