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We present an analysis of the three-flavor holographic model of QCD associated to a D4/D8 brane
configuration, with symmetry breaking induced by a world sheet instanton associated to a closed loop
connecting D4 — D8 — D6 — D8. We calculate the electromagnetic and axial couplings of all octet and
decuplet baryons, as well as several negative parity excitations, with and without symmetry breaking
effects, and demonstrate qualitative and quantitative agreement with many available experimental
measurements, with marked improvement over the analogous two-flavor models.
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I. INTRODUCTION

One of the hallmark of the holographic approach to QCD
is the model proposed originally by Sakai and Sugimoto
[1], realizing a framework for the nonperturbative dynam-
ics conceived by Witten [2], consisting of N, probe
D8 — D8 branes in a background of N, D4 branes.
Baryons emerge as chiral solitons in the five-dimensional
Yang Mills-Chern-Simons theory resulting from the KK
reduction on a circle. In the limit of large t’"Hooft coupling,
the instanton size is stabilized to a value on the order of the
t"Hooft coupling to the inverse 1/2 power, by the com-
peting interaction of the outward-directed self-energy
resulting from the Chern-Simons term and the inward-
directed effects resulting from the curvature of the D4 color
background. At correspondingly small size, the solution
may be approximated by the flat space BPST instanton. The
holonomy in the holographic direction yields a Skyrmion,
following the Atiyah-Manton construction [3].

By contrast to the original model of Skyrme [4], which
neglects all mesons besides the massless pion, here an
infinite tower of massive vector and axial-vector mesons is
incorporated in a single 5d gauge field. The construction of
the resulting baryonic currents provides a theoretical
realization [5] of the empirically observed decomposition
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of the photon-hadron interaction into vector meson
exchange (vector meson dominance).

The extension of the original models from Ny = 2 [6] to
N; = 3 has been clouded for some time due to difficulty
constructing an appropriate Chern-Simons term that both
satisfies the requisite Wess-Zumino-Witten constraint,
required to correctly produce the baryon spectrum, as well
as the chiral anomaly. The first problem was solved by Hata
and Murata [7], at the expense of the second. Only recently,
[8], a solution has been presented that satisfactorily solves
both conditions.

The organization of the paper is as follows: in Sec. Il we
detail the three flavor instanton construction and its quan-
tization in bulk, with particular emphasis on the role of the
new Chern-Simon term. In Sec. III we discuss the geomet-
rical set up for the breaking of chiral symmetry. In Sec. IV,
we construct the fully quantized vector and axial-vector
currents for the three flavor baryons and their respective
form factors. In Sec. V, we give detailed results for the
electric and magnetic bulk baryon parameters without and
with symmetry breaking effects. In Secs. VI and VII we
discuss the charge radii and masses predictions for the octet
and decuplet in this holographic set up with comparison to
existing models and lattice results. In Sec. VIII we analyze
the axial charges of the excited octet states, as well as their
magnetic moments. Our conclusions are in Sec. IX.

II. QUANTIZATION

In this section we review the key aspects of the semi-
classical quantization of the holographic baryon as a flavor
instanton in bulk for the case of three flavors and in the
chiral limit. A more thorough presentation for the case of
two flavors can be found in [7]. Our results for the massive
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three flavors are new. The method relies primarily on
identifying the moduli space of the classical instanton
configuration as a set of collective coordinates and their
pertinent Hamiltonian, and quantizing them using canonical
rules. Of particular importance in the tree versus two flavors
quantization is the role played by the Chern-Simons term and
the emergence of the hypercharge as a quantum selection
rule. The result is a rich spectrum describing a tower of even
and odd parity baryonic multiplets in the chiral limit.

Subtleties of the precise definition of the Chern-Simons
term aside, the quantization of the flat space soliton, which
appropriately approximates the curved space solution in the
large t’Hooft coupling limit, is straightforward. We now
recapitulate the salient details, clearly presented in [7]. As
noted, the fixed-time solution (with a unit instanton
number) is the Belavin-Polyakov-Schwarz-Tyupkin instan-
ton. For Ny = 3, we use the standard embedding

¢

A1Cvl(x) = —if(é)g(x)@Ng(x)_l where f(§) :m» (1)

with & = y/(xV — XV)? and
SU(2) 0 ‘
=7, %) sty
(2)
7, i =1, 2, 3 are the Pauli matrices, normalized as
Tr(rirj) = 2611

Following the moduli space approximation, the dynam-
ics of the system, assumed to be slowly rotating in flavor
space, is given by quantum mechanics on the instanton
moduli space, with coordinates given by the instanton
position XV = (X, Z), size p, and SU(3) orientation V, all
assumed to be time-dependent, yet sufficiently slowly
varying such that the dependence of the gauge field on
the parameters is still given as in the static expression. The
resulting Lagrangian has p-dependent moments of inertia.
The principal difference of the Ny = 3 case from Ny = 2 is
the introduction of an additional moment of inertia for the
strange directions, with a ratio 1/2 to the moments
corresponding to the original SU(2) directions, as required
to satisfy the Gauss law constraint. Specifically, the
Hamiltonian H is given, up to corrections of the order
1/4=1/¢N,, by

1
H=My+H;+H, H; = —P2,
Zmz
1 1 1<
H,=———P, + > m,wp* +o=—= > (Ja)?
! zmp m ,02 2Zl (,0) ;( a)

7
212 Z (3)

where
p2 — La_z o1 iﬁ(na) (4)
2 2m,07% 7 2m,p"on o)
The inertial parameters read
1 N.m 2
mZ*EmP 877,' CZNC, K:m:§N%,
\f \f
3’ 9
1
Il(/)) 4 pP ) T»(p) __Il< ) (5)

and the component of the angular momentum is defined as
J, = —47%ikTe(T,V'V),  a=1,....7. (6)

The effect of the Chern-Simons term is to impose the first-
class constraint

J—NC
8_2\/§

As noted in [8], this is accomplished by defining the Chern-
Simons action as

N 1 I
=—5 | TrlAF?—ZAF +—A3
Scs 247:2/ r( 2710 )

+ 271'0//48/ _ C; ANTr(F)
D8/D8

(7)

+i Tr((h~'dh)?%) +/ ay(dh~"h,AL), (8)
10 J, N

where the expression for « is given in [8]. The effect of the

first class constraint that this generates, as noted, is

important in the construction of the resulting spectrum

of eigenstates, as we shall now review.

The procedure of diagonalization is facilitated by exam-
ining the operator algebra satisfied by J, as well as
I, = —4z*kTr(T*VV~'). As a consequence of the cano-
nical commutation relations, the operators J, satisfy
JasIp] = ifapede, and similarly [, satisfy [I,,1,] =
ifael., where f,,. are the antisymmetric structure con-
stants of SU(3). By the completeness relation for SU(3)
generators,

[‘]avv} =VT, [Iavv]:_
Since I =VJV~!, and hence Y8 ,12=358_,J2, the
generators I, and J, arise from identical SU(3) represen-
tations. Explicit examination of the Noether currents
reveals that J, is in fact minus the spin, the quantity
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conserved by rotational invariance, and [, is the flavor.
Thus in summary, the system is quantized by spin and
isospin generators in the same SU(3) representation, a
characteristic feature of Skyrme models.

The significance of the constraint induced by the Chern
Simons term can now be appreciated. This is widely known
and well-reviewed, but we recapitulate for completeness.
Following the standard (p,g) parametrization of SU(3)
irreps (linear combinations of monomials with p indices of
one type and ¢ of another, such that the contraction of both
is zero, graphically corresponding to polygonal weight
diagrams of which p and g are the side lengths), the value
of Y = Jy at the top of a multiplet is equal to (p + 2¢)/3,
and the maximum corresponding SU(2) eigenvalue occur-
ring for states with a given value of Yy is equal to

Pt

2t2 1=q
Mmax p_ L ’

272

where r < p + ¢ is an integer parametrizing the difference
between the Y value of the given state and that of the top
level. Substituting the constraint yields accordingly for
B = 1 that m,,,, is half-integer valued when N is odd, and
integer-valued when N is even, reproducing the properties
of the SU(6) quark model.

The diagonalization of the Hamiltonian is now trans-
parent. The baryon wave functions are simply appropriately
normalized SU(3) Wigner D-functions, with one index
equal to the flavor and the other equal to minus the spin,

¥4(G) = /dim(R)(-1)"*D{F, (G).  (9)

The eigenenergies are dependent on all representation
indices and are given by

N? ml,p2

(n—1)

1

1 2
E(R =M —< R 2(———)j(j+1 \ﬂ 1, (1
(R.n,,ny) 0—1-\/ 7 +35—|— 6T, Cy(R) +m,p (211 212>j(j+ )+ 3(np+nz+ ), (10)

where C,(R) is the quadratic Casimir invariant. Before
proceeding, we pause however to note an immediate
observation and concurrence with nature, which is that,
notwithstanding subtleties to be noted regarding the ex-
traction of numerical values of the mass from this analysis,
the soliton mass formula above already produces an
important result, which is that the lowest mass baryon
multiplets are indeed the octet 8 = (1, 1) with spin 1/2, and
the decuplet 10 = (3,0) with spin 3/2. Among the other
irreducible representations of particular importance for
present purposes are those other ones occurring in
8 ® 8 and 8 ® 10, for reasons to be noted. These are
10* = (0,3), 27 = (2,2), and 35 = (4, 1).

III. SYMMETRY BREAKING

In this section we briefly discuss the role of chiral
symmetry breaking on the preceding massless spectrum. In
the present holographic set up, quark masses can be intro-
duced using world sheet instantons living in three D6 branes
attached to D8 branes [9]. The world sheet instanton
amplitude induces a chiral symmetry breaking term through
their vertex attachment. This holographic breaking can be
shown to reproduce the expected chiral symmetry breaking in
QCD by separating the three D6 branes appropriately [9,10]
(see footnote 4). As a result, the moduli Hamiltonian acquires
a symmetry braking term, and a massive spectrum emerges
through standard perturbation theory in moduli space.

More specifically, the original model of Sakai and
Sugimoto [6] is one of zero mass pions and thus, zero

I
(bare) mass quarks. Hashimoto [9,10] subsequently
addressed this problem by introducing additional D6
branes, parallel to the original color branes, but with
nonzero separation, yielding massive W-bosons (with a
mass proportional to the separation distance, as is standard
in the hypermultiplet), which give mass to the quarks of the
original QCD via a vertex joining those quarks to a
condensate of the new quarks arising from the open strings
stretching between the D6 and D8/D8. The corresponding
interaction is mediated by a disk-shaped world sheet
connecting the D4 — D8 — D6 — D8, fixed at a single
value of the time coordinate (hence an instanton), with
chiral symmetry breaking mediated by the development of
a smooth throat connecting the D8 and DS.

The effect of this deformation is to introduce an addi-
tional amplitude given by

B Zm
58 = 5/ d4x7>Tr<M (exp (—i/ Az> - 13>> +c.c.,
—,

(11)

where z,, parametrizes the location of the D6 on the D8/ DS.
For the Belavin-Polyakov-Schwarz-Tyupkin (BPST)
solution, the evaluation of this expression is aided by the
observation that the A, component, —i(£2/&* + p?)g0.g7",
is proportional to a fixed element of 31t(3) for all values of z;
hence the coupled set of differential equations that would
otherwise have to be solved in order to evaluate the path
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ordered exponential [i0,UU~!
integral. Therefore we have

= A,] truncates to a single

B .
5S :5/d4xTr(M(U+ U' -2I3)), (12)
with
— Linh(r) _ / !
U=e =expyin|l ——————] . (13)
L+ p?/r

Upon substituting the SU(3) Gell-Mann Oakes Renner
relations and writing the mass matrix as

1 1
= —(mu +mg +mg)ls +§(mu —mg)T5
5yt g = 2Ty (14)
we then obtain that
B 16
5S:§Tﬂp3/drr2(1 —cos h(r))(m2, - (1 —|—2Dég))
+my, - (1+V3DY - DY)
8 8
+mj, - (1= V3D - DF))). (15)

The introduction of quark masses on the dynamics of the
soliton reduces to a simple problem of the evaluation of a
quantum mechanical perturbation on the moduli space of
collective coordinates. By the elementary Rayleigh-
Schrodinger procedure, the perturbed energies are obtained
by appropriately weighted summations of the matrix ele-
ments of the perturbation, sandwiched between the unper-
turbed states; wave functions are obtained analogously, and
operators are obtained by sandwiching the unperturbed
expressions between the resulting wave functions.

(B,k'|H'|B, k)
k) = oo 16
k#k Ek _Ek/

It is at this point that we utilize the observation noted
earlier, about the tensor products of the irreducible
representations. Since 8§®8=1d8;, P8, P10
10* & 27, the evaluation of the effects of the perturbation
on the octet involves the calculation of matrix elements of
the perturbation just defined, sandwiched between 8 and
intermediate states in 10* and 27. (The unperturbed part is
the matrix element between 8 and 8.) Likewise, since
8® 10 =8 10 & 27 & 35, the evaluation of the effects
of the perturbation on the decuplet is reduced to the
evaluation of matrix elements of the perturbation, sand-
wiched between 10 and intermediate states among the
set 27, 35.

IV. CURRENTS, FORM FACTORS

In this section we analyze the electromagnetic properties
of the massive multiplet states emerging from the preceding
semiclassical quantization for mostly the octet and decuplet
ground states. We first recall the 4-vector and 4-axial-vector
currents as the boundary value of bulk currents using the
holographic correspondence, the details of which can be
found in [1] for the case of two flavors. These currents
involve boundary-to-bulk vector and axial-vector fields
sourced by the collectivized instanton in bulk. We will then
make explicit the corresponding magnetic moments, axial
charges and charge radii. Some electromagnetic properties
of the low-lying baryonic excitations will also be discussed.

With this in mind, a large number of static properties of
the baryonic states can be obtained from a study of the
electromagnetic and axial form factors. As observed [11],
perturbative QCD fail to properly reproduce experimental
measurements thereof. A study of the properties resulting
from the 2-flavor holographic framework is presented in
[1], and in the following, we extend this analysis to the
more realistic 3-flavor framework, with appropriate mod-
ifications. Underpinning their analysis and ours is the
holographic prescription for computing currents, via the
definition of external gauge fields (left and right), obtained
by the respective classical solutions evaluated at the
boundary values z — +o0. Accordingly, [1],

‘J]V;t - ‘J]Lﬂ + \J]Ry

= -kE@FDESE. (7)

7=—00 "
and

J]A :‘J]L

=re o (18)

= I, = = (k(2)wo(2) F2) =18,

u H

where k(z) =1+2z> is a warp factor describing the
curvature of the gravitational background, and wq(z) =
%arctan z is the zero mode in the KK-reduction of the gauge
field, corresponding to the pion. To obtain the gauge field at
the boundary, we must gauge transform, since the BPST
solution is singular there as originally written. Then we
rewrite the resulting expressions for the boundary-valued
field strengths in terms of Green’s functions to the curved
space wave equation and expand these in a basis of the
meson wave functions, as in [1].

The analysis proceeds as for SU(2), with the additional
fact that the modification of the Gauss law constraint results
in additional terms in the zero component of the gauge field
for the SU(3) generators T, a = 4, ..., 7. [7] The resulting
terms in the expressions for the field strengths simply
acquire an additional factor of 1/2 compared to the a = 1,
2, 3 terms, as is the case for the respective moments of
inertia appearing in the collective coordinate Hamiltonian.
For completeness, we note that
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V/A =2r K{ao(p al%a™ )aaHv/A

_ aT“a_lszi((aaai _ 5“i(9}2)Hv/A wJa]GV/A)

- 2p2((a8da - aa&S + aalaazealaza)Ta

1
—i| (—=(ajag +aga;, +---) ) +---]-G
<<\/§( 1as 8d] )) ) V/A
- (ol = a1 )Gy} (19)
The spatial currents are identical in form to SU(2) [6],

J]i

v 4 =—2mkp*aT*a™" ((9;0, — 54 HY A =€l 9,GV/*),

(20)
where

GV*(()OG)Z +o00

7=-00"’

G" = (wo(2)k(2)0,G) =X

7=—00

6.2 8.2) =Y n@u @Y, (F-X). @)

n=1

The expressions involving H refer to the analogous Green’s
functions expanded in the basis ¢y(z) = 1/(kzk(z)),
¢,1(Z) = azl//n/\/z'

The form factors are obtained by evaluating appropriate
combinations of the Fourier-transformed currents in the
basis of baryon wave functions. In particular, the elastic
(Sachs) electric form factor G is obtained in Breit frame
(wherein the photon has zero energy) via the evaluation of
the matrix elements of J9 + J®/+/3, and the magnetic G,
from the spatial part Ji, +J%/v/3. This combination
manifestly satisfies the Gell-Mann-Nishijima formula,
Q =1+ Y/2. The axial form factors, meanwhile, are
obtained from J4. These carry a flavor index, and the
appropriate choice is dictated by the decay under consid-
eration, as will be clear. In terms of the Dirac and Pauli
form factors F, and Fp, we have

Ge(R) = Fp(R) = > F

Gu(K) = Fp(k%) + Fp(K). (22)

When taking the requisite Fourier transforms, we note as in
[6] that

1
1}'2+/1

—ikX

/d3xe‘ik;Y,,(|)?— X)=—e¢
_ i ga”aZl//2n
d3X€ zka <|x X zk X
/ P

(23)

Accordingly, we find that for the positive-parity states,

vll n— Z
GE(]_C?) :K<p2>Q g_)l//2 1( )’
n>1 k2 +/12n 1

Gy (k%) = —872(p?) (D D )Zgb Yani (

n>1 k +12n 1
(24)

assuming unbroken SU(3) symmetry. We note that for

k=0, the expectation value of each respective expression,
with respect to the baryon states, simply reduces to the
quantity in parentheses, which is the electric charge in the
first case, and the magnetic moment in the second. This
follows from the fact that

n—1 /12n—1
o —flzn—lk/dzh(z)‘lfzn—l(z)’

with

<W211—1(Z)> =1
(25)

and the completeness relation for the meson wave functions
w,(z). The analogous procedure for the axial currents
results in a factor of 2 2 (1 )) The symmetry-breaking effects

are obtained, as descrlbed earlier and to be done shortly, by
a quantum mechanical perturbation theory calculation, with
the perturbation given before.

The indices of the Wigner D-functions refer to the
Cartesian basis. The mapping from this basis to Weyl-
Cartan is such that T3 = (Y,I,13) =(0,1,0), Tg=
(0,0,0). The combinations 74 + iTs and T + iT; respec-
tively correspond to the isospin indices of p, n. Similarly,
T4—iTs, Tg —iT; correspond to the isospin indices of
E-,8% and T, — iT,, T + iT, to the isospin indices of X,
. The identification of the spin states involves the minus
sign noted earlier. This identification of states is particu-
larly important when considering the axial currents. These
involve transitions between baryons, and the appropriate
corresponding indices are dictated, as noted earlier, by the
particular transition. For example, the transition n — p
involves the current carrying an index 7| + iT,, corre-
sponding to an exchange of the meson z~. By contrast, the
transition A — p carries an index 74 + iT'5, corresponding
to an exchange of K~. The form factor for the first
transition in the case of unbroken flavor symmetry is
given by

(Ga)=r = 82D, ) 3 I 022nlZ) (o)

=1 K+ o

and the corresponding result for the second transition is
given by the same expression, but with the matrix element
replaced with that of D, ;55 between the requisite states.
There are also flavor-neutral (i.e., diagonal) axial current
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elements, that do not change one baryon state to another.
For each baryon, there is one such element corresponding

to 3 (associated to the current ﬁ%yﬂysu) and one corre-
sponding to 8 (associated to the current i %yﬂys u). These

accordingly involve the matrix elements of D(383) and Désg

In addition, there are axial transitions that send one
multiplet to another. Of particular note is the n — A™
transition, which can be used to infer the value of the zZNA
coupling. These axial elements are calculated analogously
to those just noted, with the only difference being that for
the decuplet-to-octet transitions for example, the spin index
in the D-function must be taken to be 1 + i2 rather than 3.
The calculation of all such D-matrix elements is facilitated
by the basic observation that they are equal to a product of
SU(3) Clebsch-Gordan coefficients,

o= G ) @

TNad H H 2

V. RESULTS

A. Magnetic moments: Unbroken

We now collect the results for the unbroken magnetic
moments. We observe U-spin symmetry, as expected.
Namely the unbroken moments are equal for states of
equal electric charge. We have as follows:

1672
Hp = ps+ = 15 </’2>8
47
Hy- = Hz- = —F’d/’z)s
47
Hy = Hzo = _?K<p2>8
47[2\/§
T k(p°)s, (28)
and
Hat+ = 27[2K<p2>107
Ha+t = Pz = ”2’<<P2>10’
Hao = Hyo = pgo = 0,
Ha- = Hy— = P = Ho- = —”2’<<P2>10v (29)
where
1 5 1 /689
25828——\/:——2 30
W= 8028 =g (34315 ) (O
and

o = (10/210) = | (\/§+;\/?)p (1)

The numerical values are obtained in units of the Bohr
nuclear magneton by multiplying with the factor
2My /Mgy, where Mgy is taken to be 949 MeV. The
results are summarized in Tables I and II.

A note is in order regarding the comparison of the
decuplet quantities to the empirical data. Due to the fact that
all decuplet particles other than Q~ undergo strong inter-
action decays and correspondingly have lifetimes on the
order of 10723 s, the measurement of their properties is an
experimental challenge, and existing data sets, where
available, have large errors, with the corresponding excep-
tion of Q™. We note a good concordance of our prediction
with this measured value in the last entry of Table II. For
this quantity and all others in the column, we also find
agreement with the results of lattice simulations [14].

B. Axial current elements: Unbroken

The matrix elements of the axial current display particu-
larly improved agreement with empirical measurements and
particularly notable improvement over SU(2). Here we
present the expressions obtained for unbroken SU(3) and
later the results with symmetry breaking effects. The
unbroken results display the expected F' and D parametri-
zation [16] in the case of the octet, and the C, H dependence
in the case of the decuplet and the decuplet-to-octet
transitions. The z~ transitions for the octet are given by

282 2
n f”x<p—> — F+D=1.1478
8

I =5 "\k(2)
4v/3 2 2D
g = an<p_> =22 = 060249
5 kK2)/s V6
47 p?
Y = k() = V2F =057974
K .
" <k<z>>s

=m0 SV27m p?

i K{ —) =D —-F =0.8116, 32
TABLE I.  Values of magnetic moment u for the octet (in units
of the Bohr nuclear magneton, puy).

SU@3) Broken Empirical

Q Y symmetry symmetry values [12]
N 0 1 —1.6667 —1.6292 -1.91
P 1 1 22224 2.2619 2.79287
>t 1 0 22224 2.2595 2.458 £0.010
> -1 0 —0.5556 —0.5202 —1.16
>0 0 0 0.6211 0.6494
A° 0 0 0.6211 0.6454
=0 1 -1 —1.6668 —1.6516 —-1.25
-1 -1 —0.5556 —0.5405 —0.69
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TABLE II. Values of magnetic moment u for the decuplet in units of up.
Q Y SU(3) symmetry Broken symmetry Measurement Lattice predictions
ATF 2 1 4.7406 4.8189 4.52 £0.51 £0.45 [13], 4.91(61) [14]
AT 1 1 2.37028 2.4459 2.7+ 1.5[15], 2.46(31) [14]
AV 0 1 0 0.0729 0.00 [14]
A~ -1 1 —2.37028 —2.3001 —2.46(31) [14]
P 1 0 2.37028 2.4382 2.55(26) [14]
=0 0 0 0 0.0233 0.27(5) [14]
= -1 0 —2.37028 —2.3095 —2.02(18) [14]
=40 0 -1 0 0.0567 0.46(7) [14]
B+ -1 -1 —2.37028 -2.3185 —1.68(12) [14]
Q- -1 -2 —2.37028 —2.2935 —2.02 £0.05 [12] —1.40(10) [14]
and the K~ are given by as noted earlier can be obtained using similar arguments.
Our results are as follows:
16v/3 2 3F+D
g = ;szzk< k€2)> = } — 0.8095, . p
- $ 6 ga "= 8”’<<@> (8. P|D11i2.1-12[10, A%)
g "=D-F =0.328, 10
2
g“:x/@zx< P > _3F=D _ o008 :\Acz—o.9599
4 30 \k(2)/s V6 T 163
oy 7 2 F+D ATn — = =
£ = —”K< P > T2 _osite. (33 % 5 b= V20 = ~1.6626
30°\k2)/s 2
= %ﬂkb —_C _oerss
These results are presented again in Table III, along with 94~ 15 V3
the empirical data, with which there is an impressive 832 C
consistency. Analogously, for the decuplet, we obtain gi*'/\” = ?mcb = 75 = —1.1757
2 . 0
(g8 % )= —3m<<‘p > — H = —1.484 G =g
10

k(Z)

2
gkt ,0 2
(5% )= —2m<<—> =ZH
a3 k(Z)/10 3

2
A~ A0 14 Vo
g = 6m<< > =—-——H
! K(Z)/ 10 3
2
AOAT ,0 2\/§
2V2ak{ —— ) =—-——H
! f’”‘<k<z>>w 3
2
im0 ) P —_Zy
’ ”K<k<z>>m 3
RO 1 -QO- \/§
(32 s =—(5 =" )s = —5( 3 )s = 5 H (34)
for the strangeness-preserving transitions, and
S | - — . 05
gz “ozigﬁ()A+7 gi AO:gX _.0’ g§0A+:g§02+,
* - = ot — -
g§+A++:gﬁ AO’ g;oz :gﬁOAJr, giz_():g/% AO (35)

for the strangeness-changing transitions. We also calculate
transition elements for decuplet-to-octet processes, which

g2 " = 87°k(p?)10(8n|D 4o 412[10, AT) = Qf\()p- (36)
Of particular note is the last quantity, which is in fact in
good agreement with the value obtained from experimental
measurement of the zNA coupling constant, 0.88 [17].
A comparison of our results for decuplet axial charges to
empirical measurements is challenged by the lack of data,
just as for the magnetic moments. Accordingly, to sub-
stantiate our predictions, we perform a comparison with
predictions obtained using other methods. We find notable
agreement, in particular, with the results of a recent
perturbative chiral quark model analysis (PCQM), [18],
which also reproduces the measured octet axial charges,

TABLE 1III.  Axial transition constants for the octet with and
without symmetry breaking, compared to measured values.
SU®B) Broken Empirical

symmetry symmetry values [19]

N-P 1.1578 1.1484 1.26

T A 0.6023 0.6031 0.61 £0.02

B -2 0.3279 0.3279

P> A —0.8125 —0.802 -0.92

¥ >N 0.328 0.3284 0.39
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with better accuracy than either lattice methods, chiral
perturbation theory, or relativistic chiral quark models. Our
results for the octet charges are likewise in accord.

C. Magnetic moments with symmetry breaking

The effects of symmetry breaking exhibit some proper-
ties of V-spin symmetry—that is, symmetry along the right
|

0
Hm = ”SVI) + Opm
= MM

diagonals in the weight diagrams, as opposed to the left
diagonals defining the U spins. As noted earlier, the
computation of the relevant quantities for the octet involves
the mixing of 8 with 10*,27, and the computation of the
quantities for the decuplet involves the mixing of 10 with
27,35. Accordingly, we parametrize the results as follows.
For the octet,

+ (8]p*[10%)(8]p*|10%)(BI” mK0K0+B ‘m%, + B m?2,)

+ (8]p*[27)(8p’ |27>(B%7m1<0,ﬁ + B3y, + 327 73ri) (37)

and similarly for the decuplet,

0
Hu = uﬁ/ + Oy

—ﬂM

+ (10]p?[27)(10|p? |27)(827mK0 75+ B my, + B m?,)

+ (10]07[35) (10p°|35) (B¥m g, 5 + B mi, + BYmd,). (38)

In displaying the results, we list quantities for V-spin multiplets in successive order when possible, to exhibit the
approximate symmetry noted. The results for the decuplet are

. 30 30 I 55
BA, :0.190515( V3.3 £> B§?=0-186473<—x/§—§,f3+§,§>

8
r \/_ 5\/1d
r V70 \/—>

B5, = 0.189511<

By = 0.070336<

0

BZ' = 0.070608 V3-t -3 Y

12 8

B§;—o.056899< f+5f ﬁ—£ 3 f) B3A5—0.37348< f+3\/_,ﬂ+\/_ 3-

8

f+ 5\[ f) BY = 0.06844 <—\/§+1§7, V3 -

1
~.1
o)

. 3
BZ, :0.070764< V3+ \/—,f3+¢56_ 3 \{4_>

BE = 0.071985<—\/§+\/_(2+ \/6),\/§+@(2— V6),3 —{?)

B§7*_o.31194< f+\/_ f+¢_,3 ‘/_) B

4°4°2

11
=0 056899< 5)

; 1 51 /5 1 /5 o V70 70 3v/70
BE = 0.26723 —\ﬁ—\ﬁ,s——\ﬁ BE =0.026723( —V3 4+~~~ V3 4+~ 3"V~
33 <4 74NTT 2V7 33 Vit 56 V3t 28 56

30 30 30
BY =0.172991 (—\/§+%,\/§+2—\/4_,3 —%)

14 3/14
f3+—\£8_,f3+ \/6—,3

BL = 0.069183 (— s

] 30 30 :
B :0.164229<—\/§+%,\/§,3—§> BA :0.068606< f+\/_ V34 \/_,3

5V14
28 56 )
/5
BZ, :0.157679<—\/§+§,\/§—§,§>
_5\/H> B§5_0068941( xf+£ V3 + £ 3_%)
14 _%61_4) (39)
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while for the octet they are
5 5
B, = 0.100703 (—x/§ + % V3,3 - £> BL =Bl

6 2 113
337—0.72406(—\/§+1£,\/§+ f,3 f) B§7——0.72591< \f+ V34 )

15 5
\f V5 = V6 16ff 16\f V6
P A B = _Y=
Blo*_0.11121( V3.V3+-23 5) BY, = 072236(10 5 10T 53 5)
2 -
By, = 007323( V3 + f V3t £ 3_\5[> P =0

Bﬁ;—o.mzl( ff+£ 3- f) BY = BY

BZ. =0.0731 f+‘[ f+2\[ V6 B3 =0
(- -5)

By = 0.11506<—\/§+‘1/—0§(1 - \/5),\/§+§(1 +v73).3 _§> B = 0.07333(-4\7@,4;—@,3>

307
BN, =0.11121(=/3,V/3,3) 39;:0.0731< \f+ f+10 10) (40)

D. Axial transition constants with symmetry breaking

We use a similar notation for the perturbative contributions to the axial couplings as for the perturbative contributions to
the magnetic moments above, only with B}, replaced with A}, (R labels the representation, i the coefficient of M; as above).
Our results for the octet to octet transitions are as follows:

ALY = 0.002653 (—ﬁ+g, V3,3 —?) — 0.000442 (—f3+§(1 —V3), f3+1—\/§_(1 +3).3 ‘?)
AZE =0 ALY =0

A§;5°:0.OOO294( V3+ f 14‘/— VAR 7\[ 143 ¢ 2\/6)

155
A%ﬁ":o.oosslz( f+f V3+ f \/_ 3- f)
+\/—

307 5
- 3 12 1 13
AZ A — 0.000882 \/_—l- \/_—l— +0.000147 f+ A3+
27

( 05
A = 0.003752( V3 V3.3~ £>

A§7”=0.00072< \/—+ \/—+1 13)—0.000294( f+£ f+£,3—§> (41)

For the decuplet to decuplet transitions, the results are
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ALAY — 0.005417( 234230 2f \/_ C)
AL _0.000356( 23 +3\/“ 23+ ﬂ 6_% )
AN — 0.006255( 2V3 41— 2f \/_ \Q_)

. 5 _5V/14
ANAY —0.000411( —2v/3 +— 2V3 + \/— \/_>

(- .
(

—2\/§+—,2f3+—,5)

AT = 0.00046( 2\/§+3\/“ 23 + K 6_?)

A2 =0.007267

- 30 30 30
A% AOZ—O.001713< f+ V3 - ) 0003127< f3+%,\/§+£,3_£>

24 8
A§§'A°_0.ooo325< f+\/“ V3+ i 3—%)—0.001029( f+\/” V3 + 3f 5*5/61—‘5
Ag;w:—0.002422<_\/§+1,\/§+1,§>_0‘004423< f+ff+l_¢‘2‘3 \14_>
A§§OA+_0-00046< W+F,f 2—C,3—‘<4_>—0.001455< f+3\/_,¢§ ‘28_,3_%)
A§;+A++:0,002967(_\/§_1,\/§+5’5>_0.005417( Vi34 \/“3_\/;)
A§§+AH=0-000563< \/_+3\/—,\/§+\é6_,3—\{4_)—0.001782( f+\/_,f ‘26_ 5\5/61_4>
AZTE" = 20.004845 <_\/§+1,\/§+1,§> _0.001978< \/§+5\f ‘/g—gﬁ _g)
A2702+:_0.011648<—\f3+§,\f3_1,§>_0'002797<_\/—_§’\/§+l6’3_\/?6>
A§;°Z**:0.001807( \f+‘/— V3 - g —%?)—0.001301( \f+\/_ V34 3‘/_ ‘{:)
AT = —0007267< f_ﬁ N 5\f 3_%)
AZE = —0000797< \/§+\£;_0,\/§+\22—0,3_3\5/67—0>

+0.001127< f+£(2+f) f+£(2 VB3 - \/_5> -
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Finally, for the decuplet-to-octet transitions, we obtain

- 6 2v/6 6
A%, = —0.00576 (-i — /3, __f +V3.3 4 %)

30
AR = 000654<\/_ V3,0,3 - ‘/8_>
/32
AR, = 000333( V3, ‘@+x/§,3—é>
3
AP, = 000378(——\/_\/_ V3,3 - \/8_>
(3
A3 =
- 1 1 13
A ) = 0.000865( <= V3.5 + V3, ?>
3 _ 33 7
A
A% /2_—0.00666<E 335 ‘@’E)
AZA = —0.00507 1 V3.2
27,3/2 — : 8 )
. 7 2
A;71/02_0001165< V6 -V3.== f +V3,3- ‘f)

50

5V6 f
A5 E _0001689< —-V3.-

3 —£>. (43)

In Table I'V, we compare our results for the axial transition
constants for the decuplet with those from the perturbative
chiral quark model (PCQM) in Ref. [18]. In Table V, a
similar comparison is made for the axial couplings for
decuplet to octet transitions.

TABLE IV. Axial transition constants for the decuplet with and
without symmetry breaking.

Broken
SU@3) symmetry symmetry PCQM [18]

A~ > Al 1.2117 1.2132 1.52113
A0 > At 1.3991 1.4008 1.756 45
> 5 Al 0.6996 0.6989 0.87 823
>0 5 AT 0.9892 0.9884 1.242

T AT 1.2117 1.2111 1.52113
> o 30 0.9892 0.991 1.242

=20 3t 1.3991 1.3982 1.756 45
Q - =90 1.2117 1.2111 1.52113

TABLE V. Axial couplings for decuplet to octet transitions.

SU@3) symmetry

U —0.9599
A~ >N —1.6626
>0 5 3t 0.6788
T S A —1.1757
= =80 0.9599

VI. CHARGE RADII

The electric and magnetic charge radius of each baryon

is defined, as usual, in terms of the first coefficient of the
. . . 22
electric/magnetic form factor, expanded in powers of k~,

In Gy (K)|
K2=0

d
(P em = _6ﬁ (44)

Since the meson wave functions do not depend on flavor
(as argued in [20], the effect of the world sheet instanton
perturbation on the vector meson mass is subdominant in
the t’Hooft coupling), the expansion in question is the same
as for SU(2), and since the perturbation does not depend on
the Z coordinate, it does not modify the result. However,
the analysis presented in [6] for these quantities does not
include the decuplet baryons. It is noted therein that the
results for the proton are in reasonable accord with
empirical data, with some deviation, although the neutron
is predicted to have vanishing radius on account of its
vanishing charge, at variance with the small negative value
that is measured. For the reasons just noted, this result does
not change under the present considerations. We extend the
analysis to the decuplet, however, and find an appealing
agreement with the predictions of many different models,
and in particular with field theoretical quark model
(FTQM) calculations [21] and with a 1/N_. analysis
[22]. Following the framework just described, charge radii
are expected to be the same for baryons with equal charge
and to differ for baryons of different charge, in proportion
to the charge ratio. Accordingly, as we find that (r*) , ~
(.784 fm)?, we find that (r?) ,++ ~(1.109 fm)?, com-
pared to the FTQM prediction of (1.086 fm)?. The other
predicted radii of the decuplet baryons are likewise in good
accord with the predictions of the latter, which accordingly
reproduce the expectation of electric charge proportionality,
with small deviations therefrom in some cases. The results
are summarized in Table VI.

TABLE VI. Electric charge radii of decuplet baryons (fm).
Field theoretical 1/N, analysis
Prediction quark model [21] [22]
2\1/2 1.109 1.086 1.005
(r?) g
2\1/2 0.7844 0.9055 1.005
(r) g+
<r2>1A/”2 0 0.4 0
<"2>1A/*2 0.7844 0.9165 1.005
<r2>12/% 0.7844 0.9849 1.005
<r2>g§ 0.7844 0.9165 0.9194
2\1/2 0 0.5831 0.3563
<r )2*0
<r2>15/02 0 0.7 0.494
<r2>1:/3 0.7844 0.9055 0.8319
<r2>£12/72 0.7844 0.8832 0.7436
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VII. MASS ANALYSIS

The model that we use shares with general SU(3)
Skyrme models the effect of generating the mass relations
of Gell-Mann-Okubo [23] for the octet and decuplet
baryons, as well as the relations of Coleman-Glashow
[24], and Guadagnini [25]. We start with an analysis up to
first order in the perturbation and treat the next-to-leading
order correction thereafter. From the evaluation of the

matrix elements (B,8|D‘(8> ,8) and (B,8|D<8) ,8), we
find concurring with [10] that

My = Mg+ (A,

A8
9 9
— 3
— i+ B8] 52+
Ms, = Mg + (2°,8|H'|2°, 8)
11
= i+ B8 g+ g

Mz, = Mg+ (E°,8|H'|2°, 8)

6 ,
K:l: +§mﬂ:|:

11 4
10"+ T 5 M

4 8
— i+ B8] (2 + o

3,
K:t +§mni
My = Mg + (N, 8|H'|N.8)
3

4 8
=+ B8] Sk, + T+ Sk ). @9

where Mg denotes the soliton mass in the 8 representation,
i.e., the corresponding energy eigenvalue of the collective
coordinate Hamiltonian,

2 2
My — M0+\/('7241) +;<]¥5+4C2() 2j(j+1))

+

W

(n, +n,+1

—87z1<+\/§ \/ (46)

(it units of Mgg), and ¢ = 1.104/3. Accordingly, elimi-
nating Mg, we find that

M+ My = 2(My + M) =SBl 18) (2 = i),

(47)

which for the values m g, 7 =498 MeV, my. = 494 MeV,
m,+ = 140 MeV, is numerically equal to 6.269 MeV,
compared to an empirically measured value of 26 MeV.
The decuplet equal spacing rule of Gell-Mann-Okubo, to
first order, is satisfied exactly. To wit,

5 1 5
M- = My + (10[p°[10)c <4 K0K0+§ e +Zm721:t>
5 5
Mz*f = M10 10|p |10 mKOKO + mKi +4m”i
5 3
ME*— = M10 10|p |10 4mKOK0 +mKi +4m”+
5 1,
MQ— :Ml() 10|p |10 4mK0K0+ mKi-l-zmﬂi
(48)
hence
MA— —Mz*— - Mz*— _ME*_ - ME*— —MQ_
1
= 7 c(10[p*[10) (mZ — mi,), (49)

where following the notation earlier, M, denotes the mass
of the soliton in the 10 representation. The relation of
Coleman-Glashow for the baryon octet, Mp — My =

(Mg+ —Mys-) — (M=o — Mz-), is satisfied exactly as well
to first order. Namely,

3 4 8
My =My + (815" 8)c (Sm,(o,,(—ﬁsm%@smii)

M2+—M8+ 8|/) |8 SmKOKO

(¢ )
(8% %o "5kt Smii>
& )

Mz— M8+ 8|p |8

2

8 3
Mz-= Mg+ (8|p°(8)c Mmeoxs 5 Ki+5m72ri ; (50)

— (M=o — Mz-)
~ Miok0)- (51)

Lastly, the relation of Guadagnini, Mz« — My + My =
t(11M —3My), is satisfied with a small deviation.
Namely, by the same analysis as above, the difference of
the lhs from the rhs of the last equation is found to be

S0P+ < g 81718) = (1017110 ),

1
+ZC(<10|P3|10> (810°18))m3.. (52)
which numerically evaluates to —30.7 MeV.

We now consider the effects of the next-to-leading order
in the perturbation, For compactness, we write the results
only in terms of m 0> MKt My We obtain as follows
for the octet, suppressing a factor of 1078:
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43
5

43
5

—1.43641<<—¢§+1—\/§(1—ﬂ)> m2 (f+ (1+x/—))m§ﬁ+(3
3) 2

&6”) i+ (35 s (125

+

8@ Mso = —1. 1058< —— Mg

2
Mg + 3mii>

/3

)

@ M-
I Mz 15

3 7 2
2 _ 2
SOM 0 = 1.1058( V3+ ) m o (x/§+l>m,&+10 )
— 1.43461(—V3m2 -+ V3m}, +3m?2, )
6
5<2)MN:—1.1058<<—\/§+\1/—5_> m <f+ f) +<3—\/?_>m72[i>

— 1.43641 ((f (53)

1 1 N 2
- ﬁ) KOKO + 3mKi + (3 ﬁ) m”i> .
Numerically, these expressions evaluate to 82 Myo = —361.752 MeV, 6P Mz = —292.093 MeV, §2M 0 =
-302.549 MeV, sSOM Ny = —340.983 MeV, resulting in a net additional deviation from Gell-Mann-Okubo of

—3.249 MeV, considerably smaller than the first-order correction.
Likewise, for the decuplet, the second-order mass corrections are given by

5OM _—2.906(<—x/§+—\/3_> m? =+ V3mk, + (3 @)m’zﬁy
—1.2652(( \/_+—> ms s+ (\/_+£> +<3—%>m;2zi>2
5<2>MQ_:—2.9064(( V3 +17) "o <f‘§)m%<i+m’2fi)2
_1‘2652(< \f+—(1— % ) m2 <f+£< +\é>>m?<i+<3—@)mﬁi>z
5(2>M5¥_:1.2652<< \/—+—> m s+ <f+£> +<3_3\5/6_) ”i>
20064 (3 + 2y + (V- 2+ (30 )’
50 My — _305.14<< > voko T <\f3‘é> Mics +§m%i)2
_111‘42<< \/_+—> K0K0+(\/§+3‘5/6—>m;<i+(3—\£—3_;)mii>2’ (54)

suppressing a factor of 1073, Using these expressions, we
accordingly obtain the Okubo relation [26], Mg — M, =
3(Mz: — My), with a small violation. Namely, with the
meson masses quoted earlier, we find that the ratio of the
lhs to the rhs in this relation is 1.0636.

The results of this analysis—the generation of the
aforementioned sum rules with violations in accord
with empirical data—confirm the consistency of the quan-
tization. As noted in [9], however, this analysis is not

|

satisfactory for a prediction of numerical mass values, for
which it is anticipated that the effects of flavor symmetry
violation should not only include the leading-order disk
world sheet instanton considered above, but also world
sheets of higher instanton number. Higher-order string
loops are also expected to yield higher order corrections
in 1/N,. Notwithstanding, it is noteworthy, as has been
remarked by [27], that the mass formula obtained at lowest
order has the same 1/N, dependence that is expected from
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a diagrammatic expansion of QCD, [28]. Namely, the
leading mass difference between ground state baryons of
different spins is of order 1/N, and is proportional to J.

VIII. EXCITED STATES

Among the virtues of the Sakai Sugimoto formalism is
the simplicity with which it incorporates excited baryons of
both even and odd parity. The baryon states considered
heretofore in this paper are those corresponding to the zero
value of the principal quantum number n, of the radial
coordinate in the collective coordinate Hamiltonian, as well
as the zero value of the quantum number 7, corresponding
to the z-coordinate. The wave function for the z coordinate
is simply that of a harmonic oscillator, and it accordingly
has negative parity under z — —z, for odd n,. The effect of
nonzero n,, meanwhile, is to multiply the result for n, = 0,
by the hypergeometric function,

P

\Fi(=n,, (p.q)l;167rzx/\/6p2), where

(n—1)?

2K,
Tt

ﬁ(p-q)l =1+

and K’ = 7—52 +4Cy(R) — 2j(j + 1). Accordingly, the static
properties of the resulting states can be just as easily
calculated as those for the ground state baryons considered
earlier, simply with the suitable recalculation of the

TABLE VII. Axial charges of excited nucleon states.

expectation values (p?) and (p*). The values of the axial
charges for some of these states are tabulated in Table VII,
and compared to predictions from a relativistic chiral quark
model, [29]. The states are identified with entries in the
Particle Data Group essentially according to [27]. As in [6],
the first positive parity excited state of the nucleon, with
quantum numbers (n,,n;) = (1,0), is identified with
the Roper excitation, N(1440). As in [6], we find that
the corresponding axial charge is larger than that of the
neutron; however we find a smaller relative ratio (1.29 vs
1.45), in better agreement with the predictions of [29].
Likewise as in [6], we find that the first negative parity
nucleon, with quantum numbers (n,,n,) = (0,1), has a
smaller charge, and the ratio is improved in comparison to
[29], yet the charge is larger. The next negative parity state,
(1,1), which we identify with N*(1655), has an axial charge
that is larger, yet significantly smaller than that of the
neutron, again in agreement with [29]. Provided we identify
the subsequent positive parity state (0, 2) as N(1710), we
again obtain a consistent result: the charge is smaller still
than the preceding, but not by much.

There is, however, a potential problem with the magnetic
moments. One feature of the Sakai-Sugimoto formalism,
observed in [6], although not remarked as a potential issue,
is a degeneracy of the values thereof for negative parity
baryons, with the ground state values. This is an intrinsic
feature for the following reason. As noted above, the only
difference between the (lowest) negative parity excitations
and the ground state wave functions is in the dependence on
the z-variable. The lowest positive parity excitation also
contains a change in the wave function p coordinate, as do

Possible state g4 with . o o

identification  SU(3) the higher excitations; however, this is not true for the
(n,, n.) [27] symmetry RCQM [29,33] lowest negative parity state. The dependence on z factors
1.0) N(1440) 1 482 116 out of the expressioq for the magnetic moment, due to the
(0:1) N*(1535) 0.595 0.02 (EGBE), 0.13 (OGE) form of the expression for the vector meson decay con-
(1,1) N*(1655) 0769 051 (EGBE), 0.44 (OGE)  stants, g = Ay, 1k [ dzh(z)y,-1(2). To wit, recall that
0,2) N(1710) 0.5204 0.35
2,1 N*(2090)  0.942 2
0,1) E(1690)  —0.423 —-0.23 G (l?) x {p? G ¥on-1

M P = (55)

(1,0 %(1660) 0.529 0.69 SR+ Ay

TABLE VIII. Predictions for magnetic moments of negative parity octet baryon excitations, compared to octet

baryons.

Holographic value  Experimental value u Lattice prediction

State (above) (units of uy) FTQM [32] [30] xPT [31]

P 2.26 2.79

PA#(1/2-) 2.26 e 1.89 -1.0 1.1

N —1.63 -1.91

NA*#(1/2-) (1535) -1.63 -1.28 -0.5 -0.25

Ao -0.65 —0.61

A§(1/2-) —0.65 e +0.28 -0.3 —-0.29

>0 0.65 0.65

20(1/2-) 0.65 . -0.5
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At k> = 0, the sum, as noted before, becomes

S [ (@) s (s (2)

n>1

= zk/dzh(z) Khl(z) 5(2 - Z) =1. (56)

n>1

There is conflicting evidence as to whether, and to what
extent, the resulting degeneracy is a flaw. Lattice results for
the negative parity octets [30] suggest a different behavior.
However, both chiral perturbation theory [31] and field
theoretical quark models [32] suggest that the deviation
from degeneracy is not so severe. The results from these
various models are reproduced in Table VIII, adapted from
a talk by F. Lee and A. Alexandru at Lattice 2010 [30].

IX. CONCLUSIONS

We have analyzed the holographic model for the three-
flavor baryons using the newly proposed Chern-Simons

term [8] in the presence of symmetry breaking effects in
bulk. The new Chern-Simons term obeys all the strictures
required by the chiral anomaly and generates the key
hypercharge constraint in the collective quantization of
the baryon spectra. For the three-flavor under consider-
ation, the vector and axial-vector currents are also found to
obey strict vector dominance as originally noted for the
two-flavor case. The results for the many of the bulk
parameters of the octet and decuplet baryons are repro-
duced with marked quantitative improvement with respect
to the two-flavor case. We have also analyzed some bulk
properties of the excited octet baryons with comparison to
some existing models and lattice simulations, which maybe
accessible in future experiments.
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