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ABSTRACT 
 
The sponsoring company, wants to review their raw material ordering policy and production plan for one 
of their product segments. This product faces a high degree of volatility in demand and the company 
currently orders one month of demand worth of products from the suppliers. The suppliers offer incremental 
discounts for larger quantities of raw materials ordered, and the company wants to leverage this discount 
better. To that end, our research focuses on how to optimize the raw material ordering policy in a way that 
reduces the total costs, while storing sufficient raw materials to ensure continuity of the production plan. 
The model we developed provides the optimal minimum order quantity (MOQ) to use while re-ordering 
raw materials. It also incorporates a switching rule that automatically switches the MOQ value to a higher 
or lower value depending on the demand forecast and determines the order quantity (OQ) of the raw 
material. 
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1. Introduction 
 
Inventory management is one of the most important responsibilities in an organization, as it involves 

reasonable amounts of capital and impacts the service level to customers. For companies with their own 

production lines, inventory can be categorized into different levels: raw material inventory, work in 

progress inventory, and finished goods inventory. While many organizations aim to reduce inventory at all 

three levels to reduce inventory costs, having sufficient raw material inventory to prevent production delays 

and stock-outs is vital. Many inventory decisions can be made based on an understanding of the relevant 

costs: item cost, ordering cost, holding cost and stockout cost (Schroeder, Goldstein, & Rungtusanatham, 

2016). 

 
In this project, the sponsoring company is in the fast-moving consumer goods (FMCG) industry. The 

project’s objective is to review the raw material ordering process and production planning for one product 

segment and optimize the raw material ordering policy.  

1.1. Problem Statement 
 
The product in question faces high volatility in demand either due to seasonality or from unexpected order 

spikes. Suppliers offer different minimum order quantities (MOQs) of the raw material with different price 

scales, depending on the quantity ordered. Currently, the company chooses an MOQ that can cover 1 month 

of future demand. Due to the large degree of demand volatility, components ordered from suppliers have a 

lot of fluctuation in quantity. Currently, it is unclear whether the large amount of volatility in the demand 

is due to seasonal changes in demand or mere unexpected spikes. With the current process, the company is 

not able to take advantage of the discounts offered for purchasing larger quantities. This forms the basis of 

our research problem: how to optimize the raw material ordering policy in a way that reduces the total costs 

while storing sufficient raw materials to ensure continuity of the production plan.  
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This project develops a mathematical model to optimize raw material ordering quantity for the product that 

hits the “sweet spot” between costly oversupply and equally costly lack of goods. The optimal order 

quantity will maintain a balance between the ordering cost and the holding cost. The ordering cost reduces 

as the re-order quantity increases, due to the incremental discounts offered by the suppliers, while the 

holding cost increases with greater quantities due to the associated storage costs and opportunity cost tied 

up in holding the inventory. The model will provide the optimal MOQ to use while re-ordering raw 

materials. It will also incorporate a switching rule that automatically switches the MOQ value to a higher 

or lower value depending on the demand forecast and determines the order quantity (OQ) of the raw 

material. If we identify seasonality in the demand, then we can use the switching rule to switch between 

peak season and non-peak season to reduce the holding cost.  

 
The model will also focus on optimizing inventory to avoid stock-outs and achieve the target service level 

of 99.3% that has been set by the company, as the basis for this study. The company will use the results of 

this project to provide a global model for supplier ordering and will generalize this approach across other 

business segments within the company. 
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2. Literature Review 
 
In this section, we discuss key research done in the area of raw materials ordering, production planning and 

inventory management, which helped us develop a model that optimizes raw material minimum order 

quantity (MOQ). We begin by explaining the production planning techniques that are commonly adopted 

in large consumer goods companies. Since costs are the main decision driving factor, we review the various 

costs associated with inventory and production. These costs associated with inventory management enable 

us to identify the balance between reducing costs and maintaining sufficient inventory levels to avoid stock-

outs. To optimize the current production methods, we look at two different types of inventory review 

policies – continuous review and periodic review – that are relevant in optimizing inventory management. 

Finally, we review two methods of computing the optimal order quantity that balances all the costs 

involved. 

2.1. Production Planning 
 
Material Requirements Planning (MRP) is a commonly employed technique in large manufacturing 

organizations to optimize production. MRP systems calculate the quantity of materials required and 

schedule their purchase or production.  

 
Figure 1 illustrates the general structure of the framework for hierarchical production planning where each 

of the stages has its own planning parameters. Demand data is generated from the market and becomes the 

basis of demand forecasts. Demand forecasts are passed to two planning components: Master Production 

Schedule (MPS) and MRP. The MPS or the aggregated planning generates an optimal master schedule that 

gives the production amounts needed to fulfill the customer demand across the planning horizon. This 

schedule along with the customer orders comprise the next input for the next step, which is the MRP system. 

The MRP system calculates gross requirements based on the production schedule and derives requirements 

for each material in each time period or release date. The system considers all the parameters for 

optimization and generates the production orders. These production orders are checked for availability of 
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raw materials in the procurement stage and then moved to production control until all the materials are 

available. Finally, the orders are batched to the shop floor for production (Gansterer, Almeder, & Hartl, 

2014). 

 

Figure 1. Framework for hierarchical production planning (Source: Gansterer, M., Almeder, C., & Hartl, 

R. F. (2014). Simulation-based optimization methods for setting production planning parameters) 

MRP systems have a few limitations: 1) they ignore dynamic lead times and capacity constraints (Rossi, 

Pozzi, Pero, & Cigolini, 2017); and 2) they do not consider seasonality when calculating the economic order 

quantity. This can lead to infeasible production schedules and can take significant effort to adjust the plans. 

For these reasons, they are not the most efficient tools for determining the ordering policy for products with 

seasonal demand.  

 
An extension of MRP is a distribution requirement planning (DRP) system. MRP is determined by a 

production schedule that is already fixed by the company, whereas, in a DRP system, the consumer demand 

is the driving factor. It is a complex information and control system that considers sales forecast with 
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inventory levels to schedule how much material is needed and when it is needed. If there are multiple 

locations, it can also determine which location the material needs to be delivered to, in anticipation of the 

demand (Rizkya et al., 2018). 

 
The main inputs for DRP systems include: 1) demand forecast; 2) current inventory level; 3) safety stock 

target; 4) lead time for replenishment; 5) target service level; and 6) historical inventory usage. The planning 

time horizon varies from daily, weekly, monthly, and quarterly, to annually, depending on the need.  

 
According to Bookbinder & Heath (1988),  one of the limitations of the DRP system is that the downstream 

demand determines the upstream demand, which we take into account while designing our model.  

2.2. Inventory Costs 
 
Among the most important criteria while making inventory decisions are the associated inventory costs 

(Schroeder, Goldstein, & Rungtusanatham, 2016) which are listed below:  

• Item cost: This is the cost associated with buying an individual item. It is typically a cost per item 

that is multiplied by the quantity ordered.  

• Ordering or setup cost: This is a one-time cost that is incurred when ordering a batch of items. It 

is associated with the entire order and does not depend on the order size. This includes any costs 

associated with transportation, receiving, expediting, etc. 

• Holding cost: The holding cost is associated with carrying the inventory for a period of time. It is 

charged as a percentage of the dollar value per unit time. For example, a 20% holding cost means 

that it costs 20 cents to hold $1 of inventory for a year. The holding cost typically consists of cost 

of capital, which represents the opportunity costs of missed opportunities for other investments; 

cost of storage, which is the cost of space, insurance and taxes; and cost of obsolescence, 

deterioration, and loss, which are assigned to items that have a high risk of being obsolete, have a 

shelf life or can lose their value in the market. 
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• Stockout cost: This is an economic impact of stocking out and losing sales as a result. It can be a 

lost one-time sale or a lost customer who is unlikely to buy again.  

 
For our project, we consider the holding cost and the ordering cost which includes the item cost multiplied 

by the quantity ordered. There is no separate setup cost associated with placing an order and we assume 

that transportation or any additional cost is included in the item cost. 

The annual cost of inventory is then a factor of the ordering cost and the holding cost and we want to find 

the optimal quantity that minimizes the total cost, as shown in Figure 2.  

 

Figure 2. Plot of annual cost vs. reordering quantity  

(Source: adapted from Schroeder, R. G., Goldstein, S. M., & Rungtusanatham, M. J. (2016). Operations 

Management in the Supply Chain: Decisions and Cases) 

2.3. Inventory Review 
 
By doing regular inventory review, organizations understand what raw materials to order and when to order 

them. It ensures that the organization holds the correct quantity of inventory, in the right place, at the right 

time. We look at two commonly adopted types of inventory review methods: continuous review and 

periodic review. 
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In a continuous review system, the inventory on hand is continuously reviewed, and replenishments are 

made whenever the inventory falls below a certain reorder point. Krzyzaniak (2015) specifies the 

calculation of the reorder point and safety stock using the base controlling parameters of service level, 

demand distribution and lead time. For continuous review, if the inventory position (IP) falls on, or below, 

the review period R, a replenishment order Q is placed to the supplier, and a fixed ordering cost is charged.  

 
In a periodic review system, inventory is reviewed at regular intervals, and based on the level of the 

available inventory at the time, varying quantities are ordered. It is assumed that the IP is reviewed 

frequently enough so that a review period is shorter than the replenishment lead time (Wang & Xiao Xia, 

2015). In a periodic review policy (T, R), T represents the review period that elapses between reviews, and 

R is the order-up-to level or base stock; i.e., the amount to which the stock should be raised by a 

replenishment order. This policy works well for a product with lumpy demand and can ensure high service 

levels. 

 
Singha, Buddhakulsomsiri, & Parthanadee (2017) propose a method to find the optimal R & Q levels for 

both periodic and continuous review that minimizes the average total cost where R is the review period and 

Q is the order quantity. It considers shortage cost on a per-unit basis; however, we will ignore that in our 

initial model, as there is no record of loss of sales since everything that is produced is sent to the retail 

channels. In their research, the authors also include three types of storage space capacity constraints: 1) 

over-ordering is not allowed because of the limited capacity; 2) over-ordered items can be returned to the 

supplier because of the limited capacity; and 3) over-ordered items can be stored in additional rented space 

with an extra rental expense. For our model, we do not consider any space or capacity constraints and 

assume we have unlimited capacity.  
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2.4. Optimal Order Quantity 
 
In a DRP system, once the demand forecast is obtained, the next step in the process is to determine the lot 

size. Equation 1 gives the formula for determining the economic order quantity (EOQ) considering the 

demand, order cost and storage cost (Rizkya et al., 2018). Using the below equation, optimal order quantity 

can be calculated:   

𝑄 = 	$%∗'∗(
)

                         (Eq. 1) 

where Q is the optimal order quantity, D is the mean demand of the material, C is the ordering cost and h is 

the holding cost for a period.  

 
The EOQ formula in Equation 1 is based on the following assumptions: 1) demand is constant, known and 

deterministic; 2) lead time is constant and known; 3) stock-outs do not occur because demand and lead time 

are exactly known; 4) items are ordered in lots; and 5) item cost is constant and no discounts are given for 

larger purchases. 

 
Firoozi, Tang, Ariafar, & Ariffin (2013) extend the traditional EOQ model by considering quantity 

discounts offered by suppliers. The typical pricing schedule offered is as represented by Equation 2. 

  

𝑃 = 	+

𝑃,	𝑓𝑜𝑟	𝑄, ≤ 𝑄 < 𝑄%	
𝑃%	𝑓𝑜𝑟	𝑄% ≤ 𝑄 < 𝑄2

⋮
𝑃4	𝑓𝑜𝑟	𝑄4 ≤ 𝑄 < 𝑄45,

     (Eq. 2) 

In their research, the authors solved the problem using a two-stage heuristic algorithm where they used a 

binary variable that is equal to 1 if the order quantity falls within the “k” interval, or equals 0 otherwise. 

 
In conducting this literature review, we thoroughly understood the various systems where inventory control 

plays a critical role. For our project, the basis of the model will be a DRP system that the company uses to 

define a schedule of raw material ordering quantity and frequency. Researching inventory review policies 

helped us understand what works best for this product. Optimal order quantity, by incorporating the quantity 
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discounts, is an important step in establishing the best parameters for our model. Finally, with the 

understanding of all the inventory management costs, we can tie all aspects of our model together and 

simulate for different iterations to reduce the total cost.  

2.5. Demand Seasonality 
 
Demand seasonality refers to seasonal demand peaks during a year. Promotions, holidays or temperatures 

are considered as triggers of demand peaks (Cartier & Liarte, 2012). When analyzing demand seasonality, 

Zhong (2009) used the Analysis of Variance (ANOVA) test to characterize the known demand 

seasonality for manufacturing plan within a year. The ANOVA test calculates the mean of existing 

subgroups and compares the variances between, and within, subgroups (Angelovska, n.d.). However, 

ANOVA test is not applicable for this project because 1) peak and non-peak months appear in different 

months each year, which makes it difficult to group months into sub-groups; and 2) the two-year 

historical demand provided by the company for the three types of products is insufficient to identify 

seasonal patterns. 
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3. Methodology 
 
In this chapter, we describe the development of the proposed solution. We begin by understanding the 

supply chain structure of the product. Then, we analyzed the historical material usage to identify any 

seasonal patterns and trends in raw material usage. After the data analysis stage, we implemented the logic 

behind the current DRP system that the company is using as the base inventory policy to optimize. Under 

this policy, we apply switching rules to determine order quantity and order frequency for each segment, at 

different time periods in a year. 

3.1. Product Supply Chain 
 
As a first step, we started by understanding the end-to-end supply chain of the product and key determining 

factors that would help us make a better analysis in order to recommend the best inventory policy.  

 
The raw materials comprise all the components and the packaging material and are single-sourced. Raw 

material suppliers offer quantity discounts for incremental quantities of raw materials ordered. The 

contracts with the suppliers are usually negotiated for 2 years’ time period. Once the raw materials are 

procured, the product is manufactured and then shipped to several distributors, in and around the region. 

From there, it is distributed across countries and continents to various retail channels via ocean and air 

shipping. 

 
Mapping out this flow, as shown in Figure 3, has helped us understand the complexity involved in the 

product – uncertainty in demand, volatility in demand and promotional pressure from retail. 

 
Because the retail stores are the customer, the sponsoring company does not have the end customer’s 

demand at the point of sale, and instead, we are considering the production demand to be the end customer 

demand. 
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Figure 3. Product’s supply chain 

3.2. Data Analysis 
 
We are implementing the mathematical model for three stock keeping units (SKU) of the product segment, 

with differing levels of demand: Low, Medium and High, which become three different use cases in the 

model. The model can then be generalized and applied to other SKUs or product segments by changing the 

input variables. 

 
For the three SKUs, we received data on the past two years’ actual usage of raw materials in production, 

and the demand forecast for the next 18 months, totaling 45 months of usage data (actuals + forecast).  

 
The following input data sets are being used in the model: 

Waterfall forecast for the upcoming 18 months: This is a weekly rolling forecast for the material usage 

demand per week that is continuously revised. With every new revision, the forecast for the upcoming 

weeks is updated. A sample of this data is illustrated in Figure 4. We can observe that in the short term, 

there are more changes in the forecast with the newer planning versions, whereas, in the long term, it seems 

to remain unchanged. Since it is a rolling forecast, we considered the most recent forecast standard, from 

the date of model simulation. 
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Figure 4. Waterfall forecast sample 

Historical inventory trend (HIT) data: This is a data table of different inventory levels of the product, 

such as – available inventory, production usage, safety stock, and the dollar values for each of the SKUs. 

Figure 5 illustrates the actual production usage vs safety stock for the high demand product.  

 

Figure 5. Historical inventory trend for the high demand product 
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MOQ price slab: This is the unit price ($) offered by the suppliers for the incremental quantities, as shown 

in Figure 6.  

 

Figure 6. Quantity discounts offered by suppliers 

3.2.1. Identifying Seasonality 
 
Since the product in question faces a lot of volatility in demand, we wanted to understand if there was any 

inherent seasonality present, which would help us to better formulate our switching rule. By directly looking 

at the past 12 months’ demand forecast and the upcoming 12 months’ demand forecast, we could not see 

any inherent seasonality. Figures 7 and 8 plot the demand forecast year-over-year for the high demand and 

low demand forecasts. This helped us identify whether there were any repetitive peaks or valleys that would 

indicate seasonality from one year to the next.  
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Figure 7. High demand product year-over-year 

 

Figure 8. Low demand product year-over-year 

To further verify the demand pattern within a two-year period, we first assumed that there is seasonality for 

monthly actual usage demand. We took the average of monthly demand for two full calendar years and 

calculated each month’s demand as a fraction of the total annual demand, which gives us the seasonality 

factor. To de-seasonalize the data, we divided the monthly demand by its seasonal factor. We compared the 

de-seasonalized monthly demand year-over-year to check whether the annual de-seasonalized monthly 

demands have the same pattern which is illustrated in Section 4.1.  
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3.2.2. Demand Distribution 
 
Since we are optimizing the inventory ordering for raw materials, the demand for these materials is 

dependent on the final product that is produced. The requirement for these products is dependent on the 

requirements of the higher-level product. 

 
In the demand distribution, if most of the observations are relatively close to the mean without much 

variation, then it is a good fit for a normal distribution. Otherwise, if the variation is very high with a large 

standard deviation, there is a chance that the demand can become negative, but we know that that is not 

possible in the case of real demand. If the variation is equal to the mean and the mean demand is fairly low, 

then it is a good fit for a Poisson distribution. Figures 9, 10 and 11 show the histogram charts for the high, 

medium and low demand products, respectively. We can see that the observations spread far across from 

the mean in each of the cases. 

 

Figure 9. Demand distribution of the high demand product 

Mean: 80,840 
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Figure 10. Demand distribution of the medium demand product 

 

Figure 11. Demand distribution of the low demand product 

Based on the presented data, we observed that the demand distribution is neither normally nor Poisson 

distributed but follows a random distribution. 

Mean: 9,284 

Mean: 571 
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In order to better understand the basic features and apply further calculations to historical forecast data, we 

conducted a descriptive statistical analysis on the 18-month weekly waterfall forecast data of the three 

products, which is discussed and illustrated in detail in Section 4.1. 

3.3. Model Development 
 
We initiated the model with the input data: 1) weekly demand forecast for 10 months obtained from the 

waterfall forecast; 2) current inventory level for each week from the HIT data; 3) safety stock target details 

for each SKU from the HIT data; 4) historical inventory usage obtained from the HIT data; 5) lead time for 

replenishment, which is a standard assumption throughout the model; and 6) target service level that was 

agreed upon by the executives at the company. 

3.3.1. Lot Size 
 
Typically, the lot size is determined by using the EOQ formula mentioned in Equation 1 in the Literature 

Review. The standard EOQ model is not applicable to our project because the real demand and product 

does not satisfy all the assumptions made in determining the EOQ mentioned in Section 2.4: 1) demand is 

not constant and deterministic and there is a lot of volatility in demand; 2) lead time is constant and known; 

3) since demand is uncertain, stock-outs can occur, but we want to avoid it; 4) items are ordered in lots; and 

5) unit item cost is not constant and incremental discounts are offered. Instead, we will order in incremental 

multiples of the MOQ. The best MOQ value will be determined as a result of the simulation by doing a 

sensitivity analysis, which will give us the minimum total cost and no stock-outs. In addition, the purpose 

of this project is to create a generalized model that can be applied to all SKUs, without any correlation 

among the SKUs. 

3.3.2. Safety Stock 
 
The next step is the determination of the safety stock. The HIT data gives us the current safety stock values 

that the company uses. In analyzing the demand pattern, we noticed that there is a lot of variation in the 
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forecast. Table 1 shows the mean, standard deviation of demand forecast, and current safety stock that the 

company uses, for the 3 SKUs for a period of 52 weeks.  

 
Table 1. Mean, standard deviation and current safety stock for 3 SKUs 

SKU Type Mean Standard Deviation Current Safety Stock 

High Demand 63,346 44,771 10,275 

Medium Demand 15,277 13,158 6,269 

Low Demand 549 916 254 

 

With such a large deviation from the mean, we observed that the safety stock used by the company was 

very low, therefore, we formulated a new safety stock value.  

 
We adopted three approaches to calculating the safety stock: 

 
Approach 1: Assume a normal distribution of the demand 

We begin the safety stock calculation by assuming that the demand is normally distributed, and calculate 

the value using the formula below: 

𝑆𝑎𝑓𝑒𝑡𝑦	𝑆𝑡𝑜𝑐𝑘 = 𝑘 × 𝜎'?     (Eq. 3) 

where k is z-score, or the standard score, for the probability of the service level, which is 99.3% here; 𝜎'? 

is the value for the standard deviation of the demand over the period of the lead time. 

 
Approach 2: Assume a Poisson distribution of the demand 

By making an assumption that the demand is Poisson distributed, we can use the below formula to calculate 

the safety stock: 

𝑆𝑎𝑓𝑒𝑡𝑦	𝑆𝑡𝑜𝑐𝑘 = 𝑘 × √𝑀𝑒𝑎𝑛'?    (Eq. 4) 
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This formula is similar to Equation 2, where k is the z-score, or the standard score, for the probability of 

the service level, which is 99.3% here; the standard deviation for a Poisson distribution is a square-root of 

the mean of the distribution. 

 
Approach 3: Simulate safety stock value 

Since the standard deviation of the demand is high, the normal distribution is not a good fit here, as there 

can be a high probability of having negative demand with such large variability. We know that the real 

demand is never negative and the standard deviation is very large. Similarly, in a Poisson distribution, the 

variance is equal to the mean, but from Table 1 above we can observe that is not the case. Thus, as an 

alternative, we simulated the demand for different values of safety stock to reach the optimal value.  

3.3.3. DRP System 
 
The next step is processing the data with the Distribution Requirement Planning (DRP) system. For the first 

iteration of the model, we used 10 months of data for the high demand SKU and then replicated it for the 

medium demand and low demand SKUs. Finally, with the inputs mentioned above, we designed the 

production plan, and then calculated the total ordering cost and holding cost. We made the following 

assumptions for all other costs involved in a DRP system:  

1. Transportation cost is included in the per-unit ordering cost quote provided by the supplier 

2. Stock-out cost is out of scope, as there is no way of calculating the cost of a lost sale. 

In addition, we do not consider the capacity to be a constraint at the production facility and assume 

unlimited shelf life of the materials.  

 
The raw materials have a lead time of 4 weeks; e.g., an order is placed at 12:01 a.m. on a Monday, and is 

received from the suppliers four weeks later at 11:59 p.m. on Sunday.  

 
With the aforementioned constraints, we developed the model  using the DRP logic with the following 

equations (see Table 2 for descriptions of the notation):  
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𝑂𝑅E = 	𝑂𝑃EFG (Eq. 5) 

𝐼𝑂𝐻E = 	 𝐼𝑂𝐻EF, + 𝑂𝑅E − 𝑈𝑠𝑎𝑔𝑒EF, (Eq. 6) 

𝑃𝐿E = 𝑂𝑃EF, + 𝑂𝑃EF% + 𝑂𝑃EF2 (Eq. 7) 

𝐼𝑃E = 	 𝐼𝑂𝐻E +	𝑃𝐿E  
(Eq. 8) 

𝐼𝑓	𝐼𝑃E − (𝐹E + 𝐹E5, + 𝐹E5% + 𝐹E52) < 𝑆𝑆 (Eq. 9) 

𝑇ℎ𝑒𝑛, 𝑂𝑃E = 𝑀𝑎𝑥 WX
(𝐹E + 𝐹E5, + 𝐹E5% + 𝐹E52) − 𝐼𝑃E + 𝑆𝑆

𝑀𝑂𝑄
Y ×𝑀𝑂𝑄, 0[ (Eq. 10) 

 

Table 2. Notation and Description for Equations 5 through 10 

Notation Description 

OR Order Received: Once the order is placed, it is received 4 weeks later 

OP Order Placed during the current week 

IOH Inventory on Hand: This is the physical inventory in the warehouse  

PL Pipeline Order: This is cumulative of all the orders placed in the past 4 weeks, but not 

yet received 

IP Inventory Position: Total inventory, which includes both physical inventory on hand 

and the pipeline order 

SS Safety Stock: Value calculated in the previous section 

F Demand forecast for the week 

 
 
At every point in time, we calculate the current inventory position. Since the lead time is 4 weeks, we need 

to have sufficient inventory that covers 4 weeks of demand, to avoid stock-outs. If the current inventory 

position does not cover 4 weeks of demand and the safety stock, we place an order for the gross requirement 

as a multiple of the MOQ. As per Equation 5, the order is received 4 weeks after the order is placed. The 

current inventory on hand (IOH), or the available physical inventory shown by Equation 6, is the previous 
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week’s IOH summed up with any order received that current week, less the units used in production the 

previous week. The pipeline order (Equation 7) comprises any order that has been placed but for which the 

inventory has not yet been received, due to the lead time, and the physical inventory or the inventory 

position (IP) is a sum of the IOH and pipeline order as represented by Equation 8. Once these attributes are 

calculated, the ordering policy states that if the inventory position in 4 weeks with the current inventory 

level is smaller than the safety stock, then we place an order for the gross requirement, which also covers 

the safety stock, as a multiple of the MOQ. This is illustrated by Equations 9 and 10 and is the base ordering 

policy that is being followed in our model. 

3.4. Model Simulation 
 
Once the model was initialized with the above inputs and equations, we simulated the model for different 

values of MOQ and safety stock values. The optimal values are the ones that give us the lowest cost and 

achieve the target service level. 

 
While running the simulation we considered two types of inventory costs: 

Ordering cost: This is the cost associated with placing an order. This is determined by the unit cost for the 

MOQ of the raw material quoted by the supplier. We are assuming that any additional costs such as setup 

cost, transportation cost, etc., are already included in the quote.  

Holding cost: This is the cost associated with storing the excess or unused inventory and the warehouse.  

 
To determine the total cost, we first calculated a weighted average cost (WAC) per unit for the order, as 

shown in Equation 11. The ordering cost is obtained by multiplying the WAC by the total consumption in 

that simulation. Since we are simulating for different MOQ values, we needed to remove the bias in the 

model caused by differing ordering patterns, because each simulation can end with a different total 

inventory. Hence, to maintain consistency across different simulations so that we can compare the runs, we 

used total consumption instead of the order quantities placed, as shown in Equation 12. To determine the 

holding cost, we calculated a weekly average total inventory that considers both the physical inventory on 
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hand and the pipeline inventory, and multiplied that with the WAC, as represented by Equation 13. This 

inventory available at the end of the week, is a function of the order placed, less the actual usage in that 

week. This cost is what is tied up weekly in the inventory, which cannot be used on other opportunities. 

The total cost is a sum of the ordering cost and holding cost. 

 

𝑊𝐴𝐶 =
𝑢𝑛𝑖𝑡	𝑝𝑟𝑖𝑐𝑒	($) × 𝑜𝑟𝑑𝑒𝑟	𝑝𝑙𝑎𝑐𝑒𝑑	𝑝𝑒𝑟	𝑤𝑒𝑒𝑘

𝑇𝑜𝑡𝑎𝑙	𝑜𝑟𝑑𝑒𝑟𝑠	𝑝𝑙𝑎𝑐𝑒𝑑
 (Eq. 11) 

𝑂𝑟𝑑𝑒𝑟𝑖𝑛𝑔	𝑐𝑜𝑠𝑡 = 𝑊𝐴𝐶 × 	𝑇𝑜𝑡𝑎𝑙	𝑢𝑠𝑎𝑔𝑒 (Eq. 12) 

𝐻𝑜𝑙𝑑𝑖𝑛𝑔	𝑐𝑜𝑠𝑡 = 𝑊𝐴𝐶 × A𝑣𝑒𝑟𝑎𝑔𝑒	𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 × 	𝐻𝑜𝑙𝑑𝑖𝑛𝑔	𝑐ℎ𝑎𝑟𝑔𝑒	(%)	 (Eq. 13) 

𝑇𝑜𝑡𝑎𝑙	𝑐𝑜𝑠𝑡 = 𝑂𝑟𝑑𝑒𝑟𝑖𝑛𝑔	𝑐𝑜𝑠𝑡 + 𝐻𝑜𝑙𝑑𝑖𝑛𝑔	𝑐𝑜𝑠𝑡 (Eq. 14) 

 
We calculated the obtained service level based on stock-out events. If the available inventory at the end of 

the week is below zero, it is considered a stock-out. For example, our model is simulated for 44 weeks of 

data. If there is a stock-out event in any one of the weeks, the achieved service level is 43/44 =  97.73%. 

Thus, if we want to achieve the target service level of 99.3% set by the company, we should not have any 

stock-outs in the period of 44 weeks in our model. Finally, we iterated the DRP model for different values 

of MOQ and safety stock to reach the optimal values. 

 
While simulating, the first step was to find the optimal safety stock value. To find this, we began by using 

the safety stock calculated in Equation 3 and then lowered the value by 25% each time, to reach the optimal 

value that minimizes total cost while hitting the service level target. Once the safety stock was set, we again 

iterated the model with different MOQ values to reach the optimal value that minimizes cost and obtains 

the target service level of 99.3%.  
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3.5. Switching Rule 
 
The objective of the switching rule is to switch to different values of the MOQ depending on the value of 

the demand. The general policy is that, if the demand forecast is very high, we want to order a higher MOQ, 

whereas if the demand forecast is very low, then we would switch to a lower MOQ. Since the demand for 

the product is highly volatile, having one large MOQ throughout can lead to overstocking and holding too 

much inventory at certain times of the year. With this switching rule, we can reduce the average inventory 

held at the production facility and reduce the overall cost. 

We began by experimenting with different switching rules to obtain the optimal one. In the different 

experiments we conducted, the switching rule determines when to switch to a lower or higher MOQ, and 

also the optimal values of the MOQs that achieve the target service level and are the lowest cost. 

 
Switching Rule 1: Current demand forecast vs. average forecast 

Here we compare the forecast for the current week with the average of the rolling forecast from the waterfall 

data for the entire year, revised in that week. If the week’s forecast is less than the average, the model will 

use the smaller MOQ, and if it is greater than the average, it will switch to the higher MOQ. The optimal 

MOQs obtained with this rule are 80,000 and 155,000. Table 3 illustrates how this switching rule is applied 

for a sample of five forecast values, and Figure 12 shows the ordering policy and available inventory using 

this switching rule. 

 
Table 3. Switching Rule 1 for the high demand product 

Forecast Average MOQ 
59,669 80,909 80,000 
57,205 82,309 80,000 

101,744 83,049 155,000 
112,617 81,960 155,000 
67,813 73,676 80,000 
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Figure 12. Switching Rule 1 for the high demand product 

Switching Rule 2: Demand forecast for the 4th week vs. average forecast 

Here we consider the forecast for the upcoming 4th week with the average of the rolling forecast from the 

waterfall data for the entire year, revised in that current week. Since the lead time is 4 weeks, we want to 

look at what is the demand forecast in 4 weeks.  

If that week’s forecast is less than the average, the model will use the smaller MOQ, and if it is greater than 

the average, it will switch to the higher MOQ. The optimal MOQs obtained with this rule are 100,000 and 

190,000. Table 4 illustrates how this switching rule is applied for a sample of five forecast values, and 

Figure 13 shows the ordering policy and available inventory using this switching rule. 

 
Table 4. Switching Rule 2 for the high demand product 

Forecast 4 Wks ahead Average MOQ 
126,502 80,909 190,000 
42,527 82,309 100,000 

125,498 83,049 190,000 
74,060 81,960 100,000 
55,068 73,676 100,000 
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Figure 13. Switching Rule 2 for the high demand product 

Switching Rule 3: Current demand forecast vs. actual usage for the previous year 

Here, we compare the forecast for the current week with the average of the actual production usage for the 

SKU in the previous year. Since we don’t have the data on the actual usage for the coming year, we use the 

previous year’s usage, based on the assumption that the overall usage trend remains the same year over 

year. 

If the week’s forecast is less than the average, the model will use the smaller MOQ, and if it is greater than 

the average, it will switch to the higher MOQ. The optimal MOQs obtained with this rule are 50,000 and 

90,000. Table 5 illustrates how this switching rule is applied for a sample of five forecast values, and Figure 

14 shows the ordering policy and available inventory using this switching rule. 

 
Table 5. Switching Rule 3 for the high demand product 

Forecast Average MOQ 
59,669 66,038 50,000 
57,205 66,038 50,000 
101,744 66,038 90,000 
112,617 66,038 90,000 
67,813 66,038 90,000 
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Figure 14. Switching Rule 3 for the high demand product 

Switching Rule 4: Demand forecast for the 4th week vs. actual usage for the previous year 

Here, we compare the forecast for the upcoming 4th week with the average of the actual production usage 

for the SKU in the previous year. Since we don’t have the data on the actual usage for the coming year, we 

use the previous year’s usage, based on the assumption that the overall usage trend remains the same year 

over year.  

If that week’s forecast is less than the average, the model will use the smaller MOQ, and if it is greater than 

the average, it will switch to the higher MOQ. The optimal MOQs obtained with this rule are 90,000 and 

150,000. Table 6 illustrates how this switching rule is applied for a sample of five forecast values, and 

Figure 15 shows the ordering policy and available inventory using this switching rule. 

 
Table 6. Switching Rule 4 for the high demand product 

Forecast Average MOQ 
126,502 66,038 150,000 
42,527 66,038 90,000 
125,498 66,038 150,000 
74,060 66,038 150,000 
55,068 66,038 90,000 
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Figure 15. Switching Rule 4 for the high demand product 

Switching Rule 5: Average demand forecast for the next 4 weeks vs. average forecast 

Here, we compare the forecast for Week 5 to Week 8 with the average of the rolling forecast from the 

waterfall data for the entire year, revised in that current week. Since the lead time is 4 weeks, we are looking 

at the demand requirement for weeks beyond the lead time.  

If the 4 weeks’ average forecast is less than the average of the entire year, the model will use the smaller 

MOQ, and if it is greater than the average, it will switch to the higher MOQ. The optimal MOQs obtained 

are 55,000 and 80,000. Table 7 illustrates how this switching rule is applied for a sample of five forecast 

values, and Figure 16 shows the ordering policy and available inventory using this switching rule. 

 
Table 7. Switching Rule 5 for the high demand product 

Forecast Average MOQ 
81,655 80,909 80,000 
98,133 82,309 80,000 
67,905 83,049 55,000 
59,198 81,960 55,000 
51,574 73,676 55,000 
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Figure 16. Switching Rule 5 for the high demand product 
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4. Results and Discussion 
 
In this section, we present the results from the data analysis and quantitative analysis of the model developed 

in section 3. We compare the switching rules tested in Section 3.5 for all three SKUs. Then, we will present 

the results and our recommendation for the optimal production planning policy that the company should 

adopt. 

4.1. Demand Seasonality 
 
After conducting the seasonality analysis for the high, medium and low demand SKUs, we did not find any 

similarities in the annual demand patterns. Figure 17 illustrates the de-seasonalized demand for the high 

demand product for two years and Figure 18 shows the seasonality factors for the same product over the 

two years – Factor 1 for 2017 and Factor 2 for 2018. We can see that the demand trend is different, with 

the peaks occurring in different months and large variations in the seasonality factor. We concluded that 

there is no seasonality in demand for these two product categories and that the order spikes could be due to 

any promotional events at the discretion of the retailer, or any other factor out of the scope of this project. 

 

 
 

Figure 17. Demand for the high demand SKU 
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Figure 18. Seasonality factors YoY for the high demand product 

4.2. Demand Distribution 
 
Table 8 illustrates the results from the descriptive statistical analysis done on the demand forecast for the 

three product SKUs to identify the distribution. Chemingui & Lallouna, (2013) mention that normally 

distributed data should have a skewness less than 3 and kurtosis within -2 and 2. The forecast data sets for 

all three products don’t meet the criteria. Moreover, Poisson distribution requires that the expectation of 

the data (mean of the data) be equal to its variance (Frank, 1967), which all three datasets don’t meet. So, 

we concluded that the data is neither normally distributed nor Poisson distributed and follows a random 

distribution. 

 
Table 8. Descriptive statistical analysis 
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4.3. Forecast Error 
 
In analyzing the data, we noticed observed that there is a high degree of forecast error in the demand 

forecast. The company forecasts the demand for the upcoming 18 months and then continues to review 

and update it in subsequent versions, as shown in Figure 4 in Section 3.2. We believe this high rate of 

forecast error adds bias to our model, which cannot be avoided. Figure 19 plots the forecast vs. the actual 

production usage of the inventory for the high demand product. Table 9 shows the mean absolute percent 

error (MAPE) for each of the products. 

 

Figure 19. Forecast vs. actual usage for the high demand product 

Table 9. MAPE (%) for the three products 

Demand-level MAPE (%) 
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4.4. Model development 
 
When we calculated the safety stock using the formula in Equations 3 and 4, we observed that it was too 

high. Since the demand is not normally distributed or Poisson distributed, a smaller value would work well 

for the model. As illustrated in Figure 20, we do not need such a high safety stock, and lower costs can be 

achieved by using smaller levels of safety stock. A caveat is that the forecast is not 100% accurate and, in 

the datasets, we considered there is a high degree of forecast error. While higher safety stock can safeguard 

against that uncertainty, the company can also deal with this uncertainty by being more resilient. 

 

Figure 20. Inventory level for the high demand SKU with high safety stock 

We iterated the model with differing values of MOQ and safety stock to obtain the values that give us the 

lowest cost and achieve the target service level of 99.3%. We started with a safety stock of 262,702 units 

for the high demand product, which is the value obtained from Equation 3, and iterated for lower values of 

safety stock. Once we obtained an appropriate value of safety stock, we simulated with differing values of 

MOQ. Table 10 illustrates the simulation results for the high demand SKU. We can observe that smaller 

MOQs have greater ordering cost, but lower holding cost, whereas larger MOQs have lower ordering cost 

due to the discount offered. A good balance between the costs and the service level is obtained when safety 

stock = 26,270 and MOQ = 100,000. 
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Table 10. Model simulation for differing values of safety stock & MOQ 

Safety Stock MOQ Stock-Out 
Events Ordering Cost Holding Cost Total Cost 

262,702 10,000 0 $ 479,111 $ 5,916 $ 485,028 
262,702 50,000 0 $ 476,942 $ 6,110 $ 483,051 
131,351 50,000 0 $ 476,942 $ 4,691 $ 481,632 
52,540 10,000 2 $ 479,253 $ 3,598 $ 482,851 
52,540 50,000 1 $ 476,942 $ 3,757 $ 480,699 
52,540 100,000 0 $ 476,942 $ 4,051 $ 480,993 
26,270 10,000 4 $ 479,275 $ 3,311 $ 482,586 
26,270 50,000 2 $ 476,942 $ 3,578 $ 480,520 
26,270 100,000 0 $ 476,942 $ 3,821 $ 480,763 
26,270 150,000 2 $ 476,942 $ 4,192 $ 481,134 
26,270 200,000 0 $ 476,942 $ 4,256 $ 481,198 

 
 

By repeating this process for all three products, we obtained the ordering policies with one MOQ throughout 

the run, which became the basis for the switching rule. The results of these simulations are represented in 

Table 11. 

 
Table 11. Base ordering policies for the three products 

Product Safety 
Stock MOQ 1 Stock-Out 

Events 
Ordering 

Cost 
Holding 

Cost Total Cost 

High 26,270 100000 0 $476,942 $3,821 $480,763 

Medium 37,628 50,000 0 $100,818 $1,243 $102,061 

Low 500 11,000 0 $5,046 $101 $5,147 

 

4.5. Switching Rule 
 
In simulating the five switching rules mentioned in Section 3.5, and comparing them against the base 

model without a switching we get the following results as shown in Tables 12, 13 and 14. 



 40 

Table 12. Switching rule simulation for the high demand SKU 

Switching Rule Safety 
Stock MOQ 1 MOQ 2 Stock-Out 

Events 
Ordering 

Cost 
Holding 

Cost Total Cost 

No Switching 52,540 100000 100000 0 $476,942 $4,051 $480,993 

Switching Rule 1 52,540 80000 155000 0 $476,942 $4,223 $481,165 

Switching Rule 2 52540 100000 190000 0 $476,942 $4,437 $481,379 

Switching Rule 3 52540 50000 90000 0 $476,942 $3,862 $480,804 

Switching Rule 4 52540 90000 150000 0 $476,942 $4,322 $481,264 

Switching Rule 5 52540 53000 85000 0 $476,942 $3,876 $480,818 
 

Table 13. Switching rule simulation for the medium demand SKU 

Switching Rule Safety 
Stock MOQ 1 MOQ 2 Stock-Out 

Events 
Ordering 

Cost 
Holding 

Cost Total Cost 

No Switching 37,628 50,000 50,000 0 $100,818 $1,243 $102,061 

Switching Rule 1 37,629 10,000 50,000 0 $102,176 $1,252 $103,427 

Switching Rule 2 37,629 20,000 50,000 0 $101,327 $1,254 $102,581 

Switching Rule 3 37,629 25,000 50,000 0 $102,685 $1,207 $103,892 

Switching Rule 4 37,629 20,000 50,000 0 $101,327 $1,254 $102,581 

Switching Rule 5 37,629 30,000 50,000 0 $101,821 $1,222 $103,043 
 

 
Table 14. Switching rule simulation for the low demand SKU 

Switching Rule Safety 
Stock MOQ 1 MOQ 2 Stock-Out 

Events 
Ordering 

Cost 
Holding 

Cost Total Cost 

No Switching 500 11,000 11,000 0 $5,046 $101 $5,147 

Switching Rule 1 500 6,000 20,000 0 $5,230 $134 $5,363 

Switching Rule 2 500 1,000 15,000 0 $5,046 $112 $5,157 

Switching Rule 3 500 6,000 15,000 0 $5,178 $138 $5,316 

Switching Rule 4 500 1,000 13,000 0 $5,046 $111 $5,156 

Switching Rule 5 500 1,000 15,000 0 $5,046 $112 $5,157 
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From the costs illustrated in Tables 12, 13 and 14 we can see that the total cost for the switching rule is 

not significantly lower than the base model without any switching. 
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5. Conclusion 
 
This research project began with the goal of optimizing the raw material ordering policy for the company 

by incorporating switching rules to minimize the total costs and simultaneously avoid stock-outs. When we 

began developing the model using MOQ and inventory levels, we believed that using a switching rule 

would be beneficial to the company. However, the results of our research did not support our hypothesis. 

Throughout our research, we gained some great insights about the data, product, and the company. 

 
First, we concluded that there is no seasonality in the demand for the three products, and the volatility is 

due to promotions by the retailer or other unexpected spikes. In analyzing the forecast data, we noticed a 

high degree of forecast error for all three SKUs. We believe that the forecast inaccuracy added a certain 

amount of bias to our model as illustrated in Table 9 in Section 4.3 However, reducing this inaccuracy is 

out of scope for this project, but we recommend that it could be an avenue for the company to explore, in 

the future.  

 
Second, we noticed that our model has a large amount of bias because every simulation ends differently 

with a different ending inventory level. This can potentially change the final result of the optimal MOQ and 

safety stock to use for the product. To compensate for this and remove the bias from the model, we use the 

total consumption of raw material while calculating the costs. This way, we were able to establish a standard 

method of comparing the different runs of the simulation based on the cost.  

 
We expected the relationship between the holding cost, ordering cost and the total cost to follow the trend 

illustrated in Figure 2 in Section 2.2. While the trend remains the same, where ordering cost reduces with 

larger MOQ but holding cost increases, we noticed that holding cost holds much less weight in the total 

cost equation. Hence, in this project, the ordering cost is the determining factor. As shown in Tables 12, 13 

and 14, the holding cost is between 0.8% and 2% of the total costs for the three products and does not 

represent much weight in determining the total cost. We noticed that, by changing the MOQ values and 
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safety stock values, the total costs do not change drastically. The reduction in cost is typically less than 1%, 

as can be seen in Table 10 in Section 4.4. 

 
Third, in analyzing the results obtained from the various model simulations and comparing the costs 

between the base model without MOQ switching and models with the different switching rule applied, we 

conclude that a switching rule is not necessarily a lower cost option. This discrepancy could be due to the 

various biases introduced in the model from the forecasting error, or due to the high volatility of the demand. 

In addition, we would also like to point out that our sample size is very small comprising only 3 SKUs, as 

against thousands of SKUs and products in the CPG company.  

 
The sponsoring company can nevertheless use this model to optimize their ordering policy, with or without 

switching, to obtain reduced cost. Currently, the company computes varying values of MOQs and revises 

it every month. This proved to be a costly method of ordering the raw material, as they were not leveraging 

the discounts. The model generated through this project can serve as a tool that defines the MOQ to be 

ordered automatically.   
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