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ABSTRACT

With the latest technological advancement, the use of drones has emerged as an innovative and
viable business solution for last-mile distribution. An efficient drone delivery system has to address
the classic vehicle routing problem (VRP): "What is the optimal set of routes for a fleet of drones
to serve a given set of customers?." The goal of this research project is to evaluate the optimal
design and operational performance of four different drone delivery systems, using real-life last-mile
truck delivery data. The authors quantitatively model four different drone delivery systems, from
a pure drone delivery system to an unsynchronized drone-truck system and compare their relative
benefits and shortcomings under various scenarios. A Memetic Algorithm, an extension of a Genetic
Algorithm, is developed and used to optimize delivery routes of truck and drones for all the four
delivery models.

Our research shows that Memetic Algorithm is quite robust handling VRP with 50 customers,
yielding only 3.7% gap from the optimal solution. Among the four considered delivery models in
this research, the Delivery System model 4 - where truck and drone share same area of service -
performs superior than other three models, providing 100% coverage to all customers and reducing
minimum tour time as high as 80%. The outcome of this research will help shape the quantitative
and qualitative comparison of drone delivery systems and set the foundation for modelling and
analysis of more advanced systems (e.g. synchronized truck-drone delivery system). It also helps
industry to understand the possible use cases for drones in last-mile delivery and the most crucial
levers of these models to maximize the performance of such drone delivery systems.

Thesis Supervisor: Dr. Mohammad Moshref-Javadi
Title: Postdoctoral Associate, MIT Megacity Logistics Lab
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1 Introduction

1.1 Market scope

E-commerce continues to outgrow offline retail revenues and is expected to reach 15% of

global retail share in 2020 as per eMarketer (2016) as seen in Figure 1.1. E-commerce

business, growing fast pace at 21% annual growth, is fueling global parcel distribution, and

particularly increasing the number of deliveries in the last leg of distribution from suppliers

to customers (B2C shipments), known as the last-mile delivery. Last-mile delivery is one of

the most complex and inefficient steps in supply chain due to:

• Fragmentation of deliveries by different players with different business models. Exam-

ples include: integrated logistics players, such as DHL and UPS; same-day logistics

providers, such as Deliv; retailers, such as Amazon; and pure tech players, such as

UBERRush.

• Inefficient delivery routes caused by urban congestion. Shaikh (2016) from United Na-

tions stated that 65% of all humans will live in cities by 2050. This rising urbanization

coupled with unprecedented growth in e-commerce is increasing the volume of urban

freight deliveries and consequently putting strain on cities grappling with congestion

problems.

These inefficiencies make last-mile delivery as the costliest step in supply chain, account-

ing for 28–53% of the total shipment costs, based on Dolan (2018) and Hochfelder (2017)

as can be seen in Figure 1.2. To address these inefficiencies, this research aims to assess the

feasibility of using drones in last-mile delivery as a possible solution to the aforementioned

complexities and limitations. We will elaborate on how we propose such solutions in Section

3.
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1.2 Significance of drones in urban delivery

To be able to handle the future significant volumes of package deliveries efficiently, a recent

solution that has been proposed is drone-based delivery systems by Murray and Chu (2015).

Drones can be deployed in last-mile delivery systems due to their several advantages as

follows:

• Reduce cost : Based on research by Deutsche Bank, Kim (2016) stated that for typical

small-box delivery, drones’ delivery cost is USD 0.05 per mile - compared to USD 2 for

USPS last-mile delivery or USD 6-6.5 for premium ground like FedEx or UPS.

Figure 1.1: Global retail growth (Traditional and E-commerce)

Figure 1.2: Share of logistic cost based on the journey according to Hochfelder
(2017)
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• Enhance reach area: In areas with poor infrastructure access, drones can increase reach

to remote areas which cannot be served by ground transportation.

• Reduce delivery time: Drones significantly reduce delivery transit times compared to

those of terrestrial delivery systems, such as trucking. This is because drones are

capable of flying in straight lines to their destinations and bypass traffic congestion.

The first attempt to use drones for delivery dated back to 2014, when DHL (2014)

launched the first autonomous delivery flights by ‘parcelcopter ’ to the North Sea island of

Juist for emergency delivery of medications. Amazon (2016) followed suit in 2016 when it

launched the Prime Air delivery for a bag of popcorn and Amazon Fire TV stick in UK.

Currently other major companies are testing more drones deliveries, such as:

• Google (2014): Google is developing Project Wing, an autonomous delivery drone

service aiming to increase access to goods in Australia.

• AirBus (2018): Airbus Helicopters partners with SingPost for drone delivery trials

around National University of Singapore (NUS) campus.

• UPS (2017): In 2017, UPS tested residential delivery via drone launched from truck-

launched drone-maker Workhorse Group in USA.

Although drones have particular advantages over conventional truck-based delivery sys-

tems, their widespread adoption is limited by both operational and technical factors, such

as:

• Regulatory issue: Marcontell and Douglas (2018) from Oliver Wyman stated that in

US, most federal regulations on drones still restrict their use: Drones, or unmanned

aircraft systems (UAS), cannot fly over most federal facilities or over people; drones

cannot fly at night or within five miles of an airport without permission; drones must

fly below 400 feet and at less than 100 miles per hour; with some exceptions, they

9



must weigh under 55 pounds (25 kilograms); and they must yield the right of way to

manned aircraft

• Payload : Payload for most of drones are below 5 – 7 kg.

• Distance: Drones’ range is still limited to 15 – 20 km.

Despite its limitation, drone delivery is an innovative solution for last-mile delivery op-

erations. Currently, there are several models of drone delivery systems researched: pure

drone delivery systems, such as (Dorling et al., 2016; Coelho et al., 2017) and combination

of drones and trucks, such as (Murray and Chu, 2015; Kim and Moon, 2018; Ham, 2018).

1.3 Problem scope and assumptions

The objective of this research project is to quantitatively model and analyze four different

drone (and truck) delivery systems and to compare their benefits and limitations under

various scenarios. We will define these models along with their various components. We will

also develop an algorithm based on Memetic Algorithm to optimize the delivery routes for

all the four models. Some of the main assumptions of our models are:

• We focus on only the delivery side of operations, i.e., pick-up requests are out of the

scope of this project.

• The payload factor limits the drone delivery to one package per trip, therefore after

each delivery, drones have to return to the depot to pick up another package.

• The drone travel range (time) will be built into the model in order to replicate real-

istic conditions. This range will be adjustable to allow for a variable solution range

depending on future technology.

• The truck’s travel range is assumed to be unlimited.

10



After we build the model and algorithm, we will identify and conduct a sensitivity analysis

on several key parameters of the models, including drone speed and flight limit, the number

of available drones, number of trucks, and truck speed. As we change these parameters,

we will measure the performance of each system. This performance is measured by three

different objective functions, including the latest return time of vehicles to depot, the total

costs of distribution, and the total waiting time of all customers. For most of our analyses,

we focus on the most popular objective which is minimizing the return time of vehicles to

depot. The results are used to determine which and under which circumstances a delivery

model is more beneficial than others. Bearing all these objectives in mind, and considering

the constraints, a total of four different models have been selected to evaluate the most

suitable last-mile delivery setup to tackle the challenges mentioned above:

• Model 1: Pure drone delivery system: In this model, only drones are used to delivery

packages to customers.

• Unsynchronized drone-truck system with separate service areas : This model presents

two variants depending on the segmentation of the service area and assignments of

them to truck and drones:

– Model 2 : Customers which are located close to depot are served by drones, while

more distant customers are served by trucks (Drone-inner/Truck-outer).

– Model 3 : Customers which are located close to depot are served by trucks, while

more distant customers are served by drones (Truck-inner/Drone-outer).

• Model 4: Unsynchronized drones-trucks system with shared service area between trucks

and drones : Each location can potentially be served by a truck or a drone. The

optimization model decides which is the optimal vehicle to deploy.

11



2 Literature review

The literature review chapter is organized into two separate sections. The first section will

discuss case studies of drones in delivery systems – what have been tested and what are the

findings so far. Second, we represent a brief review on vehicle routing problems (VRPs) and

particularly, VRPs for drone delivery systems. In this section, we will also review research

papers on VRPs for multi-modal systems where drones and trucks operate in parallel in the

delivery system.

2.1 Drone applications in delivery system

Drone, also commonly known as Unmanned Aerial Vehicle (UAV), is aerial vehicle without

on-board human pilots. Drone has historically been limited to military applications dating

back to the 1930s, when the British produced a number of radio-controlled aircraft to be

used as targets for training purposes. One of the radio-controlled aircraft models was called

DH.82B Queen Bee – which is thought to inspire the term "drone" as can be seen in Figure

2.1 (IWM, 2018).

Figure 2.1: Drones historical and future timeline
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Since the 2000s, with the significant cost decreases, drone becomes accessible to everyone,

creating new market for commercial drones. In the last decade, commercial drones have taken

off and sales of drones have increased exponentially:

• Schatsky and Ream (2016) from Deloitte show that DJI has the biggest market share

in commercial drone market and its revenue skyrocketed from USD 4 million in 2011

to USD 1 billion in 2015

• Goldman-Sachs (2019) stated that commercial drone is the fastest growing segment for

UAV and is expected to exceed USD 20 billion by 2021.

With the latest technological advancement, drone emerges as innovative and viable busi-

ness solution for commercial last-mile operations. As outlined in Figure 2.2, many logistics

and e-commerce companies have been testing drones as last-mile delivery system over the

past 5 years. More recently in April 2019, Pasztor (2019) from WSJ reported that Google

has won first FAA approval for regular drone delivery of consumer items in Virginia. Based

on all these experiments, it is essential to note the specific characteristics of drones, such as:

Figure 2.2: Drones’ experiments by major e-commerce and logistic companies
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• Weight: Packages up to 30 kg. JD (2019)

• Variety of packages: medicine, tea, golf balls, food and beverages (pizza, drinks,

sweets). Rakuten (2016), Domino’s (2016)

• Number of deliveries: 500 parcels per day. Stanton (2015)

• Speed: up to 100 km/hour. JD (2019)

2.2 Vehicle Routing Problem (VRP) for drones delivery system

2.2.1 The Vehicle Routing Problem

To design an efficient drone delivery system, we need to address the classic vehicle routing

problem (VRP): “What is the optimal set of routes for a fleet of drones to serve a given set of

customers”. In this research, an algorithm is developed to determine optimal delivery routes

for drones and trucks in various drone delivery system.

VRP was first introduced by Dantzig and Ramser (1959) as the Truck Dispatching Prob-

lem, and has retained ever since a steady interest in the academic community. In order

to tackle the NP-hardness (non-deterministic polynomial-time hardness) of the VRP, differ-

ent strategies have been developed over the years in order to solve it. Three of the most

successful meta-heuristics were inspired by nature:

1. Simulated annealing of metal cooling : Laarhoven and Aarts (1987).

Simulated annealing is a probabilistic method that emulates physical process of anneal-

ing in metal works whereby a metal cools down over time. The algorithm reduces the

probability of finding local optima by allowing worse solutions when the temperature

is still high.

2. Genetic Algorithm: Goldberg (1989)

Genetic algorithm is a numerical optimization technique that uses evolution concept

of survival of the fittest. The algorithm will perform natural selection where the fittest

14



individuals (the most optimum solutions) are selected to produce offspring for next

generation.

3. Ant-Colony Optimization (ACO): Dorigo and Di Caro (1999)

Ant-Colony Optimization (ACO) is a probabilistic technique to determine most optimal

path by emulating the behaviour of ants following paths from their colony to source

of food. Ants drop a chemical substance called pheromone when they travel. Ants

behaviour is to travel along the paths that have strongest pheromone scent, hence the

more pheromone on a particular path means a higher probability that a particular path

is optimal.

Additionally several extensions of the original VRP have been proposed to limit or adapt

the problem to specific situations in order to find the best fitting solution. Some of these

are the VRP with time-windows (VRPTW) by Bräysy and Gendreau (2005), or VRP with

mixed fleet and size (FSMVRP) by Tan et al. (2006). Our research also adopts mix fleet

concept where we have drones and trucks in last-mile delivery.

2.2.2 Pure drone delivery systems

Despite a wealth of knowledge and literature that exists for classical vehicle routing problem

(VRP), the literature on drone delivery routing problems tends to be limited because drone

delivery concept only emerged recently. In addition, a drone routing problem needs to

consider several specific constraints, such as operational limit of the drones (e.g. distance

covered, flight limit, payload, etc), and unique technical characteristics of drone delivery

(e.g. one package per trip, no pick-up, no night-time operation, etc).

Dorling et al. (2016) solved drone delivery routing problem with two different objective

functions: one minimizes costs subject to a delivery time limit and second minimizes overall

delivery time subject to a budget constraint via Mixed Integer Linear Program (MILP)

that considers battery weight, payload weight and drone reuse. In order to solve practical
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scenarios with hundreds of locations, simulated annealing algorithm was used to solve the

problem. The study found that optimizing battery weight and reusing drones are important

considerations for drones delivery.

Choi and Schonfeld (2016) approached the drone delivery routing problem by exploring

sensitivity of four variables (working period, drone operating speed, demand density of service

area and battery capacity) to determine optimal costs of drone delivery system. The study

assumed that a drone can lift multiple packages within its maximum payload and serve

customers within a given radius. Battery capacities were analyzed to relate parcel payloads

and flight ranges. The study indicated that extended working periods would benefit both

providers and customers. Furthermore, increased of drone operating speed would reduce

total costs at the expense of increasing cost for supplier. Finally, the research concluded

that drone deliveries were more economical in areas with high demand densities and that

larger battery capacities would reduce number of drones require to satisfy a service area.

2.2.3 Multi-modal truck and drone systems

Among multi-modal truck and drone systems, Murray and Chu (2015) considered drone as

part of the integrated trucks-drones delivery system in which trucks are responsible for large

parcels or customers outside of drones flight range. The research introduces Parallel Drone

Scheduling TSP (PDSTSP) and Flying Sidekick Travelling Salesman Problem (FSTSP), in

which trucks and drones work in tandem for an optimized drone-assisted parcel delivery via

two scenarios. The first scenario is that the drone serves customers near depot/distribution

center (PDSTSP) and the second is that the drone is launched from a delivery truck when

customers are located far-away from drone flight range (FSTSP).

Ham (2018) extended PDSTSP problem by incorporating two different type of drone

tasks: drop and pickup. After a drone delivers its package, the drone can either fly back

to the depot to pick up and deliver next package or fly directly to another customer for

pickup. This problem is modelled as unrelated parallel machine scheduling. A constraint
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programming (CP) was proposed and tested with problem instances of m-truck, m-drone, m-

depot and hundred-customer distributed across an 8-mile square region. The study concluded

that CP proved to be a promising technology for the UAVs scheduling problem because it

found optimality majority of the time for PDSTSP problems with 20-50 instances.

Kim and Moon (2018) proposed a multi-modal truck and drone system to overcome

drones flight-range limitation, especially where customers are located far from distribution

center. Kim and Moon recommended mixed integer programming to solve traveling salesman

problem with a drone station (TSP-DS). Two-stage traveling salesman and modified parallel

machine scheduling problem (TSMPMS) is developed to find a schedule that minimizes the

number of drones used at a station. The research revealed that TSP-DS is more effective

in serving customers than PDSTSP when a majority of customers are located far from

distribution.
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3 Methodology

Drone delivery systems exhibit classical vehicle routing problem (VRP) characteristics, where

we need to find optimal set of routes for a fleet of vehicles to deliver packages to customers.

The goal of our research project is to evaluate the optimal design and operational performance

of four different drone delivery systems, using real-life last-mile truck delivery data. We model

four different drone delivery systems and compare their relative benefits and shortcomings

under various scenarios. A Memetic Algorithm, an extension of a Genetic Algorithm, is

developed and used to optimize delivery routes of drones and trucks in all models.

This section outlines our methodology and is organized into two sub-chapters. In Section

3.1 we introduce the four different drone delivery systems used in this project, from pure

drone delivery system to unsynchronized drones-trucks system with both separated and

shared areas. Then, in Section 3.2, we lay out the approach we use to optimize the delivery

routes for all delivery models.

3.1 Drone delivery models

Based on our research, there are various models for drone delivery systems, from pure drone

delivery system: Dorling et al. (2016), Coelho et al. (2017) to truck-drone tandem: Murray

and Chu (2015), Kim and Moon (2018), Ham (2018).

In our paper, we modelled four different drone delivery systems. These systems are

developed based on the types of available vehicles and the assignment of areas to vehicles

based on their proximity to the depot (Figure 3.1).

3.1.1 Model 1: Pure drone delivery

In the pure drone delivery (Model 1 - Figure 3.2a), all the deliveries are carried out by

drones. Due to drone capacity being restricted to a single payload, this model boils down

to scheduling single return trips to the depot. There is no truck involved in this delivery
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Figure 3.1: Drone delivery models: (1) Pure drone delivery (2)
Drone-inner/Truck-outer (3) Truck-inner/Drone-outer (4) Shared Truck-Drone

system.

3.1.2 Model 2: Drone-inner/Truck-outer

This model splits service areas into two based on proximity to the depot: (1) Inner: area

close to the depot (2) Outer: area farther from the depot. Model 2 assigns drone to serve

the inner area and truck to serve the outer area (Figure 3.2b).

3.1.3 Model 3: Truck-inner/Drone-outer

Model 3 (Figure 3.2c) is the reverse of model 2, where in model 3 the inner area is assigned

for truck and the outer area is assigned for drone. In this model, a threshold is set to split

the area of service between truck and drone. Beyond this threshold, drones will serve the

outer area. In this model locations outside of the drone range will then be out of reach and

cannot be served.
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3.1.4 Model 4: Shared Truck-Drone

The shared area between trucks and drones (Model 4 - Figure 3.2d) better reflects real-life

model in which the drones and trucks share same area for delivery service. The algorithm

will determine optimal routes for both drones and trucks.

3.2 Proposed approach

In order to determine the optimal design and operational performance of different drone

delivery systems, we developed an optimization algorithm to obtain optimal (or near-optimal)

delivery routes for drones and trucks. In this section, we describe the problem and algorithm

briefly.

3.2.1 Problem notation

We modelled our problem based on the notation shown in Table 3.1. A fleet of drones D =

{d1, d2, ..., dj} and trucks T = {t1, t2, ..., tk} deliver packages to customers C = {c1, c2, ..., ci}.

A truck can perform multiple packages deliveries per trip, that is, the truck’s capacity is

large enough to serve all customers, whereas drones can deliver only one package per trip.

Each customer receives one package per delivery and there is no customer delivery time

window. There is only one depot, from which the fleet of drones and trucks dispatch. Truck

speed, drone speed and drone flight limit are built into the model and sensitivity analyses are

conducted on these parameters for understanding the effect of these on the performance of

the models. Finally, a truck threshold is also defined for Model 3 (Truck-inner/Drone-outer)

to determine cut-off areas between drone and truck.

The developed algorithm is able to optimize the routing problem of truck and drones

with different objective functions. In this project, we seek to minimize the latest return time

of all trucks or drones to the depot. This objective function is the most common objective

in the literature (Murray and Chu, 2015).
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(a) Model 1 (Pure Drone Delivery) (b) Model 2 (Drone-inner/Truck-outer)

(c) Model 3 (Truck-inner/Drone-outer) (d) Model 4 (Shared Truck-Drone)

Figure 3.2: Drone Delivery Models representation example
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Table 3.1: Drone Delivery System Problem Notation

Notation Description

i Number of customers
j Number of drones
k Number of trucks
X = {x1} Depot
C = {c1, c2, ..., ci} Customers
D = {d1, d2, ..., dj} Drones
T = {t1, t2, ..., tk} Trucks
Vt Truck speed
Tt Truck threshold - for Model 3 (Truck-inner/Drone-outer)
Vd Drone speed
Da Drone flight limit

3.2.2 Proposed algorithm

Drone delivery is a variant of Vehicle Routing Problem (VRP). Exact algorithms such as

Branch-and-cut and Branch-and-price are available to solve for VRP as outlined by Ropke

(2005). However, in last-mile delivery problems, there is a relatively high number of nodes

that will expand VRP solution space exponentially which leads to intractable computation

times. Hence, most algorithms for the VRP in last-mile delivery problems rely on heuristics.

Heuristics do not guarantee optimal solution; however, they are able to find near optimal

solutions in relatively short time with an acceptable gap.

In this project, we propose a Memetic Algorithm to optimize delivery routes of drones

and trucks. Memetic Algorithm, was developed by Moscato (1999), and is a meta-heuristic

approach that introduces local search to Genetic Algorithm. Genetic algorithm is a nu-

merical optimization technique, first introduced by John Holland in 1960 and extended by

his student Goldberg (1989). It is based on the concept of Darwin’s theory of evolution:

survival of the fittest individuals. Genetic Algorithm will perform natural selection where

the fittest individuals (the most optimum solutions) are selected to produce offspring for

next generation. Moscato (1999) argued that Genetic Algorithm does not consider a step

of self-improvement within the cycle (only based on randomized variation). Hence Memetic
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Algorithm introduces a stage of individual learning (rather than population), so a new better

solution that has higher fitness can be selected, independent from the rest of the population.

A Memetic Algorithm pseudocode and flowchart can be seen in Algorithm 1.

Algorithm 1: Memetic Algorithm heuristic in pseudocode.
1 Initialize population with random individuals;
2 Evaluate each individual;
3 repeat
4 Select parents;
5 Crossover pairs of parents to create offspring;
6 Mutate the resulting offspring;
7 Improve individuals with local search;
8 Evaluate new individuals;
9 Select individuals for the next generation;

10 until Termination condition is satisfied ;

We selected a Memetic Algorithm to solve the drone delivery system problem because it

is based on Genetic Algorithm that is quite mature and widely used in researches for Vehicle

Routing Problem (VRP). Memetic Algorithms generally perform better to solve the combi-

natorial problem that our drone delivery system presents. This is achieved through a local

search technique that reduces the likelihood of premature solution. Prins and Bouchenoua

(2005) and Ngueveu et al. (2010) used Memetic algorithm to solve VRP in their research.

Below we describe the terminology for a Memetic Algorithm (also illustrated in Figure 3.3):

• Initial population. A set of individuals at the beginning of the process is called initial

population. Each individual is a solution of the problem, which in our case is a set of

truck and drone routes. An individual has a set of variables known as Genes. Genes

are then combined into a string (analog to a DNA sequence) to form a Chromosome

that represents an individual (solution).

• Fitness function. The fitness function determines how good a solution is. In this step,

Memetic Algorithm calculates a fitness score to each potential solution based on a

predefined objective function (e.g. duration in minutes until the latest vehicle return
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Figure 3.3: Memetic Algorithm terms and their relation to optimization

to depot). The probability of that solution surviving into the future generations is

based on its fitness score.

• Selection. Selection will select the fittest solutions to pass their genes to the next

generation of population. Multiple parents are selected based on their fitness scores and

the higher solutions fitness scores are, the higher chance to be selected for reproduction.

• Crossover. Crossover is a process to split and combine the parents’ genes to create

offspring for the next generation.

• Mutation. Mutation is a process to change some of the genes. Mutation probability is

very low and it exists to sustain the diversity of the population

• Local Search. Local search is a technique to enhance performance of the algorithm by

building local approximation to capture local behavior. In our model, we will use 2-opt

local search to find and fix routes that cross each other.
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4 Proposed solution

This chapter outlines the solution and implementation of Memetic Algorithm to find opti-

mum route for drone delivery system.

4.1 Initialization

The first step of a Memetic Algorithm is to initialize the population. A population is a set of

individual solutions that represent the routing of the vehicles (trucks/drones) to customers

(Figure 4.1). Each route is a chromosome and is represented as a list of customers (genes)

that is grouped based on vehicles (trucks/drones) and this solution is encapsulated in a class

Schedule with list variables (truck_schedules and drone_schedules). The pseudocode of this

step is shown in Algorithm 2.

During the first initialization, the algorithm separates customers into drone and truck

assignments. For the customers assigned to truck, the algorithm applies K-means clustering

to build cluster of customers and assign each cluster to each truck. The number of cluster (K)

is determined based on number of trucks. For the remaining drone customers, the algorithm

then sorts the customers by distance and assigns successively to each vehicle to have an even

distribution (e.g. farthest customer assigned to drone 1, second farthest customer assigned

to drone 2 and so on).

The rest of solutions will be generated based on the population size parameter (popu-

lation_size) using random mutation of the initial individual solution. For example, if the

population size is 40, then the algorithm will clone the best solution as the first element of

population and mutate this best solution to generate 39 other solutions to be included in

the initial population.
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Figure 4.1: Solution representation example

Algorithm 2: Initialize in pseudocode.
1 Inputs: Ci (Customer nodes), D1 (Depot position)
2 Build distance matrix for all customers
3 Generate first routing/schedule based on minimum completion time (or based on

sorting of customers distance and k-means clustering for first generation)
4 Clone the first/routing schedule (best solution) to new_population (at index 0)
5 Generate the rest of initial population from random mutation of best solution
6 for p← 1 to population_size−1 do
7 Mutate best solution
8 end
9 return new_population

4.2 Selection

The second step of Memetic Algorithm is to (randomly) select individuals for reproduction

and add children to the population (Algorithm 3). The parameter to determine reproduc-

tion probability is reproduce_probability and this algorithm is using 80% probability rate.

If the population size is 40, the algorithm will generate 32 additional solutions to the pop-

ulation. Before adding these solutions to the population, the algorithm will perform cross

over between the solutions as explained in next chapter.

4.3 Crossover

During crossover, the algorithm performs the reproduction of additional solutions before

adding them into the population. Cross-over or recombination is a function to (re)arrange

genes in the chromosome of two parents to generate new children (Algorithm 4 ).
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Algorithm 3: Selection.
1 for p = 1 to reproduce_probability * population_size do
2 Assign individual to fertile_list
3 end
4 Shuffle fertile_list
5 for f = 1 to len(fertile_list) do
6 Perform crossover between fertile_listi and fertile_listi+1

7 Add fertile_listi and fertile_listi+1 to the population
8 f = f + 2

9 end

The cross-over or recombination function switches a number of genes between the two

parents based on reproduce_segment_size parameter. That is, we rearrange customers

assigned to a particular vehicle (truck or drone) to another vehicle, respecting the flight time

constraints. In this case, the parameter is set to 3. Example of the cross-over function is

illustrated in Figure 4.2.

Algorithm 4: Crossover.
1 for r = 1 to reproduce_segment_size in Parent 1 chromosome do
2 Assign individuals for cross-over operation
3 end
4 for r = 1 to reproduce_segment_size in Parent 2 chromosome do
5 Assign individuals for cross-over operation
6 end
7 Perform cross-over operation
8 Return new chromosomes as children

4.4 Mutation

After reproduction and cross-over of new population, the algorithm is going to perform

mutation to random chromosomes in the population (Algorithm 5). All chromosomes, both

parents and children, have same probability to be mutated, however the first chromosome –

which is the best solution – is not going to be mutated. Probability of mutation is set by

parameter mutation_probability and it is currently set at 15%

Mutation algorithm will pick-up randomly a particular customer from a particular vehicle
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Figure 4.2: Crossover example

route and insert it to other random vehicle of the solution, respecting flight limit restrictions

(i.e. a customer out of the drone range, cannot be mutated into a drone route). Example of

mutation is illustrated in Figure 4.3.

Algorithm 5: Mutation.
1 for individual = 1 to population_size do
2 if individual 6= best_solution then
3 if random_probability < mutation_probability then
4 Perform mutation operation;
5 end

4.5 Local search

Local search 2-opt is implemented in memetic algorithms to optimize the solution by rear-

ranging a section of nodes in a route that crosses itself as per Figure 4.4. Pseudocode of

local search 2-opt is shown in Algorithm 6.

4.6 Termination

The algorithm will terminate based on two main conditions:
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Figure 4.3: Mutation example

Figure 4.4: 2 opt illustration

1. Condition 1: no improvement in the population for a certain amount of iterations

determined in parameter exit_condition, for example 200.

2. Condition 2: number of generations has been achieved as per parameter genera-

tion_size
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Algorithm 6: Local search 2-Opt.
1 Inputs: Route, i, k
2 for 0 to i− 1 do
3 New_Routei = Routei
4 end
5 for i to k do
6 Temp_Routei = Routei
7 end
8 Reverse Temp_Route
9 Append Temp_Route to New_Route

10 for k + 1 to len(Route) do
11 New_Routei = Routei
12 end
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5 Result

This section outlines the results of our experiments and is organized into four sub-chapters.

In Section 5.1, we introduce algorithm parameters tuning to identify best parameters for

Memetic algorithm. Then, in Section 5.2, we test this algorithm to solve for Travelling Sales-

man Problem (TSP) with known solution. We want to identify the gap of our solution to the

optimum solution. In Section 5.3, we run the algorithm across different drone delivery mod-

els to gain insights of different drone delivery model. Finally, in Section 5.4, we conducted

sensitivity analysis for different operating parameters such as number of trucks/drones, drone

speed, etc.

We use real-life problem instances to test our algorithm. We deploy drone delivery system

program on Google Cloud Platform, utilizing most basic computation offered by Google’s

infrastructure: single core CPU setting with 3.75 GHz memory (Figure 5.1).

Figure 5.1: Setting of Google Cloud Platform for DDS cloud

5.1 Algorithm parameters tuning

In order to obtain the best performance of the algorithm, we conducted tuning of the algo-

rithm parameters. We selected six parameters and started experimenting with base values
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for each parameter. The baseline values are number of generations: 1000, population size:

40, elite size 10% of population, reproduce rate of 80%, 2-opt percentage of 40% and mu-

tation rate of 15%. Then for tuning, we considered 2 different values for each parameter

and performed 10 runs for each parameter value against real-life last-mile delivery data from

West Massachusetts. This data contains 50 customers locations in the form of latitude and

longitude. The algorithm will determine the duration to serve all these customers, measured

in the last vehicle return time to the depot in minutes.

The results of parameter tuning are as follow and more detailed results are available in

Appendix A:

1. Number of generations (Figure A.1): With 1000 generations as baseline, our average

solution is 148.28 minutes - whereas 800 generations and 1200 generations result in

144.93 minutes and 145.03 minutes, respectively.

2. Population size (Figure A.2): Typical population size for the algorithm is 30-60 and

we set our baseline parameter at 40. Based on the analysis performed, 60 population

size yielded better result in term of average, as well as range of the obtained solutions.

3. Elite size (Figure A.3): Baseline parameter for elite size is 20 % from the population

size. This parameter produced better results with less variance compared to elite size

of 10% and 5%.

4. Reproduce rate or Crossover probability (Figure A.4): Crossover probability is set to

80% as baseline value - producing average solution of 148.28 minutes. The results

of 80% probability are compared with 65% and 95% respectively, both have similar

average solution of 144.00 minutes and 144.32 minutes. Crossover probability of 65%

yielded more results with less variance.

5. 2-Opt percentage (Figure 4.4): 2-Opt analysis demonstrated that percentage of 2-Opt

correlated with the optimum results of the solutions. Reducing 2-Opt from 40% to
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30% increased average solution by around 1 minute. Increasing 2-Opt to 50% reduced

average solution by around 6 minutes.

6. Mutation rate (Figure A.6): Analysis is done for mutation rate of 5%, 15% and 25%.

The results of various mutation rate are relatively similar, hence baseline parameter of

15% for mutation rate will be used.

In total, we conducted 130 runs and obtained the median, minimum, and maximum result

for each parameter tuning. These results are plotted into box-whisker graph (Figure 5.2).

Based on the analyses, the algorithm parameters are selected as follow: number of generations

(800), population size (60), elite size (20%), reproduce rate (65%), 2-opt percentage (50%)

and mutation rate (15%).

Figure 5.2: Parameter tuning - Summary

5.2 Algorithm performance evaluation

After setting up the parameters, we tested our algorithms to benchmark against problem

instance "eil51" for the Travelling Salesman Problem (TSP) that is commonly used in routing
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Table 5.1: DDS solution results of 30 runs for eil51 TSP

DDS solution for TSP-51

Mean 441.8223333
Standard Error 0.991856576
Median 441.445
Mode #N/A
Standard Deviation 5.432622205
Sample Variance 29.51338402
Kurtosis -0.010357619
Skewness 0.074425423
Range 23.96
Minimum 430.24
Maximum 454.2
Sum 13254.67
Count 30
Confidence Level(95.0%) 2.02857447

research. eil51 is a 51-city TSP problem developed by Christofides and Eilon (1969), it has

a single depot and 50 customers located in Eucledian plane with optimum routing solution

of 426.

We tested our algorithm by setting up the operating parameters to only have a single

truck without any drones. We conducted 30 runs in order to have statistically significant

data and the results of this testing can be seen in Table 5.1.

Average result of our algorithm is 441.82 - which has 3.7% gap with optimum solution of

426. Considering that the algorithm is set to solve vehicle routing problem, the result shows

that the algorithm is quite robust to solve TSP. All the results of the runs are also plotted

in a box-whisker plot as can be seen in Figure 5.3.
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Figure 5.3: Evaluation results of Memetic Algorithm on problem instance
"eil51" for a Traveling Salesman Problem
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5.3 Analysis of drone delivery model

As outlined in previous chapter (Figure 3.1), we developed four different drone delivery

models:

1. Pure drone delivery : drones will serve all customers

2. Drone-inner/Truck-outer : drones will serve customers closer from the depot and truck

serve customers farther from the depot

3. Truck-inner/Drone-outer : trucks will serve customers closer from the depot and drones

serve customers farther from the depot

4. Shared Truck-Drone: trucks or drones can serve any customers

In this section, we use our algorithm to solve our four models on six problem instances.

Each of these problems has 100 customers with different locations detailed in Appendix B

(Figure B.1 to B.6). The customer locations are from a real case study from a major package

delivery company in the state of Massachusetts, USA. Baseline operating parameters that

we use are 2 drones (flight speed of 45 km/h and flight limit of 30 mins) and 2 trucks (truck

speed of 30 km/h).

The result of the analysis is shown in Figure 5.4. The bar chart at the top is last

return time to depot (minimum tour time) in minutes. There are 6 bar-charts representing

6 problem instances for each of the four drone delivery models. Correspondingly, the line

chart at the bottom shows the number of customers not served for that particular problem

instance and drone delivery model. We can derive insights as follow from our analysis:

• Model 1 (pure drone delivery) and model 3 (truck-inner/drone-outer) did not manage

to serve all the 100 customers in each of the 6 problem instances due to drone flight

limit. These models performed relatively acceptable in problem instance 4, where we

have most customers located near the depot
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• Model 2 (drone-inner/truck-outer) and model 4 (shared truck-drone) managed to serve

all the customers in all the 6 problem instances, indicating that these models are more

adaptable for different scenarios.

• Model 4 (shared truck-drone) was expected to yield the most optimum result because

there is no restriction as to which customer is served by truck/drone. The result of

model 4 performed especially well in problem instance 3 and 4 where model 4 only

needed 1/3 to 1/5 of time required by model 2 to serve all customers.

Figure 5.4: Summary of drone delivery model performance
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5.4 Effect of operating parameters

In this section, we conducted a comprehensive sensitivity analysis for different operating pa-

rameters: number of trucks, number of drones, drones speed and flight limit. By conducting

this analysis, we hope to provide insights to decision makers to understand the sensitivity

of each the proposed models to each parameter for better design of their drones delivery

systems.

We ran these various operating parameters against real-life last-mile delivery data of 100

customers (problem instance 2) for the four drone delivery models. The operating parameters

used for sensitivity analysis and the insights are described below:

1. Number of trucks (Figure 5.5): Sensitivity analysis is done with number of trucks 1,

2 and 3. Number of trucks has obviously no impact to Model 1 (pure drone delivery)

because there is no truck in this model. There is also no impact in Model 2 (drone-

inner/truck-outer) and Model 3 (truck-inner/drone-outer) because the drone is the

bottleneck in both models. Model 3 also has 70 unserved customers due to drone flight

range limitation. Increasing number of trucks from 1 to 2 has the most positive impact

in Model 4, reducing time required to serve all customers by around 32 minutes (17%

time reduction). Further increasing the number of trucks to 3 also reduces time by 12

minutes (9% time reduction).

2. Number of drones (Figure 5.6): We also conducted experiments with 1, 2 and 3 drones.

Increasing the number of drones has a similar positive impact in Model 1 (pure drone

delivery) and Model 3 (truck-inner/drone-outer) because we reach the customers faster

with more drones. However in both these models, the unserved customers stay the same

at 70 customers because the range of the drone is still limited. In Model 2 (drone-

inner/truck-outer), we can see a positive impact as increasing number of drones from

1 to 2 reduces minimum tour time by 50% (from 431.5 minutes to 215.7 minutes) and

further increasing number of drones to 3 reduces time by 29% (from 215.7 minutes to
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Figure 5.5: Sensitivity analysis for number of trucks

154.2 minutes). We don’t see any major improvement for Model 4 (shared truck-drone)

because the bottleneck is mainly with the truck.

3. Drone speed (Figure 5.7): We performed experiments with drone speed of 30 km/h, 45

km/h and 60 km/h. Increasing drone speed has visible impact to Model 1 (pure drone

delivery) and Model 3 (truck-inner/drone-outer), reducing the number of unserved

customers due to farther drone range. However, an increase in speed is not enough as

with 60 km/h, we still have 64 unserved customers (out of 100 customers). In Model

2 (drone-inner/truck-outer), increasing drone speed has an adverse effect because the

drone starts to take customers originally assigned for the truck, resulting in longer

minimum tour time. In Model 4 (shared truck-drone), increasing drone speed from 45

km/h to 60 km/h reduces time required from 159 minutes to 154 minutes (around 4%

improvement).

4. Drone flight limit (Figure 5.8): Finally, we also tested with drone flight limit of 30

minutes and 60 minutes. Doubling drones flight limit from 30 minutes to 60 minutes

39



Figure 5.6: Sensitivity analysis for number of drones

expands drones area of service, hence it has positive impact to Model 1 (pure drone

delivery) and Model 3 (truck-inner/drone-outer), reducing the number of unserved

customers to 61 customers. Similar to drone speed sensitivity analysis, increasing drone

flight limit has negative effect to minimum tour time in Model 2 (drone-inner/truck-

outer) because drones are starting to serve farther customers, taking up customers

originally assigned by trucks. Drone is not as efficient as truck for longer distances, as

it needs to make return trip every time it delivers a package to a customer, creating

a sub-optimal solution. Finally in Model 4 (shared truck-drone), there is no impact

because the bottleneck is with the truck.
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Figure 5.7: Sensitivity analysis for drone speed

Figure 5.8: Sensitivity analysis for drone flight limit
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6 Conclusions

In our research, we evaluated the optimal design and operational performance of four different

drone delivery models (pure drone, drone-inner/truck-outer, truck-inner/drone-outer and

shared area). We proposed a Memetic Algorithm to optimize delivery routes for drones and

trucks with objective function to minimize latest return time of all vehicles to the depot.

We developed a software package to evaluate drone delivery models. This software package

is deployed on the cloud and can be accessed by any web browser. Interface and solutions

of the software package are elaborated in Appendix E.

The algorithm is tested to solve eil51 Travelling Salesman Problem (TSP) and it produces

robust result, averaging only 3.7% gap from the optimum solution. Analysis for different

drone delivery model also shows that Model 2 (drone-inner/truck-outer) performs better than

Model 3 (truck-inner/drone-outer) because Model 3 restricts drones from serving customers

at farther areas, limiting total number of customers that can be served. In various problem

instances with 100 customers that we tested, we also observed that Model 4 (shared truck-

drone) performs the best with up to around 80% reduction in return time to depot compared

to Model 2 (drone-inner/truck-outer). Sensitivity analyses to various operating parameters

also yields several interesting insights. Increasing drone speed and flight time limit has

adverse impact for Model 2 (drone-inner/truck-outer) because more customers at farther

distances are assigned to drones instead of trucks. Therefore, we can conclude that trucks

are more suitable to serve farther customers since drones are limited to deliver one package

per trip. We also found that increasing number of trucks (from 2 to 3) and drone speed (from

30 km/h to 45 km/h) has positive impact to the best model, Model 4 (shared truck-drone)

as it reduces minimum tour time by 8% and 3%, respectively.

Finally, we also conducted the analysis to understand the impact of introducing drones

to pure truck delivery system. We found that adding 2 drones in the pure truck delivery

system can reduce minimum tour time by 1 to 11%, as per Figure 6.1.

For future research areas, in order to make more holistic review of drone delivery system,
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Figure 6.1: Introducing drones to traditional truck-only delivery system reduces
minimum tour time by 1 to 11% in various problem instances

we can take into accounts vehicle capacity. Our research assumed uncapacitated truck and

single package capacity for drone. In real life, the truck has space limitation in the amount

of packages it carries. Drone even has more limitation in the packages it can carry (e.g.

limited by weight, dimension or package type). Another extension of this research is to

consider different customers’ delivery windows. This constraint should be incorporated into

the model, and the algorithm has to be able to optimally conduct vehicle assignment to

deliver all packages within specific customers delivery window.
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A Appendix A: Parameters tuning results

Figure A.1: Parameter tuning - Number of generations

Figure A.2: Parameter tuning - Population size
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Figure A.3: Parameter tuning - Elite size as percentage of population

Figure A.4: Parameter tuning - Reproduce rate or crossover probability
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Figure A.5: Parameter tuning - 2-Opt percentage

Figure A.6: Parameter tuning - Mutation rate
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B Appendix B: Problem instances

Figure B.1: Problem instance 1 (100 customers)

Figure B.2: Problem instance 2 (100 customers)
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Figure B.3: Problem instance 3 (100 customers)

Figure B.4: Problem instance 4 (100 customers)
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Figure B.5: Problem instance 5 (100 customers)

Figure B.6: Problem instance 6 (100 customers)
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C Appendix C: Raw data of drone delivery model anal-

ysis

Figure C.1: Drone Delivery Model Analyses: Model 1 (pure drone delivery),
Model 2 (drone-inner/truck-outer), Model 3 (truck-inner/drone-outer) and

Model 4 (shared truck-drone)
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D Appendix D: Raw data of operating parameters anal-

ysis

Figure D.1: Operating Parameter Sensitivity Analyses: Number of trucks
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Figure D.2: Operating Parameter Sensitivity Analyses: Speed of trucks

Figure D.3: Operating Parameter Sensitivity Analyses: Number of drones and
flight limit
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E Appendix E: Developed software package for evalua-

tion of drone delivery models

In order to conduct evaluation of drone delivery system, we built a complete solution deployed

on Cloud, along with complete setup of a SQL database to record the results of the experi-

ments. The solution was built using Python programming language and the database was de-

ployed with PostgreSQL. The solution is available in Google Cloud (http://bit.ly/dronecloud/)

and can be accessed by any web browser to perform the experiments.

The interface of the solution is shown in Figure E.1. In this solution, user can change

various parameters such as Memetic Algorithm parameters and Drone Delivery operating

parameters as well as select various Drone Delivery models, objective functions and problem

instances.

Examples of the solutions for different drone delivery models are shown in Figure E.2 to

Figure E.5.
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Figure E.1: Interface of developed software package: Drone Delivery Evaluation in Last-Mile Delivery
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Figure E.2: Drone Delivery Model-1 (pure drone delivery) in problem instance 2
with 100 customers: Customers beyond drone flight range are unreachable

Figure E.3: Drone Delivery Model-2 (drone-inner/truck-outer) in problem
instance 2 with 100 customers: Customers inside drone flight range (inside
circle) are served by drones and the customers outside circle are served by

trucks
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Figure E.4: Drone Delivery Model-3 (truck-inner/drone-outer) in problem
instance 2 with 100 customers: Customers inside truck coverage area (inside

green circle) are served by trucks and customers outside green circle are served
by drones. Customers beyond drone flight range (outside purple circle) are

unreachable

Figure E.5: Drone Delivery Model-4 (shared truck-drone) in problem instance 2
with 100 customers: Customers are served by drones and trucks based on the

most optimum routing as per algorithm
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