
MIT Open Access Articles

MISTIQUE: A System to Store and Query
Model Intermediates for Model Diagnosis

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Manasi Vartak, Joana M. F. da Trindade, Samuel Madden, and Matei Zaharia.
2018. MISTIQUE : A System to Store and Query Model Intermediates for Model Diagnosis. In
SIGMOD’18: 2018 International Conference on Management of Data, June 10–15, 2018, Houston,
TX, USA. ACM, New York, NY, USA, 16 pages.

As Published: 10.1145/3183713.3196934

Publisher: Association for Computing Machinery (ACM)

Persistent URL: https://hdl.handle.net/1721.1/121346

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/121346
http://creativecommons.org/licenses/by-nc-sa/4.0/

MISTIQUE: A System to Store andQuery Model Intermediates for
Model Diagnosis

Manasi Vartak
MIT CSAIL

mvartak@csail.mit.edu

Joana M. F. da Trindade
MIT CSAIL

jmf@csail.mit.edu

Samuel Madden
MIT CSAIL

madden@csail.mit.edu

Matei Zaharia
Stanford University

matei@cs.stanford.edu

ABSTRACT
Model diagnosis is the process of analyzing machine learning (ML)
model performance to identify where the model works well and
where it doesn’t. It is a key part of the modeling process and helps
ML developers iteratively improve model accuracy. Often, model
diagnosis is performed by analyzing different datasets or inter-
mediates associated with the model such as the input data and
hidden representations learned by the model (e.g., [4, 24, 39]). The
bottleneck in fast model diagnosis is the creation and storage of
model intermediates. Storing these intermediates requires tens to
hundreds of GB of storage whereas re-running the model for each
diagnostic query slows down model diagnosis. To address this
bottleneck, we propose a system calledMISTIQUE that can work
with traditional ML pipelines as well as deep neural networks to
efficiently capture, store, and query model intermediates for diag-
nosis. For each diagnostic query,MISTIQUE intelligently chooses
whether to re-run the model or read a previously stored intermedi-
ate. For intermediates that are stored inMISTIQUE, we propose a
range of optimizations to reduce storage footprint including quan-
tization, summarization, and data de-duplication. We evaluate our
techniques on a range of real-world ML models in scikit-learn and
Tensorflow. We demonstrate that our optimizations reduce storage
by up to 110X for traditional ML pipelines and up to 6X for deep
neural networks. Furthermore, by using MISTIQUE, we can speed
up diagnostic queries on traditional ML pipelines by up to 390X
and 210X on deep neural networks.

ACM Reference Format:
Manasi Vartak, Joana M. F. da Trindade, Samuel Madden, and Matei Zaharia.
2018. MISTIQUE: A System to Store and Query Model Intermediates for
Model Diagnosis. In SIGMOD’18: 2018 International Conference on Manage-
ment of Data, June 10–15, 2018, Houston, TX, USA. ACM, New York, NY, USA,
16 pages. https://doi.org/10.1145/3183713.3196934

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGMOD’18, June 10–15, 2018, Houston, TX, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-4703-7/18/06. . . $15.00
https://doi.org/10.1145/3183713.3196934

1 INTRODUCTION
Machine learning (ML) is the paradigm of “programming using
data” [36]. It is the process of taking a model specification (e.g.,
type of model, model structure), providing training data, and using
a training procedure to learn model parameters that fit the train-
ing data. Since the model is learned from data, it is only natural
that diagnosing problems with the model or interpreting the model
involves analyses of data artifacts produced during modeling. Di-
agnosing an ML model involves answering questions such as “why
does the home price prediction model under-perform on old Victo-
rian homes?” or “why does the image classification model classify a
frog as a ship?” Relatedly, model interpretability (e.g., [4, 15, 29, 40])
involves answering questions about how a model works (e.g., “what
is the concept learned by a particular neuron?”) and why it makes
certain predictions. For simplicity, in this paper, we will call both
kinds of analyses described above as “model diagnosis.”

Diagnostic techniques such as the ones above can be answered
by analyzing different data artifacts related to the model including
input data, prediction values, and data representations produced
by the model (e.g., high-dimensional representations of homes or
images learned by the model). We collectively refer to these datasets
as model intermediates (formal definition in Sec. 2).

Given the importance of model intermediates for diag-
nosis, in this paper, we explore the question of how to effi-
ciently store and query model intermediates to support effi-
cientmodel diagnosis.WeproposeMISTIQUE (Model Intermediate
STore and QUery Engine), a system designed to capture, store, and
query model intermediates to support diagnostic queries.

1.1 Motivating Examples
We begin by highlighting three diagnostic techniques that have
been proposed in the literature and describe the role that model
intermediates play in each of them. A more extensive list of tech-
niques is presented in Sec. 2.2.
Visualizations: A popular means to understand the working of
any model is via visualization. For example, the ActiVis tool from
Facebook [24] (screenshot in Fig.12 in Appendix) provides devel-
opers of neural networks an interactive visualization of neuron
activations. This information can help ML developers identify ac-
tivation patterns, compare activations between classes, and find
potential sources of error. Similar tools have also been built for
traditional modeling pipelines. For example, VizML [13] (Fig.13,
Appendix) provides an interface where ML developers can priori-
tize errors, examine feature distribution, and debug model results.

https://doi.org/10.1145/3183713.3196934
https://doi.org/10.1145/3183713.3196934

Intermediates. In order to visualize arbitrary model intermediates,
the relevant intermediates must first be generated and stored (re-
running the model each time is too expensive for an interactive
setting). For ActiVis, this means that data representations at each
model layer must be stored. As expected, the total cost to store
all intermediates is tremendous. E.g., storing intermediates for ten
variants of the popular VGG16 network [46] on a dataset with 50K
examples requires 350GB of compressed storage. As a result, Ac-
tiVis requires users to restrict the layers and number of examples
for which intermediates (and aggregates of intermediates) will be
logged.
SVCCA: Raghu et. al. recently proposed SVCCA [39], a technique to
compare representations learned by different layers in one or more
neural networks. In brief, SVCCA takes as input the activations of
neurons in two layers l1 and l2, performs SVD on the two sets of
activations, projects activations into the subspace identified by SVD,
and computes canonical correlation to find directions in these sub-
spaces that are most aligned (see Alg. 1 in Appendix). Intermediates.
To perform class sensitivity analyses across the whole network as
described [39], activations for all examples at all layers must be
available. Furthermore, if one wants to study training procedure
dynamics as described in the paper, this data must be collected at
every training epoch. As with ActiVis, storing data for ten training
epochs would take 350GB for a moderately sized network, creating
a major bottleneck in using this technique. These intermediates
could also be generated anew each time the analysis was to be run;
however, to perform class sensitivity analysis, this would require
running the model >200 times on the full dataset.
Network Dissection: Bau et. al. recently proposed Netdissect [4]
to learn interpretable concepts for filters in a convolutional neural
network (CNN). For every convolutional filter k , Netdissect calcu-
lates the distribution of values for the the activation maps Ak (x)
and computes a threshold Tk such that p (Ak (x) > Tk) = α where
α is a small constant like 0.005. Tk is then used to binarize each
Ak and the correlation between the binarized map and the original
concept label is computed. Intermediates. Netdissect requires that
the activation maps for every image and every convolutional unit
be available. If Netdissect is to be run for a single unit or layer, it
is conceivable that the computation can be done in memory. How-
ever, when performing this computation for all units or tuning the
threshold Tk (e.g., for a new dataset), then it may be more efficient
to store the intermediates vs. re-running the model repeatedly.

1.2 MISTIQUE: storing model intermediates
As demonstrated by the diagnostic techniques above, model inter-
mediates form the substrate on which a variety of diagnostic and
interpretability techniques are based. However, model intermedi-
ates require many tens to hundreds of GBs in storage, making it
challenging to use existing diagnostic techniques as well as develop
new ones. In addition, computing intermediates by re-running the
model for each analytic query not only slows down the process
of model diagnosis but can also be unacceptable for interactive
query workloads. Thus, the bottleneck in supporting efficient and
widely usable model diagnosis is caused by two data management
questions: (a) how do we store large amounts of data efficiently
for storage and querying (e.g., as in [6, 37, 48]); and (b) how do we
trade-off intermediate storage vs. recreation (as in [7, 22, 52])?

To address these questions, we propose MISTIQUE, a system de-
signed to capture, store, and query model intermediates for model
diagnosis. MISTIQUE can work traditional ML pipelines as well as
deep neural networks.MISTIQUE leverages unique properties of
intermediates in both kinds of models to drastically reduce store
costs while giving up little accuracy in most analytic techniques.
Specifically,MISTIQUE is based on three key ideas: (1) Activation
quantization and summarization: we take inspiration from exist-
ing diagnostic techniques to encode neuron activations based on
data distributions, thus getting drastic storage reductions without
trading off accuracy; (2) Similarity-based compression: we leverage
data similarity in traditional ML pipelines as well as DNNs to remove
redundancy between intermediates and obtain large compression
ratios. (3) Adaptive querying and materialization: we propose a
cost model to determine when a query for intermediates should
be answered by re-running the model vs. reading a materialized
intermediate. A similar cost model determines when an intermedi-
ate should be materialized. Together, these techniques can reduce
storage for intermediates by up to 110X for traditional ML pipelines
and 6X for deep neural networks, and provide a query speed-up of
up to two orders of magnitude depending on the query. In all, we
make the following contributions:
• We are the first to identify that model intermediates are a key
substrate for a variety of model diagnosis and interpretation
techniques, and that intermediate storage and querying is a
bottleneck in implementing and using these techniques (Sec. 1).

• We present a set of diagnostic queries drawn from recent litera-
ture that represent commonly performed analyses on traditional
ML pipelines and neural network models (Sec. 2.2).

• We proposeMISTIQUE, a system to capture, store, and query
intermediates for different types of ML models and pipelines.
Our implementation supports pipelines built using scikit-learn
as well as Tensorflow (Sec. 3).

• We propose three key optimizations to reduce storage footprint
and speed up queries: (a) activation quantization and summa-
rization (Sec. 4.1); (b) similarity-based compression (Sec. 4.2);
and (c) adaptive querying and materialization (Sec. 4.3).

• We experimentally evaluate MISTIQUE on a set of pipelines in
scikit-learn and neural network models in Tensorflow. We find
that MISTIQUE reduces storage by up to 110X on traditional
ML pipelines and up to 6X for deep neural networks. We show
that our quantization strategies cause only a small reduction in
diagnostic accuracy. Depending on the type of query,MISTIQUE
provides a speedup of up to 390X for traditional ML pipelines
and up to 210X for deep neural networks (Sec. 8).

2 PRELIMINARIES
In this section, we describe the models supported by MISTIQUE
and our problem formulation. We also present a list of commonly
used diagnostic techniques along with a categorization based on
the amount of data used by each technique.

2.1 Models and Model Intermediates
In this work, we consider two classes of models: (a) traditional
ML models built with hand-crafted features (denoted TRAD), and
(2) deep neural network (denoted DNN) models that learn features
from raw data. We work with a running example for each class of

PNov1

POct31

POct30 properties interim1 interim2 interim9 pred

S10:ElasticNetS1: OneHot

Encode S2: PCA

properties interim1 interim9 interim10

S1: OneHot

Encode S10: RelativeSize

pred

S11:XGBoost

properties interim1 interim2 interim9 pred

S10: LinRegS1:OneHot

Encode S2:PCA

0.85

0.83

0.89

AUROC

Figure 1: Zillow pipelines
Figure 2: VGG16 architecture [46]

models. For TRAD, we consider the the set of models built to predict
housing prices given attributes of the house such as number of
rooms, area in square feet, and location (details about the task can
be found in Sec. 7). Fig. 1 shows examples of TRAD models built for
this task. Notice that these models are not a single monolithic entity;
instead, they are comprised of a series of stages that make up the
model pipeline. These stages are a mixture of data pre-processing
steps (e.g., OneHotEncoding, Scaling), feature engineering steps
(e.g., computing the RelativeSize feature), and model building and
prediction stages (e.g., gradient boosted trees in XGBoost [14]).

For DNNs, we consider the set of models built for classifying
images on the CIFAR101 dataset. This dataset consists of images
drawn from ten classes such as frog, ship, deer, etc. Fig. 2 shows
VGG16 [46]2, a popular DNN for image classification. Unlike TRAD,
the DNN does not have explicit, separate stages for pre-processing,
feature extraction, and prediction; instead, it has a large number of
layers that play the role of feature extractors and a final layer that
performs the prediction. Each layer in the DNN applies a different
transformation to its input and represents the data in a different
high-dimensional space. We refer to the operation applied at each
stage (in the pipeline or DNN) as a transformation and the corre-
sponding function or object as the transformer (e.g., OneHotEncoder,
PCA, Convolutional Layer-5, SoftMax).

The process of training a model (TRAD or DNN) can produce dif-
ferent artifacts: the learned model parameters, log files, gradient
information, intermediate datasets produced by different stages of
the model, etc. In this paper, we focus on model intermediates that
are the intermediate datasets produced by the different stages of
the traditional ML pipeline or hidden representations (i.e., neuron
activations produced by different layers in a neural network). For
example, in Fig. 1, model intermediates are the outputs produced by
every stage of the model pipeline (labeled “intermX”). Similarly, in
Fig. 2, model intermediates are the data representations produced
by every layer in the neural network. Thus, we find that while the
structure of models in these two classes is distinct, intermediates
produced by both classes of models are similar.

2.2 Characterization of Diagnostic Queries
In Sec. 1, we highlighted three techniques used for model diagnosis.
In Table 1 we provide a survey of diagnostic and interpretability
techniques drawn from the literature. For each diagnostic technique,
we show an example of the question answered by that technique
(or query) in terms of our running examples. For completeness,

1https://www.cs.toronto.edu/ kriz/cifar.html
2in this work, we focus on image networks

we also include analyses that cannot be handled solely with MIST-
IQUE either because they require access to data other than model
intermediates (e.g., gradients) or because they require the ability
to perturb data or models. Furthermore, to characterize the query
performance of our system, we categorize diagnostic techniques
based on amount of data required by each technique. Specifically,
based on the number of Rows, i.e., input examples, and Columns,
i.e., features, used by each technique, we define four categories:
Few Columns, Few Rows (FCFR), Few Columns, Many Rows (FCMR),
Many Columns, Few Rows (MCFR), and Many Columns, Many Rows
(MCMR). In this work, few denotes <100. A typical diagnostic work-
load contains queries belonging to different categories; for example,
one workload might be: (i) plot the prediction error for model PNov1
(FCMR); (ii) for the house with highest prediction error, H∗, exam-
ine its raw features (MCFR); (iii) find the performance of houses
PNov1 on houses “most similar” to H∗ (MCFR). (iv) plot the features
of H∗ vs. the average features of all houses (MCMR). A system for
model diagnosis must therefore be able to support queries in all
four categories. In Table 1, we identify by name (e.g., POINTQ) the
queries that will be used in our experimental evaluation.

2.3 Problem Formulation
Each of the queries discussed above requires access to different
intermediates from a model, e.g., predictions or hidden representa-
tions. For a given intermediate, there are two ways of computing it:
(a) either we can re-run the model up to the particular intermedi-
ate (denoted RERUN) or (b) we can read the intermediate that has
previously been materialized to disk (denoted READ). For instance,
the Netdissect implementation from [4] re-runs the full model any
time an analysis is to be performed. While this solution may suf-
fice when computing intermediate results for a small number of
examples, running the model over tens of thousands of examples
is slow (e.g., up to two orders of magnitude slower than reading
as shown in Sec. 8) and wastes computation. In contrast, systems
like ActiVis [24] and VizML [13] store intermediates to disk and
read them to answer queries. While materializing intermediates is
essential for providing interactive query times, this can come at a
large storage cost. As mentioned before, storing intermediates for
ten epochs of the VGG16 network on CIFAR10 takes about 350GB
(gzip compressed), a storage cost most developers are unwilling to
pay. Similarly, storing fifty traditional ML pipelines with 9 — 19
stages takes 67 GB of storage (gzip compressed). Thus, the strate-
gies of RERUN and READ are optimal for some intermediates while
they may be expensive (with respect to time or storage) for others.
In this work, we seek to address the question of speeding

Query Category Specific instantiation Intermediates
Queried

Queries Using Intermediates
Few Columns, Few Rows (POINTQ) Find the activation map for neuron-35 in layer-4 for image-345.png [53] X, I
(FCFR) (TOPK) Find the top-10 images that produce the highest activations for Neuron-35 in

layer-13 [53]
X, I

Get the predicted price error for Home-150 [3] X, P
Get accuracy of POct31 on the top-50 most expensive homes in LA [24] Y, X, P

Few Columns, Many Rows
(FCMR)

(COL_DIFF) Compare model performance for POct31 and PNov1 grouped by type of
house [31, 35]

X, Y, P

(COL_DIST) Plot the error rates for all homes [13] X, I, Y, P
Find number of images that were predicted as a frog but were in fact a ship [13] Y, P
Compute the confusion matrix for the training dataset [3] Ytrain, Ptrain

Many Columns, Few Rows (KNN) Find performance of CIFAR10_CNN for images similar to image-51 [3] X, ximg-51, Y, P
(MCFR) (ROW_DIFF) Compare features for Home-50 and Home-55 that are known to be in the

same neighborhood but have very different prices [24]
I, Y

Determine whether this test point is an adversarial example [17] X, xtest, Y, ytest
Find training examples that contributed to the prediction of this test example [26] X, I, xtest, itest

Many Columns, Many Rows
(MCMR)

(SVCCA) Compute similarity between the logits of class ship and the representation
learned by the last convolutional layer [39]

I

(VIS) Plot the average activations for all neurons in layer-5 across all classes [24] I
Compare the representations learned in layer-5 by AlexNet and by VGG16 in Layer-8 [39] IAlexNet, IVGG
Find correlation between the activation of each neuron and pixels corresponding to
concept lamps [4]

X, I

Queries Not Using Intermediates
Gradient-based Find the salient pixels in Image-250 [43, 45, 57]
Feature importance methods Find importance of pixel-50 in this model [40, 44]
Perturbing examples Find the minimal change that must be made to mispredict Image-51 [18, 38]
Training New Models Find a smaller model that performs similarly to a larger model [20, 26]

Table 1: A Categorization of Diagnostic Queries. Last column, X=input, Y=target, I=intermediate dataset, P=predictions.

up diagnostic queries by intelligently choosing when to re-
run a model vs. (store and) read an intermediate and in turn
minimizing the cost of storing intermediates.

3 MISTIQUE OVERVIEW
In this section, we give a high-level overview of the system archi-
tecture and how it can be used to run diagnostic queries.

3.1 Architecture
The system architecture for MISTIQUE is shown in Fig. 3. MIST-
IQUE consists of three primary components: the PipelineExecutor,
the DataStore, and the ChunkReader. These three components
are tied together by a central repository called the MetadataDB
that is used to track metadata about intermediates and pipelines.
The PipelineExecutor is responsible for running ML models and
pipelines in logging mode. This means that the executor runs the
pipeline forward, finds all intermediates produced by the pipeline
and registers information about the model and intermediates in
MetadataDB. The PipelineExecutor does not make decisions about
data storage or placement; that falls under the purview of the Data-
Store. Along with logging intermediates, the PipelineExecutor is
also responsible for storing transformers trained in a pipeline (e.g.
a trained XGBoost model) so that the transformer may be re-run in
the future without retraining.

Intermediates produced by the PipelineExecutor are passed on
to the DataStore (Sec. 4) for decisions about whether and how to

Pipeline
Executor Chunk

Reader

MetadataDB

Pipeline/XFormer
Store

Statistics

S1

Data Store

Compressed
Partition

Index
Structures

Disk

InMemoryStore
Stored

ColChunk

Partly-filled
Partitions

Q1

Q2

Q3

Q4

log_intermediates() get_intermediates()

S2

MISTIQUE

S3

Figure 3: MISTIQUE Architecture with data flow during stor-
age (S1-3) and querying (Q1-4)

store the intermediate. The DataStore is made up of an InMem-
oryStore and a persistent store (on-disk in our implementation).
MISTIQUE adopts a column-oriented scheme (much like [1, 48]) to
store intermediates. Specifically,MISTIQUE represents each inter-
mediate (including the source data and the final predictions) as a

{RowBlock

RowBlock{

{Column

DataFrameCol
Chunk

row_id

Figure 4: MISTIQUE Data Model

DataFrame3 that is divided horizontally into a set of RowBlocks. Ev-
ery row is associated with a unique row_id that is preserved across
all intermediates and is used as a primary index. A DataFrame is
also associated with a set of Columns that make up the DataFrame.
The part of a Column that falls into a particular RowBlock is called
a ColumnChunk. The data model is shown in Fig. 4.

The unit of data storage in the DataStore is a Partition. A Parti-
tion is a collection of ColumnChunks from one or more DataFrames
that are to be stored together. The InMemoryStore serves as a
bufferpool and keeps a number of (uncompressed) Partitions in
memory. When a Partition is evicted from the InMemoryStore, the
Partition is compressed and written out to disk. As described in
subsequent sections, storage decisions inMISTIQUE are made at
the level of ColumnChunks, giving the system fine-grained control
over data placement. The DataStore also stores any indexes built
on the data (by default, a primary index on row_id). The process
of storing intermediates is indicated by S1—S3 in Fig. 3: the re-
quest to log intermediates is sent to the PipelineExecutor which
sends each intermediate to the DataStore. The DataStore in turn
queries the MetadataDB to determine whether the intermediate (or
some columns) should be stored and, if so, stores the data using
optimizations described below.

The final component ofMISTIQUE is the ChunkReader (Sec. 6)
which is responsible for servicing query requests. Query execution
in MISTIQUE may involve fetching data from the DataStore or
re-running pipelines to re-create intermediates. The procedure for
querying intermediates is shown as Q1—Q4 in Fig. 3: the query
is sent to the ChunkReader which queries the MetadataDB to de-
termine whether to re-run the model or read data that was previ-
ously stored. Depending on the response, the ChunkReader either
invokes the PipelineExecutor or queries the DataStore. The deci-
sion between these two alternatives is made by the cost model
(Sec. 5). Regardless of how the data is obtained, a query to MIST-
IQUE produces a numpy array4 that can be used as input to analytic
functions.

3.2 Usage Example
To log intermediates from Tensorflow, the ML developer must only
provideMISTIQUE with the path to the model checkpoint and as
well as an input loading function. We currently support Tensorflow
3We choose to call it a dataframe because of the familiarity of the concept and not due
to any parallels with R, pandas or Spark dataframes. They can equally be considered
as relational tables.
4http://www.numpy.org/

models built using Keras. Calling log_intermediates(checkpoint,
input_func) causesMISTIQUE to run the model forward by call-
ing the input function and log intermediates for every model layer.
For scikit-learn pipelines, we have defined a YAML specification
(modeled after Apache Airflow5) that is used to express scikit-learn
pipelines in a standard format. We wrapped a number of common
scikit-learn functions for use in the YAML specification (e.g. mod-
els like XGBoost, LinearRegression as well as preprocessing steps
like Scaling and LabelIndexing). log_intermediates(yaml_file,
input_func) similarly logs all the pipeline intermediates. Once
intermediates have been logged inMISTIQUE, the ML developer
can use a set of query APIs to access the data inMISTIQUE. The key
query API exposed byMISTIQUE is get_intermediates([keys]).
This API can be used to retrieve any column, of any intermediate,
belonging to any model that has been logged withMISTIQUE. Keys
take the form of project.model.intermediate.column. The API
returns a numpy array with the required columns as well as the
row_id column. For ease of use, MISTIQUE provides implemen-
tations of common analytic functions that can be applied on top
of the numpy array result (although this is not the focus of our
contribution). SinceMISTIQUE returns numpy arrays, it is also easy
to add other analytic functions.

4 DATA STORE
Once MISTIQUE has used the cost model (Sec. 5) to determine
that an intermediate is to be stored, the DataStore is responsbile
for determining how to most efficiently store the intermediate.
The naïve strategy when storing intermediates is to fully store
every itermediate from any pipeline that is run. While simple, this
strategy requires a great deal of storage, e.g., it logs 350 GB of
compressed data across ten epochs of the moderately sized VGG16
model and requires 67 GB to store fifty traditional ML pipelines
with <20 stages. Therefore, we explore different storage strategies
to reduce footprint of intermediates without compromising query
time or accuracy. Specifically, we propose three key optimizations:
(a) for DNNs, we propose multiple quantization and summarization
schemes to reduce the size of intermediates; (b) for DNNs as well
as traditional pipelines, we perform exact and approximate de-
duplication between ColumnChunks within and across models; (c)
we perform adaptive materialization of intermediates by trading off
the increased storage cost with reduction in query time. We now
expand upon each of these optimizations.

4.1 Quantization and Summarization
A key insight from diagnostic techniques proposed for DNNs is
that ML developers are much more interested in relative values of
neuron activations than they are in the exact values. For example,
the visualizations in ActiVis are used to compare activations of
neurons in different classes (see Fig. 12). Since the visualization
cannot display >256 shades of the same color, at most 256 distinct
activation values may be shown in the visualization. On similar
lines, the Netdissect technique only examines neuron activations
in the top 99.5th percentile, i.e., the technique only needs to know
if the activation is “very high” or “not very high”—regardless of
the actual activation value. This indicates that we can quantize or
5https://airflow.incubator.apache.org

discretize neuron activations into a much smaller number of val-
ues without affecting the accuracy of many diagnostic techniques.
Previous work on model compression and model storage [19, 34]
explored the use of quantization of model weights to reduce model
size for inference as well as storage. In this work, we propose to ex-
tend those techniques to aggressively quantize neuron activations,
noting that since these activations are only used for diagnostic pur-
poses, we can perform drastic quantization. MISTIQUE supports
three quantization schemes:
• Lower precision float representation (LP_QT): Storing a double
precision float value as a single precision (float32) or half point
precision (float16) value can lead respectively to a 2X and 4X
reduction in storage with no effect on diagnostic accuracy.

• k-bit quantization (KBIT_QT): Since many diagnostic techniques
are based on relative activations, we can reduce storage costs by
representing values using quantiles (similar strategies are used
to quantize weights in [34]). Given the maximum number of bits
b to be allocated for storing each activation, we can compute 2b
bins using quantiles and assign each value to the corresponding
bin. Quantization of activation values from o to b bits reduces
storage by a factor of o

b .
• Threshold-based quantization (THRESHOLD_QT): To support queries
such as Netdissect that use an explicit activation threshold, we
can directly store data binarized using a given threshold. Once
a threshold has been picked, however, we cannot binarize the
data with respect to another threshold. This scheme reduces
storage cost by o, the number of bits used by the original values.
The quantizations above reduce the storage required for each

value, but do not reduce the number of values stored. This is par-
ticularly important in CNNs where the size of an activation map
can significantly increase storage costs. Therefore, to reduce the
number of activations, we support summarization via pooling (sim-
ilar to the max-pooling operator in DNNs). In pooling quantization
(POOL_QT), we apply an aggregation operation such as average (de-
fault) or max to adjacent cells in an activation map to obtain a lower
resolution representation of the map. Assuming a 2-D activation
map per channel (as in CNNs), pooling quantization reduces storage
by S2

σ 2 where we assume that the size of an activation map is SxS
and size of the aggregation window is σxσ . We support two levels
of pooling quantization: σ=2 (default, also denoted pool(2)) and
σ=S, denoted pool(S), e.g., pool(32) for CIFAR10. σ = S is the most
extreme version of pool-based quantization where we compute a
single average value to represent each activation map.

4.1.1 Implementation. Both KBIT_QT and THRESHOLD_QT require
the system to first collect samples of activations to build a distribu-
tion and subsequently use this distribution to perform quantization.
By default, for KBIT_QT, we set k = 8, which means that we com-
pute 28 = 256 quantiles for the activation distribution and assign
each activation value to the appropriate quantile. 8BIT_QT reduces
storage by 4X when raw activations are single precision floats and
8X for double precision. Note that when fetching an 8BIT_QT in-
termediate, we must also pay a reconstruction cost to go from the
quantized values (0 - 255) to floating points. For POOL_QT, we con-
servatively use σ = 2. However, the user can choose to set a more
aggressive pooling level depending on the application. In Sec. 8, we
study the trade-offs involved in setting different σ values.

4.2 Exact and Approximate De-duplication
This optimization is based on two observations. First, intermediates
in traditional ML pipelines often have many identical columns. For
example, in the TRAD pipelines of Fig. 1, consecutive intermediates
often only differ in a handful of features (e.g., RelativeSize between
interm9 and interm10 in PNov1) and pipelines share many stages
(e.g., in an extreme case like POct30 and POct31, all intermediates
are identical except for pred). Second, TRAD and DNN intermediates
often have similar columns (e.g., predictions from multiple models
for the same task such as POct30, POct31; intermediates from different
epochs for the same DNN; and quantized versions of intermediates).
We can leverage these insights to avoid storing redundant data and
to compress similar data to obtain higher compression ratios.

4.2.1 Implementation. Implementing de-duplication (exact and
approximate) requires two steps: first, we must identify identical
or similar ColumnChunks, and second, we must compress these
ColumnChunks when writing to storage (MISTIQUE does not
currently compress ColumnChunks when in memory). We can
identify identical ColumnChunks simply by computing the hash
of the ColumnChunks. If an identical ColumnChunk has previ-
ously been stored, then the current ColumnChunk can be skipped.
For detecting similar columns, we use the MinHash. For every
new ColumnChunk, the DataStore computes the MinHash for the
ColumnChunk (after discretizing the values) and queries the LSH
index for Partitions with Jaccard similarity above a threshold τ . If
an existing ColumnChunk is found to have similarity above τ , the
new ColumnChunk is stored in the same partition as the existing
ColumnChunk. Otherwise, a new Partition is created.

For DNNs, we perform two simplifications: (a) we only perform
exact de-duplication because DNN columns seldom have similar val-
ues; (b) we co-locate columns from the same intermediate because
DNN intermediates (when flattened) have many more columns than
TRAD intermediates and therefore data similarity based co-location
disperses columns over a large number of Partitions.

The previous procedure performs a rough clustering of Colum-
nChunks based on similarity and assigns ColumnChunks to Par-
titions. When a Partition is to be written to disk (e.g., because it
is full or gets evicted from the InMemoryStore), the Partition is
compressed and written out.MISTIQUE supports a variety of off-
the-shelf compression schemes including gzip, HDF5, and Parquet.

4.3 Adaptive Materialization
Adaptive materialization is motivated by the observation that tradi-
tional ML pipelines and DNN models are often many stages long
but not all intermediates or columns are accessed with equal fre-
quency. Some intermediates (e.g., predictions of a model or image
embeddings from the last convolutional block) may be accessed
very often while others (e.g., activations from the first convolutional
layer) may be accessed less frequently. Therefore, we trade-off the
increase in storage cost due to materialization against the resulting
speedup in query time. We capture this trade-off in parameter γ
formally described in our storage cost model (Sec. 5.2). If γ for an
intermediate is larger than a threshold, the intermediate is mate-
rialized. An intermediate that is queried a large number of times
has a large γ value and is more likely to be materialized. Similarly,
an intermediate with a small storage cost leads to a larger γ and

is more likely to be materialized. The full algorithm for logging
intermediates is shown in Alg. 4 in the Appendix.

5 COST MODEL
In order to make the decision about (a) whether to store an inter-
mediate, and (b) whether to execute a query by re-running a model
or reading an intermediate, we respectively develop a storage cost
model and a query cost model. We begin with the query cost model
which provides the building blocks for the storage cost model.

5.1 Query Cost Model
The total time to execute a diagnostic technique (tdiag) can be com-
puted as the sum of the time to fetch the required intermediates
(tfetch) and the time to perform computation on the data (tcompute).

tdiag = tfetch + tcompute (1)

The time to fetch the data, in turn, is equal to either the time to
re-run the model or to read a previously stored intermediate. Since
the compute time is the same in both cases, we only model tfetch.
Suppose we want to fetch the intermediate at stage i in modelM
(e.g., i-th layer in a DNN or stage-i in a traditional ML pipeline) and
we seek to compute the intermediate for n_ex examples (where n_ex
is between 1 and TOTAL_EXAMPLES). Then, if ti,re-run denotes
the time to re-run the model to intermediate i, we can compute
this quantity as the sum over each stage s ≤ i of: (a) time to read
the transformer for s (tread_xformer), (b) time to load the input for s
(tread_xformer_input), and (c) time to execute s (texec_xformer).

ti,re-run = Σis=0{tread_xformer (s) + tread_xformer_input (s)

+ texec_xformer (s)} (2)

For a DNN, we can rewrite the model as follows: (a) we usually
load the entire model at once, so we can rewrite the first term as
tmodel_load; (b) explicit input to the DNN is only provided at layer-0,
so we read input once; and (c) since prediction usually occurs in
batches, we factor batch size into the time to execute a stage. If
tmodel_load denotes the time to read the model, sizeof denotes the
size of an object in bytes, bt_size denotes the batch size, ρ denotes
the read speed of storage, and tfwd (s, bt_size) denotes the time to
run a single batch of examples through the DNN up to layer s, the
cost model for re-running DNNs can be written as in Eq. 3.

ti,re-run,NN = tmodel_load +
n_ex · sizeof(ex)

ρ

+
n_ex
bt_size

· Σis=0tfwd (s, bt_size) (3)

ti,read =
n_ex · sizeof(ex)

ρd
(4)

Instead of re-running a model to obtain an intermediate, we can
also read a previously-stored intermediate. The time to read an
intermediate (denoted tread) is simply proportional to the size of
the intermediate, i.e., the number of examples multiplied by the size
of one example. We assume that the size of the example accounts
for the precision of the value (e.g., float16, uint8). We fold the time
to read, decompress, and reconstruct the data into the constant ρd .

If tre-run ≥ tread, we run the query by reading a previously stored
intermediate.

5.2 Storage Cost Model
Using the query cost model, we can also determine when to store
(i.e., materialize) an intermediate. The decision to materialize can be
made at the level of an entire intermediate (i) or a particular column
in an intermediate (i, c). In either case, we compute tre-run and tread
as above by setting n_ex to TOTAL_EXAMPLES. If tre-run ≥ tread,
we can trade-off the speedup from storing the intermediate against
the additional cost of storing the intermediate.

γ =
(ti,re-run − ti,read) · n_query(i)

S(i)
(5)

This trade-off is captured in γ shown in Eq. 5 where S(i) is the
(amortized) storage required for intermediate i, n_query(i) is the
number of queries made to intermediate i that gets updated with
each query to the system. The units of γ are seconds per GB and
it captures the amount of query time saved per GB of data stored.
For example, a γ of 1000 sec/GB indicates that the ML developer is
willing to use 1GB of storage in exchange for a total saving of 1000s
in query time. Note that the numerator of Eq. 5 increases with the
number of times intermediate i is queried. S(i), in turn, is affected
by storage of other intermediates; intermediates with similar data
will lead to lower S(i) because they are compressed together.

6 FETCHING DATA FROMMISTIQUE
Diagnostic techniques like those discussed in Sec. 2.2 are executed
by first fetching the data from MISTIQUE and then running analy-
ses on it. We currently have a simple query execution model inside
MISTIQUE. The ChunkReader is responsible for fetching interme-
diates either by reading them from the DataStore or re-running the
pipeline and returning them to the user. When a query for an in-
termediate arrives, the ChunkReader first queries the MetadataDB
to check if the intermediate has been stored and if so, verifies that
the time to read the intermediate is less than the time to re-run
the model (as computed by the cost model in Sec. 5). If the time
to read is smaller, the ChunkReader queries the DataStore for the
intermediate. The DataStore in turn identifies the Partitions con-
taining ColumnChunks for this intermediate. For particular kinds
of queries (e.g., fetch results by row_id), MISTIQUE can use the
primary index to speed up retrieval of relevant Partitions. In the
future, we can incorporate specialized indexes for particular types
of queries (e.g., nearest neighbor index). Once the relevant Parti-
tions have been read, the ColumnChunks for this intermediate are
stitched together and returned. On the other hand, if it is faster to
re-run the model, the ChunkReader invokes the PipelineExecutor
to obtain the intermediate. The PipelineExecutor in turn executes
previously stored transformers for this model or pipeline. In either
case, the result of the query to MISTIQUE is a numpy array which
is then used as input for further analysis (e.g., SVCCA, visualiza-
tion). Pseudocode for queryingMISTIQUE is shown in Alg. 3 in the
Appendix.

7 EXPERIMENTAL SETUP
In the previous sections, we described the data model, architec-
ture and optimizations implemented in MISTIQUE. In this section,
we present an experimental evaluation of our system on multiple

real-world models and analytical techniques. We begin with a de-
scription of the experiment setup, including the generation of ML
pipelines, and then describe our results.

7.1 Workflows
We evaluated our storage techniques on different traditional ML
pipelines from scikit-learn and on deep neural network models
built in Tensorflow.

7.1.1 Traditional ML Models. (TRAD) To replicate a real-world
machine learning scenario for traditional models, we took the
dataset and task from the Kaggle Zestimate competition6. The
goal of this competition is to use data about homes (e.g., num-
ber of rooms, average square footage) to build a model that can
predict the error of Zillow’s in-house price prediction model. To
obtain pipelines for this task, we took scikit-learn scripts uploaded
by Kagglers for the Zestimate competition and turned them into
workflows in MISTIQUE. The workflows contained between 9 - 19
different stages including data preprocessing, feature engineering,
feature selection, fitting a model, and making predictions using
the model. Since competitors often submit scripts with the best
hyperparameter settings, we also defined pipeline variations by
changing the hyperparameter settings. The result of this process
was a set of 50 pipelines that are described fully in Appendix E.
We note that in real modeling projects, data scientists build many
more than 50 models; however, the gains offered by MISTIQUE
only grow with more pipelines and therefore, we chose to limit our
experimentation to 50.

7.1.2 DNN Models. (DNN) To illustrate the efficacy of our tech-
niques on deep neural networks, we work with the CIFAR10 image
classification dataset. CIFAR10 contains 50K training images from
10 classes where each image has dimensions 64x64x3. We evaluate
on two models trained on CIFAR10: the VGG16 model fine-tuned
on CIFAR10, denoted as CIFAR10_VGG16 (the original model has
been trained on the IMAGENET [41] dataset) and a well-accepted,
simple CNN model trained from scratch, denoted as CIFAR10_CNN
7. The original VGG16 model consists of 13 convolutional layers
and 3 fully connected layers. During fine-tuning of VGG16, we take
the first 13 pre-trained convolutional layers, freeze their weights,
replace the original fully connected layers with two smaller, fully
connected layers (because CIFAR10 does not require these layers
to be wide) and train these layers. In contrast, CIFAR10_CNN has 4
convolutional layers and 2 fully connected layers, and is trained
from scratch. We checkpoint model weights after every 10% of the
total number of epochs (i.e., 10 checkpoints each).

MISTIQUE has been entirely implemented in Python. All ex-
periments were run on an Intel Core i7-6900K machine running
at 3.20 Ghz. 32 core machine (16 CPUs) with 64 GB RAM, and 2
GM200 GeForce GTX Titan X GPU. GPU support was enabled when
running DNN models.

8 EXPERIMENTAL RESULTS
Our goals in the experimental evaluation are to answer the follow-
ing key questions: (1) What is the speedup in execution time from

6https://www.kaggle.com/c/zillow-prize-1
7https://github.com/keras-team/keras/blob/master/examples/cifar10_cnn.py

POIN
TQ

TOPK

COL_
DIFF

COL_
DIS

T
KNN

ROW
_D

IFF
CORR VIS

Query

10
−2

10
−1

10
0

10
1

10
2

To
ta

l R
un

tim
e

(s
)

FCFR FCMR MCFR MCMR
Re-run Read

(a) Zillow pipelines

POIN
TQ

TOPK

COL_
DIFF

COL_
DIS

T
KNN

ROW
_D

IFF

SVCCA
VIS

10
−2

10
−1

10
0

10
1

10
2

To
ta

l R
un

tim
e

(s
)

FCFR FCMR MCFR MCMR
Re-run Read

(b) CIFAR10_VGG16 (Layer 21)

POIN
TQ

TOPK

COL_
DIFF

COL_
DIS

T
KNN

ROW
_D

IFF

SVCCA
VIS

10
−2

10
−1

10
0

10
1

10
2

To
ta

l R
un

tim
e

(s
)

FCFR FCMR MCFR MCMR
Re-run Read

(c) CIFAR10_VGG16 (Layer 11)

POIN
TQ

TOPK

COL_
DIFF

COL_
DIS

T
KNN

ROW
_D

IFF

SVCCA
VIS

10
−1

10
0

10
1

10
2

10
3

10
4

To
ta

l R
un

tim
e

(s
)

FCFR FCMR MCFR MCMR
Re-run Read

(d) CIFAR10_VGG16 (Layer 1)

Figure 5: End-to-end query runtimes. Asterisk indicates
strategy picked by cost model

usingMISTIQUE to run diagnostic queries? (2)What overall storage
gains can we achieve by usingMISTIQUE and our proposed opti-
mizations? (3) Does our cost model accurately capture the re-run
vs. read trade-off? (4) For DNNs, how do the proposed quantization
schemes affect accuracy of diagnostic techniques? (5) What is the
overhead of using MISTIQUE vs. baselines? (6) What is the impact
of adaptive materialization on storage and query time?

8.1 End-to-End Query Execution Times
In this set of experiments, we evaluate the end-to-end execution
times for a representative set of diagnostic techniques from Table. 1.
For each query category (FCFR, FCMR, MCFR, MCMR), we evaluate
on two queries for the TRAD and DNN models (see Table. 5 in the
Appendix for full list). For the DNN queries, we run the same query
at multiple layers to show how the trade-off between reading and
re-running changes across layers. In this experimental setup, when
re-running DNN models, we pre-fetch the entire input into memory.
Batch size for the DNN queries was set to 1000 and RowBlocks in
MISTIQUE were set to be 1K rows. Fig. 5 shows results of this
experiment with an asterisk indicating the strategy chosen by the
cost model. Note the log scale on the y-axes.

For TRAD models, we find that running a query by reading an
intermediate is always faster than re-running the pipeline. For
example, in Fig. 5a, we see a speedup of between 2.5X — 390X.
In contrast, for DNN models (here CIFAR10_VGG16), the decision
between whether to re-run or read depends on the model layer and
number of examples fetched by the query. For queries on Layer21
(Fig.5b), the last layer, reading intermediates is 60X — 210X faster
that than re-running the model. For Layer11 (Fig.5c), we see that
reading the intermediate is again faster by 2X — 42X. In contrast,
we find that at Layer1 (Fig.5d), re-running the model can be up
to 2.5X faster for some queries. This is because Layer1 is very

https://github.com/keras-team/keras/blob/master/examples/cifar10_cnn.py

Storage scheme
10

−1

10
0

10
1

10
2

To
ta

l S
iz

e
(G

B
)

dedup store_all

1 5 10 15 20 25 30 35 40 45 50
Number of pipeline runs

0

20

40

60

80

To
ta

l S
iz

e
(G

B
)

dedup store_all

(a) Zillow pipelines

Storage scheme
10

0

10
1

10
2

10
3

10
4

To
ta

l S
iz

e
(G

B
)

lp_qnt
8bit_qnt

pool(2)
pool(32)

dedup
store_all

Storage scheme
10

0

10
1

10
2

10
3

10
4

To
ta

l S
iz

e
(G

B
)

lp_qnt
8bit_qnt

pool(2)
pool(32)

dedup
store_all

(b) CIFAR10_CNN (left) and CIFAR10_VGG16 (right)

Figure 6: Storage sizes for different strategies

close to the input and is the largest layer by size (see Sec. D in the
Appendix). Since we pre-fetched input data for DNN queries, we
expect to observe even larger speedups when the input must be
read from disk. For all queries we evaluated, with the exception of
SVCCA, compute time is a small fraction of the total query time. For
SVCCA on Layer1, in contrast, compute time accounts for about
99% of the total time.

The above experiment empirically demonstrates that choos-
ing the right strategy (re-run vs. read) in executing a diagnos-
tic technique can lead to speedups of between 2X— 390X.

8.2 Intermediate Storage Cost
Next we examine the storage gains obtained by the different opti-
mizations proposed inMISTIQUE. Fig. 6 shows the storage cost, i.e.,
number of bytes used, for Zillow, CIFAR10_CNN and CIFAR10_VGG16
models. For every set of models, we store intermediates from all
stages. For TRAD, we evaluate the basic strategies of STORE_ALL
and DEDUP. For DNN models, we also compare the storage cost
when applying different quantization schemes: LP_QT, 8BIT_QT,
and POOL_QT (σ = 2, 32) described in Sec. 4.

For Zillow (Fig. 6a, left), we find that the raw dataset is 168 MB
compressed but STORE_ALL requires 67GB to store all the interme-
diates across 50 pipelines. The 400X larger storage footprint indi-
cates that the naïve STORE_ALL strategy cannot scale to large input
data, long pipelines or large number of models. In contrast, DEDUP,
which applies approximate and exact de-duplication as discussed
in Sec. 4.2, drastically reduces storage cost by 110X to 611 MB. On
the right side of Fig. 6a, we see that the cumulative storage cost for
Zillow increases linearly for STORE_ALL, while it stays relatively
constant for the DEDUP strategy. This is because, for Zillow (and
most TRAD pipelines), many columns are shared between pipelines.
Consequently, most of the storage cost is due to the first pipeline
whereas deltas are stored for the rest.

In Fig. 6b we show the cost in bytes of storing intermediates for
CIFAR10_CNN and CIFAR10_VGG16. For both models, we store inter-
mediates for ten epochs. The raw size of the input data (CIFAR10) is
170MB (compressed) in both cases. For CIFAR10_CNN we find that

STORE_ALLwith no quantization requires 242 GB, while STORE_ALL
consumes 350 GB for CIFAR10_VGG16. The storage cost per DNN
model is much larger than that of a traditional ML pipeline. As a re-
sult, reducing storage footprint is even more essential for DNN mod-
els. For each model, we present storage sizes for LP_QT, 8BIT_QT
and POOL_QT (σ=2,32). We apply DEDUP on top of the default scheme
of POOL_QT (σ=2) to obtain the final size.

For CIFAR10_CNN , we see that LP_QT reduces storage from
242GB to 128 GB for and 8BIT_QT further reduces it to 72.4 GB. The
biggest storage gains can be achieved by applying different levels of
POOL_QT which can reduce storage to 39 GB for σ = 2 (6.2X reduc-
tion) and 2.53 GB for σ = 32 (95X reduction). Applying DEDUP does
not produce significant gains because, unlike Zillow pipelines,
CIFAR10_CNN has few or no repeated columns. CIFAR10_VGG16
shows the same trends as that of CIFAR10_CNN except for the im-
pact of DEDUP. Applying POOL_QT to CIFAR10_VGG16 reduces stor-
age by 6X for σ = 2 (58 GB) and by 83X for σ = 32 (4.19 GB). As
discussed in Sec. 7, CIFAR10_VGG16 is trained such that the bottom
13 convolutional layers of the network are frozen while only the
top fully connected layers are trained. Thus, intermediates from
the 13 layers are the same across all models and therefore applying
DEDUP in addition to POOL_QT (σ = 2) reduces storage footprint by
60X to 5.997 GB.

Thus,MISTIQUE can reduce storage footprint by between
6X (DNN)— 110X (TRAD), and upto 60X for fine-tuned models.

8.3 Validating the Cost Model
In Sec. 5, we proposed models to quantify the cost of re-running a
model and the cost of reading an intermediate. In this section, we
present experiments verifying our cost models and the resulting
trade-off, focusing particularly on DNNs. For this evaluation, we
used the CIFAR10_VGG16 model and stored intermediates for all
layers to disk. Next, we ran an experiment where we fetched each
intermediate either by reading the intermediate from disk or by
re-running the model. When re-running the DNN model, we pre-
fetched the entire input data into memory to avoid disk access. We
repeated this process for different number of examples (n_ex in the
cost model). The results are shown in Fig. 7 and 8.

1 6 11 16 19 21
Layer Number

10
−1

10
0

10
1

10
2

10
3

10
4

To
ta

l R
un

tim
e

(s
)

10
100

1000 10000

(a) Cost of re-running model

1 6 11 16 21
Layer Number

10
−1

10
0

10
1

10
2

10
3

10
4

To
ta

l R
un

tim
e

(s
)

lp_qnt
8bit_qnt

pool(2) pool(32)

(b) Cost of reading intermediate

Figure 7: Verifying the cost model
Fig. 7a shows the time required to compute intermediates by

re-running the model (n_ex=TOTAL_EXAMPLES) with different
batch size settings.We see that batch size has a significant impact on
execution time (since it affects the number of times the model is run
forward). Computing intermediates for batch size=10 is 30X slower
than for batch size=1000. Performance degrades slightly for batch
size of 10000, whereas larger batchsizes overflow the GPU memory

1K 10K 20K 30K 40K 50K
Number of examples

10
−2

10
−1

10
0

10
1

10
2

To
ta

l R
un

tim
e

(s
)

layer11
layer1

layer21
layer6

layer16

(a) Empirical

1K 10K 20K 30K 40K 50K
Number of examples

10
−2

10
−1

10
0

10
1

10
2

To
ta

l R
un

tim
e

(s
)

layer11
layer1

layer21
layer6

layer16

(b) Predicted

Figure 8: Read (solid) vs. Exec (dashed) Trade-off

(11 GB). (We therefore use batch size of 1000 in all experiments.)
We also find that time to re-run increases proportionately to the
layer number and we pay a fixed cost of 1.2s for model load. As
shown in Fig. 8a, execution time also increases linearly with n_ex.

Fig. 7b shows the time to read an intermediate from disk for
different layers and quantization schemes. The RowBlock size was
set to 1K rows and n_ex=TOTAL_EXAMPLES. As captured in Eq. 4,
the time to read an intermediate depends on the number of examples
in the intermediate and size of each example. We find that 8BIT_QT
has the largest read time (due to high reconstruction cost), followed
by LP_QT (but with 2X as much storage as 8BIT_QT), followed by
pool(2), and finishing with pool(32). Although pool(32) produces the
best query time, the drastic summarization makes it impossible to
run certain queries on it (e.g., SVCCA).pool(2) therefore presents
a good trade-off with respect to query time and storage, and
we use it as the default storage scheme inMISTIQUE.

Next, we examine the impact of the cost difference between
re-running and reading an intermediate when querying different
layers of the CIFAR10_VGG16 model. When reading intermediates,
we assume that the intermediates have been stored with the default
pool(2) scheme. Fig. 8a shows the retrieval cost for five different
layers when n_ex is varied between 1K — 50K. Dashed lines cor-
respond to re-running the model whereas solid lines correspond
to reading the intermediate. We find that (as captured in our cost
model), the time to read or re-run intermediates scales linearly with
the number of examples. Similar to the trend in end-to-end run-
times, reading intermediates is cheaper than re-running the model
for all layers except Layer1 (>10K examples). Layer1 is anomalous
because the intermediate is of large size (and therefore takes long
to read) but is close to the input (and therefore is fast to re-run).
Fig. 8b shows the same trade-off from Fig. 8a, except as predicted
by our cost model. We see that the cost model accurately predicts
the trade-off between re-running vs. reading and can be used to
determine the right query execution strategy (as in Fig. 5.

One constraint when querying an intermediate via reading is
that the number of RowBlocks read depends on the whether the
examples queried are scattered and whether there is an appropriate
index available on the RowBlocks. However, since the dotted and
solid lines in Fig. 8 do not intersect, we see that even if MISTIQUE
has to read the entire intermediate (50K) examples, it is faster to
read the intermediate vs. re-run the model. In addition, while RERUN
can only benefit from indexes on the input (e.g., find predictions
for examples 36), MISTIQUE can index any intermediate and speed
up queries in different layers (e.g., find predictions for examples
with neuron-50 activation > 0.5).

(a) (b) (c) (d)

Figure 9: Visualizing average activations for different stor-
age schemes: (a) full precision (float32), (b) LP_QT (float16),
KBIT_QT (k = 8), POOL_QT (σ = 32) (all produce the same
heatmap); (c) KBIT_QT (k = 3); (d) THRESHOLD_QT

8.4 Effect of Quantization on Accuracy
Next, we discuss the effect of our quantization strategies on diagnos-
tic techniques. We highlight results from three queries, namely, VIS,
SVCCA and KNN from Table 1. (1) VIS: Similar to [24], suppose we
want to visualize the average activation of 256 neurons in layer-9 of
the CIFAR10_VGG16 network. Fig. 9 shows heatmaps of these acti-
vations for full precision values (float32), LP_QT (float16), KBIT_QT
(k=8), POOL_QT (σ = 32), KBIT_QT (k=3) and THRESHOLD_QT (99.5%).
We see that there is no visual difference between full precision,
LP_QT (float16), KBIT_QT (k=8) and POOL_QT (σ=32 or equivalently
σ=2). However, KBIT_QT (k=3) and THRESHOLD_QT show obvious vi-
sual discrepancies. (2) SVCCA: The results of performing CCA [39]
(captured in the average cca coefficient) between the logits produced
by the CIFAR10_VGG16 network and representations of four differ-
ent layers are shown in Table 2. We see that the cca coefficient for
the 8BIT_QT intermediate is extremely similar to the full precision
intermediate. In contrast, POOL_QT (σ = 2) introduces a discrepancy
in the coefficient that reduces as the layer number increases. While
8BIT_QT is more accurate, reading 8BIT_QT is 6X slower and takes
1.5X more storage than pool(2). (3) K-nearest neighbors (KNN): In
KNN, our goal is to find the k most similar examples to a given ex-
ample similar to [3]. Table 3 in the Appendix shows the accuracy of
KNN on different layers when using 8BIT_QT and POOL_QT (σ = 2).
Here, we set k=50 and measure accuracy as the fraction of nearest
neighbors that overlap with the true nearest neighbors computed
on the full precision data. As with SVCCA, we find that 8BIT_QT
produces almost the same neighbors as the full precision interme-
diates whereas POOL_QT usually captures 75% of the neighbors.

Thus, we find that 8BIT_QT is more accurate than pool(2) for
some diagnostic queries; however, the increased accuracy comes at
the cost of 1.5X more storage and 6X slower queries. In MISTIQUE,
we choose to accept this lower accuracy of pool(2) but provide the
user the option of using 8BIT_QT as the default storage scheme.

Layer Full precision 8BIT_QT pool(2)
SVCCA (value of average cca coefficient)
6 0.8886 0.8868 0.6098
11 0.9185 0.9176 0.7085
16 0.7891 0.787 0.7464
19 0.8182 0.8182 0.8086

Table 2: SVCCA accuracy: Comparison of CCA coefficient
across different storage schemes

8.5 Adaptive Materialization
In Sec. 5.2, we proposed a simple cost model to trade-off storage
for an intermediate vs. the resulting decrease in query time. The

1 20 40 60 80 100 120 140
Number of query runs

0

20

40

60

80

100

To
ta

l S
iz

e
(G

B
)

adaptive dedup store_all

1 5 10 15 20 25
Number of query runs

0

20

40

60

80

100

To
ta

l R
un

tim
e

(s
)

COL_DIST COL_DIFF VIS

Figure 10: Adaptive Materialization: effect on storage and
query time for synthetic Zillow workload

impact of adaptive materialization is highly workload dependent.
In this evaluation, we demonstrate the efficacy of this optimization
on a synthetic workload. We generated the synthetic workload by
randomly choosing 25 queries (with repetition) for Zillow from
Table 5. We then usedMISTIQUE to log intermediates with adaptive
materialization turned on. We set γ to 0.5s/KB (i.e., trade-off 1 KB of
storage for a 0.5s speedup in query time). Fig. 10 shows the impact of
this optimization on storage size and runtime of queries. On the left,
we see that adaptive materialization (ADAPTIVE) has an extremely
small storage footprint compared to both STORE_ALL and DEDUP:
intermediates are materialized only once an intermediate has been
queried a large number of times. On the right of Fig. 10 we see the
query times for three different queries (chosen to demonstrate three
different behaviors). When no columns have been materialized,
queries in the adaptive strategy take as long as RERUN. As more
queries are executed and columns are materialized, the response
time for queries reduces. For example, the response time for VIS
query reduces from 20s to 1.7s after 15 queries whereas that of
COL_DIFF reduces from 75s to 26s after 5 queries. The response
time for COL_DIST however remains unchanged. Thus, with the
appropriate γ value, adaptive materialization can find a good trade-
off between increased storage and decreased query time.

8.6 Pipeline Overhead
As shown in the architecture diagram in Fig. 3, a new intermediate
that is to be logged in MISTIQUE is first added to the InMemo-
ryStore. Partitions from the InMemoryStore are written to disk
only if the Partition is full or the Partition gets evicted from the
InMemoryStore. Therefore, the exact overhead of logging depends
on whether the the relevant Partitions are full and if the InMem-
oryStore is already saturated: if the InMemoryStore is saturated,
then logging an intermediate will result in a write to disk; however,
if the InMemoryStore is not saturated, then there is no overhead
associated with logging. Since InMemoryStore and Partition satura-
tion depend closely on the workload, it is challenging to accurately
estimate logging overhead in general. Instead, to provide an up-
perbound on logging overhead, we measure pipeline execution
time when each intermediate is written to disk synchronously.

Fig. 11 shows the total runtimes (including logging overhead) for
three TRAD pipelines, P1, P5 and P9 (see Table. 4 in the Appendix
for full pipeline definitions). These were picked as representative
pipelines because of varying lengths and use of diverse models (they
contain 12, 17, and 18 stages respectively). We find that pipeline
runtime is directly correlated with the amount of data written to
storage. The STORE_ALL strategy consistently produces the largest
pipeline execution time since it writes the largest amount of data

p1 p5 p9
Pipeline

0

100

200

300

400

500

600

To
ta

l R
un

tim
e

(s
)

adaptive dedup store_all

(a) Zillow pipelines

CNN VGG16
Model

0

100

200

300

400

500

600

To
ta

l R
un

tim
e

(s
)

8bit_qnt
lp_qnt

pool(2)
pool(32)

rerun
store_all

(b) DNNmodels
Figure 11: Logging Overhead

(see Fig. 6). ADAPTIVE, in contrast, has low but non-zero overhead
(because it stores transformations used in the pipeline). The DEDUP
strategy produces modest overhead that is close to ADAPTIVE be-
cause it stores little data over each pipeline.

For DNNs, we find that running the CIFAR10_VGG16 model with-
out logging takes 19s. Storing all intermediates (without compres-
sion) takes 252s for single precision floats and 151s for half precision
floats. When using 8BIT_QT, we pay an extra cost for computing
quantiles and binning the data, resulting in pipeline execution time
of 379s. While 8BIT_QT takes 13X longer than running the model
with no logging, this overhead is small compared to the time taken
to train a model (often >30 mins for this model). Finally, using
POOL_QT (σ = 32) on CIFAR10_VGG16 results in execution time
of 20s — comparable to the time to run the model while σ = 2
requires 56s and σ = 4 requires 38s. Since CIFAR10_CNN shows
similar trends, we do not discuss its logging overhead separately.

9 RELATEDWORK
Model lifecycle management. Our work is most similar to pre-
viously proposed systems for lifecycle management of ML models
(e.g., [27, 34, 47, 50]). ModelDB [50] was the first to introduce the
problem of managing different model versions and storing metadata
about models to support reproducibility. It did not, however, focus
on storing intermediate datasets and we imagine thatMISTIQUE
could be integrated into a solution like ModelDB. ModelHub [34],
in contrast, focused on the problem of storing model weights (also
multi-dimensional arrays, like model intermediates) across differ-
ent models and versions. As a result, ModelHub and MISTIQUE
share similar goals and some of proposed techniques (e.g., quantiza-
tion) also have similarities. ModelHub does not, however, address
the problem of storing model intermediates or supporting model
diagnosis. In addition, we note that the proposed algorithms for
optimally determining which model versions to materialize have
limited applicability in our setting since the set of model intermedi-
ates we wish to store is not known ahead of time. [47] proposed
KeystoneML, a framework to express ML pipelines using high-level
primitives and optimize their execution in a distributed setting.
Model diagnosis. As discussed in the introduction and referenced
in Table 1, many techniques have recently been proposed for model
diagnosis and interpretability. These include visualization tools
such as ActiVis [24], VizML [13], ModelTracker [3] and DeepVis
Toolbox [53] that allow users to inspect data representations learned
by the model. Other diagnostic techniques propose to use surrogate
models to explain model behavior and failures (e.g., PALM [26],
LIME [40], [2, 20]). Yet other techniques have been proposed that
perform model diagnosis using model gradients and backpropaga-
tion (e.g., [43, 45, 53, 55]) or data perturbation (e.g., [25, 38, 44]).

Another class of technqiues such as Netdissect [4] and SVCCA [39]
examine hidden representations of models to answer questions
such as ‘what real-world concepts are encoded in each neuron’
and ‘whether the representations learned by two models are the
same’. A large portion of diagnostic and interpretability techniques
described above work on model intermediates and can therefore
benefit from a system likeMISTIQUE.
Provenance capture and storage. Lineage or provenance capture
and storage has been a rich area of work in the database commu-
nity (e.g., surveys [9, 10]). Many systems have been proposed to
capture coarse-grained lineage information, i.e., the set of trans-
formations applied to a dataset. These include scientific workflow
systems (e.g., VisTrails [11], Taverna [51], Kepler [28]), ML lifecycle
management systems (e.g. ModelDB and ProvDB [33]) and also
distributed processing systems (e.g., RDDs in Apache Spark [54]).
Similarly, many systems have been proposed to collect and query
fine-grained lineage data (example-level or cell-level) for specific
data types and computation models. Some examples include Sub-
Zero [52] for array-data, Titian [23] for Apache Spark, Trio [5],
Panda [22] for relational data and data warehouses, and [56] for
ML pipelines in KeystoneML.

As a result, some of the questions addressed in this paper, have
been explored in previous work. The key differences betweenMIST-
IQUE and work on lineage are three-fold: First, MISTIQUE already
has coarse-grained lineage available through the YAML specifi-
cation or the model checkpoint, so it needs to perform no extra
work here. Second, the questions answered by lineage systems are
significantly different from those answered by a model diagnosis
system. For instance, a lineage system seeks to answer queries of the
form “what input record produced a particular prediction?” (which,
incidentally, can be answered easily based on row_id) whereas
MISTIQUE seeks to answer queries such as “find all the input ex-
amples that had high value for a given feature.” And third, in many
ML models, we do not require specialized systems for fine-grained
(cell-level) lineage since this data can be obtained via the existing
forward and backward propagation mechanisms (e.g., in DNNs).
Data model, versioning, and compression. In this work, we
take a “relational” view of model intermediates and represent data
in a columnar format similar to [12, 48]. We could alternatively treat
intermediates as multi-dimensional arrays and use array-based stor-
age systems such as TileDB [37] and SciDB [49]. Since our goal
is to efficiently store intermediate datasets, our work is related to
work on dataset versioning and storage in both relational as well as
array-systems (e.g., [6–8, 21, 30, 42]). For example, the DataHub [6]
system proposed an architecture to perform collaborative data anal-
ysis by sharing datasets, Decibel [30] proposed efficient techniques
to store relational dataset versions, and [21] proposed “bolt-on”
versioning for traditional relational databases. On the side of array
databases, [42] tackled the question of storing multiple versions
of array data by taking advantage of delta encoding and compres-
sion. Subsequent work [7] in a similar vein, but for relational data,
addressed the question of storing vs. re-creating dataset versions.
While the techniques proposed in this work are powerful, they have
limited applicability in our setting because our intermediates are
not versions of the same dataset and the complete set of versions
is not known apriori. Besides dataset versioning, our proposed
quantization strategies are similar to those used to compress neural

network weights in [19] and scientific data [8]. Since MISTIQUE
stores data in a compressed format, in the future, we could also
incorporate analysis techniques operating directly on compressed
data as in [16]. Our data de-duplication strategy is related to de-
duplication techniques used in block-oriented storage systems [32].

10 CONCLUSION AND FUTUREWORK
Model diagnosis is an essential part of the model building pro-
cess. Analyses performed during model diagnosis often require
access to model intermediates such as features generated via fea-
ture engineering and embeddings learned by deep neural networks.
Querying these intermediates for diagnosis requires either the inter-
mediate to have been pre-computed and stored or to be re-created
on the fly. As we demonstrate in this paper, making an incorrect
decision regarding reading vs. re-running can slow down diagnos-
tic techniques by up to two orders of magnitude. In this work, we
proposed a system called MISTIQUE tailored to capture, store, and
query model intermediates generated from machine learning mod-
els. MISTIQUE uses a cost model to determine when to re-run a
model vs. read an intermediate from storage. When storing inter-
mediates, MISTIQUE uses unique properties of traditional machine
learning pipelines and deep neural networks to reduce the stor-
age footprint of intermediates by 6X— 110X while reducing query
execution time by up to 210X for DNNs and 390X for TRAD pipelines.

While this paper has made inroads into the problem of storing
and querying model intermediates, we see multiple avenues for
future work. First, this work focuses on efficient storage techniques
as a way to speed up diagnostic queries. A parallel means of achiev-
ing this goal is to speed up query execution via techniques such as
indexing, sampling, and approximation, and these approaches merit
further investigation. Second, our query execution currently sepa-
rates intermediate fetching from analysis; however, using knowl-
edge about the analysis may allow us to make better decisions about
retrieval (e.g., whether reconstruction is required or not). Similarly,
althoughMISTIQUE currently optimizes access to intermediates on
a per-query basis, a diagnosis session often involves many queries,
and therefore there may be opportunities to further reduce execu-
tion time via caching and pre-fetching. Third, extending our work
to other types of models, e.g., recurrent neural networks, may iden-
tify new opportunities for optimizations. Last, but not least, new
techniques for model diagnosis that can leverage data stored in a
system likeMISTIQUE is a rich direction for research.

ACKNOWLEDGEMENTS
We thank the SIGMOD reviewers for their thoughtful feedback on
this paper which led to significant improvements. Manasi Vartak
is supported by the Facebook PhD Fellowship and Joana M. F. da
Trindade is supported by an Alfred P. Sloan UCEM PhD Fellowship.

REFERENCES
[1] Anastassia Ailamaki, David J DeWitt, and Mark D Hill. 2002. Data page layouts

for relational databases on deep memory hierarchies. The VLDB Journal - The
International Journal on Very Large Data Bases 11, 3 (2002), 198–215.

[2] Guillaume Alain and Yoshua Bengio. 2016. Understanding intermediate layers
using linear classifier probes. CoRR abs/1610.01644 (2016). arXiv:1610.01644
http://arxiv.org/abs/1610.01644

[3] Saleema Amershi, Max Chickering, Steven M. Drucker, Bongshin Lee, Patrice
Simard, and Jina Suh. 2015. ModelTracker: Redesigning Performance Analysis

http://arxiv.org/abs/1610.01644
http://arxiv.org/abs/1610.01644

Tools for Machine Learning. In Proceedings of the 33rd Annual ACM Conference
on Human Factors in Computing Systems (CHI ’15). ACM, New York, NY, USA,
337–346.

[4] David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and Antonio Torralba. 2017.
Network Dissection: Quantifying Interpretability of Deep Visual Representations.
In Computer Vision and Pattern Recognition.

[5] Omar Benjelloun, Anish Das Sarma, Alon Halevy, and Jennifer Widom. 2006.
ULDBs: Databases with uncertainty and lineage. In Proceedings of the 32nd inter-
national conference on Very large data bases. VLDB Endowment, 953–964.

[6] Anant Bhardwaj, Amol Deshpande, Aaron J. Elmore, David Karger, Sam Madden,
Aditya Parameswaran, Harihar Subramanyam, Eugene Wu, and Rebecca Zhang.
2015. Collaborative Data Analytics with DataHub. Proc. VLDB Endow. 8, 12 (Aug.
2015), 1916–1919. https://doi.org/10.14778/2824032.2824100

[7] Souvik Bhattacherjee, Amit Chavan, Silu Huang, Amol Deshpande, and Aditya
Parameswaran. 2015. Principles of Dataset Versioning: Exploring the Recre-
ation/Storage Tradeoff. Proc. VLDB Endow. 8, 12 (Aug. 2015), 1346–1357. https:
//doi.org/10.14778/2824032.2824035

[8] Souvik Bhattacherjee, Amol Deshpande, and Alan Sussman. 2014. Pstore: an
efficient storage framework for managing scientific data. In Proceedings of the
26th International Conference on Scientific and Statistical Database Management.
ACM, 25.

[9] Rajendra Bose and James Frew. 2005. Lineage retrieval for scientific data process-
ing: a survey. ACM Computing Surveys (CSUR) 37, 1 (2005), 1–28.

[10] Peter Buneman, Sanjeev Khanna, and Wang Chiew Tan. 2001. Why and Where:
A Characterization of Data Provenance. In Proceedings of the 8th International
Conference on Database Theory (ICDT ’01). Springer-Verlag, London, UK, UK,
316–330.

[11] Steven P Callahan, Juliana Freire, Emanuele Santos, Carlos E Scheidegger, Cláu-
dio T Silva, and Huy T Vo. 2006. VisTrails: visualization meets data management.
In Proceedings of the 2006 ACM SIGMOD international conference on Management
of data. ACM, 745–747.

[12] Fay Chang, JeffreyDean, SanjayGhemawat,Wilson C. Hsieh, DeborahA.Wallach,
Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber. 2008.
Bigtable: A Distributed Storage System for Structured Data. ACM Trans. Comput.
Syst. 26, 2, Article 4 (June 2008), 26 pages.

[13] Dong Chen, Rachel KE Bellamy, Peter K Malkin, and Thomas Erickson. 2016.
Diagnostic visualization for non-expert machine learning practitioners: A design
study. In Visual Languages and Human-Centric Computing (VL/HCC), 2016 IEEE
Symposium on. IEEE, 87–95.

[14] Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A Scalable Tree Boosting
System. In Proceedings of the 22Nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD ’16). ACM, New York, NY, USA,
785–794.

[15] Been Doshi-Velez, Finale; Kim. 2017. Towards A Rigorous Science of Interpretable
Machine Learning. In eprint arXiv:1702.08608.

[16] Ahmed Elgohary, Matthias Boehm, Peter J. Haas, Frederick R. Reiss, and Berthold
Reinwald. 2017. Compressed linear algebra for large-scale machine learning. The
VLDB Journal (12 Sep 2017). https://doi.org/10.1007/s00778-017-0478-1

[17] Reuben Feinman, Ryan R Curtin, Saurabh Shintre, and Andrew B Gardner. 2017.
Detecting adversarial samples from artifacts. arXiv preprint (2017).

[18] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. 2015. Explaining and
Harnessing Adversarial Examples. ICLR (2015). http://arxiv.org/abs/1412.6572

[19] Song Han, Huizi Mao, and William J. Dally. 2015. Deep Compression: Compress-
ing Deep Neural Network with Pruning, Trained Quantization and Huffman
Coding. CoRR abs/1510.00149 (2015).

[20] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015. Distilling the knowledge in
a neural network. arXiv preprint arXiv:1503.02531 (2015).

[21] Silu Huang, Liqi Xu, Jialin Liu, Aaron J Elmore, and Aditya Parameswaran. 2017.
O rpheus DB: bolt-on versioning for relational databases. Proceedings of the VLDB
Endowment 10, 10 (2017), 1130–1141.

[22] Robert Ikeda and Jennifer Widom. 2010. Panda: A System for Provenance and
Data. In Proceedings of the 2Nd Conference on Theory and Practice of Provenance
(TAPP’10). USENIX Association, Berkeley, CA, USA, 5–5.

[23] Matteo Interlandi, Kshitij Shah, Sai Deep Tetali, Muhammad Ali Gulzar, Se-
unghyun Yoo, Miryung Kim, Todd Millstein, and Tyson Condie. 2015. Titian:
Data provenance support in spark. Proceedings of the VLDB Endowment 9, 3
(2015), 216–227.

[24] Minsuk Kahng, Pierre Andrews, Aditya Kalro, and Duen Horng Chau. 2017.
ActiVis: Visual Exploration of Industry-Scale Deep Neural Network Models.
CoRR abs/1704.01942 (2017).

[25] Pang Wei Koh and Percy Liang. 2017. Understanding Black-box Predictions
via Influence Functions. In Proceedings of the 34th International Conference on
Machine Learning (Proceedings of Machine Learning Research), Doina Precup and
Yee Whye Teh (Eds.), Vol. 70. PMLR, International Convention Centre, Sydney,
Australia, 1885–1894. http://proceedings.mlr.press/v70/koh17a.html

[26] Sanjay Krishnan and Eugene Wu. 2017. PALM: Machine Learning Explanations
For Iterative Debugging. In Proceedings of the 2Nd Workshop on Human-In-the-
Loop Data Analytics (HILDA’17). ACM, New York, NY, USA, Article 4, 6 pages.

[27] Arun Kumar, Robert McCann, Jeffrey Naughton, and Jignesh M. Patel. 2016.
Model Selection Management Systems: The Next Frontier of Advanced Analytics.
SIGMOD Rec. 44, 4 (May 2016), 17–22.

[28] Bertram Ludäscher, Ilkay Altintas, Chad Berkley, Dan Higgins, Efrat Jaeger,
Matthew Jones, Edward A Lee, Jing Tao, and Yang Zhao. 2006. Scientific workflow
management and the Kepler system. Concurrency and Computation: Practice and
Experience 18, 10 (2006), 1039–1065.

[29] Scott M Lundberg and Su-In Lee. 2017. A Unified Approach to Interpreting Model
Predictions. In Advances in Neural Information Processing Systems 30. Curran
Associates, Inc., 4768–4777.

[30] Michael Maddox, David Goehring, Aaron J Elmore, Samuel Madden, Aditya
Parameswaran, and Amol Deshpande. 2016. Decibel: The relational dataset
branching system. Proceedings of the VLDB Endowment 9, 9 (2016), 624–635.

[31] H. Brendan McMahan, Gary Holt, D. Sculley, Michael Young, Dietmar Ebner,
Julian Grady, Lan Nie, Todd Phillips, Eugene Davydov, Daniel Golovin, Sharat
Chikkerur, Dan Liu, Martin Wattenberg, Arnar Mar Hrafnkelsson, Tom Boulos,
and Jeremy Kubica. 2013. Ad Click Prediction: A View from the Trenches. In
Proceedings of the 19th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD ’13). ACM, New York, NY, USA, 1222–1230.

[32] Dutch T. Meyer and William J. Bolosky. 2011. A Study of Practical Deduplication.
In Proceedings of the 9th USENIX Conference on File and Storage Technologies
(FAST’11). USENIX Association, Berkeley, CA, USA, 1–1.

[33] Hui Miao, Amit Chavan, and Amol Deshpande. 2017. ProvDB: Lifecycle Manage-
ment of Collaborative Analysis Workflows.

[34] H. Miao, A. Li, L. S. Davis, and A. Deshpande. 2017. ModelHub: Deep Learn-
ing Lifecycle Management. In 2017 IEEE 33rd International Conference on Data
Engineering (ICDE). 1393–1394.

[35] Mahdi Milani Fard, Quentin Cormier, Kevin Canini, and Maya Gupta. 2016.
Launch and Iterate: Reducing Prediction Churn. InAdvances in Neural Information
Processing Systems 29, D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and
R. Garnett (Eds.). Curran Associates, Inc., 3179–3187.

[36] Peter Norvig. 2016. State-of-the-Art AI: Building Tomorrow’s Intelli-
gent Systems. (2016). http://events.technologyreview.com/video/watch/
peter-norvig-state-of-the-art-ai/

[37] Stavros Papadopoulos, Kushal Datta, Samuel Madden, and Timothy Mattson.
2016. The TileDB array data storagemanager. Proceedings of the VLDB Endowment
10, 4 (2016), 349–360.

[38] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. 2017. Deepxplore: Au-
tomated whitebox testing of deep learning systems. In Proceedings of the 26th
Symposium on Operating Systems Principles. ACM, 1–18.

[39] Maithra Raghu, Justin Gilmer, Jason Yosinski, and Jascha Sohl-Dickstein. 2017.
SVCCA: Singular Vector Canonical Correlation Analysis for Deep Learning Dy-
namics and Interpretability. In Advances in Neural Information Processing Systems
30, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett (Eds.). Curran Associates, Inc., 6078–6087.

[40] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. "Why Should I
Trust You?": Explaining the Predictions of Any Classifier. In Proceedings of the
22Nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD ’16). ACM, New York, NY, USA, 1135–1144.

[41] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, SeanMa,
ZhihengHuang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C.
Berg, and Li Fei-Fei. 2015. ImageNet Large Scale Visual Recognition Challenge.
International Journal of Computer Vision (IJCV) 115, 3 (2015), 211–252. https:
//doi.org/10.1007/s11263-015-0816-y

[42] Adam Seering, Philippe Cudre-Mauroux, Samuel Madden, and Michael Stone-
braker. 2012. Efficient Versioning for Scientific Array Databases. In Proceedings
of the 2012 IEEE 28th International Conference on Data Engineering (ICDE ’12).
IEEE Computer Society, Washington, DC, USA, 1013–1024.

[43] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedan-
tam, Devi Parikh, and Dhruv Batra. 2016. Grad-cam: Visual explanations from
deep networks via gradient-based localization. 7, 8 (2016).

[44] Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. 2017. Learning Impor-
tant Features Through Propagating Activation Differences. CoRR abs/1704.02685
(2017).

[45] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. 2013. Deep Inside
Convolutional Networks: Visualising Image Classification Models and Saliency
Maps. CoRR abs/1312.6034 (2013). arXiv:1312.6034 http://arxiv.org/abs/1312.6034

[46] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

[47] E. R. Sparks, S. Venkataraman, T. Kaftan, M. J. Franklin, and B. Recht. 2017.
KeystoneML: Optimizing Pipelines for Large-Scale Advanced Analytics. In 2017
IEEE 33rd International Conference on Data Engineering (ICDE). 535–546. https:
//doi.org/10.1109/ICDE.2017.109

[48] Mike Stonebraker, Daniel J. Abadi, AdamBatkin, XuedongChen,Mitch Cherniack,
Miguel Ferreira, Edmond Lau, Amerson Lin, Sam Madden, Elizabeth O’Neil, Pat
O’Neil, Alex Rasin, Nga Tran, and Stan Zdonik. 2005. C-store: A Column-oriented
DBMS. In Proceedings of the 31st International Conference on Very Large Data
Bases (VLDB ’05). VLDB Endowment, 553–564.

https://doi.org/10.14778/2824032.2824100
https://doi.org/10.14778/2824032.2824035
https://doi.org/10.14778/2824032.2824035
https://doi.org/10.1007/s00778-017-0478-1
http://arxiv.org/abs/1412.6572
http://proceedings.mlr.press/v70/koh17a.html
http://events.technologyreview.com/video/watch/peter-norvig-state-of-the-art-ai/
http://events.technologyreview.com/video/watch/peter-norvig-state-of-the-art-ai/
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
http://arxiv.org/abs/1312.6034
http://arxiv.org/abs/1312.6034
https://doi.org/10.1109/ICDE.2017.109
https://doi.org/10.1109/ICDE.2017.109

[49] Michael Stonebraker, Paul Brown, Jacek Becla, and Donghui Zhang. 2013. SciDB:
A Database Management System for Applications with Complex Analytics. Com-
puting in Science and Engg. 15, 3 (May 2013), 54–62. https://doi.org/10.1109/
MCSE.2013.19

[50] Manasi Vartak, Harihar Subramanyam, Wei-En Lee, Srinidhi Viswanathan,
Saadiyah Husnoo, Samuel Madden, and Matei Zaharia. 2016. ModelDB: A Sys-
tem for Machine Learning Model Management. In Proceedings of the Workshop
on Human-In-the-Loop Data Analytics (HILDA ’16). ACM, New York, NY, USA,
Article 14, 3 pages.

[51] Katherine Wolstencroft, Robert Haines, Donal Fellows, Alan Williams, David
Withers, Stuart Owen, Stian Soiland-Reyes, Ian Dunlop, Aleksandra Nenadic,
Paul Fisher, et al. 2013. The Taverna workflow suite: designing and executing
workflows of Web Services on the desktop, web or in the cloud. Nucleic acids
research 41, W1 (2013), W557–W561.

[52] Eugene Wu, Samuel Madden, and Michael Stonebraker. 2013. SubZero: A Fine-
grained Lineage System for Scientific Databases. In Proceedings of the 2013 IEEE
International Conference on Data Engineering (ICDE 2013) (ICDE ’13). IEEE Com-
puter Society, Washington, DC, USA, 865–876.

[53] Jason Yosinski, Jeff Clune, Anh Nguyen, Thomas Fuchs, and Hod Lipson. 2015.
Understanding Neural Networks Through Deep Visualization. In Deep Learning
Workshop, International Conference on Machine Learning (ICML).

[54] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,
Murphy McCauly, Michael J. Franklin, Scott Shenker, and Ion Stoica. 2012. Re-
silient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster
Computing. In Presented as part of the 9th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 12). USENIX, San Jose, CA, 15–28.

[55] Matthew D. Zeiler and Rob Fergus. 2014. Visualizing and Understanding Con-
volutional Networks. Springer International Publishing, Cham, 818–833. https:
//doi.org/10.1007/978-3-319-10590-1_53

[56] Zhao Zhang, Evan R. Sparks, and Michael J. Franklin. 2017. Diagnosing Machine
Learning Pipelines with Fine-grained Lineage. In Proceedings of the 26th Inter-
national Symposium on High-Performance Parallel and Distributed Computing
(HPDC ’17). ACM, New York, NY, USA, 143–153.

[57] B. Zhou, A. Khosla, Lapedriza. A., A. Oliva, and A. Torralba. 2016. Learning Deep
Features for Discriminative Localization. CVPR (2016).

A DETAILS OF DIAGNOSTIC TECHNIQUES
A.1 Visualizations
Figs. 12 and 13 respectively show screenshots of the visualization
interfaces proposed in [24] and [13] respectively.

Figure 12: ActiVis Tool screenshot from [24]

A.2 SVCCA
Algorithm 1 presents pseudocode for the SVCCA technique pro-
posed in [39].

A.3 NetDissect
Algorithm 2 presents pseudocode for the SVCCA technique pro-
posed in [4].

Figure 13: VizML Tool screenshot from [13]

Algorithm 1 SVCCA [39]

1: procedure svcca(Al1 , Al2) // activations from layers l1 and l2
2: A′l1

← SVD(Al1 , 0.99) // directions explaining 99% variance
3: A′l2

← SVD(Al2 , 0.99) // as above
4: {ρi , zl1 , zl2 }← CCA(A′l1 ,A

′
l2
) // set of canonical correlations

5: return
∑
i ρi

min (size (l1),size (l2))

Algorithm 2 Netdissect [4]

1: procedure netdissect(I , c , k , α) // images I , Concept c , unit
k , activation threshold α

2: Dk ← Ak (I) // get activation maps for unit k
3: Tk ← percentile (Dk , 1 − α) // get threshold
4: for Image x in I do
5: A(x) ← Ak (x)
6: for [i,j] in A(x).cells do // binarize
7: if A(x)[i, j] ≥ Tk then
8: A(x)[i, j] = 1
9: else
10: A(x)[i, j] = 0
11: L(x) ← Labelsc (x) // pixel-wise label for concept
12: return

∑
x |L(x)

⋂
A(x) |∑

x |L(x)
⋃
A(x) | // intersection over union metric

B ALGORITHMS
Algorithm 3 and 4 respectively present the pseudocode for reading
data from and writing data toMISTIQUE.

C ADDITIONAL EXPERIMENTS
C.1 Impact of quantization on KNN accuracy
C.2 Microbenchmark on Compression
Fig. 14 shows a microbenchmark illustrating the benefits of storing
similar values together. We generated a 100K X 100 matrix of 32-bit
floating point values with varying amounts of column similarity
(0: completely different, 0.5: 50% of values are identical, 1: all val-
ues identical) and measured the storage footprint of storing the

https://doi.org/10.1109/MCSE.2013.19
https://doi.org/10.1109/MCSE.2013.19
https://doi.org/10.1007/978-3-319-10590-1_53
https://doi.org/10.1007/978-3-319-10590-1_53

Algorithm 3 Reading Data fromMISTIQUE
1: procedure get_data(columns)
2: dfs← columns.parent_dataframe()
3: tmp1← []
4: for df ∈ dfs do
5: tmp2← []
6: for row_block ∈ df.row_blocks() do
7: tmp3← []
8: for column ∈ columns do
9: if column.is_materialized() then
10: partition← column.read_partition()
11: tmp.append(partition[column])
12: else
13: rerun_pipeline(column, row_block)
14: row_block_data← h_concat(tmp3)
15: tmp2.append(row_block_data)
16: df_data = v_concat(tmp2)
17: tmp1.append(df_data)
18: res← h_concat(tmp1)
19: return res

Algorithm 4 Storing intermediates
1: procedure store_intermediate(row_block, γmin)
2: for col_chunk ∈ row_block.columns do
3: stats← get_stats(col_chunk)
4: if γ < γmin then // don’t store
5: update_stats(stats)
6: return
7: col_chunk← quantize(col_chunk)
8: identical_col← get_identical_cols(col)
9: if identical_col == nil then
10: partition← get_closest_partition(stats, sim)
11: partition.add(col_chunk)
12: evicted_partition← bufferpool.add(partition)
13: compress_and_store_partition(evicted_partition)
14: else
15: update(identical_col)

Layer Full precision 8BIT_QT POOL_QT (σ = 2)
11 1.0 0.94 0.74
16 1.0 0.96 0.84
19 1.0 1.0 1.0

Table 3: KNN accuracy: Fraction of overlap between true
KNN and KNN computed across different storage schemes.

100 columns individually with gzip compression vs. storing them
together with the same compression. From the figure, we can see
that while the cost of individually compressed columns remains
the same, storing similar columns together can produce a gain of
up to 6X depending on column similarity.

D LAYER SIZES FOR CIFAR10_VGG16

E ZILLOW PIPELINE DETAILS
Here we describe the full pipelines used for the Zillow workflow.
For this workload, we are given three csv files: (i) properties
containing attributes of homes in the dataset; (ii) training data
listing the property id, date of the property sale, and the error

0.0 0.2 0.5 0.7 1.0
Column correlation

0

10

20

30

40

To
ta

l S
iz

e
(M

B
)

stored separately stored together

Figure 14: Column compression micro-benchmark.

Layer num Name Shape
0 input (32, 32, 3)
1, 2 block1_conv1, block1_conv2 (32, 32, 64)
3 block1_pool (16, 16, 64)
4, 5 block2_conv1, block2_conv2 (16, 16, 128)
6 block2_pool (8, 8, 128)

7, 8, 9 block3_conv1 (8, 8, 256)
10 block3_pool (4, 4, 256)

11, 12, 13 block4_conv1 (4, 4, 512)
14, 15, 16, 17 block4_pool (2, 2, 512)

18 block5_pool (1, 1, 512)
19 flatten (512)
20 dense (256)
21 logits (10)

between the Zillow price estimate and the actual sale price; (iii)
test data containing the property id and three dates of potential
property sale. The goal is to predict the error at each of the potential
dates. Table 4 shows all the pipeline template used in the Zillow
workload. For each pipeline template, we generated 5 variations of
the pipeline by choosing 5 different setting combinations for the
listed hyperparameters. While we could have generated a much
larger variations for each pipeline, we believe that the resulting
set of 50 pipelines are sufficient to illustrate the advantages of
MISTIQUE.

F EXPERIMENTAL QUERIES
In Table 5 we list the full queries used to evaluateMISTIQUE. For
TRAD and DNN, we evaluate on two queries in each query category.

ID Pipeline Template Hyperparameters
P1 ReadCSV (3) → Join (2) → SelectColumn → DropColumns (2) → TrainTestSplit →

TrainLightGBM→ Predict (2)
learning_rate,sub_feature,
min_data

P2 ReadCSV (3) → Join (2) → SelectColumn → DropColumns (2) → TrainTestSplit →
TrainXGBoost→ Predict (2)

eta,lambda,alpha,max_depth

P3 ReadCSV (3) → OneHotEncoding → FillNA (2) → Join (2) → SelectColumn →
DropColumns (2)→ TrainTestSplit→ TrainEasticNet→ Predict (2)

l1_ratio,tol

P4 ReadCSV (3)→ Avg→ OneHotEncoding→ FillNA (2)→ Join (2)→ SelectColumn→
DropColumns (2)→ TrainTestSplit→ TrainEasticNet→ Predict (2)

l1_ratio,tol, normalize

P5 ReadCSV (3) → Join (2) → SelectColumn → DropColumns (2) → TrainTestSplit →
TrainXGBoost,TrainElasticNet→ Predict (4)→ CombinePredictions (2)

eta,lambda,alpha,max_depth,
xgb_weight, lgbm_weight

P6 ReadCSV (3) → Avg → Join (2) → SelectColumn → DropColumns (2) →
TrainTestSplit→ TrainLightGBM→ Predict (2)

eta,lambda,alpha,max_depth,
bagging_fraction

P7 ReadCSV (3) → Avg → Join (2) → SelectColumn → DropColumns (2) →
TrainTestSplit→ TrainXGBoost→ Predict (2)

eta,lambda,alpha,max_depth,
bagging_fraction

P8 ReadCSV (3)→ Avg→ GetConstructionRecency→ OneHotEncoding→ FillNA (2)→
Join (2)→ SelectColumn→ DropColumns (2)→ TrainTestSplit→ TrainEasticNet
→ Predict (2)

l1_ratio,tol, normalize

P9 ReadCSV (3) → Avg → GetConstructionRecency → OneHotEncoding → FillNA
(2) → ComputeNeighborhood → Join (2) → SelectColumn → DropColumns (2) →
TrainTestSplit→ TrainEasticNet→ Predict (2)

ComputeNeighborhood_params,
l1_ratio,tol, normalize

P10 ReadCSV (3) → Avg → GetConstructionRecency → OneHotEncoding → FillNA
(2) → ComputeNeighborhood → IsResidential → Join (2) → SelectColumn →
DropColumns (2)→ TrainTestSplit→ TrainEasticNet→ Predict (2)

IsResidential_params,
l1_ratio,tol, normalize

Table 4: Pipeline Templates for Zillow workload. The numbers in params indicate the number of times a transformation is
applied (typically once on the training set and then again on test set)

Query Category Specific instantiation Intermediates
Queried

Few Columns, Few Rows (POINTQ) Find the activation map for neuron-35 in layer-4 for image-345.png X, I
(FCFR) (POINTQ) Find average lot size feature for for the Home-135 in POct31 X, I

(TOPK) Find the top-10 images that produce the highest activations for Neuron-35 in
layer-13

X, I

(TOPK) Find prediction error on the 10 homes that were most recently built X, I
Few Columns, Many Rows
(FCMR)

(COL_DIFF) Compare model performance for POct31 and PNov1 grouped by type of
house [31]

X, Y, P

(COL_DIFF) Find the examples whose predictions differed between CIFAR10_CNN and
CIFAR10_VGG16 [35]

X, Ycnn, Yvgg

(COL_DIST) Plot the confidence score for all images predicted as cats [13] X, I, Y, P
(COL_DIST) Plot the error rates for all homes [13] X, I, Y, P

Many Columns, Few Rows (KNN) Find performance of CIFAR10_VGG16 for images similar to image-51 X, ximg-51, Y, P
(MCFR) (KNN) Find predictions for the 10 homes most similar to Home-50 X, xo , Y, P

(ROW_DIFF) Compare the activations of neurons in layer-6 between an adversarial image
and it’s equivalent non-adversarial image

I, Y

(ROW_DIFF) Compare features for Home-50 and Home-55 that are known to be in the
same neighborhood but have very different prices

I, Y

Many Columns, Many
Rows (MCMR)

(SVCCA) Find the features from interm-8 most correlated with the residual errors of
POct31

X, Y, P

(SVCCA) Compute similarity between the logits of class ship and the representation
learned by the last convolutional layer

I

(VIS) Plot the average feature values for Victorian homes in Boston vs. Victorian homes
in Seattle
(VIS) Plot the average activations for all neurons in layer-5 across all classes I

Table 5: Experimental Queries

	Abstract
	1 Introduction
	1.1 Motivating Examples
	1.2 MISTIQUE: storing model intermediates

	2 Preliminaries
	2.1 Models and Model Intermediates
	2.2 Characterization of Diagnostic Queries
	2.3 Problem Formulation

	3 MISTIQUE Overview
	3.1 Architecture
	3.2 Usage Example

	4 Data Store
	4.1 Quantization and Summarization
	4.2 Exact and Approximate De-duplication
	4.3 Adaptive Materialization

	5 Cost Model
	5.1 Query Cost Model
	5.2 Storage Cost Model

	6 Fetching data from MISTIQUE
	7 Experimental Setup
	7.1 Workflows

	8 Experimental Results
	8.1 End-to-End Query Execution Times
	8.2 Intermediate Storage Cost
	8.3 Validating the Cost Model
	8.4 Effect of Quantization on Accuracy
	8.5 Adaptive Materialization
	8.6 Pipeline Overhead

	9 Related Work
	10 Conclusion and Future Work
	References
	A Details of Diagnostic Techniques
	A.1 Visualizations
	A.2 SVCCA
	A.3 NetDissect

	B Algorithms
	C Additional Experiments
	C.1 Impact of quantization on KNN accuracy
	C.2 Microbenchmark on Compression

	D Layer sizes for CIFAR10_VGG16
	E Zillow pipeline details
	F Experimental Queries

