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ABSTRACT

Quantization takes place whenever & physical quantity is repre-
sented numerically. This is common in P.C.M. communication systems and
modern digital data processing systems where it is known as analog-to-
digital comversion, In the numerical solutior of equations it is callel
round-off. A quantizer is either a device or a mathematical operator
that assigns a value to a variable equal to its closest integer., Quan=-
tization is a non-linear process that distorts im a definite manner.
Since the distortion itself is usually undesireble; it will be described
by and called an additive noise,

Let a signal be sampled and then quamtized. The probability
density distribution of the quantizer input is continuous while the
probability density of the quantizer output signal is discrete, consist~
ing of a series of impulses uniformly separated with spacing equal to
the quantization box size q. The joint input-euntput probability density
distribution, a most general distributicn; is comtinuous along the input
dimensions and sampled along the output dimensions, In characteristic
function space, which is Fourier transformed from the multidimensional
amplitude space of probability, the joint output-imput c.f. is periodic
with the radian fineness () = 2n/q along the dimensions corresponding to
the output variables and aperiodic along the equal number of input di-
mensions., The typical repeated section is identical to the joint irmput-
output c.f., that results when the guantizer is replaced by a source of
first order independent additive noise that is uniformly distributed
over a box width, Actual quantization noise is not independemt of the
quantizer input but causally related to it (a given input gives a de-
finite output and a definite noise), Outputs take on only discrete
levels giving impulse probability densities, and characteristic functions
are periodic along output dimensions rather than aperiodic as they wuld
be if guantigation noise were independent,

The typical sections do not overlap if a multidimensional Ny-
quist restriction upon the probability density of the high order imput
is met, i.e., if the c.f, of the input is zero (negligible) outside a
hypercube of edgejz centered at the origin in c.f. space. This is a
Nyquist restriction on the "bandwidth" of the probability density dis-
tribution of the quantizer imput signal, and is to be distinguished from
the Nyquist sampling restriction upon the bandwidth of that signal itself
The former pertains to quantization which i like samplimg in amplitude
while the latter pertains to the usual sampling in time., Under condit-
ions of no overlap in c.f, space, all moments are the same as independedt
noise since they are determined by the_derivatives of the joint c.f. at
the origin in c.f. space. Also a most important result is realized whea
the Nyquist restriction is satisfied. The quantization noise itself is
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uniformly distributed and first order (uncorrelated even though the in-
put signal is of a high order process.

A qualitative measure of how rough the quantization may be whils
these results still hold may be obtained from the quantization of a
Gaussian signal. The quantization box size may be as big as two standard
deviations and there will be an error in the mean square of the quanti-
zation noise of 9%, If the correlation coefficient of the quantizer im-
put is 0.9, that of the noise is about 0.3, When the quantization be-
comes this rough, the noise is no longer uncorrelated; although its cor-
relation coefficient is considerably less than that of the input signal.

The first question to be settled in any quantizer system analy-
sis problem is, does the Nyquist restriction hold at the input to all
the quantizers? Sufficient but not necessary conditions are able to be
derived for linear (linear except for the quantizers) sampled-data sys-
tems, but not for non-linear systems. However, the whole question prac-
tically reduces to whether or not each quantizer input takes om & con-
tinuum of levels spanning 3 or more quantization boxes. If so, the ef-
fects of the quantizers can be evaluated very preciselys if not, the
same analysis will serve as a good “first try".

A linear quantizer system has an output consisting of the sum
of two parts. The first part is the same as the output of the linear
equivalent (an identical system except that the quantizers are replaced
by unit gains) when excited by the given input. The second part is des-
cribed statistically as the output of the linear equivalent having no
input signal with the quantizers replaced by sources of uniformly-distri-
buted independent first-order noises. The net noise output and the lin-
ear equivalent are both independent of the signal and completely char-
acterize the system behavior for the large class of inputs giving statis
tics at the quantizers which obey the multidimensional c.f.restrictions,

Non-linear systems behave in like manner with respect to quan-
tization noise as long as they are "small-signal linear". In cases
where quantization is moderately fine, the Nyquist restriction is satis-
fied and the small quantization noises propagate to the system output
through time-variable linear systems. The quantizers are replaced by in-
dependent noisy sources. This is so in numerical analysis; because
roundoff will always be relatively fine here,

The performance of a continuous system may be determined by ex-
amination of samples of its output rather than the output itself, This
is convenient for statistical analysis., The entire system #s replaced
by a sampled-data equivalent to within any desired precision (by adjust-
ment of sampling rate) and the continuous problem is thereby converted
to a problem that is already solvable,

Quantization noise is of a very simple nature in most practical
problems, and this permits analysis and synthesis to proceed along usual
lines with little change. Knowledge of the origin and the propagation
of quantization noise in systems is useful because it gives the quality
of a result in terms of the equipment used in generating it.
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CHAPTER 1
DESCRIPTION OF QUANTIZATION AND INTRODUCTION TO QUANTIZER SYSTEMS

Quantization or pound-off occurs whenever physical quantities
are represented numerically. The value of a measurement may be desig-
nated by an integer corresponding to the nearest number of units con=-
tained in the measured physical quantity. A round-off error thereby
introduced must have value between plus and minus one half unit and can
be made small by choice of the unit. It is apparent, however, that the
smaller the size of the basic unit, the larger will be the numbers re-
quired to represent the same physical quantities and the greater will be
the difficulty and expense in storing and processing these numbers. Of-
ten, a balance has to be made between accuracy and economy. This is
particularly pronounced since the advent of the digital computer. 1In
order to establish such a balance, it is necessary to have means of
evaluating quantitatively the distortion resulting from rough quanti-
zation. The analytical difficulty arises from the inherent non-linear-
ities of the quantization processes.

A.  The Quantizer and Systems Containing Quantizers

A rounding-off process may be represented symbolically as in
Figure 1. For purposes of analysis, it has been found convenient to
define the quantizer as a non-linear operator having the input=-output
relation shown in Figure 1. Its output is a single-valued function oft
the input, and it has an Maverage gain®™ of unity. An input lying some-
where within a quantization "box" of width q will yield an output cor-
responding to the center of that box (i.e., the input is rounded-off to
the center of the box). More general quantizers could be obtained by
preceeding and following the quantizer of Figure 1 with instantaneous
linear amplifiers (multiplying factors) and adding dc levels to the
quantizer input and output (tailoring averages),

Physical systems or processes involving quantization may now
be represented as combinations of conventional system components with
quantizers injected at points in the system where round-off naturally
takes place. For the most part, the systems to be considered are
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sampled-data types which are linear except for the quantizers.
Other systems that uili be considered belong to restricted classes of
non-linear sampled-data quantizer systems and continuous quantizer
systems,
B, Linear Sampled-Data Quantizer Systems
A general linear sampled-data filter is shown in Figure 2. Its

present output sample is a’linear combination of the present and past
inputs. Often, a digital computer is programmed so that it may be repre-
sented as such.l’5 A fine-grained digital computer programmed to be lin-
ear but having a coarse-grained input is shown in Figure 3. It may be
noticed that the computer represented by D need not always be fine=
grained but may be realized of discrete-state memory and arithmetic
devices such as relays, diodes, and tubes because the filter is to be
used to process inputs that take on only discrete states. Figure 3 could
also represent a coarse-grained computer fed by a fine-grained input.

The same kind of remarks apply to the system shown in Figure lL.

Systems of greater complexity are those in which quantization
takes place within a feedback loop, Figure 5 shows systems with quan-
tization in the feedforward and feedback sections. Other systems may be
reduced to these forms. Figure 6 is an example of this. If a single
quantizer is used in conjunction with many linear sampled-data filters
and a feedback path through the quantizer exists, the system can be re=
duced to one of the forms of Figure 5 preceded and followed by linear
sampled-data filters and quantizers not involved in feedback paths. The
forms of Figure 5 are canonical and irreducible, They can, however, be
expressed in terms of each other as shown in Figure 7. In order to be
able to synthesize, analyze, and evaluate quantized sampled-data systems
that are linearly programmed, one must deal with both open loop and
closed loop quantization.

A question of the effect of the quantizer upon the stability
of closed loop systems naturally arises. Although the average gain of
the quantizer is unity, there are input values for whizh the incremental
gain is infinite., Let a stable system be defined as one that gives a
bounded output for a bounded input. This input could be applied to the
actual system input, ot at any other point in the system. Since the
difference between the output and the input of the quantizer is never
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greater than /2, the quantization "noise® is bounded. It followsgthai
if the linear equivalent (the system resulting from replacing the quan-
tizer by a linear amplifier of gain 1) is stable, so is the quantizer
system.

C. Nom-Linear Sampled-Data Systems
Corresponding to every form of linear system shown, there are

non-linear systems representing many kinds of situations iicluding
numerical solution of non-linear differential equations and non-linear
control systems., The effect of quantization upon these systems is of
interest and will be evaluated in certain useful respects,

D. Continuous Systems

Quantization occurs naturally in sampled-data systems and
numerical processes. It appears also in continuous systems (consider
contact servos, for exampls). The continuous system may be replaced by
an equivalent sampled-data system if the "signals®™ at all points in the
system are bandwidth limited., This condition is obviously not met where
a continuous system is quantizedj the quantizer output will be a series
of nonuniformly spaced step-waves, Thus, sampled-data representation
may be made only in cases where the quantizer output is first coupled to
a linear continuous system of reasonably finite bandwidth. '

The continuous problem is most often not very difficult from a
sampled-data problem. Hence, analysis of sampled-data quantizer systems
includes most of the possible types of quantizer systems. The analytical
spproach will be of a statistical nature, which turns out to be very

clear-cut with sampled-data.
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CHAPTER II
STATISTICAL DESCRIPTION OF THE QUANTIZATION PROCESS

How could one precisely evaluate the output signal of a quan=
tizer in terms of its inpuﬁ? An output for a given input could be ob-
tained by means of a point-by-point calculation in the ®time=-domain®.
Each input is a special case, however, and usually not much detail could
be learned about new cases from a given time domain study. Superposition
does not apply. Often, a quantizer input is random. It seems very un=
likely that a point-by-point calculation scheme would be of any use here.

The type of a solution presented does not attempt to get pre-
cise descriptions of quantizer outputs in terms of their inputs. Rather
than that, the solution proposed is a statistical one. This is exactly
what is desired when the system input is given statistically, and will
provide a sufficiently adequate picture for many cases of systems inputs
that are causal.* The output of the quantizer differs from the input by
some causal function of the input, which on the average, may be large or
small depending chiefly upon the size q of the quantization box. An ex-
act description of this difference is difficult to obtain. On the other
hand, statistical methods will be presented that will allow relatively
simple calculation of the probability density distribution of this dif=-
ference, the quantization noise. The beauty of this method arises from
the fact that a vast class of inputs to the quantizer, whose properties
can be well-defined, yield identical quantization noise statistics,
These statistics characterize the quantization process. The quantizer
output is thea the sum of the input and noise of known statistics. In
general, if another input is added to the first, the resulting output is
the sum of two inputs plus a quantization noise which is a different
waveform in time but has the same statistics as in the previous case,
Thus, in a statistical sense, the quantizer is a linear device., Super-
position applies,

It seems reasonable to expect that this statistical approach

# Causal means deterministic as opposed to stochastic. Yet a causal
signal, a sine wave for example, has a probability density dist{igg-
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will simplify many analysis and synthesis problems because it gives
average effects for large numbers of different inputs. The averages may
be more useful than the effects themselves, because the effects, being
so many and so varied, are often not accountable.

. Instead of devoting attention to the variable (sampled "signdl)
being quantize:L let only its probability density distribution be con=-
sidered., It will be seen that the distribution of the quantized variable
may be obtained by a linear sampling process upon the distribution of the
unquantized variable,

A, First Order Statistics
If the samples of some continuous quantity are all independent
of each other, a first order probability density W(X) is its character-

istic function, the Fourier transform (2.1),

F(¥) :j wx & *a (2.2)

A quantizer input variable may take on a continuum of magnitudes (see
Figure 8), while the output assumes only discrete states. The probabil-
ity density of the output W'(X) consists of a series of impulses that
are uniformly spaced along the amplitude axis, each one centered in a
quantization box,

Figure 9 shows how the output distribution is derived from
that of the input. Since any event occuring within & quantization box
is always "reported" as being at the center of that box, each impulse
has a magnitude equal to the area under the probability density W(X)
within the bounds of the box. The impulse distribution W!'(X) has a
periodic characteristic function, being the Fourier transform of a series
of impulses having uniform spacing q. The mathematical techniques devel=~
oped by W. K. Linvill1 for the study of linear sampled-data systems will
be used in the derivation of the characteristic function of W'(X). The
necessary aspects of this theory will be developed below,

1. Amplitude sampling treated as linear impulse
modulatione
The process of periodically sampling some f(t) is the
same as that of multiplying f(t) by a series of impulses of unit area
which are spaced uniformly in t. Figure 10 shows as f(t) being sampled
by an "impulse modulator®. The impulse carrier of fundamental
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frequency n= 2n/T is shown represented by its Fourler series (2.2 %

#(t) = [f(ti] [:mpulse carrler [i(tl] 1/T (f:Jn!lt (2,2)

Each harmonic has the same amplitude 1/T, and is modulated by £(t). The
envelope of £#(t) is f(t). The impulse carrier is thus the sum of an
infinite number of sinusoidal carriers with uniform frequency spacing fL
which, when modulated by £(t), develop identical ®sidebands® about each
carrier, The pattern of these sidebands is the same as that of the
Fourier transform of spectrum of f(t). - The spectrum of £(t) and f#(t)
are shown in Figure 11. F#(jw), the Fourier spectrum of the series of
impulses f#(t), is the sum of a periodic array of sections, separated by
the frequency /L , where the typical repeated section is the same as
F(jo), the spectrum of the envelope of the pulses. If it were possible
to separate the zeroth section of F#(jw) from the rest, it would be
possible to recover an envelope from its samples. This can be done with
an "ideal low-pass filter“ if the sections are distinct and do not over-
lap. The gain as a function of such a filter is shown in Figure 12. If
F#(t) is applied to the input of the low pass filter of Figure 12, the
output will be f(t). Since the impulse response of the ideal low pass
filter is sin(mt/T)/(wt/T), it follows by linearity that the envelope of
the impulses is a sum of these, properly weighed and spaced in time, as
shown in Figure 13.

The low pass filter is an interpolater that yields f£(t) as long
as f(t) has no significant harmonic content at higher frequency than
)L /2. This is the "Nyquist bandwidth restriction® of f(t). When the
Nyquist restriction is not satisfied, the sampling frequency - is not
sufficiently large and there is overlap among the periodic sections of
F#(jo)(see Figures 11 and 12). The ideal low pass filter cannot separate
out the spectrum of f(t) alone. These ideas will now be used in the de=
ivation of the impulse distribution of a quantizer output,

20 Derivation of the first order probability density

of a quantized variable,

The distribution of a quantizer output W'(x) consists of ™area
samples® of the input distribution density W(x). The quantizer may be
thought of as an area sampler acting upon the "signal®, the probability
density W(x). Figure 1l shows how W'(x3 may be constructed by sampling
the difference D(x + q/2) = D(x - q/2), where D(x) is the distribution,
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the integral of the distribution density. Figure 15 is a schematic
diagram of this process, showing how W(X) is first modified by a linear
filter of "gain® sin(q % /2)/(q § /2) and then sampled to give W'(X).

The difference between area sampling and the Linvill amplitude
sampling is most clear in the ®frequency® domain, where both give period-
ic transforms, The typical repeated section is the same as the trans-
form of the envelope in the case of amplitude sampling. The transform
of the envelope is first multiplied by sin(q ¥ /q)/(q? /2).

When the quantization "fineness", the reciprocal of the box
width, is twice as high as the "highest frequency® component contained
in the shape of W(X), it is possible to recover W(X) from the quantized
distribution W(X) by inverse transforming the ratio of a typical sectim
of Fx'(‘{ ) and dividing by sin(q § /2)/(a § /2).

The characteristic function of the distribution density of the
sum of two random independent variables is the product of the individual
c.f.'s, Figure 16 shows the distribution Q(N) and its c.f. Q(N) will ‘
be shown to be the distribution of quantization noise, Its c.f. is
sin(nw £ /(fJ VICRW ¢) - sin(q § /2)(q ?’ /2). If purely random inde-
pendent noise of distribution Q(N) were added to a signal of distribution
W(X), their sum would have a c.f, Fx( ) sin(ﬂf/¢)/(ﬂ f/ ?‘) which is
jdentical with the typical section of F&'( ? ). The derivatives of a
c.f, at the origin determine moments, It follows that the moments of a
quantized signal are the same as if the quantizer were a source of inde-
pendent random additive noise of distribution Q(N) provided that Nyquist's
restriction on W(X) is met. This correlates with work done by Sheppard
as summarized in Appendix I.

It is now known how W'(X) may be derived from W(X). The
understanding of the quantizer would be complete if it were true that
the quantization noise (the difference between input and output) were
independent of the quantizer input. Not only is the guantization noise
statistically related to the input, however, but it is also causally re-
lated. Since the output of a quantizer is a single valued function of
the input, a given input yields a definite noise,

The distribution of the noise itself will be shown to be Q(N),
indepeﬁdent of the distribution of the quantizer input (as long as the

Nyquist restriction is satisfied). Their causal tie will show up later
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when joint input-output distributions are derived.
3. Derivation of the probability density of quanti-

zation noise,

Quantization noise is always the difference between an
input variable and the value of the box to which it has been assigned.
The distribution of quantization noise resulting from events assigned to
the zeroth box may be constructed by plotting W(-X) between -q/2 <X <{q/2
The noise distribution resulting from events in the first box may be
obtained by considering W(=X) for values -3q/2 { X ¢ -q/2 recentered to
the origin. Events taking place in the various boxes are exclusive of
cach other. The probability of a given noise magnitude arising is the
sum of the vrobsbilities of that noise from each bnx, TFigure 17 shows
how the distribution of quantization noise is constructed from W(=X).

If the quantization is sufficiently fine-grained, W(X) may be
represented as the sum (253). In other words, W(X) may be represented
by the "sin X/X" envelope of its samples if the Nyquist restriction is
met. (See Figure 13.)

ﬁ%( - Xp)
W(X) = iw(xn) %"j] (2.3)
— oo q

Since the development of the distribution of quantization

noise as in Figure 17 is a linear process, the quantization noise dis=
tribution is the sum of the distributions of noise corresponding to
constituents that are added to get W(X)., All that needs be considered
is the quantization of the basic form sin(r X/q)/(w X/q), as in Figure
18. The strips of Figure 18 are added in Figué:19 to give the quanti-
zation noise distribution which turns out to be flat-topped. Figure 19
shows how the constant unity may be composed of a sum of sin X/X's and
how their sum over the range -q/2< X <q/2 is the same as adcing the strps
of Figure 18, That the constant unity may be so represenced is assured
by the fact that its bandwidth being zero, is surely less than (1/2) 750
An arbitrary distribution satisfying the Nyquist condition is
the sum of a series of sin(w X/q)/(nX/q)'s, where each gives a flat-
topped distribution of quantization noise. The sum of flat-topped dis-
tributions is flat-topped. If the distribution density of a signal
being quantized is W(X) and the quantization grain is fine enough to
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satisfy the Nyquist restriction, the distribution of the noise intro-

duced by the quantizer will be flat-topped, This distribution is Q(N),
shown in Figure 16, .
L. Derivation of the joint probability density of the
quantizer input and output.
A most general statistical description of a device having

a random stationary output is the Jjoint distribution between input and
output. From this, the output distribution, input distribution, the
difference (between input and output) distribution, the joint distri-
bution between input and difference, and the joint distribution between
output and difference may be determined. Any one of the joint distri-
butions will determine all the rest, but at least one joint distribution
need be known for a complete statistical understanding, Infinite numbers
of joint distributions could give the same input, output, and difference
distribution densities, so the latter are not sufficient for a complete
understanding,

A study of Figure 20 shows how a joint in-out distribution
W(X, X') is derived from a given input distribution W(X). The strips of
W(X) are placed at the values of X' to which they correspond. Consider
next the situation shown in Figure 21, For every value of X, all values
of noise are possible between % a/2 because the noise is independent of
X. The joint distribution (Figure 22) between X and (X + n) shows this,
whereas any plane parallel to the (X + n) and w axes cuts a flat-topped
section from the surface of Joint probability w(X, X + noise), the sur-
face of joint probability is everywhere parallel to the X + n axis. The
projection of the surface on the X - w plane has the same shape as W(X)
and has an area of 1/q. The volume under the surface is unity,

A study of Figures 20 and 22 shows that the strips of Figure
20 are sections of the 3-dimensional surface of Figure 22 (if first
multiplied in amplitude by q) cut by a series of planes parallel to the
W and X axes with spacing q along the X + n axis, The strips of Figure
20 are thus the results of the amplitude modulation of a periodic car=.
rier, a series of uniformly spaced impulse sheets, and an envelope which
is the joint probability surface. It should be possible to deduce the
Joint characteristic function of the distribution W(X, X') from that of
w(X, X # n). At the same time, the ways in which quantization is akin
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to the addition of random independent noise as in Figure 21 should be

detected, :
The methods of amplitude sampling may be readily generalized
to handle sampling by impulse sheets, The first step is to get the two-
dimensional Fourier Series of the impulse sheets (Figure 23). Each
sheet extends to infinity in both directions, and has a unit volume per
unit length. The Fourier series for Z(X, X') is @Q.L).

o

Z2(X, X') = Z 1/q @-mi x! ' (2=L)

N=-ao
Z appears to be one-dimensional, because there is no variation with X,

If ;’ is the variable that X transforms into, and \g p, 18 the variable
that X' transforms into, the two-dimensional spectrum of Z(X, X') is as
indicated in Figure 2L, If a carrier having this spectrum is modulated
by an envelope w(X, X+n), the resulting spectrum (Figure 25) is periodic
along ? b’ and aperiodic along ‘f‘, The shape of a typical section is
the same as the spectrum of w(X, X¢n), resulting from its convolution
with the spectrum of Figure 2l Since the sections of w(X, X+n) are to
be first multiplied by q, the factor 1/q is compensated for and the
value of F <1 (5 g0 %) is 1 at the origin. All characteristic
functions must have the value 1 at their origins in order that the total
volume under their probability densitied be unity.

It is of interest to derive the typical section of F X, % (’;;);b
the Fourier transform of w(X, X+n) which is the joint distrlbution be-
tween the input and output of Figure 21. A goint c.f. of two variables
may be deduced from the characteristic functions resulting from sums of
various proportions of the two variables. A block diagram of this
technique, used many times in Appendix II, is given in Figure 26.

(5 a2 7) ” w(X, ¥om) ﬂJE‘ 2 5y Jaxa(xem) 5

Formally,
x x4n
also,

Fs (%) J\j w(X, x+n)€~"g1§ + 1l § n) | yagrm)  (2.6)

F. (s) can be readlly evaluated and leads to x,x-lrn(? ‘;b) if the sub-

stitution is made, kl% ; 2’ kz; ;b‘ Any ¥ 2 ‘; p °30 be obtained
by choice of kl’ 23 and; The sumY equals (k + k2) X + Ky no
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The ¢c.f. of X is Fx( ;), and the c.f. of the independent noise is Fq(? )

o B8 = Bl v ) T R0

Whences
F:'c,x*n(\{a’ 7b)' Fx( ?a *gb) q(g b)
sin(n%’b/¢ )
= B(Fa 5y 75 o/ &) (2.7)

Let Fx();') be as sketched in Figure 27, It is finite over & width X
along € .. A top view of Fx xm(?;a’ %) that results is shown in
Figure 28, Only the contours where the joint c.f. becomes insignificant
are shown., When q is very small, n is small and F (?) -],
x x*n(?’a’ ?b F ( F %.b The joint c.f. is finite only where
-O(/Z( (l‘,’ ¢ b)(O(/Zo This region is bounded by the two straight
hS lines in Figure 28, As the noise n is made larger, the finite regim
can only beccme smaller because Fq(f) becomes more significant. The
curved contour is typical for such a case,

F. x*n(?a’ ;b)’ the joint c.f. of the input and output of a

quantizer is expressible in terms of the c.f. of the quantizer input,
F (%)

i sin(n(¥ + nc/)/y/)
F 9( 5 ) = F ( + * )
XX ?a e;b :é:_-m x ga z;b n# ("(§b . nf’)/f)

,ﬁ F(5.+F, + nfé)Sin("gb/¢+ o)
z-02 e ® ("gb/¢ + nm)

This ia a complete statistical description of the quantizer
for first order (uncorrelated) statistics., A sketch of a joint c.f.
wherec}f is somewhat greater thano{ (Figure 29) shows that this con=-
dition is sufficient to insure no overlap. The joint and self moments
depend only upon the slopes (partial derivatives) of Fxng(iag ;b) at
the origin, which are unaffected by the periodicity of that function as
long as there is no overlap. It may be concluded that with respect to
all detachable moments, quantlzation is the same as addition of random
independent noise of distribution Q(n), as long as the Nyquist restrict-
ion on W(X) is satisfied.
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The impulse distrihution of the quantizer output, and the

distribution of the quantizer noise Q(n) may be rederived readily from
Fx,x'( ?a, ?b)" A plane perpendicular to the ?a’ <z p Plane through
the? p 3xis intersects the joint input-output c.f, Fx,x‘(i;a’ ?b) 5
giving a section which is qu( E' b)’ the c.f. of the output (see Figure
30). As determined previously, the c.f. Fx'(gb) is periodic of fre-
quency¢ whers each section is identical with the c.f, of the sum of
the quantizer input and independent quantization noise., ILikewise, a
plane perpendicular to the ? 2° ?b plane through the ‘;‘a axis gives an
intersection which is Fx( ';' .) s the c.f. of the quantizer input. Since
this 1s a given property of the quantizer input and cannot be affected
by the nature of the quantization, it appears from Figure 30 that some
difficulties are to be encountered when taking the cut because of the
periodicities of the joint input-output c.f. The issue is saved because
of the factor ain(n"*,‘.b/ % + an)/(n fb/ ¢ + nn) in each repeated section.
This factor causes all sections except the one centered along the origin
to be identically zero along the 7;‘ axis (where? b = 0) so that the
periodicity of Fx,x‘(?a’ ?b) can have no effect upon Fx(%:)g The
c.f. of the difference between the quantizer output and input may be
expressed as 2.8),

Flarx)(§) = ffw(x,x') @ IF (%) g (2.8)

o0
The joint input-output c.f. (2.9) gives (2.8) when the substitution
(2.10) is made.

@0
Fx,x'(? a’ %’ b):—:— w(x,x") 6 J(x?a + x! gb) dxaxg(zog)
-oo
o =S
a5 (2,10)
2%, Fx,xl(fa’fb) = F(x9 - x)(g) (2.11)
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Therefore, a section of Fx,x'(?a’ 3 b) through the F axis and
a 15° line in the ‘;a "'§?b plane as shown in Figure 30, when projscted
either upon the F -z;’a plane or upon the F -‘ﬁ?; plane gives the c.f,
of the distribution of quantization noise. That the cut is at L5° ine
sures that the periodicity of the joint c.f. can have no effect upon the
distribution of quantizer noise. This distribution is therefore the
same as the distribution of added noise in Figures 21 and 26, being
Q(n), as shown previously.,

The description of the quantizer response to first order
statistics is complete and useful in itself., However, in order to un-
derstand the behavior of the quantizer in systems, particularly in feed-
back systems, it is necessary to consider how the quantizer reacts to
correlated (high order) input samples. The methods already developed
will be extended to handle multidimensional input distributions., It has
been shown that, in many respects, quantization is the same as addition
of a random independent noise. Conditions will be shown under which
quantization of correlated samples will be very much like addition of
random independent uncorrelated noise of distribution Q(n).

B, Higher Order Statistical Quantizer Inputs

If the random quantizer input variable X is second order, (the
simplest Markov process), a joint distribution density w(xl,xz) is re-
quired to completely describe its statistics., Xl and 12 are an adjacent
sample pair. The distribution of the output is w'(xl,xz), The joint
distribution between output and input is w(xl, X% X, xzf) having c.f.
Froxt ozt CT1eT 2510 5op)e In order to sketch the joint distributiog
ff;e %i%egsions are needed. Some other way to illustrate its signifi-=
cant features will be soughi,

w(xl,x2) may be resolved into a two-dimensional sin X/X
series provided a two-dimensional Nyquist restriction is satisfied. The
c.f, of w(xlxz) is the sum of the separate components because of the
linearity of the Fourier transform. The quantization process is a lin-
ear operation upon probability distributions and characteristic funs~

tions. As a matter of fact, any situation in which a stationary random
signal is operated upon to produce another stationary randon signal,
even though the operation upon the signals may be non-linear and have
memory, has the characteristic that a linear operation is performed
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upon the input distribution to give the output distribution. The out~-

put and joint distribution of a quantizer are the sums of the corres-
ponding distributions that could result from each component of the input
distribution acting separately. It is necessary here to consider non-
physical distributions that not only have areas and volumes different
from unity, but also have regions of negative density.

" The Fourier transform of W(Il, 12) is (2.12).

(2=

- 3(x §q % %5 ,)
Fxlxz(fl,?’z) W(X;,X,) 6 1 dxl?:?lz)

-

If this c.f. is negligible outside the range - ¢/2<'§01, ‘;2 14 45/2
where q§ = 2w/q, the Nyquist restriction is satisfied. W(Xl, X2) may
be thought of as a sum (2.13) where each coefficient Ak,o. is the value
of

S oo sin n (X,/q+k) gin v (X,/q+7 )
WXy, X,) = Z Ay nw (X, nw (X,
» z m (X,/qsk) m (Xp/ar Q)

W(Il, 12) at xl = kq and X, = ‘Qq. A1l that needs be considered to be
perfectly general is how the quantizer acts upon an input distribution

(2,13)

such as the k;, £ term of the above sum,

Start with a special case, the 0O, O term, a two-dimensional
sin X/X centered at the origin of Figure 29(a). Such a distribution is
clearly that of first order statistics, already examined completely,

The adjacent samples x1 and x2 are independent of each other,

Any first order process so described as a second order is a
degenerate second order process. A degenerate second order distribution
is formed as a product of the two first order distributions.

WX, X,) = W) W(X,)
The double integral in the Fourier transform becomes the product of two
double integrals so that the joint second order c.f. is the product of
two integrals. Thus the c.f. is F Jx (fl,?z) = Fx(§ 1) Fx(?2)°
The joint seconda order distribution be%ween the quantizer output and in-
put is the product of the joint first order distributions.

W(X 1X1', X, Xz') = w(xl_xl') W(X2 Xé')
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The quadruple integral in the Fourier transform breaks up into the pro-
duct of two double integrals so that the joint second order c.f. is the
product of the two joint first order c.f.'s.

Fxl, %' xz,xz'(ééla,?lb,} 23,;2b) = I"x, x! (i;la l;lb) Fx,x'(;za;Qb)

Periodicities of duration ¢ must exist for the joint degenerate second
order c.f. along the‘§ _and E? axes in five-dimensional space. The
joint c.f, is aperibdic.along the ?l and ‘; > axés. The typical re-
peated section in five-dimension spacg is the product of the typical

sections of Ex,x'(g?l.,zglg) and Fx’x,(fgz 9;? ). Each of these is the
a

joint c.f. between a JariaBle X, and the stm of’x plus quantization

noise (see Page 29). The quantization noises are included with the

factors sin(n/gﬁ - lb)/(n/¢ “;lb) and sin(n'/sﬁ ;zb)/(n/cﬁ £ zb) in the

two joint first order ¢.f, typical sections. They are multiplied to-
ether in the formation of F
gother in TN mt x x (F1,51,,52,,5)

and because of this, the quantization noise is first order.

This situation cannot be distinguished from that of quantizing
(with identical quantizers) two first order variables X, and X, as
shown in Figure 31, except that the possibility of having different
first order densities for Xi and X2 is introduced. This could not arise
in physical stationary processes where Xl and X2 are adjacent samples of
the same random process but is a perfectly possible type of joint re-
lation for a component of the joint distribution between the origihal
input variables Xl and XZ, Ir Xl and X2 are independent of each other,
so will be the quantization noises.,

The quantization of a process having a two-dimensional sin X/x
distribution centered at the origin is now completely accounted for.
The more general problem, that of the two-dimensional sin X/X distri -
bution centered at Xl = kq and 12 = Qq presents no new analysis problems,

This distribution is sin-n(Xi/q+k)/h(X1/q+k)
8in n(xz/qlr( )/n'(x2/q4£) which represents the statistics of two indepen-
dent signals xl and XQ, because it is factorable. Again, the quanti-
zation noises are independent and the typical repeated section of the
Joint second order c.f. is the same as if the quantizers of Figure 31
were replaced by independent noise sources,'each having distributionqr),
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Figure 31 may be modified to include 3, or more jointly related
first erder signals to:represent higher order processes, By arguments
gimilar to these of the secend order precess, a most general analysis may
induced. If the prebability density distribution of an n=th order quan-
tizer input has a n-dimensional c.f. that is negligible outside the range
- ¢/2 % 1,? 2.“.'§ n< ¢/2 the joint c.f. between the quantizer output
and imput, & function of 2n variables 4;1‘, ﬁslbgpea, ii‘ ?;b is periedic

sf radian fineneas aleng the axes leQ?lbgooeog nb and aperiodic

aleng the the axes gla::h ;.,‘.,?na, having a typical repeated sectiom
which is the same as the jeint c.f. between the quantizer input signal
and that input plus independent first order noise ef distribution Q(n).

A sketch of this for a first order quantizer input is Figure 29(a).

When the multidimensienal Nyquist restriction is met, all self and joimt
moments are unaffected if the quantizer is replaced by a source ef first
order independent ﬁoise of distribution Q(n)

The description of the respense of the quantizer to statistical
inpute thet satisfy the Nyquist restriction is complete. A question of
how reugh might the quantization be for specific distributions and have
the restriction satisfied naturally arises. This will be answered for
geveral cases of Gaussian statistics which are important in quantizer
system analysis,

C. Practicality and Range Of Application of the Mathematical

Results
(1) Quantization of first order Gaussian signals

Figure 32 shows the first order Gaussian distribution den-
sity centered at the origin, and its c.f. From the expression for the
cof., it is ebvious that Fx(*%a will not go to zeroc outside ef any finite
band about its origin. However, it acquires negligible proportions very
rapidly, geing down with.éau cr2/2° is the root mean square of the
Gaussian signal X. If we let the quantization nox size q =77, then the
error made by assuming that the c.f. obeys the Byquist restriction may
be estimated frem consideratien of Figure 33; where the c.f. of quantized
firet order Gaussian statistics is shewn. Each section, repeated with

radian fineness ?‘ = 2w/q = 2n/ 7 is of the form
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€242
c sin(nE/¢)/(n £/ )

The errors in the moments of the quantized statistics when evaluated by
assuming that the quantization noise is independent and of the distrib-
ution Q(n) are due to the contributions of the overlap to the deriva-
tives of the typical section at the origin. Because X was chosen with
zero average, the typical repeated c.f. section is even (symmetrical),
causing the contributions to the odd derivatives to cancel, while the
contributions to the even derivatives reinforce. The theoretical errors
in all odd moments are zero., The errors in mean square and in mean
fourth that result are tabulated, in Figure 3L, The same calculation
has been made for q = 27", amd these results are also tabulated.

Errors in analysis are extremely small when @ = . They re-
main moderately small when the quantization is as rough as q = 20U, but
increase rapidly as the roughness increases further. When q =0, the
error in the mean square s 1DT6%'ot‘the‘ﬁean‘BQuare of the input, and
about 10-5% of the mean square of the quantization noise. These per-
centages climb to 3% and 9% respectively, when q is increased to 20,
Such errors are very tolerable, being suprizingly smell for quantization
that rough., The error 1 mean fourth is 3(10)-5% of the mean fourth
of the quantizer input, 6(10)°2% of the mean fourth of Q(n) when q = 207

The accuracy of this description of first order statistics as
reflected in the accuracy of the moments of the quantizer output for
Gaussian input is sufficiently great until the box size is as big as
two standard deviations.

It was held that quantization noise is first order and un-
correlated although the quantizer input may be highly correlated, for
fine quantization. Just how fine this has to be as a function of the
correlation coefficient of a second order Gaussian input will give a
general indication of the sensitivity of the statistical independence of
quantization noise to quantization box size.

2. Quantization of second order Gaussian signals,

Figure 35 shows the two-dimensional second order Gauss-
ian distribution, centered at the origin, and its two-dimensional c.f.
Let this be the statistical distribution of the quantizer input. The

two-dimensional c.f. of the resulting quantizer output, shown in
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-$20%

c . sin(wg/$)/(n &/ B
The errors in the moments of the quantized statistics when evaluated by
assuming that the quantization noise is independent and of the distrib-
ution Q(n) are due to the contributions of the overlap to the deriva-
tives of the typical section at the origin. Because X was chosen with
zero average, the typical repeated c.f. section is even (symmetrical),
causing the contributions to the odd derivatives to cancel, while the
contributions to the even derivatives reinforce., The theoretical errors
in all odd moments are zero, The errors in mean square and in mean
fourth that result are tabulated, in Figure 34. The same calculation
has been made for q = 2U , and these results are also tabulated,

Errors in analysis are extremely smalf when @ =0 ., They re-
main moderately small when the quantization is as rough as q = 207, but
increase rapidly as the roughness increases further. When q =0, the
error in the mean square ts 1DT6%'of‘ths‘ﬁgan'3Quare of the input, and
about 10-5% of the mean square of the quantization noise, These per-
centages climb to 3% and 9% respectively, when q is increased to 2U ,
Such errors are very tolerable, being suprizingly small for quantization
that rough. The error 1 mean fourth is 3(10)-5% of the mean fourth
of the quantizer input, 6(10)°2% of the mean fourth of Q(n) when q = 207,

The accuracy of this description of first order statistics as
reflected in the accuracy of the moments of the quantizer output for
Gaussian input is sufficiently great until the box size is as big as
two standard deviations,

It was held that quantization noise is first order and un-
correlated although the quantizer input may be highly correlated, for
fine quantization, Just how fine this has to be as a function of the
correlation coefficient of a second order Gaussian input will give a
general indication of the sensitivity of the statistical independence of
quantization noise to quantization box size,

2. Quantization of second order Gaussian signals,

Figure 35 shows the two-dimensional second order Gauss-
ian distribution, centered at the origin, and its two-dimensional c.f,
Let this be the statistical distribution of the quantizer input. The
two-dimensional c.f. of the resulting quantizer output, shown in
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Figure 33. A top view is shown in Figure 37. Since the k,}z moment is
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its errors are due to the contribution of the overlap (Figures 36 and
37) to this derivative. Of interest is the error in the correlation
Ti;fi;T, the 1, 1 moment. To this, the contributions of sections #1
and #2 (see Figures 36 and 37) are opposite. Likewise, the contribu-
tions of #3 and #4 cancel.” The contributions of #7 and #8 reinforce
but are negligible compared to those of #5 and #6 which really are re-
sponsible for the error in the joint first moment of the quantizer
output. This error is equal in magnitude to the correlation in the
quantization noise. A plot of the normalized correlation of quantiza=-
tion noise (the ratio of the joint first moment to the mean square) as
a function of the normalized correlation coefficient of the second or-
der Gaussian distribution of the input (the ratio of the correlation
coefficient TEI—EET_ ?E[j_iz to the mean square(I'2) is shown in Fig-
ure 38. The general relation for the correlation of quantization

noise is (2,14),
o

= 2
(normalized correlation):(fi:h" % (1~(Tzé/tf' ) (2,1h)

From Figure 38 it can be seen that quantization noise is practically
uncorrelated until the box size is one standard deviation and the input
correlation is 95ﬁ or until the box size is two standard deviations and
the input correlation is 80%. A box size of two standard deviations
corresponds to extremely rough quantization. The dynamic range of an
input variable is practically three quantization levels., This is almost
in the realm of switching circuits,

It can now be qualitatively stated that if the dynamic range
of a variable being quantized extends over several boxes, the quanti-
zation noise will be uniformly distributed and will be a first order
process. All moments will be the same as if the quantizer were a
source of random independent noise. The causality between the input

variable and Lhe quantization noise is manifested in the form of



Page 39

5% 2GS
B RY LA W)
/
Vj R

b
The Second Order Gaussian Distribution And Tts C.F,

FIGURE 35

Two~Dimensional C.F, Of Quantizer Output For A Two-Dimensional Gaussian
Input

FIGURE 36



Page L0

#2

CAC

2

N
.

Top View Of Figure 36 Showing Contour Of Constant Probability
FIGURE 37

~ 4TH(I= TR/

2" TH- G /)

%

Covrrelation of

J.ose  0.975 0,950 0,425 0900  0.875 0.850  0.82S 0:800 8,775  0,7SD
/e ™

Correlation Of Quantization Noise vs., Correlation Of Quantizer Ini)ut

Signals
FIGURE 38



Page 41
periodicities with radian fineness qﬁ = 2n/q along the c.f. axes which
are transformed from quantizer output variables (Xl',IQ‘....Xn') and
one-sectioned along the axes transformed from the quantizer input var=-
iables (xl, X9 ....Xn). A single section corresponds to additive in-
dependent unrelated noise having the same statistical nature as the
quantization noise itself. This picture of quantization noise great=

ly simplifies the analysis of quantizer systems,
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CHAPTER IIX
QUANTIZER SYSTEM ANALYSIS

The techniquss of quantizer system analysis will be developed
specifically for sampled data systems. After this is done, how to use
them, and when they can be used for the analysis of continuous systems
will be indicated. Analysis will be the chief concern; synthesis pro-
ceeds along usual lines, ignoring quantization, and later introducing
the same at various places for convenience or for economic reasons,
allowing it to be as rough as can be tolerated. The systems to be con=-
sidered, whether they are physical devices or purely mathematical sit-
uations, are described by conventional difference equations except for
quantization. These difference equations will be "excited" by initial
conditions and driving functions whose statistical properties will be
given.

In analysis, it is always sought in what respect, if any, the
quantizer behaves like a source of additional random first order noise
of distribution density Q(n). It is necessary to be able to determine
whether or not the Nyquist restriction will be met by the probability
density of the signal input to the quantizer, This will be accomplished
analytically for "linear"™ quantizer systems, those that become linear
sampled-data systems when the quantizer is replaced by a device having
a gain of unity. This Nyquist test for M™non=linear® quantizer systems
cannot be made analytically., However, in many cases,; such as numerical
solutions of difference equations, quantization or round-off is fine
enough so that variables surely make excursions over many quantization
levels and thereby satisfy the restriction,

Systems containing more than one quantizer may often be treat-
ed as if each quantizer were an independent source of additive noise of
distribution Q(n) provided that the statistics of each quantizer input
satisfies the Nyquist restriction. A case of a two-quantizer system,
where the restriction is not met, is shown in Figure 39(a)., The c¢.f. of
the input to the second quantizer of Figure 39(a) is periodic and of



| Page L3

infinite extent. This is difficult to analyze by the methods presented,
However, other methods may often be used when a random signal having an
impulse distribution is quantized. For example, an obvious equivalent
of Figure 39(a) is Figure 39(b). If k is an integer, Figure L40(a) is-
identical to Figure LO(b), If k is 1/2 a marginal situation exists.
The possibility arises for inputs to the second quantizer to lie ex~
actly on the edges of the quantization boxes. If the rule is made that
in case of doubt, the output is always upgraded, a plot of the output
of the second quantizer versus the input of the first quantizer is
shown in Figure 4l. An equivalent one-quantizer system is shown in
Figure L2, These procedures may not be useful when k is not rational,
or when k is replaced by a more general linear sampled-data filter,

A. Analysis of "Linear Sampled-Data Quantizer Systems

1, Qualitative aspects

If a sampled-data system which is linear except for a
single quantizer contained somewhere within is excited so that the
statistics of the quantizer input signal satisfy the Nyquist restrict-
ion, the difference between the quantizer output and input will be a
first order process and will have the simple distribution Q(n)., It is
convenient to consider the linear “equivalent" to the quantizer sys-
tem, driven by the same input excitation and identical in every respect
except that the quantizer is replaced by a linear device having gain
unity. The output of the quantizer system ic the sum of two components,
one identical with the output of the equivalent system, while the other
is the result of driving the linear equivAlent only by the quantization
noise at the quantizer position. Since the rest of the quantizer sys=-
tem is linear, %"signal® and "noise" may be treated separately; this is
a wise procedure because thé statistical nature of quantizer noise, the
only aspect of it that is generally useful, is highly independént of the
signal and it is clearly known % priori. Knowing the gain of the equi-
valent from the quantizer point to the outpui, it is possible to evalu~-
ate the statistical properties of the system output. Two very sig-
nificant characteristics of a linear quantizer system are, them, the
impulse response or gain of its linear equivalent, and the joint prob-
ability density distribution of the noise component in its output. Anm
alternative to the latter would be knowledge of the linear gain from
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the quantizer to the output plus the quantization box size Qe

Once a quantizer is driven with an input that satisfies the
Nyquist restriction, addition of another independent signal cannot
change this situation. When their respective c.f.'s are multiplied to
give the c.f. of the sum, the result can be no wider than the narrower
c.fo of the constituents. In general, it will be even narrower than
this and the restriction will be met more easily.®* In the amplitude
domain, a quantizer having a sufficiently big dynamic range (extending
over several quantization boxes) can only have it increased by the
addition of another independent input., Since the output of a quantizer
is the same as the input plus an additive noise of fixed distribution
Q(n), the quantizer is "linearized® by any input component satisfying
the Nyquist restriction. The same effects are realized with statistic-
ally related input components except where the addition of a component
signal reduces the dynamic range already existing to one so small that
the restriction is no longer met,

The system consequences of the "linearization® of a quantizer
within a system are similar to those for the quantizer alone. Here,
the entire system isMinearized"., For two input components, the quan-
tizer output consists of the sum of three parts, Two of them are the
respective output components of the linear equivalent system when driven
by the two inputs. The third is due to quantization noise. It has a
different waveform in time after the addition of the second input com=-
ponent, but has the same statistical characteristics as before,

According to the Central Limit Theorem, the addition of a good
number of independent random quantities of arbitrary distributions
yields a random process that becomes closer and closer to Gaussian as
the number of included variables is increased. The output of a sampled-
data filter at a given sample time is a weighed sum of past inputs that
are often of a first order process, so that statistical outputs of

* In conventional filter theory, this appears in the fact that the
linear filtering of a signal can only reduce its bandwidth, or at

best, allow it to be unchanged,
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"long-memory" sampled-data Systems are almost Gaussian., In particular,

if the impulse response from a quantizer point to the output contains a
half dozen samples or more, a given noise output, the sum of that many
independent past noises; is nearly Gaussian, All that is nreeded to
speci.y the first order distribution of the system output component due
to quantization noise;, then is its mean square., Since the original
quantization noise samples are independent, mean squares add, The
seéond moment of the distribution Q(n), the mean square of quantizer

2. The mes=n square system noise is then 1/12 q2 times

noise, is 1/12 q
the sum of the squares of the impulse magnitudes of the response at the
output to a unit impulse applied at the quantigzer position,

This is as far as can be gone qualitatively. The above results

are perhaps the most useful - surely the most simple, The problems
remaining deal chiefly in analytical fine pointss

(a) Propagation of statistics through linear sampled-data
systems. This is treated in detail in Appendix IT,

(b) Tests to determine whether the Nyquist restriction will be
met at the input of the quantizer (quantizers)° This can usually be
done by inspection, keeping in mind the results of Chapter IT;, SectionCo
More precise ways of doing this will be developed below,

(¢) Derivation of moments of system outputs, and of joint
moments between system output and input will be done below,

2, Tests on linear quantizer systems to determine

whether the Nyquist restriction is met at the

quantizger input,

If the c.f, of the random input to the quantizer of Fig=
ure 43 is finite within a hypercube of edge A, and centered at the
origin in multidimensional c.f, Space, and zero (negligible) elsewhere,
the Nyquist restriction will be satisfied if ?6 4 A, where?é = 2n/q.
If the input of Figure L3 is first applied to a device having the mag=-
nification k (as in Figure Ll, the Nyquist restriction will be obeyed
as leng as ("34, Ak

The next more complicated quantizer system is shown in Figure
L5. The c.f, of the quantizer input is not simply a scaled version o
the filter output. '

From Appendix II, the two~-dimensional c.f. of the output of the
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linear filter is (3.1).
fa,,0, (5 1-%5) = Ex(?l):( E‘x(‘gl +’7'2ﬂ B(‘%)] (3.1)

The input c.f. is FX(E' ). From this, it is possible, but not
particularly easy, to explore the value of F, ,0 (glc %‘2) and to see how
big a square in the fl’ l? o plane would be ngceSsary to enclose its fin-
ite region. Let the edge of this square be B, and the test is surely
positive as long as ¢ > Be

Let the input signal in Figure L5 have a c.f, that is only fin-
ite within a hypercube of edge A. The addition of an independent first
order signal having the c.f, FZP( ;) as shown in Figure 46 does not
change the statistics of the system input as long as o< » A. If the
first order process indicated in Figure L6 is treated as a degenerate
process of the same order as the original input, the c.f, of the sum, the
product of the c.f.'s,is not changed because it is multiplied by unity
everywhere in c.f. space where it is finite and significant. In the an-
alogy between the c.f, domain and the frequency domaim of conventional
linear system analysis, F ZP( ‘;o) resembles an ideal low-pass filter char-
acteristic, whence the notation.

Addition of che independent signal having c.f. = F, p(‘;)
caused no change in the input distribution and therefore could have no
effect upon the output distribution. The ouvtput component due to the
signal of c.f, = Fﬁp(g) could have been added in directly at the
filter output because the filter is linear, agaim without changing the
statistics of the signal there. Examination of the expression for the
two-dimensional output c.f., of the added independent output signal has
values of either O or 1, with a connected 1 region symmetrically cluster=
ed about the origin. This 1 region must completely envelope the multi-
dimensional c.f, of the output signal due to the original input in order
that their multiplication yield the original c.f. Therefore, the spread
of the c.f, of the input having c.f.= F {p(€ ) in propagating through
the filter sets a limit on the spread of the c.f. of the original signal
and always allows a conservative estimate of this for the types of
characteristic functions of interest (those that are band-limited). A

linear filter is conservatively characterized then by the greatest
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extent of the multidimensional c.f. that results when the input is
driven by a random signal of c.f. = Fﬁp(s)o In this way, a ratio is
obtainable for a given filter that will yield a conservative estimate of
the maximum allowable quantization box size for the satisfaction of the
Nyquist restriction given the maximum allowable box size for the input
signal if it were to be quantized. To be more specific and evaluate the
errors in énalysis, as was done for the quantizer alone in Chapter IT,
section C; would require separate calculation for every input distri=-
bution; first order and higher order.

As an example, consider the sampled data filter of gain (1+ Z/)

to have an input signal of c.f. E.I}’i(é’) where FQP(Q;) IX<CE<ee as in
0 elsewher h§°

The c.f. of the resulting random output is (3.2).
F01502($13§ 2) = [Fl(gl)] [Fi(1/2 @l "';2)3 E'i(l/z g 2)] (3o2)

The shaded regions of Figure 47 (a), (b), and (c) show where on the
\ﬁ 19 éé plane the three factors of the output c.f., are finite. Figure
L7 (e) is a region where all three factors are finite and have the value
unity. An input whose c.f. is finite only when ~ s ¢ <’§i,§i)'_j§;>4?ﬁéL
will give an output c.f, only within the enclosed re,ion of Figure L7(e),
The multidimensional Nyquist restriction would be satisfied by a quan-
tizer at the filter output having a quantization frequency 95 > 3/2,
Satisfaction of a first order restriction would be guaranteed of 95]>CX 9
but it would not be clear whether or not the resulting cvantization noise
would be uncorrelated although its first order distribution density would
by Q(n).

A similar process could be used in exploring the extent of a
c.f. after linear filtering for filters of a higher but finite number of
memory states. However, feedback sampled-data systems of infinite mem=-
ory are quite cormon, and cannot be dealt with practically as above,
Consider the linear feedback system of Figure L8, having first order
(uncorrelated) inzut to the filter of gain D1 can be infinite in c.f,
space only where X /2 ¢ (’7‘;’1, Cpoooeoe ‘g‘n)’A o<_/2, This signal is of
a high order process because of the feedback signal, but the input, being
first order and hence statistically independent of the feedback, sets a
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limit on the spread of the c¢.f. into the filter D because the c.f.'s
multiply, Thus the extent of the c.f, at the output of the system of
Figure U8 is not increased by breaking the feedback link and the system
may be conservatively checked by checking the filter of gain Dl alone,
The identical argument may be applied to the quantizer feedback systems
shown in Figures L9 (a), (b), and (c). In (a), the restriction will be
satisfied if the input itself has c.f, finite only in the region
472 ¢ (€ 15 BpsEgeeevee) < @ /2. In (b) only the filter of gain D
need be tested, In (c) only the filter of gain Dl need be tested, In
general; single quantizer Systems may be tested by testing the lincar
transmission from the input of the system to the input of the quantizer
output link cut,

How to estimate the extent of the characteristic functions of
the inputs in multiple-quantizer systems cannot be described in general
because there are too many situations to consider. However, certain
methods of approaching such problems can be illustrated in examples of
two-quantizer systems,

Tests on the inputs to the quantizer Ql and Q2 of Figure 50
are easy to make and are the same as for the systems of Figures 5i{a) and
(b) respectively, Fundamentally, the simplicity arises from the fact
that the signal input to either quantizer does not come directly through
the other, A system where an apprieciable portion of the input signal of
quantizer Q2 may come from the output of Q1 is shown in Figure 52, The
test for the input of Ql is the same as for the quantizer in Figure 53,
The test for the input of Q2 is not that simple, being the same as for
the quantizer Q, in Figure 54. The feedback paths of Figure 52 which
were broken to give Figure 5l carry signals that could only make char-
acteristic functions narrower, Hence, the test on the system of Figure
5L is more conservative than is necessary, but simple enough to be made,.
First, calculate how narrow the width § of the c.f. at the input to D2
must be in order to satisfy the Nyquist restriction at Q2° Then the
problem is to determine how narrow the system input must be to insure
that the c.f. at the output of the summer is narrower than 8 in o, 1,
space. The c.f. of the sum (the c.f. of the -input to D2) is obtainable
from the joint c.f., of the outputs of D3 and Q1° This joint c¢.f, is the

same as would be i# Q1 were replaced by an independent quantization
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noise source, except that it is periodic along the coordinate of the c.f,
variable corresponding to the Ql output.

Let the system input have a c.f. of FJz p(?) and be uncorre=
lated. 'This is the usual test input. The output of D3 has an order of
one plus the number of memory states. The number of dimensions in c.f,
space required of such a joint c.f., and how the c¢.f. of the sum is
derived from the projection of the intersection of a h5° cut plane and
the c.f. surface for a filter D3 having zero memory states.

Figure 55 is closely related to Figures 36 and 37. The c.f. of
a sum is always given by the projections (either or any) of the 45° cut
going through the first quadrant. This c.f. is sketched in Figure 56,
The periodicities of the joint c.f. cause the c.f. of the sum to be
widened somewhat. The c.f. of the sum will surely be wider than that
which results when the quantizer is replaced by an independent source of
random quantization noise, It is necessary for the input of D2 in the
system of Figure 57 to have a c.f, of width less than (9 calculated above,
For simplicity, the random noise could be eliminated in this test and
the results would be more conservative. The added noise makes the con-
dition more easily satisfied because its c.f. sin(nf /f{ (B / 5/)
multiplies and could only make the result somewhat narrower,

The effects of the periodicity of the joint c.f.;, ie.e., the
effects due to the fact that the quantization noise of Ql is causally
related to the input of Q;, are in question, Inspection of Figure 55
shows that, very conservatively, there would be no intersection of the
hSo cut with a c.f., su~face of only the central c.f. section were written
in the dotted square, i.e., if the radian fineness 75 = 25/q of Ql is
greater than the width of the joint c.f. of the signals being added in
Figure 57, This is simply the joint input-output c.f. of D3° If this
test is satisfied, then the causality of the noise of Ql has no effect
on the c.f. of the input to D, of ?igure Shs Q, is a source of independent
noise. All arguments are general for a filter D3 of any order. A filter
of noise zero was used as an example because higher order c.f.'s could
not be readily sketched.

The kind of testing just illué%rated is applicable to most
multiple quantizer situations where a quantizer input comes from a com-

bination of another quantizer output and a signal of continuous
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probability density. The other possibility, where the input to a quan=
tizer has an impulse=-type of probability density, can only be treated
analytically in simple cases where levels are commensurate, as has been
shown before,

3. Derivation of the moments and joint moments of the

signals in linear quantizer systems.

It has been found that if the c.f. of a signal in-
put to a quantizer is finite (significant) only within the region
- ¢ /2 K (‘?1,'?2’%3;,,, “gn)4¢ /2. and zero elsewhere, all moments
and joint moments are the same as if the quantizer were replaced by a
source of additive independent first order noise of distribution Q(n).
It will be shown that as far as all moments and joint moments in a linear
system are concerned, the quantizers may be replaced by independent noisy
sources having distribution Q(n) provided that this Nyquist condition is
met at the inputs of each quantizer.

The output of a quantizer system consists primarily of two
components, one due to the given input signal flowing through the linear
equivalent system and the other a sum of noises that are generated at and
propagate from the quantizers. The distributions and joint distributions
of these two separate components are calculable, being descriptions of
the propagation of random signals having known distributions through lin=
ear sampled-data systems. Most often, this is adequate for analysis and
design. However, it may be desirable to have knowledge of the statistics
of the sums of signals and noises at various system points, The issue is
beclouded because the noise is causally related to the signal but it turns
out that the moments of the output (signal plus noise) and joint input-
output moments are unaffected by this causality and are the same as if
the noises are completely unrelated to the signals,

There are three kinds of devices that appear in linear sampled-
data quantizer systems. They are quantizers, linear filters, and adders.,
It is necessary to investigate the nature of changes in moments as signals
propagate through these devices which are treated as "statistics changers?

A given probability density disiribution has definite moments
which may be derived from the derivatives of its c.f. at the origin. In
reverse, only iﬁ the c.f. is everywhere representabie by a Taylor's series

about the origin do a given set of moments define the c.f. and
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distribution. As shown in Appendix IT; the c.f.'s of the probability

distributions and joint distributions throughout any linear sampled-data
system may be calculated directly from the c.f, of the input signal., If
moments of an input always define its c.f., then it could be stated that
all moments and joint moments in & linear sampled-data system are cal-
culable from the moments of the Joint signal. This resuvlt turns out to
be true; but needs to be proven,

The proof is simple: Consider as an example, the filter of
gain ( 1 + AZ) (Figure 58) being excited by a signal having the first
order c.f, of Ei(si)o The joint c.f. between output and input, according
to Appendix IT is (3.3).

711501,0,7 18, Fab, F2u) = Fu(F IR (SR (A5 0 TP (A5 )

(3.3)
The c.f. of the output signal is (3.4), the same as for ;?la = 0,

Folyoz(?lbs ?‘Zb) = Fi(ilb)Fi(A. ?lb.' ?2b)Fi(A§2b) (3.4)

Joint moments between input and output and moments of the output signal
are obtainable from the respective c.f. expressions. These are to be
differentiated partially and evaluated where allz?'s = 0, Different-~
iation of the product yields sums of derivatives multiplied by certain
factors. When evaluated near the origin in c.f, space, all factors take
the value unity (their arguments are zero), and the derivatives are sime
ply proportional to the derivatives oY the original c.f, of the input at
the origin. For this example, it is thus proven that all moments and
Joint moments depend only upon the moments of the filter input. This is
true in general for higher order inpuvts and linear filters of many memory
States because characteristic functions will always be products of factors
of the same general form as in the original (as shown in Appendix II),
Signals progagating through a linear quantizer system may be
combined by addition., It will be shown next that moments of the sum and
joint moments between the sum and the respective new constituents depend
only upon the joint moments of the constituents. Consider the signals
X and Y to be added. The nth moment of their sum is (3.5).
WD =T ™% n(n-1)/20 9% L7 (3.5)
Thus any moment of (X + Y) is a linear combination of certain of the
momentes and joint moments of X and Y. The mynth joint moment between
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X and the sum is (3,6)

Y + Y)B = xR, rnsly n(n-1)/28 P2 o .. o Oy0 (3.6)

This expression is also a linear combination of certain of the moments

and joint moments of X and Y. The addition of several signals at a
point is equivalent to several separate additicns, as illustrated in
Figure 59, The theorem is proven and is general in the sense of
Figure 59,

Consider a linear sampled-data quantizer system driven by an
input of sufficient dynamic range to insure that the Nyquist restriction
1s satisfied at the input of each quantizer., If one of the quantizers is
replaced by an additive first order noise of distribution density Q(n),
the probability density at the quantizer output changes from an impulse
distribution to a continuous distribution. Considerable changes in the
distributions may take place at other points in the system, but nowhere
do moments of any kind change. The c.f. at the former quantizer output
is very much narrowed. As a result; c.f,'s at other points could only
bte narrowed and the Nyquist restrictions at the quantizer inputs are more
easily met in general. Substitution of the noisy source for the quanti-
zer does not change the "flow of moments® from the nvantizer input to
output points., The same moments in give the same moments out plus the
same joint in-out momemts. The rest of the system components consisting
of linear filters, adders, and "satisfied® quantizers; sense only moments
and as far as moments are concerned, cannot detect *he change, In like
manner, each quantizer may be replaced by an independent first order
source, having the distribution of quantization noise Qin}., wmthout
changing moments of any kind,

Since the characteristic functions when considering signals,
noises, or their sums are obtainable by the methods of Appendix II,
differentiation cf these at their origins gives the moments of the equiv-
alent quantizer system,

Distribution of the signal output component and joint input-
output distributions are cbtainable by considering the provagaticn of tne
actual input signal through the linear equivalent system and applying the
methods of Appendix IT, In like manner, the distribution of the noise

component of the output signal is derived by cutting off the system input
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signal and replacing the quantizers by independent noisy sources., If the

input is applied simultaneously with the independent noises, all moments
that result are the same as for the signals plus guantization noises of
the original system, The distributions of the combinations of signals
and quantizer noises are often obtainable from these their moments, but
they are rarely needed once the signals are known, the noises are known,
and the moments of their sums are known,

Bo  Analysis Of Non-Linear Sampled-Data Quantizer Systems

Only certain cases of quantization in non-linear sampled-data
systems may be treated by the methods presented. Limitations irn appli=
cation come from the inability to perform the Nyaquist test on the prob=
ability density distributions of the quantization noise compenent in a
system output signal, The basic difficulty lies in the determination of
the distributions of signals resulting from propagation through non-linear
systems,

Quantization noise distributions at system outputs may be cal-
culated in cases where non=linear systems are "small=signal linear®
where doubling the box size doubles the output noise component amplitude.
The M™macroscopic" desired signal propagates through the system. and as it
swings the non-linear devices over their various dynamic ranges, it causes
their incremental gains to vary., To the "microscopic® quantization
noises, the oystem is linear and variable with time. These variations
with time depend critically on the ¥macroscopic® signal in addition to
the system characteristics, In other words, the time-varying impulse
response from the various quantizer positions to the svstem ouiput depsnd
upon the system characteristics, the driving functions, and 1niiiai con=
ditions. Generally, the statistical output of a time-varying system
will be non-stationary, so that precise statistical descriptions will no%
be sought,

The quantization of Gavssian signals was found to produce first
order quantization noise of distribution Q(n) as lorg as the granuiarity
was finer than two standard deviations, i.e., as long as slmost all of
the probability density lies within 3 or L levels, If the dynamic range
of a variable extends over 25 levels, it is safe tc say that the quan-
tization noise is first order and is distributed according to Q(n) almost

irrespective of the statistical nature of the signal, whether stationary
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or non=stationary. In numerical analysis where accuracy 1s of interest,
the granularity everywhere is at least that fine, This insures that the
quantization noise is "small=signal", first order; and of distribution
Q(n).

The origin and nature of quantization noise generated by round -

off in numerical analysis being understood leads next to the problem of
how it propagates, The useful Statistical properites to be considered
are again the moments, only here "average" moments will be used to de=
scribe non-stationary statistics, As far as moments are concerned, the
quantizer may be replaced by adding independent quantization noise, The
distribution of the noise component in the output signal may be calculate
ed by making the same substitution just as in linear quantizer systems,
A knowledge of the statistical relation between signai ard noise is not.
necessary because the noise is small (always less than 20% of the signal)
and is virtually impossible to obtain in non-linear systems. Noise disg-
distributions may be estimated with sufficient accuracy from their moments
and in many cases, it is sufficient to obtain first order noise distri-
butions by Gaussian fit to match mean squares. The most vzefil and
easiest moment to work with is the second as may be seen in the sukb-
sequent example, Consider the homogenous first order non=linear egquation
with its initial condition {3,7},

dy/dt + y° = 0o

y(0) = 1,12 {3.7)

An associated difference equation is (3.8},
Yea1™ Vi = /10 3,
yo = 1012 '\_300}

A block diagram of the exact numerical solution is shown in Figure £0{aj,
The squaring operation introduces numbers of double length. Quantization
of the squared variable is very convenient for hand calculation and nat-
aral with crude 3 decimal digit machine calculation, Figure 60(b}, a
modification of 60(a), is the block diagram of the equivalent quantizer
system., The quantization box size is wunity, whence the 8caling in 6G{k},
The quancization process in the point-by-peint manuai sclution of the

difference equation is illustrated in the table of Figure 61,
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The error te be expected in such a selution due te round-eff
may be predicted by replacing the quantizer of Figure 60(b) by an inde-=
pendent noise source having a mean square of 1/12, and replacing the
multiplier by a linear "time variable peotentiometer®, The linear incre-
mental gain of the squaring box is dyka/dyk = 2 o Over the five time
intervals of the example, Yy does not change radically, so that an aver=
age 2 ¥ would be 2(1.12 + ,68/2) = 1,80, The complicatien of time vari-
able is not necessary. A small~-signal equivalent of Figure 60{b) is
given in Figure 62(a), and a reduction of this is 62(b). The respons=
at i to a single unit negative pulse at the quantizer is showm in Fige
ure 63. The quantizatien noise at the fourth sample time, for example,
is the sum of four noises, due te four past quantizations. All noises
are independent and had the same mean square when they originated., The
noises are weighed according to the impulse response, and the sxpected
mean square contribution is weighed with the square of the impulse re-
sponge, Since mean squares of independent noises add, the mean square
in the fifth output sample is
1/12 [(1/100)% + (/82/100)2 + (.672/100) + (.552/100)° ] = 002(10)4‘0‘
Thus the mean square error in the fifth sample is about ene part in 10%
of the mean square of the fifth sample of the actual signal., Round=off
error is negligible, The quantization bex size could be ten times as
big, and the corresponding mean square error would be only 1% of the
mean square output over many "runs® with various initial conditions in
the vicinity ef 1.12,

Non=linear systems that are "small-signal linear® differ from
linear systems in that they centain multipliers, dividers, and non-=linear
devices whese input-output relations are representable by Taylor's series
over the ranges used. All of these devices yield moments and joint
moments which depend only upon input moments.,

Consider first a device whose in=-out relation is the Taylor's
series (3.10),

0= &)+ ai+ a212 000 {3.10)

—k— 2
the kth output mement is ek = (ao * ali + azi“onoo)o This will give

a sum of average powers of i, or a sum of the moments of i, The most

general moments, the joint in-out moments, are ekilsii(ao*ali+a?izoooExo
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This, too, depends only upon the mcments of i,
A device that multiplies two input variables il and i2 may be

described by ¢ = ili2°
k _. k. k
2

The kth output moment iz o = i, i

-]

1
A general.in-out moment is okill = ilﬁilizk

Both output and joint moments depend only on the joint moments
between il and 120 If two quantized variables are multiplied as in
Figure 6L there will be no change in the moment picture when the quanti=
zers are replaced by independent added quantization noises as long as the
high order joint distribution betwesen il and i2 is wide enough along the
il and 12 dimensions to satisfy the jeint Nyquist restriction. In c¢.f,
space, there will be periodicities in the joint c.f. along the‘gzl di-
mensions of radian fineness 15 and periodicities of rauian finenesa?ég
along the 5 dimensions. 1 and 9{2 correspond to the quantization
frequencies of Ql and Q23 while ?1 and ?2 are the variables transformed
from il and i

fied.

50 No overlap means that the Nyquist restriction is satis=

C. Analysis Of Continuous and Continuous=-Sampled Quantizer

Systems.
A general discussion of how and where these techniques may be

applied to continuous and part continuous sampled systems can best be
induced from a study of a specific example,

A crude and possibly cheap automatic guidance system for the
steering of an automobile may be realized if the power source or con=
troller is only required to produce several uniformly-spaced (angle-wise)
headings., These headings are held for fixed intervals, whereupon they
may be changed if necessary. The automobile is tracking an invisible
®white line® painted on the highway, and is always trying to keep the
error small, the error being the difference between the automobile

position and the white line, Figure 65 i8 a system diagram including
controller, the autemobile dynamics, and the errer detector. The problem
is to find the effect of quantizatien on system performance and to esti-
mate the largest tolerable quantization bex size and thereby arrive at

the required number of steering angles,
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The system of Figure 65 is identical te one described by
Linvill1 expect for the quantizer. The holding device is shown as being
linear and capable of holding a continuum of levels., Actualiy, in this
application it holds only the discrete levels corresponding toc quantizer
outputs (steering wheel positiens) and is a discrete~level device, Tha
auto dynamics given by k/s is exact for small deflections., By conven~
tional system reduction techniques, Figure 65 may be reduced to a fairly
simple form, Figure 66(a), (b), and (c) show several stages of this
development, Full justification may be found in Reference 5. The system
of Figure 66(c) with the quantizer replaced by a box of gain unity is
"perfectly" compensated when k is adjusted, so that kT = 1, Error sensa
at a given sample time is broqght to zero by the next sample tima, Let
k be adjusted as such in the quantizer system., This is a reascnable
procedure, but it may net be precisely the best. If in addition, the
substitution e %L = Z is made, Figure 66(c) becomes Figure 67,

The Nyquist test upon the probability density at the quantizer
input is easily made by cutting the feedback link (Figure 67), No matter
what statistics are assumed for the system input (highway characterisge
tics), the Nyquist restrictien will . be practically always satisfied,
Recall that this condition was met for Gaussian inputs quantized with
granularity as large as two standard deviations. In any event; there
will always be a lot of arbitrariness in the assumption of input statis-
tics so it is perfectly reasonable to replace the quantizer by a sourcs
of independent quantization noise. This is done in Figure 68(al, and a
further reduction is Figure 68(b), Figure 68(b) is ar accurate picture
of the control system. A reasonable sampling rate might be once per
second at 6,8 MPH, or a sampling every 10 f~et, 9n this basis, the
speed of the vehicle does not enter into the problen,

Instead of attempting analysis of the actual system output,
consider only its samples. Formally, this is done by following the
system with an impulse modulator. The analysis is greatly simplified,
particularly if the second impulse modulator is synchronized with the
first (Figure 69). Figure 69 exactly reduces to the very simple system
of Figure 70.

Figure 70 shows that, except for the quantization noise, the

samples of the output are identical with the samples of the 1input
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delayed by one sampling interval, Also, the path of the automobile is
the same as the path ef the white line shifted by the.sampling interval,
10 feet, except for the quantization noise, and provided that the con=
ventional Nyquist restriction on the bandwidth of the input is satisfied,
See Figure 71,

It is now possible to attempt the question, how large may the
quantization box be? Assume that the highway will never curve with a
smaller radius than 25 feet, and that the automobile must always be
guided to within + 3 feet of the white line, Figure 72 shows a Straight
line path that suddenly takes on a curvature of 25 foot radius. The most
adverse condition is that the last Sample is taken just before the high-
way curves, as shown in the sketch. In one sampling interval, without
quantization, a lateral error of two feet will develop. The quantiza=-
tion box size must therefore be less than 1 foot which, when added to the
2 foot "dynamic* errory; will yield a net error within the 3 foot limif,,o

Only three quantization boxes would be necessary if the box
size were set at 2 feet. One left, one right, and the third straight
ahead. If the left state is selected, the system will turn left to give
a lateral correction every sampling interval, This turns out to be Just
enough to allew turning within a 25 foot radius.,

Such a control system would no doubt give a rough ride at any
apprieciable speed, and would place considerable strain upon the auteo-
mobile., A quantitative way of determining the roughness of a ride is
necessary in order to decide how much less than 2 feet the quantization
box should be made. An arbitrary but reasonable procedure is to define
a "roughness®" of path in terms of the mean square of the lateral velocity
The first difference of the output samples is an approximate measure of
the samples of lateral velocity. The roughness is then the mean square
of the output of the system shown in Figure 73. Quantization with 2-foot
boxes adds a roughness of 1/12 q2(2) = 1/12(L)(2) = 2/3 ftzo
This may be compared with the roughness of a sine wave of amplitude A
and a period of 360 feet., The output pulses are samples of
A sincX -A sin (X - 10°) & 0.17 A sin (K- 5°), giving a roughness
of (0017)2A2/2 ftz. Quantization as indicated above introduces as much
roughness as would the addition of a sine wave of amplitude A = 6,8 feet
and period of 360 feet, At a speed of 60 MPH, one cycle of the sine wave
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will be traversed in L seconds.

Instead of quantizing with 2 foot boxes, the same dynamic range
could be covered by the addition of two more quantization levels with 1
foot quantization boxes. The addition of 2 more levels allows quantization
boxes having widths of 2/3 feet (see Figure 74). The amplitudes of sine
waves having equal roughness come down in the same proportion. T7-level
quantization is probably fine enough so that its effects are negligible.
Almost the same fineness of performance could be obtained from the quan-
tizer described by Figure 75, at least for sections of highway having
radius of curvature greater than 3(25) = 75 feet, Sharper curves willhave
quantization roughness corresponding to something between 5 and 3 levels,
but never worse than 3 levels. Sharp curves present no serious problem,
being relatively rare and always executed at low speeds. Roughness here
will be small compared to the unavoidable roughness of the curve itself,

The quantizer of Figure 75 is probably a good engineering device,
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APPENDIX I

SHEPPARD'S CORRECTIONS FOR GROUPING

Quantization is known to statisticians as “grouping". Most of
their statistical data is gathered by noting how many trials fall in each
of a predetermined set of groups, giving either an impulse distribution
or a histogram. Sheppard's corrections provide a means of modifying the
moments of a given impulse distribution in order to arrive very much
closer to the true moments of the unavailable ungrouped distribution,
Sheppard first proposed his corrections in the Proceedings of the Lendon
Mathematical Society in 1898. His article was entitled "On the Calcula=-
tion of the most Probable Values of Frequency-Constants, for Data arranged
according to Equidistant Divisions of a Scale,"

Before considering Sheppard's derivation, the corrections will be
evaluated by assuming the quantization to be the same as the addition of
an independent noise of distribution Q(n) as in Figure 16. It was shown
that as far as moments are concerned, the above substitution is per-
missible when the Nyquist restriction is met, )

Let the tth moment of the grouped data be Hys and let the tth
moment of the true smooth distribution be m . Let the noise of distri=-
bution Q(n) be represented by n. The tth grouped moment is then given
by equation (I.1). Since n is independent of X, the averages of (I.l)
by s AW =T W0 4 6(6-1)/21 T 0% oot BT (L)

may be expressed as in equation (I.2), Note that all odd moments of
Q(n) are zero because Q(n) is an even function.

gt=2— =2-

Iy <Te t(t-1)/28 X n- + t(t-l)(t-z)(t-B)/hi ) e

¥ 500
- (I.2)

R 8(8-1) (52)(83)/l0 W B e

=m o+ t($-1)/21 m _,

Notice that Hy may be expressed in terms of some of the moments
of X and n up to and possibly including the tth, The first four moments
of the grouped distribution are as follows.

h=n W3 = m3 ¢ 3m n (1.3)
My = m, SR W, =m + 6m, 7 T
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The momentsof the rectangular distribution Q(n) are easily gotten to be

.52_ 1/12 q2 (I 0)4)
= 1/80 g

The equations (I.3) become (I.5),
Bpem

. 2
p.2=m24rl/l¢q

my + 1/4 u1q2

"3 = m3 < l/).l. m1q2
m o+ 1/2 myq’ = 7/200 o (1.5)

p.h = mb. +* 1/2 m2q2 + 1/80 qh

The moments cf the exact distribution s Mo m3, m are given in terms

of Bys Hos Ba M, by equation (I.6),

mo=u

2

ny = by = 1k g’
e T 1/2 l-'-2q2 + 7/2)40Cl}4 (1.6)

The Sheppard corrections are 0, (1/12 qz), (/L p.lqz), (1/2 p.2q2 = 7/2L0 qh)
for the first, second, third, and fourth moments respectively.
Dr. Sheppard®’s approach differs considerably, What follows is
an abstraction of his derivation,
Let y = £(X) be a continuous probability density having area
. . . t CTt & t
unity. Using the same notation, m's 5 X" £(X) dX and W= Z X Ap
- - P
SX * e
where A_= f(X) dX. A_ is the area the base X 2 bein
D XP'q/z. () pl on twhe th/,p g
integral, and (b-a) is the full range of the varizble X.

9/1_
Ap j f(X +X)dx

q b
e

_Q/,l_

)+ X ) 4 X2 @Y # s & (g

a £(x) + a%/2L (L) + o /1920 RLc SR
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K, is then given by (1.8). ya ya
b= 5 axbex) e o/aux®mx) +S_ ohseor™(x)...
= P P & P P’ L .

The Buler-Maclaurin theorem, (I.9) which connects summation with integra-~

tion, may be used to express the sums in terms of the true moments.

£ b
q Z £f/(x) = 5 £(X)ax + q/2 E‘(b) + f(a)] & q2/12 £1(b) - f'(aﬂ +o00
o P e
Let f(X) be analytic over the full dynamic range of X, and let

its value and the values of its derivatives be zero at the points a and b,

the extremes of this range.,
For all the substitutions of (I.9) into (I.8), the Euler-Maclaurin
theorem becomes the very obvious equation (I.10),

b
q f(xp) = jf(x)dx (1T.10)
a

(-5
Substitution of (¥.1l0) inte (I.8) yields Ko

b b
b, = 5 xPr(X)ax + q2/2hixtf"(x)dx + /1920 | xtree(x)ax 4 .....
% b
+ q2/2h j xtf"(x)dx + qh/l920 xtfm'(x)dx # coooo (Io11)
(« %3

By continual integration by parts and applying the conditions at the

extremities b

ixtf"(x)dx =
a

5
jx*‘f""(x)dx = $(t-1)(t~-2)(¢-3) m ),
S

(X.11) then becomes

b, =m a%/2L t(t-1) m, o+ q%/1920 4(8-1)(6-2)(8-3) Myl ¥ e0(1,12)

b
e (x) - 2.5 X*7 e (R)aX = 4(4-1) m, and

Equation (I,12) is identical with equation (I.2) when the moments
of quantization noise (I.lL) are inserted, The remainder of Dr. Sheppard's

derivation proceeds in the manner of equations (I.3) through (I.6).



Page 74

APPENDIX II

THE PROPAGATION OF RANDOM STATIONARY SIGNALS THROUGH LINEAR SAMPLED-DATA
SYSTEMS

Ao First Order Inputs

(1) First Order Filters

A first order filter, having a single memory state, is shown in
Figure II-1. This sampled-data filter has a gain 1 + az, which indicates
that the present output equals the present input plus (a) times the pre-
vious input. A way of showing present and past inputs and outputs for
the purpose of calculation of their joint probability density is Fig=
ure II-2, The input signal is stepped at each sampling time from input
node to input node, entering at the "present® node at the top and pro-
ceeding downward. These nodes make up an “analogue stepping register .
The filter input is first order, so that all the input nodes of Figure
II-2 carry statistically independent signals at each sample time.

The cause of the statistical dependence among the output samples
is clearly seen in Figure II-2. 01 ard O _have a common ¥source of sup-
ply" in the node x2, OQutputs Ol and 03, on the other hand, have no com=
mon supply node, being driven by statistically independent sources and
are, therefore, statistically independent, The output is a second order
process described by‘W(Ol,Oz)o The order of an output is always the
sum of the order of the input statistics plus the order or number of
memory states of the filter,

The two=dimensional characteristic function of the output signal

is given by equation IIﬂi: i?
| 0y ¥ 1 40,7 5) :
Fo,0, (F1F5) = j ai W(0y,0,) C d0,d0,  (1I.1)

Formally, this is very similar to the characteristic function of the sum

of 01 and 02, given by equation II.2. The two are identical for

T1° .7 - o F )
5(0, % #0
Fo, + 02(?) = 5 W(0,0,) C 7 2 dold?z (I1.2)

=<
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Thus the <characteristic function of the sum of 01 and O2 allows cal=-
culation of their joint characteristic function, along a h5° cut in the
? 19 ‘; 5 plane, The entire F0 0 (?71,?2) surface may be e.plored by
finding the statistics of sums of 01 and 02 when multiplied by the con=
stants k1 and k2 respectively. A {low graph of this process is given in
Figure II-3), Notice that the arrows have been omitted for clarity, All
links are unilateral with signals flowing from left to right,

From Figure ¥I=3, it may be seen thatt is the sum (equation
TI1.3) of three statistically independent signals.

k,0; + k,0, 7: X # (ak, + k)X, + ak X, (I1.3)

The characteristic function ofz is equation (II.L), the pro=

duct of three characteristic functions,
Fr (?) = Fx(k,lg )Fx [(.k.l + k2)§J Fx(ak2 £) (I11.L)
The characteristic function of Z may also be expressed in
terms of Foloz(fl, ?2)0
o ?’ +k O ?)
FL( ) = S{ w(ol,oz) e do, o, (IT,5)

-— O
Equation (¥¥.5) is identical with equation (II,1) if the substitutions
(IT.6) are made,

kY - 3 1
k% =% , (II.6)

n

Therefore the second order output characteristic function is

Folsoa(gl’%) = By RGE ) + G IR GF)) (11.7)

The output characteristic function and by inverse transformation
W(Ol,OQ) s are completely determined by the characteristic function of the
input signal Fx( ¥2) when the substitution into equation (IT.7) is made.
As an example, let the input be Gaussian with the characteristic fun-

ction _ _0.2
FE) =€ ;
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Sequential Flow Graph Of The System Of Figure II-1
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Page 77
The second order output is, accordingly,

“’?120’2 “’(3251*?2)272 '(a 'FGZ)ZO"Z
S 2 2 -2
Fo,,0,(F 1 52) -€ e 20 2, o 2 < 2 2.2 2
1°72 _?12§2 -(a €1 '&?2 ¢2af1<$2)g' -F, o
e <& 2 S

,(1+a2)(§12+ ?22)4»2:1 ‘?’l gzrwog

. e :

Thus the output is a second order process having a variance of (1+32)U'2

. 2
and a covariance of aU .,

Inspection ol Figure II=-3 shows that the two related variables,
01 and 02, are only related to the input variables xl, Xz, and XB.
Therefore, the most general joint input-output characteristic function
includes these five variables, 4t is necessary at this point to adopt
a new, nore complete notation. Xl, 12, and X3 transform into Q’:la’ ?’Za
and € 352 while O, and O, transform into Célb, and & ope The desired
joint characteristic function Fxl’x2’x3’ 0, 02(€ la, %2a, £33, 10, Eop)

will be derived like Fol’OZ(El €2) from linear combinations of
]

Xl, xZ, 139 Ol, and 020
The formation of these linear combinations is shown in Figure
II-4, Here,

z = k13){1 * k2ax2 * k3ax3 * k.l.bol * k2'b02
Z—may be expressed in terms of the three independent variables

as in equation (IT.8).

Z‘ (o, + k) * X(aky # ko, # ky ) # Xo(aky + k3a)(11.8)
The characteristic function of Z is

Fe (F) = B9, % ¢ 1, BIF, o F % k8 + ke E)F, (aky §% Ky B )
(11.9)



Page 78
Inserting the substitutions (I¥.10) into equation (II.9), the desired
joint characteristic function appears as equation (II.11),

kla§ = gla
k2a€ = 721
k3a§ = E’B‘ (11.10)

n
W
&

k), 7
kn€ = F o

Fxl,xz,xB,Ol,Oz(éla,gh, %’Ba, glb, L;Zb)

= FX(E 1a * flb)Fx(a Elb + Z;Za* F2b)Fx(a !;2,04» <;3a) (IT.11)

Equation (II.11) is the most general statistical description of the
physical situation shown in Figure II.1. The joint output characteristic
function of (IX.7) may be derived from it by eliminating the input
variables, i.e,, g 12 = €2a = %‘ = 0, and be reverting to the old

simpler notation ¢1b = ?, and :Zb =€2.
(2) Second Order Filters

A second order filter driven by a first order random input is

shown in Figure IT=5, The flow graph corresponding to the one of _
Figure II-2 is Figure IT-6, Notice that the output is third order, Not
3 but 01

and O3 also have X_ in common. There is no statistical connection be-

only do Ol and O2 have common sources of supply in X2 and X

tween 0,4 (not shown) and O,, The characteristic function of the output
Fol’ 02’03(§ 1b,?2b,€3b) will ‘be derived before the joint input=output
characteristic function,

A flow graph showing the formation of a Zappropriate for the

calculation of F°1’°2’°3( §1b, ';21;, ;‘Bb) is given in Figure II-7,

Z = klbol + k2b02 & k3b03
may be expressed in terms of independent input variables as
equation (X¥X.12) from inspection of Figure II-7,
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Censtruction For The Calculation Of

Fx1x2x30102( ?1"§ 2a, ?3&, 3 lb,?ga)

FIGURE II-k
0,0, 0

W) |+aZ2t4-2* W (0, %, %) 2
E (‘5) Fo‘l 01/03 (3,4‘) ?l(’)j%)
A Secend Order Filter Excited By A First Order Randem Input

FIGURE II-5

4 X‘ -
0
Xy

0, eutput nedes

input nodes have
independent signal Ky
of distributien W(ﬂ

g

Sequential Flow Graph Of The System Of Figure I¥-5

FIGURE IT=6
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Z = Xl(klb) + xz('klb + ky ) IB(bklb + aky ¢ ka)

* xh(bk2b * ak3b) + xs(bk (I1.12)

3
The characteristic function of Z is

Py (8) = Rl FIF (a5, + ki G, (bk; 4 akcp & 4 ey D)

Fx(bk%\? +ak3b§’)Fx(bk3b§) (11.13)

By substituting (II.lh) into (II.13), the output characteristic function

is derived,

"JLbF = elb
k, & = g o |
k3b§ = ?Bb (IT.1h)

0.8 1 Bop Gap) = FrlFpp ), (a % 10+ €a)

1’ ?’ ,
F (o  +a@, ¢ Ep)F (0 F ¢ a S F, (0 F)) (1I.15)

The flow graph showing the formation of a Z for the derivation of the

most general joint characteristic function F
g J xls 21x3:xh’x ) 1,02,03(§1.

\?2a€3a§ha;5a€1b€2b§’3b is in Figure II-8. Commas separating the

variables will be omitted for this many variables.

S i

By inspection of Figure II-8, the characteristic function of

Fo @) =F xK12F * KT (8 & ¢ &+ ki 5
F (bk_lb s aky S 4 ky 5 4+ Ky FF, (D= s ak vk £)
F (bk3b€ + kg, %B) (11016)
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Construction Fer Calculatien Of
F01,02,03( 1b, 2b, 3b)

FIGURE II-7

Construction For The Calculation Of
F ( )
xlxszxhx5010203 la 2a 3a lLa 52 1b 2 3b

FIGURE II-8
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Substitution of (IX.17) into (IX.16) yields the desired result (r1.18).,

F = %,

k2a® = Foa ky = T

e = &, kn = B

5.8~ %), kp = 8 g (12.17)
kSﬁg =§ Sa

x1x2x3xhx5010203 ?1‘ ?211 €31 fl.ua §5a§1b €2b €3b) = Fx( ?a 4‘%13)
s (8 F 0By T (P E pp* @ T * S3a* Fap)
» (b Bt 8By 45 IF, (b % 3" F5a) , (11.18)

(3) Higher Order Filters
It is now possible to induce the forms that the output and

Joint input-output characteristic function will take when a filter of
degree n is driven by a first order random input as in Figure II-9,

The general output characteristic function is equation (I1.19),
containing 2n + 1 factors.,

0y0e0_, élb"“ Gastn) = (TP (a5, *?2b)“°°°°
csoook (p;lb soo * a?n“lb ﬁlb)F (q?lb * % * 0000
cceoco® ‘Fnb *%’lb)Fx(q %b +* p€3b cocoo0 * & Fl;*lb) ceo0

seeos BBy ¢ pFn P (0% ) (11.19)

The general joint characteristic function is equation (II,20),
consisting of 2n + 1 factors,
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Fx1x2 XX x2n*10102 so0 On‘l( él‘ eee ~§21'!.*1‘ g:l.b oee ?n*lb)

- Fx( gla *§1b)FxC%2a * aﬁ * ?Zb) '....;.’.‘.
vovsoces E(E 4 DPFy & coo +aF, # .,
Fo(8 e * Q810 * PEop * o0 * 2% * Pl

_ F(Greoa * QGop * PGy * oo # 85 gp)eccco
coennee F(Epng ¢ A% ¢ PTg1)Fy(Fonela *2% ) (11.20)

(II.20) is a complete statistical description of the propagation eof
first order random signals through linear sampled-data systems of nth

order,
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B. Second Order Inputs
(1) First Order Filters
A first order filter driven by a second order input is shown
in Figure IX.10. The flow graph that is useful in the determination
of the characteristic functien of the filter output is Figure II.ll.
Again, the output characteristic function is determined via the charact-

eristic functions of linear combinations of output samples. The output

signal is a third order process, where three successive output nodes are
driven by four successive input nodes. Difficulty arises here because
these four sources are not statistically independent as they would be
if the input were first order. These four sources are more cleaarly shown
in the modified flow graph of Figure II.12,

Although the input is a second order process, it may be descri-

bed for convenience as a degenerate fourth order process having a

characteristic function Fxlx2x3xh Eg 1a e 2a <§3‘ g La . Thus, the

characteristic function of the variable in Figure IT.12 just before they

are combined is
Fx1x2x3th k.l.bgla’ (‘k’.l.b * k2b).€21’ (akZb + k3b)~"’=;3a° ‘k3b§ hﬂ

It follows that the characteristic function onis (1F.21)

F{: (E) = Fxlxszx [klbVg ’ (‘klb * k2b)$’ (.k2b * k3b)E’ akaQZ’

(11.21)
Making the ususl substitutions (TT.22) imto (ZT.21)
¥ = S
k? = o
kyp% = S 3
%2 " F v | (11.22)

yields the desired result (II.23),

o o F010203($1b,§2b, ) = Fx1x2x3xh Eélb’(a Clp *Bop)secece

('Egb + ‘gab)’ ‘EBb (I1.23)
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' w(0, 0, 4y
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An nth Order Filter Excited By A First Ordsar Randem Input

FIGURE II=9
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A First Order Filter Excited By A Second Order Random Input
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The general joint input-output characteristic function of which
(II.23) is a special situation will be derived from the flow graph of
Figure II.13. The input variables are introduced to by the links of
gain k’la’ k2‘, k3a’ kha which are added to those of Figure II1.12. The
characteristic function of z is (IT.2L).

F;;(é) - Fx1x2x3xh (kpp, *+ ke )E, (akyy # kyy # Ky )& 5 (akyy + kg

+ kBa)'w‘;', (ak3b * kha)'qﬂ (IT.2L)

Equation (XI.25) gives the desired joint input-output char-

acteristic function,

Fx1x2x3xh010203 [s la, % 2a 5 Z3a ,gha ,Z1b, Z % 5 QB‘J

=F X E( $1a *5n)s A%y # 5 +S2a),

x1x2x3
(2%, *By, + 35, )y (A%, + ﬁha)j (11.25)

(2) Second Crder Filters .
A second order filter driven by a second order (Markov)
input is shown in Figure II.lL, The flow graph reduired in the calcul-
ation of the most general joint input-output characteristic function is

Figure II.15.
The second order input is expressed as a degenerate sixth

order process by its characteristic function

Fx.lxszxthxé @a S 2a $‘?3&1 €ha s Sa féaj

The characteristic function of :_is easily derived from
Figure IT.15 and from this the joint input-output characteristic

function is calculated,
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4.
Flew Graph Useful In The Calculation Of
F 2
X XoX 3xh01020 3 [% 1a% 2a ?3& 7La €1b€2b53}3]
FIGURE II-13
\/J(XV X).) . \ (0') 0w, @z ’04) o
6 I+az+ &2 °
F)(,X’_(jl*)}z) E,Dz.%% (j‘bjj).b) ‘; .546-)

A Second Order Filter Excited By A Secend Order Input Signal
FIGURE II-1L

Censtruction Of
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FIGURE II-=15
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Fxlx2x3xhx5x60102030h E; la §2a €3a "?ha €5a ‘66:; 1b %b €3b ?hbj
i Fx1x2x3xthx6 E-( §lb * %8)’(‘ %.b * ?Zb * 723)’
(% * 2 Fa * Fa +T)s (BT, ¢ A Gy ¢ G, ¢ Fip)s
> Fap *Fea * 2 Fh)> OF *769_] (11.26)

C. Higher Order Inputs, Higher Order Filters

The same techniques may bs generalized to derive output char-

acteristic functions and joint input-output characteristic functions for
any filter of finite order being driven by a random stationary input
of finite order. A general liieral expression for these comparable to

(¥I.20) for first order inputs is too complex to serve useful purpose,
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APPENDIX IIT
EXPERIMENTAL VERIFICATIONS

Two Bachelor's theses were done during the Spripg term 1956 at
MIT for the purpose of checking certain of the results of this thesis.
They were done by Harry E. Pople under the supervision of the author,
and by Alan I. Green under the supervision of R, F. Jenney. The results
of both investigations came in too late to be included here in any
detail,
A. Harry Peple; SB Thesis

A series of fine-grained correlated numbers were obtained from
a turbulence noise study group in the MIT Hydredynamics Laboratory. The
autocorrelation of these numbers was calculated by the Whirlwind com-
puter according to program by Douglas Ross. A modification in this
program by Mr, Pople allowed rough quantization of the input numbers to
take place before correlation. It was found, as predicted, that quan-
tization noise is essentially uncerrelated and contributes to the mean
8quare an amount equal to one twelfth the square of the box size.
This held trus until the entire range of the input was breken up into
four levels, when the input numbers were rounded to two binary digits,

Bo Alan Greeng SB Thesis
The purpose of this thesis was to measure roundoff error pro=

pagation in a fairly complicated linear sampled-data feedback system,
A flow graph of the system and its internal quantizers is shown in
Figure III-1,

-008

output

A Linear Flow Graph Containing Several Quantizerz
FIGURE III-1
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The input was excited by random uncorrelated numbers that were
uniformly distributed over a fixed range. The operation of the system
as described by simultaneous difference equations was simulated by
Whirlwind. Initial conditions for each run were zero, A run consisted
of calculating the output over fifty sample points, and comparing these
results with the precise solution. One hundred runs were made for each
quantization bex size, and the box sizes were adjusted by programming
from 16 bit accuracy down to 3 bit accuracy,

By considering the quantizers as independent sources of ran-
dom uniformly distributed noise, it was possible to calculate the mean
square error of the net propagated noise. This agreed with the experi-
mental results to well within the limits of the experiment (always with-
in 30%) and departed radically when the Nyquist probability condition

was violated,
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