
MIT Open Access Articles

Leveraging latency-insensitivity to ease multiple FPGA design

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Fleming, Kermin, Michael Adler, Michael Pellauer, Angshuman Parashar, Arvind and 
Joel Emer. "Leveraging latency-insensitivity to ease multiple FPGA design." In Proceeding 
FPGA '12 Proceedings of the ACM/SIGDA international symposium on Field Programmable Gate 
Arrays, Monterey, California, USA, February 22-24, 2012, pages 175-184.

As Published: 10.1145/2145694.2145725

Publisher: Association for Computing Machinery (ACM)

Persistent URL: https://hdl.handle.net/1721.1/121446

Version: Author's final manuscript: final author's manuscript post peer review, without 
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/121446
http://creativecommons.org/licenses/by-nc-sa/4.0/


Leveraging Latency-Insensitivity to Ease
Multiple FPGA Design

Kermin Fleming¶ Michael Adler† Michael Pellauer† Angshuman Parashar†
Arvind¶ Joel Emer†¶

†Intel Corporation
VSSAD Group

{michael.adler, michael.i.pellauer,
angshuman.parashar, joel.emer}

@intel.com

¶Massachusetts Institute of Technology
Computer Science and A.I. Laboratory

{kfleming, arvind,
emer}

@csail.mit.edu

ABSTRACT
Traditionally, hardware designs partitioned across multiple FPGAs
have had low performance due to the inefficiency of maintaining
cycle-by-cycle timing among discrete FPGAs. In this paper, we
present a mechanism by which complex designs may be efficiently
and automatically partitioned among multiple FPGAs using explic-
itly programmed latency-insensitive links. We describe the auto-
matic synthesis of an area efficient, high performance network for
routing these inter-FPGA links. By mapping a diverse set of large
research prototypes onto a multiple FPGA platform, we demon-
strate that our tool obtains significant gains in design feasibility,
compilation time, and even wall-clock performance.

Categories and Subject Descriptors
B.5.2 [Design Aids]: Automatic Synthesis

General Terms
Design, Performance

Keywords
FPGA, compiler, design automation, high-level synthesis, switch
architecture, DSP, programming languages

1. INTRODUCTION
FPGAs are an extremely valuable substrate for prototyping and

modeling hardware systems. However, some interesting designs may
not fit in the limited area of a single FPGA. If a design cannot fit onto
a given FPGA, the designer is faced with a handful of choices. The
designer may use a larger single FPGA or refine the design to reduce
area, neither of which may be possible. A third possibility is to
partition the design among multiple FPGAs. This option is typically
feasible from an implementation perspective, but has some serious
drawbacks. Manual partitioning may obtain high performance, but
represents a time consuming design effort. Tool-based partitioning,
while automatic, may suffer performance degradation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FPGA’12, February 22–24, 2012, Monterey, California, USA.
Copyright 2012 ACM 978-1-4503-1155-7/12/02 ...$10.00.

Consider a processor model manually partitioned across two FP-
GAs in which there are two channels sharing a multiplexed physical
link between the FPGAs. One channel is information from the pro-
cessor decode stage. It has a narrow bit-width, but occurs in nearly
every processor cycle. The other channel is the memory interface
between the last-level cache and backing main memory. This link is
exceptionally wide, with perhaps as many as 1000 bits. However, be-
cause programs generally have good locality this link is infrequently
used. Exploiting this knowledge produces a high performance par-
titioned design: data for each link is sent as it becomes available
and only when it is available. This implementation recognizes two
high-level properties of the underlying design; first, although physi-
cal wires are driven to specific values every cycle, not all of those
values impact behavior, and second, that links may have different
semantic properties, such as priority.

Automatic partitioning tools avoid the engineering overhead of
manual partitioning at the cost of throughput. In the previous exam-
ple the tool needs to automatically understand when the last-level
cache is making requests in order to achieve high throughput. If
the tool cannot derive this high level meaning, then it must con-
servatively transport all or nearly all values between FPGAs on
each cycle to maintain functional correctness. Because extracting
this high-level meaning is difficult, existing tools take the conser-
vative approach in partitioning. Thus, pin bandwidth, serialization,
and latency become major sources of performance degradation in
partitioned designs, even if the values transported between FPGAs
ultimately do not impact design behavior on the majority of cycles.
The difficulty in extracting high-level knowledge from RTL lies in
automatically differentiating the cycle-by-cycle timing behavior of
RTL from the functional behavior of a design.

In this paper, we explore the application of latency insensitive
design [3] to multiple FPGA implementation. We view hardware
designs as sets of modules connected by latency insensitive FIFOs,
as shown in Figure 1(a). Because inter-module communication is
restricted to latency-insensitive FIFOs, we have broad freedom in im-
plementing the network between modules. We leverage this freedom
in our compiler to automatically generate design implementations
that span multiple FPGAs. A key technical contribution of this paper
is the automatic synthesis of a high-performance and deadlock-free
network optimized for design-specific, latency-insensitive commu-
nications.

By partitioning designs among multiple FPGAs at latency in-
sensitive FIFOs, we gain efficiency over traditional tools in two
ways. First, only data explicitly enqueued into the FIFOs needs to
be transported. Second, we have more options in transporting data
over multiplexed physical links. By compiling several large research
prototypes to a multiple FPGA platform, we will demonstrate that
our tool obtains significant gains in design feasibility, compilation



mkA mkB

mkC mkD

(a) Application

Platform_0

mkBmkA

Platform_1

mkD

runtime_0 runtime_1

Comms
Service

Comms
Service

mkC

(b) Partitioned Implementation of 1(a)

Figure 1: A sample application and its mapping to a two FPGA platforms. Links to modules on the same FPGA are directly tied
together by a FIFO, while inter-FPGA links are tied to a synthesized communications complex produced during compilation.

time, and, in some cases, wall-clock performance as compared to
conventional single FPGA implementations.

2. BACKGROUND

2.1 Model of Computation
Recently, a number of highly modular research prototypes [15] [6]

have been developed using latency-insensitive design [5]. In latency-
insensitive design, the goal is to maintain the functional correctness
of the design in response to variations in data availability. Latency-
insensitive designs are typically composed of modules connected by
FIFO links; modules are designed to compute when data is available,
as opposed to when some clock ticks. Latency-insensitive design
offers a number of practical benefits, including improved modularity
and simplified design exploration.

The usual framing of the latency-insensitive design focuses on
the properties of and composition of modules, but we observe that
an implication of this style of design is that the FIFOs connecting
the modules may take an arbitrarily long time to transport data with-
out affecting the functional correctness of the original design. As
a result, the send and receive ends of these special FIFOs can be
spatially far apart, even spanning multiple FPGAs. By breaking de-
signs at latency-insensitive boundaries, it is possible to automatically
produce efficient and high performance implementations that span
multiple FPGAs.

In this work, we constrain our designs to be composed of modules,
abstract entities that interface to each other through asynchronous,
latency-insensitive FIFO communications channels. The communi-
cations channels have two critical properties. First, they have arbi-
trary transport latency, and second, they have arbitrary, but finite size.
Internally modules may have whatever behavior the designer sees fit,
provided that the interface properties are honored. For example, once
data has been obtained from an interface FIFO, it might pass through
a traditional latency-sensitive hardware pipeline. Alternatively, the
module could be implemented in software on a soft-core, or even
on an attached CPU. Module internals do not matter. Rather, it is
the latency-insensitive interface that is fundamental. Modules alone
describe an abstract model of computation. To achieve a physical
implementation, modules are mapped on to platforms, entities which
can execute modules. Figure 1 shows a stylized representation of
a design with four modules mapped on to two platforms. Cross-
platform links transit special communications services, providing
longer latency, point-to-point communications.

We will solve the following problems related to the mapping of
modules to platforms. First, we introduce a means of describing
latency insensitivity in an HDL. Second, we develop a portable
technique for interfacing latency-insensitive modules with exter-
nal, latency-sensitive wired devices. Third, we present a high-

performance, low latency architecture for an automatically synthe-
sizable deadlock-free inter-FPGA communication network. We tie
the preceding technologies together in a compiler capable of auto-
matically partitioning latency-insensitive designs across multiple
FPGAs.

2.2 Related Work
There exist a number of commercially available tools [13] [10]

capable of mapping RTL designs across multiple FPGAs. These
tools generate emulators intended primarily for ASIC verification in
preparation for silicon implementation. As such, they are required
to maintain the cycle accurate behavior of all signals in the design.
Existing partitioning tools are differentiated by whether they provide
dedicated [25] or multiplexed [2] [11] chip-to-chip wires.

Dedicated wire partitioning tools include inter-FPGA link delays
in the circuit-level timing equations for determining setup and hold
times. The result is that the emulation clock is greatly slowed, since
delays on chip-to-chip wires are much longer than on-chip delays.
However, board-level wires have physical meaning that may be
useful in certain debugging regimes.

Multiplexed-wire partitioner operate by first running a single
clock cycle of the base design on each FPGA, then propagating val-
ues across multiplexed inter-device links, and finally running another
model cycle once all value from the previous cycle become available.
As with dedicated wires, multiplexed wires incur performance over-
head. To maintain cycle accuracy, the emulator must conservatively
transport all inter-FPGA values every cycle, whether or not they
impact the behavior of the succeeding cycle. As a result, these parti-
tioning tools do not typically exhibit high performance, achieving
cycle-accurate operating speeds of a few megahertz [23] [22].

Our tool is fundamentally different than either emulator approach:
it is not required to maintain the cycle behavior of an unpartitioned
design. Our language primitives allow designers to explicitly anno-
tate locations in which it is safe to change cycle-by-cycle behavior
of the design. As a result, partitions are free to run independently
and operate on data as soon as it becomes available. This allows us
to take advantage of the natural pipeline parallelism of hardware
designs at a much finer grain than existing partitioners [21]. Further-
more, because we permit only FIFOs to cross between FPGAs, we
transport only useful, explicitly enqueued values.

Our compiler operates on latency-insensitive designs, and the ex-
amples the we will present in Section- 7 were originally written in
this style. However, it is not necessary to write latency-insensitive
designs to make use of our compiler. Methodologies [24] [19] exist
that transform existing latency-sensitive RTL designs into a function-
ally equivalent set of latency-insensitive modules while preserving
the timing behavior of the original design. These methodologies
seek to preserve the cycle-accurate behavior of some design signals,
while permitting some parts of the original design to be re-written to



module mkA; 
Send#(bit) send <- mkSend(“Link”);

endmodule

module mkB; 
Recv#(bits) recv <- mkRecv(“Link”);

endmodule

mkB
RTL

mkA
RTL

Figure 2: A pair of modules connected by a latency-insensitive
link. The arrow represents an automatically generated connec-
tion. Users may specify a minimum buffering as an argument
to the link constructor. Here, “Link” is a tag used to match con-
nections during the compilation flow.

more efficiently map onto an FPGA. Although our tool provides no
inherent guarantees relating to cycle-accuracy, it can be composed
with these transformation tools should the cycle-accuracy of some
signals be required. Indeed, one of our example codes in Section
7 uses the A-Ports technique. In association with these tools, our
compiler can be used to verify any synchronous design, including
those designs written in a latency-insensitive style. However, there
is no free lunch: as the number of cycle-accurate signals increases,
our synthesized implementations will degrade in performance until
they reach parity with traditional cycle-accurate partitioning tools.

3. LANGUAGE LEVEL SUPPORT
Synthesizable HDLs provide a very basic hardware abstraction:

register, logic, and, to a lesser extent, memory. The behavior of these
elements are tied to a specific clock cycle. Traditional HDLs reflect
the physical reality of high-performance hardware, but do not offer
the compiler much room to change cycle-to-cycle behavior. For
example, if a programmer instantiates a two element FIFO in an
HDL, this FIFO will have some well defined cycle-by-cycle behav-
ior. Even changing the depth of this FIFO is difficult to automate,
because changing the depth will almost assuredly perturb cycle be-
havior and potentially break the design. Even if the HDL design can
tolerate such perturbations, it is difficult for the HDL compiler to
prove that this is the case. Inter-FPGA communications, which are
almost guaranteed to take many FPGA cycles, do not map well into
the existing HDL model.

We avoid the generally undecidable problem of reasoning about
cycle accurate behavior in the compiler by introducing a primitive
syntax for latency-insensitive, point-to-point FIFO communication.
By using these constructs, the programmer asserts that the compiler
is free to modify the transport latency and buffer depth of the FIFO in

question. This is a departure from previous multi-FPGA compilation
efforts in that we permit the compiler to modify not only the cycle
behavior of the communications link, but also the resulting behavior
of the user design. Users must ensure that their designs can tolerate
these changes in behavior, but in practice this is little different than
interfacing to a normal, fixed-behavior FIFO. By providing a latency
insensitive primitive, we push the burden of reasoning about high-
level design properties to the designer, simplifying the task of the
compiler to generating high-speed, deadlock-free interconnects.

An example of our link syntax [17] is shown in Figure 2. mkSend
and mkRecv operate as expected, with the send endpoint injecting
messages into a logical FIFO with arbitrary latency and receive
draining those messages. This syntax is convenient because it pro-
vides a simple way for logically separate modules to share links
while abstracting and encapsulating the physical interconnect. In our
compiler, only these special FIFOs are treated as latency-insensitive.
Other FIFOs, for example those provided in the basic language,
retain their original fixed-cycle behavior.

In addition to point-to-point communications, we also provide
a ring interconnect primitive. Like the point-to-point links, rings
are named, but may have many ring stops. Ring stops are logically
connected in sequence, with messages flowing around the ring. The
ring primitive is useful in scaling and sharing runtime services across
FPGAs, since rings can have an arbitrary number of stops.

4. PLATFORM SERVICES
Our model of computation consists of modules communicating

over latency-insensitive FIFO links. However, practical FPGA sys-
tems must have some interaction with some platform-specific, wired
devices, like memory. The difficulty with these physical interfaces
is that we require the freedom to move modules to any FPGA, but
physical interfaces are fundamentally unportable. Therefore, we
introduce an abstraction layer [16], mapping physical devices into
platform services using our latency-insensitive primitives. Services
are tied to specific FPGA, but can be used by any module in a de-
sign. Common services in a platform runtime include memory and
inter-FPGA communications, but application-specific platforms may
include network, wireless, or video interfaces.

Platform services differ from user modules in two ways. First,
platform services are permitted to have an arbitrary wire interface.
Second, platform services are shared among user modules. In ad-
dition to a wired, external interface, platform services must also
expose a set of latency-insensitive links, typically some form of
request-response. User modules may then interface to a platform
service as if it was a regular module.

Since memory is perhaps the most important service, we will use
our memory hierarchy, shown in Figure 3, as an example of the
design of a platform service. This hierarchy is an extension of the
scratchpads [1] memory abstraction. In the scratchpads hierarchy,
modules are presented the abstraction of a disjoint, non-coherent, pri-
vate memory spaces with simple read-write interfaces. Backing this
simple interface is a complex, high-performance cache hierarchy.

Platform services may be shared among several different clients.
In this case, each client instantiates an interface provided by the
service. The service interface internally connects the clients, typi-
cally using a ring, and handles multiplexing among clients. In the
case of scratchpads, each client instantiating a memory link gets
a private cache, connected to the rest of the memory hierarchy by
a ring. At runtime, the clients are dynamically discovered as they
begin sending memory traffic. The ring permits a single, parametric
service implementation to automatically scale to an arbitrary number
of clients and FPGAs.

Scratchpads also introduces a shared chip-level L2 cache to im-
prove memory performance. In the context of multiple FPGAs, there
are two interesting cases for a chip-level resource: the case in which



a resource is located on a remote FPGA and the case in which several
FPGAs provide the same resource.

Several FPGAs may provide the same service. If useful, a chip-
level ring can also be introduced connecting the services and al-
lowing them to communicate with each other dynamically. In the
case of Scratchpads, a secondary ring is introduced on top of the
chip-level caches allowing all of them to share a single interface to
host virtual memory.

In the case that a platform does not provide a service required by
a module mapped to the platform, the compiler will automatically
connect the module to an instance of the service provided on a
different FPGA. This flexibility in module mapping is valuable in
cases where the runtime service is used infrequently. In the case
of scratchpads, the local ring will automatically be mapped across
FPGA boundaries, resulting in a correct, but lower performance
implementation. In the case that there are several remote services
available, modules have the option of specifying the FPGA whose
service should be used.

Host Virtual 
Memory

Private
L1 Cache 

(FPGA SRAM)

Shared 
L2 Cache

(On-board DRAM)

On-Chip Ring

Inter-Chip Ring

Virtual Memory
Handler
(FPGA)

User 
Logic

Figure 3: A view of a scalable multiple FPGA memory hierar-
chy. Fast, private local caches are backed by a shared last-level
cache, which in turn is backed by global virtual memory. The
structure of the hierarchy is automatically inferred at compila-
tion time.

5. COMPILATION
Given a design consisting of modules connected by latency-

insensitive links, the goal of our compiler is to automatically connect
all the exposed links by synthesizing the most efficient network in-
terconnect possible. Modules mapped to the same FPGA may have
an interconnect as simple a FIFO, but distant modules may require
an interconnection network transiting several FPGAs.

Our compilation currently assumes a static, user provided map-
ping of modules to FPGAs. Initially, source modules are decorated

with tags representing the specific FPGA to which the module has
been mapped. Synthesis proceeds per FPGA in two passes. During
the first pass, source for the entire system is compiled in order to
discover latency-insensitive endpoints. As endpoints are discovered
within modules, they are tagged with the FPGA to which they belong.
At the end of the pass, each FPGA has a set of dangling send and
receive connections associated with it. Some of these represent local
connections and some represent off-chip links. Sends and receives
are then matched by name on a per FPGA basis. Matched links rep-
resent connections local to the specific FPGA and are connected by
a simple FIFO, while unmatched names are propagated to a global
matching stage.

The global matching stage synthesizes a router for each speci-
fied communication link between FPGAs. Connections are matched
based on name and are routed to their destination, which may re-
quire inserting links across several intervening FPGAs. The routers
generated in this stage are parameterized instances of the communi-
cations stack discussed in Section 6. Each connection is assigned a
virtual channel on each link that it traverses. At the source and sink
of each path, the inverse latency-insensitive primitive is inserted into
the router, for example, a dangling send will have its corresponding
receive inserted. During the second compilation pass, the inserted
connections will be matched with existing connections, completing
the inter-chip routing. For intermediate hops, a new, unique link is
introduced between ingress and egress. Figure 4 depicts the result
of the global compilation for a single FPGA, in which the user logic
has three inter-chip links, and one link transits the FPGA.

The generated routers are then injected into the compilation for
each FPGA, and compilation proceeds as in the first pass. However,
at the end of this pass, during the local match step, all formerly dan-
gling connections are matched to local endpoints at the synthesized
routers. The Verilog generated by this final step can be simulated or
passed to back-end tools to produce bit-files.

6. INTER-FPGA COMMUNICATION
There are two issues in synthesizing an inter-FPGA communica-

tions network for latency-insensitive links: performance and correct-
ness. Partitioning designs at latency-insensitive FIFOs allows us to
transport only explicitly enqueued data. However, to achieve high
performance a network must be able exploit the pipeline parallelism
inherent in the partitioned design. In practice this means that many
messages must be in-flight at any given time.

For our model of computation, network correctness means the
in-order delivery of messages, a relatively simple requirement. How-
ever, because many links can cross between FPGAs, there is a need
to multiplex the physical links between the FPGAs. This multiplex-
ing can introduce deadlocks, but we will show that our synthesized
networks are deadlock-free.

Deadlocks arise in shared interconnect when dependent packets
are forced to share the same routing paths, which can cause the
packets to block each other. To get around this issue, virtual chan-
nels are introduced to break dependence cycles [4]. In traditional
computer architectures, this is a tractable problem since the com-
munications protocols are known statically and dependencies can
be explicitly broken at design time. However, reasoning about the
communications dependencies of an arbitrary hardware design is
difficult. Therefore, we simply allocate a virtual channel to each link
crossing between FPGAs. Virtual channel allocation alone is not
sufficient to ensure deadlock freedom, because full virtual channels
can still cause head-of-line blocking across the shared physical links.
To resolve this issue we must also introduce flow control across each
virtual channel. Together, universal virtual channel allocation and
flow control are sufficient to guarantee that our compiler does not in-
troduce deadlocks into previously deadlock-free latency-insensitive
designs. This property is an easy corollary of the Dally-Seitz theo-



User 
Logic

FI
FO

 0

FI
FO

 1

FI
FO

 2

SRAMMultiFIFO

Send C

Send B

Send A

Recv D

Arbiter

Credit 
Monitor

Credit 
Monitor

Arbiter

Send D

Recv B

Recv A

Recv C

Figure 4: An example of a synthesized router connecting an
FPGA with to two other FPGAs (not shown). Link “Recv C” is
routed through the FPGA.

rem [4], wherein we insert a virtual channel for each communication
link, trivially preventing dependent packets from blocking one an-
other.

We require flow control per link to guarantee functional correct-
ness in our partitioned designs. This is a seemingly costly propo-
sition, particularly since flow-control packets incur a high latency
round-trip between FPGAs. This latency appears to create a cost-
performance tradeoff between buffering per virtual channel and the
performance and area of the router, since too little buffering can
cause the sender to stall before the receiver even begins to receive
packets, while too much buffering reduces the area available to
the user design. A naive register-based flow control implementa-
tion with buffering sufficient to cover a round-trip latency of 16
cycles requires half the area of a large FPGA. Clearly, this kind of
implementation does not scale beyond a pair of FPGAs.

The problem with the register-based design is that it is too parallel
and therefore needlessly wasteful of resources. In any cycle, any of
the registers in any of the buffers can potentially supply a data value
to transmit. However, we observe that the inter-chip bandwidth
between FPGAs is limited to a single, potentially wide, data per
cycle. This bandwidth limitation means that to sustain the maximum
rate across the link, we need to enqueue and dequeue exactly one
FIFO in any given cycle. Therefore, a structure with low parallelism,
but high storage density is sufficient to sustain nearly the maximum
throughput of the physical channel.

Most modern FPGAs are rich in SRAM, with a single chip con-
taining megabytes of storage. Although large amounts of memory
are available, the bandwidth to each slice of this memory is limited to
a single four to eight byte word per cycle. Because inter-FPGA com-
munication is similarly constrained, we can map many virtual chan-
nels with relatively large buffers onto the resource-efficient SRAM
without significant performance loss. We call this optimized storage
structure, depicted in Figure 5, the SRAMMultiFIFO (SMF) [7].
Because the SMF maps many FIFOs onto a single SRAM with a
small number of ports, it must introduce an arbiter to choose which
FIFO will use the SRAM port in a given cycle. SMF FIFOs have
uniform and constant size which simplifies control logic at the cost
of storage space. The SMF is fully pipelined, and each mapped FIFO
can utilize the full bandwidth of the SRAM.

Area usage for SMF and a functionally similar register-based
FIFO implementation are shown in Figure 6. The SMF scales in
BRAM usage as FIFO depth increases, consuming only around

Credit
Monitor

SRAMMultiFIFO

Used Counts

FI
FO

 0

FI
FO

 1

FI
FO

 2

FI
FO

 3

SRAM Head Ptr

Tail Ptr

Free Counts

Recv A

Recv B Recv C

Recv B

Arbiter

Figure 5: FIFOs are folded onto a single logical SRAM resource.
Each FIFO in the SRAM represents a buffer for a single virtual
channel

2% of slices on a Virtex-5 LX-330T. The low area usage of the
SMF-based switch makes it amenable to FPGA platforms with a
high-degree of inter-platform interconnection. On the other hand,
the registered buffer schemes can quickly exhaust large amounts of
area. The largest implementable registered FIFO switch has no better
performance than a more resource efficient, but deeper SMF switch,
despite the inherent parallelism of the registered implementation.

The density of the SMF fundamentally changes the way that
communication networks between FPGAs are designed. Unlike pro-
cessor network on chips, which multiplex virtual channels and offer
extremely limited buffering in network to conserve area, SMF based
switches can liberally allocate virtual channels to each connection
traversing the inter-FPGA link without significant area penalty. As
a result, concerns involving shared virtual channels [14] do not ap-
ply to our switches and routing scheme. Because SMF provides
deep buffers, each flow-controlled inter-chip channel can sustain full
bandwidth across high-latency physical links. Deep buffers also per-
mit us to send control messages relatively infrequently, minimizing
throughput loss.

In our switches, we use a simple block-update control control
scheme. The virtual channel source keeps a conservative count of
the number of free buffer spaces available at the virtual channel sink.
Each time a packet it sent, this count is decremented. The virtual
channel sink maintains a count of the free buffer space available,
which is updated as user logic drains data out of the virtual channel.
When this free space counter passes a threshold, it is set to zero and
a bulk credit message is sent to the virtual channel source. These
credit messages are given priority over the data message to improve
throughput.

Although the SMF is the core of our router, the router architecture
consists of three pipelined layers: packetization, virtual channel, and
physical channel. At compilation time the compiler generates an
FPGA-specific router using parametric components from a library.

The physical channel layer consists of specially annotated FIFOs
provided by the platform runtime. The backing implementation
of these FIFOs is irrelevant from the user’s perspective and could
range from LVDS to Ethernet. Given the specific name of an inter-
FPGA communications link provided by the platform runtime, the



LUTS Registers BRAM Relative Performance
Registered FIFOs, depth 8 10001 22248 0 1
Registered FIFOs, depth 32 25494 68813 0 1.11
SRAM MultiFIFOs, depth 32 4996 4778 2 1.09
SRAM MultiFIFOs, depth 128 5225 4850 8 1.11

Figure 6: Synthesis and performance metrics for various switch architectures. Results were produced by mapping a simple HAsim
dual core processor model to two FPGAs. In this design, 29 individual links and 1312 bits cross the inter-FPGA boundary.

compiler simply instantiates a connection to the link and ties it in to
the synthesized communication hierarchy.

We introduce packetization into our communications hierarchy
to simplify both the virtual-channel hardware layer and to handle
the presence of wide links. Since all communications links and link
widths are statically determined at compile time, our compiler can
infer bit-optimal packet protocol for each link. These protocols are
specific instantiations of a header-body packet schema in which the
header contains information about the packet length, type, and vir-
tual channel. The parameterized packetization and de-packetization
hardware then infer an efficient implementation based on the data
width to be transported. In the case that the data width is wider
than the physical link, marshalling and de-marshalling logic is auto-
matically inserted. However, if the data width is sufficiently small,
the packet header and body will be bit-packed together. Since the
data communicated between FPGAs tends to be narrow, this is a
significant performance optimization.

7. EVALUATION
To evaluate the quality of our compiler, we partition three large

research prototypes. These prototypes already used latency insensi-
tive links to obtain better modularity and we were able to partition
and run these designs without source modification. We tested our
designs on two platforms: the ACP [12], consisting of two Virtex-
5 LX330 chips mounted on Intel’s front-side bus, and a multiple
FPGA software simulator, which can model an arbitrary number
and interconnection of FPGAs.

Partitioning a design using our compiler has four potential benefits.
First, wall-clock runtime of the design can decrease, due to improved
clock frequency and increased access to resources. Second, some
designs can be scaled to handle larger problem sizes, again due to
increased access to resources. Third, synthesis times are reduced due
to the smaller size of design partitions. Fourth, partial recompilation
is available in earnest because only those FPGAs that have changing
logic need to be rebuilt. Different designs will experience different
combinations of these salutary effects. On the other hand, because
we are partitioning a design between chips, any communication
between the chips will have increased latency. Our experiments will
show that this negative effect is minimal for typical designs; the
natural pipeline parallelism of hardware and improved operating
frequency together compensate for increased latency.
Wireless Processing: Airblue is a highly parametric library for im-
plementing OFDM baseband processors such as WiFi and WiMAX.
A typical baseband pipeline implemented in Airblue, shown in Fig-
ure 7 has relatively little feedback, although the main data path
has high bandwidth and low latency requirements. Typical wireless
protocols implemented using Airblue have protocol-level latency
requirements on the order of tens of microseconds. Based on these
requirements, our compiler presents an ideal mechanism for scaling
Airblue protocol implementations to multiple FPGAs, because our
partitioned implementations can be made to favor high-bandwidth
links even in the presence of inter-FPGA traffic on non-critical links.
The latency introduced by inter-FPGA hops is small, approximately

100 nanoseconds, and well within the timing requirements of the
high-level protocols.

To evaluate our compiler, we partition a micro-architectural simu-
lator for SoftPHY [8], a recently proposed cross-layer protocol which
extends commercially deployed forward error correction schemes
to improve wireless throughput. Partitioning benefits the micro-
architectural simulator in two ways. First, because only the microar-
chitecture of the error correction algorithm varies, by partitioning
the simulator at the error correction algorithm, the bulk of the hard-
ware simulator needs to be compiled only once. To test a different
algorithm, a relatively small logical change, only one bit-file needs
to be rebuilt. Second, because the clock frequencies of the FPGAs
can be scaled, the wall-clock performance of the simulator improves.

Figure 12(b) shows the normalized performance of two experi-
ments: one using a complex software channel model and the other
using a simpler hardware channel model. In the first experiment, the
software channel model is the performance bottleneck and limits
the throughput of both the single and multiple FPGA implemen-
tations. In this case the multiple FPGA implementation achieves
near performance parity with the single FPGA implementation, even
though it has a much higher clock frequency. For one data point,
QAM-64, the multiple FPGA implementation slightly outperforms
single FPGA implementation. This is because QAM-64 produces
more bits per software communication and begins to overwhelm the
serial portions of the slower single FPGA implementation.

When a simpler channel model is implemented in hardware, the
multiple FPGA implementation outperforms the single FPGA im-
plementation. In this case, the normalized performance is tied to the
clock frequency ratios of the two designs. For BPSK, which stresses
the FFT, the ratio is highest, since the FFT is located on FPGA 0
in the partitioned implementation. For higher bit-rate modulation
schemes, the bit-wise error correction, located on FPGA 1, is the
bottleneck. Since the ratio of the clocks of the single FPGA imple-
mentation and FPGA 1 is smaller, the performance gap narrows.
Processor Modeling: HAsim is a framework for constructing high
speed, cycle-accurate simulators of multi-core processors. Like
many FPGA-based processor models, HAsim uses multiple FPGA
cycles to simulate one model cycle [18]. HAsim uses a technique
called A-Ports [19] to allow different modules in the processor to
simulate at different and runtime variable FPGA-cycle-to-Model-
cycle Ratios (FMR). This makes HAsim amenable to our multi-
FPGA implementation technique, as the A-Ports protocol can be
layered on top of our latency-insensitive links without affecting the
ability of A-Ports to resolve the cycle-by-cycle behavior of the orig-
inal design. HAsim is written in a highly parameterized fashion,
both in terms of the structure and the number of the cores modeled.
HAsim models can scale to hundreds or thousands of cores by chang-
ing a handful of parameters, an important feature for modeling future
processors. The difficulty in modeling such large processors is that,
even though describing the models using HAsim is straightforward,
the models themselves do not fit in a single FPGA.

HAsim is divided into a functional partition and a timing parti-
tion, which separates the calculation of simulation results from the
amount of time that those results take in the modeled processor [20].
This partitioning creates a high degree of feedback. For example,



Scrambler
FEC

Encoder
Interleaver Mapper

Pilot/Guard
Insertion

IFFT/FFT

CP
Insertion

Header
Decoder

FEC
Decoder

De-
Interleaver

De-
Mapper

Channel
Estimator

Synchronizer

TX
Controller

De-
Scrambler

RX 
Controller

Device
Interface

MAC

Baseband Processor

A/D

Radio

TX Pipeline RX Pipeline

Figure 7: An Airblue 802.11g-compatible transceiver. In the SoftPHY experiment, only the forward error correction (FEC) decoder
block is modified.

Figure 8: HAsim partitioned processor simulator. The timing partition relies on the functional partition for all computation related
tasks, for example, instruction decoding.

the timing partition must query the functional partition to decode
an instruction and wait for a response before proceeding. Similar
feedback loops arise in the other processor stages and in the cache
model. Despite this level of feedback, a natural mapping of HAsim
to two FPGAs is placing the timing and functional partitions on
separate FPGAs. This partition, shown in Figure 8, is attractive be-
cause all HAsim timing models share a common functional partition,
enabling our compiler to compile the functional partition once and
reuse it among many timing models.

The timing-functional partitioning works well because in practice
HAsim is latency tolerant by design. In order to scale to multi-
core configurations without using large numbers of FPGAs, HAsim
uses time-multiplexing to map several virtual processors onto a
limited number of physical processors. This multiplexing means that
individual logical cores can wait dozens of cycles for responses from
the functional model without reducing overall model throughput.
Moreover, this tolerance scales as the number of simulated cores
increases.

Although HAsim gracefully degrades its performance in the pres-
ence of limited resources, introducing more resources both speeds
simulation and enables HAsim to scale to simulations of larger num-
bers of more complex cores. In particular, large HAsim models need
large amounts of fast memory. Partitioning HAsim designs among
multiple FPGAs automatically introduces new chip-level resources,
like DRAM, into the synthesized implementation, increasing cache
capacity and memory bandwidth.

On a single FPGA, HAsim scales to 16 cores before the FPGA

runs out of resources. By mapping HAsim to two FPGAs, we are
able to build a partitioned model capable of supporting up to 128
cores and give them access to approximately twice the memory ca-
pacity and bandwidth of a single FPGA implementation. We achieve
super linear scaling in problem size because many structures in
HAsim are either time-multiplexed among all cores or scale loga-
rithmically with the number of cores.

We evaluate the throughput of the models by running a mix of
SPEC2000 integer and floating point applications in parallel on the
modeled cores. Figure 12(c) shows the normalized performance of
the multiple-FPGA simulator relative to the single FPGA simula-
tor. For small numbers of cores, the gap between the single FPGA
and multiple FPGA simulator is large, due to the request-response
latency between the timing and functional partitions. However, as
the number of simulated processors scales, models become more
latency tolerant, and the performance gap closes.

The raw performance of various HAsim implementations is shown
in Figure 9. Single FPGA performance decreases from 8 to 16 cores
due to increased cache pressure on the simulator’s internal memory
hierarchy. The partitioned processor model achieves about 75% the
aggregate throughput of the 16-core single FPGA implementation,
due to the latency of communication between chips. As we scale
the number of cores in the partitioned model, throughput increases
until we hit 36 cores. The reason for this throughput improvement
is that larger numbers of cores in a multiplexed model are more
resilient to inter-link latency. Unlike the single FPGA implementa-
tion, cache pressure plays less of a role in the performance of the



 0

 1

 2

 3

 4

 5

 6

 7

 8

8 16 25 36 64 81 100 121

A
g

g
re

g
a

te
 S

im
u

la
to

r 
M

IP
S

Number of Simulated CPUs

Single FPGA

Dual FPGA (Max. 16)

Dual FPGA (Max. 64)

Dual FPGA (Max. 121)

Figure 9: Performance results for various HAsim simulation
configurations. Simulated cores run a combination of wupwise,
applu, gcc, mesa, mcf, parser,perlbmk, and ammp from the
SPEC2000 suite.

partitioned implementation because both FPGAs have chip-level
memory caches, doubling the cache size and bandwidth available to
the model. As the maximum number of simulated cores increases,
the FPGA becomes more crowded, reducing operating frequency.
As a result, partitioned models supporting more cores have lower
performance even when simulating the same number of cores as a
smaller model.
Video Decoder: H.264 [9], shown in Figure 11, is a state of the art
video decoder, which has seen broad deployment both in custom
hardware and in software. H.264 has several potential levels of
implementation with widely varying feature sets and performance
requirements. When implementing these various feature sets, it is
useful to have a platform for rapidly evaluating the performance of
different micro-architectures and memory organizations. The lower
compile times offered by our compiler are useful in this kind of
architectural exploration.

H.264 is naturally decomposed into a bit-serial front-end and a
data parallel back-end. The front-end handles decompression and
packet decoding, while the back-end applies a series of pixel-parallel
transformations and filters to reconstruct the video. H.264 has lim-
ited feedback between blocks in the main pipeline. The pipeline
synchronizes only at frame boundaries, which occur at the granular-
ity of millions of cycles. Intrapredicition does require some feedback
from interprediction, but this feedback is somewhat coarse-grained,
occurring on blocks of sixty-four pixels.

Because H.264 generally lacks tight coupling among processor
modules, many high performance partitionings are possible. We
choose to partition the bit-serial fronted because the front-end com-
putation does not parallelize efficiently. As such, its performance
can only be increased by raising operating frequency. The front-end
also contains a number of difficult feedback paths, which end up
limiting frequency in a single FPGA implementation.

Figure 12(a) shows the performance of a partitioned implementa-
tion of H.264 relative to a single FPGA implementation. In the case
of the low resolution, the multiple FPGA implementation outper-
forms the single FPGA implementation by 20%. This performance

gain comes from increasing the clock frequency of the partitioned
implementation relative to the single FPGA implementation. How-
ever, at higher resolution, interprediction memory traffic becomes
more significant which has the effect of frequently stalling the pro-
cessing pipeline. As a result some part of the latency of inter-chip
communications is exposed and the multiple FPGA performance
degrades slightly.
Compilation Time: To this point, we have focused on the wall clock
performance and design scaling that our system provides. However,
our compiler also provides another important performance benefit:
reduced compilation time. FPGAs have notoriously long tool run
times, primarily due to their need to solve several intractable prob-
lems to produce a functional design. In practice, these run times
represent a serious impediment both to experimentation and to de-
bugging. Our compiler helps alleviate the compilation problem in
two ways. First, partitioned designs are fundamentally easier to im-
plement; in the context of nonlinear run times, even a small decrease
in design size can reduce compilation time significantly. Second,
by partitioning we obtain a degree of modular compilation. If the
design is modified, but the gate-ware of a partition has not changed,
then that partition does not need to be recompiled. This savings
is significant in two contexts: debugging and micro-architectural
experimentation. In the case of debugging, the utility of the short-
ened recompilation cycle is obvious. However, the need to compile a
partition only once per set of experiments is perhaps more beneficial.
In this case, effort can be spent tweaking the tools to produce the
best possible implementation of the shared infrastructure, in order to
accelerate all experiments. In the case of HAsim, a single functional
partition can be used in conjunction with all timing partitions.

Figure 13 shows selected compilation times for single and par-
titioned designs. It is important to note that the numbers reported
for multiple FPGA designs reflect parallel compilation on the same
machine, although to maximize speed, compilation should be dis-
tributed. By partitioning we achieve reduced compilation time, even
though, in aggregate, we are building more complex, higher fre-
quency designs. For Airblue and HAsim, the two examples in which
modular recompilation of FPGA 1 is a useful, our recompilation
facilities represent a substantial time savings.

8. CONCLUSION
In this paper, we present a language extension and compiler that

leverages latency-insensitive design to produce high-performance
implementations spanning multiple FPGAs. Our language and com-
piler permit us to build larger research prototypes, improve compila-
tion time, and, in some cases, gain performance over single FPGA
implementations.

Our compiler performs best in partitioning digital signal process-
ing applications. These applications usually feature high bandwidth
and computation requirements, but very little global control or feed-
back. As a result they are more resilient to the latency introduced in
chip-to-chip communication and have the potential for super-linear
performance increases when scaling to systems with multiple FP-
GAs. Applications with larger amounts of feedback, like processor
prototypes, may experience performance degradations relative to a
single FPGA due to latency. However, these applications still bene-
fit from improved access to resources, design scaling, and reduced
compile times.

The compiler that we have presented in this paper is promising,
and we see four areas of exploration moving forward. The first is
hardware-software co-design. Sequential languages are intrinsically
latency-insensitive and so can be easily integrated into our model
of computation. We believe that our proposed syntax provides a
convenient mechanism for bridging the gap between both host PC
and soft-cores instantiated on the FPGA itself. Second, we see com-
piler optimization as an area for exploration. Unlike traditional



LUTS Registers BRAM fMax(MHz)
Airblue, SOVA, Single 115780 67975 46 25
Airblue, SOVA, FPGA 0 77982 56499 34 65
Airblue, SOVA, FPGA 1 46852 21707 39 45
HAsim, 16 cores, Single 185002 153906 127 70
HAsim, 16 cores, FPGA 0 119231 102161 136 75
HAsim, 16 cores, FPGA 1 123892 99066 88 80
HAsim, 64 cores, FPGA 0 148107 108617 220 65
HAsim, 64 cores, FPGA 1 164920 111145 133 70
H.264, Single 79839 59212 63 55
H.264 FPGA 0 66893 52860 65 65
H.264 FPGA 1 13998 9493 19 85

Figure 10: Synthesis metrics for single and multiple FPGA implementations of our sample designs. Xilinx 12.1 was used to produce
bit-files. To limit compile times, we stepped fMax at increments of 5MHz.

Entropy
Decoder

Quantized 
IDCT

Prediction

IntraNAL
Unwrap

Inter-
polatorInter

Deblocking
Filter

Frame
Buffer

Figure 11: An H.264 decoder.

circuits, for which communication is statically determined by wire
connection, our designs exhibit complex phase behavior. We believe
that static, dynamic, and feedback-driven optimization techniques
may be applied with great effect. Third, we see an opportunity to
introduce quality of service (QoS) to improve design reliability.
Programmer visible QoS is necessary to maintain program correct-
ness for those workloads with high-level latency and throughput
requirements, such as wireless protocols. Fourth, we see our model
of computation as a means of alleviating the place and route problem,
even on a single FPGA. Reuse of pre-routed components is difficult
in current FPGA design because there is no guarantee that the tool
can make timing on inter-component interface wires. However, our
paradigm breaks these long paths with registered buffer stages as
needed. For many designs, including those presented in this paper,
small delays are negligible, especially during debugging and design
exploration. By enabling large-scale component reuse, the synthesis
back-end might reduce to a simple and fast linking step, dramatically
reducing compile times.
Acknowledgements: During the course of this work, Kermin Flem-
ing was supported by the Intel Graduate Fellowship.

9. REFERENCES
[1] Michael Adler, Kermin Fleming, Angshuman Parashar,

Michael Pellauer, and Joel S. Emer. LEAP Scratchpads:
Automatic Memory and Cache Management For
Reconfigurable Logic. In FPGA, pages 25–28, 2011.

[2] Jonathan Babb, Russell Tessier, Matthew Dahl, Silvina
Hanono, David M. Hoki, and Anant Agarwal. Logic
Emulation With Virtual Wires. IEEE Trans. on CAD of
Integrated Circuits and Systems, 16(6):609–626, 1997.

[3] Luca P. Carloni, Kenneth McMillan, and Alberto L.
Sangiovanni-Vincentelli. Theory of Latency-Insensitive
Design. IEEE TRANSACTIONS on Computer-Aided Design of
Integrated Circuits and Systems, 20(9), September 2001.

[4] W. J. Dally and C. L. Seitz. Deadlock-Free Message Routing
in Multiprocessor Interconnection Networks. IEEE Trans.
Comput., 36:547–553, May 1987.

[5] Nirav Dave, Man Cheuk Ng, Michael Pellauer, and Arvind.
Modular Refinement and Unit Testing. In MEMOCODE’10.

[6] K. Fleming, Chun-Chieh Lin, N. Dave, Arvind, G. Raghavan,
and J. Hicks. H.264 Decoder: A Case Study in Multiple
Design Points. In Formal Methods and Models for Co-Design,
2008. MEMOCODE 2008. 6th ACM/IEEE International
Conference on, pages 165 –174, Jun. 2008.

[7] Kermin Fleming, Myron King, Man Cheuk Ng, Asif Khan,
and Muralidaran Vijayaraghavan. High-throughput Pipelined
Mergesort. In MEMOCODE, pages 155–158, 2008.

[8] Kermin Elliott Fleming, Man Cheuk Ng, Samuel Gross, and
Arvind. WiLIS: Architectural Modeling of Wireless Systems.
In ISPASS, pages 197–206, 2011.

[9] ITU-T Video Coding Experts Group. Draft ITU-T
Recommendation and Final Draft International Standard of
Joint Video Specification, May, 2003.

[10] http://www.cadence.com/products/sd/
palladium_series/pages/default.aspx.
"Cadence Palladium".

[11] http://www.eda.org/itc/scemi.pdf. Standard Co-Emulation
Modelling Interface (SCE-MI): Reference Manual.

[12] http://www.nallatech.com. Nallatech ACP module.



 0

 0.5

 1

 1.5

 2

 2.5

 3

QCIF 720p 1080p

N
o

rm
a

liz
e

d
 P

e
rf

o
rm

a
n
c
e

Frame Resolution

(a) H.264

 0

 0.5

 1

 1.5

 2

 2.5

 3

BPSK QPSK QAM-16 QAM-64

N
o

rm
a

li
z
e

d
 P

e
rf

o
rm

a
n
c
e

Modulation Scheme

Software Channel Model

Hardware Channel Model

(b) Airblue

 0

 0.5

 1

 1.5

 2

 2.5

 3

3x3 Mesh 4x4 Mesh

N
o

rm
a

liz
e

d
 P

e
rf

o
rm

a
n
c
e

Processor Configuration

(c) HAsim

Figure 12: Performance results for various two FPGA partitioned workloads. Performance is normalized to a single FPGA imple-
mentation of the same hardware.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Airblue HAsim,
16 Cores

H.264

N
o

rm
a

liz
e

d
 C

o
m

p
ile

 T
im

e

ACP FPGA 0

ACP FPGA 1

Figure 13: Compilation time relative to a single FPGA build.
Xilinx 12.1 was used to produce bit-files. Compile times were
collected on an unloaded Core i7 960 with 12 GB of RAM. Note
that for multiple FPGA builds, the FPGA builds can proceed in
parallel.

[13] "http://www.synopsys.com/Systems/
FPGABasedPrototyping/pages/certify.aspx".
"Synopsys Certify".

[14] Michel A. Kinsy, Myong Hyon Cho, Tina Wen, G. Edward
Suh, Marten van Dijk, and Srinivas Devadas.
Application-aware Deadlock-free Oblivious Routing. In ISCA,
pages 208–219, 2009.

[15] M. C. Ng, K. Fleming, M. Vutukuru, S. Gross, Arvind, and
H. Balakrishnan. Airblue: A System for Cross-Layer Wireless
Protocol Development. In ANCS’10, San Diego, CA, 2010.

[16] Angshuman Parashar, Michael Adler, Kermin Fleming,
Michael Pellauer, and Joel Emer. LEAP: A Virtual Platform
Architecture for FPGAs. In CARL ’10: The 1st Workshop on
the Intersections of Computer Architecture and
Reconfigurable Logic, 2010.

[17] M. Pellauer, M. Adler, D. Chiou, and J. Emer. Soft
Connections: Addressing the Hardware-Design Modularity
Problem. In DAC ’09: Proceedings of the 46th Annual Design
Automation Conference, pages 276–281. ACM, 2009.

[18] M. Pellauer, M. Adler, M. Kinsy, A. Parashar, and J. Emer.
HAsim: FPGA-Based High-Detail Multicore Simulation
Using Time-Division Multiplexing. In The 17th International
Symposium on High-Performance Computer Architecture
(HPCA), February 2011.

[19] M. Pellauer, M. Vijayaraghavan, M. Adler, Arvind, and
J. Emer. A-Ports: An Efficient Abstraction for Cycle-Accurate
Performance Models on FPGAs. In Proceedings of the
International Symposium on Field-Programmable Gate
Arrays (FPGA), February 2008.

[20] M. Pellauer, M. Vijayaraghavan, M. Adler, Arvind, and
J. Emer. Quick Performance Models Quickly:
Closely-Coupled Timing-Directed Simulation on FPGAs. In
IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS), April 2008.

[21] Charles Selvidge, Anant Agarwal, Matthew Dahl, and
Jonathan Babb. TIERS: Topology Independent Pipelined
Routing and Scheduling for Virtual Wire Compilation. In
FPGA, pages 25–31, 1995.

[22] Todd Snyder. Multiple FPGA Partitioning Tools and Their
Performance. Private communication, 2011.

[23] Russel Tessier. Multi-FPGA Systems: Logic Emulation.
Reconfigurable Computing, pages 637–669, 2008.

[24] Muralidran Vijayaraghavan and Arvind. Bounded Dataflow
Networks and Latency-Insensitive Circuits. In
MEMOCODE’09, Cambridge, MA, 2009.

[25] Nam Sung Woo and Jaeseok Kim. An Efficient Method of
Partitioning Circuits for Multiple-FPGA Implementation. In
Proceedings of the 30th international Design Automation
Conference, DAC ’93, pages 202–207, New York, NY, USA,
1993. ACM.


