
MIT Open Access Articles

Asynchronous Approximation of a Single 
Component of the Solution to a Linear System

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Ozdaglar, Asu, et al. “Asynchronous Approximation of a Single Component of the 
Solution to a Linear System.” IEEE Transactions on Network Science and Engineering, 2019, pp. 
1–1.

As Published: 10.1109/tnse.2019.2894990

Publisher: Institute of Electrical and Electronics Engineers (IEEE)

Persistent URL: https://hdl.handle.net/1721.1/121466

Version: Author's final manuscript: final author's manuscript post peer review, without 
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/121466
http://creativecommons.org/licenses/by-nc-sa/4.0/


1

Asynchronous Approximation of a Single
Component of the Solution to a Linear System

Asuman Ozdaglar, Devavrat Shah, and Christina Lee Yu

Abstract—We present a distributed asynchronous algorithm for approximating a single component of the solution to a system of linear
equations Ax = b, where A is a positive definite real matrix and b ∈ Rn. This can equivalently be formulated as solving for xi in
x = Gx+ z for some G and z such that the spectral radius of G is less than 1. Our algorithm relies on the Neumann series
characterization of the component xi, and is based on residual updates. We analyze our algorithm within the context of a cloud
computation model motivated by frameworks such as Apache Spark, in which the computation is split into small update tasks
performed by small processors with shared access to a distributed file system. We prove a robust asymptotic convergence result when
the spectral radius ρ(|G|) < 1, regardless of the precise order and frequency in which the update tasks are performed. We provide
convergence rate bounds which depend on the order of update tasks performed, analyzing both deterministic update rules via counting
weighted random walks, as well as probabilistic update rules via concentration bounds. The probabilistic analysis requires analyzing the
product of random matrices which are drawn from distributions that are time and path dependent. We specifically consider the setting
where n is large, yet G is sparse, e.g., each row has at most d nonzero entries. This is motivated by applications in which G is derived
from the edge structure of an underlying graph. Our results prove that if the local neighborhood of the graph does not grow too quickly
as a function of n, our algorithm can provide significant reduction in computation cost as opposed to any algorithm which computes the
global solution vector x. Our algorithm obtains an ε‖x‖2 additive approximation for xi in constant time with respect to the size of the
matrix when the maximum row sparsity d = O(1) and 1/(1− ‖G‖2) = O(1), where ‖G‖2 is the induced matrix operator 2-norm.

Index Terms—linear system of equations, local computation, asynchronous randomized algorithms, distributed algorithms

F

1 INTRODUCTION

IMAGINE that you are a small restaurant owner in a city.
You would like to obtain a quantitative estimate of how

your popularity and reputation compare to your competi-
tors within a 5 mile radius of you. You may want to compare
the significance of the associated websites of your restaurant
and other similar restaurants within the webgraph. This can
be measured by PageRank, a quantity used by Google to
rank search results. PageRank is defined as the solution to
x = α1/n+(1−α)PTx, where P is the adjacency matrix of
the webgraph, α is a given parameter, 1 is the vector of all
ones, and n is the dimension. Alternatively, you may want
to compare the social influence of the restaurants’ associated
Facebook pages, which can be computed via the Bonacich
centrality. Bonacich centrality is defined as the solution to
x = (I − αG)−11, where G is the adjacency matrix of the
social network, and α is a given parameter. Both PageRank
and Bonacich centrality can be formulated as the solution to
a system of linear equations, where the dimension is as large
as the webpages in the webgraph or the number of Facebook
pages, which is an overwhelming computational expense
for our hypothetical small restaurant owner. In this paper,
we investigate the question: can we obtain estimates of a
few coordinates of the solution vector without the expense
of approximating the entire solution vector?

We consider approximating the ith component of the

• Asuman Ozdaglar and Devavrat Shah are professors at Massachusetts
Institute of Technology in the Electrical Engineering and Computer
Science Department.

• Christina Lee Yu is an assistant professor at Cornell University in
the School of Operations Research and Information Engineering. e-mail:
cleeyu@cornell.edu.

solution to a linear system of equations Ax = b, where A
is a positive definite n × n real matrix, and b is a vector in
Rn. Positive definite matrices include symmetric diagonally
dominant matrices, such as the Laplacian, and also our
motivating examples of network centralities, PageRank and
Bonacich centrality. Note that A or G may not be symmetric.
When A is positive definite, there exists a choice of G and z
such that the problem is equivalent to approximating the ith

component of the solution to x = Gx + z, and the spectral
radius of G, denoted ρ(G), is less than 1. For PageRank,
ρ(G) is a constant, bounded by the teleportation probability,
independent of the underlying graph. For Bonacich central-
ity, ρ(G) can be chosen to be less than 1 by a proper choice
of the “discount factor” for any graph.

We consider a setting with large n and sparse G, i.e., the
number of nonzero entries in every row of G is at most d.
This form of sparsity arises when the matrix is derived from
an underlying bounded degree graph. We will also discuss
how we can relax this constraint to graphs for which the
local neighborhood size does not grow too quickly.

Solving large systems of linear equations is a problem of
great interest due to its relevance to a variety of applications
across science and engineering, such as solving large scale
optimization problems, approximating solutions to partial
differential equations, and modeling network centralities.
Due to the large scale of these systems, it becomes useful
to have an algorithm which can approximate only a few
components of the solution without computing over the
entire matrix. Such an algorithm would also lead to efficient
ranking and comparison methods. As solving a system of
linear equations is fundamentally a problem which involves
the full matrix, computing a single component of the solu-

ar
X

iv
:1

41
1.

26
47

v4
  [

cs
.D

S]
  2

1 
Ja

n 
20

19



2

tion is non-trivial.
In this era of big data, the classic computation model

has changed significantly to accomodate for computation
which is too large to compute within a single processor’s
memory. We will consider a distributed cloud computation
model inspired by frameworks such as Mapreduce [1] or
its open source implementation Hadoop [2] or its memory
efficient open-source implementation Spark [3], in which
there are many processors with small constant size memory,
yet they have access through the cloud to a distributed file
system (DFS) which stores the information regarding the
entire matrix. Our algorithm will consist of a sequence of
small tasks which can be assigned to different processors
to compute asynchronously. We will measure the cost of
our algorithm via the amount of computational resources
consumed, e.g. number of tasks, DFS accesses, and memory
consumed.

1.1 Problem Statement and Notation
Given an index i ∈ [n], a vector z ∈ Rn, and a matrix G ∈
Rn×n such that ρ(G) < 1, the goal is to solve for xi, the i-th
component of the solution vector to x = Gx+z. Throughout
the paper, we associate a graph to the matrix G, and we will
provide our analysis as a function of properties of the graph.
Let G(G) = (V, E) denote the directed graph where V = [n],
and (u, v) ∈ E if and only if Guv 6= 0. Each coordinate of
vector x corresponds to a vertex in V . Let Nu(t) ⊂ V denote
the vertices with path length t from vertex u, specifically
v ∈ Nu(t) if there exists a path from u to v of length t,
allowing for loops and repeated visits to vertices. We denote
the immediate neighbors of vertex u by Nu, i.e., v ∈ Nu if
Guv 6= 0. The sparsity assumption onGmeans that |Nu| ≤ d
for all u. We summarize notation used in the paper:

ρ(G) the spectral radius of G
G̃ the matrix s.t. G̃ij = |Gij |

‖r‖0 the sparsity of vector r
‖r‖p the vector p-norm for p ≥ 1
‖G‖p the induced matrix operator norm
E {(u, v) s.t. Guv 6= 0}

Nu {v ∈ [n] s.t. Guv 6= 0}
Nu(t) vertices with path length t from u

d the maximum degree, maxu |Nu|
r(t) residual (GT )tei
x̂
(t)
i estimate zT

∑t−1
k=0(G

T )kei

1.2 Equivalence of Ax = b and x = Gx+ z

Given a system of linear equations of the form Ax = b,
there are many methods for choosing G and z such that the
equation is equivalent to the form given by x = Gx + z
with ρ(G) < 1 [4]. The Jacobi and Richardson methods
are suitable for our setting because they have additional
properties thatG is as sparse asA, andGij can be computed
as a simple function of Aij and Aii. Given (A, b), there may
be many ways to choose (G, z) to satisfy the condition that
ρ(G) < 1. Finding the optimal choice1 of (G, z) given (A, b)
is beyond the scope of this paper.

1. By optimal, we would like to minimize ρ(G), which maximizes the
convergence rate of the algorithm.

Corollary 1.1. If A is positive definite or diagonally dominant,
we can use standard methods (e.g. Jacobi or Richardson), to choose
(G, z) such that ρ(G) < 1, and the solution x which satisfies
x = Gx+ z will also satisfy Ax = b.

The Jacobi method chooses G = −D−1(A−D) and z =
D−1b, where D is a diagonal matrix such that Duu = Auu.
The Richardson method chooses G = I−γA and z = γb for
any γ such that 0 ≤ γ ≤ min‖x‖2=1(2x

TAx)/(xTATAx).
If A is symmetric, then using the Richardson method with
an optimal choice of γ results in a choice of G such that
ρ(G) = ‖G‖2 = (κ(A)−1)/(κ(A)+1), where κ(A) denotes
the condition number of A.

1.3 Contributions and Summary of Results
We introduce novel algorithms and corresponding analyses
for estimating x̂i for a single component i of the solution
vector to x = Gx+ z. Our algorithm can be implemented in
a fully distributed, asynchronous computation model suit-
able for Mapreduce / Hadoop or Spark (discussed in Section
2). For large yet sparse systems (n large but d is bounded
or grows very slowly with n), the computational cost of
our algorithms are significantly less than global algorithm
which incur the cost of computing the full solution vector
x. In addition our algorithms improve upon Monte Carlo
methods for single component analysis which exhibit high
variance and slow convergence.

Algorithm. Our algorithm relies upon the Neumann
series representation of the solution, i.e. x =

∑∞
k=0G

kz,

xi = eTi
∑∞
k=0G

kz = zT
∑∞
k=0(G

T )kei, (1)

where ei denotes the standard basis vector which takes
value 1 at coordinate i and 0 elsewhere. We can interpret
the term zT (GT )kei to be the weighted sum of all walks
of length k from vertex i on the graph defined by G. Since
we focus on approximating only xi, we can compute the k
lower order terms of the summation by summing weighted
walks within the k-radius neighborhood of vertex i, as
opposed to the entire graph. This introduces a locality in
computation that we can exploit if the neighborhoods of
vertex i do not grow quickly.

Our algorithm is an iterative residual based method in
which every task corresponds to updating one coordinate
of the residual vector. Let us define residual vectors r(t) =
(GT )tei. For any t ∈ Z, expression (1) can be rearranged as

xi = zT
∑t−1
k=0 r

(k) +
(
zT
∑∞
k=0(G

T )k
)
(GT )tei

= zT
∑t−1
k=0 r

(k) + xT r(t). (2)

At iteration t, the algorithm estimates according to x̂
(t)
i =

zT
∑t−1
k=0 r

(k), and the estimation error will be xT r(t). The
synchronous implementation of the algorithm updates the
estimate by adding the value of the residual vector in
each iteration and updating the residual by multiplying
by GT . The algorithm terminates when ‖r(t)‖2 < ε, which
guarantees that |x̂(t)i − xi| ≤ ε‖x‖2.

Asynchronous Implementation. The asynchronous im-
plementation of the algorithm updates one coordinate of
the residual vector at a time. Updating coordinate u corre-
sponds to adding ru to x̂i, and multiplying ru by the uth row



3

of G and adding that to the residual vector r. These updates
can be interpreted as accumulating weights of walks over
the graph, beginning with short length walks. Every update
task maintains an invariant

xi = x̂i + rTx,

where x̂i denotes the estimate, and r denotes the residual
vector. The invariant property characterizes the error at
every iteration, which is used to prove the algorithm always
converges when ρ(G̃) < 1, where G̃ = |G|, i.e. G̃ij = |Gij |
for all i, j. The convergence holds regardless of the order in
which coordinates are updated, as long as each coordinate
is updated infinitely often. It is robust to asynchronous
updates in which the computation corresponding to dif-
ferent tasks may interweave in the order they update the
residual vector in the DFS. The conditions are given in
terms of matrix G̃ rather than G, since the asynchronous
implementation may sum walks of different lengths simul-
taneously. We use G̃l to obtain a worst case bound on the
total contribution of any set of walks of length longer than
l. We do not require uniform bounds on communication
delays or clock rates, as often needed for similar results in
asynchronous computation (see [5]).

Computational Cost. Our algorithm requires O(n+ |E|)
space in the distributed file system, and a single update task
requires O(|Nu|) DFS accesses, where u is the coordinate
being updated. The convergence rate of our algorithm can
be analyzed via the evolution of the residual vector r, which
is a function of the particular order, or sequence, of tasks
in which the coordinates are updated. The sparsity pattern
of the residual vector will grow according to an expanding
local neighborhood around vertex i in the graph defined by
G, allowing us to upper bound the number of update tasks
needed by the computation as a function of the size of this
neighborhood. We analyze different implementations of our
algorithm, corresponding to variants for choosing the order
for updating coordinates of the residual vector. We provide
our bounds as a function of the maximum degree of the
graph, denoted by d, but we can extend the results to other
graphs in which we have an upper bound for how the size
of the local neighborhood grows.

As a baseline, we compute the cost of a synchronous
distributed implementation in which the tasks coordinate
between iterations to update the residual vector according to
r(t) = Gr(t−1), which involves ‖r(t)‖0 individual coordinate
update tasks. We prove that the synchronous implementa-
tion attains error less than ε‖x‖2 with at most

O(min(εln(d)/ ln(‖G‖2), n ln(ε)/ ln(‖G‖2)))

update tasks. This calculation assumes that the computation
is synchronized across iterations.

We analyze the asynchronous implementation in which
the update tasks do not coordinate different iterations of
computation, but rather update the same residual vector
r in the DFS. Rather than multiplying by matrix G in
each iteration, every individual update task corresponds to
applying a local update involving a single row of the matrix
G. When the coordinates update sequentially in the order
imposed by the expanding local neighborhoods of vertex

i, the convergence rate is very similar to the synchronous
implementation, requiring at most

O(min(εln(d)/ ln(‖G̃‖2), n ln(ε)/ ln(‖G̃‖2)))

update tasks until the error is less than ε‖x‖2. This update
rule ensures that first all coordinates in Ni(1) are updated,
followed by all coordinates in Ni(2), where the coordinates
within the same neighborhood can be updated in any order.
The order of updates can be coordinated by a designated
master processor which manages a shared task queue for all
other processors. This update order ensures that short walks
get counted in the estimate earlier. The bound depends on
G̃ due to using a worst case upper bound for the weight of
all walks of length longer than a certain value. Compared
to the synchronous implementation, this analysis is weaker
whenGmay have positive or negative entries, since ‖G‖2 ≤
‖G̃‖2.

We can alternatively employ randomness to sample the
next coordinate to update, enabling every processor to gen-
erate the next update task without any coordination cost
among other tasks. The algorithm adaptively samples the
next coordinate to update according to a distribution which
depends on the current residual vector. When the sequence
of coordinate updates are sampled uniformly amongst co-
ordinates with nonzero residual values, we can guarantee
that with probability at least 1 − δ, the error contracts by a
time varying factor in each step, and the algorithm involves
at most

O(min((ε
√
δ/5)−d/(1−‖G‖2),−n ln(ε

√
δ)/(1− ‖G‖2)))

update tasks until the error is less than ε‖x‖2. We term this
‘uniform censored sampling’, since we censored the coor-
dinates according to whether the residual value is nonzero,
and we sample uniformly otherwise. Establishing the con-
vergence rate requires bounding the Lyapunov exponent
for a product of random matrices drawn from time and
path dependent distributions. This is inherently different
from previous analyses of randomized coordinate updates,
which sample from a history independent distribution. We
developed a new analysis for ‘uniform censored sampling’
updates.

We can compare with the bounds for the synchronous
implementation by considering that 1−‖G‖2 ≈ − ln(‖G‖2)
when ‖G‖2 ≈ 1. The randomized update implementation
scales exponentially with d, whereas the other two bounds
only scale polynomially with d. The gap is due to the fact
that the synchronous and deterministic asynchronous im-
plementations update in an order which ensures that short
walks are counted earlier. Intuitively, we expect that the
weight of the walks decays exponentially due to the weight
being a product over values in G which converge even-
tually to zero. Therefore, by sampling uniformly amongst
all coordinates with nonzero residuals, the algorithm may
choose to update coordinates which are farther away from
vertex i before it finishes updating coordinates within a
closer neighborhood of i. As a result of a single update
task, the contributions added in the process corresponding
to updates of the residuals along neighbors will will be
approximately “exponentially less significant”, and yet the
coordinates still carry an equal weight in determining the



4

next coordinate to update. This leads to the exponentially
slower convergence as a function of d. This can be remedied
by emphasizing coordinates with larger residuals, which we
explore heuristically through simulations.

The right hand expressions within the convergence rate
bounds across the different implementations are essentially
the same, and provide a comparison of our algorithm to
standard linear iterative methods, which also converge at
the same rate. The left hand expressions provide a local
analysis utilizing the sparsity of G. They show that the
number of tasks required by our algorithm to reach a
specified precision is constant with respect to n as long as
d = O(1) and 1/(1 − ‖G‖2) ≈ −1/ ln(‖G‖2) = O(1). The
analysis shows that as long as the local neighborhood does
not grow too quickly, i.e., the network is large and sparse
enough, and the spectral properties are well behaved, i.e.,
‖G‖2 is bounded away from 1, there is a n0 such that for all
n ≥ n0, our algorithm obtains an estimate of xi with fewer
computational tasks than any centralized algorithm, by the
simple fact that the required tasks of our algorithm is upper
bounded by an expression which is independent of n, and
any centralized algorithm will scale at least as the size of the
solution vector.

1.4 Related Work
There are not many existing methods which have explored
single component approximations of the solution vector.
Most standard techniques such as Gaussian elimination,
factorization or decomposition, gradient methods, and lin-
ear iterative methods all compute the full solution vector,
and thus the computation involves all coordinates and all
entries in the matrix [4], [6]. Most of the methods are either
stationary linear iterative methods (e.g. Jacobi, Gauss-Seidel,
successive over-relaxations) or optimization algorithms for
minimizing 1

2x
TAx− bTx or ‖Ax− b‖22. For example, Kacz-

marz, Gauss-Seidel, or Gauss-Southwell are all variations of
either coordinate descent or gradient descent [7].

Stationary linear iterative methods use updates of the
form xt+1 = Gxt + z to recursively approximate leading
terms of the Neumann series. The error after t iterations is
given byGt(x−x0), thus the number of iterations to achieve
‖xt − x‖2 ≤ ε‖x‖2 is ln(ε)/ ln(‖G‖2). For any t, xt will be
at least as dense as z, and there is no reason to assume z is
sparse; a single update step could cost nd multiplications.
These methods do not exploit sparsity of G and the locality
of computing a single component.

There are nearly linear time2 approximation algorithms
for sparse and symmetric diagonally dominant matrices A
(i.e. graph Laplacians), however they involve global struc-
tures over the graph, such as graph sparsifiers or spanning
trees, and the goal is to estimate the entire solution vector
[8], [9], [10], [11].

Asynchronous distributed algorithms. In their seminal
work, Bertsekas and Tsitsiklis [5] analyzed the asynchronous
implementation of stationary linear iterative methods for
solving for the full vector x, where they assign each of
n processor to compute updates corresponding to a spe-
cific coordinate. They use a different computation model

2. O(m logc n log ε−1), where m is the number of nonzero entries in
A, and c ∈ R+ is a fixed constant.

involving a network of distributed processors computing
simultaneously, whereas our model involves a shared global
memory through a distributed file system (DFS) and vari-
able number of processors computing in parallel. The cost
of our algorithm is considered in terms of computational
resources consumed, i.e., the number of tasks and DFS
accesses, whereas they consider the number of parallel com-
putations until convergence, where each of the n processors
are computing at every time step. Our algorithm relies on
residual based updates, maintaining an invariant that allows
us to precisely characterize the error as a function of the
residual vector. These differences lead to very different proof
techniques for proving both eventual convergence as well as
convergence rate bounds.

There has also been work on distributed and asyn-
chronous algorithms from an optimization standpoint [12],
[13]. Minimizing the objective function ‖Ax − b‖22 can be
written as a distributed optimization task, where each com-
putational node u ∈ [n] aims to minimize (eTuAx − bu)

2

while seeking consensus such that all nodes converge to the
same solution vector x. Again these algorithms focus on the
global computation task of the full solution vector x rather
than estimating a single component.

Local algorithms. Methods for computing a single com-
ponent can be categorized into either Monte Carlo meth-
ods which sample random walks, or deterministic iterative
methods. The Ulam von Neumann algorithm is a Monte
Carlo method which obtains an estimate for a single compo-
nent xi by sampling random walks starting at the vertex i. It
interprets the Neumann series representation of the solution
x as a sum over weighted walks on G(G), and obtains an
estimate by sampling random walks starting from vertex
i over G(G) and appropriately reweighting to obtain an
unbiased estimator [14], [15], [16], [17]. The challenge is to
control the variance of this estimator. The classic choice for
the sampling matrix requires ‖G‖∞ < 1, though there are
modifications which propose other sampling matrices or use
correlated sampling to reduce the variance [18], [19]. The
scope of this algorithm is limited, as Ji, Mascagni, and Li
proved that there is a class of matrices such that ρ(G) < 1,
‖G‖∞ > 1, and there does not exist any sampling matrix
such that the variance of the corresponding estimator is
finite [20]. In contrast, our algorithm exploits the sparsity
of G and provides a convergent solution when ρ(G) < 1
and convergence rates when ‖G‖2 < 1. Single component
approximation of the leading eigenvector for a stochastic
matrix has been studied using Monte Carlo random walk
sampling methods [21].

[22] propose an iterative method for approximating a
single column of the matrix exponential, which can also be
written as a series of matrix powers, exp(G) =

∑∞
k=0

1
k!G

k,
similar to the Neumann series in (1). The algorithm essen-
tially runs coordinate descent to compute the solution to a
linear system of the form Ax = ei, where A is constructed
in such a way that the solution x is an approximation for
exp(G). They provide convergence guarantees for ‖G‖1 ≤ 1
for the Gauss-Southwell and Gauss-Seidel iterations. This
method has been independently studied for the specific
setting of computing Pagerank, Andersen et al. proposed
an iterative method which relies on the conditions that G



5

is a nonnegative scaled stochastic matrix, z is entry-wise
positive and bounded strictly away from zero, and the solu-
tion x is a probability vector (i.e., consisting of nonnegative
entries that sum to 1) [23]. There has been subsequent follow
up work which builds upon an earlier version of our paper
to design bidirectional local algorithms that combine both
iterative algorithms and Monte Carlo methods [24], [25].

Relationships to our algorithm. Our asynchronous algo-
rithm is an iterative method and can be interpreted as using
coordinate descent with randomized coordinate selection to
solve for (GT )−1ei, and then taking the inner product of the
result with z to obtain xi. Our algorithm is different from
the global algorithms as it specifically targets approximating
a single component using local computations. It is also
different from the Monte Carlo methods which tend to have
high variance and thus slow convergence. It is most simi-
lar to the algorithms proposed by [22], [23], however our
algorithm has a different choice of termination conditions,
and different rules for choosing a coordinate update order,
utilizing probabilistic sampling. This not only requires very
different analysis, but also allows for the algorithm to be im-
plemented in an asynchronous distributed manner without
coordination between tasks.

The model assumptions and analysis are also different,
as [22], [23] focus on stochastic matrices. The analysis of [23]
proves a linear decrease in the error, yet we prove that the
second moment of our error contracts by a time dependent
factor in each iteration, and thus our algorithm converges
to the correct solution with a tighter convergence rate. We
provide analysis of convergence considering the sparsity
pattern of the matrix, and we show that any arbitrary coor-
dinate selection rule converges as long as each coordinate is
updated infinitely often. In contrast [22], [23] only guarantee
convergence for specific coordinate update orders.

The use of randomization in subsampling matrices as
part of a subroutine in iterative methods has previously
been used in the context of other global matrix algorithms,
such as the randomized Kaczmarz method and stochastic
iterative projection [26], [27], [28], [29], [30]. The randomized
Kaczmarz method is used in the context of solving overde-
termined systems of equations, subsampling rows to reduce
the dimension of the computation matrix in each iteration.
Stochastic iterative methods involve sampling a sparse ap-
proximation of matrix G to reduce the computation in each
iteration while maintaining convergence.

2 DISTRIBUTED COMPUTATION MODEL

In the modern world of large scale computation, as the re-
quirement for computational resources and memory storage
increases, distributed cloud computing systems have be-
come the norm for computation that involves handling large
amounts of data. Since the computing power and memory
of any single processor is limited, large distributed file sys-
tems (DFS), e.g. Hadoop-Distributed-File-System (HDFS),
collect together many storage disks with a master node
which handles I/O requests, allowing clients to access the
information in the distributed file system in a similar way
of accessing files from the local disk. An algorithm can be
parallelized by separating it into small tasks that can each be
computed by a single processor through accessing the DFS.

z G r ො𝑥𝑖 𝑟 2
2 𝑟 0

Distributed File System: Size O(n2), Slow access time

Worker CPUs

Local memory:
Size O(1),
Fast access time Manages task queue,

termination, output

Task queue

Master CPU

Fig. 1. Model of Parallel Computation with Distributed File System.

The access time of I/O requests to the distributed file system
is much longer than accessing files in a processor’s own
local memory, so we would like to minimize the number
of DFS accesses in addition to the computing resources
consumed, i.e. total number of tasks performed.

In this paper, we will assume the computation model
as described in Figure 1. There is a large distributed file
system, which all the processors have access to. There is
a collection of processors (CPUs) each with a small fixed
size local memory. One CPU is designated the master CPU,
and it manages the task queue as well as the termination
and output of the algorithm. The remaining processors are
designated worker CPUs, and they perform tasks assigned
to them from the task queue. The cost will be counted in
terms of the amount of computing resources that the entire
computation consumes, e.g. the number of tasks performed,
DFS accesses per task, and storage used in the DFS. In
many cloud computation systems, the computing resources
are shared across many jobs that are running on the cloud,
therefore, the task queue may include tasks corresponding
to unrelated jobs as well.

3 ALGORITHM INTUITION

Given a vector z and matrix G such that ρ(G) < 1, our
goal is to approximate the ith component of the solution
vector x to x = Gx + z. Classic stationary linear iterative
methods use updates of the form x(t+1) = Gx(t) + z
to iteratively approximate leading terms of the Neumann
series. The matrix-vector multiplication can be performed
in a distributed manner by splitting it into update tasks,
where each task updates a single coordinate u according to

x(t+1)
u ←

∑
v∈Nu

Guvx
(t)
v + zu

for some u ∈ {1, 2, . . . n}. These tasks are added to the
task queue and assigned to different processors to compute.
Since z can be fully dense, the vectors x(t) will be at least
as dense as z, thus computing x(t+1) from x(t) involves n
individual coordinate update tasks. In our problem, since
we are specifically interested in a single component i,
we instead define a residual-based update method which
maintains sparsity of the intermediate vector involved in



6

the computation. We will first present a synchronous dis-
tributed version of the algorithm. In section 4, we will
present the asynchronous distributed implementation of
the algorithm, and argue that even when the updates are
performed asynchronously, the algorithm still converges to
the correct solution. Both implementations require at most
O(n+ |E|) space in the DFS to store the matrix G, vector z,
and any intermediate values involved in the computation.

According to the Neumann series representation of x,

xi = eTi
∑∞
k=0G

kz = zT
∑∞
k=0(G

T )kei. (3)

Consider defining the residual vector at iteration k as
r(k) = (GT )kei. Observe that the sparsity pattern of (GT )kei
is given byNi(k), the set of vertices for which there is a path
of length k from vertex i. We can rewrite xi as a function of
the residual vectors

xi = zT
∑t−1
k=0 r

(k) + xT r(t).

Let x̂(t)i denote our estimate of xi at iteration t. We can
iteratively approximate xi with the low order terms of the
Neumann series using the following updates:

x̂
(t+1)
i ← x̂

(t)
i + zT r(t), (4)

r(t+1) ← GT r(t), (5)

and initializing with x̂(0)i = 0, and r(0) = ei. Since the spar-
sity of r(t) is at most the size of the t-radius neighborhood of
vertex i, denoted |Ni(t)|, the computation involved in one
iteration can be split into |Ni(t)| single coordinate update
tasks, corresponding to updating each coordinate u ∈ Ni(t).
A task updating coordinate u executes the following steps:

1) ADD Guur
(t)
u to r(t+1)

u ,
2) ADD zur

(t)
u to x̂(t+1)

i ,
3) For each v ∈ Nu, ADD Guvr

(t)
u to r(t+1)

u .

Each update task uses at most O(|Nu|) DFS accesses, and
does not require more than constant space in the local
memory. The processor can only store the value of r(t)u ,
and sequentially access and compute Guvr

(t)
u for v ∈ Nu,

requiring |Nu| DFS accesses, but only O(1) memory for
stored information across computations. We initialize the
estimate and residual vectors for the (t+ 1)th iteration with
r(t+1) = 0 and x̂(t+1)

i = x̂
(t)
i .

The processors still need to pay a synchronization cost
due to coordinating the iterations of computation. This
results in delays as tasks for a new iteration must wait until
every update task from the previous iteration completes.
Termination can be determined by imposing a condition
on the residual vector which is checked after each itera-
tion of computation, such as terminating when ‖r‖2 < ε.
In section 5, we will prove convergence rate bounds for
the synchronous implementation and discuss the gains the
algorithm attains from a coordinate-based computation as
opposed to computing the full vector.

4 ASYNCHRONOUS UPDATES

The method described above requires coordination amongst
the tasks to track each iteration of the algorithm. This may
cause unnecessary delays due to enforcing that the tasks

must be completed in a specific order. In this section, we in-
troduce an asynchronous implementation of the algorithm,
in which the update tasks may be performed in arbitrary
order, and we do not need to wait for previous tasks to
complete before beginning to compute a new task. In section
6, we prove that the algorithm always converges, and we
establish convergence rate bounds for different coordinate
update rules.

4.1 Individual Update Tasks

In the asynchronous implementation, since we no longer
keep track of any iterations of the algorithm, we will simply
store a single instance of the residual vector r in the DFS.
When the different tasks update their corresponding coordi-
nates, they will read and write their updates to the residual
vector stored on the DFS. The algorithm is initialized in the
same way with r = ei and x̂i = 0. A task to update residual
coordinate u involves three steps:

1) READ ru, and SET ru to Guuru,
2) ADD ruzu to x̂i,
3) For each v ∈ Nu, ADD Guvru to rv .

The value of ru used in steps 2 and 3 is the original value
read from the DFS in step 1. For each task, the worker
processor makes O(|Nu|) DFS accesses. The computation is
the same as individual tasks in the synchronous implemen-
tation, except without keeping track of the residual vector
across distinct iterations. Thus, even when the sequence
of coordinate updates is the same, the residual vector in
the asynchronous implementation will evolve differently. If
v ∈ Nu, and v is updated after u, when the asynchronous
implementation of the algorithm updates coordinate v, it
will use the previously updated value in which the task
corresponding to coordinate u added Gvuru to the value
of rv . In section 6.1, we introduce an interpretation of the
algorithm as summing weighted walks in the graph. The
synchronous implementation sums the walk in a breadth
first manner, i.e. all walks of length t are summed in the tth

iteration, whereas the asynchronous implementation may
sum walks of different lengths in a single update.

For the purposes of analyzing the convergence rate
bounds, we consider that the three steps involved in a
single update task are performed together as a single unit of
computation, i.e., that the different steps involved in a single
update task are executed together, and do not interleave
with other tasks. We let x̂(t)i denote the estimate after t
update tasks have completed, and we let r(t) denote the
residual vector after t update tasks have completed. This
property can be enforced through read and write locks,
which would prevent another task from simultaneously
changing the value of ru while a particular task is in the
middle of computation involving ru. This allows us to
clearly track the value of the residual vector after each
update task, lending to convergence rate bounds.

However, we will be able to prove asymptotic conver-
gence with much weaker conditions, in which only step
1 of the update task needs to be considered a single unit
executed together. Since addition operations are exchange-
able, the correctness of the algorithm still holds even when
the addition operations in step 2 and 3 of the update task



7

may interleave with other operations on the data from other
tasks. Step 1 needs to be executed together because we need
to make sure that another task does not add value to ru
in between the time that we first read ru and write Guuru,
since we would then accidentally override the added value.
Alternatively, we would not want another task to read the
same value of ru and begin repeating the same update that
we have already begun. We will show in Lemma 6.1 that the
invariant x̂i − xi = rTx holds before and after any update
task.

4.2 Coordinate Update Rule

In the asynchronous implementation, we are given more
flexibility to choose the order in which the coordinates are
updated. We could update in the same order as the syn-
chronous implementation, in which we round robin update
coordinates according to a breadth first traversal over the
graph (yet allowing for loops and repeated visits to vertices),
i.e., updating first all coordinates in Ni(1), followed by
Ni(2). Similarly we can iterate round robin updates for all
coordinates with nonzero residual vector values. This can be
coordinated by designating one processor as the “master”,
whose job is to add tasks to the the task queue.

In settings where we would like to elimination coor-
dination between tasks from a master processor, we can
use randomization to generate the tasks or coordinate up-
date order. To approximate the round robin procedure, we
could probabilistically choose the next update coordinate
by sampling uniformly randomly from all coordinates with
nonzero residual values, which we term the ‘uniform cen-
sored sampling’ procedure. As each processor finishes a
task, it can generate the next task by sampling a new update
coordinate. This can be facilitated by storing the value of
‖r‖0 as well as a list of coordinates with nonzero valued
residuals, and the update tasks can easily be modified to
maintain the value of ‖r‖0 and list of relevant coordinates.

As our algorithm is derived from residual based updates,
and the estimation error is given by rTx, this suggests that
we may make more progress if we focus on updating coordi-
nates with large residual values. For example, we can choose
to always update the coordinate with the largest residual
value. This can be implemented by maintaining a priority
queue with the residual values. We could also sample a
coordinate probabilistically proportional to some function
of the residual, e.g., proportional to |ru|, or r2u. This may
be more difficult to implement without iterating through
the residual vector to generate each sample, though it is
still possible to implement in our distributed computation
model with a larger number of DFS accesses.

4.3 Termination

The termination conditions can be chosen depending on the
desired accuracy and the value of the residual vector. The
error is given by rTx, but since we do not know the value
of x, we can design the termination condition as a function
of r. For example, terminating when ‖r‖2 < ε results in
an additive error bound of at most ε‖x‖2. The individual
update tasks can be modified to additionally keep track of
‖r‖22, ‖r‖1, or ‖r‖∞ without incurring much overhead, since

these quantities are additive across coordinates, and each
update task changes at most d+ 1 coordinates of r.

We are motivated by network analysis settings in high
dimension, such as computing Pagerank or Bonacich cen-
trality when n is large. As n grows to infinity for some large
graph, ‖x‖2 is in fact normalized, bounded, and doesn’t
scale with n for these three example network centralities.
Most of the mass is contained in a few components, im-
plying that an additive error bound of ε‖x‖2 approximately
guarantees a multiplicative error for large weight compo-
nents, and an additive error for small weight components.
Therefore, we will present many of our results assuming the
algorithm uses a termination condition of ‖r‖2 < ε.

5 SYNCHRONOUS ANALYSIS

In order to compare the convergence rate bounds for the
asynchronous implementation, we first analyze the syn-
chronous implementation. We will count the number of
tasks and multiplications that the synchronous implemen-
tation uses. This analysis will help us to appreciate and
identify the gains the algorithm makes due to sparsity and
local computation.

Theorem 5.1. If ρ(G) < 1, the synchronous implementation of
the algorithm converges, and estimation error decays as

|x̂(t)i − xi| = r(t)x ≤ ‖G‖t2‖x‖2.

The total number of update tasks the algorithm performs in t
iterations is

O
(∑t−1

k=0 |Ni(k)|
)
= O

(
min

(
dt, nt

))
,

where Ni(k) is the set of vertices which are within a k-radius
neighborhood of vertex i, and d = maxu |Nu|. The number of
DFS accesses per task is bounded above by d.

Corollary 5.2 follows from the proof of Theorem 5.1, and
highlights that if the graph is sparse, or the size of the neigh-
borhood grows slowly, then the complexity of the algorithm
can scale much better than computing the entire solution
vector, which would costO(n ln(ε)/ ln(‖G‖2)) update tasks.

Corollary 5.2. If we terminate the algorithm when
‖r(t)‖2 < ε, then |x̂i − xi| ≤ ε‖x‖2, and the total number of
update tasks performed is bounded by

O
(
min

(
εln(d)/ ln(‖G‖2), n ln(ε)

ln(‖G‖2)

))
.

The number of DFS accesses per task is bounded above by d =
maxu |Nu|.

Proof of Theorem 5.1. The initial vectors and update rules are
chosen to satisfy the invariant that for all t, xi = x̂

(t)
i +

xT r(t). The error in the estimate at iteration t is given by
xT r(t) = xT (Gt)T ei. When ρ(G) < 1, the error converges
to zero, and thus the algorithm converges. It follows that the
error is bounded by

|x̂i − xi| = |r(t)Tx| ≤ ‖r(t)‖2‖x‖2. (6)

When the algorithm terminates at ‖r(t)‖2 ≤ ε, the error
is bounded by ε‖x‖2, and after t iterations, the error is
bounded by ‖(GT )tei‖2‖x‖2 ≤ ‖G‖t2‖x‖2. Since each row
of G has at most d nonzero entries, ‖r(t)‖0 ≤ min(dt, n).



8

The number of coordinate update tasks in each iteration is
at most ‖r(t)‖0 ≤ |Ni(k)| ≤ min (dt, nt) . Therefore, we can
upper bound the total number of tasks in t iterations by by

O
(∑t−1

k=0 |Ni(k)|
)
= O

(
min

(
dt, nt

))
.

Since ‖r(t)‖2 decays as ‖G‖t2, the algorithm terminates at
‖r‖2 < ε within at most ln(ε)/ ln(‖G‖2) iterations, upper
bounding the tasks performed by

O
(
min

(
εln(d)/ ln(‖G‖2), n ln(ε)

ln(‖G‖2)

))
.

When G is nonsymmetric, ρ(G) < 1, yet ‖G‖2 ≥ 1,
the algorithm still converges asymptotically, though our
rate bounds no longer hold. We suspect that in this case,
a similar convergence rate holds as a function of ρ(G),
due to Gelfand’s spectral radius formula, which states that
ρ(M) = limk→∞ ‖Mk‖1/k2 . The precise rate depends on the
convergence of this limit.

The right hand expression in the theorem comes from
bounding the number of coordinate updates in each it-
eration by n, which holds even in the nonsparse setting.
This bound obtains the same result as standard linear it-
erative methods. The analysis of our algorithm highlights
the improvement of our local algorithm over a general
global vector computation. The number of tasks grows
as O(

∑t−1
k=0 |Ni(k)|), which for some graphs may be sig-

nificantly less than O(nt). For a bounded degree graph,∑t
k=0 |Ni(k)| = O(dt), which may be much less than O(nt)

in the case when d is fixed, and n is very large (recall that
t is on the order of ln(ε)/ ln(‖G‖2)). The bounded degree
condition is used in our analysis to cleanly bound |Ni(t)|,
however our results naturally extend to other graphs given
bounds on |Ni(t)|. For power law graphs, we can use a
bound on the growth of the local neighborhood size for
average vertices to obtain non-trivial convergence rate re-
sults. For graphs in which the size of the neighborhood only
grows polynomially, then the local algorithm would gain
significant savings over the global algorithm. This results in
conditions under which our algorithm achieves an approxi-
mation for xi in constant time with respect to the size of the
matrix for large n, e.g. d = O(1) and −1/ ln(‖G‖2) = O(1).

We can visualize the algorithm in terms of computation
over G(G). Multiplying r(t) byGT corresponds to a message
passing operation from each of the nonzero coordinates of
r(t) along their adjacent edges in the graph. The sparsity
of r(t) grows according to the set of length t walks over
the graph that originate from vertex i. The termination con-
dition guarantees that the algorithm only involves vertices
that are within distance ln(ε)/ ln(‖G‖2) from the vertex i.
We define the matrix GNi(t) such that GNi(t)(a, b) = G(a, b)
if (a, b) ∈ Ni(t) × Ni(t), and is zero otherwise. It follows
that

‖r(t)‖2 = ‖eTi Gt‖2 = ‖eTi
∏t
k=1GNi(k)‖2 (7)

= ‖eTi GtNi(t)
‖2 ≤ ‖GNi(t)‖

t
2. (8)

It is possible that for some choices of i and t, ‖GNi(t)‖2 <
‖G‖2, in which case the algorithm would converge more

quickly as a function of the local neighborhood. If G cor-
responds to a scaled adjacency matrix of an unweighted
undirected graph, then it is known that

max
(
daverage,

√
dmax

)
≤ ρ(G) ≤ dmax. (9)

In this case, we would only expect ‖GNi(t)‖2 to be smaller
than ‖G‖2 if the local degree distribution of the neighbor-
hood around vertex i is different from the global degree
distribution.

6 ASYNCHRONOUS ANALYSIS

It is not as straightforward to analyze the asynchronous
implementation of the algorithm, since we can no longer
write the residual vector as a simple expression of G and
the iteration number. However, we can show that each
coordinate update task preserves an invariant which relates
the estimate x̂i and residual r to the true solution xi.

Lemma 6.1 (Invariant). The update tasks in the asynchronous
implementation maintain the invariant that for all t, xi = x̂i +
rTx.

Proof of Lemma 6.1. Recall that x = z+Gx. We prove that the
invariant holds by using induction. First verify that before
any computation has begun, the invariant is satisfied by the
initialized values,

x̂i + rTx = 0 + eTi x = xi.

Let rold denote the residual vector before an update task,
and let rnew denote the residual vector after an update
task. Then a single update task corresponds to the following
steps:

x̂newi = x̂oldi + roldu zu,

rnewu = Guur
old
u ,

rnewv = roldv +Guvr
old
u ,∀v ∈ Nu.

Assuming that xi = x̂oldi + 〈roldx〉, it follows that

x̂newi + 〈rnewx〉 − x̂oldi − 〈roldx〉
= roldu zu + xu(Guu − 1)roldu +

∑
v∈Nu

xvGuvr
old
u ,

= eTu (z +Gx− x)roldu = 0.

It follows from Lemma 6.1 that we can choose ter-
mination conditions based upon the value of the resid-
ual vector which would directly lead to upper bounds
on the estimation error. For example, if ‖r‖2 ≤ ε, then
|x̂i − xi| ≤ ε‖x‖2. The proofs for Theorems presented in
the subsequent sections for the asynchronous algorithm can
be found in sections 9, 10, and 11.

6.1 Counting Weighted Walks
Alternatively, we can take the perspective that the algorithm
is computing xi by collecting a sum of weighted walks
over the graph G(G) beginning at vertex i. The estimate
x̂i corresponds to the sum of all weighted walks which are
already “counted”, and the residual vector represents all yet
uncounted walks. As long as step 1 of the coordinate update
task is atomic, we can ensure that every walk is accounted



9

for exactly once, either in x̂i, or in the residual vector. Let
G̃ denote the matrix where G̃ij = |Gij |. Theorem 6.2 uses
the perspective of counting weighted walks to show that as
long as ρ(G̃) < 1, the algorithm converges to xi as long as
each coordinate is chosen infinitely often, regardless of the
sequence in which the updates are performed.

Theorem 6.2. If ρ(G̃) < 1, the estimate x̂i from the asyn-
chronous implementation of our algorithm converges to xi for
any sequence of coordinate updates, as long as each coordinate is
updated infinitely often.

The solution xi can be expressed as a weighted sum
over all walks over the graph G(G) beginning at vertex i,
where a walk beginning at vertex i and ending at vertex
j has weight

∏
e∈walk Gezj . The updates ensure that we

never double count a walk, and all uncounted walks are
included in the residual vector r. For any l, there is a finite
time Sl after which all random walks of length less than
or equal to l have been counted and included into x̂i. This
allows us to upper bound |xi − x̂i| as a function of G̃l+1,
which converges to zero when ρ(G̃) < 1. If ρ(G̃) ≥ 1,
then the original Neumann series stated in (1) is only
conditionally convergent. By the Reimann series theorem,
the terms can be rearranged in such a way that the new
series diverges, and rearranging the terms in the series
corresponds to updating the coordinates in different orders,
e.g., depth first as opposed to breadth first. This is the same
conditions for asymptotic convergence as provided for the
asynchronous linear iterative updates, which is also shown
to be tight [5]. This theorem and proof can be extended
to show that the algorithm converges asymptotically even
given communication delays, as long as the messages reach
their destination in finite time.

In fact our proof for the asymptotic convergence trans-
lates directly into a convergence rate bound as well.

Theorem 6.3. Suppose the asynchronous implementation
of our algorithm used the coordinate update sequence
(u0, u1, u2, u3, . . . ), where each coordinate updates infinitely
often. Define Sr as the time after which the estimate vector has
counted and included all walks of length up to r:

Sl = min{t ≥ Sl−1 : Ni(l) ⊂ {uSl−1
, uSl−1+1, . . . ut−1}}.

Then the estimation error of the the algorithm after Sl updates is
bounded by∣∣∣xi − x̂(Sl)

i

∣∣∣ ≤ xT (G̃T )l+1ei ≤ ‖G̃‖l+1
2 ‖x‖2.

Based upon the update sequence we can compute
bounds on Sl, or the time after which all walks of length
l have definitely been counted. We can analyze the basic co-
ordinate update rule which follows the same pattern as the
synchronous implementation, in which we update accord-
ing to the neighborhoods of i. The update sequence would
be given by (Ni(0), Ni(1), Ni(2), . . . ). Although the update
order may be the same as the synchronous algorithm, the
computation is not the same due to the accumulation of the
residual vector across update tasks. It follows that due to the
update order, Sl =

∑l
k=0 |Ni(k)|. If the graph is bounded

degree with max degree d, such that |Ni(k)| ≤ dk, then
Sl ≤ dl+1, resulting in the following corollary.

Corollary 6.4. Suppose the asynchronous implementation
of our algorithm used the coordinate update sequence
(Ni(0), Ni(1), Ni(2), . . . ). Then the estimation error of the al-
gorithm after dt+1 update tasks is bounded by

|xi − x̂i| ≤ ‖G̃‖l+1
2 ‖x‖2.

It follows that the error is less than ε‖x‖2 for t ≥ dln(ε)/ ln(‖G̃‖2).

This matches the convergence rate bound for the syn-
chronous algorithm when G is nonnegative, which is rea-
sonable for some applications in which G is derived from
network data. It also follows directly from Theorem 6.3 that
if every coordinate updates at least once within every B

timesteps, then the error decays with rate ‖G̃‖t/B2 , which is
comparable to the bounded delay model and analysis for
the asynchronous linear iterative algorithm [5].

Corollary 6.5. Suppose the asynchronous implementation of our
algorithm used a coordinate update sequence in which Sl ≤ lB
for some B > 0. Then the estimation error of the the algorithm
after lB updates is bounded by

|xi − x̂i| ≤ ‖G̃‖l+1
2 ‖x‖2.

It follows that the error is less than ε‖x‖2 for t ≥
B ln(ε)/ ln(‖G̃‖2).

6.2 Probabilistic Update Order

When the coordinates are sampled probabilistically, we can
no longer guarantee that a certain set of coordinates are
updated within a fixed interval. In this section, we instead
provide a probabilistic analysis of the error by analyzing the
evolution of the 2-norm of the residual vector in expectation.
We will assume that each coordinate update task is atomic,
such that if the sequence of coordinate updates is given by
(u0, u1, u2, . . . ), the residual vector after t updates will be
equivalent to the following computation:

r =
(∏t−1

s=0(I − euse
T
us
(I −G))

)T
ei.

The precise expression depends on the detailed order of
updates, and thus the convergence rate may depend upon
the rule that the algorithm chooses to determine the order
of updating coordinates.

We provide an analysis for ‘uniform censored sampling’,
in which coordinates with nonzero valued current residuals
are chosen with equal probability, according to

P(u) = I(r(t)u 6=0)
‖r(t)‖0

, (10)

where r(t) denotes the current residual after t updates. We
have suppressed the dependence of P on r(t) for simpler
notation. Since the distribution P chooses uniformly among
the nonzero coordinates of r(t), in expectation the update
step corresponds to multiplying a scaled version of matrixG
to vector r(t). We can prove that in addition ‖r(t)‖2 contracts
with high probability due to the choice of distribution P .
With high probability, the number of multiplications the
asynchronous algorithm uses is bounded by a similar ex-
pression as the bound given for the synchronous algorithm.



10

Theorem 6.6. If ‖G‖2 < 1, with probability 1, the asynchronous
implementation which updates coordinates according to P even-
tually terminates at ‖r‖2 < ε and produces an estimate x̂i such
that |x̂i − xi| ≤ ε‖x‖2. With probability greater than 1− δ, the
total number of update tasks bounded by

O

(
min

((
ε
√
δ/2

)−d/(1−‖G‖2)
, −n ln(ε

√
δ)

1−‖G‖2

))
.

The number of DFS accesses per task is bounded above by d =
maxu |Nu|.

In order to prove this result, we first show that

EP
[
r(t+1)

∣∣∣ r(t)] = (I − ( I−GT

‖r(t)‖0

))
r(t). (11)

This implies that in expectation, the error contracts in each
update task by at least (1 − (1 − ‖G‖2)/min(td, n)). We
use this to prove an upper bound on the expected L2-norm
of the residual vector after t update tasks, and we apply
Markov’s inequality to prove that the algorithm terminates
with high probability within a certain number of multipli-
cations. There is additional technical detail in the formal
proof, as it needs to handle the fact the ‖r(t)‖0 is dependent
on the full history of the previous iterations. We first analyze
the algorithm for a modified distribution, where the scaling
factor grows deterministically according to min(td, n) as
opposed to ‖r(t)‖0, and we use a coupling argument to
show that the upper bound on the termination time of the
algorithm using the modified distribution translates to the
original distribution P . This establishes an upper bound on
the Lyapunov exponent for a product of random matrices
drawn from a time-dependent distribution.

This bound grows exponentially in d, while the corre-
sponding bound in Corollary 5.2 grows only polynomially
in d. The rate of convergence of the asynchronous variant is
slower by a factor of d/ ln(d) because the provable contrac-
tion of the error in each iteration is now spread out among
the nonzero coordinates of the current iterate.

Our convergence rate bounds only apply when the algo-
rithm samples uniformly among nonzero coordinates of the
residual vector r(t), according to the distribution P defined
by 10. However, this may not be the distribution which op-
timizes the convergence rate. Choosing a distribution which
is not uniform amongst the nonzero coordinates is anal-
ogous to multiplying the residual vector by a reweighted
matrix G̃ in expectation, where each row of G̃ corresponds
to a row of G weighted by the probability of choosing that
row in the new distribution. This is challenging to analyze,
as the weights for each row may be dependent upon the
entire history of update tasks. Analysis would requires char-
acterizing the Lyapunov exponent of a product of random
matrices, where each matrix is sampled from a different
distribution, dependent upon the entire history, making it
difficult to directly analyze the algorithm in expectation.
Under stronger conditions (e.g. only nonnegative entries
in G, z), we can show monotonic decrease in the error,
and hence bound convergence rates for other sampling
distributions with standard techniques.

7 SIMULATIONS

We implemented our algorithm on synthetic data to illus-
trate the convergence rates of different coordinate update

order rules. In each of these examples, we sample a random
graph and let the matrix A denote the edge adjacency
matrix of the graph. A scalar α is chosen small enough such
that ‖αA‖2 ≤ ‖αA‖∞ ≤ 0.9. The goal is to compute the
Bonacich centrality of a fixed vertex in the graph, given by
the component of the solution vector x to x = αAx + 1.
The first graph is sampled from a Erdos-Renyi model with
1000 vertices, each edge being present independently with
probability 0.0276. The second graph is sampled from a
configuration model with 500 vertices and a power law
degree distribution, P(degree d) ∝ d−1.5.

We implement the synchronous implementation of our
algorithm, and the asynchronous implementation algorithm
with five choices of update rules. Round robin refers to
the update rule which follows the expanding neighbor-
hoods of vertex i, i.e., updating according to the sequence
(Ni(0), Ni(1), Ni(2), . . . ). We implement the uniform cen-
sored sampling rule, which samples uniformly amongst
nonzero valued residual coordinates. We explore sampling
rules which depend on the value of the residuals, choos-
ing the coordinate proportional to |ru|, r2u, or chosen as
argmaxu|ru|. We compare with the standard linear iterative
method, which uses updates of the form xt+1 = αAxt + z
to recursively approximate leading terms of the Neumann
series, computing the full solution vector x. It is a global al-
gorithm, as each iteration may involve multiplying a matrix
with a dense vector, and thus simulations show it performs
more poorly than our local algorithms. This insight should
hold for other global algorithms as well, and the discrepancy
will increase as the size of the graph increases.

Figures 2(a) and 2(b) show the percentage error of each
algorithm with respect to the number of multiplications the
algorithm has computed, for the Erdos Renyi graph and
the power law graph respectively. Our simulations indicate
that choosing coordinates with large values of |ru| improves
the convergence of the algorithm. The algorithm which
always chooses the largest coordinate to update seems to
perform the best. This is consistent with our intuition, as the
residual vector r is directly related to the estimation error.
By updating coordinates with large values of ru, we make
more progress in reducing the error. Establishing theoretical
analysis of this observation remains a challenging problem,
as the sampling distribution for update task t depends in a
complex manner upon the full sample path of updates up
to iteration t, as opposed to a simple scaling of the matrix
as in uniform sampling. It is not obvious how to establish
bounds for a product of random matrices drawn from a
complex path dependent distribution.

We also observe that the our algorithm exhibits larger
gains in the beginning of the algorithm, but the gains
becomes less significant as the algorithm progresses. This
could be a result of our algorithm exploiting the small size
of the the local neighborhood in the beginning of the algo-
rithm. As the size of the neighborhood grows in include all
coordinates, our algorithm no longer enjoys sparse residual
vectors, and thus the computational savings slows down.

We also provide results from using the Ulam-von-
Neumann (UvN) Monte Carlo approach which samples
random walks according to a transition probability matrix
designed as Puv = αAuv . All walks begin at the target ver-
tex i, and the probability of the random walk terminating at



11

2000 4000 6000 8000 10000
No. of Multiplications

0

0.1

0.2

0.3

0.4

0.5

0.6

P
er

ce
nt

ag
e 

E
rr

or

Error vs. Multiplications

standard linear iterative
synchronous
asynch: round robin
asynch: uniform among nonzero
asynch: proportional to |r(u)|

asynch: proportional to r(u)2

asynch: maximum |r(u)|

(a) Erdos-Renyi network.

0 2000 4000 6000 8000 10000
No. of Multiplications

0

0.1

0.2

0.3

0.4

0.5

0.6

P
er

ce
nt

ag
e 

E
rr

or

Error vs. Multiplications

standard linear iterative
synchronous
asynch: round robin
asynch: uniform among nonzero
asynch: proportional to |r(u)|

asynch: proportional to r(u)2

asynch: maximum |r(u)|

(b) Power law degree network.

Fig. 2. Comparing different implementations for computing Bonacich
centrality of a vertex in a network.

vertex u is 1− α
∑
v Auv . A random walk which terminates

at vertex u is given the weight 1
1−α

∑
v Auv

, such that the
expected weight of a random walk is equal to the desired
Bonacich centrality xi = eTi

∑∞
k=0(αA)

k1. The algorithm
samples many random walks and averages the weights to
approximate xi. In Figure 7, the left and right plots each
show 10 sample paths obtained by the UvN algorithm for
the Erdos-Renyi and power law graphs respectively. Each
curve represents one instance of the algorithm. Whereas the
iterative algorithms converged by about 5000 multiplica-
tions, the UvN algorithm has high variance and does not
converge even after 100000 random walk steps.

8 FUTURE DIRECTIONS

It is an open problem to investigate the optimal choice of
the probability distribution for sampling coordinates used
within the asynchronous method, as simulations indicate
that some distributions exhibit faster convergence rates.
This is related to recent work which investigates weighted
sampling for the randomized Kaczmarz method, although
their methods depend on weighting according to the matrix
G rather than the values in the intermediate vectors of the
algorithm. As our algorithm is also related to coordinate de-
scent, there is related work showing that coordinate descent

0 5 10
# Random Walk steps 104

0

0.1

0.2

0.3

0.4

0.5

0.6

P
er

ce
nt

ag
e 

E
rr

or

Power law network

Ulam von Neumann Algorithm

0 5 10
# Random Walk steps 104

0

0.1

0.2

0.3

0.4

0.5

0.6

P
er

ce
nt

ag
e 

E
rr

or

Erdos Renyi network

Fig. 3. Sample paths of 10 different instances of the Ulam von Neumann
algorithm for computing Bonacich centrality of a vertex in a network.

converges more quickly when coordinates are chosen ac-
cording to the Gauss-Southwell method (those with largest
residuals first) rather than random selection [31].

We hope that our work will initiate studies of sparsity-
preserving iterative methods in asynchronous and dis-
tributed settings from an algorithmic perspective. Our meth-
ods could be used as subroutines in other methods in
which there is a need for local or asynchronous matrix
computation. It is unclear whether our algorithm achieves
an optimal convergence rate. There is a wealth of literature
which studies acceleration or preconditioning techniques for
classic linear system solvers, and it would be interesting to
see whether these acceleration techniques could be used to
speed up the convergence of our local algorithm.

9 PROOF OF THEOREMS 6.2 AND 6.3
Proof of Theorems 6.2 and 6.3. Let Wk(i) denote the set of
length k walks beginning from vertex i, i.e., a sequence
of vertices w = (w0, w1, w2, . . . wk) such that w0 = i and
(ws, ws+1) ∈ E for all s ∈ {0, 1, . . . k − 1}. Then

xi = eTi
∑∞
k=0G

kz =
∑∞
k=0

∑
w∈Wk(i)

∏k−1
s=0 Gwsws+1

zwk
,

= zi +
∑∞
k=1

∑
w∈Wk(i)

∏k−1
s=0 Gwsws+1

zwk
,

= zi +
∑
j∈Ni

Gij
∑∞
k=0

∑
w∈Wk(j)

∏k−1
s=0 Gwsws+1zwk

,

= zi +
∑
j∈Ni

Gijxj . (12)

This shows that due to the form of the weights over each
walk, we can express the weighted sum of all walks whose
first edge is (i, j) by Gijxj . Similarly, this argument extends
recursively to show that the weighted sum of all walks
whose first l + 1 vertices are given by (v0, v1, v2, . . . vl) is
equivalent to

(∏l−1
s=0Gvsvs+1

)
xvl , since xvl captures the

sum and weights of the remaining unfinished portion of
the walks. In other words, the weighted sum of walks with
a certain prefix is equal to the product of the weights from
the prefix portion of the walk multiplied with the sum of the
weights for all walks that could continue from the endpoint
of the prefix walk. The value of the residual vector ru
contains the product of the weights along the prefix portion
of the walks that end at vertex u, thus explaining why rTx
is equivalent to the weight of all yet uncounted walks.



12

We use this perspective to interpret the single coordinate
updates in the algorithm to argue that there is conservation
of computation, i.e., we never double count a walk, and all
uncounted walks are included in the residual mass vector
r. The update in our algorithm can be interpreted through
(12), as the first term zu captures the walks that end at vertex
u, and each term within the summation Guwxw counts the
walks which take the next edge (u,w). Each time that a
coordinate u is updated, the step

2. ADD ruzu to x̂i,

corresponds to counting the walks which end at vertex u,
and whose weight is contained within ru. We also need to
count the walks which have the same prefix, but do not yet
terminate at vertex u, which is captured by multiplying ru
by each of its adjacent vertices Guw and adding that to rw:

1. SET ru to Guuru,
3. For each v ∈ Nu, ADD Guvru to rv .

We proceed to argue that for any l, there is a finite time t
after which all random walks of length less than or equal to
l have been counted and included into the estimate x̂i.

Given a coordinate update sequence (u0, u1, u2, u3, . . . ),
we require that each coordinate appears infinitely often. We
can assume that u0 = i, since at iteration 0 all the mass is at
vertex i, thus it is the only vertex to update. Let S1 denote
the earliest time after which all of the neighbors of vertex i
have been updated at least once:

S1 = min{t ≥ 1 : Ni(1) ⊂ {u0, u1, . . . ut−1}}.

This guarantees that x̂(S1)
i includes the weights from all the

length one walks from vertex i. We proceed to let S2 denote
the earliest time which all vertices within a 2-neighborhood
of vertex i have updated once after time S1:

S2 = min{t ≥ S1 : Ni(2) ⊂ {uS1
, uS1+1, . . . ut−1}}.

This now guarantees that x̂(S2)
i includes the weights from

all the length one and two walks from vertex i. We can
iteratively define Sr as the time after which the estimate
vector has counted and included all walks of length up to r:

Sl = min{t ≥ Sl−1 : Ni(l) ⊂ {uSl−1
, uSl−1+1, . . . ut−1}}.

Since each coordinate appears infinitely often in the se-
quence, Sl is well defined and finite for all l.

Finally we upper bound the error by using a loose upper
bound on the weights of all walks with length larger than l.
By the invariant, it follows that xi = x̂

(Sl)
i + r(Sl)Tx, which

is the sum of all counted or included walks in x̂
(Sl)
i , and

the remaining weight of uncounted walks in r(Sl)Tx. The
weighted sum of all walks of length at most l from vertex i
is expressed by zT

∑l
k=0(G

T )kei. Thus the error, or weight
of uncounted walks, must be bounded by the corresponding
weighted sum of the absolute values of the walks of length
larger than l:

−zT
∑∞
k=l+1(G̃

T )kei ≤ r(Sl)Tx ≤ zT
∑∞
k=l+1(G̃

T )kei.

It follows that∣∣∣xi − x̂(Sl)
i

∣∣∣ ≤ zT ∑∞k=0(G̃
T )k(G̃T )l+1ei = xT (G̃T )l+1ei,

which converges to zero as long as ρ(G̃) < 1.

10 PROOF OF THEOREM 6.6
We provide an analysis for ‘uniform censored sampling’, in
which coordinates with nonzero valued current residuals
are chosen with equal probability, according to

P(u) = I(r(t)u 6=0)
‖r(t)‖0

, (13)

where r(t) denotes the current residual after t updates.

Proof of Theorem 6.6. Since the algorithm terminates when
‖r(t)‖2 ≤ ε, it follows from Lemma 6.1 that |x̂(t)i − xi| =
|r(t)Tx| ≤ ε‖x‖2. Recall that the algorithm chooses a co-
ordinate in each iteration according to the distribution P ,
as specified in (10). To simplify the analysis, we introduce
another probability distribution P̃ , which has a fixed size
support of min(td, n) rather than ‖r(t)‖0. We first analyze
the convergence of a modified algorithm which samples
coordinates according to P̃ . Then we translate the results
back to the original algorithm.

Observe that for any t ∈ Z+, there exists a function Ct :
Rn → {0, 1}n, which satisfies the properties that for any
v ∈ Rn and u = Ct(v), if vi 6= 0, then ui = 1, and if ‖v‖0 ≤
td, then ‖u‖0 = min(td, n). In words, Ct(v) is a function
which takes a vector of sparsity at most td, and maps it to a
binary valued vector which preserves the sparsity pattern of
v, yet adds extra entries of 1 in order that the sparsity of the
output is exactly min(td, n). We define the distribution P̃ to
choose uniformly at random among the nonzero coordinates
of Ct

(
r(t)
)

, according to:

P̃(u) = eTuSt(r(t))
min(td,n) , (14)

where we have suppressed the dependence of P̃ on t and
r(t) for simpler notation. This is a valid probability distribu-
tion since for all t, ‖r(t)‖0 ≤ td. We first analyze the asyn-
chronous algorithm which samples coordinates accoridng to
P̃ . Lemma 11.1 shows that in expectation, the error contracts
in each iteration by (1 − (1 − ‖G‖2)/min(td, n)). Lemma
10.1 provides an upper bound on the expected L2-norm of
the residual vector r(t). Then we apply Markov’s inequality
to prove that the algorithm terminates with high probability
within a certain number of multiplications.

In order to extend the proofs from P̃ to P , we define
a coupling between two implementations of the algorithm,
one which sample coordinates according to P̃ , and the other
which samples coordinates according to P . We prove that in
this joint probability space, the implementation which uses
distribution P always terminates in number of iterations
less than or equal to the corresponding termination time
of the implementation using P̃ . Therefore, computing an
upper bound on the number of multiplications required
under P̃ is also an upper bound for the algorithm which
uses P .

Lemma 10.1. If ‖G‖2 < 1, d ≥ 4, and n ≥ 8,

EP̃
[∥∥rt∥∥2

2

]
≤ min

(
2t−2(1−‖G‖2)/d, 4e−2(t−1)(1−‖G‖2)/n

)
.

By Markov’s inequality, P(‖r(t)‖2 ≥ ε) ≤ δ for
EP̃ [‖r(t)‖22] ≤ δε2. Therefore, we can directly apply Lemma



13

10.1 to show that if ‖G‖2 < 1, d ≥ 4, and n ≥ 8, the
algorithm terminates with probability at least 1− δ for

t ≥ min
((

2
δε2

)d/2(1−‖G‖2) , 1 + n
2(1−‖G‖2) ln

(
4
δε2

))
.

Since we are concerned with asymptotic performance, the
conditions d ≥ 4 and n ≥ 8 are insignificant. To bound the
total number of multiplications, we multiply the number of
iterations by the maximum degree d.

Finally, we complete the proof by translating the anal-
ysis for P̃ to P . Let us consider implementation A, which
samples coordinates from P̃ , and implementation B, which
samples coordinates from P . Let RA denote the sequence
of residual vectors r(t) derived from implementation A,
and let RB denote the sequence of residual vectors r(t)

derived from implementation B. The length of the sequence
is the number of iterations until the algorithm terminates.
We define a joint distribution such that P(RA, RB) =
P(RA)P(RB |RA).

Let P(RA) be described by the algorithm sampling co-
ordinates from P̃ . The sequence RA can be sampled by
separately considering the transitions when non-zero val-
ued coordinates are chosen, and the length of the repeat
in between each of these transitions. Given the current
iteration t and the sparsity of vector r(t), we can specify
the distribution for the number of iterations until the next
transition. If we denote τt = min{s : s > t and r(s) 6= r(t)},
then

P(τt > k|r(t)) =
∏k
q=1

(
1− ‖r(t)‖0

min((t+q)d,n)

)
. (15)

Conditioned on the event that a non-zero valued coordinate
is chosen at a particular iteration t, the distribution over the
chosen coordinate is the same as P .

For all t, r(t+1) 6= r(t) if and only if the algorithm chooses
a non-zero valued coordinate of r(t) at iteration t, which ac-
cording to P̃ , occurs with probability 1−‖r(t)‖0/min(td, n).
Therefore, given the sequence RA, we can identify in which
iterations coordinates with non-zero values were chosen. Let
P(RB |RA) be the indicator function which is one only if RB
is the subsequence of RA corresponding to the iterations in
which a non-zero valued coordinate was chosen.

We can verify that this joint distribution is constructed
such that the marginals correctly correspond to the proba-
bility of the sequence of residual vectors derived from the
respective implementations. For every (RA, RB) such that
P(RB |RA) = 1, it also follows that |RA| ≥ |RB |, since RB
is a subsequence. For every q,

{(RA, RB) : |RA| ≤ q} ⊂ {(RA, RB) : |RB | ≤ q} (16)
=⇒ P(|RA| ≤ q) ≤ P(|RB | ≤ q). (17)

Therefore, we can conclude that since the probability of the
set of realizations such that implementation A terminates
within the specified bound is larger than 1 − δ, it also fol-
lows that implementation B terminates within the specified
bound with probability larger than 1 − δ. Therefore, since
we have proved Theorem 6.6 for implementation A, the
result also extends to implementation B, i.e., our original
algorithm.

11 PROOF OF LEMMA 10.1
First we prove Lemma 11.1, which shows that a single
update task is equivalent in expectation to multiplying the
residual vector by the matrix

(
I −

(
I−GT

min(td,n)

))
.

Lemma 11.1. If ‖G‖2 < 1, for all t,

(a) EP̃
[
r(t+1)

∣∣∣ r(t)] = (I − ( I−GT

min(td,n)

))
r(t),

(b)
∥∥∥EP̃ [r(t)]∥∥∥

2
≤ min

(
t−(1−‖G‖2)/d, e−(t−1)(1−‖G‖2)/n

)
.

Proof of Lemma 11.1. We will use induction to get an expres-
sion for EP̃

[
r(t)
]
. Recall that r(0) = ei. Since there is only a

single coordinate to choose from, r(1) is also predetermined,
and is given by r(1) = GT ei.

EP̃
[
r(t+1)

∣∣∣ r(t)] = r(t) − (I −GT )
∑
u P̃(u)eur

(t)
u . (18)

By design of P̃ , we know that P̃(u) = 1/min(td, n) for all
u such that r(t)u 6= 0. Therefore,∑

u P̃(u)eur
(t)
u =

r(t)u

min(td,n) . (19)

We substitute this into (18) to show that

EP̃
[
r(t+1)

∣∣∣ r(t)] = (I − ( I−GT

min(td,n)

))
r(t). (20)

Using the initial conditons r(1) = GT ei and the law of
iterated expectation, it follows that

EP̃
[
r(t)T

]
= eTi G

∏t−1
k=1

(
I −

(
I−G

min(kd,n)

))
. (21)

Therefore,∥∥∥EP̃ [r(t)]∥∥∥
2

≤ ‖G‖2
∏t−1
k=1

(
1−

(
1−‖G‖2
min(kd,n)

))
,

≤ ‖G‖2 exp
(
−
∑t−1
k=1

1−‖G‖2
min(kd,n)

)
,

≤ ‖G‖2 min
(
exp

(
−
∑t−1
k=1

1−‖G‖2
kd

)
, exp

(
−
∑t−1
k=1

1−‖G‖2
n

))
.

(22)

Since ‖G‖2 < 1 by assumption, and using the property that∑t−1
k=1

1
k > ln(t), it follows that∥∥∥EP̃ [r(t)]∥∥∥

2
≤ min

(
t−(1−‖G‖2)/d, e−(t−1)(1−‖G‖2)/n

)
.

We use Lemma 11.1 to prove Lemma 10.1.

Proof of Lemma 10.1. Observe that

EP̃

[∥∥∥r(t+1)
∥∥∥2
2

]
= EP̃

[∥∥∥r(t+1) − EP̃
[
r(t+1)

]∥∥∥2
2

]
+
∥∥∥EP̃ [r(t+1)

]∥∥∥2
2
, (23)

and

EP̃

[∥∥∥r(t+1) − EP̃
[
r(t+1)

]∥∥∥2
2

∣∣∣∣ r(t)]
= EP̃

[∥∥∥r(t+1)
∥∥∥2
2

∣∣∣∣ r(t)]− ∥∥∥EP̃ [r(t+1)
∣∣∣ r(t)]∥∥∥2

2
. (24)



14

Based on the update equation

r(t+1) = r(t) − (I −GT )eur(t)u ,

we can compute that

EP̃

[∥∥∥r(t+1)
∥∥∥2
2

∣∣∣∣ r(t)]
=
∑
u P̃(u)(r(t) − (I −GT )eur(t)u )T (r(t) − (I −GT )eur(t)u ),

= r(t)T r(t) −
(∑

u P̃(u)r
(t)
u eTu

)
(I −G)r(t)

− r(t)T (I −GT )
(∑

u P̃(u)eur
(t)
u

)
+
∑
u P̃(u)r

(t)2
u

[
(I −G)(I −GT )

]
uu
. (25)

By the design, P̃(u)r(t)u = r
(t)
u /min(td, n), so that∑

u P̃(u)eur
(t)
u =

r(t)u

min(td,n) . (26)

Similarly, since P̃(u)r(t)2u = r
(t)2
u /min(td, n),∑

u P̃(u)r
(t)2
u

[
(I −G)(I −GT )

]
uu

= r(t)TDr(t)

min(td,n) , (27)

where D is defined to be a diagonal matrix such that

Duu =
[
(I −G)(I −GT )

]
uu

= 1− 2Guu +
∑
kG

2
uk. (28)

Therefore, we substitute (26) and (27) into (25) to show that

EP̃

[∥∥∥r(t+1)
∥∥∥2
2

∣∣∣∣ r(t)] = r(t)T
(
I − 2I−G−GT−D

min(td,n)

)
r(t). (29)

We substitute (29) and Lemma 11.1a into (24) to show that

EP̃

[∥∥∥r(t+1) − EP̃
[
r(t+1)

]∥∥∥2
2

∣∣∣∣ r(t)] ,
= r(t)T

(
I − 2I−G−GT−D

min(td,n)

)
r(t)

− r(t)
T
(
I −

(
I−G

min(td,n)

))(
I −

(
I−GT

min(td,n)

))
r(t),

= r(t)T
(

D
min(td,n) −

(I−G)(I−GT )
min(td,n)2

)
r(t),

≤
∥∥∥ D
min(td,n) −

(I−G)(I−GT )
min(td,n)2

∥∥∥
2

∥∥∥r(t)∥∥∥2
2
. (30)

By definition, for all u,

‖G‖2 =
∥∥∥GT∥∥∥

2
= max
‖x‖2=1

∥∥∥GTx∥∥∥
2

(31)

≥
√
eTuGG

T eu =
√∑

kG
2
uk. (32)

Therefore, G2
uu ≤

∑
kG

2
uk ≤ ‖G‖

2
2, and

Duu = 1− 2Guu +
∑
kG

2
uk (33)

≤ 1 + 2‖G‖2 + ‖G‖22 (34)

= (1 + ‖G‖2)2. (35)

Substitute (35) into (30) to show that

EP̃

[∥∥∥r(t+1) − EP̃
[
r(t+1)

]∥∥∥2
2

∣∣∣∣ r(t)]
≤ (1+‖G‖2)2

min(td,n)

(
1 + 1

min(td,n)

) ∥∥∥r(t)∥∥∥2
2
. (36)

We will use the two expressions given in Lemma 11.1b
to get different upper bounds on EP̃ [‖r(t+1)‖22], and then
take the minimum. The first bound is most relevant in the
sparse setting when n is large and d and ‖G‖2 are small. We

substitute (36) and the first expression in Lemma 11.1b into
(23) to show that

EP̃ [‖r
(t+1)‖22] ≤ atEP̃ [‖r

(t)‖22] + bt, (37)

for

at =
(1+‖G‖2)2
min(td,n)

(
1 + 1

min(td,n)

)
, (38)

and

bt = (t+ 1)−2(1−‖G‖2)/d. (39)

Therefore, EP̃ [‖r(t+1)‖22] ≤
∑t
k=1Qk for

Qk =
(∏t

m=k+1 am
)
bk (40)

=
(∏t

m=k+1
(1+‖G‖2)2
min(md,n)

(
1 + 1

min(md,n)

))
· (k + 1)−2(1−‖G‖2)/d. (41)

The ratio between subsequent terms can be upper bounded
by

Qk

Qk+1
≤ (1+‖G‖2)2

min((k+1)d,n)

(
1 + 1

min((k+1)d,n)

)(
k+1
k+2

)−2(1−‖G‖2)/d
.

(42)

For k ≥ 1, d ≥ 4, and n ≥ 8,
Qk

Qk+1
≤ 4

8

(
1 + 1

8

) (
2
3

)2/4
< 1

2 . (43)

It follows that

EP̃

[∥∥∥r(t+1)
∥∥∥2
2

]
≤ Qt

∑t
k=1

(
1
2

)t−k
(44)

≤ 2(t+ 1)−2(1−‖G‖2)/d. (45)

We similarly obtain another bound by using the second
expression of Lemma 11.1b. This bound applies in settings
when the residual vector r(t) is no longer sparse. By Lemma
11.1b,

EP̃ [‖r
(t+1)‖22] ≤ atEP̃ [‖r

(t)‖22] + b′t,

for b′t = e−2t(1−‖G‖2)/n. Therefore, EP̃ [‖r(t+1)‖22] ≤∑t
k=1Q

′
k for

Q′k =
(∏t

m=k+1
(1+‖G‖2)2
min(md,n)

(
1 + 1

min(md,n)

))
e−2k(1−‖G‖2)/n.

The ratio between subsequent terms can be upper bounded
by

Q′k
Q′k+1

≤ (1+‖G‖2)2e2(1−‖G‖2))/n

min((k+1)d,n)

(
1 + 1

min((k+1)d,n)

)
.

For k ≥ 1, d ≥ 4, and n ≥ 8,
Q′k
Q′k+1

≤ 9e2(1−‖G‖2)/n

16 < 3
4 . (46)

It follows that

EP̃ [‖r
(t+1)‖22] ≤ Q′t

∑t
k=1

(
3
4

)t−k ≤ 4e−2t(1−‖G‖2)/n. (47)

ACKNOWLEDGMENTS

This work is supported in parts by ARO under MURI
award W911NF-11-1-00365, by AFOSR under MURI award
FA9550-09-1-0538, by ONR under the Basic Research Chal-
lenge No. N000141210997, by DARPA under grant W911NF-
16-1-055, and by NSF under grants CNS-1161964, CMMI-
1462158, CMMI-1634259 and a Graduate Fellowship.



15

REFERENCES

[1] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing
on large clusters,” Communications of the ACM, vol. 51, no. 1, pp.
107–113, 2008.

[2] D. Borthakur, “The hadoop distributed file system: Architecture
and design,” Hadoop Project Website, vol. 11, no. 2007, p. 21, 2007.

[3] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and
I. Stoica, “Spark: Cluster computing with working sets.” HotCloud,
vol. 10, no. 10-10, p. 95, 2010.

[4] J. R. Westlake, A handbook of numerical matrix inversion and solution
of linear equations. Wiley New York, 1968, vol. 767.

[5] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and distributed computa-
tion: numerical methods. Prentice-Hall, Inc., 1989.

[6] G. H. Golub and C. F. Van Loan, Matrix computations / Gene H.
Golub, Charles F. Van Loan., ser. Johns Hopkins studies in the
mathematical sciences. Baltimore : The Johns Hopkins University
Press, 2013., 2013.

[7] S. J. Wright, “Coordinate descent algorithms,” Mathematical Pro-
gramming, vol. 151, no. 1, pp. 3–34, 2015.

[8] D. A. Spielman and S.-H. Teng, “Nearly linear time algorithms
for preconditioning and solving symmetric, diagonally dominant
linear systems,” SIAM Journal on Matrix Analysis and Applications,
vol. 35, no. 3, pp. 835–885, 2014.

[9] I. Koutis, G. L. Miller, and R. Peng, “A nearly-m log n time solver
for sdd linear systems,” in Foundations of Computer Science (FOCS),
2011 IEEE 52nd Annual Symposium on. IEEE, 2011, pp. 590–598.

[10] J. A. Kelner, L. Orecchia, A. Sidford, and Z. A. Zhu, “A simple,
combinatorial algorithm for solving sdd systems in nearly-linear
time,” in Proceedings of the forty-fifth annual ACM symposium on
Theory of computing. ACM, 2013, pp. 911–920.

[11] N. K. Vishnoi et al., “Lx= b, laplacian solvers and their algorithmic
applications,” Foundations and Trends R© in Theoretical Computer
Science, vol. 8, no. 1–2, pp. 1–141, 2013.

[12] J. Liu, S. Mou, and A. S. Morse, “An asynchronous distributed
algorithm for solving a linear algebraic equation,” in Decision and
Control (CDC), 2013 IEEE 52nd Annual Conference on. IEEE, 2013,
pp. 5409–5414.

[13] S. Mou, J. Liu, and A. S. Morse, “A distributed algorithm for
solving a linear algebraic equation,” IEEE Transactions on Automatic
Control, vol. 60, no. 11, pp. 2863–2878, 2015.

[14] G. E. Forsythe and R. A. Leibler, “Matrix inversion by a monte
carlo method,” Mathematical Tables and Other Aids to Computation,
pp. 127–129, 1950.

[15] W. Wasow, “A note on the inversion of matrices by random
walks,” Mathematical Tables and Other Aids to Computation, pp. 78–
81, 1952.

[16] J. Curtiss, A theoretical comparison of the efficiencies of two classical
methods and a monte carlo method for computing one component of the
solution of a set of linear algebraic equations. Courant Institute of
Mathematical Sciences, New York University, 1954.

[17] I. Dimov, S. Maire, and J. M. Sellier, “A new walk on equations
monte carlo method for solving systems of linear algebraic equa-
tions,” Applied Mathematical Modelling, vol. 39, no. 15, pp. 4494–
4510, 2015.

[18] J. H. Halton, “A retrospective and prospective survey of the monte
carlo method,” Siam review, vol. 12, no. 1, pp. 1–63, 1970.

[19] ——, “Sequential monte carlo techniques for the solution of linear
systems,” Journal of Scientific Computing, vol. 9, no. 2, pp. 213–257,
1994.

[20] H. Ji, M. Mascagni, and Y. Li, “Convergence analysis of markov
chain monte carlo linear solvers using ulam–von neumann al-
gorithm,” SIAM Journal on Numerical Analysis, vol. 51, no. 4, pp.
2107–2122, 2013.

[21] C. E. Lee, A. Ozdaglar, and D. Shah, “Computing the stationary
distribution locally,” in Advances in Neural Information Processing
Systems 26, C. Burges, L. Bottou, M. Welling, Z. Ghahramani,
and K. Weinberger, Eds. Curran Associates, Inc., 2013, pp.
1376–1384. [Online]. Available: http://papers.nips.cc/paper/
5009-computing-the-stationary-distribution-locally.pdf

[22] D. F. Gleich and K. Kloster, “Sublinear column-wise actions of
the matrix exponential on social networks,” Internet Mathematics,
vol. 11, no. 4-5, pp. 352–384, 2015.

[23] R. Andersen, C. Borgs, J. Chayes, J. Hopcraft, V. S. Mirrokni, and
S.-H. Teng, “Local computation of PageRank contributions,” in
Algorithms and Models for the Web-Graph. Springer, 2007, pp. 150–
165.

[24] N. Shyamkumar, S. Banerjee, and P. Lofgren, “Sublinear estimation
of a single element in sparse linear systems,” in Communication,
Control, and Computing (Allerton), 2016 54th Annual Allerton Confer-
ence on. IEEE, 2016, pp. 856–860.

[25] C. E. Lee, A. Ozdaglar, and D. Shah, “Asynchronous approxima-
tion of a single component of the solution to a linear system,”
arXiv preprint arXiv:1411.2647, 2014.

[26] T. Strohmer and R. Vershynin, “A randomized kaczmarz algo-
rithm with exponential convergence,” Journal of Fourier Analysis
and Applications, vol. 15, no. 2, pp. 262–278, 2009.

[27] K. Sabelfeld and N. Loshchina, “Stochastic iterative projection
methods for large linear systems,” Monte Carlo Methods and Ap-
plications, vol. 16, no. 3-4, pp. 343–359, 2010.

[28] K. Sabelfeld, “Stochastic algorithms in linear algebra-beyond the
markov chains and von neumann-ulam scheme,” in Numerical
Methods and Applications. Springer, 2011, pp. 14–28.

[29] K. Sabelfeld and N. Mozartova, “Sparsified randomization algo-
rithms for large systems of linear equations and a new version of
the random walk on boundary method,” Monte Carlo Methods and
Applications, vol. 15, no. 3, pp. 257–284, 2009.

[30] M. Wang and D. P. Bertsekas, “Stabilization of stochastic iterative
methods for singular and nearly singular linear systems,” Mathe-
matics of Operations Research, vol. 39, no. 1, pp. 1–30, 2013.

[31] J. Nutini, M. Schmidt, I. H. Laradji, M. Friedlander, and H. Koepke,
“Coordinate descent converges faster with the gauss-southwell
rule than random selection,” in Proceedings of the 32Nd International
Conference on International Conference on Machine Learning - Volume
37, ser. ICML’15. JMLR.org, 2015, pp. 1632–1641. [Online].
Available: http://dl.acm.org/citation.cfm?id=3045118.3045292

http://papers.nips.cc/paper/5009-computing-the-stationary-distribution-locally.pdf
http://papers.nips.cc/paper/5009-computing-the-stationary-distribution-locally.pdf
http://dl.acm.org/citation.cfm?id=3045118.3045292

	1 Introduction
	1.1 Problem Statement and Notation
	1.2 Equivalence of Ax = b and x = Gx + z
	1.3 Contributions and Summary of Results
	1.4 Related Work

	2 Distributed Computation Model
	3 Algorithm Intuition
	4 Asynchronous Updates
	4.1 Individual Update Tasks
	4.2 Coordinate Update Rule
	4.3 Termination

	5 Synchronous Analysis
	6 Asynchronous Analysis
	6.1 Counting Weighted Walks
	6.2 Probabilistic Update Order

	7 Simulations
	8 Future Directions
	9 Proof of Theorems ?? and ??
	10 Proof of Theorem ??
	11 Proof of Lemma ??
	References

