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Albatrosses can travel a thousand kilometres daily over the oceans.

They extract their propulsive energy from horizontal wind shears

with a flight strategy called dynamic soaring. While thermal soar-

ing, exploited by birds of prey and sports gliders, consists of sim-

ply remaining in updrafts, extracting energy from horizontal winds

necessitates redistributing momentum across the wind shear layer,

by means of an intricate and dynamic flight manoeuvre. Dynamic

soaring has been described as a sequence of half-turns connecting

upwind climbs and downwind dives through the surface shear layer.

Here, we investigate the optimal (minimum-wind) flight trajectory,

with a combined numerical and analytic methodology. We show that

contrary to current thinking, but consistent with GPS recordings of

albatrosses, when the shear layer is thin the optimal trajectory is

composed of small-angle, large-radius arcs. Essentially, the alba-

tross is a flying sailboat, sequentially acting as sail and keel, and

most e�cient when remaining crosswind at all times. Our analy-

sis constitutes a general framework for dynamic soaring and more

broadly energy extraction in complex winds. It is geared to improve

the characterization of pelagic birds’ flight dynamics and habitat,

and could enable the development of a robotic albatross that could

travel with a virtually infinite range.
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1 Introduction

Dynamic soaring is the flight technique where a glider, either a bird a machine, extracts

its propulsive energy from non-uniform horizontal winds such as those found over the

oceans. Wandering albatrosses (Diomedea exulans), the archetypal dynamic soarers, have

been recorded to travel 5,000 km per week while relying on wind energy alone [1–3]. The

engineering potentialities of dynamic soaring are tantalizing: a robotic albatross could

survey the oceans (or ride the wind shear of the jet stream [4]), and collect oceanic and

atmospheric data, traveling at over 40 knots with a virtually infinite range [5, 6].

A major obstacle to intelligent robotic soaring resides in the complexity of the wind

power extraction process that, by nature, requires planning on-the-go an energy positive

trajectory in a stochastic, hard to measure, and poorly understood wind field. Conversely,

progress in the description of dynamic soaring energetics can help design e�cient algo-

rithmic solutions to the online trajectory planning problem. Improving the understanding

of dynamic soaring is also important in avian ecology. In particular, it allows to better

evaluate the impact of climate change on the behaviour and habitat of albatrosses, petrels,

and other pelagic birds, that are dependent on specific wind conditions [7].

At the mesoscale, it is known that the vast majority of the wandering albatross’ flight is

performed in an overall cross- or downwind direction, by dynamic soaring [3]. Although

on relatively rare occasions (attributed to foraging [8]), they may fly upwind, in those

instances they typically need to provide propulsive power. As far as dynamic soaring is

concerned, crosswind flight (i.e. when the average airspeed is orthogonal to the average

wind direction), is the dominant mode, and the focus of this paper.

In the first attempt to describe dynamic soaring, Rayleigh [9] modelled the wind

profile (figure 1) as a still boundary layer separated from the above windy free stream
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blowing at W
0

by an infinitely thin shear layer (see figure 1c, hereafter Rayleigh’s wind

model). Rayleigh noticed that when traversing the shear layer up- or downwind, the

albatross’ groundspeed is conserved but its airspeed may increase by up to W
0

. Rayleigh

connected up- and downwind transitions with 180� half-turns in order to construct an

energy neutral trajectory (hereafter Rayleigh’s cycle, figure 2b and e.g. [10]): at each

transition, the airspeed gain compensates for the inherent losses due to drag. Because the

drag is quadratic with airspeed, a limit cycle is reached. This description of the dynamic

soaring trajectory, based on phases of flight directly up- or downwind connected by half-

turns, has carried on until today [10–21] in two energetically equivalent forms: trajectories

with constant turn direction are O-shaped, or loitering; trajectories with alternating turn

directions are S-shaped, or traveling.

Recently published observations based on high-accuracy gps measurements [1, 22, 23]

(reproduced in figures 2a and 3) show that albatrosses in crosswind flight do not follow

half-turns, but rather an elongated, albeit oscillating, trajectory. As we report below,

analysis of this data shows that they typically turn by only 50–70�, about a third of the

Rayleigh’s 180� half-turn.

The aim of this paper is to build a model of dynamic soaring that addresses the

3x factor discrepancy in turn amplitude between the half-turn explanation and published

field data of flying albatrosses. To this end, we computed the “minimum-wind trajectory”,

i.e. the most e�cient trajectory of dynamic soaring in the sense that it requires the least

amount of wind to allow sustained flight, and we investigated the variation of its shape

with the thickness of the shear layer. We discovered that contrary to prevailing theory, the

most e�cient trajectory in the thin shear layer regime is a sequence of arcs of vanishingly

small angle, with the direction of flight nearly crosswind at all times. We were able to

explain this observation analytically, lowering the wind required for dynamic soaring by
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over 35% compared to previous models [5].

2 Methods

2.1 Wind model

In the last two decades, a popular approach has consisted in pursuing accurate numerical

modelling of the albatross flight in logarithmic or power-law wind profiles, deemed good

models of the average wind field in the first 20 m above water, where the albatross flies.

However, in this framework it has been shown [24, 25] that dynamic soaring is extremely

sensitive to the wind field in the first meter above the surface, precisely where wind-wave

interactions and temporal variability make the logarithmic model less relevant.

In contrast, Rayleigh’s discontinuous wind model embraces the sharp wind shear that

exists in separated regions, such as behind breaking waves or mountain ridges. Recent

studies suggest that wind separation in ocean wave fields may be more frequent than

previously believed ([26] and figure 1a), further reducing the relative merit of log-based

descriptions.

In this study, rather than attempting to conduct high-fidelity, high-complexity mod-

elling of dynamic soaring for a specific system, we aim for a general and robust analysis

of the principles of dynamic soaring, the main conclusions of which should hold indepen-

dently of the details of the wind field or glider. This approach is in part motivated by

the fact that despite the significant stochasticity of the wind field in which albatrosses fly,

their trajectory is quite regular. With this in mind, the wind profile, which varies with

altitude z, is modelled by means of a logistic function (figure 1b) parameterized by the
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free stream wind speed W
0

and the shear layer thickness parameter �

W (z) =
W

0

1 + exp(�z/�)
. (1)

This formulation, also suggested in [20] for modelling the wind field behind ridges, is

intended to capture not only the main features of separated winds over ocean waves (see

[10, 27, 28] for a qualitative discussion), but more generally of any flow with a typical

wind inhomogeneity W
0

developing over a typical length-scale �, such as in turbulence

soaring [29, 30]. The regions of z ⌧ ��, |z| . 3�, z � � represent a slow layer (separated

region or boundary layer), shear layer of typical thickness � = 6�, and windy free-stream

layer, respectively. In the thin shear layer limit � ! 0 the model converges to Rayleigh’s.

In a logarithmic profile (used to model attached flows), the boundary layer is both the

slow layer and the shear layer. An assumption of our approach is that even logarithmic

profiles have a characteristic shear layer thickness � and a characteristic wind intensity

W
0

such that equation (1) may be used to approximately represent those flows as well.

2.2 Equations of motion

We utilize a 3-degree-of-freedom model to represent the flight of an albatross or glider in

a wind shear. Our formulation follows closely [5, 31] in the frame or reference (i, j,k) =

(e
East

, e
North

, e
Up

). Within this framework, six parameters fully define the glider’s state:

x = (V, , �, z, x, y). Here, V is the glider airspeed, and  and � are the air-relative

heading angle and air-relative flight path angle respectively. Specifically,  is the angle

between i and the projection of the airspeed vector V in the ij-plane and � is the angle

between V and the ij-plane and is positive nose up. We assume that the wind is blowing

from North to South when W > 0 i.e. W(z) = �W (z)j. The control inputs are the lift

coe�cient and bank angle u = (cL,�).
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The equations of motion (eom) are:

mV̇ = �D �mg sin � +mẆ cos � sin (2a)

mV �̇ = L cos��mg cos � �mẆ sin � sin (2b)

mV  ̇ cos � = L sin�+mẆ cos (2c)

ż = V sin � (2d)

ẋ = V cos � cos (2e)

ẏ = V cos � sin �W (2f)

where the dots represent time derivation V̇ = dV/dt and so on. Note that x, y in equa-

tions (2e) and (2f) may be considered as outputs rather than states as they do not feed

back into the self-contained dynamics of equations (2a–2d). Following standard quasi-

steady flight dynamics theory, lift and drag are specified according to L = 1/2cL⇢SV 2

and D = 1/2cD⇢SV 2. We assume quadratic drag cD = cD,0 + kc2L. The coe�cient cD,0

represents the system’s drag when no lift is generated and the parameter k expresses the

additional generation of drag due to lift. Denoting f ⌘ cL/cD the glider’s lift-to-drag

ratio (or finesse), k is related to the maximum lift-to-drag ratio by k�1 = 4f 2

max

cD,0. For

the numerical analysis below, cD,0 and k are chosen such that the maximum lift-to-drag

ratio f
max

is reached at a lift coe�cient of maximum glide ratio cL,f
max

= 0.5, typical of a

small glider.

2.3 Non-dimensionalisation

In order to compute the eom numerically, and to obtain scale-invariant results, it is

useful to rewrite equation (2) in non-dimensional form. For that purpose, the velocities
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are renormalized by the glider’s characteristic speed at cL = 1, namely Vc =
q

mg
1

2

⇢S
.

The distances are renormalized by the characteristic length � = (Vc)2/g. Finally, time is

renormalized by the time-scale tc = Vc/g = �/Vc. Note that our non-dimensionalisation

depends only on the glider properties, air density, and gravity, arguably a more natural

choice than approaches based on the wind gradient [31].

The speed Vc, directly related to the notion of “wing loading” (ratio between mass and

wing area) expresses the order of magnitude of the airspeed at which the glider naturally

flies. For instance, for a wandering albatross, Vc = 15 m/s (see section 2.5). Similarly,

the length � expresses what is a “small” or “large” change in altitude. For an albatross,

� = 24 m so a change of altitude of 2.4 m ⌧ � is “small” but a change of altitude of

240 m � � is “large”. For a cruising A380 large passenger aircraft, �
A380

= 3.3 km so an

altitude change of 330 m is “small” but a change of altitude of 33 km is “large”.

Upon non-dimensionalisation of the variables v = V/Vc, w = W/Vc, x̃ = x/�, ỹ = y/�,

z̃ = z/�, ⌧ = t/tc and (·)0 = d(·)/d⌧ , equation (2) becomes

v0 = �cDv
2 � sin � + w0 cos � sin (3a)

v�0 = cLv
2 cos�� cos � � w0 sin � sin (3b)

v cos � 0 = cLv
2 sin�+ w0 cos (3c)

z̃0 = v sin � (3d)

w0 =
@w

@z̃
z̃0 (3e)

x̃0 = v cos � cos (3f)

ỹ0 = v cos � sin � w. (3g)

The non-dimensionalisation does not depend on the glider’s characteristics except
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through the lift–drag coe�cient curve cL 7! cD. For the remainder of this manuscript

when there is no ambiguity the˜signs are omitted for notational simplicity.

2.4 Numerical trajectory optimization

A direct collocation method is applied to equation (3) with the wind model of equation (1),

in order to compute the minimum-wind trajectory of dynamic soaring. Specifically, the

aim is to find the minimum wind needed to sustain flight, i.e. the algorithm searches

for the minimum wind intensity w
0

such that equation (3) has a solution periodic in

(v, �, + 2p⇡, z) with p = 0,±1. More details on the procedure can be found in ST1

and e.g. [5, 24, 31]. The optimal loitering (p = ±1) and traveling trajectories (p = 0)

are computed for several values of the shear layer thickness parameter �, starting from a

thick shear layer (� � �) and reducing � progressively until the thin shear layer regime

(� ⌧ �) is reached. The resulting trajectories are displayed in figure 4.

2.5 Dimensions for the wandering albatross’ flight

Upon non-dimensionalisation in section 2.3, the trajectories that satisfy equation (3) are

scale-independent. With the quantities below they may be rescaled to represent the

conditions of the albatross’ flight.

Albatross properties The typical properties for the wandering albatross are collected

in table 1, and are used to convert the results of section 2.4 and the analytic analysis below

back into dimensional form. Further information on mass and wing area of wandering

albatrosses may be found in e.g. [7, 32]. To the best of our knowledge, the coe�cient of

minimum power
⇣
c3/2L /cD

⌘

max

, which is the important aerodynamic property for dynamic
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soaring ability in light winds as shown in equation (10) below, has not been specifically

studied for the wandering albatross. For this study the numerical value 22 is chosen. It

is similar to the 19.6 value from [5, 24], which is based of the simulation of a glider with

size and planform similar to that of wandering albatrosses. It is also similar to the 22.9

value obtained by evaluating the quadratic drag formulation of [33] at a lift coe�cient

cL = 1.25. Overall, we estimate the uncertainty over this coe�cient to be approximately

10%, comparable to that on mass and wing area.

Wind properties The wind parameters � and W
0

are more uncertain than the alba-

tross’ properties because the wind structure depends on the sea state, is complex and

time-varying, and is poorly known overall.

The e↵ective shear layer thickness perceived by the albatross must be at least of

the order of the vertical distance from wingtip to wingtip when the albatross is in a

roll. Given the wandering albatross’ 3 m span, the perceived shear layer must be thicker

than approximately 1 m. In the presence of large waves, Pennycuick’s description of

dynamic soaring as “gust soaring” at the interface between windy and separated regions

behind waves [27] is indicative of a thin shear layer, of size comparable to the albatross’.

Accordingly, observational data of flying albatrosses suggest a shear layer thickness of

the order of 1–3 meters in the presence of waves. Conversely, when the waves are small

and the wind flow remains attached to the surface, it is possible that the albatross does

not have access to the extremely thin boundary layer and as a consequence perceives a

virtually thicker shear layer. For logarithmic profiles, the perceived shear layer thickness

would be approximately 7 m (see ST3). It is also possible to estimate the shear layer

thickness indirectly form vertical travel reports of soaring albatrosses. The literature [1,

22, 27] suggests that over a dynamic soaring cycle, the albatross travels vertically by 5 to
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15 m. The results of the numerical analysis of section 2.4 show that for the minimum-wind

trajectory there is a correlation between vertical travel and shear layer thickness. Referring

to figure 7a, such vertical travels correspond to a shear layer thickness of about 1.5 m to

7 m (3 m thickness for the 8 m vertical travel reported in [27]). Overall, considerations

on separation behind waves, the albatross size, and albatross’ vertical travel a suggest a

shear layer thickness of the order of 1 to 3 meters (in this study we select 2 m as the

default thickness), at the very maximum 7 m.

The intensity parameter W
0

in equation (1) does not necessarily denote the wind

speed stricto sensu, but more precisely the speed di↵erence between the fast and slow

layers. For instance, the 7.8 m/s wind reported in figure 2a is the wind at 10m (see [22]).

The speed of the slow layer is non-zero, as even behind separated waves, the mass of air

typically travels at the wave phase speed [34]. Accordingly, the albatross can only exploit

a fraction of the wind speed. Similarly, in non-separated flows the low-height wind at 1 m

is typically more than 50% of the wind at 10 m and here again, only a relatively small

fraction of the wind speed can be exploited [24]. In the present study we assume that the

albatross may access 25 to 50% of the wind speed at 10 m.

2.6 Analysis of flight data from the literature

For wandering albatrosses in crosswind, the typical dynamic soaring manoeuvre lasts for

5–15 s and extends over 50–150 m, such that analysing the albatross’ flight at the cycle

level requires measuring its trajectory at a sampling rate of 1 Hertz or more. The present

study reanalyses a short (3 km) track from Sachs et al. [22] with a high (10 Hz) sampling

rate, and two long (order of 1,000 km) tracks from Yonehara et al. [23] sampled at a

lower rate (1 Hz). Sachs’ track [22] contains 20 soaring cycles while Yonehara’s tracks [23]
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contains thousands of them. For each recording, characteristics of the flight are computed,

e.g. cycle turn amplitude (see ST2 for more details on the procedure).

2.6.1 Albatross track in Sachs et al. [22]

The albatross track in Sachs et al. [22], reproduced in figure 2a, has two characteristics

that make it well-suited for the present study: 1) the high sampling rate allows for reliable

measurements of the small-scale features of individual turns and 2) the wind intensity,

reported at 7.8 ± 2 m/s (see [22] and reference herein for methodology of determining

the wind from satellite measurements), lies at the lower end of the wandering albatross’

dynamic soaring flight envelope.

In this study, we discuss the dynamic soaring trajectory that minimizes the required

wind. In practice, a flying albatross fulfils more complex objectives, for instance foraging,

which may involve sub-objectives such as minimizing control e↵ort, selecting cross-country

average speed direction and altitude, etc. In particular, when the wind is plentiful, staying

aloft is comparatively easy and it is less likely that the albatross’ objective is to extract

as much energy as possible. When the wind is weak however, it is likely that staying aloft

becomes the albatross’ main objective, as in our model. Accordingly, the low-wind of [22]

is valuable as in it the albatross must pursue an objective similar to our computations.

In the 20-cycle (40-turn) recording, the albatross’ median turn is 54� (mean 50), with a

standard deviation of 21� (see figures 2 and 6 and ST2).

2.6.2 Albatross tracks in Yonehara et al. [23]

Yonehara et al. [23, 35] contains two recordings of wandering albatrosses, reproduced in

figure 3. Over the course of two days, albatross #2 performs “mixed” flights made of

up-, cross- and downwind flights in low and high winds, separated by active foraging
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and resting periods. It has over 1,700 km of usable flight data and over 13,000 turns.

Albatross #4 contains a nearly uninterrupted, generally westwards flight. In [35], the

wind is measured with satellite data and estimated from the albatross track itself. Both

methods suggest that overall the flight is approximately crosswind, in 8–15 m/s winds.

It has 650 km of usable data in 3,700 turns, performed over the span of 9 hours. The

median turn for albatross #2 in mixed flight is 78� (mean 84�, std 46�). The median turn

for albatross #4 in crosswind flight is 66� (mean 69�, std 32�) (see figure 6 and ST2. For

more details on the open-access dataset [23] and the in-flight wind conditions, see the

supplementary materials of [35]).

3 Results

3.1 Three-dimensional minimum-wind trajectories in a logistic

wind profile

Figure 4 shows the minimum-wind trajectory for three shear layer thicknesses (thick,

albatross-like conditions, and thin). The main attributes of the cycle, spanning several

orders of magnitude in shear layer thickness from � ⌧ � to � � � are displayed in figures 6

and 7.

When the shear layer is thick all trajectories are significantly three-dimensional, the

loitering and traveling trajectories are quantitatively similar, and the turn amplitude

of the traveling trajectory is large. When the shear layer is thin however the loitering

and traveling trajectories are distinctly di↵erent. While the loitering trajectory remains

significantly 3D, the traveling trajectory’s extension in the z-direction shrinks and it

becomes nearly 2D. As the shear layer thickness parameter � is decreased, the trajectory
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becomes more and more elongated, and is composed of zigzags of only a few degrees

in amplitude (figure 6b). Importantly, it requires only about 2/3 as much wind as the

loitering trajectory (figure 6a).

3.2 Analytic solution in the thin shear layer regime

When the shear layer is thin � ⌧ �, the logistic wind profile resembles Rayleigh’s. As

observed in the numerical analysis, the traveling trajectory is approximately 2D and

remains in the neighbourhood of z = 0. This property greatly reduces the problem

complexity and it is possible to build a quantitatively accurate analytic solution in this

limit of a very thin shear layer.

The cycle may be decomposed into two parts: first, glide phases on either side of, but

close to, the shear layer (� ⌧ |z| ⌧ �) where the wind shear is weak and airspeed is

lost due to drag, and secondly, transitions across z = 0 of vanishing duration but finite

impulse where airspeed gain takes place.

Glide Consider the dynamics of a glider evolving according to equation (3) in the vicin-

ity z = 0± of the separating plane but not crossing the separation layer. The 2-D approx-

imation z = 0± brings �, �0 = 0. equation (3b) becomes a constraint on the roll angle

cos� = 1

cLv2
and equation (3) simplifies to

v0 = �cDv
2 (4a)

 0 = cLv sin�. (4b)

Eliminating ⌧ , the parametric evolution of v follows:

dv

d 
= � 1

f

vq
1� 1

c2Lv
4

· sign( 0), (5)
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reflecting the airspeed cost of turning. The sign function is a consequence of the decrease

of airspeed with time regardless of whether the turn is to port or starboard.

Layer Transition Within the thin shear layer, the wind profile can be approximated

by a step function w(z) = H(z)w
0

. The Heavyside step function H(z) is 0 if z < 0 and 1

if z > 0. The time derivative of the local wind seen by the glider in equation (3e) becomes

w0 = w
0

�(z)z0 where �(z) is the Dirac distribution. This discontinuity in the eom induces

a finite change of the glider’s state. The state transition ( �, v�) 7! ( 
+

, v
+

) can be easily

computed from groundspeed continuity (a consequence of the forces remaining finite). In

airspeed quantities it is expressed as V+ = V�±W j depending on whether the transition

is up or down. This leads to

tan + = tan � ± w
0

v� cos � (6a)

v+ = v�
p

1± 2w
0

/v� sin � + (w
0

/v�)2. (6b)

Note that equation (6a) is also smooth near  = ±⇡/2. Note also that while the state

( +, v+) and ( �, v�) are taken on both sides of the shear layer, the formulas are also valid

for intermediate locations within the shear layer itself. For instance, the state ( 
0

, v
0

) in

the middle of the shear layer z = 0 can be obtained from ( �, v�) (resp. ( +, v+)) by

operating the substitution w
0

! w
0

/2 (resp. w
0

! �w
0

/2) in equation (6).

Cycle Periodicity Both the layer transition and the glide equation are invariant by

the transformation (w
0

, ) 7! (�w
0

,� ). This can be seen as the consequence of the

fact that the airspeed gain of flying upwind out of the slow layer is equal to that of flying

downwind into the slow layer (this symmetry is particular to the Rayleigh problem: a

finite thickness shear layer or a constraint on the average travel direction would break it).
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Accordingly, the physical cycle [transition up!wind layer glide! transition down!slow

layer glide] can be subdivided into two equivalent sub-units [transition!glide]![transition!glide],

expanded below:

. . . ( +, v+)n�1

!
glide


( �, v�)n !

transition

( +, v+)n !
glide

�

| {z }
sub-unit n

( �, v�)n+1

. . .

In a stationary cycle, the airspeed is periodic vn+1

= vn and the heading angle is anti-

periodic  n+1

= � n. Therefore the heading angle evolves by  �
n+1

�  +

n =  �
n+1

+  +

n+1

over a glide phase. The evolution of airspeed and air-relative heading angle are sketched

in figure 5.

Large Glide Ratio Limit Previous studies [5] have shown that the necessary wind

speed w
0

tends to 0 as the glide ratio f tends to 1. Assuming f � 1 and w
0

⌧ 1, the

loss of airspeed during the glide phase can be approximated by Euler integration

�v
glide

⇡ � v

f↵
|� | with ↵ =

q
1� 1/c2Lv

4 (7)

(see ST4 for a treatment with explicit residuals). For a stationary cycle, equation (6a)

used twice (between  � and  
0

and then between  + and  
0

) yields� =  ++ � ⇡ 2 
0

.

This can be interpreted as that fact that the heading in the middle of the shear layer is

approximately the average of the headings just before and just after crossing. Similarly,

equation (6b), gives

�v
transition

= v+ � v� ⇡ w
0

sin 
0

. (8)

When the cycle is stationary, the airspeed loss during glides and airspeed gain during

transitions must compensate each other. Equating loss and gain brings the equation for

the average airspeed
vp

1� 1/c2Lv
4

=
sin 

0

 
0

f

2
w

0

. (9)
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The minimum w
0

, v pair

w⇤ =
33/4

p
2

c3/2L /cD
, v⇤ = 31/4/

p
cL (10)

is attained when the cardinal sine sinc( 
0

) ⌘ sin( 
0

)/ 
0

is maximized i.e.  
0

! 0. The

minimum wind w⇤ is smaller by a factor ⇡/2, compared to when half-turns are required

( 
0

= ⇡/2). Note also that in the minimum-wind problem, the aerodynamic quantity of

interest is the so-called coe�cient of minimum power
⇣
c3/2L /cD

⌘

max

.

3.3 Comparison with recordings of wandering albatrosses and

other numerical studies

The main characteristics of the numerical model are strikingly consistent with albatross

flight data (see figures 6 and 7), and a significant improvement over the half-turn descrip-

tion, especially given the uncertainty associated with the wind field. In particular, Sachs’

low-wind recording is both in the low-end of reports of dynamically soaring wandering

albatrosses, and within 10% of the prediction of our numerical model. Turn angles are

consistent (D � 102, p  10�20, see ST2) between the numerical model (65 to 100�, value

for most likely conditions 80�), and Sachs’ and Yonehara’s albatross tracks (typically 50

to 70� in crosswind).

We also compared the model with studies based on a log-profile wind field [24, 33] and

they agree within 10% for key aspects of the soaring cycle such as turn angle and required

wind intensity (figures 6 and 7). This suggests that the dynamic soaring trajectory is

robust to variations of the wind field, and that our 2-parameter formulation in equation (1)

is successful at capturing the main characteristics of dynamic soaring, even in attached

flows, e.g. logarithmic profiles.
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4 Discussion

While in dynamic soaring the energy extraction process has historically been explained as

a sequence of half-turns, high-rate gps recordings of wandering albatrosses in crosswind

flight show that they typically turn by only 50–70�, about a third of the half-turn (Figs 2a

and 6b). When the shear layer being exploited for dynamic soaring is thick, as compared

to the characteristic length � = 2m
⇢S , the minimum-wind (most energy-e�cient) trajectory

is indeed a succession of half-turns. When the shear layer is thin however, the minimum-

wind trajectory is a succession of shallow arcs, forming a zigzagging path, as elongated as

the shear layer is thin (figure 4). Similarly, our analytic model states that in thin shear

layers, shallow arcs are energetically more e�cient. In equation (10) and equation (12)

below, we provide an analytic value for the minimum wind speed needed to sustain flight

in the thin shear layer regime. As seen in figure 6, it predicts the thin shear layer limit of

the numerical model and is smaller than previous studies by a factor ⇡/2.

Wandering albatrosses exploit the shear layer just above the surface of the ocean,

approximately 1 to 3 m thick. This is thin compared to �
albatross

= 24 m, suggesting

that elongated trajectories are indeed energetically beneficial for them. For such a shear

layer thickness, our numeric model predicts a turn amplitude of the minimum-wind tra-

jectory between 65 and 100�, depending on the actual shear layer thickness and glider’s

aerodynamic e�ciency.

In practice, several factors not taken into account in the present models may influence

the cycle frequency and shape, and cause variability in the dynamic soaring trajectory.

The large albatross wingspan (3 m) implies a cost of rolling not taken into account in

our point-mass model, as well as a constraint on its minimum vertical travel which favour

cycles of larger duration and amplitude. Waves influence the wind field through two
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mechanisms: wave propagation causes an updraft flow on the lee side, while wind-wave

interactions influence the structure of the wind boundary layer. For instance, wind sep-

aration on the lee side of waves in a young sea state (when the wind is faster than the

waves’ phase speed) may result in a pocket of slow air as illustrated in figure 1a (see also

[26]), with an influence on the shear layer thickness. It may be energetically beneficial for

albatrosses to adapt their trajectory in order to synchronize with waves and exploit these

features.

When the wind is plentiful, and the primary objective of staying aloft is easily attained,

it is likely that albatrosses adapt their flight strategy in order to fulfil secondary objectives,

such as choosing their beeline travel speed, reducing their overall control activity, reducing

aerodynamic loads, exploring specific heights, traveling upwind, etc. For instance, phases

when an albatross flies and remains at extreme low height without rolling may be slightly

beneficial in terms of reduced drag due to ground e↵ect; they also skew the overall beeline

trajectory windward, as more time is spent in a slower flow. Overall, all these e↵ect

potentially influence the actual albatross trajectory in complex and intricate ways, and

it is striking and surprising that despite changing conditions (in particular wind relative

direction and intensity and wave field), the turn amplitude of crosswind flight remains

relatively constant across the datasets considered.

Despite the aforementioned variability, the following conclusion holds: for the alba-

tross, finite turns are not the cause of energy extraction, but a consequence of shear layer

thickness and these other e↵ects. The half-turn picture with up- and downwind transitions

is misleading, as it is suboptimal both energetically and for travel speed.

Below, we shed additional light on the rigorous analysis of the analytic model by

qualitatively discussing three intuitive explanations of the exchanges at play in the thin

shear layer dynamic soaring manoeuvre.
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Airspeed loss and gain Rayleigh’s description of dynamic soaring, and our analytic

model, both express the fact that in the thin shear layer regime, a dynamic soaring system

gains airspeed each time it crosses the shear layer, and loses airspeed from drag when it

flies in-between crossings. The airspeed gain upon crossing is approximately equal to

the negative dot product between the wind and glider’s flight direction, i.e. w
0

sin 
0

, as

shown in equation (8). For this airspeed gain to happen (figure 2b,c), the glider must

turn by an amount � ⇡ 2 
0

, which is associated (see equation (7)) to an airspeed loss

due to drag of cD
cL

Vp
1�V 4

c /c2LV
4

|� |. As such, the airspeed loss is proportional to the angle

of turn.

Therefore, while the airspeed gain during a single transition is proportional to sin 
0

,

the airspeed loss is proportional  
0

. The performance is driven by the ratio between gains

and losses, which is proportional to sin( 
0

)/ 
0

, and maximized when  
0

! 0. In the thin

shear layer regime, frequent and small airspeed gains are more e�cient than large and

infrequent ones. This is visible in equation (9) relating airspeed, turn angle and wind

intensity. Rewritten in its dimensional form (remember that Vc =
q

mg
1

2

⇢S
), it becomes

Vp
1� V 4

c /c
2

LV
4

=
sin 

0

 
0

cL
2cD

W
0

(11)

and the dimensional wind-airspeed relationship is

W ⇤ =
33/4

p
2

c3/2L /cD
Vc, V ⇤ =

31/4
p
cL

Vc. (12)

In practice, the sensitivity of equation (11) with respect to  
0

is small and equation (12)

approximately holds even for finite angles of turn, because the cardinal sine (sinc( 
0

) ⌘

sin( 
0

)/ 
0

) is flat in the neighbourhood of 0. For instance, for 60� turns, sinc( 
0

) = 0.95.

In fact, even quarter-turns, for which sinc( 
0

) = 0.90, are energetically much closer to

the small turn limit sinc(0) = 1, than to the half-turn value sinc( 
0

) = 0.64.
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Conversely, when the shear layer is thick, the numeric analysis suggests that because

crossing through it requires flying a comparatively large distance (and incurs large drag

losses) anyway, maximizing the airspeed gain at each transition becomes relatively more

important. Accordingly, when the shear layer is thick, the minimum-wind trajectory is

composed of large-amplitude turns.

Shed vorticity and wake For a qualitative description, consider the thin shear layer

case when the trajectory and flows are approximately 2D, as in the bottom of figure 2c.

In this framework, the glider is nearly always at a large roll angle and as seen from above

it resembles 2D airfoil. Successively, the glider enters a layer, performs a glide, and then

leaves the layer as it transitions to the other one. Under the reasonable assumption that

successive glide phases do not interact with each other, before the glider enters in a layer,

the flow velocity is uniform at W
0

(wind layer) or 0 (slow boundary layer).

Because the foil generates lift, it carries bound vorticity with it. For instance in

figure 2c, the glider is in the wind layer, and banked to starboard such that as seen from

above the bound vorticity is clockwise. By Kelvin’s circulation theorem, a vortex of equal

intensity and opposite sign (counter-clockwise in figure 2c) must have been shed where

the glider entered the layer. After the glide phase, the glider leaving the wind layer is a

“vanishing foil” [36], and its bound vorticity is shed into the flow.

Thus, as illustrated in figure 2c, the e↵ect of the glider’s passage is a pair of counter-

rotating vortices shed in the flow, along a generally crosswind line. These vortex pairs

constitute the signature of jets, which are directed upwind in the wind layer and down-

wind in the slow layer. The e↵ect of these jets is an overall slowdown of air in the fast

wind layer, and acceleration of air in the slow boundary layer. In other words, through

dynamic soaring the glider transfers momentum between the wind layer and the boundary
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layer, which tends to reduce the overall speed di↵erence between those two layers, and is

associated to the flow losing kinetic energy.

Note that the definition of kinetic energy depends on the frame of reference. In the

case of crosswind dynamic soaring, it is interesting to consider the system in the inertial

frame of reference convected at the average velocity between the boundary layer and the

wind layer, i.e. W
0

/2. In this frame, the wind layer velocity is W
0

/2 while the boundary

layer velocity is �W
0

/2. There, both glide phases play very similar roles, with both jets

tending to reduce the absolute value of the flow velocity in their respective layers. In

fact, it is in this particular frame of reference that the analytic minimum wind trajectory

is crosswind—it appears somehow downwind from an observer attached to earth or the

water surface.

Analogy with sailing Dynamic soaring presents strong similarities to sailing: sailboats

propel themselves by transferring momentum from the fast wind to the slow-moving ocean

by means of two lifting surfaces, the sail and the keel. As pictured in figure 2c and d, the

sail serves to extract momentum from the wind, thereby slowing it down, while the keel

serves to inject that momentum to the water, thereby accelerating it. As such, the sail

of a sailboat and an albatross flying in the wind layer both fulfil a “sail functionality”,

while a sailboat’s keel and an albatross flying in the boundary layer both fulfil a “keel

functionality”. As a consequence, the albatross can be viewed as a sequential, “flying

sailboat” with the two particularities that 1) it acts between the wind layer and the

boundary layer rather than between the wind and water, and 2) the sail and keel functions

emerge from the dynamic soaring manoeuvre itself rather than from dedicated structural

appendages as on a sailboat.

Finally, consider the sail of a sailboat, analysed in the earth frame of reference. The lift
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force, responsible for extracting momentum from the wind, is by definition perpendicular

to the local airflow. If the sail was going directly up- or downwind, the local airflow and

earth-related velocity would be aligned, the lift force and earth-related velocity would be

orthogonal, and therefore the power of the lift force L.U
earth

, would be 0. Conversely, when

the sail is going crosswind, there is a misalignment between the local airflow and earth-

related velocity which implies a non-zero dot product between lift and inertial velocity (a

thrust force, figure 2c), which means extraction of power. Like the sailboat (figure 2d),

the albatross extracts power in flight phases where it is crosswind rather than directly up-

or downwind.

Conclusion

The conceptual framework presented in this paper improves the general understanding of

dynamic soaring with a low-order and yet accurate model, and points to the potentially

major role played by wind separation behind waves in the albatross flight. This has ap-

plications for refining the characterization and prediction of the albatross’ habitat in a

changing climate. In the quest for a robotic, bioinspired albatross, equation (12) may well

constitute the fundamental design guideline, while understanding the key roles of shear

layer thickness and turn amplitude paves the way to robust and scalable learning algo-

rithms for online trajectory planning and control in robotic dynamic soaring applications.
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Figure 1: Wind profile. (a) Wind field behind waves. Colour-coding: wind intensity,

experimental data adapted from [26]. (b) The logistic wind profile in this study captures

adequately the wind field in separated regions, such as behind ocean waves. More gener-

ally, it constitutes a robust way to approximate a wide class of wind fields, based on two

parameters: a typical wind speed inhomogeneity W
0

separated by a shear layer of typical

length-scale �. (c) Rayleigh’s wind model is the limit of the logistic profile for � ! 0.
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Figure 2: The albatross’ trajectory. (a) Recording of a flying albatross from [22] (top

view). In crosswind flight the typical turn of the albatross is about 50–70�. Dot-dashed

yellow portions of the trajectory: the albatross is involved in a 60� turn within ±20�.

Dashed red portions: the albatross is involved in a 60� turn within ±10�. Note that while

in the ground frame the mean albatross travel has a downwind component, in the frame

moving with the average wind it is nearly crosswind. (b) The Rayleigh cycle describes the

albatross’ flight as a sequence of half-turns between the windy and slow regions. At each

layer transition, there is an airspeed gain equal to the wind speed, which compensates

inherent drag losses that are quadratic in airspeed. However this trajectory is suboptimal

for energy extraction. Instead, for thin shear layers, the optimal cycle (c) is composed

of a succession of small-angle arcs. The flight portion in the wind layer is functionally

analogous to the sail of a sailboat, while the portion in the slow layer is analogous to the

keel of a sailboat (d).
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Figure 3: Wandering albatrosses #2 and #4 from Yonehara et al. [23], analysed in this

study. The track of albatross #2 is over 1,700-kilometre-long, lasts for approximately two

days and is made of up-, cross- and downwind flights in low and high winds, separated by

active foraging and resting periods. The track of albatross #4 is a nearly uninterrupted,

650-kilometre, 9-hour, approximately crosswind flight performed in 8–15 m/s winds. Note

that some data is missing or dropped due to poor GPS quality.
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D
ecreasing shear layer thickness

Figure 4: Minimum wind trajectories for three shear layer thicknesses (see the wind

profiles in the plots’ backgrounds and how they relate to shear layer thickness in figure 1).

On the left, the trajectories are constrained to fulfil the specific requirement that the

heading increases by 360� over a cycle, hence their loitering appearance. On the right,

the heading is required to be periodic, hence their traveling appearance. For the 3D

trajectory the scale is common and is indicated on the bottom right corner: the trihedral

is of length � = 2m
⇢S (24 m for an albatross). Similarly, the scale bars on the top views are

of length �. The middle plots �/� = 1/64 are representative of the shear layer thickness

experienced by albatrosses. The traveling trajectory requires less wind than the loitering

one, with an increasing advantage for thinner shear layers. When �/�! 0, the traveling

trajectory becomes 2D and is composed of a sequence of vanishingly small arcs of finite

curvature performed at nearly constant speed. The behaviour of the loitering trajectory

is qualitatively di↵erent: for decreasing shear layer thicknesses, it quickly converges to a

limit trajectory that remains significantly 3D even for an infinitely thin shear layer.
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Figure 5: Sketch of the evolution of airspeed and air-relative heading angle over

one dynamic soaring cycle, in the large glide ratio approximation. Following a glide phase

in the boundary layer, the glider transitions into the wind layer, experiencing a shift of

its air-related heading to port, as well as an airspeed boost. A glide phase in the wind

layer ensues and is followed by a transition into the boundary layer which is associated to

a shift of air-related heading to starboard and an airspeed boost. The cycle in this figure

starts 1/4 period earlier than in the right-hand side of figure 4. In the thin shear layer

limit, airspeed has double periodicity and air-related heading has double anti-periodicity,

such that the physical cycle may be divided into two equivalent sub-units.
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Figure 6: Minimum wind and turn amplitude of the traveling and loitering trajec-

tories as a function of the shear layer thickness from our numerical model, for various

glide ratios. Unless otherwise indicated, the maximum glide ratio is reached at cL = 0.5.

The model is compared with experimental data of flying albatrosses from [22, 23], and

simulations of dynamic soaring in a logarithmic wind field from [24, 33]. (a) In the thin

shear layer regime � ! 0 the wind required for the traveling trajectories converges to our

2D model in equation (12). (b) Similarly, the turn amplitude decreases and the trajecto-

ries become straighter. The histogram insets represent the turning statistics of Sachs et

al. [22], Yonehara et al. [23] albatross #4 and #2 from bottom to top. Yonehara’s alba-

trosses are recorded over hundreds of kilometres. In crosswind the recorded albatrosses

typically turn by 50–70� while in the recorded mixed-flight the typical turn amplitude is

80�. Error bars represent the median turn ± 1 std.
35



10�4 10�3 10�2 10�1 100 101 102

�/�

0.01

0.1

1

10

N
on

-d
im

en
si

on
al

z
ex

te
ns

io
n

a

10�4 10�3 10�2 10�1 100 101 102

�/�

0

2

4

6

8

10

12

14

N
on

-d
im

en
si

on
al

cy
cl

e
tim

e

b

10�4 10�3 10�2 10�1 100 101 102

�/�

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

V
m

ax
/

V
�

c

10�4 10�3 10�2 10�1 100 101 102

�/�

1

2

3

4

5

6

7

8

N
on

-d
im

en
si

on
al

cr
os

sw
in

d
tra

ve
l

d

Sachs et al. Exp.
Sail phase
Keel phase

10�1 100 101 102 103 104

80% shear layer thickness (m, albatross)

1

10

100

C
yc

le
z

ex
te

ns
io

n
(m

,a
lb

at
ro

ss
)

10�1 100 101 102 103 104

80% shear layer thickness (m, albatross)

0

5

10

15

20

C
yc

le
tim

e
(s

,a
lb

at
ro

ss
)

10�1 100 101 102 103 104

80% shear layer thickness (m, albatross)

0

10

20

30

40

50

C
yc

le
m

ax
sp

ee
d

(m
,a

lb
at

ro
ss

)

10�1 100 101 102 103 104

80% shear layer thickness (m, albatross)

40
60
80

100
120
140
160
180

C
yc

le
cr

os
sw

in
d

tra
ve

l(
m

,a
lb

at
ro

ss
)

Figure 7: Characteristics of the minimum-wind cycle. Same legend as in figure 6.

(a) Height separation between the lowest and highest point of the cycle. For thin shear

layers the traveling trajectory is nearly 2D. Note that the convergence rate is only about

z ⇠ �2/3. (b) Cycle duration. (c) Maximum airspeed attained during the cycle. (d)

Crosswind travel during one cycle. The orange (resp. purple) dots correspond to twice

the length of the sail (resp. keel) phase in figure 2a.
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ST1 Numerical solution by direct collocation

Numerical procedure

Our numerical model for figures 4 to 7 is based on the eom of equation (3) with w(z) =
w

0

1+exp�z/� . We formally rewrite the eom ẋ = f(x,u). The question that we want answered

is the following: For a given glider (cD,0, fmax

) and a given shear layer thickness �, what
is the minimum wind speed inhomogeneity parameter w

0

that has feasible trajectories,
periodic in the state x? More specifically, for the traveling trajectories (right-hand side
of figure 4 and figure 6), the boundary conditions are V (T ) = V (0), (T ) =  (0), �(T ) =
�(0), z(T ) = z(0). For the circular trajectories (left-hand side of figure 4, we imposed the
boundary conditions V (T ) = V (0), (T ) =  (0) + 2⇡, �(T ) = �(0), z(T ) = z(0), x(T ) =
x(0). Note that the x-constraint in the latter set of boundary conditions is not strictly
required. Without it the upper half cycle tends to peak at a higher altitude, with very
small airspeed and very large cL. The x-constraint maintains cL to realistic values while
conserving the main features of the unconstrained trajectories.

The question is cast into a finite dimensional optimization problem by direct colloca-
tion. First, time over one period T is discretized into time steps [0, n

1

T, n
2

T, . . . , nN�1

T, T ]
with 0 < n

1

< · · · < nN�1

< 1. The spacing need not be uniform. We use the short-
hand xi=̂x(niT ),ui = u(niT ). Following e.g. [24, 37], the continuous-time constraints

x(niT ) =
R niT

ni�1

T f(x(t),u(t))dt are approximated by

umi =
1

2
(ui + ui�1

)

xmi =
1

2
(xi + xi�1

)� 1

8
(f(xi,ui)� f(xi�1

,ui�1

))(ni � ni�1

)T

0 = Ci = xi�1

+
1

6
(f(xi,ui) + 4f(xmi ,umi) + f(xi�1

,ui�1

)) (ni � ni�1

)T

1g b@mit.edu
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For the traveling problem, the previous discretization leads to the following nonlinear
program (NLP):

minimize
x

0

,...,xN ,u
0

,...,uN ,w
0

,T
w

0

subject to Ci = 0, i = 1, . . . , N

(VN , N , �N , zN) = (V
0

, 
0

, �
0

, z
0

)

and z
0

= 0

Vi, cL,i > 0

� ⇡ <  i < ⇡, �⇡/2 < �i < ⇡/2

(13)

A solution to the NLP is a feasible trajectory that locally minimizes the wind required
for flight. Note that the last three relations are purely technical and the inequalities
constraints were not active upon solution convergence.

Similarly, the circular problem is cast into

minimize
x

0

,...,xN ,u
0

,...,uN ,w
0

,T
w

0

subject to Ci = 0, i = 1, . . . , N

(VN , N , �N , zN , xN) = (V
0

, 
0

+ 2⇡, �
0

, z
0

, x
0

)

and z
0

= 0

Vi, cL,i > 0

� 3⇡ <  i < 3⇡, �⇡/2 < �i < ⇡/2

(14)

The problem was then solved for various (cD,0, fmax

, �) with a nonlinear solver e.g.
SNOPT. We typically used N = 140 time steps, leading to O(1000) variables and con-
straints. Our Python implementation converged in O(1�10) minutes on a 2013 Macbook
Pro. We used more time steps than in similar studies. The main reason for this choice is
that for small � the transition through the shear layer is of short duration, and resolving
it requires a high level or granularity. To reach very small values of � and validate the
convergence of our numerical model to our analytic model, we leveraged on the possibility
to utilize non-uniform time spacing: we started by solving problems with large � and sub-
sequently addressed smaller � by adaptively refining the time spacing near the transition
in order to maintain a su�cient resolution.

Results

The raw results for the cases illustrated in figure 4 are collected in figures S2–S4 and S5–
S7 and their characteristics are displayed in figures 6 and 7. For case with � = 1/64 and
1/2048, the control points are non-uniformly spaced and are denser near the transition
z = 0. For both the circular and traveling cases, � = 1/64 and 1/2048 are qualitatively
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Figure S1: Analysis of the albatross’ trajectory. (a) Recording of an albatross
travelling across a low wind [22]. (b) Albatross heading along the trajectory. In (c)
the statistical analysis of the flight shows that the albatross’ median turns is 54� (mean
50�). In this particular recording, the albatross virtually never turns more than 90�. (d)
Curvilinear length of the individual turns.

similar. The boundary thickness for the albatross is closest to case � = 1/64. For
the traveling cases � = 1/64 and 1/2048, the sub-periodicity discussed in section 3.2 is
visible—a qualitative di↵erence from � = 2. In contrast, all circular cases are qualitatively
similar to each other across the range of �’s.

Figures S8–S11 show the minimum-wind trajectories in a wind field of the formW (z) =

W
0

⇣
2 + 1

1+exp�z/�

⌘
. In those cases, the aerodynamic quantities are unchanged, but the

overall trajectory is convected at an additional speed 2W
0

. This models instances where
the glider may access a boundary layer where the wind is only partially slowed down, as
is the case in practice.

ST2 GPS data analysis

Sachs et al. recordings

The data for figures 2 and 6 were extracted from the bitmap figure 9A of [22] (reproduced
in figure S1a). For each pixel in the East direction, the centre of the trajectory line
was determined by an average operation. The result was filtered with the filtfilt
filter from scipy.signal. The (ground) heading angle was then calculated (figure S1b).
Figure S1c,d reports the distribution of the turns in the recording.
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Yonehara et al. recordings

Yohehara et al. [23] contain latitude–longitude time histories of wandering albatrosses
(Diomedea exulans). The tracks are sampled at 1 Hz and for the tracks of interest in
the present study (albatrosses 1 and 4), the recording is about 48h long, with periods of
flight, foraging, and rest on water.

The latitude–longitude data is first converted to distances by projection with Python’s
Basemap cylindrical equidistant projection centred at (47� East, 43� South). The trajec-
tory is then interpolated at 5 Hz with a cubic spline using Python’s interp1d. Each
point is attributed a heading angle by centred finite di↵erence of the positions at 5 Hz. A
search for local extrema is performed on the unwrapped heading angle. Because the cubic
spline introduces some oscillation in the trajectory in some places, if local maxima and
minima follow each other by less than 2.5 s, they are merged together and replaced by
a single point of average heading. This technique was chosen over linear interpolation or
filtering as both reduce peaks in heading angles and would underestimate the amplitude
of turns. The obtained time history of local minima and maxima of heading angle were
used to obtain the sequence of turn amplitudes.

The data points when the groundspeed was outside the 5–50 m/s range were removed,
as they tend to represent either phases where the albatross is resting on water, or unrealis-
tic GPS recordings. We also set aside the turns of amplitude greater than 360� which are
concentrated within periods of active foraging (they account for about 1% of the turns).

For albatross #4, a further step was taken. We started with the long westward flight of
Albatross #4 (approximately 650 km on March 18, 2007 from 6:02AM to 4:37PM). Along
the travel sequence, there are a few instances where the albatross seemed to be foraging
(not making progress for significant stretches of time), or when the GPS recording was
spotty (unrealistic and sporadic jumps in the data). For this reason, we removed 5 time
intervals, varying in duration from 2 to 47 min, for a total of 1h47. The resulting tracks
are shown in figure 3.

Empirical Analysis

The sample standard deviation is 21� and 32� for Sachs’ albatross and Yonehara’s albatross
#4, respectively. With 40 and 3,680 samples respectively, within the approximation of
the central limit theorem, the standard deviation of the sample mean pdf is 3.3 and 0.5�,
respectively.

Our numerical model predicts a typical turn angle of 80�. Compared to the half-turn
description (null hypothesis), the log-likelihood ratio based on the t-test pdf is 102 for
Sachs’ albatross (p < 10�23) and 4 · 104 for Yonehara’s albatross #4 (p < 10�300). In view
of the data from albatross #4, the prediction of our numerical model is 108700 times more
likely than the half-turn’s.
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ST3 Comparison with log-based numerical approaches

In figures 6 and 7, we compare our models with existing numerical literature in a log
profiles. [33] was chosen because it is the first full trajectory optimization in a log field
(precisely, a power law) in our knowledge. It is also used as a validation case in [25].
[24] compares 3 DoF, 6 DoF, and panel-based aircraft models and is a the most complete
study, in our knowledge, of the sensitivity of the minimum-wind trajectory in a log profile,
therefore constituting a reference for assessing relative significance of mismatches and
sensitivities.

Both references consider the minimum-wind trajectory in a log (or power law) wind
profile, and set a minimum authorized minimum altitude (or wing-tip clearance from the
water). In order to compare with our own model and extract an equivalent shear layer,
we measured on in both cases the thickness �

80%

such that

W (z
min

+�
80%

)�W (z
min

)

W (20m)�W (z
min

)
= 80%

and converted that value back into the non-dimensional shear layer parameter �. Overall,
the quantities used for comparison are collected in Table S1.

While both studies attempt to model a glider over a similar hypothetical shear layer
above the ocean surface, they lead to a somewhat di↵erent shear layer parameter � because
the wing-loadings considered are di↵erent. Overall, despite model di↵erences (for instance,
our model does not enforce a maximum lift coe�cient), the results all agree well with each
other. In particular, the sensitivity of the minimum-wind trajectory with respect to the
wind parameterization, whether logarithmic, or modelled with a logistic function, is small,
validating our approach.

Finally, as also mentioned in the article, the natural frame of reference in which to
analyse the minimum-wind problem is the frame convected with the average wind (for
instance approximately w(z = 0) in our model, or (W (z

min

)+W (z
max

))/2 in a log profile).
There, the problem’s symmetry is maximized and the trajectory is simplified. Within their
respective models, [24, 33] underline the fact that because the glider is forbidden to reach
the no-wind region which is confined to the very surface, only 25–35% of the range of
wind may in fact be accessed. In our model, this could modelled by considering the wind
profile

W (z) = W
0

✓
n+

1

1 + exp�z/�

◆

where n ⇡ 2 � 3 is some multiplicative factor reflecting that the wind speed in the
lower layer is non-zero. Equivalently, this amounts to considering that the trajectory is
convected downstream at an additional rate nW

0

. The trajectories in this configuration
are represented in figures S8–S11. Note that the trajectory in S8 is extremely similar
to that in [33], for a similar shear layer thickness. Likewise, the trajectory in figure S11
(and previous figures) is similar to that of the albatross in figure 2, suggesting again the
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probable ability of the albatross to reach the slow and separated regions behind waves.
Statistical analysis of the albatross’ height during dynamic soaring would help validate
and/or refine this hypothesis.

ST4 Complements on the thin shear layer regime an-
alytic model

In the thin shear layer limit, let  
0

and v
0

be the air-relative heading and speeds at
altitude z = 0 i.e. centred in the middle of the shear layer. Define  ̄ = ( + +  �)/2,
v̄ = (v+ + v�)/2 and �v = v+ � v�. Assume periodic (energy neutral) conditions. If f
and cL are kept constant, the evolution of airspeed during glide in equation (5) can be
rewritten as Z v�

v
+

s

1� 1

c2Lv
4

dv

v
= � 1

f

Z  �
n+1

 +

n

d . (15)

Integrate the left-hand side with the third order accurate midpoint approximation at v̄.
Integrate the right-hand side and recall that due to the antisymmetry of the equations,
the turn amplitude of the glide phase is 2 ̄. This gives

s

1� 1

c2Lv̄
4

�v

v̄
+O(�v3) =

2

f
 ̄. (16)

The relations of transition for the heading are:

tan + = tan 
0

+
w

0

2v
0

cos 
0

tan � = tan 
0

� w
0

2v
0

cos 
0

.
(17)

The relations of transition for the airspeed are

v+ = v
0

s

1 +
w

0

v
0

sin 
0

+

✓
w

0

2v
0

◆
2

v� = v
0

s

1� w
0

v
0

sin 
0

+

✓
w

0

2v
0

◆
2

.

(18)
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The following Taylor expansions follow:

 ̄ =  
0

+O

 ✓
w

0

v
0

cos 
0

◆
2

!
(19a)

v̄ = v
0

(
1 +O

 ✓
w

0

v
0

◆
2

!)
(19b)

�v
transition

= w
0

sin 
0

+O

✓
w3

0

v2
0

◆
. (19c)

Below we assume that v
0

, 
0

are fixed, and express the residuals in terms of w
0

. The
residual in equation (16) can now be transformed with equation (19c) to �v = O(w

0

),
and the quantities  ̄ and v̄ can be replaced with  

0

and v
0

at the price of a O(w2

0

) error.
The equation of glide becomes

↵
0

�v

v
0

=
2

f
 
0

+O(w2

0

)

with ↵
0

=
q

1� 1

c2Lv
4

0

. This is equation (7) where the approximation is exhibited. Com-

bining it with the equation of transition (19c), the balance between airspeed gains and
losses is

↵
0

w
0

sin 
0

v
0

=
2

f
 
0

+O(w2

0

)

which is similar to equation (9). Note that for any triplet (v
0

, w
0

, 
0

) such that equa-
tion (15) is integrable, and  ̄ is not strictly 0, the equation has a solution if f can be
chosen arbitrarily.

For any given fixed  
0

, v
0

, now decrease w
0

(equivalently, increase f). The residual in
w2

0

is dominated and the equation converges to

v
0

↵
0

=
sin 

0

 
0

f

2
w

0

(20)

i.e. equation (9).
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Sachs 1993 [33] Flanzer 2012 [24]
Vc (m/s) 14.9 8.2⇣
c3/2L /cD

⌘

max

24.2 19.4

W ⇤ (m/s) 3.8 3.2± 0.1
� (non-dim.) 0.075± 0.05 0.18± 0.01
�

80%

(m) 10 7.3
z
max

� z
min

(m) 19.2 11.5
V
max

(m/s) 21.5± 0.5 16± 1
t⇤ (s) 7.2 5.5± 0.5

Table S1: Minimum-wind trajectory in a logarithmic wind as reported by [24,
33]. (z

max

� z
min

) represents the distance between the maximum and minimum alti-
tudes reached by the glider over one cycle. Note that also the physical boundary layer
thickness is comparable in both studies, because of a smaller wing loading, upon non-
dimensionalisation is appear thicker in [24].
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Figure S2: Solution to the Rayleigh problem for f
max

= 20, cL,f
max

= 0.5, � = �/2.
w

0

= 0.52.
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Figure S3: Solution to the Rayleigh problem for f
max

= 20, cL,f
max

= 0.5, � = �/64.
w

0

= 0.24.
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Figure S4: Solution to the Rayleigh problem for f
max

= 20, cL,f
max

= 0.5, � = �/2048.
w

0

= 0.21.
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Figure S5: Solution to the Rayleigh problem for f
max

= 20, cL,f
max

= 0.5, � = �/2.
w

0

= 0.55.
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Figure S6: Solution to the Rayleigh problem for f
max

= 20, cL,f
max

= 0.5, � = �/64,
w

0

= 0.308.

13



Figure S7: Solution to the Rayleigh problem for f
max

= 20, cL,f
max

= 0.5, � = �/2048,
w

0

= 0.301.
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Figure S8: Solution to the Rayleigh problem for f
max

= 20, cL,f
max

= 0.5, � = �/8, in a

wind W (z) = W
0

⇣
2 + 1

1+exp�z/�

⌘
. The constant term in the wind definition, while having

no e↵ect on air-relative quantities, illustrates how the trajectory is overall convected
downwind if the slow layer has a non-zero velocity.
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Figure S9: Solution to the Rayleigh problem for f
max

= 20, cL,f
max

= 0.5, � = �/16, in

a wind W (z) = W
0

⇣
2 + 1

1+exp�z/�

⌘
. The constant term in the wind definition, while hav-

ing no e↵ect on air-relative quantities, illustrates how the trajectory is overall convected
downwind if the slow layer has a non-zero velocity.
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Figure S10: Solution to the Rayleigh problem for f
max

= 20, cL,f
max

= 0.5, � =

�/32, in a wind W (z) = W
0

⇣
2 + 1

1+exp�z/�

⌘
. The constant term in the wind definition,

while having no e↵ect on air-relative quantities, illustrates how the trajectory is overall
convected downwind if the slow layer has a non-zero velocity.
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Figure S11: Solution to the Rayleigh problem for f
max

= 20, cL,f
max

= 0.5, � =

�/64, in a wind W (z) = W
0

⇣
2 + 1

1+exp�z/�

⌘
. The constant term in the wind definition,

while having no e↵ect on air-relative quantities, illustrates how the trajectory is overall
convected downwind if the slow layer has a non-zero velocity.
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