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Abstract 

Precision medicine initiatives come amid the rapid growth in quantity and variety of biomedical 

data, which exceeds the capacity of matrix oriented data representations and many current analy-

sis algorithms. Tensor factorizations extend the matrix view to multiple modalities and support 

dimensionality reduction methods that identify latent groups of data for meaningful summariza-

tion of both features and instances. In this opinion article, we analyze the modest literature on 

applying tensor factorization to various biomedical fields including genotyping and phenotyping. 

Based on the cited work including work of our own, we suggest that tensor applications could 

serve as an effective tool to enable frequent updating of medical knowledge based on the contin-

ually growing scientific and clinical evidence. We encourage extensive experimental studies to 

tackle challenges including design choice of factorizations, integrating temporality, and algo-

rithm scalability.   

  



Introduction 

The collection of electronic medical data, while growing rapidly, poses technical challenges due 

to large volume, uncertainty from noise and missing data, and the fact that it draws from multiple 

modalities including clinical and genomic profiles, medication prescriptions, and environmental 

exposures. Precision medicine aims to harness information from all modalities, develop a com-

prehensive view of a patient’s pathophysiologic progression, and administer personalized thera-

pies. Existing efforts are often based on only a few biomarkers and their generalization demands 

new computational solutions, particularly to address the growing volume, uncertainty and num-

ber of modalities of data. 

Tensor factorization has emerged as a promising solution for the computational challenges of 

precision medicine. A tensor is a multidimensional array where each modality spans one dimen-

sion (mode of a tensor). Figure 1 shows the tensor for modeling interactions among patients, bi-

omarkers and interventions. Various factorization schemes have been proposed to decompose a 

tensor into factor matrices, which not only reduces dimensionality but also helps discover latent 

groups in each modality and identify group-wise interactions (see [1] for a general review). Typ-

ical matrix factorization approaches concatenate multiple data modalities into a single second 

dimension of the matrix, thus disallowing explicit representation of interactions among these 

modalities. In contrast to matrix factorization [2], different tensor factorizations can also inte-

grate additional domain-specific prior knowledge to constrain the tensor structure. Figure 1 

shows a visualization of two types of factorization: Tucker [3] and CANDECOMP/PARAFAC 

(CP) [4].  

Tensor Factorization in Biomedical Informatics 

Applying tensor factorization to biomedical informatics has gained traction over the past decade. 

Earlier applications focused on DNA microarray or sequencing data. Tucker and/or CP factoriza-

tions have been frequently applied to subjects including: functionally related gene sets regarding 

protein/gene locus links (LL) and responses to stimulants [5], bacteria sub-lineage structure 

characterized by multiple types (modalities) of biomarkers [6], mouse brain genetic organiza-

tions across 3D anatomical voxel positions [7], and relations between genes and transcription 

factors extracted from the scientific literature [8]. To account for uncertainty, multiple authors 



proposed probabilistic Tucker and/or CP factorizations to incorporate priors on tensor structural 

parameters. Those priors can specify dependence between exposure to environmental chemicals 

and SNP level differences [9], or probability of gene sequence conditioned on the composing 

nucleotides and chromosomal positions [10,11].  

As an alternative to Tucker or CP factorizations, another vein of work viewed tensor factoriza-

tion as a series of matrix factorizations with shared structural constraints, and termed their mod-

els Generalized Singular Value Decomposition (GSVD) or Higher-Order SVD (HOSVD). Some 

authors performed comparative analysis using “organism × gene × experimental condition” ten-

sors [12–14], or “nucleotide × sequence position × organism” tensors [15]; others studied the ef-

fect and regulation of targeted pathways [16,17] and further predicted treatment responses 

[18,19]. When two of the tensor modalities are symmetric, eigenvalue decomposition replaces 

SVD, as seen in gene network functional grouping using binary/weighted “network × gene × 

gene” tensors [20,21]. However, it is difficult to extend GSVD/HOSVD to probabilistic versions 

in order to account for uncertainty. 

In other biomedical fields, CP and Tucker factorizations have been used to localize and extract 

artifacts from EEG data to analyze epileptic seizures [22–24], where tensor modes include time 

points, electrodes of the multi-channel EEG, and subjects (see [25] for a brief review). Probabil-

istic CP was shown to improve EEG classification accuracy when missing data is present [26]. In 

image analysis, HOSVD was applied to factorize a “patient × voxel × fMRI mode” tensor and to 

classify cognitive normal or declining status [27]. Wang et al. [28] demonstrated the potential of 

using tensor modeling to generalize sparse logistic regression to multiple modalities on fMRI 

data. In EHR phenotyping, CP has been adapted to enforce sparsity constraints [29], to explicitly 

account for interactions among groups of the same modality [30], and to incorporate medical 

knowledge via customized regularization terms [31], all with the goal of extracting clinically 

meaningful groups of patients. Both Tucker and CP seem to have broader adoptions than 

GSVD/HOSVD in non-genomic biomedical fields, perhaps due to the relative ease of imposing 

probabilistic and other regularizations. Although CP produces summation of rank-1 sub-tensors 

(Figure 1) and leads to simplified interpretation, Tucker provides a more flexible and sometimes 

more realistic factorization by allowing varying number of groups in different modalities. Select-

ing a type of factorization is largely a design choice dependent on both data and outcome, and 

deserves extensive experimental studies and characterizations.  



Towards Precision Medicine – Discussion and Future Work 

The advent of precision medicine initiatives, coupled with the welcome growth of new modes of 

data, suggests that medical knowledge needs continuous update.  The current revision process, 

often involving meta-analysis of multiple studies and agreement of consensus groups, has diffi-

culty in keeping up with the pace of change. An interesting alternative is to allow data-driven 

processes to suggest nimble and timely updates. Toward this goal, Luo et al. [32,33] aimed to 

automatically identify from pathology reports a panel of test results that are diagnostic of lym-

phoma subtypes. Compared to a conventional “patient × word” matrix, they composed a “patient 

× test result × word” tensor and used non-negative Tucker factorization to identify diagnostic 

panels of test results. One can use such panels to suggest amendment to diagnostic guidelines in 

a format understandable to clinicians. However, extending tensor factorization to enable frequent 

updating in other fields such as genomics and biomedical signal processing remains an open 

question.  

Another big challenge concerns how to properly model temporality within tensor factorization. 

Most existing work treats time points as independent, thus losing significant information 

[16,17,22–24]. Although we can add temporal locality constraints as an additional regularizer, 

this imposes new computational complexity and still lacks constraints on temporal ordering. In-

tegrating stochastic processes into tensor factorization represents a theoretically appealing ap-

proach towards modeling temporality, but related work with biomedical applications is still in its 

infancy (e.g., [26]). Specifically, it remains a major challenge to select appropriate stochastic 

processes based on consistency with biologic knowledge instead of mathematical convenience, 

yet still maintain efficient inference procedures. Tensor factorization also needs to address data 

sparsity and algorithm scalability, which are more broadly recognized challenges in general do-

mains. Only successfully answering all these challenges can lead to breakthroughs in supporting 

personalized medicine by properly drawing evidence with uncertainty from multi-modal, longi-

tudinal, and constantly evolving medical big data and the medical knowledge base. 



Key Points 

Precision medicine demands new computational solutions generalizing from limited number of 

biomarkers to address the growing volume, uncertainty and number of modalities of electronic 

medical data. 

Tensor factorizations can easily integrate multiple data modalities, reduce dimensionality and 

identify latent groups in each mode for meaningful summarization of both features and instances 

in medical data. 

Tensor factorizations demonstrated successes in genotyping and phenotyping applications, and 

showed promises in enabling frequent updating of medical knowledge out of continuously grow-

ing scientific and clinical evidences. 

Challenges including design choices of factorization schemes, integrating temporality, address-

ing data sparsity and algorithm scalability pose exciting research opportunities to bioinformatics 

community, towards fully harnessing tensor factorization in the emerging horizon of precision 

medicine. 
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Figure Legends 

 

Figure 1 Tensor modeling and factorization schemes. The data tensor 𝒳 models the interactions 

among modes including patient, biomarker, and medical intervention. The Tucker factorization 

(above, [3]) decomposes 𝒳 into three factor matrices specifying groups in each mode and a core 

tensor 𝒢 specifying levels of interaction between the groups from different modes. In general, 

number of groups in each mode is less than the dimensionality of that mode and the core tensor 𝒢 

can be thought of as a compression of 𝒳. The CANDECOMP/PARAFAC (CP) factorization 

(below, [4]) decomposes 𝒳 as a weighted sum of rank-1 sub-tensors, each of which is the outer-

product (𝑆, 𝑆𝑖𝑗𝑘 = 𝛼𝑖𝛽𝑗𝛾𝑘) of a patient factor vector (𝛼), an intervention factor vector (𝛽) and a 

biomarker factor vector (𝛾 ). The weights 𝜆𝑟 , 𝑟 = 1…𝑅  indicate relative importance of sub-

tensors. Compared to Tucker, the structural hypothesis of CP requires the same number of 

groups for each mode.  
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