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ABSTRACT

This thesis is concerned with bounded input - bounded output stability of
feedback control systems. The problem is treated in the framework of
the spectral theoxy of linear operators on Banach spaces. It is shown
that the determination of stability is equivalent to the calculation of the
spectrum of the open loop operator, Several well-known sufficient con-
ditions for stability follow directly from this result and spectral estimates
for the operators involved. The general theorem is applied to obtain
new results concerning the establishment of stability results by positive
operator arguments., In particular, it is shown that systems which are
stable for all positive feedback gains may be characterized by the fact
that the open loop operator may be factored as the square of an operator
which is similar to a positive operator. Necessary and sufficient sta-
bility conditions are derived for multiple input - multiple output time
invariant systems, and for discrete systems with a periodic feedback
gain, These criteria involve the locus of the eigenvalues of a certain
matrix of functions, Dy applying eigenvalue estimation results a number
of sufficient conditions for either stability or instability are obtained.
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I. INTRODUC_TION

A. GENERALITIES

There are two basic approaches to the problem of the stability of
feedback control systems. One is to employ a differential (or difference)
equation description of the system and to use the ideas of Lyapunov to

7.8 The second approach is to employ a so-called

establish stability,
input-output description of the system. This leads to the consideration
of integral equations in place of the corresponding differential equations
and ideas having their roots in functional analysis are used to establish
stability of the system. This second point of view is the one taken in

this thesis.

The systematic application of functional analysis to feedback system
stability seems to have begun with the work of G. Zames’ and L w.
Sandberg, 15 and since the appearance of their work considerable re-
search has been done in ihis direction. Treating feedback system sta-
bility by means of functional analysis requires care in the area of the
definitions of the systems to be considered. The definitions employed
in this thesis are strongly motivated by the work of Zames, although the
emphasis is- somewhat different in several respects,

The main concept required is that of separating the problem of exist-
ence of "solutions' of the system equations from the problem of stability.
The key is that the "solution' of an unstable system will not in general
belong to the Banach space being used for stability analysis. Hence it
is impossible to require a Priori that "solutions" of the system equations

lie in the Banach space chosen for the stability analysis,
-1-
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In the work of Zames (and others) this problem is circumvented:
by the introduction of so-called "extended spaces'’. The corresponding
device in this treatment is the definition of the concept of a ""regular
system' in Chapter II, Here the concept of input-'output stability is de-
fined only for '"regular systems', with the result that the basic theorem
of Chapter II, to the effect that the stability problem is equivalent to an
operator spectrum calculation, follows readily from the definitions,

This one result is the focal point of the thesis; it serves to identify
the basic mathematical problem of feedback system stability. It provides
a theoretical framework from which to attack concrete problems, as well

as it generates results of a more abstract nature,

B, ORGANIZATION

The second Chapter of this thesis is devoted to results of a general
nature, After some preliminary definitions the basic theorem mentioned
above is proved, giving necessary and sufficient conditions for the sta-
bility of a certain class of feedback systems. This theorem immediately
leads to a class of sufficient conditions for stability through the idea of
a spectral estimate. These conditions have been previously obtained by
Zames, essentially through the technique of manipulating the sytem
equations with the use of the "triangle' and Cauchy-Schwartz inequalities.,

The theorem is also applied to derive original results of an abstract
nature. One o-f these is » "converse theorem' related to the establish-
ment of stability conditions by positive operator arguments, and another

is an abstract generalization of a theorem characterizing feedback systems



-3-
which are stable for all positive constant feedback gains., The original
form of this result is due to Brockett and Willems, >8 and a slightly more
general case is treated in Zames and Freedman, 56

The third chapter considers the stability of linear time invariant
systems, i.e. systems described by convolution equations, Such systems
are of great practical interest, and have been extensively studied. >1
Here results are derived from the main theorem of Chapter II by applying
some results on the spectrum of convolution operators due to Gokhberg

11,33 The stability of such a system is determined essen-

and Krein,
tially by the locus of the eigenvalues of a certain matrix of functions.

By applying an eigenvalue estimation result for matrices due to Bauer

and Ficke, 39 sufficient conditions for stability or instability may be ob-
tained, This condition generalizes one due to Rosenbrock, 40 and is use-
ful in connection with the problems; of Chapter IV,

The general topic of the fourth chapter is the stability of linear dis-
crete time systems with a periodically time va.ryiﬁg feedback gain, Such
systems are used to illustrate the application of the results and ideas of
the previous two chapters, It turns out that it is possible to actually carry
out a spectral calculation for the operators which arise in this context,
so that the main theorem of Chapter II may be applied to obtain necessary
and sufficient stability conditions. These conditions are related to those
obtained by use of discrete Fourier series techniques for the special
case where the latter are applicable.

Matrix eigenvalue estimation results are applied to obtain a suffi-
cient condition for the validity of the "frozen time N;yqpist condition',

and a result which turns cut to be 2 discrete-time versicn of one
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- previously obtained by Willemséf4 for the continuous time case. Finally,
a necessary and sufficient condition for the positivity of an operator which

is the composition of a discrete convolution and a periodic gain is ob-

tained.

C. NOTATION AND DEFINITIONS

Free use of certain basic notions of functional analysis is made,
and most of the standard manipulations (e.g., that a convolution with
an Ll kernel defines a bounded operator in certain Banach spaces) which
are readily available in standard references have been omitted, While
a few definitions of concepts of functional analysis are included for the
sake of continuity of reading, no attempt to include a short course on

functional analysic is made,

Upper case script letters (e.g‘.,X ,‘y , 8, etc.) are used to
denote Banach spaces, and lower case letters denote elements of such
a Banach space. Operators are denoted by capital letters. (e.gey A,
K, etc). Finite dimensional vectors and matrices are indicated with
a single underling and double underline respectively.

An attempt has been made to make all the notations and definitions
of terms not explicitly defined in the text coincide with those of Reference

l.



1I. THEORETICAL-ASPECTS

A. INTRODUCTION

In this chapter a theoretical framework for the problem of input-
output stability for a class of feedback systems is presented. The con-
sideration of feedback systems from an input-output point of view leads
naturally to the use of functional analysis for the solution of the stability
problem. By suitably defining the class of systems to be considered,
it is possible tc.> obtain a complete theoretical solution to the problem,
in the sense of obtaining a necessary and sufficient condition for sta-
bility. This condition involves the spectrum of a certain operator, and
as may be expected, it is difficult to verify in most concrete casecs of
interest. This difficulty leads to the search for more easily verified
conditions which are only éufficient to guarantee stability (or instability).
For this purpose the general resulf is valuable, as it provides a unifying
point of view for the generation of such sufficient conditions in the form
of spectral estimates.

The results of this chapter are of an abstract character; their appli-

cation to concrete problems will be given in later chapters.

B. PHYSICAL MOTIVATION
This chapter considers the stability of a certain class of linear feed-
back systems governed by the functional equations
y = Ge, e=u-Ky ' (2.1)
The physical interpretation of system (2. ;) is that the original input

to a system G has been replaced by a linear combination of a2 new input

-5-
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u and the result of passing the output y -through a system K. (See Fig. 1).
Such configurations arise naturally in the context of regulation schemecs
(Ref. 3), and differential equations may be rcadily given such an inter-
pretation. (Ref. 4). The intuitive notion of stability which is sought is
that the total system (1.1) should behave in a non-explosive manner;

small inputs u should generate small respenses e and y throughout

the loop.

C. BASIC DEFINITIONS

There are two basic approaches to the problem of feedback system
stability. One is based on an internal or 'state variable'' description
of the systems involved and a Lyapunov method approach to stability. 7
The second is to consider a system strictly from an input-output point
of view, to consider a system as a mapping of a class of inputs into a
(possibly different) class of outputs. It is this second point of view that
is taken here.

If is first necessary to select classes of admissable inputs and out-
puts for the systems considered. From an input-output point of view
the stability properties of a feedback system are determined by the
"'size' of its response to the application of an input from the admissable
class. The concept of applying an input to a closed loop system may be
considered as implicitly defining an origin of time after which the input
is applied. This consideration, together with the necessity of measuring
the '"'size'' of responses in some sense, requires the use of Banach

spaces defined on a half-axis in time as input and output classes.



Fig. 1 A Feedback System
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Notation: Denote by T+ either of the sets R+ (non-negative real num-
bers) or z* (non-negative integers), and byx (T+), the class of admis-
sable inputs, any Banach space of functions defined on T+ . The norm
onx (T+) will be denoted by ” "X . Similarly, the class of admis-

sable outputs will be denoted by y (T+), and the corresponding norm

by I lly

Typical examples of such Banach spaces are the usual Lp (0, o)
spaces, or C+.(O, ®), the space of continuous functions on [0, 0] for
which the limit as t— o0 exists, equipped with the sup. norm,

Before formally defining a concept of stability, it is necessary to
restrict the class of systems to be considered. These restrictions are
motivated by the consideration of formulating the stability problem in
a manner that is both physically reasonable and mathematically tract-
able. It is assumed that the elementary systems from which the feed-
back systems are constructed are reprcsented as linear operators from
the space of admissable inputs 3( (T+) to the space of admissable out-
puts y (T+). From the norm structure on the input-output spaces, the

space of linear operators inherits a natural norm structure.

Definition 2. l:ﬁ (j{, ?/) is the space of bounded linear operators from

Z to ? , that is, the class of all those operators G for which

lal A ”s:;ilx _, {Ilcxllg}{ o (2.2)

As is well known, the space ﬂ (X,y) forms a Banach Algebra

using the usual operator composition as product and the obvious defini-

tions for addition and scalar multiplication. A central problem in the
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theory of bounded linear operators is that of the existence of inverses

in the algebra.

Definition 2.2: The spectrum of a bounded linear operator A: y —*X

is the set of all complex scalars M such that the operator (AI-A) does
not have a bounded inverse onx . The spectrum of A is denoted by

o (A).

o (A) is a non-empty compact subs;et of the complex plane.l

If A € o (A), then one of three things must happen: Ref. 2, p. 54.

1. \ is an eigenvalue, i.e., there exists an element X, GX such
that (XI-A)xO = 0.

2. X is "almost' an eigenvalue, i.e., there exists a sequence

{x_}

o 0{11 in 9 such that =, "x =1, while lim [[(\I-A)x_ Hx =0

n= n-+oo

3. The range of (AI-A) is not dense in y

While there is considerable literature on the classification and pro-
perties of operator spectra, the above facts are sufficient background
for what follows.

One of the assumptions made below essentially concerns the finite
time interval behavior of the class of feedback systems considered here.

The following formalism is useful in formulating the assumptions.

Definition 2.3: Define the truncation operator P. : )( (T+)—>XT(T+)
by the condition A

P_ x(t) = {x(t) 0<t< T (2.3)

0 t>'r.
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For notational convenience P, x is denoted by X1, and the subspace
p.X (T+) by X-r . XT for each fixed T may be easily interpreted as
a Banach space under the natural norm it inherits from X (T+), provided

that P_ is closed, as will usually be the case.

Definition 2.4: The functional equation {(I+KG)e = u} is said to define

a regular linear fecedback system (relative to the input space)( (T+)

and output spacey (T'+)) if the following two conditions are satisfied:
1. G defines a bounded linear operator from Y (T+) toy (T+)
and K defined a bounded linear operator from y (T+) to j( (T+);
> : fae . :
2. For each T> 0 and each T-truncated input up € j(T the

equation

0<t<T (2.4)

(I+KQG) er = up ; 02t<

has a unique solution e € X T

That it is necessary that both G and K separately define bounded
linear operators, and not just that their composition have such an inter-
pretation, may be seen from simple examples using convolution oper-
ators with transfer function pole-zero cancellation. Also the assump-
tion of the boundedness of the operators is not as restrictive in practice

as it may at first seem. A common case is that where G represents a

‘system described by a system of linear time invariant differential equa-

tions of the form

Xx=Ax+t+tbe; y=c'x (2.5)

>

If the matrix A has eigenvalues in the closure-of the right half plane,

then two problems occur. First, when the differential equation is turned
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into an integral equation in order to obtain an input-output description of
the system, the kernel of the integral eqﬁation will contain non-decreasing
exponential terms. This means that the integral operator will not be
bounded on any of the usual spaces X (T+). At the same time, the initial
condition res‘ponse may also contain growing exponential terms, and so
cannot be lumped in with the closed-loop system inputs. One way to avoid
both problems is to rewrite the differential equation in the form

k=Ax+(A-A)x+he (2.6)
where és is a stable matrix, and to consider the term (__Aﬁ - és)ﬁ as
an additional feedback.

The second assumption about a regular system is essentially that
the finite time version of the loop equations has a unique solution. The
fact that is is necessary to somehow separate the problem of the exis-
tence of solutions from the stability problem seems first to be recog-
nized in the work of Zames, ? who introduced so called "extended spaces'
for this purpose. This aséumption is usually not very troublesome in
practice. For instance ifj(('l"") is a space of continuous functions,
and KG represents a cascade of non-anticipative linear filters, then the

equation

(I+KG)eT=u.1. , 0<t<T (2.7)

is just a Volterra integral equation of the second kind. However systems
which involve feedthroughs are potentially more troublesome in this
regard, and may cause problems in the area of 'well-posedness" of the

stability problem as well. >9
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The concept of bounded input — bounded output stability will be defined

below only for regular fcedback systems. Part of the reason for this is
that the resulting thcory is mathematically tractable, The remainder,
however, is based on the physically motivated idea that a system which
is not regular according to the above definition is not suitably character-
ized by the concept of input-output stability. For example, a systern for
which finite time solutions do not exist‘for all truncation times exhibits
a finite escape time of some sort. (One could go so far as to define the
supremum of the truncation times for which a unique solution exists as
an escape time.) Such a system should be considered so unstable as to

be outside the scope of the following definition.

Definition 2.5: The rcgular feedback system described by the functional

equation {(I + KG)e = u} is said to be bounded input — bounded output
stable in the y(T+) sense, if there exists a constant M such that

e lle < ™M lully (2. 8)
for all possible inputs u 6}( (T+). If no such M exists, then the system

is called unstable.

D. STABILITY OF REGULAR SYSTEMS

Theorem 2.1: The regular linear feedback system described by the

functional equation {(I + KG)e = u} is bounded input — bounded output
stable in thex (T+) sense if and only if the point -1 does not belong to

the spectrum of the bounded linear operator KG acting on% (T+).

Proof: The sufficiency portion of the theorem'is stréight-forward. For

if -1 does not belong to the spectrum of KG, then by Definition 1.2,
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-1 . . ‘ . +
(I+ KG) * exists as a bounded linear operator mappmgx (T ) onto
itself. From the functional equation
(I+KG)e=nu (2.9)
one immediately obtains
e = (1+KG) u (2.10)

and since the inverse is bounded onj( (T+)

lelly = la+xartaly, < lul, 2.11)

To show the nccessity of the condition assume that -1 € ¢ (KG).
By the remarks following Definition 1.2, this implies that either the
range of (I + KG) is not dense or that there exists a sequence inj(,
0o = —_
{en}1 » ey Iy =1, suchthat [+ KG)e [l —~ 0.

In the second case choose a sequence of inputs {un}oo defined by
1

(I+KG)en =u (2.12)
Then by the above ” u ”’X — 0, while the return difference e has norm
equal to unity for all n. Hence there exists no M such that
lelpe < Mluly YueX(rh.

If -1 belongs to the spectrum, but no such sequence exists, then
the range of- (I + KG) is not dense i.nj(. This means that we may select
an input u insc (T+) but not in the closure of the range of (I + KG).

For such a u, generate a sequence of inputs {un.}cO defined by u = up o,
n

where {Tn} 1s a sequence of truncation times increasing monotonically
1

without bound. By the assumption that the system is regular, this sequence

o :
Tn} 1 . Since

of inputs generates a sequence of finite time solutions {e



-14-

the range of (I + KG) is not dense, this séquence cannot converge to an

element ofX (T+) ,. and hence

lleTn ll,x - o (2.13)

which establishes the theorem.

It is necessary to emphasize the point that the Banach space 5( (T+)
is defined on a half-axis in time, and that the spectrum of the operator
KG must be computed relative to its action on the space j( (T+). The
crucial difference that this makes may be seen from the examples of
the convolution operators treated in Chapter III.

The concept of applying an input to a feedback system implicitly
establishes an origin of time; stability or instability is determined by
the behavior of the closed loop system response in the time interval
following the application of an input. This makes appropriate the con-
sideration of Banach spaces defined on a half-axis in time as a natural
setting for the input-output stability problem.

In the present formulation, the notion of causality of operators plays
an implicit role, in that it is intimately connected with the second
requirement for a regular feedback system, the condition that the finite
time loop equations have a unique solution. For if the responses in the
time interval [0, T) were to depend on the inputs for times greater than
T, then there obviously can be no unique solution to the finite time trun-
cated loop equa.tions. By making explicit use of the concept of causality,
it is possible to state stability conditions in terms of spaces defined on

the whole time axis.
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The main usefulness of Theorem 2. 1 is self evident: it provides a
necessary and sufficient condition for input-output stability. Another |
benefit is that the spectrum of the opecrator KG may turn out to be the
same relative to a number of different half-axis Banach spaces. In such
a case a singvle spectral calculation yields input-output stability for a
wide class of inputs. This is illustrated by the convolution operators in
Chapter III.

As may be expected, any necessary and sufficient condition for
stability will in general be difficult to verify. Essentially the only classes
of operators for which there are relatively complete spectral theories
are the so-called compact operators, and classes of commuting normal
operators. Typical of compact operators are integral operators with
square integrable kernel acting on LZ(O, 1). The compactness property
(and hence the available general results) disappear in the case of a semi-

11,12, 35 Scalar convolution operators arise in

infinite time interval.
practice from the consideration of constant coefficient linear differential
equations, and such operators are in fact normalon LZ(O,oo). In a com-
mon case of interest, where the operator K represents multiplication
by a time varying gain, K and G do not commute unless K is a constant.
Hence the general results are again of little use.

Perhaps the most useful way to view Theorem 2.1 is as an identifi-
cation of the mathematical problem involved, rather than as the soluticn.
The problem of spectral calculations for various classes of operators is

an active area of research in mathematical analysis, and any result

obtained in this area has a potential interpretation as a feedback stability
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result, Examples of this type are given for convolution equations in
Chapter III, and for a class of discrete systems with periodic feedback
gain in Chapter IV,

While explicit spectral calculations are rather rare, it is possible
to obtain estimates of the spectra of operators. As may be seen from
Theorem 2.1, any condition sufficient to guarantee that the point -1
does not belong to the spectrum of KG is a sufficient condition for the
stability of the feedback system. Similarly, a condition that guarantees
that -1 belongs to the spectrum of KG is a sufficient condition for the
instability of the corresponding feedback system. Thus Theorem 2.1
provides a rational means of generating sufficient stability (instability)

conditions through spectral estimates.

E. STANDARD LOOP MANIPULATIONS

The process of generating a spectral estimate generally involves
establishing an inequality of some sort. To get the maximum use out of
such inequalities, it is useful to establish classes of feedback systems
whose stability properties are equivalent. This will allow one to con-
clude the stability of one system on the basis of a spectral estimate for

an equivalent system.

Theorem 2.2: Let the operators K and G of the regular feedback system
{(I + KG)e = u} map the spaceX(T+) into X(T+). (That is, the input

space is the same as the output space.) Then the system {(I + KG)e1 = ul}

is bounded input — bounded output stable in the D( (T+) sense if and only

if the system {(I + GK) e, = uz} is also stable.
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Proof: If K and G belong to? (X,j() .a_nd (I + KG) is invertible,
then it may be dircctly verified that the expression
I-G(I+ Kc.)'1 K
is an inverse for the operator (I + GK). By symmetry, -l¢ o(KG) if

and only if -1 € ¢(GK). The conclusion now follows from Theorem 2.1.
The following is closely related to the above, and finds application
in stability conditions of the positive operator type.

Theorem 2.3: Let M1 and M2 be invertible bounded lincar operators

[+ .
mappingx (T+) ontoX (T+) and y (T+) onto y (T+) respectively.

Then the regular feedback system {(I + KG)el = ul} is bounded input —

bounded output stable in theX(T+) sense if and only if the system

-1 1

1KM

{1+M 5

M, G Ml)e2 = uz} is also stable.
Proof: The spectrum is invariant under similarity transformations.

A common transformation which arises in the theory of functions of
a complex variable is the bilinear or homographic transformation defined
by

az +b
VA m Ref. 13, 14

This class of transformations occurs naturally in the theory of feedback
systems when equivalent systems are constructed by the device of adding

a pair of self-cancelling feedback paths inside the original feedback loop.

See Fig. 2.

Definition 2. 6: Two feedback systems S, : {a+ K Gyle, =u;} and

S, : {(aI+ K,G,)e, = uz} are said to be bilinearly related by parameter

set (a,b, c,d) if the following conditions are satisfied:
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Fig. 2 Standard Loop Manipulation

L I
I C
(a) ' | (b)

Fig. 3 Equivalent Systems
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1. K, = (@K, -cI)(aI-bKl)-l

2

n

-

2. Gy = (aG +bI)(cG +d1)1 (2.14)

2
3. d(ad-bc)#4 0
Two bilinearly reclated fecdback systems Sl and S2 are called bilinearly

equivalent if S1 is stable if S2 is stable.

Theorem 2.4: Two bilinearly rclated feedback systems are bilinearly

equivalent provided that (al - bKl) and (c G1 + dI) both have bounded

inverses.

Proof: Let S; be given by

(I+K1G1)el =) (2.15)

then
(I+cG1+(I<1 -cI)Gl)e1=u1 (2.16)

Let
el' = (I-I-cGl)e1 (2.17)

Then if (I + cGl)-l exists as a bounded operator, the stability of S2
defined by
-1 1 =

{(I+(K1 -t::I)G1 (I+cG1) )e1 = ul} (2.18)
imply that of the original system Sl' The above proof covers the para-
meter set (1,0,c,1). The general case is handled by a sequence of the
same manipulations, requiring only more algebra to keep track of the
parameters.
F. THE SPECTRAL RADIUS

From the previous section it is clear that there exist a large number

of linear feedback systems whose stability properties are equivalent. In
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view of the large number of rearrangements, factorizations, etc., which
are possible, it is convenient at this time to drop the distinction between
the operators K and G, and to describe a feedback system by the equa-
tion

(I+L)e=u (2.19)
where the operator L is called the loop transfer operator. (See Fig. 3

for interpretations.)
As discussed above, a natural way to generate conditions sufficient

for the stability of a feedback system is to derive bounds on the location

of the spectrum of the loop transfer operator, L.

Definition 2.7: For each L€ ﬁ (X,X), define the spectral radius

v(L)= sup l)\, .
€ o(L)

The following relation between v(L) and ” L ” is well known.

Theorem 2.5: The spectral radius of a bounded linear operator from

X to X satisfies

v(L) < L]
Proof: Write \I - A = (I - A/\) (n # 0). Since ”ﬁ:\:” - ,A;\I <1

ool
i
for l)\l > ”A ” , the expression Z % converges in the uniform
i=0

norm topology to the inverse of (I - %). Hence for l)\l > ”A " , A can-

not be in the sp;ectrum of A, so V(A)< ”A " .

From Theorem 2.1, a feedback system is stable if -1 does not belong

to the spectrum of the loop transfer operator. Combining this with the

7/

above estimate gives the following thecorem, due originally to Zames.
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Theorem 2. 6: (Smail Gain Thecorem) A ‘sufficient condition that the

| regular fecedback system described by the functional equation {(I+L)c = u}

be bounded input — bounded output stable in thcj\/ (T+) sense is that:

T = ”S;P'fx . | Lx ”9< <1 (2.20)

Proof: Since [[L][<1, v(L)< 1 by Theorem 2.5. Hence -1 ¢ ¢(L),

and stability follows from Theorem 2. 1.

The intuitive basis of the 'small gain' result may be secn from
Fig. 3b. If the operator L is in some sense small, then the output e
is very nearly equal to the input u. The result shows that any L with
norm less than unity is "small cnough'' to give stability.

It is relatively unusual for a feedback system to arisc naturally with
a loop transfer opcrator L which satisfics the small gain thcorem con-
dition. However, it is possible to modify the original system using the
standard manipulaticns of the previous section and to obtain a system to
which the small gain theorem is applicable.

Another use of the small gain theorem is to establish results which
might be considered in the nature of a perturbation estimate. Supposc
it is known that the system S : {(I+ L)e = u} is stable, while the system
to be investigated has the form SA {(I+L+A)e= u}. Since S is stable,
the stability of SA is equivalent to that of SL : {I+A (I+L)_l)e‘ = u}.

The small gain theorem guarantces stability of SL if -

la syt < fa) fa+n)? <1 (2.21)

t

so that SA is stable il the perturbation A is small cnough. Note that

- . s - - - . . .. - Y se. “l-r.-r\"]-“
the allowable size ot A 1s 1nversely proportional to the quaniily |f(I+1j =,
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which may be considered as a measure of sensitivity of the closed loop

system S.

Example: (The Circle Theorem)
The above results may be used to prove a version of the so-called

Circle Theorem, originally due to Sandberg15 and Zames. 9 The system

considered is given by
t
e(t) + k(t) f g(t-s) e(s) ds = u(t) 0<t<oo (1.22)
0

y(T+) is taken as LZ(O,oo), and it will be assumed that g(-) € L1 (0, 0),
while the measurable function k(-) satisfies ,k(t)l < p. Clearly the
operator K : x(t)—k(t)x(t) defines a bounded linear operator on LZ(O’ ),
and K| = 8.

Let the operator G be defined by

t
G: x(t)— f glt-s) x(s)ds , x() e L,(0,00)
0

Then as is well known, G also defines a bounded linear operator. Defining
the transfer function of G as

A . |
' ﬂ(m): f a(t)e” ¥t gt (2.22)

0 -~

it may be seen by using the fact that the Fourier transform of a convolution
is the product of the Fourier transforms of the two functions, together

3 with Plancherel's Theorem that N
gl = sup L@(m)l ' (2.23)

w€R :
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Combining the two estimates, the small gain theorem establishes

stability provided that
sup L&(m)l < — (2.24)

weR
The geometrm interpretation of the condition (1.24) is that the locus
of points {/g(lw) , w € R}, known as the Nyquist locus, lies inside a
circle in the complex planc of radius 1/p.
The case where the time varying gain satisfies 0< o Sk(t)<p
instead of the symmetric constraint is handled by making a standard
transformation of the type of Theorem 2.4 in order to make the interval

B-a

symmetric. Th1s change replaces the k(t) constramt with lk (t) | < 5

and replaces/g (iw) \Vlth/g (iw)/ (1 + —“—i—p—/@ (iw)). The geometric

interpretation on the Nyquist locus of/g then becomes that it neither
),

|~

encircle nor intersect a disc in the complex plane of radius r = %(

P I R § ;
and center c--2(0+‘3). Sce Fig. 4.

a

The small gain theorem is, as seen above, a consequence of a sim-
ple bound on the spectral radius. The implicit use of the spectral radius
result to provide a means to solve an integral equation is not a recent
development. 16 In fact, the well-known method of successive approxi-
mations (the Neumann series) is closely related to the convergence of a
"candidate' for the inverse of the operator (A I - A) in the form of a
geometric series. ‘

In fact, an’y method for obtaining a solution to an équation in a Banach
space §f the form

WI-A)f=g | C(2.29)

has a possible interpretation as a feedback stability result. Any condition
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E Fig. 4 The Circle Criterion

Fig. 5 A Network Interpretation
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on ) and the operator A that guarantecs a unique solution f of the equa-
tion (1.25) for any "forcing term" g, effectively generates an inverse
for (\I-A). Hence )\ ¢ ¢(A) whencver such a method converges.

A whole class of methods which may be interpreted as genecralizing
the method of successive approximations is given in the monograph by
Luchka. 17 In principle, onc should be able to derive various sufficient
conditions for the stability of feedback systems with theée methods. As
a practical matter, however, it seems to be difficult to derive conditions
which (like the Circle Theorem) involve characteristics of the system

operators which are relatively easy to compute.

G. HILBERT SPACE INPUTS

The additional structure of an inner product obtained by specializing
the Banach space 3( (T+) of the previous sections to a Hilbert space
(notation:# (T+)) proves useful in the derivation of stability results.
This brings in the ideas of power, energy, and passivity which have their
roots in the analysis of electrical network systems, 18 and leads to a
possible interpretation of a feedback system from a network point of view.
(See References 9, 19 and Fig. 5.) In this interpretation the operator
G of Fig. 1 represents an impedance, K an admittance, and the input u
appears as a current source driving the parallel combination of the two.

A large number of stability results have been obtained from this
interpretation in recent y‘ears;zo"24 the intuitive motivation is the idea
that the interconnection of two systems which dissipate energy should be
stable.

In what follows # (T+) will be a Hilbert space defined on a half-axis

s . +
In time, and the standard inner product between two elements x, y €#(T )
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will be denoted by <x,y>. The usual methagd of cstablishing stability by
passivily arguments is to write down the system equation and to then
manipulate inner products using various inequalities. Here a derivation
is given directly on the basis of Theorem 2.1, so that the passivity

argument appears as simply another mecthod of estimating the spectrum,

Definition 2.8: For a bounded linear operator A': # (T+) —’# (T+)

define the numerical range W(A)= { [ A = <Ax, x> for some ”x ” =1}.

W(A) is a bounded, not necessarily closed, and convex subset of the

complex planes.

Definition 2.9: A is said to be positive (strictly positive) if Re W(A)> 0

(Re W(A)> e > 0).

In the mathemalical literature such operators are called accretive;
the term positive is reserved for self-adjoint operators. However, the
term positive is standard in the control literature and that usage is

followed here.
Examples: 1. Consider the convolution operator G defined on LZ(O,oo)

by
t

G: x(t)— fg(t-s)x(s)ds , where g(+) € Ll(O,oo)
0

Then the Plancherel Theorem gives

0 2

, . 2
<Gx,x> = -2—17? f/g (iw) ‘x(iw)’ dw (2.26)
-00

where ?c(ico) is the Fourier-Plancherel transform of x € L2 (0, @) and

(iw) is the transfer function corresponding to the L1 function g(-).
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Clearly, positivity of thci operator G is eqﬁ.ivalcnt to the condition
Reﬂ (iw) > 0 (a.c.), weR (2.27)
2. Similarly in the case of a discrete convolution acting on g; and

defincd by

where the scquence {gi}00 €4y the condition becomes
0

A A
Re/J(ele) >0 (or Re/g(ele) 2 € >0, for strict positivity)(a.e.)-1<g <
A (2.28)

Whereﬁ (*) is the pulse transfer function (z - transform) of the sequence

{gi}oo defined by
0
A (e0)
/& (z) = Z g 2 (2.29)
i 0

which converges absolutely, lz f > 1.
3. Th‘e "time varying gain" operator defined by
K : x(t)—=k(t) x(t) (a.e.)
where k(:) is a measurable and essentially bounded function, is positive
(strictly positive) if and only if

Re (k(t))> 0 (Rek(t)>€ >0) (a.e.) (2.30)

The following well known result explains the connection between the

spectrum of a bounded linear operator and its numerical range.

—

Theorem 2.7: Let A :#(T+) *#(T-{.). Then ¢(A)C W(A)

Proof: Sec Refercnce 26 or 27.
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The following gencralization of the above is due to Williams. 2

Here the sct W(B)/W(A) is interpreted as the sct of all possible quo-

tients b/a, with b ¢ W(B), a€ W(A).

Theorem 2,8 (Williams) : Let A and B be bounded linear operators

on %l (T+) . Then if 0 ¢ W(A), the spectrum of the operator A—IB
satisfies

o(a7'B) © WI(B)/WA) (2.31)
Proof: If 0 ¢ W(A), then by Theorem 2.7, A is invertible. Hencec the
identity

hI-A7'B) = A" pa-E) (2.32)
shows that € o(A™!B) if and only if 0 € o(\A-B). Using Theorem 2.7

again

0e WLA-B) C A W(A) - W(B)

from which

|

=

(B)
(A)

A C

|

=

The basic idea in establishing stability by positivity arguments is
to use the standard manipulations of Section E above to obtain an equiv-
alent system in which the loop transfer operator may be factored as the

product of two positive operators, one of which is strictly positive.

Theorem 2.9: Suppose that the rcgular feedback system Slz {(I-i~KG)e1 :ul}

is such that it is equivalent to a second system S2 : {(I+L)e2 = uz} )

where L has the property:

L= Pl-l P2 , where P1 is strictly positive; and P2 is positive. Then

the system S1 is bounded input — bounded output stable in the# (T+) sense.
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Proof: Since L = PIIP2 and P1 is strictly positive, Theorem 2.8

implies
W(P,)
2

o(L) & —
W(P,)

W(PZ) is contained in the closed right half plane, and W(Pl) is contained
in the open right half plane, so that the above set of quotients does not
contain any part of the negative real axis. Specifically, it does not con-

tain the point -1, so S2 is stable. By the hypothesis of equivalence, so
is S1 .
H. FUNCTIONS OF OPERATORS

A problem which has been avoided so far is that of the spectra of
the individual factors which occur in the loop transfer operator after ore
of the standard loop manipulations. This is one aspect of the general
problem of the definition and properties of functions of an operator. In
the case where the operator is a finite dimensional matrix, the problem
may be resolved directly. (See Ref. 28, for example.) For more gen-
eral operators the problem of the class of functions to be admitted, and
of a suitable definition of a function of an operator is not so simple. The
whole theory is sometimes referred to as an "Operational Calculus",
and a feature of its various occurrences is a tendency to widen the class
of admissable mapping functions at the cost of restrictions on the class
of operators to be mapped. A version suitable for the present purposes

is given in Ref. 1, p. 568, and the basic facts are reproduced here for

convenience. Throughout T is a bounded lincar operator on a Banach

space)( .
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Definition 1.10: The complement of ¢(7T) is called the resolvent set for

»

T, denoted by p(T).

Since o(T) is closed, p(T) is open.

Lemma: For » € p(T), define R() : T) = (A I- T)-1 , called the resolvent

of T. Then the resolvent is a (vector valued) analytic function of T.

Definition 1.11: Denotc by jf (T) the class of (scalar valued) functions

analytic on some neighborhood of ofT). Let fe€ j (T) and let U be an
open sct whose boundary B consists of a finite set of rectifiable Jordan
curves, positively oriented. Suppose UD ¢(T), and that U B is

contained in the domain of analyticity of f. Then £(T) is defined as

(1) = 5 [ €0 ROGT) (2.33)
B

From Cauchy's integral thcorem the above is well defined, and turns
out to have all the expected properties. The result needed below is the

following, known as the spectral mapping theovrem.

Theorem 2.10 (Spectral Mapping Theorem):

It fc 3 (T), then o(£ (T) = f(o(T) (2.34)

In words, the spectrum of the function f(T) of the operator T is the

image under the function f of the points belonging to the spectrum of T.

I. A POSITIVE OPERATOR CONVERSE THEOREM

There exists a vast literature on the general topic of stability the-
orems for ordinary differential equations derived by the so-called second
method of Lyapunov. (See for example Refs. 7,8, 16, and 31.) Certainly

a comforting fact to anyone engaged in the pursuit of Lyapunov functions
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is the existence of a thecorem to the effect that for a stable differential
equation therc exists a suitable Lyapunov function which establishes its
stability. The problem, of course, is to be sufficiently clever to find
onc. As mentioned above, recently there has been a large amount of
work donc in the area of establishing stability by positive opcrator argu-
ments. Roughly the situation is that cvery newly discovered positive
opcrator yields a new sufficient condition for stability.

A natural question to occur is now whether or not anything analogous
to the Lyapunov theory case occurs, that is, whether the positive oper-
ator methlods are sufficient to prove the stability of a system which is
actually stable. It turns out that this is true, and that it may be proved
by use of the spectral mapping theorem ir corbination with a recent
result duc to Williams. The suggestion for the method of the proof

s o : 1
stems from a positive opcrator derivation of the Circle Theorem. |7

Example: (Circle Theorem re-examined)

As previously mentioned in connection with Theorem 2,4, bilinear
transformations occur naturally in the context of feedback systems.
They occur through manipulations of the loop which may be interprcted
as the addition of self-cancelling additional loops within the original
system, (Fig. 2). The distinguishing feature of bilinear transformations
from the point of view of complex variables is that they map circles into
circles (with the usual interpretation of a straight line as a limiting case).

Consider a system described by

t
e(t)+k(t)f g(t-s)e(s)ds = u(t) t>0 (a.e.) (2.35)
0
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under the assumptions that 0 < a+e < k(t) <P -¢, and the Ll(O, 00)
functions g(+) is such that thﬂ circle theorecm conditions are satisficd,
i.e., the Nyquist locus of/g/ the Fouricr transform of the function
g(+), ncither encircles nor interseccts the critical disc in the complex

plane having the intcrval [- -:I y - Bl-] as diamcter.

It is easily seen that the bilinear transformation z — -EZ Ii has the

property that it maps the exterior of the critical disc onto the right half
plane.

The next crucial step is to note that a bilinear tranformation with
parameter set (3,1, a,1) (cf. Definition 2, 6) results in an equivalent
system. This is true because PI-K is invertible by virtue of the bound
k(t)<B+e . I+aG is invertible by the Nyquist criterion (Chapter III),

In the equivalent (by virtue of Theorem 2.5) system K2 is again a
multiplication by a time varying gain,

_ Kit)-a
kot = Bk

(2.36)

which is strictly positive by virtue of the bounds on k(t). G2 is an ele-
ment of the convolution algebra I @ L1 , and its Fourier transform

(frequency domain) representation is simply
A

A
ﬁz(m) - J3_)9__(M.t_l_ (2.37)
a,é (iw) +1

By virtue of the fact that the circle criterion conditions are satisfied,
the above quantity has a positive real part for all real w, and so G, is

a positive operator.

Hence stability is concluded from Theorem 2,9,
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It will be shown in Chapter III, that the 'spectrum of a convolution

opcrator (acting on a half-axis) consists of the image of the right half
planc under the Laplace transform of the convolution kernel. Thus the
expression (2.37) above is essentially an example of the spectral mapping
theorem in the particular case where the mapping function is a simple
rational function. Another useful fact about scalar convolutions is that
such operators arc of the normal type. Normal operators have t.he-.
property (among others) that the numerical range is the convex hull of
the spectrum; hence the fact tﬁé.t the spectrum of the opcrator G, above
lies in the right half plane is sufficient to insgre its positivity. That

this is not in general the case may be secen from the two dimensional

_matrix:
. '7\ a
A= (2.38)
= 0
for which
W) = (o lz-al < 1 la]) (2.39)

Clearly for ,a ’ sufficiently large compared to ,Re A f , the numerical
range intersects the left half plane although Re ) > 0.

The following result is true, however. Here H' denotes the right

half plane.

Theorem 2.11: (Williams) Let A be a bounded linear operator on a

Hilbert space# such that ¢(A) C H'. Then the following two conditions

hold:

1. There exists a self-adjoint, positive operator P such that

w@ap) < gt
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2. There exists an invertible operator S such that

“wslas) ¢ gt

In other words, if the spectrum of an operator lies in the right half of
the complex plane, then it may be made positive either by postmultipli-
cation by a suitable positive and self-adjoint P, or by a similarity trans-

formation by a suitable invertible operator S.

e

Proof: Scece Ref. 32.

Theorem 2.12: (Converse Positive Operator Theorem)

Suppose that the regular system S1 : {(I-!-Ll)e1 = ul} is bounded input-—
bounded output stable in theﬂ (T+) sense. Then there exists an equiv-
~alent system (in fact a bilinearly equivalent system) S2 : {(I+L2) e, = uz}

with the property that
L, =P P! (2.40)

with Pl and P2 each positive.

Proof: Since S1 is stable, from Theorem 2.1 it follows that -1¢ o-(Ll).
Since the resolvent set is open, there exists a disc of radius p > 0 about
-1 which does not intersect cr(Ll). Choose any € satisfying 0<e<p.

The bilinear transformation T

- - (-1+¢€)
z : (-1-¢)

maps the exterior of the region [z +1 f < € onto the right half plane,

and since the point (-1 -€) belongs to the resolvent set of L, the system

S, ¢ {L+(Ly - (-1+e)D)(L, -(-1-6)1)“1)62 = uy)
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is bilinearly equivalent to S1 . Let
L, = (L - (-1+6)D) (L - (-1 -€)))" (2.41)

By the spectral mapping theorem and the mapping properties of T, g(LZ)
is a closed subset of the open right half plane. By Theorem 2.11 there

exists a positive invertible P such that L,P is positive. Hence
L, = (L,P)pP"!
2 2

is the required factorization of L, into thc product of two strictly posi-
tive operators.

Remarks: It is interesting fo give a 'block diagram' interpretation to

the above result. The process of constructing equivalent systems through
the use of bilinear transformations has an interpretation in terms of
factoring certain operators out of the loop. If the original system is

written in the form

(I(l—'ﬁ') + Ll +I(1+€) +Ll)e = 2u (2‘42)

then the block diagram interpretation of Figure 6 appears. The bounded
operator B is just (I(l +€)-{-Ll)-1 , and the system S2 in which the loop
transfer operatdr may be factored appears as the only feedback loop
imbedded in the overall system.

As may be easily seen, the proof follows the same idea as the exam-
ple immediately preceding the theorem. A loop transformation is made
to put the spccfrum of the forward loop operator of the new equivalent
system in the right half plane, and at the same time to preserve the
positivity of the feedback operator. In the cas.e of Theorem 2.13 the
fecdback operator is just the identity, and the transformation T has been

chosen to leave it invariant.
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It is quite easy to interpret Theorem 2.13 in the case that the orig-

inal system is of the form

t
el(t) + kf g(t—s)el(s) ds = ul(s) ,» t>0 (2.43)
0 .
with g(-) € Ll(O,oo) . Taking Laplace transforms leads to the relation

(1+ k/ff(s))'e‘l(s)? a,(s) (2.44)

The Laplace transform representation for S2 becomes

A
(1-6)+k/g(8) A A
1+ €,(s) = u,(s) (2.45)
1+e)+ kG (s) | 2 2

Letting

A
) A
U-¢)+ kY (s) A e (2..46)

(1+e) + kg (s)
it follows that since the Nyquist criterion is satisfied for a stable system
of the form (1.43), the transfer functionﬂ"2 is a positive real function.
Hence L, already represents a positive operator, and in this instance

the operator P of Theorem 2. 13 need not be introduced.

J. SYSTEMS STABLE FOR ALL POSITIVE FEEDBACK GAINS

In this section a characterization of systems which are stable for
all positive constant feedback gains is given. Consider a regular system
of the form Sk : {(I+kL)e = u}, where k is a positive constant. Since
the spectrum of L is compact, it follows that Sk is stable for all suffi-
ciently small \:'alues of k. If one considers the stability of the class of
systems Sk » it is typically found that for some sufficiently large value

of k, an instability may develop.
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For some classes of systems, howevcf, such an instability cannot
occur.. For instance, if L is such thal it may be factored as a product
of two positive operators, then the addition of a positive constant multi-
plicr to one of the factors does not disturb the positivity, and so Theo-
rem 2,10 continues to guaranfee stability irrespective of the magnitude
of k.

In the case where L corresponds to a scalar convolution operator,
then somecthing like a converse is true. Brockelt and Willems have
shown in the rational transform case that, for any €¢> 0, L+¢I may be
factored into a product of two positive operators. Freedman and Zamcs
have extended this result to the case of transfer functions which are not

necessarily rational functions.

The result below may be interpreted as a generalization of the above.

Theorem 2.13: Suppose that the regular system Sk: {(I+kL)e = u} is

. A - )
bounded input — bounded output stable in the /9'/ (T-{) sense for each fixed
k in the range 0 < k <o . Then for any € > 0, therc exists an invertible

operator S such that S-I(L+€I)S = Pz, with P strictly positive.

Proof: By Theorem 2.1, the condition that Sk be stable for all 0< k< o
is equivalent to the statement that ¢(L) does not meet the negative real
axis;, with the possible exception of the point {0}. Hence for any ¢ > 0,
the operator
(L + €I)
has a spectrum which does not meet (-0, 0].
The function f(z) = zl/2 is analytic in the z-plane cut along the nega-

1/2 -1, .
tive real axis: hence z '~ belongs to the class J7 (L + €l).
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1/2 is well defined, and by the spectral

The operator (L + €1I)
mapping theorem has its spectrum in the (open) right half plane. By
Theorem 2. 12, there exists an invertible bounded linear operator S
such that |

P=stL+en!/2s (2.47)
is positive. Since ‘

2

PP = sHL+ens

the theorem is proved.

Remarks: The 2X2 matrix example preceding Theorem 2. 12 strongly
suggests that it is necessary to introduce the similarity transformation
S in order even to extend the original scalar result to the case of matrix
convolution operators. That the similarity S may be needed is further
indicated by the fact that the hypothesis of the theorem is invariant under
similarity transformations of the loop transfer operator. The reason
that the similarity is not needed in the case of a scalar convolution is
again the fact that scalar convolutions are normal operators. In that
case, the fact that the spectrum lies in the right half plane is sufficient

to give positivity.



III, TIME-INVARIANT SYSTEMS

A. INTRODUGTION

In this chapter a treatment is given of feedback systems which
may be described by the vector equations

¢
elt) +K f G (t-s)e(s)ds = y(t), £>0 (3.1)

(in the case of a continuous time variable) or by
n-
+K Z G(n-jlgli) = uln) n20 (3.2)

(in the case of discrete time),
Following conventional notation, the convolution integal of (3.1) and
the convolution sum of (3,2) will be denoted by an asterisk, so that the

system equations take the form
elr)+K (G* e)(r) = u(v), >0, (3.3)

where T may take integer values corresponding to (3.2) are the continu~
dus values corresponding to (3. 1).

Such systems arise naturally from the consideration of ordinary
differential equations with constant coefficients, A dynamical system

~

governed by the vector differential equation
é = Ax + Qe,; (3.4)
with "input" e and "output" y = Cx can by use of the '"variation of

constants' formula be put in the form of an input-output relation

-40-
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B ' t A (t-o)
y(t) = f Ce Be(r)do (3.5)
0

(assuming zero initial conditions), Similarly, a system governed by a

vector difference equation of the form
x(kt1l) = A x(k) + B e (k) (3.6)

with "output" y(k) = C x(k) may be described from an input-output point

of view by

y(n) = c A™IB e(j) (3.7)
j=0

(agéin assuming zero initial conditions),
If in (3. 4) one considers the input e to consist of the sum of a
linear combination of the outputs. -Ky and a new input u, then it is easy

to seec that the vector e satisfies the integral equation

F Alts) ¢
e(t) + K f c e Be(s)ds = u(t) - K¢ X, (3.8)
: 0 .

>

where X, is the initial condition for the differential equation (3.4), In
order for (3.8) to fall into the class of systems to which the theory of
Chapter II is applicable, it is necessary that the integral operator in (3, 8)
be bounded on some input space X(T"'), For the usual LP(O, ™) spaces,
etc,, this rquires that the eigenvalues of the matrix é satisfy

Re A, (é){_o; This condition also means that the initial condition response

At .
Kce X, will belong to the space X(T+) for most spaces of practical

interest, and hence may be lumped with the input u.
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The above remarks apply equally well to the case of the diffefenée
equation (3.7) in which case the restriction on the matrix A becomes
RWIVIESH
As mentioned in Section II-C, it is simple to manipulate equations

of the types (3.4) and (3,6) into an equivalent form so that these condi-

tions are satisfied:

Notation: It turns out that the stability properties of the feedback systems
(3.1) and (3,2) are the same relative to a number of possible input spaces
X(T+). For this reason it is convenient to let E' stand for anyone of

the following continuous time spaces:

a. LP(O, ™), for < p<

b, MC(O, ), the continuous Lw(O o) functions
c. Mu(O, o), the uniformly continuous Lm(O, @) functions
d. C(0, o), cortinuous functions for which a limit as

t — o exists

c. C (0, ), the subspace of C(0, ) for which the limit is
zero,

By E;: is meant the space of n-vector functions, each component of
which belongs to E+.
In the case of a discrete time parameter, let £'+ stand for any

one of the following:

a, lp+' for _'1_<_ PL
b, C+, : the convergent sequences on zt
c.C. sequences convergent to zero on Z7,

Analogously, 5n+ denotes the space of n-vector sequences, each

component of which belongs toé +.
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~-B. REGULARITY OF STATIONARY SYSTEMS -
In order to apply the theory of Chapter II, it is necessary to deter-

mine a class of regular systems defined by (3.1) and (3.2). The first

problem is that of the boundedness of the operators,

Lemma 3.1a: Let G(+) be an nxn matrix of functions belonging to

L1 (0, ). Then the operator G defined by

t
G: x(t) — fg(t-s)_:_:_(s)ds, t >0,
0

+

is a bounded linear operator En+ - En .

Lemma 3,1b: Let {Q____.}(i)}(lJO be a sequence of nxn matrices, each ele-

ment of which belongs to 11+' Then the operator G defined by

n-1
G: xl) —~ ) Gl-ilx) n=0,1,..
y=0

is a bounded linear operator E‘: -»5:.

Proofs: The above are standard results; [ 11] has a sketch of the proof,

together with further references.

The next problem is to verify that the loop equations have a unique
finite time solution, As mentioned in Chapter II, this follows from the

fact that the equations involved are of the Voltera type.

Lemma 3.2a: Let G(*) be an nxn matrix of functions belonging to

L1(0, ). Then for each finite T >0, the equation
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~

t
ex® + [ Glt-sleq(s)ds = up(th 0<t<T (3.10)
0

. . + .
has a unique solution &r e(En)T corresponding to each upe€ (E:)T’

Proof: In the case of Lp(n) (0, T), 1< P £ o, the result follows from
Ringrose [ 34]. (Strictly speaking 34 covers the case n=1; however
the present case follows by replacing absolute values with the appropriate
vector and matrix norms throughout 34), The case of continuous func-
tions follows from the L = case, and the fact that the integral operator
defining the inverse is of the same type as the original, i.e. it maps

continuous functions into continuous ones,

Lemma 3,2b: Let {G(i)_}l‘Jo be a sequence of matrices, each element

of which belongs to 1'{. Then for each finite T>0 the equation

n-1
exlol + ) Glndlep(i) = uln), 0<n<T (3.11)
=0

has a unique solution ey € (6:)1- for each Uy € (8:)1‘-

Proof: This is trivial, since the equation (3. 4) defines the sequence

{eT} g‘ recursively,

C. THE NYQUIST CONDITION

Since Section B above shows that equations (3. 1) and (3. 2) define
regular systems in each of the spaces E:; (or é : as appropriate),
Theorem 2,1 may be applied to give necessary and sufficient conditions

for stability,
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" Definition 3,1: For each matrix of Ll (0, ©) functions; define the -

transfer function matrix

(e 0]
Gls) = f G(t) e”tdt, Res>0 (3.12)
0

Similarly, for each sequence of matrices {gl}ooo, each element

of which belongs to 1'; » define the pulse transfer function matrix

Qo .
G = ) gwel, 22, | (3.13)
i=0

The problem of spectrum calculations for convolution equations
on a half-axis is a highly non-trivial one. Itbhas been solved only com-
paratively recently, and its complete solution hinges on certain nations
from the theory of gencralized Fredholm operators. (&- operators in the
Russian literature) 11,36,37,. For the sake of keeping the proof of
Theorem 3,1 below to a reasonable length, it is nece.;:sary to introduce

the following definitions,

Definition 3,2[36] : A closed linear operator A is called a generalized

Fredholm operator if the following conditions are satisfied:

a. a,, the dimension of the null space, is finite
b. pA, the codimension of the range, is finite

c. the equation Ax = y is solvable if and only if y is orthagonal
to the null space of the adjoint of A, '

The integer k = Gy - pA is called the index of A,
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‘Theorem 3,1 a: Let g(') be a matrix of Ll(O, o) functions, Then the

feedback system

t :

e) + B [ Glsielsddas = u(, 20 (31)
0

is bounded input - bounded output stable in the E: sense if and only if

the following two conditions are satisfied:

1. det (_;+I__§__C_}(iw))9é0 ~o<w<om _
w (3.14)
f dw arg (det (;-fg C=}(iw))) =0

-Q0

2.k = &
Proof: By Lemmas 3,1 and 3,2 the equation 3,1 defines a regular feed-
back system relative to each E:, and so the system is stable if and only
if -1 ¢ 0 (KG) on E:.

If the first condition is violated, then the operator I+KG is not
even invertible on the banach space En obtained by extening E: to the
corresponding class of functions defined on the whole real axis, and hence
cannot be invertible on E: [ 33}, |

If condition 1 is satisfied, then Gokhberg and Krein show that
I+KG is a generalized Fredholm operator on E:. Further I+KG has
a bounded inverse on E: if and only if each of the numbers Qa0 ﬁA are
zero, '

In Ref, 33,, the integers e, and B, are found by the process of
spectral factorization.of a matrix of functions, Howevér, in the present
case this is not required, since a, is identically zero, This follows

from the observation that an element of the null space of I+KG would

-
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generate a solution to the homogeneous equation

ey * K(G *eq) = @, 02£<2T, | (3.15)

contradicting the regularity of the system,
It is further shown that the integer k in condition 2 is actually
the index of the generalized Fredholm operator I+KG. Since a, is

zero, ﬁA is zero if and only if k = 0, Hence I4KG is invertible on

E' if and only if k=0,

Theorem 3,1b: Let {G(i)};n be a sequence of matrices each element

of which belongs to 1-{ . Then the feedback system
n-1
e +K ) Glaileli) = uln), n20, (3.2)
. §=0

is bounded input - bounded output stable in the 8: sense if and only if
the following two conditions are satisfied:
1odet [+K G(e?) # 0, -v<o<q
w ) (3.16)
2.k = d argldetL+EG(e)) = 0
2w 0 ===
-

Proof: The proof is exactly parallel to that of Theorem 3.1 a, merely

exchanging the boundary of the unit disc l zl = for the imaginary axis,

D. A CLASS OF SUFFICIENT CONDITIONS

If the m..atrices occurring in Theorem 3,1 alone are of large dimen-
sion, then the evaluation of the determinants involved becomes a com-
putationally difficult problem, It may occur that the matrix KG(s) has

a form which is nearly block diagonal, i.e, it has the form
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M () 9 - 0]
— e el -
-
KG(s) = | o Mz(&")j- R (s) (3.17)
8 )

where the Mi(s) are square matrices of functions of appropriate dimen-
sion, and the remainder R(s) is small in some sense, If R(s) were
identically zero, then the stability of the original system could be deter-

mined from the appropriate quantities
fr(s) = det (L + l\éi(s)), i=1,2,r, (3.18)

since the encirclements of the origin by det(l + K G(iw)), would
then be just the sum of the encirclements of the individual functions (3.18).
Theor_em 3.1 shows that the spectrum of the operator KG (acting
on E+) is just the locus of the eigenvalues of the matrix of functions
M(s) = -Iég(s) for s is the region Re s> 0. One way to obtain sufficient
conditiéns for stability (or instability) is to find bounds on the eigenvalues
of -.Iz{g(s) » Res>0, which will insure that the point -1 is not (or is)
inciuded.
The problem of obtaining bounds on the location of the eigenvalues
of finite dimensional matrices is a widely studied topic, with a large
amount of literature. See Ref, 38 for both a treatment of some aspects

of the problem, ‘as well as a large bibliography on the topic.
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A large number of the results in the litefature are concerned with
speciz;ll classeé of matrices, and hence are not useful for the present
application, The folloWing Theorem, due to Bauer and Fike 39, is one

example of a general result which includes a number of special cases

previously derived,

Theorem 3,2: (Bauer and Fike), Let ngl" be induced norm for the

nxn matrix M, Then the set { z || gz-g)-l ""1 < I A-B | or
det (;z-_i_}) =0} contains all the characteristic roots of A,

The above is an inclusion theorem for the spectrum of the matrix
A. The contrapositive of the above gives an exclusion theorem, which -

is essentially a matrix version of the ""small gain theorem" of Section II-F,

Corollary; If det Lz-B) #0, and | (Lz- g).t'l_" | A-B <1, then

z does not belong to ¢ (A).

By taking just for a norm on C" the sum of the absolute values of
the components (the ].1 norm), and then for a norm the maximum absolute
value of the cbmponents, the classical Gershgorin results [41] may be
obtained by choosing B to be the diagonal o-f A in. Theorem 3,2, The
Gershgorin'result has been used by Rosenbrock 40 to obtain a sufficient
condition for stability based on essentiélly the diagonal entries of the
matrix of functions K G(s). By using Theorem 3,2 to estimate eigen- |
value locations rather than Gershgorin's theorem, the following gener- -

alization is obtained,
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Theorem 3.3: Lect g(°) be a matrix of L' (b, w) functions, Then

supposc that the fcedback system

t
e(t) + K f G(t-s)e(s)ds = u(t), t>0 (3.19)
0 s .

is such that there exists a decomposition

=

G(s) = D(s) + R(s) (3.20)

where

l.det (I +D (iw))# 0 -w<w<loo
T T (3.21)

2. |

@+DG) ™ I RGe)< 1, -co<uweo

for some induced matrix norm ” ” .
Then the system (3.19) is bounded input -~ bounded output stable
in the E: sense if
0
Ky = = f d, arg (det (L+D(iw)) = O,

D
-

and (3.19) is unstable if K # 0,

Proof: Consider l}__/IE (iw) = Q(iw)+€§(iw), 0<e<1l, Clearly 1}__'10(iw) =
D (iw), while 1\=41 (iw) = Ié(___}(iw).

First conditions 1 and 2 together with Theorem 3,2 imply that
det (I+KG(iv)) # 0. '

By the Riemann-Lebesgue Lemma, for fixed € the locus of points
det (I + 1\=/[€(iw)); -0 L w< w forms a continuous closed curve in the
complex plane, If KD’ the number of encirclements of the origin by

det (L-i—]:)(iw) is not the same as the number of encirclements of the




quantity det (I + KG (iw)), then for some €y 0<e<1, and some
wo, -03<w°<m

det (L+M_ (iw))) = 0 (3.23)
o

But this is contradicted by condition 2 and Theorem 3.2, so the encircle-

ments are the same, and the result follows from Theorem 3. 1.

Obviously, a result completely parallel to the above holds in the

case of discrete time systems,

E. EVENTUALLY TIME-INVARIANT SYSTEMS.

One aspect of the behavior of what has been defined as regular
systems is that their stability depends only on their long term response
to the application of an input, A consequence of this is that in a sense
their stability is determined by the "asymptotic behavior" of the systems.
This is illustrated by the following.example of a convolution operator
foll;)wéd by a time-varying feedback gain which may be considered as the

sum of a constant and a transient term,

Theorem 3, 4 Suppose that the regular feedback system S is described

by the equat'ion
| _ t
eft) + K(t) f G(t-s)e(s)ds = u(t), t >0, (3.24)
0 - :

where g_g(') is a matrix of continuous functions, uniformly bounded on

(0, ©). Suppose also that lim K(t) = K+ and that the system
t—= o ~ -

St { (;+I_§mg *)& = u }is bounded input - bounded output stable in the
E: sense, Then the system S is also bounded input - bounded output

;table in the E; sense,
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Proof: Since the system Soo is stable, there exists a constant M such

that
-1 :
|G + K _G) | <M (3.25)
Since lim K(t) = K , there exists a T < o such that
t—o ~ =@
l&@ -K I < 35, 3 T (3.26)
The system equations may be rewritten in the form |
(I+ KG)elT = Wp 0<t< T
¢ (3.27)
and %z(t) + K (t4T) f g(t-s)gz(s) = 1.1,2(1;). t>0
‘ | 0
where e,(t) = e (t+T), u,(t) = u(t+T).
Since the system is assumed regular
"eT" hy M1 " U " ' (3.28)

Rewrite (3,27) in the form
(1 tK,G+(K- KQ)G) e, = u,
which is equivalent to
= 1 _
I+ (K-Km) G (I+K  G) e,” = u,,

which is stable according to the small gain theorem using inequalities

(3.24) and (3.25), Hence
" € ".<_ Mz " uzyua

from which together with (3, 28) it follows that S is stable.
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-F, SOME REMARKS ON FREDHOLM OPERATORS

One of the most useful aspects of Theorem 3,1 is that it shows that
the stability of a time-invariant system may be dctermined entirely from
the Nyquist locus, the set of points {det L+KGliw)),- 0<w< o }. As
shown in the course of the proof, the number cf encirclements of the ori-
gin of the Nyquist locus is just the so-called index of a certain gencralized
Fredholm operator, Because of the definition of a regular system, the

feedback equations in the general case
(I+KG)e=u (3.29)

will be such that the operator (I+KG) has no null space, Otherwise,
just as argued in the proof of Theorem 3,1, a vector e, annihilated by

(I+KG) would generate a non-trivial solution to the finite~time truncated

equations with zero input,

(3.30)

n
S
c
A
Lard
A
)

(I+KG) eo;r

This contradicts the regularity assumption that the finite-time truncated
équation has a uniqge solution,

If the ope rator (I+KG) is a generalized Fredholm operator, then
again, just as in Theorem 3.1, its index K = -pI-I-KG and the operator
I+KG will again be invertible if and only if K = 0, This suggests the
possibility of generalizing Theorem 3,1 to the case when the system is
not necessarily described by a convolution equation, and obtaining a
""Nyquist condition' for tim_e varying systems, All that is required is an
analytic method of computing the index for the in‘cegfal operator involved,

In fact, it is possible to interpret Theorem 3,4 in this manner,

Sahbagjan (Ref.42) shows that a certain class of integral equations on
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a half-axis whose kernels are "eventually stationary' indeed do define
generalized Fredholm operators, Moreover, their index is the same
as the index of the stationary limit kernel, From this point of view,
Theorem 3,4 is simply computing the index of I+KG in a case wherc
the system is not time invariant,

The problem of obtaining solutions of a convolution equation defined

on a half-axis is commonly referred to as a Wiener-Hopf problem, It
is well known that by taking the Fourier transform of the original
equation, the problem is transformed into one involving certain functions
which are analytic in certain regions of the plane, and whose limiting
values at the boundary of the regions satisfy certain linear relationéhips.
This approach is fully e:;ploited ih“.

If one considers equations of the form
t
e(t) + f glt-s) cos (s) e(s) ds = u(t) t >0, (3.31)
0

which may be interpreted as a time-invariant system with a cosine func-
tion as a time-varying feedback gain, then again by use of the Fourier
transform the problem may be transformed into one involving analytic
functions; however in this case the linear relationships at the boundaries
involved shifted values of the functions. Problems of this type also have
an index theory associated with them, and have been widely s..tudied.

Ref, 43 is a survey paper containing a large bibiiography. While this is
still an active area §f research in complex analysis the theory is rela-
tively complete only in the case where the sl;ift satisfies a so-called
generalized Carleman condition, which requires that a finite number of

applications of the shift bring the boundary back to the original, This is
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not the case for the problem corresponding to equation (3, 31), so the ~
theory at present seems inapplicable, The discrete analog of (3, 31),
however, does lead to a problem which may be handled by these methods,

However, this particular problem may also be solved by more direct

approaches, (See Chapter 1V),
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Iv. PERIODIC DISCRETE SYSTEMS

A. INTRODUCTION

This chapter is concerned with feedback systems which have the
form of a convolution operator in the forward loop, coupled with a peri-
odically time-varying gain in the feedback path. (Fig. 7.) Such systems
are governed by equations of the form ‘

e(r) +K(r) (G *e)(t) = u(r) T>0 (4.1)
where the 'gain function'' K(:) satisfies g(i+n) = g(i), i> 0, in the
discrete time case, or g(t+T) = g(t), t 2 0 for the case of a continuous
time variable.

Such equations arise in an engineering context in connection with the
analysis of parametric amplifiers; the stability of a periodic solution of
certain classes of non-linear differential equations is also determined
from systems of the form (4.1). As a result, a considerable amount of
work has been done on systems of this type (eg. 44-48).

Most of the previous work on system (4.1) has been concerned with
the continuous time variable case, and generally speaking, sufficient con-
ditions for stability are what has been obtained in an analytically tractable
form. However, for the discrete time version of (4.1), it is possible to

obtain necessary and sufficient conditions for stability in closed form,

By applying the several spectral estimation results of Chapters II
and III to the conditions derived, sufficient conditions for the stability

of (4.1) may be derived.

-56-
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OG(z) =

K(i)

K(i+n)=K(i)
(a)

G(s) i

K(t+T)=K(t)
(b)

Fig. 7 Systems with Perjodic Feedback
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B. A CLASS OF EQUIVALENT DISCRETE TIME SYSTEMS

The results of Chapter IIl are apparently the only spectral calcula-
tions which are presently known and directly applicable to the feedback
stability problem. These results apply, however, only to convolution
equations (i.é. time-invariant feedback systems). The system (4.1)
appears to be a time-varying one, but it is possible to re-interpret {4.1)
in such a way that the resulting system appears stationary. This makes
it possible to apply the results of Chapter III to the equivalent system in
order to obtain necessary and sufficient conditions for stability.

The key to the pro.blem is to focus attention on the action of the
periodically time-varying gain, _.I_E_(- ). To illustrate the idea involved,

consider a scalar input—scalar output system described by the equations

x(i+1) = A x(i) +be() , y(i) = c'x(@) ,
(4.2)
e(i) = v(i) - k(i) y(i) i>0
where x is an r vector, e and y are scalars, and the gain satisfies
k(i+n) = k(i). This corresponds to an input-output description of the
fb:rm
i-1
) + ki) Y oA el) = ut), 20 (4.3)
j=0

Consider the sequences which correspond to the output y , and the
feedback term, Ky.
y: {Yoo Ylu ooy Yn-l’ Ypt oo an-lt cee}
Ky @ {kgygr Kyypoeeeo Ky Yoo Ko¥goeeoo Ky Vap goe )
(4.4)
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Due to the periodicity of the gain k(*), every nth term in the y
scquence is multiplied by the same value assumed by the gain. Hence,

if the elements of the y sequence are grouped together as sequences of

column vectors of dimension n:

- N
r Yo '—Yn ryZn Fygn
Yy 4 ) ) 1o 'T (4. 5)
Yn-1] |Y2n-1] |Y3n-1 Y(g+1)n-1
IR I Bt B M | (tln-1]
‘ B
then the feedback term Ky has a corresponding representa;ion
t- St - —
k y, k y k v
0 0 0 n 0 in
ky:d | . 2 | Y
0° 0’ 0
= Kaog][ Yn-1f | = Kae1f|Y2ne1 = k1] [Y(gsnn-1
o
r : - D
ko . Yo Y ﬂrzn
= o= ) booo oo b (4.6)
LU
~ -1 Yn-1 Y2n-1 Y(‘e+1)n--1
| d h
th . .
If the 4 column vector in (4. 5) is denoted by %/z , then (4.5) and

(4. 6) have the form

v Yo Y0 Yo Y,
k .2 - (Yo Froe Yy

n

.9

o
-

so that according to the 'time' index of the n-vector sequences the action

of K is time-invariant.

Consider now Equation (4.2), and with a view toward grouping sequences

as above, write it in the form
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ERE"
xp = 4xp theg
2
X, = AxptAbejthe,
_ an-1 n-2
X1 = A X0 +A _lgeo +.. +_l_)_en._2
_ AN n-1 r
rxn = é:_ X0 +é _l.).eo F.. +-k3en_l
*n4l é§n+éen
n-1 n-2
*2n-1 =2 E +=:A: Een+°" +P~62n-2

Following the notation above, let

!_ezn

: )

. =i

| ©(g+1)n-1_]

(4.7)

Then since y(i) = ¢'x(i) from (4.2), the input-output behavior of (4.2) is

duplicated b); the system

wletl) = AMale) + [A"'b, AP, 0 E ()

r —c'- ,— -O
q : b .
L= o)+ | €, g
. . "c'b
—cra" | cA™p e

which is again a linear time-invariant difference equation.

-

g(z)

N -
=8
.
($ o]
o
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The condition that the operator G be bounded requires that the
eigenvalues of the matrix A lic strictly inside the unit disc. Assuming
the (and zero initial conditions for (4. 8)), the relationship between the

z-transform of the input sequence 5 and the z-transform of the output

sequence g is given by A A
A
Yo -Yuo Ew
where -
n,"1 n-1 n,"! n-2 n,”!
cfz-A" A™'b 'a-A") AP oz-A") b
-1
n
A zc'gz-é) b
/g !
(z)=] z c'(Iz-A") Ab
n,"! n-2 n,"} n-1
2 c'Iz-A") A" % gfa-A" A™'p |

A (4.9)
,_g (z) is an nxn matrix of functions, where n is the period of the
periodic gain, and has the form of a finite Toeplitz matrix.

A result parallel to (4.9) may be derived without the assumption that
the original convolution operator arises from a finite dimensional system
such as (4.2). Let {g(i)}fo be a sequence of rxs dimensional matrices
+

such that each entry of the sequence belongs to 21 . Such a sequence

defines a convolution operator according to

. i-1 '
gi = Z G(i-jle(i) i>0 ’ (4.10)
=0

which may be rewritten in the form



. . - . . .

The semi-infinite matrix has a "block Toeplitz" form,

triangular since the operator G is of the Volterra type.

- - - - - -

(4.11)

and is lower

In the equation

(4.11) the entries in the e and y sequences may be grouped in sections

of length n as before:

[ “2n-1

1
‘0
J
\
5
=n J
\
=n+]
=2n J

b <

,9_ .
gn J




By defining (G

(4.12) becomes

=

Y,
¥
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1r

Y

\
=£n ' '.: e g(z-l)n'l-l
1.o......'o.. > :@
G .G
| =(4+1)n-1 =gn J

and using the same notation as above for the grouped € and y vectors

-
|
e

Y £ 4,

&>
[\

(4.13)
which again represents a discrete convolution,
i
g(i ) z éyi-j éj (4.14)
=0
with a corresponding z-transform relationship
Yer- o) £
where
(s2)
/g(z) = Z /_{/z 2! (4.15)
£=0

It is convenient to have some terminology for the equivalent system
(4.14) obtained from an original discrete convolution (4.10). The equa-

tion (4.14) has been obtained by a process of compressing the time scale
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of the sequences, while expanding the dimension of the vectors involved.

This suggests the following:
Definition: Consider the discrete convolution operator G determined by

the sequence of rxs matrices {__:_C_}:l}‘l’o . The discrete convolution oper-

ator C}n determined by the sequence of rnxsn matrices

(T, | 7]°
gzn gzn-l -g:(z-l)nﬂ

ﬁ gln'i'l [ . ' ’ ¢ . . ) * . . - »
S(p+1)n-1 ., S4n _

- Jt=0

will be referred to as the convolution operator G companded by n.

Similarly the pulse transfer function corresponding to the operator Gn

. - ngn Si)-1)nt1
Hu-y |
20| Sgrn-1 oL Egn | (4.16)

will be called the companded pulse transfer function.

The companded pulse transfer function may be obtained directly from
the pulse transfer function of the original convolution operator. If the

original pulse transfer function

IIO>

is written in the form

-(n-1)A
S = GeM+a G M 4G 6N W)
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then f;‘om (4.16) it follows that

A A A
rgo(z) —zl_-—gn-l(Z) -:—___q (z)
/& G e, T S
2V (z) = : . e ‘..1A (4.18)
* * . . * ] . .z—gn l(z)
\ A [ A A
G, (2) ", G)(2) G (z)
B - -

A
The functions gi(z) i=0,...n-] may be calculated from the original

pulse transfer function by means of contour integrals.

Theorem 4.1: Let the pulse transfer function of the gl+ rxs matrix

sequence {_g_l}?o be written in the form

(z) = §0(zn) + Z-lé—l(zn) + ... 4 Z-(n-l)én_l(zn)

o>

A
Then the functions G (z) have an integral representation of the form

A A -
G () = 5 35 Gle) ¢! ;—?—z d (4.19)

The above representation is valid for |z| > 1, is to be interpreted

as a principal value for [z| = 1, and the contour integral is taken about

|¢] = 1 in the clockwise sense.

Proof: By Cauchy's residue theorem

g£n+a=-2-11;-i— f é(g)(-é-)-(zn+a+l)d(-§l-)

' A
where the contour is clockwise about lg, = 1. Therefore ga(z) may be

expressed as
00

-yt § ok B ()
£2=0 ;
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In_ the region lzl 21+€, € >0, the expression

(4.20)

o>

1 A -1 1
o(2) = 3 gsg(g)ga o dg

is obtained by appealing to the dominated convergence thcorem. Since

€ > 0 is arbitrary, the above is valid for all lz , >1,

To show that the representation may be extended to the boundary

|z =1, (4.20) may be expressed as
A -2m A
= L f ig, _iap z
.-ga(z) T 2w _g_(e )e ing de
o e -Z

Making the change of variables g = ¢/n gives

-2m 2mij .
. - X _2mj
(eub/ne n )em (¢/n ” )

w
A _ _}_ A
ga (2) = z 27n f L,
=1 0

The above may be regarded as a sum of Cauchy-type integrals, each of
whose densities is continuous except for a jump discontinuity at ¢ = 0,

-2

n
@Y & [ o
i=1 0 - e’ -z

(4.21)

o>

a

Let gj = ___l}] (2w) - hj(0). Then if A(-) is any function continuous on
[0,27] and such that A(2rw) - A(0) = 1, the function

Bi+) - gj A(-)
is continuous on the circle, and its Cauchy integral may be extended as

. . . . 49 .. A i, ia,
a principal value continuously to the boundary Iz , =1, Since g(e )e
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is continuous on the c1rc1e, Z = 0 so that aj A(¢) may be added

n n
j=1

A A
under the integral in (4.21) with no effect on G (z). Hence G (2) may

be extended to the boundary as claimed.

C. BASIC STABILITY THEOREM
The use of the 'companding' manipulations of the previous section

gives the following result on systems with a periodic feedback gain,

Theorem 4.2: Let {_Ql}(ln be a sequence of matrices of dimension rxs,

each entry of which belongs to zl+ . Then the regular feedback system
defined by

el) +K6) ) G eG) = uli), i20 (4.22)

=0

where the sxr matrices K(i) satisfy K(i+n) = _E(i), is bounded input —

bounded output stable in the sense of E;(s)' p21, é‘( and c *(s) if and
only if the following cond1t10ns hold:
1. det (_+?(ﬁ (ele))a‘ 0, -mr<g<m
2. o+ f d 27g (det (1 +g,__& (1)) = 0 (4.23)
-7

Here the snxrn matrix 7( is given by

k)]

.7’(= eI

—— 0..0.0
...O....

'K(n-l)

- . 4
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A
and/_& (+) is the companded pulsc transfer function determined by the
sequence {_C_}_l}(;o .
Proof: By the structurc of the companded co<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>