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Abstract

Embedding theorems in the reducibility orderi ng of the partial

degrees.
Jay John Tuthill Lagemann

Submitted to the Department of Mathematics on June 25,1971 in
partial fulfillment of the requirements for the degree of
Doctor of Philosophy.

The main result in this paper is:

Theorem. Given partial degrees 2a </ b such that [b is a total
degree or a is totalland (Jf)(ABED) ( f is a total function

&A = {<x, f(x) >|x € N}€ a2 B2 A') then the partial ordering &€

can be embedded in the partial degrees between a and b. That is,

there exist partial degrees ¢, such that a<c. < b and i <F je

ci<e e+ Where & is th~ partial ordering of the recursively

enumerable sets under inclu-: n.

A proof is given using this theorem of Gutteridge's result that

there are no minimal partial degrees.

Two conjectures of John Case are proved. The first is that the
measure of the sets enumeration incomparable with their complements
is one. The second is that the measure of the quasi-minimal sets
(those sets with no nonrecursive total function enumeration reducible
to them)is one.

Thesis Supervisor; Hartley Rogers Jr.

Title: Prc essor of Mathematics
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Introduction

Until quite recently, not much work has been done on
enumeration reducibility. Perhaps this is because the most
obvious question : is there a minimal partial degree? has
proved so hard to solve. This has been disconcerting because
over fifteen years ago, Spector [1956] had proved that in the

closely related Turing reducibility there do exist minimal degrees.

Finally, Cooper [1971] announced that there exists a minimal
partial degree. Three months later, Gutteridge [1971] announced
that the partial degrees are dense. The author was able to obtain
a copy of Gutteridge's paper and convince himself that there is no
minimal partial degree. He started working on various embedding
theorems and seemed to be getting results when Gutteridge
withdrew his paper. After several sleepless nights, the author
realized that the error in the Gutteridge paper was in the
relativization. Thus there are no minimal partial degrees but the
density question remains open. A proof that there is no minimal

partial degree is given later in this paper.

The embedding theorems given in this paper might be
strengthened in three ways. First, the type of partial ordering
that can be embedded might be strengthened to include all
countable partial orderings. This cannot be done using the
methods employed in the paper and the author does not think it
can be done. Second, the restrictions on the degree b might be

removed. The author conjectures that this can be done. Third,



the result might be relativised for all degrees a < b without the
restriction that either a or b be a total degree. This implies
density. The author conjectures that this cannot be done, i.e.
that the partial degrees are not dense.

The embedding theorems are an extension of work done by

Lance Cutterridge. Their proofs also utilize many of the methods

developed by him. For example, the use of recursive approximations

when dealing with sets B <T 0' , and the construction of enumeration

operators which depend only on the value of singletons.



Chapter 1

Preliminaries

The notation will follow that of Rogers [1967] with some
additions given below. Subsets of N will be denoted by upper
case letters with D and F being finite subsets, members
of N will be denoted by lower case letters except that f
and g will be reserved for total functions. Lower case
underlined letters will denote partial degrees, e.g. 2 , b .

<x,E> will be used to represent <x,u> where Du = E.
Definition:

i) W(A) = {xl <x,u>ecWg& Du C A} . This notation,
which differs from that of Rogers, is very helpful
in that it identifies a given set W with an operator.
If the set W is r.e. then the associated operator will

be an enumeration operator.

ii) A is enumeration reducible to B ( A < B) if there

exists some r.e.set W such that A = W(B). Usually

this is written _<_eas not to confuse it with the more

common Turing reducibility _<_T

iii) A= B if A<B and B<A.
iv) A< B if A<B and Bf£ A.

v) AIeB if A£B and Bf£A.




is an equivalence relation on the power set of N . The

equivalence classes are called the partial or enumeration degrees.

For the basic facts about the enumeration reducibility see Rogers
[1967]. 0 will denote smallest partial degree, that of the r. e.
sets. A degree b is said to be minimalif 0< b andif a<b

then a=0. A degree a is a total degree if there exists a total

function f such that a is the degree of the set {<x,f(x)>|x e N} .

W(T(B)) will be denoted by WT(B) . Where WEN and T CN.

V X. is the infinite joinof X ,X.,... i.e.
ieN 1 0°1
i+
xe X, ox 21 I+E kkvX..V X and V__X have the obvious
i K<i i j%io j neN " f(n)

definitions if i is a fixed integer and f is a recursive total

0
function. The following properties of the join can easily be verified

jn#i=X, <V X
0 Jo i1 )

i Range fa(Vv X
{ € (neN f(n) —jiﬁ J

(Vi) (X, < jVeN X;)

8 . .
W~ where W is r.e. is the amount of W enumerated
in the first s steps of some fixed enumeration. Enumeration

operators have the following monotonicity type properties
i) ACB = W(A) S W(B)
ii) W CW=W'(A) € W(A)
iii) x eW(A) » Ts (xeW"(A))

ivy x € W(A) = AID( D is finite &x €W(D))




s . . . . . .
B 1s a recursive approximation to B if there exists a

recursive function f such that Df(s) = Bs and the Bs have
the property that

1
Vnds'Vs(s'>s=(ne BsaneB))

It is easy to show that a set B will have a recursive approximation

B® if and only if B ST 0'. This result can be reldtivised to :

there exists an approximation B~ to B which is recursive in

A if and only if BSTA’.




Chapter 2

Embedding Theorems for Partial Degrees

Definition. _<_F €N xN is a partial ordering if

VxVy Vz((<x,y>e <_, &<y,z> ¢ ;<_F) 2<x,2> € SF)

E
and if
¥x Vy {((<x,y> € Sp &<y, x> ¢ SF) =X =y)
<xX,y> € SF is abbreviated by x_gF Y.

x<Fy if ngy and yﬁFx.

i is in the domain of <p if <i,i>e_<_F.

Definition:

A partial ordering _<_F can be embedded between two

partial degrees a and b where a< b if for each i and

there exist partial degrees ¢, , ¢

.. i <
j in the domeain of b < ;

such that

i<_.j ec.< c.
FJ =i —j

a <c. <b
—_— —1 -




THEOREM (Finite Embedding Theorem) Given a degree b

any finite partial ordering <y can be embedded below b,
if there exists a set B € b such that B < 0,
Proof. Let Beb and B® bea recursive approximation to

B.

If the partial ordering F has m elements then m
enumeration operators TO’TI’ ’Tm- 1 are constructed with
the property that for all i< m

T, (B) £ Y T,(B)

Then m enumeration operators S s S are defined by

0rs S 1
$/(B)= vV T (B)

J'sFi

Clearly if i_<_Fj then by projection Si(B) < Sj(B) . Also

Ti(B) < Si(B) and if i then again by projection

r
S.(B)< VvV T.(B)
J k';t'i k

Hence
i j=S.(B) £S.(B
i £ §25,(B) £5,(B)
otherwise by transitivity

T.(B v TJ(B
(B <y 7B

which would be a contradiction.

The Ti are constructed using a priority argumentdn the

construction of the 'I‘i ordered pairs <p,n> will be given



/'s and x's. If an ordered pair <p,n> in Ti is given an x,
then that ordered pair will always be given as an output, i.e.
<<p,n>,¢> e T, and <p,n> € Ti(gb). If <p,n> hasa V/ in T. »
then <p,n> is given as output whenever n is given as input,
i.e. <<p,n>,{n}>e¢ T, and <p,n>e T, ({n}). An ordered pair
can have botha v/ and an x in which case the x will dominate.

If <p,n> hasa / butno x then
VX [<p,n> € Ti(X) on eX]

Requirement Rp where p = mgq + i, is satisfied at stage s

s
if there exists a <p,n> whichhasa Vv butno x in 'I‘i and

<p,n> e Tis(Bs) &<p,n> ¢ W: (v

(DG,p,8) UZ ) (*)
jFi

or

<p,n> ¢ T (R%) &<p,n> e W(V, (D(,p,8) U T0))  (+¥)
JF1

Such a <p,n> is said to satisfy RP at stage s . Where
D(j,p,s) is
D(j,p,s) is {<t,r>|t < p&<t,r>¢ Tjs (Bs)} =

{<t,r>|t<p &(<t,r> has an x in Tjs) or

(<t,r>hasa/ andre¢ Bs)

and

Zp= {<t,r>| t > p}

The Ti are constructed in stages.

11




194

Stage 0: T, =¢p,i=1,..., m.

Stage s : Find the least unsatisfied requirement Rp , where

P=mg+i.
Then in Ti s V <p,r>, forall r< s.

In each Tj , where j#i, x <t,r> for all p<t< s and

r< s.

The motivation behind this method is that we want R
where p = mq+i to insure that wq(j\;éi Tj(B));v! Ti(B) . I')I‘o
make sure that equality does not hold we want to find some <p,n>
such that <p,n> ¢ Ti(B) e<p,n> ¢ Wq (j\;,éi TJ.(B)). Of course we
cannot hope to do this effectively since B is not r.e. and in

general we do not even have an oracle for W

But since B 5,10' we do have a recursive approximation to
B . The important property of a recursive approximation is that

for any finite subset of B there exists an 50 such that s > 50

implies that B® coincides with B on that subset.

In the construction of the Ti note that at stage s <t,r>
can receivea v or x onlyif r<s and p<t< s where R

is the least unsatisfied requirement. Thus, if after stage 50

all R , p'< p are always satisfied then <p',r> will have
P
a / or x inany Tj only if r < 8y > and <p',r> already

has that / or x by stage 89 - This means that for s > 8g >

D(j,p,s) will depend only on the members of B® which are < 8 -
Thus if 8, is large enough such that 8, > 50 and for s > 8,9

B® coincides with B for all r < 8y » then if s > 8, D(j,p,s) = D(j,p,sl).
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We say D(j,p,s) has stabilized by 8- When D(j,p,s) has

stabilized then D(j,p,s) = D(j,p,sl) ={<p',r>|p'<p&<p',r>eTj(B)}

where it should be noted that in the above equation neither T
J

nor B has an s . This also implies that for = > 8,

D(j,p,s) UTJ.S(¢) S T;(B)S D(j,p,8)UZ

1
s
<p,n>eW (V. T.(B and if Vs> s_. <p,n>¢ W (.V. (D(j Uz
pun> € W (LY, T,(B)) | <Pan>f W2y, (DG,p,3) U 2)

then <p,n>¢ W (V. T.(B)).
pon> ¢ W (y, T (B))

Thus if <p,n> ¢ W: (j\;lléi (D(j,p,8) UTjS (®))) and s > s_ then

c . . . 8
Similarly if <p,n>has a/ andno x in Ti and s > 8,
then <p,n> will never receive an x because the only way <p,n>
can receive an x in Ti is if some Rpl ,» P'< p becomes unsatisfied.

Thus if s is large enough such that s, > s, and s>s_= (nc—:Bs &

2 2 0
neB) then

2
8,8
<p,n> ¢ 'I‘;1 (B") e<p,n>¢ Ti(B)

Together, the last several equations imply that if RP is
satisifed by <p,n> for all s greater than some fixed integer

then in fact

<p,n>e T (B) «<p,n> ¢ WGk Tj(B))
C v
which insures that Ti(B) ¥ wq (j;t‘i Ti(B)) .

Thus to complete the proof that the method works we must

prove the following two lemmas.
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LEMMA 1. Each requirement Rpis’ usatisfied at only finitely

many stages.

LEMMA 2. For each requirement Rp there exists a <p,n>

and an 50 such that Vs>so <p,n> satisfies Rp at stage s .

Of course anyone standing where the three roads meet could,
and probably would, tell you (Sacks [1971]) that Lemma 1 follows
from Lemma 2. Lemma 1, however, is used in the proof of

Lemma 2 .

Proof of Lemma 1. Shppose all R p' < p=gm +1i are satisfied

at all stages s > g * Let s > S0 be large enough such that
all D(j,p,s) have stabilized by stage 8 - Consider the following
two sets:
*
B ={<p,n>|n>s & ne B}

0

C* = {<p,n>|n>s

0 & <p,n>e¢ Wq(;j{ D(J:P:SI)UZP))}

JF1

The two sets must be unequal since the first is enumeration

equivalent to B which is not r.e. and the second is r.e.. Thus

* * *
q <p,n>[(<p,n>eB &<p,n> ¢ C yVkp,n>¢ B &<p,n> €CT]

Let 8, be such that Vs > 8, (

Suppose

neB® on ¢ B) &(s2 > sl).

x® ¥
(<p,n>€B &<p,n> ¢C)
3 2,n) then for all

stages 8> s, <p,n> will havea / andno x in Tis .

If Rp is unsatisfied at any stage s, > max (s




Thus <p,n> < TiS (Bs) since <p,n> hasa V/ in T_1 and
neB® , and <p,n>¢ W: (Vv (D(,p,s) UZP)) since all the
D(j,p,s) have stabilized. Tﬁ]us <p,n> will satisfy R_ for
all stages s > 8y - d
Suppose, however, that <p,n> ¢ B*& <p,n>c¢ C* . Since
<p,n> € c*
<<p,m>,> € W) (D, €y, (0GP0 2)
Let 85 be such that <<p,n>,u>eW
If xe Du then x is : . formed from . <tj,rj>,
j #i such that

< > j
tj’rj € D(J:P:SI)U Zp

By the coding tj < u and rj < u. Thus if Rp is unsatisfied
at some stage s'>u and if tj >p, then <tj,rj> will receive

an x at stage s8'. Thus if s>ma.x(s',sl)

It follows that if R  is unsatisfied at any stage 8, such that
P

s, > max (u,n,s

4 ,53) then ¥Ys > s

2 4

D, S VvV (D(,p,s)U Tj“(¢))

jE 1
hence
<p,n> e WI (Y, (D(1,p,2)UT; @)
also
<p,n>¢ T (B)

15



Thus Rp would be satisfied by <p,n> for all s > 84 which

completes the proof of Lemma 1. [J

Proof of Lemma 2. Suppose p = mqg+i and that RO’RI’" . ’Rp

are all satisfied for all stages 8 > s Then <p,n> can satisfy

0"
Rp only if n < 8y » since if n > 842 <p,n> can'thave a / .
Let s, >s_. belarge enough such that ¥s >s_ all the D(j,p,s)

1 0
are stable and

1

(n< 89 =(ne B® on ¢ B))
If at any stage s2 > ss1 some <p,n> satisfies Rp by k%
then ¥s > 8, <p,n> will satisfy Rp by *% since

w: (Vv (D(,p,8) UT; (@)
i#i :

is strictly increasing in s if s> 8 -

So suppose at no stage s > s, does any <p,n> satisfy

Rp by %%, Then for all stages s i 8 Rp is satisfied by * .
But if such a <p,n> ever ceases to satisfy Rp at some stage
8 > 8, then it can never again satisfy Rp . Thus, since only a
finite number of <p,n> can possibly satisfy R (namely those
with n< go), at least one <p,n> must satisfy Rp for all

8 > sl .
This completes the proof of Lemma 2 and hence of the main

theorem. O

16
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THEOREM. (Countable Embedding Theorem) Let _<_F"'- N xN he
any countable partial orderi ng with the property that for each i

in the domain of F {j Ij SFi} is r.e. Then if there exists a set

Beb and b>0 suchthat B <_T2' then F can be embedded
below b.

Proof. This proof closely parallels the proof of the Finite Embedding

Theorem. We shall construct enumeration operators T ,T ,T

02 Ty2 Ty
which have the property that for all i,
T.(B)£ v T.B)
T
where the join on the right is now infinite.
Requirement Rp where p = <q,i> will insure that

Ty(B) £ W, (Y T(®)

The construction of the Ti and the proof that they have
the desired properties is the same in the finite case except that

p=r1mqg+i is everywhere replaced by p = <q,i>.

We are given that if i is in the domain of F then
{j |j <p i} isr.e. For such i let fi be a recursive function

which enumerates {j Ij <p i} , and define

S.(X)=Vv T (X)
i nen  fi(™



Then Si is r.e. By projection and the fact that fi is
recursive (and hence we can effectively find some n such that

f.l (n) = i) we will have that for all X

T, (X) < 5, (X)
and if i_éFj then, again because fi is recursive,

S.(X)< v T, (X)
2 B

thus
¢ < Si(B) < B

and

i<gie S(B)< 5B
which completes the proof. [

COROLLARY 1. Any recursively enumerable partial ordering

can be embedded below any degree b >0 if (EBeb)( B S 0') .

COROLLARY 2 . There exist countably many incomparable

degrees below any degree b>0 if (dBeb)(B <o 0').

The partial ordering F does not have to be r.e. in which
case the domain of F will be a non r.e. set. The following

corollary gives a good example.

COROLLARY 3. The partial ordering <o can be embedded below

any degree b>0 if ABeb (B <0'). Where O is the usual

universal system of notation for the constructive ordinals, see

18



Rogers [1967] p. 208.

The question naturally arises as to whether the previous
theorem can be relativised, i. e. can a partial ordering be embedded
between two degrees a and b where a<b and (HAea)
(IBeb)( B 5TA'). The answer is yes if either a or b isa
total degree. The case where b is a total degree will be treated
later, for if b is total then the restriction that B _<_T 0' is

no longer necessary.

THEOREM (Relativised Countable Partial Ordering Embedding
Theorem). Let F be any countable partial ordering with the

property that if i is in the domain of F then {j |j <p i
is r.e. If a is atotal degree, a< b, and (TAca)(IBe b)

(A is the diagram of a total function & B < T A') then F can

be embedded between a and b.

Proof. Suppose A ¢ a is the diagram of the total function f
i.e. A= {<x,f(x)>|x € N} then define A® = {<x,f(x)>|x < s}.
Given any enumeration of A we can produce the A% . Also
note that for the given B € b suchthat B _<_TA' there exists

an approximation B® to B which will be recursive in A .

In this proof the Ti will be constructed to have the
property that the requirement Rp where p=<q,i> will

insure that

T,(B) £ Wq (AV (j;/!i Tj (B)))

Rp, where p = <q,i>, is satisfied at stage s if there

19
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exists a <p,n> whichhasa ¢y butno x in T% and
i

<p,m> € T (B®) &<p,n> ¢ W_(A° V(Y (D(j,p,8)UZ))
1

i#

or

<p,n> ¢ Tis(Bs)&<p,n>€W:(As V(v (D(j,p,slU T;’(qb-)))) :

i#i

The construction of the Ti then proceeds in exactly the

same way as in the previous proof.

The proofs of Lemma 1 and Lemma 2 are basically the

same. The only difference is that now

¥ - {<p,n>| n > &<p,n>¢ Wq(A v( vV (D(j,p,s)uzp)))} ,

1

0

* * *® %
We will have C #B since C <A< B=B . Therestof

the proof of the lemmas is essentially unchanged.

The Ti's will no longer be r.e. However, given any
enumeration of A we can produce the A® and hence we can
enumerate the Ti . Thus the Ti are enumeration reducible
to A and Ti = Ui(A) where U,1 is r.e. Also, A< B
8o Ti = Ui'(B) and hence Ti(B) =(U1'(B))(B) U’i'(B) where

U'i'z {<x,u>| <«<x,v>,v'> e U/ &DlJl DVUDV.}

For each i in the domainof F , Si is now defined by

8,(%) = UK) V(Y Uf ) ()




I, T

where U is suchthat U(B)=A.
Then for all i and j
A< Si(B) <B

i<pi #S(B) < S,(B)

which completes the theorem. O

The question now immediately arises as to why a is
restricted to being a total degree. If (HAea) (A< T 0') why
cannot any rocursive approximation A® to A beused. The
reason is that we cannot have Vs (As C A) since this would imply

that A 1is r.e. and hence there is no reason to suppose that

e (A V(j\;!i (DG,p,8) U T, () Cwq(AV(j\;/!i Tj(B)))

which is an essential assumption in the proof that the method

works.

One way to get around this problem would be to use any
given enumeration of A letting A® be the first s elements
enumerated. Then the proof that
T.(B) # W_(AV(V T.B)))
3 9 it
will go through. The trouble in this case is that the Tj will
depend on the order in which A is enumerated. But an essential

property of enumeration operators is that the set enumerated as




e

output does not depend on the order in which the input is enumerated.
Thus there is no reason why Tj < A 2and hence the proof does not
work. This is the mistake that Gutteridge made in his proof that

the enumeration degrees are dense.
These comments and the following theorem help to illustrate

the strong difference between total and non-total degrees.

THEOREM (Countable Embedding Theorem for Total Degrees).

Let ;f_r.CN xN be any countable partial ordering such that each

i inthe domainof F {j|j<pi} isr.e.lf b isa total degree

and a< b then F can be embedded between a and b .

Proof. Choose B eb suchthat B is the diagram of a total
function f . Let B® = {<x,f(x)>|x <s} and let A® = US(BS) s
where U(B)=A.

The construction of the Ti is exactly the same as in the
previous proof. The only difference is that now each T.1 is
not reducible to A .The Ti are, however, still reducible to
B and this is the only fact that we used before. Thus the Si

are constructed as before and the same proof goes through. 0




THEOREM. There is no minimal enumeration degree.

Proof. The first proof of this theorem was given by Lance
Gutteridge [1971]. His proof uses game theoretic techniques.
The proof given here is essentially based on that proof but is a
more conventional priority method proof.

We shall construct a r.e. set T such that

VX(p< T(X) < X V(X <p O -

This will complete the proof since we know, by the Finite

Embedding Theorem that if X < 0' then X cannot be minimal.

The intuitive idea behind the proof is that T will be
constructed to have the two properties: 1) if T(X) = Wp, where Wp
is r.e., then X<, 0" (This will insure that @< T(X) or
X<nr 0'); 2) for all q the only solution to WqT(X) =X will

be r.e. (this will insure that if X >@ then T(X) < X).

The first property is achieved by having for each n some
p suchthat <p,n> hasa / andno x in T . If this is the
case and T(X) = Wq then to decide if n e X we first find some
<p,n> in T witha / and no x (this can be done effectively
given an oracle for 0' since T <o 0). Next we see if <p,n>e¢€ Wq.
This tells us if ne x since <p,n> hasa V/ butno x and
thus nexe<p,n>e T(X) = Wq . (again this can be done given an

oracle for 0' since W_<,_ 0'.)
q—T

The second property is acheived by insuring that if Wq T(X) =X

then for all n

ntl

neXone (WqT) (Xq) (k)

Lo



where

Xq:{xexlx< qf

and 0
(W T)(¥) = ¥

1
(qu) (Y) = qu(Y) Uy

n+1l n n
(qu) (Y) = WqT ((WqT) (Y))U(WqT) (Y)
® _ n
(WD) (0 = U (WD)

If Y isr.e. thenforall n (WqT)n(Y) is also r.e.as
is (qu)“(Y) . Also X =W _T(X) and ***implies
X = (qu)m(xq) . Hemceif X=W T(X) then X isr.e.

The construction of T proceeds in stages.

Stage O : To = {<<0,0>, {0}>}, i.e. <0,0> hasa /.

Stage s : Give <0,s> a/ . For each <n,u>c¢ W: s
where q< s , and each F € q such that the following four

conditions are satisfied

i) DS T®(N) i.e. all the members of D _ have a

. s
/J oran x in T .

ii) <p,m>eDu&m< q=(<p,m> has an x in T® or meF or

m is <q,F_> labelled where F _CF)
m m

4
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iii) <p, m> EDu&q <m<n=(m is <q, F_> labelled where

F_CF).
m —
iv) n is not already <q, F> labelled.

Do the following: <q, F> label n, and for each <p, m> € D‘1
such that m > max (q,n) and <p, m> does not have an x in

s . . .
T, give <p,m> an Xx 1n Ts , and give <p+l, m> av .

Claim : For each m only finitely many <p, m> are given an
x and hence there will exist a <p,m> in T witha / butno x.

This insures that T will have the first property.

Proof of claim. <p, m> can receive an X only if some n receives

a <q,F> label where gq<m and n<m. But for each q there are
only finitely many different <q, F> labels since FZSq. Once n is
<q, F> labelled, it is never again <q, F> labelled with the same F,

thus for a fixed m , only finitely many <p, m> are givenan X .

We prove that T has the second desired property in two steps.
First we will show that [n€ F or n is<g,F> labelled] if and only if
n e(wq'r)'“r 9(F). Then we show that if W T(X) = X ihen n is
<q, Xq > labelled if and only if n €X . Together this implies that if
Wq T(X) = X then X = (WqTqu) and so X is r.e.
Given q we want to show that for all F&q [n € F ornis<gq,F>

labelled] @ n € (wq'r)“"q (F).
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Define the rank of a <q,F> iabel on n as follows. If when

n was givena <q, F> label condition iii) or the second part of

condition ii) was not used then the rank of the <q, F> label on n is

zero. If condition iii) or the second part of condition ii) was used then

the rank of the <q, F> label on n is one plus the maximum rank of

the <aq, F1:r>1 label on m where <p,m>€ D satisfies condition iii)
u

or the second part of condition ii). Note that the rank of a <q, F>

label on n is <max(gq,n)<n+q.

Fixq. n€Fen E(WqT)O(F). Suppose that for all F <Cq
[n€ F or (n'is<q, F>labelled and rank of <q, F> label on n' is
<r)]=nu'E€ (WqT)r(F).

Suppose n is <p,F> labelled and the rank of the <p, F>
labelon n is =r. If n was <p,F> labelled using <n,u> EW(?

then if , <p, m> € Du
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we have four cases

i) <p,m> has an x in T°  then <p,m>¢e T(p) so <p,m> cT(F)
ii) <p,m> has m< q and me F then <p,m>e T(F)

iii) <p,m> has m < max (q,n) and m is <q,Fm> labelled
and Fm CF. Then th;g _rank of the <gq, F_> label on m" is
is <r_ 30 by the induction hypothesis m E(WqT)r(Fm) and

hence <p, m> € T(WqT)r(F).
iv) <p,m> has m >max (q,n) then <p,m> was given an

x at stage s and hence <p,m> e T(p) so <p,m>e T(F).

Forall m< r (WqT)"‘(F) S(WqT)r(F) and thus

D, _C_T((Wan(F)) which implies that n € (WqT)r+1(F) .
Thus n <g, F> labelled =n € (W, )™ (F) .

If ne (WqT)n+1(F) then n e F or there exists <n,u> ¢ Wql
such that D _C T((WqT)n(F)). Choose an s large enough such
that <n,u> € W: B Du c TS(N) and for all <p,m> ¢ Du where
m < max (q,n), either <p,m> hasan x in T8 ,or meF or
m is <q,Fm> labelled at stage & , where Fm C F. Then
either n is already <gq,F> labelled at stage s or else n will

be <q,F> labelled at stage s , and thus n is <qg,F> labelled

at some stage.

Now suppose WqT(X) =X and n is <q,Xq> labelled
and ¥n'< n we have n'e Xen' is <q,X > labelled.Ifn was
caused to be Xq labelled by <n,u> € W: at stage s, then
for all <p,m> ¢ Du we will have <p,m> has an x or me Xp

or m< max (q,n) and m is <q,Xq> labelled. This means

that Du C T(X) so ne€ WqT(X) . Similarly if ne X and



WqT(X) = X then by induction n must be <q, X > labelled.
q

Therefore, if WqT(X) =X then X=(W T)m (X.)and X
) _ q q
is r.e. This completes the proof that T has the second

desired property which completes the proof of the theorem.O

The previous result can be relativised to the following

extent.

THEOREM If a is a total degree then there is no minimal

degree above a.

Sketch of Proof. Let A e a where A is the diagram ofa

total function f , i.e. A = {<x,f(x)>|x eN}j. If A<B and
B S'T A' then by the Relativised Countable Embedding Theorem
B cannot be minimal above A .

A set T is constructed as in the previous proof which
will have the property that if A< B and B £ _— then
A< AV T(B)< B. Asbefore T will havetw> properties.

First, for all m there is a <p,m> which has a v butno x

in T . Second if 'WP(A)T(Y) =Y then Y<A.

The construction of the T is the same as in the previous proof
except that w® i everywhere replaced by W: (AB) where

A® = { <x,f(x)>| x<s} . T isthus r.e.inany enumeration of
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A so T =U(A) = U'(B) and T(B) = U"(B) where U,U' and U"
arer.e. If U"(B)<A thensince T<A and T has the first

desired property we must have that B S”I‘ A' . Therefore if
A< B and B,{TA' then A< AVU"B)< B. We will

have AV U"(B)< B since for each p there exists a p' and
for each p' there exists a p such that WP(AVU"(B)) =

W (A v T(B)) = W_,(8) T(B) .




Chapter 3

Some Measure Results in the Enumeration Reducibility

John Case, in his Ph.D. thesis, Case [1971] conjectured
that the measure of the sets which are incomparable with their
complements is one. The author uevised the following proof

which was his first result in recursion theory.

Notation: Throughout this chapter f and g will denote
characteristic functions. f and é will denote initial segments of
characteristic functions. l,(f) will denote the length of f. c
will denote the set of all characteristic functions. In a slight
abuse of notation, sets A © N will be used where strictly speaking
we are talking about their associated characteristic functions. If

any confusion might arise, Af or fA will be used where

A= {x|f(x) = 1} and fA(x) =lexecA

C is made into a measure space by associating the eqnal-
probable measure p,i.e. W ({0})=1/2 and p({1})=1/2,
with {0,1} and then taking the product measure on C which
we also call M. This measure is often called the probability
measure on C because M(G) is the probability that a random

sequence of 0's and 1 is in G . Thus we use the notation
Prffe ] = (G)

and if W (B) # 0 we define the conditional probability of ( given 8
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Pr[feG| fe 8] = p(GN 8)/W(B)

THEOREM (Case's Conjecture I) The measure of the sets

incomparable with their complements is equal to one, i.e.

Pr[AleK] =1

Proof. Suppose not. Then by tlie countable additivity of the
measure there must exist some recursively enumerable set W

such that

Pr[A=W(A)]=¢>0

Define

P_(A) =(Em)(¥x)(m>n&(x<n= (xcA ® xew (A™))

Then A =W(A)® ¥n Pn(A) for if (A x)(xe XA &x ¢ W(A)) then
for all n>x Pj(A) cannot hold and if dx(x ¢ A &x ¢ W(A)) then
IAm(xe Wm(Am)) and thus for all n>m Pn(A) cannot hold.
Thus for all n

Pr[A = WA)] = Pr[P_(A)]- Pr[E=wW(A)| P (A)]

and N {Aan(A)} ={A|A = W(A)} . This implies

n=0

lim Pr[Pn(A)] =€

n-®

and hence

lim Pr[A = W(A) |Pn(A)] =1
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Choose n such that n>n

0 implies

0

Pr[A = WA) |Pn(A)] >17/8
Let © be the set of initial segments ; such that

Vx < nj(xe Ay ® xewt(f)(Agm))

and for no proper initial segment of f does the above equation

hold. Then

P_(A) a(@f)(fcOafc f,)
Define P (f) = Pr[f> f] and Pz('f‘) - Pr[A=W(A)|f of] .
Then A
Pr[Pn(A)] = fﬁs Pl(f)
Pr[A=WA)]= T P (f) P,
fc®
and

PI‘[K"W(A)IPAO(A)F(EE& Pl(ﬂ‘%(f»/ée P,(H>17/8

This last expression is a weighted average so there must exist

an f*e® such that
p,["]= Pr[& = W(a)|£,> 1> 17/8

*
Choose any x> £(f ) , then

*
Pr[xeA|fA of]=1/2
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80

Pr(A=WA)&xeAlf, 21 |-1/2 +Pr[A=WQA) &xf Alf, 2 7. 1/2>7/8

hence
Pr[A= W) axcAlf, =" > 3/4
Therefore
Pr[x ¢ W(A) |fA >¢%1> 3/4
but also
Pr[A =W(A) &x{AIfA:f*] > 3/4
Therefore

Prlx ¢ WA)|f, >¢] > 3/4

is a contradiction. Thus we must have Pr[A = WA)]=0 and
hence Pr[AIe._A] =1. U

After the author had communicated this result to Dr. Case,
Dr. Case devised a new and more difficult conjecture. Once
again Case has conjectured correctly. It will be interesting to

see what his next conjecture will be.

THEOREM (Case's Conjecture II) The measure of the quasi-

minimal sets is one. Where 2 et A is quasi-minimal if whenever

g<A, where g isa total function, then g is recursive.

Proof. A set is said to be a total function if it is the diagram of
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a total function.

Suppose the measure of the quasiminimal sets is not equal to
one. Then there exists a recursively enumerable set W such
that

Pr[W(A) isat.n.r.f.]=¢€>0

where '"t.n.r.f." and "t.n.r.0-1f." shall be abbreviations for

"total non-recursive function' and "total nonrecursive 0-1 function"
respectively. Let W!' be the recursively enumerable set which

as an enumeration operator when given <n,m> as input gives output
<<n,m>,1> and <<n,m'>0> for all m'# m . Then clearly

W'(B)is a t.n.r.0-1f. # B isat.n.r.f. .
Let T be such that forall X
T(X) =W'W(X)
Then

Pr[T(A) isat.n.r.0-1f.]=€>0

By the countable additivity cf the measure there exist

5f. such that

recursive functions f -1

0’...
Pr[T(A) is a recursive total function and (Vi< i')(T(A);(fi)] <e/20

Define S to be the set of initial segments f such that

i) T‘( )(AA) is a total function up to n, i.e.
Vx < n Ty (<x,y> ¢ THE )(A» )) .

i) T‘(g)(Af)ﬁ £ all i<



iii) i) and ii) do not hold for any proper initial segment

)

of
We say a set A has property Pn , L. e, Pn(A) , if
qIfe Sn( £ fA) .
Then
]
Pn(A) =V¥n'<n P, (A)

~P_(A) = Yn' >n ~P_(A)

and
Q(A) =¥n Pn(A) ®((T(A) is at.n.r.f.) V(T(A) is a total
recursive function & Vi< it (T(A) # fi)))
Therefore Pr[Q(A)] = Pr[Q(A)|Pn(A)] . Pr[Pn(A)] and since
Pr[Q(A)] > € >0 and

lim Pr[Pn(A)] = Pr[Q(A)]

not o

we have

lim Pr[Q(A)an(A)] =1.

n—-®

Choose n, such that Pr[Q(A)IPn (A)]=2.9. Now
. 0

Pr[T(A) is a t.n.r.f. |Q(A)] > 20/21

and thus since Q(A) =P (A)
0

Pr[T(A) is a t.n.r.f. |Pn0(A)] > .8
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By the same reasoning as in the previous proof, there must exist

some particular f¥e Sn such that
0

Pr[T(A) isat.nr.f|f, 2£]>.8 .

Let P;s q and 6i be such that

P.

;= Pril<i, 6 > €T(A)]£, 2 £*] >

Pr[<i, (1-6,) > € T(A)|f, > £*]

Vel
"

Note that by the choice of T 6i will always be 0 or 1.

The p;,q; and Gi are well-defined for all i and can be
found recursively since

.9< Pr [T(A) is a well-defined total function IfADf*]
< Pr[T(A) is well-defined at il|f A> £

< Pr[<i, 0> € T(A) &<i, 1> £ T(A) | f,° £* ]

+ Pr[<i, 0> € T(A) & <i, 1> € T(A)IfA Df¥]
< p; (1-q;) +q; (1-p;) = p; + q; - 2p;q; .
The last inequality holds because
Pr[<i, 6> € T(A) A<i, i-6,> ¢ T(A)lfADf*]
= Prl<i, 6, > € T(A)]£, =l

Pr(<i,1-6,> ¢ T(A) |<i,8,> € T(A) & £, £*]



=Pr[<i, 0, > € T(A) |fA > %]+ (1-Pr[<i, 1-6.>¢ T(A)]<i, 6.>¢€
*
T(A) &£, Of ]

and

. : *
Prl<i, 1-6,> € T(A)|<i, 6,>€T(A) &1, 2f]

. %q _
>Prl<i,1-6.> € T(A)lfA of"]=q, .

This final inequality holds because T is an epum eration operator.
The condition <i, 51 > € T(A) only forces A to contain more members
which by the monotonicity of enumeration operators makes it more

likely that <i, 1'61> € T(A).
So, by elementary calculus, P, >.9 and q; < .l. Define
g = {«i, di >{i € N}, then g is a total recursive function.
Let p: = Pr[ i < n =<i, 0].>€ T(A)lfA Df*] . Then
.9 < Pr[T(A) is a well-defined total function IfA Df*]
< Pr[T(A) is well-defined for all i< n|f, >f]

< Prli<n=(<i, 6> € T(A) &<i, 1-0.> £ T(A)|£, =T

+ I Prl<i, 1-0>€ T(A) &<i, 0.> £ T(a)[f, >£*]
i<n 1 t

< Prli < n=<i, 8>€ T(A)| £, >5f7] -

Prli<n=<i,0>¢ T(A)] i <n=<i,6>€T(A)&1, of']

* . A
+i§n(Pr[<i, 1-6> € T(A)|f, 2f']- Pr<i, 6> ¢

T(A)|<i, 1-6i> € T(A) &f, £*1)
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* *
<p. (1-Z q)+ & (q,+(1-p
-n i€ n 1) i<n ! n 2

* %
<p,+% q-2.p - q .

lf_n i<n 1

* *
So as before either [pn >.9 and Zq < .1] or [pn—<- 1 and
%* i<n N "
ifnql Z . 9]- But Po = po Z . 9 and for all n pn 2 pn-l . pn and thus
= *
by induction P, >.9.

Thus
£
Pr[T(A) = g|fA3f*]2 Pr[ Vi <i, Gi> € T(A)lfADf IE

A«
Pr[T(A) is a well-defined total function ‘fA °2f1>.9-.9>.8 .
Since g 1is recursive this implies

*
Pr[T(A) is a t.n.r.f. |fADf ]<.2.



Therefore

.8 < Pr[T(A) isat.n.r.f. £, Df*]_g .2
which is a contradiction, and it follows that the measure of the

quasi-minimal degrees is one. MM

A different way to see that '"most" sets are quasi-minimal
is through the concept of category. See Rogers [1967] p.271.
C is made into a2 complete metric space by giviﬁg it the usual

Cantor set topology.

THEOREM. The quasi-minimal sets, and hence degrees, are of

second category in Cantor space.

Proof. We want to show that

{Alze(W_(A) is a t.n.z.9)}

is of first category in C. It is sufficient to show that for any
given r.e. set W, 8= {AIW(A) isat.n.r.f.} is nondense.
Suppose not, then there is some spherical neighborhood

S = {flf ) fo} which is contained in the closure of 8. Every
neighborhood contained in © must therefore intersect 8. Thus
for any £> ?0’ W(Af) must be a well-defined partial function,
otherwise if fDf then W(A f) can not be a well defined total

function and the neighborhood {flf Df} € © cannot intersect 8.

of of
Suppose W(Afl)#W(Afz) where f Sf, f, f, and

i f cf c ct c
fl,fzeﬁ . Then there exist f0 f1 fl and fo fz :E2
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such that
(In)(Am)(Im')(m #m'&<n,m> ¢ W(A‘f )&<n,m'> ¢ W(Af ))
1 2

Let f be defined as follows

1 if fl(x) =1 or fz(x) =1

f (x) =i
0 otherwise if x < max (L(fl),z(fz))

Then f D EO and W(Ag) is not a well defined partial function since

it contains both <n,m> and <n,m'> .,

Therefore, W(Af) can have only one value if fe & and

f ¢ 8 , but the only value it can have is

wia,)
where
f (%) if x< ()
f'(x) = 0 R 0
1 if x> ()
and W(Af,) is an r.e. set so if W(Af) is a total function then

it is a recursive total function which is a contradiction. Therefore

8 is nondense and the quasiminimal degrees are of second category. m
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