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ABSTRACT

An analogue of the Frobenius Reciprocity Theorem is proved
for virtual groups over a locally compact separable group G. Specif-
ically, an ergodic analytic Borel G-space M(Vr) is constructed from
a virtual group V and a homomorphism m: ¥V > G of Vinto G. This
construction proves to be functorial for the category of virtual
groups over G; in fact, it is a left adjoint of the functor which
takes an ergodic analytic Borel G-space T into the virtual group
T x G together with projection o: TxG6G - G onto G. Examples
such as Kakutani's induced transformation and flows under functions
show the scope of this construction.

' A method for constructing the product of two virtual groups
is also presented. Some of the structural properties of the product
virtual group are deduced from those of the components. Finally, for
virtual groups ' V1 - G1 and ot V, - Gz over groups G] and

2
G2 respectively, the adjoint functor construction applied to
™ X nzz,V] x ¥y + Gy X G2 is shown to give the product of the
G1-space derived from my: V1 + G] and the Gz-space derived from

ot V2 + G, , up to suitably defined isomorphism.
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1. Introduction

In this brief introduction, we shall try to put into its
proper historical perspective the main result proved in this paper.
The present work can be viewed as the confluence of two different
trends in modern functional analysis. The first is classical ergodic
theory, whose main aim can still be considered to be that of classify-
ing measure preserving transformations by extending the methods of
spectral theory. It is well known that the classification of measure
preserving transformations with discrete spectra is the only classifi-
cation that has been complietely achieved by spectral methods in
Hilbert space. For more general measure preserving transformations,
the sole innovation since the study began with Von Neumann in the early
thirties has been the introduction of the notion of entropy. This
notion has been moderately successful in giving a new invariant of
measure preserving transformations which can distinguish several
conjugacy classes, but the reason why i£ works remains unclear.
Furthermore, aside from entropy, no new invariant for the conjugacy
problem of measure preserving transformations has come to the surface.
It seéms rather that the problem of conjugation of meaéure preserving
transformations will turn out to be as difficult as the problem of
conjugation of arbitrary bounded operators in HiTbert space.

The second trend is the theory of group representations,

which has been far more successful than ergodic theory ever since the
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methods of functional analysis were first applied to it by Weil,
Segal, Mackey and others. More recently, several notions of the
theory of group representations have been considerably streamlined by
the methods of categorical algebra. See for a survey the paper of

- Lawvere [4].

It was Mackey who first brought to the attention of the
mathematical public the possible analogies between group representa-
tions and group actions, and the possibility of carrying over to the
study of group actions -- in particular, those associated with measure
preserving transformations -- various of the notions formerly used
only for linear representations. The work begun by Mackey, 1in a series
of rather cryptic notes, has only recently been expanded and given a
coherent form in the work of Ramsay. By ingenious ad hoc methods,
Mackey was able to show that several of the "constructions” classically
used in measure theory could be greatly extended by using analogous
notions from the theory of group renresentations. Nevertheless, in
Mackey's budding theory these "constructions” remained isolated
coincidences.

| It is our purpose to show that at least one of Mackey's
constructions, perhaps the most important one, can be greatly extended
and given a complete explanation within the context of categorical
algebra. In fact, we will go one step further to give an analogue of.
the Frbbenius Reciprocity Theorem for group actions, namely actions
of groups on measurab]e spaces as defined below.

It has been known for some time that the Frobenius Reciprocity
Theorem is a particular instance of the construction~of the adjoint of

a certain functor, namely the restriction functor of a representation.
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We take thié as our background, and we show that with suitable defini-
tions and constructions one can similarly construct the adjoint
functor of an ergodic group action. We have been fortunate enough to
carry through the complete formulation of this idea, despite a large
number of measure theoretic details, which at present remain quite
extensive, but which we hope that later workers in the field will be
able to whittle down.

We give several applications of our construction to show
that it is indeed an extension of the reciprocity theorem. Perhaps |

the most enlightening application is the one that gives us the con-

struction of a flow under a function.

In closing, we take the liberty of guoting Richard Kadison,
who in a recent conversation expressed his view that virtual groups
will in time become as essential to functional ana]ySis'as the notion
of continuous spectrum. We hope that the present work is a humble

beginning to this program.



"II. Virtual Groups and Their Functorial Properties

Recall that a group is a small category with one object,
where every morphism has an inverse. A groupoid is a small category
where every morphism has an inverse. In a groupoid V the set of objects
can be identified with the unit morphisms. For every morphism f e v

denote the inverse of f by £ 1. Then £

is the left unit of f and
| .

f 'f is the right unit of f.
~ We refer to Moore bages 2-18 [9] for the definitions of the
measure theoretic and Borel space terms appearing hereafter. An ana-

Tytic Borel groupoid is a groupoid V, together with an analytic Borel

space structure on the set of morphisms, and a measure class C such
that: a) The domain D of composition of two morphisms is a Borel sub-
set of V x V , under the product Borel structure. b) Composition

(f,h) -~ fh and inversion f » £

are Borel maps from D to V and V
to V>respect1ve1y. c) Inversion leaves invariant the measure class C,
i.e. takes null sets into null sets.

Condition d) must be prefaced by a few explanatory remarks.
Let U denote the collection of units of V. Then U is a Borel subset of
V and hence forms an analytic Borel space under its relative Borel
structure. (See Chapter 4 of [13].) The right unit map d: V » U and
the left unit map r: V » U are both Borel. d: V- U induces a mea-

sure class C on U, setting u(A) = p(d-](A)) for u in C. Any p in C

satisfies wu =~jrusdﬂls) , where ug is a measure on V 1iving on d—1(s),
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and for a fixed Borel set A in V, the function s - uS(A) is Borel on
U. The fjbering js unique: if wu = J/;Sdﬁls) , then Ve T g for

T - almost all s; furthermore, changing u to an equivalent measure does
not change the measure class of . for C - almost all s; this leads to
measﬁre-c]asses CS on almost all fibers d—1(s). d) For s e U and
r(f) = s the map h - hf carries d_1(s) bijectively to d_1(d(f)) and
CS to Csf. We require that Cr(f)f = Cd(f) for all f with r(f) and
d(f) in some co-null (complement of a null) Borel set Vo of U.-

Before defining virtual group we call attention to the fact
that the measure class C on U can be equally well defined by r: VU,
setting u(A) = u(r'1(A)) for u in C. This follows from the invari-
ance of C under inversion. Moreover, each u in C has a fiber measure
decomposition with respe;t to vr: V->U; this leads to measure
classes on almost all the fibers r"](s) and a condition equivalent to
d) concerning the invariance of the fiber measure classes with respect
to transformations h » fh .

An analytic Borel groupoid (V,C) is said to be ergodic when-
ever every real Borel function ¢ on the set of units U such that
¢(d(f)) = ¢(r(f)) for almost all f in V is C-almost everywhere con-

stant. For short, an analytic Borel groupoid is called a virtual grbup.

In a virtual group (V,C) let U be a T - co-null Borel subset
of U. Taking all f ¢ V such that both d(f) and r(f) are in UO, we

obtain another virtual group, the inessential contraction (abbreviated

i.c.) VIUO. Again, say that two units u and v are equivalent when
d(f) = u and r(f) = v for some f in V; if A CuU, write [A] for
the saturation of A (set of units equiva]ent to some unit of A) under

this equivalence relation; note that [A] = r(d-](A)) and that [A] is
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analytic if A is a Borel set.

An analytic Borel groupoid (V,C) is termed essentially tran-

sitive whenever there is a unit u in U whose saturation [u] is co-null

in U. An essentially transitive analytic Borel groupoid is ergodic,

but not conversely. (V,C) is termed essentially principal whenever

there is a co-null set of units U0 such that for every u in Uo’

{f ¢ V: d(f) = r(f) = u} = {u} .

A strict homomorphism ¢ between virtual groups (V],C]) and

(VZ’CZ) is a functor from V] to V2 which is also a Borel map, and such

that if v is the associated map of the units U] of V] to the units U2

of V,, then v-T(A) is a E}—nu]] set for every saturated Eé—nU]] set A.

(This apparently different definition is equivalent to Ramsay's. See

Lemma 6.6 of [13].) A homomorphism of (V],C]) to (V2

map whose restriction to some i.c. is a strict homomorphism. Two homo-

,Cz) is a Borel

morphisms ¥ and Uy (V],C1) - (VZ’CZ) are strictly similar if

e(r1(f))w](f) = wz(f)¢(d1(f)) for all f e V1 and for some Borel map
6 U1 > V2 for which both sides are defined, where U], d1, g refer to
the units and unit maps of V]. ¥ and % (Vl,C1) > (VZ’CZ) are simi-
lar if there is an i.c. of V1 on which they are strict1y similar. Simi-
’1ar1ty is an eguivalence relation. Given homomorphisms y: V] > V2

and «: V2 > V3 , the composition «oy may not be a homomorphism. How-
ever there is a homomorphism ¢: V] > V2 similar to y such that weo¢ is
also a homomorphism. (« and ¢ are said to be composable.) Similarity
classes [¢] of homomorphisms y are preserved under composition. (See
Chapter 6 of [13] for a discussion of these delicate points.) Taking

virtual groups as objects and similarity classes of homomorphisms as

morphisms, one obtains a category. Two virtual groups V] and V2 which
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are isomorphic in this category are called similar. In other words,
there are morphisms [k]: V] > V2 and [v]: V2 > V] such that
[vlelk] = [1d]] and [«Jo[v] = [1d2] , where 1d] and 1d2 are the
1dentity'maps on V] and V2 respectively. Similarity of virtual groups
is an equivalence relation.

A locally compact separable group G is a virtual group when
endowed with its Haar measure class. A virtual group V, together with

n

a homomorphism =: V ~ G , briefly Vmr, will be called a virtual group

over G. The Mackey category M(G) of G has the virtual groups over G

as objects, and as morphisms the similarity classes of homomorphisms
which make the obvious triangle over G commute, namely, which commute
with the action of [r].

The category R(G) of ergodic actions of G has as objects the

transformation spaces T of G, namely: a) T is an analytic Borel space;
b) the map (t,x) - tx of Tx G - T 1is Borel; c) T has a measure

class C which is invarfant under the set of Borel automorphisms t - tx;
d) (T,C) is ergodic: the only invariant Borel sets are null or co-null.

The morphisms of R(G) are equivalence classes of maps, as follows: T]

and T =T such that:

1 2
a) there is a co-null invariant analytic subset of T] on which ¢ 1is

5 being objects, consider all Borel maps ¢: T

G—equivariaht, i.e. ¢(tx) = ¢(t)x 3 b) if N is a null invariant set

in T,, ¢'](N) is null too. Two maps ¢ and y are equivalent if there is

a Borel map a: T] ~ G such that ¢(t)a(t) = y(t) and a(tx) -

x-]a(t)x for all t in some co-null invariant analytic subset of T1.
This equivalence is preserved under composition of maps; the equivalence

classes [¢] are the morphisms of R(G). Note here and for future refer-

" ence that the collection of analytic sets is closed under intersection
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and the %ormation of images and inverse images under Borel maps between
analytic spaces.

o Before starting the proof of our main theorem, we must ex-
pand on Mackey?s method of turning an ergodic G-space into a virtual
group over G [5, 6]. The kernel of the idea is és follows: For a
given ergodic action of G on T, give T X G the prbduct Borel structure
and product measure class and define n:‘T x G - G as projection
onto G. Defining (s,x)(t,y) = (s,xy) whenever sx =t gives TxG
a groupoid structure whose units can be naturally identified with the
set T. (The set of units is really T x {e} , where e is the identity
Yof G.) This constructioh maps the objects of R(G) into the objects of

the Mackey category M(G).

Theorem 1: There is a functor R: R(G) - M(G) extending the above
construction, which is faithful on objects and morphisms and whose image
is a full subcategory of the Mackey category.

Proof: Given a morphism class [¢]: T] > T2 in R(G), let us
define a similarity class of homomorphisms R([¢]): R(T]) - R(T2) in
M(G); First observe that the Borel map (t,x) > (o(t),x) = R(¢)(t,x)
is a homomorphism between R(T1) and R(TZ)‘ Now if i Ty~ G provides
an equivalence between the two R(G) maps ¢ and y, then
(6(8)2x) (6(tx), a(tx)) = (6(£),a(E))(u(t),x) on some i.c. of R(T}),
and s0 t - (o(t),a(t)) implements a similarity between‘R(¢) and R(y).
Thus [R(¢)] = R([¢]) gives a meaningful definition. It is relatively
simple to check that R preserves thé composition of morphisms.

R is clearly faithful on objects. To demonstrate‘that R 1s

faithful on morphisms, it suffices to prove that if ¢,¥: T1 ~ Tp are



-13-

R(G) mapé such that R(¢) and R(y) are similar, then ¢ and y are equiva-
Tent. With this in mind note thaf (¢(t),x)(e(tx),8(tk)) =
(8(t),e(t))(y(t),x) on some i.c., where t > 6(t) and t - g(t) are
Borel mabs. Obviously ¢(t) = e(t) here, so that o(t)e(t) = w(t) .
Furthermore, B(tx) = x'1B(t)x on this i.c. Considering G to be a
G-space with action defined by y-x = x_]yx , one can replace B by a
Borel map a: T1 > G which agrees with 8 except on a null set and
which is G-equivariant on an invariant analytic co-null set of T].
(Use the proof of Theorem 3.6 of [13].) Thus there is a common invari-
ant analytic co-null set A where ¢, ¥ and o are all G-equivariant.
Since o¢(t)a(t) = y(t) almost everywhere, ofne can reduce A‘to a set B
with the same properties such that o(t)a(t) = y(t) for all teB.
To show that R maps onto a full subcategory assume

K R(T]) > R(T,) is a M(G) homomorphism. Let =, (i =1,2) be the

2
projection of R(Ti) onto G. Then there is a Borel map ¢: T] +~ G and
an i.c. of R(T1) such that « is strict and FZOK(t,X)e(tX) = G(t)ﬂ](tﬁ).
Put «(t,x) = (o(t,x), 6(t,x)) and Took at «((t,e)(t,x)) . It fol-
Tows first that o(t.x) = o(t,e) on the i.c. and second that the Borel
map -(t;x) > (o(t,e), s(t,x)) is a homomorphism agreeing with « there.

Define a homomorphism y similar to « by

(t,x) > (o(t,e)e(t), 6 (£) N (t,x) (o(tx,e)6(tx), o(tx)")"!

= (t,x)
on the i.c. and constant elsewhere. Then wzow(t,x) = n](t,x) = X

and a glance at w((t,x)(tx,x_1)) reveals that ¥(t) = o(t,e)e(t)

satisfies o(t.e)e(t)x = o(tx,e)e(tx) on the above i.c. By the
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proéf of Theorem 3.6 of [13] there is a Borel map n: T] - T2 which
agrees with t - o(t,e)o(t) except on a null set and is G-equivari-
ant on an invariant analytic co-null set. Thus R(n) agrees with ¢ on
an i.c. énd <o is similar to x. This completes the proof of the

theorem.



III. The Adjoint Functor Theorem: Statement and Proof

Theorem 2: The functor R has a left adjoint M.

‘The proof is long and will be broken intc a series of prop-

ositions. M will also be called the Mackey Functor.

Proposition 2.1: Given a virtual group Vr over G one can construct an
ergodic analytic Borel G-space M(Vr).

Proof: By passing to an i.c. if necessary, one can assume
that m is a strict homomorphism. For convenience choose a specific
finite measure v in the measure class of V. v will denote the measure
induced on the units U of V by the right unit map d.

The product space U x G is an analytic Borel G-space under
the G-action (u,x)y = (u, y-]x) . Let u be a finite measure in the
Haar measure class of G. Then the product measure v X p 1s quasi-
invafiant under the action of G. To see this apply Fubini's Theorem
and the quasi-invariance of u. Next define an equivalence relation v
on U x G which commutes with the action of G. (u,x) ~(w,y) iff
(r(f),x) = (u,x) and (d(f), xu(f)) = (w,y) for some f e V . Call
a set A in the collection of equivalence classes U x G / measurable
iff A (when viewed as a set in U x G) differs from a Borel set in
UxG by anull set. The family of measurable sets of UxG/n
forms a o-algebra. Furthermore, U x pu induces a measure class on the

measurable sets of U x G / ~ which is complete, i.e. every set which

-15-
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is contained in a null set of U x G / ~ 1is itself measurable. From

here on U x G / ~ will be considered with the Borel structure of mea-
surable sets and the induced measure class.

Next note that the measurable sets in U x G / " give rise
to a G-invariant closed subalgebra MA(U x G / ~) of the measure algebra
MA(U x G). Equivalently, MA(U x G / ~) is the closed subalgebra of
MA(U x G) generated by the measurable sets in U x G which are saturat-
ed with respect to . Since every closed subalgebra of a standard mea-
sure algebra is standard, Theorem 3.3 of [13] implies the existence of

a standard Borel G-space M(Vm) equipped with an jnvariant measure class

such that its associated measure algebra is isomorphic as a Boolean

G-space to MA(U x G / ~). M(Vr) is the standard (hence necessarily
analytic) Borel G-space we are seeking.

It remains to demonstrate that the action of G on M(Vr) is
ergodic. Clearly it is enough to show that the action of G on
MA(U x G / ~) is ergodic. (See [9] for a discussion of the equivalent
notions of ergodicity on analytic Borel G—spaces.) Thus let D be a
measurable set in U x G which is the union of ~ equivalence classes
and satisfies v x u(DaDx) =0 for all x e G , where "A" denotes
symmetric difference. Since U x G 1s an analvtic Borel G-space,
there is a Borel set F with v xu(FaD) =0 and F=Fx for xeG.
It is not too difficu]t to see that F must be of the form B x G ,

where B is a Borel set in U. Compute as follows:

0= J S 1gglunx) - xplux) [d5(u)dn(x)

=J/V/ﬁlxgxa(d(f)sx) - xp(d(F) %) [dv(F)du(x)
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11y (F) = xpld() ) [ (£ (x)
gy - 00, (T s (a0

where the last equality is a consequence of the fact that D is a union
of ~ equivalence classes. Applying Fubini's Theorem and the quasi-

invariance of u to the last egquation above gives

0 ‘=‘/-f|Xd_'| (B)(f) - XD(Y‘('F),XHd\)(‘F)du(X) *.

1

Similarly, the quasi-invariance of v under f ~ f~' and Fubini's

Theorem imply
0= [ J1ge1my(FT) = xp(a(FT)x) v (F)du(x)

=./:[|Xr‘1 (B)(f) - XD(Y‘(‘F),XHd\)(f)du(x). *%.

Adding * and ** yields

0 = f S 1xpm1(g) () = xge gy (9 1@v(Flautx) -

Hence for some x xb(d(f)) = XB(r(f)) for almost all f. Because V is
ergodic B must be either null or co-null. It follows that F and D are

| null or co-null.

Remarks: Suppose V|Uo is an i.c. of V and “o is the restriction of the
equivalence v to UO x G . Then the closed subalgebra of MA(U x G)
derived from measurable sets in U X G/ is the same as the one
derived from U x G / ~ . Hence M(Vr) and M(VlUOwo) are the same, where

1, is the restriction nlvluo.
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Note also that we'are using a strong form of the axiom of
choice in defining M(Vn). Indeed, there may be many analytic Borel
G-spaces with measure algebras which are o-isomorphic as Boolean
G-spaces'to MA(U x G / ~). We select precisely one such space and one
G-equivariant o-isomorphism between its measure algebra and MA(U x G /&).

See [11] for a discussion of this strong form of the axiom of choice.

Proposition 2.2: Given the morphism [k]: V 1™ v,

can construct a R(G) morphism M([«]): (V]n]) - M(V,m

The proof will be given as a sequence of three lemmas. In
What follows the sets of units, the unit maps, and the ~ equivalence
relations for V1n] and V2ﬁ2 will be distinguished by numerical sub-
scripts, e.qg. U] will denote the set of units of V1. Those homomor-
phisms in [«] which are not composable with s will be disregarded.
This, along with the first remark above, allows us to take Tys Tos and

k Strict.

Lemma 2.3: If e(rl(f))ﬁzoK(f) = n](f)e(d](f)) holds on some i.c. of
V1, then there corresponds. a homomorphism M(Ke): M(V]ﬂ]) - M(Vzwz).

Proof: Passing to an i.c. we can assume TooK strictly simi-
lar to i via 6. Consider the Borel map (u,x) - (k(u), xe(u)) = a(u,x)
of U] X G to U2 X G . o is G-equivariant and factors through the

equivalence relations to give a map U] X G/ v U, x G / Vo

2
Indeed, (ry(f),x) - (c(ry(f)), xe(ry(f)) = (ry(x(f)), xelry(f)))
vy (dy((F)), xe(ry (F))npok(F)) = (c(dg (F)), xmy(fle(dq(F))) and
(dy(£), xmy(f)) ~ (e(dy (F)5 xmq (F)o(dq (F))).

To show that the factored map induces a G-equivariant o-homo-
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morphism_rMA(sz G,/¢2) - MA(U] x G /m1) it is necessary to prove that
the inverse image of a null set in A in U2><G /m2 is null. It is
also necessary to show that the inverse image of a measurable set is
measurable. Consider the first condition. Viewing A as a set in

U2 x G, {uce UZ: AY is not null} is clearly null. Here AY means the
section {x e G: (u,x) €A} . Also since AdZ(f),= Arz(f)nz(f) ,

fu: AY is not nul1} is saturated in U2. Because « is a homomorphism,

Tu: AY is not null} is null. Now {u e U;: u'](A)u is not null} =

1
o {u e Up: AY is not null} because a'](A)u = {xeG: (x(u), xo(u)) eA} =
AK(u)e(u)“1 . Finally Fubini's Theorem yields that a—1(A) is null.

As for the second condition Tet B be a measurable set in
U2 x G which is saturated with respect to Vo Then there is a mz—sat-
urated set A in U2 x G which is analytic and which differs from B by
a null set. (See the first part of the proof of Theorem 7.11 of [13].)
The inverse image of A is analytic in U1 x G and hence measurable.
Furthermore, the inverse images of A B and B A are null and thus
also measurable. If we write B as (AN (AN B)) U (BNA) , it follows
that the inverse image of B is measurable too.

To complete the proof of the lemma simply apply Theorem 3.6
of [13] to the induced G-equivariant o-hdmomorphism MA(U2 x G/ mz)

> MA(UL X G/ )

Lemma 2.4: If G(P](f))ﬂZOK(f) = n1(f)6(d](f)) also holds on some i.c.
of V], then M(Ke) and M(Ks) belong to the same morphism class.
| Proof: By passing to an i.c. assume that both 6 and & pro-

vide a strict similarity between MoK and - Now note that

(<(u), x8(u))xe (u)s(u)”

-
H

s ((u), xs(u)e(u) X Txe (u) = (k(u), xs(u)).
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Thé"Borelwmap (u,x) » xé(u)&(u)_]x'] is constant on ~, equivalence
classes because (r (f),x) - xe(r (f))a(r (£))"1x"V while
(dy (F), xry (F)) = xaq (F)o(dy(F))e(dy (F))Tmy (F)Tx7T =
x8 (i  (F ))HZOK(f) Lo (£ T8 (E) T = xa(ry (F))slry (1) 7'x7T
Furthermore (u,x)y = (u,y~1x) +-y_]xe(u)6(u)'1x'1y . Hence (u,x)
s x6(u)s(u)- Tx-1  factors to give a Borel map 8: U]x G /“ﬂ > G
which satisfies 8(sx) = x B(s)x .

Before dealing further with 8, observe that Theorem 2.1 of
[13] indicates the existence of a Borel map from U,x G/'ﬁ to M(V]w])
which induces the G-eguivariant o-isomorphism between their respect1ve
measure algebras. This map can be regularized by the process of Theo-

rem 3.6 of [13] to give a measurable (in this case necessarily Borel

too) map ATE Uy x G /m] > M(V w]) which is G-equivariant on an invari-

ant co-null set. The same reasoning gives a map Ly U2x(5/q? >
M(V 5 2) with similar properties.
Let Ny U]XG /m1 ‘—> szG/m2 and N U]xG/w] -

U2)<G /wz be the maps which result from factoring (u,x) - (k{u), x8(u))
and (u,x) > (k(u), x8(u)) respectively. Affixing an * to a map to
denote the induced o-homomorphism, the following relations clearly
hold: M(Ke)* = 1]*_]°ne*012* and M(KG)* = 1]*_ °n6*°12*‘. If G is
given the G-space structure discussed in paragraph 2 of Theorem 1 and
the measure class induced by 8 from U1 X G/ "~ then 11*'106* can
be used to define a Borel map a: M(Vyn) > G which satisfies
a(tx) = x-]u(t)x on some invariant analytic co-null set. This is again
a consequence of Theorem 3.6 of [13]. By definition o* = 1]*'105* .
Putting the aboVe facts together, there is some common in-

variant co-null set where M(Ke)°F] = 1,0Mg s M(Ké)°1] = 1,0m5 o
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actly = B and the following computations work: M(Ke)°l](5)u01](5)
M(icg)o1y(s)e(s) = Mlcy)otq(s8(s)) = 1yom (s8(s)) = 1,(n(s)e(s))

= 12°n5(§) = M(K6)°1](S) . Hence M(Ke)'a = M(KS) almost everywhere

as contended.

Lemma 2.5: If ¢ is a homomorphism similar to «, then M(we) is equiva-
Tent to M(Ke) for every choice of e.

Proof: Suppose without loss of generality that 6(r](f)k(f)
= w(f)a(d](f)) is a strict similarity between the strict homomorphisms

k and ¥. Since B(T](f))ﬂ2°K(f) = n1(f)e(d](f)) and v, is taken

2
strict, it follows that e(r](f))wz(d(r1(f)))']°ﬂg°¢(f) =

w](f)e(d](f))nz(é(d1(f)))'1 . Because (w(u), xe(u)nzoé(u)']) =
(ry(s(u)), XG(U)ﬂ2°5(U)']) vy (dy(8(u)), Xe(u)ﬂgﬁ(u)']ﬂ2°5(u)) =
(k(u), x6(u)) , the two maps (u,x) > (w{u), xe(u)wzoﬁ(u)'1) and
(u,x) > («(u), xo(u)) factor to give the same map U1><G /m] >

UT X G /“2 . Finish the proof by applying the result of the Tast lemma.

Proposition 2.6: If [«k]: V]w] - Vz“z and [vy]: Vz”z - V3n3 are
M(G) morphisms, then M([y]e[«]) = M([w])°M([«]).

Proof: Assume that ¢ and « are composable and that all homo-

morphisms and similarities are strict. From the two relations

ez(rz(h))“3°¢(h) = Wz(h)ez(dz(h)) and e] (r] (f))ﬂzoK(f) = ﬂ](f)ﬁl(d](f))
follows the relation 6](r](f))ezoEKr1(f))w3o¢°K(f) =

n](f)e](d](f))GZOE(d](f)) . Observe that the Borel map (u,x) -~

(vex(u), xe](u)ezoz(u)) from U; x G to U; x G 1is the composition

of the two Borel haps (u,x) > (x(u), xe](u)) and (w,y) - (E(w),ysz»

from U] x G to U2 x G and U2 x G to U3 X G respectively. The
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same,statement can be made for the corresponding factored maps. This
behavior is transferred to the induced o-homomorphisms and from there

to the resulting B(G) homomorophisms.

Proposition 2.7: Given the morphism [x]: Vr - R(T) 1in M(G), where
T is a G-space in R(G) and p: R(T) = G is the canonical projection
of T x G onto G, there is a R(G) morphism [«]": M(Vr) - T .

Proof: Suppose k is strict and e@(f))poK(f) = 1 (fle(d(f)) is a

strict similarity. The Borel map (u,x) - EKLO@(UYJX'] from Ux G toT

is G-equivariant and constant on ~ equivalence classes; for (d(f), xn(f))

> TEEN e @) (YK = T (F)elr ()T T n(F)e (d(£))8 (d(F) N (£

<o

= Tr (e r(F) X! because «(F) = (F(r(£)), o(r(F)) T (f)e(d(f))) .

Hence (u,x) - EKu)e(u)_1x_1 factors to give a G-equivariant Borel

map UxG/ n~ > T . To show that the inverse image of a null set is

null under this map note that we are just dealing with the composition

of (u,x) > (k(u), x6(u)) from UxG to TxG and (t,v) - ty_]

from T x G toT. If N is null in T, then {(t.y): ty™! ¢ N} is null
in T x G and saturated with respect to the equivalence relation
induéed on T x G by op. Now argue as in Lemma 2.3 that the inverse

-1 e N} under (u,x) = (¥(u), xe(u)) is null too.

image of {(t.y): ty
These facts permit us to conclude from Theorem 3.6 of [13] that there
is some homomorphism kgt M(Vr) -~ T .

As in Proposition 2.2 one must check to see if changing 6
changes Ké‘only up to equivalence. So let &(r(f))pex(f) = n(f)s(d(f))
be a second strict similarity. Then (u,x} - E(u)e(u)-]x'] is relat-
ed to (u,x) - E]u)a(u)'1x_] by wwe(u) 'k (xeu)s(u)Tx )

= E(u)é(u)_]x'] . Now argue almost exactly as in Lemma 2.4 to conclude
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thatAKé‘éﬁd Ké‘are equivalent.

Finally let us. check that replacing « by a similar homomor-

phism y also Teads to an equivalent result. Suppose s(r(f))c(f)

p(f)s(d(f)) 1is a strict similarity. Then 6(r(£))o(s(r(f))) Toouy(f)

ﬂ(f)e(d(f))p(é(d(f)))_] . Because ¢(u)pos(u) = x(u) , the two

maps  (u,x) - r(wo(u) Tx=1 and (u,x) - T(u)oos(u)e(u)-1x=1 are

identical. Hence they factor to give the same map U x G/ v T

Proposition 2.8: Given an R(G) morphism [v]: M(Vr) - T, where Vi
is a virtual group overG, there is a M(G) morphism [w]#: ¥Yr -~ R(T) .
Proof: Let us first observe that there is amap e: U X G
s> M(Vr) belonging to some R(G) morphism class such that the induced
g-homomorphism ¢* gives the natural inclusion of the measure algebra
over M(Vr) into the measure over U x G . Consider the R(G) map
poe: UxG > T . Because G acts essentially only on the G part of
Ux G, one can reduce U by a Borel null set if necessary until yee is
G-equivariant on all of U x G . Then by the lemma below it follows
that poe(r(f),e)n(f) = vee(d(f),e) for all f in some i.c. of V,
where e is the identity of G. (The proof of the lemma is postponed so
as not to break the flow of our argument.) Again suppose that the
necessary i.c. has been made and the relation holds for all f e V .
Next let us define a homomorphism v# in the similarity class
[v]#. ﬁ#(f) = (poe(r(f),e), n(f)) . First, it is obvious that

ooyt = m , where p: R(T) » G 1is projection onto G. Second,

ot (Fh) = (poe(r(fh),e), n(fh))

(woe(r(f),e), n(f)n(h))
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(voe(r(f),e), n(f))(yoe(r(f),e)n(f), n(h))

(11)°€(Y‘(f) ,E) ’ ﬂ(f))(¢°e(d(f) ,E) s 'IT(h))

(vee(r(f),e), n(f))(yeelr(h),e), n(h))

FE) et (h) .

Last of all E#‘1(N) = {u e U: yoe(u,e) € N} is null for N an invariant
null set in T. Indeed, since {(u,x): yoe(u,x) e N} is null, Fubini's
Theorem implies j{u: ¢°€(U:XO) e N} is null for some X, € G . But
{u: vee(u,e) € N} = {u: woe(u,xo) e N} because Nxo'] =N . |

To complete the proof of the proposition let « be a homomor-
phism equivalent to y. Then «+a = 3 for some o: M(Vx) -~ G , and

poe(u,x)ace(u,x) = xoe(u,x) defines an equivalence between ¢°e and «kee.

On some i.c. one can compute as follows:

(coc(r(f),e), aoe(r(f).e) )yt (f)

(oe(r(f),e), aoe(r(f).e)” ) (poc(r(f),e), n(f))

I

(ko (r(£),), m(F))lcos r (F),ehn (7l n(FT aoe (r(Fe T )

HFF) (coe(d(F),e) 5 [n(F) Taoe(r(f),e)n(£)I17)

FE) (coe(d()e), aocl(d(F)e)) .

Here the lemma below has been applied tok°c and ace. Since «* and i

are similar, definingv[w]# to be [v#] makes sense.

Lemma 2.9: Let n: M(Vr) - S be an R(G) map, where Vr is a virtual

group over G. If e: UxG - M(Vn) is the R(G) map of the last prop-



-25-

osition, then noe(r(f),e)n(f) = nee(d(f),e) for all f in some i.c. of
V. | |

Proof: Assume noe is G-equivariant on U x G . Introduce
Bore1'mabs dG: Vﬁ(G - UxG and ret VxG - UxG given by dG(f,x)
= (d(f), xn(f)) and rG(f,x) = (r(f),x) . Obviously dG(f,x) and
rG(f;x) belong to the same " equivalence class. Furthermore, if B is
null, then dG'](B) and rG'](B) are null. For re this is clear; for dG
observe that {(f,x) e Vx G: (d(F), x(f)) e B = ((F,x): xe B (F-Du(f-T);
and use Fubini's Theorem.

Next take a countable collection of Borel sets {An}'in S
which separate the points of S and Tet Bn = 5‘1(n'](An)) . Due to .
the definition of e, Bn is almost saturated with respect to the equi-
valence relation ~. Hence each dG'1(Bn)A rG'](Bn) is null, and so
k= VxG\ L# {dG‘](Bn) ArG'1(Bn)} is a co-null Borel set in V x G
where noeodG and noeol'c agree. By Fubini's Theorem there is a x_ ¢ G

0
such that (f,xo) e k for almost all feV . Thus for almost all feV

noe(r(fhe)x "1 = noclr(flx,) = noe(d(f), xg(f)) = noc(d(f),e)n(f) Ix;™!
and so noe(r(f),e)n(f) = nee(d(f),e) . Note finally that the set of
f where the last equality holds is closed under composition in V.

Hence by Lemma 5.2 of [13] the equality holds on some i.c. of V.

Proposition 2.10: There is a one-to-one correspondence between the
morphisms [«]: Vo -~ R(T) and [y¢]: M(Vr) >~ T . In fact, («T¥ = []
and ([v1*) = [4].

Proof: Suppose o(r(f))pox(f) = n(f)e(d(f)) is a strict

similarity, where op: R(T) - G is projection onto G. The R(G) map

~

<g is induced from the factored map (u,x) - E(u)e(u)']x’] = §(u,x)
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of UxG intoT. Invforming (Ké)#, note that « oe must agree with
s(u,x) on some invariant analytic co-null set of Ux G simply
recall the definition of e: Ux G ~ M(Vs) 1in Proposition 2.8

and the fact that the o-homomorphisms &* and E*O(Ké)* are equal.

Hence on some i.c. of V (Ké)#(f) = (E(r(f))e(r(f))'1, n(f)) . But
Fr)s el EEetrEN ™, 7(£) = Glr(f), slr() ()
(R0, poe(P)a(@(fN ™) = (Rr(F), porlENErEe o (F), o(d(F)™)
C(F) (FU(F)), o(d(F)) 1) . Thus u > (<(u), e(u)”') implements a

similarity bgtween (Ké)# and «. This is sufficient to show ([1)7*
= [«] . |

On the other hand, given y: M(Vn) - T, wﬁ(f) is defined
by (voe(r(f),e)s 1(F)) . To form ()~ Took at (u,x) » yF(u)x”"
= woe(u,e)x_] = yoe(u,x) . Then (w#)“ is taken so as to induce the
g-homomorphism s*'1o(e*ow*) = y* . Again (w#)" =y almost every-

where, and so (w#)“ and v are equivalent.

Proposition 2.11: (Naturality)
| | a) Given morphisms [«]: Vimy > V,m, and [v]: Vym, + R(T)
in M), ([¥1"oM([<1)¥ = [pIel<] .
| b) Givén morphisms [«]: T1 > T2 and [v]: M(Vr) > T] inl
R(G), R([<D)e[p]* = ([<JeLvD)¥ .

Proof: a) Assuming ¢ and « composable, it suffices to prove
[9]7oM([«]) = [wox] . Now suppose 8;(ry(F))myox(f) = m ()6 (d(f))
and g, (r,(h))ecw(h) = ﬂz(h)ez(dz(h)) furnish strict similarities,
where p: R(T) > G 1is projection onto G. Then e](r](f»92°llﬁﬁf))po¢oKuﬁ
= n1(f)e](dj(f))ezoE(d](f)) gives a strict similarity. A representaé

tive of [yok]” is constructed by forming the BoreT'map (u,x) =~
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Tor(w) 8,07 () ey (u) X! = 55(ux) from Uy x G to T. This map is
the compdsition of (u,x) > (e(u), x61(u)) = 61(u,x) from U; x G to
Uy x G and (w,y) R E(w)ez(w)'1y'] = 62(u,x) fron U, x G to T.
Call the corresponding factored maps £3t U1x G /&q -~ T, £1° U1x G /m]
s UX G/ and £yt UpxG/ny, > T IF e Ugx G /g > M(Vmy)
(i = 1,2) are the maps defined in Lemma 2.4, then our representative
of [yox]" s taken so as to induce the o-homomorphism 1]*_1053* ; but
1]*-]053* = 1]*—1051*052* = 11*-1051*012*012*—1052* and M(Kel)
induces 1]*‘]o£]*012* while w%;induces 12*‘1052* .

b) Clearly it suffices to prove (R([«D)e[v]H = [xov] .
‘Assume all homomorphisms to be strict and let e: UxG ~ M(Vr) be as
in Proposition 2.8 Then u#(f) = (voe(r(f),e), v(f)) and
™= DZOR(K)ow# , Wwhere p2:'R(T2) ~ G 1is projection onto G.
(R(x)oy#)~ is arrived at by factoring (u,x) - KoE#Ku)x-] = Kowosm,eb(]
= koyoe(u,x) . In fact, (R(x)ey#)~ is taken so as to induce the
o-homomorphism e*~lo(kopoe)* = (koy)* . This shows that (R{x)oy#)"

= oy , at least almost everywhere.



IV. The Adjoint Functor Theorem:  Remarks and App]ications

Remarks:

If Vr is in M(G), then the equivalence relation von UxG
is analytic. This means that as a subset of (U x &) x (U x G) , N
is analytic. Indeed; ~ can be identified with the image of the ana-
Tytic space V x G under the Borel map (f,x) +-(r(fo)x0Kf),xTKf))'.
Now consider U x G / ~ .with the quotient Borel structure, instead of
the Borel structure derived from the ~ saturated measurable sets in
Ux G . If by chance Ux G/ v is countably separated, then U x G/ n
is actually an analytic Borel G-space. (See Propositions 2.9 and 3.1
of Chapter 1 [9].) When U x G/ ~ is an analytic Borel G-space,
Theorem 7.7 of [13] implies that up to invariant null sets, UxG/
and M(Vn) are isomorphic as analytic Borel G-spaces with invariant
measure classes. Another sufficient condition for U x G / ~ to be
analytic is the existence of an analytic subset of U x G meeting
each ~ equivalence class in exactly one point. (Proposition 2.12 of
Chapter 1 of [9])

Let us also observe that for T in R(G), M(R(T)) can be taken
to be T. In fact, the equivalence relation ~von T x G reduces to (tx)
~ (ty,xy) and so the map (t,x) - tx”| factors to give a G-equivariant

Borel bijection of 'Tx(%/Kz (with the quotient Borel structure) onto T.

Since T is countably separated, it is possible to prove TxG /& is

-28-
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too. By the above remark T X G / ~ 1is an analytic Borel G-space.
Hence the Borel bijection is even a Borel isomorphism. (See Proposi;
tion 2.5 of Chapter 1 of [9].) Finally, it follows from Fubini's
Theorem that the measure class induced on T by (t,x) - tx'1 is the

same as the given measure class on T.

Applications:

Discrete Flow Under a Function

Consider the virtual group S x Z formed by an ergodic ac-
tion of the integers on an analytic Borel space S. Given a Borel
function f: S -~ Z with positive integer values let us define a vir-

)

tual group homomorphism n: S xZ ~ Z as follows:

m(s,0) = 0
w(s,m) = - :E: f(s™) m> 0
£=0
fil
- -£ L . .
m(s,-m) = f(s ), where s indicates
£=1

the action of the integer £ on the point s. To clarify matters some-
what note that the homomorphism m is uniquely determined by the Borel
function s > w(s,1) = -f(s) . Indeed n(s,n) = n(s, n-1) + n(sn"],1)
and (s,-n) + n(s",n) = n(s,0) = 0 .

Now Took at the Borel subspace E = {(s,n):0<n < f(s)}
of S x ZZ-with measure class the product measure class restricted to
E. Suppose it can be shown that E meets each ~ equivalence class in
exactly one point. Then it will follow that the natura] map S x 2?/ N

~ E is a Borel 1somorphi$m. (See Theorem 15, Corollary 2 and Prop-
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osition 2.4 of Chapter 1 of [9].)

So assume s S and n >0 . Then there is a unique inte-
ger m with f(s™ > n+m(s,m) > 0. For either f(s)>n>0 or
n o > f(ém'1) + . . .+ f(s) for some largest integer m >0 . To
show that m is unique suppose k > m . Then

k-1

£
+ s,k = n+ s, + s ,1
n+ m(s,k) w(s.m) + 2o n(sT1)
k-1
= n+n(s,m) - f(s™) - f(st) <o .
£=m+1

This reduces the problem to e]imfnating the possibility k <m . The

case k < 0 1is easily disposed of since f(sk) < w(s,k) . Thus

assume 0 < k' <m . Then f(sk) > n+ n(s,k) > 0 dimplies

f(sk) + f(sk']) + . . .+ f(s) > n contradicting the choice of m.
In case n < 0 the above assertion is also true. Since

n(s,m) <0 for m>0, clearly no m > 0 satisfies

f(s™ > n+m(s,m) > 0.

(s™1y

Thus consider the largest m with -n > f(s T f(s_]) .

It is easy to verify that f(s™) > n +n(s,-m) > 0 . Suppose

k>m. Then -n < f(s=K¥1) + . . .+ £(s71) , so
X £
f(s'k) < n+ 2 f(s™) = n+n(s,-k)
£=1
On the other hand if 0 <k <m, -n > F(s™) +. ..+ (s

= 7(sek) so 0 > n+ w(s,-k) .
Next define a Z action on E by (s,n)f = (sm, n+l+n(s,m))
where 0 < n+ £+ a(s,m) < f(sm) . Because Zis commutative, the

Z action on S xZ as described in Proposition 2.1 can be taken to be
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(s.n)f = (s, n+2) . Under these definitions the natural map S x Z/ ~
~ E 1is obviously Z-equivariant. To complete the identification of
SxZ/ v with E suppose N is a null set in E. Then (s,n) ¢ S xZ

maps into N iff (sm, n+ v(s,m)) € N . Hence

[o2] [es]

s € U U {t: (tm,k) e N},
k=0 M==c
which is a null set by Fubini's Theorem. Since this is true indepen-

dently of n, the inverse image of N is null. It also follows immedi-

ately that the image of a null set is null.

Kakutani's Induced Transformation

Again suppose the integers define én ergodic action on an
analytic Borel space S. Let A be any Borel set in S of positive mea-
sure. If the given measure class on S possesses a finite invariant
measure or if S is nonatomic, then with the exception of a null set
every point of A enters A infinitely often. (See Theorem 1.15 of
[1].) Define a virtual group VA to consist of all pairs (s,n) from
A xZ with s¢A and s"eA . It is easy to see that VA is a groupoid.
Furthermore, restricting the measure class of V to the contraction vA
gives a virtual group which is similar to V. (See Theorem 618 of [13].)

Assuming that almost every point of A enters A infinitely
often, we define a virtual group homomorphism w: VAL Z . First some
notation. If secA and s enters A again, let p(s) be the first posi-
five integer with sp(s)e A. Similarly, let n(s) be the first negative
integer with s"(s) e A, provided such an integer exists. It
suffices to define m on an i.c. of VA, Now accbrding to Kakutani's

classic argument, there is a Borel set BC A differing
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from A by a null set such that the map s ~ sp(s) = Tg(s) is defined
and is a Borel isomorphism of B onto itself. Furthermore, both the
image and inverse image of every null set is null under Tg. (See

page 193, Volume 1 of [3].) 7 is defined on the i.c. VA[B as follows:

m(s,0) = 0
m(s,m) = -k, where m >0, m=m+...4m
and my = p(s)
m, = p(s"?)

“p(sm1+...mk_1)

m{s,m) = k , where m <20, m]+...+mk
and my = n(s)

= n(sml)

mk - n(sm1+...+mk_1)

It should be fairly clear that = is a Borel map and algebraically

a strict homomorphism. For instance, {(s,m): n(s,m) = -k}

= g;( {(s,m): s e UJ (BN (t: t£ e 8% N (t: tt e B))}‘

m : =
m_i > 0 | m] +m2 m] +m2
m m
0 <€<m

The aim in defining n:'VAIB ~ & is to show that the inte-

ger action defined'by,TB on B can be identified with the integer action
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on Bx Z/ ~. With this in mind map any point (s,n) of B xZ into
TBn(s). To prove that this map is constant on " equivalence classes

suppose m = p(s) .. Then (sm, n+n(s,m)) - TBn'](sm) = Tg%Téq(sm))

= TBn(s) . Since (s, n+m) - 8" M(s)

= TBn(TBm(s)) , the map is
clearly Z-equivariant. If TBn(s) = TBm(t) , then TBn'm(S) =t and
so n-m = -n(s,k) for some integer k. But this entails

(sk, n+n(s,k)) = (t,m) and so the map factors to give a bijection
from B xZ/ ~ onto B. By fixing n and using the fact that Tp is a
Borel isomorphism, it is easy to verify that this bijection is a Borel

isomorphism. In similar fashion one can show that the image and in-

verse image of a null set is null.

A Virtual Group Homomorphism with a Special Property

We wish to construct a virtual group homomorphism with the
property that the inverse image of some null set of units is not null
under the unit map. This would indicate a real difference between
the definition of homomorphism we have adopted and its replacement by
a definition stipulating that tHe inverse image of every null set of
units be null under the unit map. The latter definition haS the
advantage of eliminating composability problems between homomorphisms.
However, it has the defect of not permitting one to pre and post-
multiply a homomorphism « by a compatible Borel function 8,
8(r(f))x(f) (d(f))'1 , and still wind up with a homomorphism.

To construct the desired homomorphism let S be the unit
circle with Lesbegue measure and suppose the integers act on S by

an irrational rotation. Define a virtual group homomorphism w: S xZ

-R into the reals by w(s,n) = n . Then the quotient space S xfR/~
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with the quotient Borel structure is Borel isomorphic and measure
theoretically the same as S x [0,1) equipped with the obvious product
measure. If (s,t)x 1is defined to be (s'[t'X], t-x-[t-x]), where
[t - x] is the unique integer 0 < t - x - [t -x] < 1, then

s xR/~ and S x [0,1) are even Borel isomorphic as R-spaces.

(See the exampie at the end of Chapter 4 of [13].) Now consider the
Borel map s » (s,0) of S into S x [0,1) . It clearly satisfies
(s",0) = (s,0)n . But on the one hand, the inverse image of the Borel
null set S x {0} is all of S. On the other, suppose B is an -invari-
ant null set of S x [0,1) . To show that the inverse image of B
under the map s » (s,0) s null it suffices to prove that the sec-
tion Byg, is null in S. But this follows from the fact that Bﬁﬂx [0,1)
C B . Thus the Borel map (s,n) » ((s,0),n) cf S xZ& into

(s x [0,1)) xR is a virtual group homomorphism with the property

that the inverse image of some null set of units is not null under

the unit map.

More Comments on the Two Definitions of Virtual Group Homomorphism

This has little to do with the adjoint functor theorem, but
let us indicate a éase where the definitions of virtual homomorphisms
given in the last example coincide. Suppose « = R(y) , where
p: T >S5 belongs to an R(G) morphism class. y can be identified with
the unit map of «. The saturated sets in T and S are simply the in-
variant sets. Next assume the measure classes of T and S both con-
tain invariant probability measures. Let the given invariant probabil-
ity measure on S be v and the invariant probability measure induced

on S by y be u. Then u is absolutely continuous with respect to v
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on the o-algebra of fnvafiant Borel sets. We wish to show that u is
absolutely continuous with respect to v on the ofa1gebra of all Borel
sets.

To do this we recall a result of Varadarajan. (See Theo-
rem 4.1 ofv[]6].) There is an operator f - Uf from the Banach space
of all bounded real-valued Borel functions on S into the Banach space
of all bounded real-valued Borel functions on S which are left invari-
ant by the action of G. Uis a conditional expectation operator for
the g-algebra of invariant Borel sets and every invariant probability
measure. Now take a Borel set A in S with v(A) = 0 . Let Xp be
the characteristic function of A. Then Xa >0 v and p-almost every-
where, so v(A) = ‘fodv = J.(LJXA)dv = 0 and the absq]ute con-

tinuity of p with respect to v on the invariant Borel sets imply

u(A) = fodu = f(UxA)du = 0.



V. Products of Virtual Groups

Theorem 3: Let (V],C]) and (VZ’CZ) be analytic Borel groupoids. Then
(V] X V2 . C1 X Cz) is an analytic Borel groupoid which is a virtual
group if and only if both (V],C]) and (V2,C2) are. (V1x V2 , C]><C2)
is essentially transitive if and only if both (V],C]) and (VZ’CZ) are.
.Similar1y, (V] X V2 , C1 X C2) is essentially principal if and only
if both (V],C]) and (VZ’CZ) are. If «: V] > Wy and Ky V2 - w2

are virtual group homomorphisms, then Ky X Kot V1 X V2 -> w] X w2

is a virtual group homomorphism. Furthermore, if V1 and V2 are similar

to w] and w2 respectively, then V] X V2 is similar to W, x W

1 2’
Proof: Let (V1,C1) and (V2,C2) be analytic Borel groupoids.

Consider the cartesian product V] X V2 . It is an analytic Borel
space and has a natural groupoid structure. The composition (fPfZXh1$2)
is defined to bé (flhl’ fzhz) whenever dl(fl) = r](h]) and d2(f2)
= r,(hy) . Inversion is the Borel map (fy,f,) » (f1.f5)7" = L.
The right unit d(f],fz) of (f],fz) is (d](f]), dz(fz)) and»the left
unit r(f],fz) =»(r](f1), r2(f2)) . Clearly both d and r are Borel
mapé. Their common range is U] X U2 , Where Ui is the set of units
of Vi’ ‘i =1,2 . If Di is the domain of composition for Vi’ then
the domain of composition D of V] X V2 is the image of D] X D2
under the natural Borel isomorphism of (V1x V]) X (V2x Vz) onto
(V1x,V2) X (V]x V2) . Hence D is a Borel set. Composition is also

a Borel map from D to Vy x Vo .

-36-
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Since the product measure class C1 X C2 on V] X V2 is
well defined, it is possible to choose symmetric probability measures
ﬁ{ from Ci and consider only the product measure Hy X My . (Sym-
metric méans ui(A) = gi(A']) for every Borel set A in Vi') Let
us first prove'that Wy X Mg is symmetric. Suppose A] and A2 are
Borel sets in V] and V2 respectively. Then My X ”2((A1 X AZ)‘1)
= iy (AT X AT = g (AT (A1) = (A dup (Ry) = g X wplAgxAp):
By finite additivity g X uZ(A‘]) =y X uZ(A) whenever A is a finite
disjoint union of Borel rectangles. Passing to‘monotone Timits,

y X uZ(A'1) and g X “2(A) are seen to agree for all Borel sets
A in the product o-algebra.

The same technique of verifying a certain property for Borel

rectangles, then by additivity for finite disjoint unions of Borel

rectangles, then for all Borel sets in the product o-algebra by

passing to monotone Timits, can be used to establish the following:

f“1u1d31(”1)

My = [ by 2diy(u,)

be decompositions of M1 and Mo with respect to r1 and ro- Then

Let

|

and

]J-l X uz = fU]ulx u2u2 dﬂ X Ez(u'lsuz)

is the decomposition of X Hp with respect to r. Now Tet us

check the invariance of the measure class C] X C2 . Take co-null

Borel sets Ui‘<: U, such that whenever Ai(: r1‘1(di(f1)) and

d, (f

, ‘ym e . . d- .
(0, () e ot 1Ty =0 e ST <0

i
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Assume that both r(f1,f2) and d(f],fz) are in the co-null Borel set

U]' X UZ' . Then for AC r'](d(f],fz))

IR PR (CR AT

- ﬁ{l(fl) {h1 e r 7 ()1 (hyohy) € (f1,f2)A}du2‘”2(‘°2>(h2)

- fu]rl(fl) {h1 e r]_](r‘](fl)): f1']h] e Af2.1h2}du2"2(f2)(h2).

By Fubini's Theorem u1r1(f1) X u2r2(f2)((f],f2)A) = 0 1iff for
'Pzrz(fz) almost all h, e r2‘1(r2(f2))

ri(fy1) { -1 e -l -
" hy e ry T (r (F)): £ Ty e Af2_1h2} -o

1
o

G g e e gy e ey )
iff fOY‘ u2d2(f2) almost all g, € P2-1 (dz(fz))
U]dl(fl) {g] _ r]'](d](f])): 9, € Agz} =0

iff u]dl(fl) X uzdz(fz) (A) = 0 . This completes the proof that
(V] X Vé » Gy ox CZ) is an analytic Borel groupoid.

Next suppose (V],C1) and (V2,C2) are virtual groups. To
prove that (V; x V, , Cy x C,) is a virtual group it is enough to show
that every saturated analytic set of units is null or co-null. (See

Theorem 4.2 of [13].) So Tet A be a saturated analytic set of units
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in Uy x Uy . The section Au, ='{u1: (u],uz) e A} is saturated. It
is analytic because it is the inverse image of A under the Borel map
up > (u],ué) . Hence the definition of ergodicity implies Au, is
either null of co-null. Now the set‘{uz: Au, is null} is also satu-
rated. It is measurable since U, > E}(Auz) is measurable. Hence
it too is null or co-null. These dichotomies and Fubini's Theorem
imply A is null or co-null.

On the other hand suppose either (V],C]) or (VZ’C ) fails

2
to be a virtual group. Then one of them, say (V],C]), has a satu-
rated analytic set of units U]' which is neither null nor co-null.

But then U1l X U2 is a saturated analytic set of units in U] X U2
which is neither nuil nor co-null.

To show that (V] X V2 , C] X Cz) is essentially transitive
if and only if both (V],C]) and (V2,C2) are, consider the saturation
r(d‘](u],uz)) of any unit (u1,u2). r(d‘](u],uz)) = r(df]hﬁ)x d24(u2))
= r](d1‘](u1)) X rz(d2'1(u2)) is co-null if and only if both
r](d1‘1(u])) and r2(d2‘1(u2)) are co-null

For a virtual group V let Vu = {f ¢ V: d(f) = r(f) = u}
for évery unit u in V. To prove that V] X V2 is essentially princi-
pal if and only if both V; and V, are, note that V, x ¥, (u1,u2)

= V]u] X V2u2 for each pair (u],uz) in U] X U2 . Then

{(u],uz) e Upx Uy 1 Vox V2(u],u2) = {(u],uz)}}
= {uy e Ups Vqup = {ugdd x fuy e Uyt Vou, = {uy}} .

It follows from Fubini's Theorem that {(ujsuy e UpxUs: Vo xV,(ugsuy)

= {(u1,u2)}} is co-null in .U] x U, if and only 1f both V] and V,
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are essentially principal.

Next assume SE V] > W] and Ko V2 > N2 are virtual group
homomorphisms. Then «; X 5! V1 X V2 > w] X w2 1s a Borel map
and algebraically a homomorphism on some i.c. of V1 X V2 . If k. s

i

the unit map corresponding to x., 1 = 1,2, then E} X Eé is the

;
unit map corresponding to Ky X Ky o Let A be a saturated null set
of units in w] X wz . Then {u]: K](U1) € A%Qb)} is null whenever
A?}uz) is null since A?XUZ) is saturated and ky 1s homomorph1smf
Now consider the saturated set {w a unit in WZ: A, is null} . Be-
cause it is also co-null, {up: Ag(y,) is nuil} is co-null. Thus
Fubini's, Theorem implies 'y X Eé'1 (A) s null.

Finally, given the similarity of Vi and wi, i=1,2, the
similarity of V1 X V2 and w1 X w2 can be established by the follow-
ing observation: If 0 implements a similarity between the>virtua1

group homomorphisms <5 and wi, then 81 X 8, implements a similarity

between €1 X Ky and ¢1 X ¢2 .

Example: Let V =S xZ, where S is the unit circle with Lesbeque
measure and Zacts on S by an irrational rotation. For the virtual
group V x V together with projection onto each co-ordinate to be

the categorical product of V with itself, it seems reasonable that the
map id x id: V > VxV in the diagram below should be a homomorphism.
id x id (f) = (f,f) . But this is false by the following reasoning.
Consider the saturation n&% Qién,m) of the diagonal D in the product
space S x S . Since the action of Z xZ on S x S Teaves the
measure invariant, U D.(n,m) 1is a saturated null set in S x S .

n,me.
However, its inverse image under the unit map 1id x id is all of S.
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roj
VxV — oy
oroj id x id |
A 4
V et Tq y

Remarks: An analogue of Theorem 3 for countable products of virtual
groups fails because Kakutani's Theorem for the absolute continuity of
infinite product measures makes it impossible to define a single mea-
sure class on the countable product space. (See Theorem 22.36 of [2].)
For the same reason trouble arises in verifying the invariance of the
fiber measures for countable products.

Co-products probably do not exist in the category of virtual
groups since they would correspond to disjoint unions, which would

destroy ergodicity.

The second theorem of this section provides a 1link between

the Mackey functor and products of virtual groups.

Theorem 4: Suppose M V1 +—G] and o' V2 > G2 are virtual groups

~over the separable locally compact groups G] and G2 respectively. Let

M, be the Mackey functor from M(Gi) to B(Gi), i=1o0r 2. Similarly,

let M],g ba the Mackey functor from M(G1 X Gz) to B(G] X Gz).

M1’2(V] X V2 n1 X nz) is isomorphic as a standard Borel G1x GZ-Space

Then

with invariant measure class to M](V]n1) X M2(V2n2) .

Proof: In more or less obvious notation define the equiva-

B - A o S 4 G Ey § o 4w et v o
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lence relation ~ on Up x Uy X Gy X G, by (r1(f]),r2(f2),x1,x2)

s (d1(f]),d2(f2),x]n](f1),x2ﬂ2(f2)) . Then we must show that

U] X U2 g G1 X G2 / ~ and U1 X G1 / M oX U2 X Gzt/ o have mea-
sure algebras which are isomorphic as standard Bod]ean G]x.GZ-spaces.
This suffices since U1 X G] / m1 X U2 X G2 / v and» M](V]w1)
x’MZ(V2 2) do.

Now the trivial rearrangement U] X G1 X U2 X GZ and re-
definition of ~ allow us to consider ~ to be the product of "~ and &2.
Noting'that the canonical bijection U] X G] X U2 X G2 / N
U] X G1 / MpoX U2 X 62 / mé is Borel and G]x Gz-equivariant, it
is enough to prove that the o-homomorphism it induces is actually a
oa;isomorphism. Under this map the inverse image of a set is null iff
the set itself is null. Hence the o-homomorphism is one-to-one. To
prove that it is onto write U] X G] = S] and U2 X G2 = 52 and let
My and Ho be probability measures in the measure classes of S] and 52
respectively. Give S] X 52 the product probability measure My x'u2 .
Since the o-homomorphism induced from S] X 52./ v S1/w1 X Sz/w2
is measure preserving and every measure algebra is complete as a ‘
metric space, the problem reduces.tb showing that every measurable set
A in S] X 52 which is saturated with respect to ~ can be approximated
by Borel sets in 51/m1 X Sz/m2 .

The idea is to approximate A by finite disjoint unions of

: n
measurable rectangles U Bi X Ci , where each Bi is saturated with

i=1
respect to &] and each‘Ci with respect to w,. So first of all choose
~a sequence ‘{Cn}:=1 of measurable sets in S, which are saturated with
respect to &2 and which give a dense subset of the separable measure

algebra over 52/&2 . For ¢ >0 and n a positive integer define
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Bn ='{x1 € S]: ﬁz(AxlA’Cn) < e} . It follows immediately that each

Bn is measurable and saturated with respect to e Also Fubini's

Theorem implies that \_ﬁ B, differs from S1 by a null set. Now put
n:

D D, = B,\'B D, = B,\ (B]kJ BZ) , etc. The Dn's have the

17 Bys Dy = BNBy s P37 s
same properties as the B 's with the additional property of disjoint-

n
ness. Let us see how closely A is approximated by %J][% x61

|x, - X - .. =X |du.,du
JS 1 DXC, p, xC 1ot
< fleA'XD xcld“zd“1 Tt

f'fIXA - D XC |dU2dU-| +. ffl)\ lduzdu.l
n S \ U

. n n
< € u]( ) Di) +u](5]\(U Dj)) .
i=1 i=1
n
Hence for n large enough LJ D X C approximates A within 2e say.

i=1
Th1s est1mate establishes the theorem.
Remark: Suppose [k]: w]p1 - V]w] is a morphism in M(G]) and
Le]: W2p2 - V2”2 a morphism in MXGZ) . Then M](K) X Mz(e) is essen-
tially the same as M] 2(K x8) . Since nothing novel is involved here,

we leave the details to the interested reader.
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