
Detection of Dynamic Obstacles out of the Line of
Sight for Autonomous Vehicles to increase Safety

based on Shadows

by

Felix Maximilian Naser

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2019

c○ Massachusetts Institute of Technology 2019. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

January 18, 2019

Certified by. .
Daniela Rus

Andrew (1956) and Erna Viterbi Professor of Electrical Engineering and
Computer Science
Thesis Supervisor

Accepted by .
Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

2

Detection of Dynamic Obstacles out of the Line of Sight for

Autonomous Vehicles to increase Safety based on Shadows

by

Felix Maximilian Naser

Submitted to the Department of Electrical Engineering and Computer Science
on January 18, 2019, in partial fulfillment of the

requirements for the degree of
Master of Science in Electrical Engineering and Computer Science

Abstract

Moving obstacles occluded by corners are a potential source for collisions in mobile
robotics applications such as autonomous vehicles. In this work, we address the
problem of anticipating such potential collisions by proposing a vision-based detection
algorithm for obstacles which are outside of a vehicle’s direct line of sight.

Our method detects shadows of obstacles hidden around corners and automat-
ically classifies these unseen obstacles as “dynamic” or “static”. We evaluate our
proposed detection algorithm on real-world corners and a large variety of simulated
environments to assess generalizability in different challenging surface and lighting
conditions. For the image registration step we compare a visual odometry method
(i.e. DSO) with a fiducial marker system (i.e. AprilTags). The mean classification
accuracy on simulated data is around 80% and on real-world corners approximately
for both image registration methods 70%. Additionally, we integrate our detection
system on a full-scale autonomous wheelchair and demonstrate its feasibility as an
additional safety mechanism through real-world experiments.

We release our real-time-capable implementation of the proposed ShadowCam
algorithm and the dataset containing simulated and real-world data under an open-
source license.

Thesis Supervisor: Daniela Rus
Title: Andrew (1956) and Erna Viterbi Professor of Electrical Engineering and Com-
puter Science

3

4

Acknowledgments

First and foremost I want to thank my advisor Prof. Daniela Rus. Her continuous

support, interest, guidance and inspiring discussions about our project have made

the work presented in this thesis possible. She helped me to focus on the important

technical contributions first and enabled me to learn and grow with the project.

I want to thank my friends and colleagues for being supportive and a wonderful

community full of crazy ideas, curiosity and knowledge. The past three years would

have not been the same without you.

Specifically I want to thank my collaborators and supporters for the work pre-

sented in this thesis: Dr. Igor Gilitschenski, Alexander Amini, Thomas Balch, Steve

Proulx, Dr. Guy Rosman, Prof. Fredo Durand, Prof. Antonio Torralba, Prof. Gre-

gory W. Wornell, Prof. William T. Freeman and Prof. Sertac Karaman.

I want to thank our sponsors at Toyota Research Institute (TRI) and AWS for

the generous support of our work. Toyota Research Institute (TRI) provided funds

to assist the authors with their research, but this thesis solely reflects the opinions

and conclusions of its authors and not TRI or any other Toyota entity.

A special thanks also goes to my UROPs Christina Liao (who joined this project

in February 2018) and Puneeth Meruva (who joined in September 2018). Christina

contributed to the data collection, annotation and data analysis parts of the project.

Puneeth contributed to the literature review.

Last but not least I want to thank my girlfriend and my parents for their support,

patience and love.

5

6

Contents

1 Introduction 19

1.1 Motivation . 20

1.2 Problem Setup . 22

1.3 Key Contributions . 23

1.4 Outline . 24

2 Related Work 25

2.1 Handling Object Occlusion . 26

2.2 Shadow Processing . 26

2.3 Hidden Scene Recovery . 27

2.4 Change Detection . 28

2.5 Action Recognition . 29

3 Technical Approach 33

3.1 Image Registration . 35

3.2 Visual Fiducial System: AprilTags . 36

3.3 Visual Odometry Method: DSO . 38

3.4 Dynamic Threshold . 43

3.5 Summary . 50

4 Experimental Setup and Data Collection 51

4.1 Holodeck . 52

4.2 Simulation in Blender . 54

7

4.3 Real-World Corner Data Collection 57

4.4 Autonomous Vehicle Setup . 60

4.5 Annotation Tool . 61

4.6 Summary . 62

5 Results 63

5.1 Overall Performance . 66

5.2 Effect of new Labels . 67

5.3 Performance on real-world Data . 68

5.4 Evaluation of AprilTags as the Image Registration per Corner 70

5.5 Evaluation of DSO as the Image Registration per Corner 74

5.6 Summary . 78

6 Conclusions 79

6.1 Lessons Learned . 79

6.2 Future Work . 80

6.3 Summary . 81

A Source Code 83

8

List of Figures

1-1 Fatality Rate in the USA. The timeline shows the fatality rate per

100,000 drivers licensed to operate a motor vehicle in the United States

from 1990 to 2016. The fatality rate stood at 16.9 deaths per 100,000

licensed drivers in 2016. 20

1-2 ShadowCam use case. A pedestrian runs on the street while hidden

from the viewpoint of the approaching car. 21

1-3 Problem Setup. We compare the performance of two image registration

methods as part of the ShadowCam pipeline: On the left side we place

visual fiducial markers (i.e. AprilTags) on the ground plane and on the

right we use a visual odometry method (i.e. DSO) for image registration. 22

2-1 NLoS Scenarios. The image on the left shows the experimental setup

of a trial which consisted of a single person moving around in a con-

ference room [1]. The image on the right shows the initial plan for the

quadcopter to view some of these blind regions [44]. 25

2-2 Shadow Removal. On the left: Given an original image with a shadow

mask (first row), the method is able to extract exact shadows (second

row) and to automatically recover the shadow-less images (third row)

[21]. On the right: On the top images with shadows are shown and

below the corresponding shadow invariant image [8]. 26

9

2-3 Hidden Scene Recovery. On the left: The seemingly impossible task of

recording what is beyond the line of sight is made feasible by ultra-fast

imaging. A new form of photography, Femto-photography, exploits the

finite speed of light and analyzes ”echoes of light“ [43]. On the right: To

construct a 1-D video of an obscured scene an RGB video is recorded

with a consumer camera [3]. 28

2-4 Action Recognition approaches. K represents the number of frames in

a video and N represents the N neighboring frames in a video [6]. . . 30

3-1 Overview of the ShadowCam Pipeline (Alg. 3). We run a cyclic buffer

over the frames of the camera mounted on top of the autonomous

vehicle. After the pre-processing steps – including image registration

and ROI selection (Sec. 3.2 and 3.3) – we classify sequences (Alg.

4) and ensure that the vehicle avoids collisions with unseen obstacles

based on shadows. 35

3-2 Planar World. Rotation and Translation of Camera Frames [15]. . . . 36

3-3 AprilTag Matches. Example matches of the AprilTags on the ground

plane where the image on the right is closer to the corner. Each tag has

a unique ID which allows finding corresponding points fast and easily. 38

3-4 Design choices for data association. Direct (a) vs. feature based (b)

methods [46]. 39

3-5 Visual SLAM Methods. Recent keyframe-based visual SLAM system

with either open or closed source code [46]. Column 1: Publication

year. Column 2: Name of the method. Column 3: Open our closed

source code. 39

3-6 Color Amplification. On the left side is an original Canon camera

frame and on the right side the corresponding color-amplified frame. . 46

3-7 Ego-view. The autonomous wheelchair approaches a corner without

direct sight of what is going on behind the corner. 47

10

3-8 Image Analysis. Left: The cropped, re-sized and registered image.

Middle: Example of a frame which contains no moving obstacle behind

the corner. Right: Example of a frame which contains movement. The

white areas correspond to a shadow signal. 47

3-9 Algorithm Steps with AT (1). The first column is representing the

input stream of images from the camera in the cyclic buffer. The

second column shows which tags got detected by the AprilTag detection

software. The third and last column shows how the tag detections were

used to register all images to the view point of the first image in the

first row. 48

3-10 Algorithm Steps with AT (2). In the first column we see again the

registered images. The second column shows the cropped region of

interest. The third column the re-sized and color-amplified version of

the cropped images. The fourth and last column displays in which

areas the algorithm detected movement based on a dynamic threshold. 49

4-1 Holodeck Setup. The left image shows how we varied the size of the

moving object behind the corner: Wearing a winter jacket, sitting on

a chair with rollers and walking normally. The right image shows the

corner wall and a person walking from the top view. 53

4-2 Holodeck Performance. The left plot shows the region in which the

person behind the corner walked randomly from the top-view. The

right plot shows the spatial performance of the algorithm (with regard

to the mean position of the moving person in the blue area) to correctly

classify a sequence as “dynamic” or “static”. The darker the blue, the

higher the classification accuracy for both classes. 53

4-3 Examples textures. Textures we use to create different scenes with

Blender. We choose various textures ranging from dark to bright colors. 55

11

4-4 Blender Scene. In addition to material changes (such as texture or

reflection properties) we change the position of the light and the path

of the camera. The person walks randomly at different speeds within

the blue box. 55

4-5 Simulation example corners. Examples of how we create random cor-

ners in the simulation. 56

4-6 Real-world corner examples. On the left side images from videos

recorded with the Canon and AprilTags. On the right side images

of the same corners from videos recorded with the IDS uEye and DSO. 59

4-7 Autonomous wheelchair and the main sensors. We mounted the camera

for the ShadowCam algorithm on top of the top LiDAR. Only the

camera is required to run the ShadowCam algorithm. 60

4-8 Annotation Tool. The user interface for hand labeling each image of a

video on a frame per frame basis. 62

5-1 Classification Performance per class and method. As the distributions

of the histogram (Fig. 5-3) suggest, we observe a low number of false

positives. The classification accuracy for “static” sequences is high,

whereas it is harder to detect movement based on shadows (i.e. it is

harder to classify “dynamic” sequences correctly). The mean perfor-

mance of the algorithm on real-world data acquisition methods is for

both classes above 60% and overall even around 70%. 66

5-2 Effect of NL. On the left: For frames registered with AT we can observe

that the mean accuracy for “dynamic” sequences increases around 5%

and stays almost the same for “static” sequences. On the right: For

frames registered with DSO we can observe that mean accuracy de-

creases which implies that e.g. some previously as “dynamic” labeled

sequences did not contain movement from a shadow. 67

12

5-3 Signal Distributions. Histograms of the sum of the sequences (Eq.

3.15) for various corners with AprilTags on the left and without April-

Tags and DSO as the image registration method on the right. The

distributions of “dynamic” and “static” sequences explain the mean

classification accuracy of around 70% when the threshold is set as the

black vertical line indicates. 69

5-4 Receiver-Operating-Characteristic (ROC). Curves of data collected with

AprilTags on the left and without on the right with the thresholds from

Table 5.1. TP stands for true positive. If the heatmaps would have

their center in the top left corner the classification accuracy would be

100%. 69

5-5 AT Corner 1. A bright environment with a lot of natural light from

windows and a stone floor. The relatively strong shadow signal makes

a good distinction between DY and ST possible. 70

5-6 AT Corner 2. A reflective industry style floor with no natural light

sources. Due to the ego motion the reflection of light on the ground

leads to more miss-classifications on the ST side and thus a lower ac-

curacy. 71

5-7 AT Corner 3. Concrete style floor with a strong natural light source

from the left side. A relatively distinct distribution leads to a classifi-

cation accuracy on the DY side in the high 60ties. 71

5-8 AT Corner 4. Carpet style floor with a strong natural light source from

the left. Due to the placement of the tags only relatively few sequences

can be registered. 72

5-9 AT Corner 5. Carpet style floor and almost no natural light, mostly

lamps. The prominent feature on the ground would sometimes be

detected as movement. 72

5-10 AT Corner 6. Carpet style floor with natural light from the ceiling.

This leads to a physical shadow cast in a bad angle for detection. . . 73

13

5-11 AT Corner 7. Industry style floor with no natural light and low re-

flection properties. Very good constellation for classification (both ST

and DY). 73

5-12 DSO Corner 1. A bright environment with a lot of natural light from

windows and a stone floor with strong contrasting gaps. The gaps in

the floor also cause some miss-classification on the DY side before NL. 74

5-13 DSO Corner 2. A reflective industry style floor with no natural light

sources and contrasting floor structures. Due to the floor structures

it’s harder to classify “static” sequences. 75

5-14 DSO Corner 3. Concrete style floor with a strong natural light source

from the left side which also causes a strong edge on the ground. This

makes it harder to distinguish DY from ST. 75

5-15 DSO Corner 4. Carpet style floor with a strong natural light source

from the left (depending on the time of day). This results in a relatively

strong shadow signal. 76

5-16 DSO Corner 5. Carpet style floor and almost no natural light, mostly

lamps from the ceiling. After NL the accuracy for DY increases and

decreases for ST. 76

5-17 DSO Corner 6. Carpet style floor with natural light from the ceiling

and a strong feature on the ground. For this corner exists more “static”

sequences in the database than “dynamic”. 77

5-18 DSO Corner 7. Industry style floor with no natural light and low

reflectively. This setting allows relatively good classification. 77

14

List of Tables

3.1 Symbol Table. Description of variables used in this section. 42

5.1 Dataset Overview. Depending on the noise level of the image regis-

tration method and the camera recording quality we set a different

threshold for the sum of the sequence (Eq. 3.15) for each camera type. 65

15

16

Nomenclature

ADAS Advanced Driver Assistance Systems, page 19

AT visual fiducial system AprilTags, page 24

DOF Degrees of Freedom, page 36

DSO Direct Sparse Odometry, page 24

fps frames per second, page 52

LiDAR light detection and ranging, page 21

NL New Label, page 65

NLoS Non-Line-of-Sight, page 25

ORB Oriented FAST and rotated BRIEF, page 35

RADAR radio detection and ranging, page 21

ROC Receiver-Operating-Characteristic, page 63

ROI Region of Interest, page 23

ROS Robotic Operating System, page 23

SIFT scale-invariant feature transform, page 35

SNR signal-to-noise ratio, page 22

SURF speeded up robust features, page 35

17

TP True Positive, page 65

USA United States of America, page 19

UWB ultra-wideband, page 25

WHO World Health Organization, page 19

18

Chapter 1

Introduction

Safety is a key challenge and promise of future mobility solutions, specifically of

self-driving cars. According to the World Health Organization (WHO) around 1.3M

people are losing their lives in road accidents every year1. Mandatory passive safety

features such as the seat-belt and airbags are helping to reduce the consequences

of accidents. In addition and more recently active safety features such as Advanced

Driver Assistance Systems (ADAS) and autonomous driving research have come a long

way to deliver on the promise of safer driving. Even though the number of vehicles

on the roads is increasing, the numbers of fatal road accidents show a decreasing

tendency in the United States of America (USA) since 1990 (Fig. 1-1).

“Vision Zero is a strategy to eliminate all traffic fatalities and severe injuries, while

increasing safe, healthy, equitable mobility for all”3,4. But despite the encouraging

trend in the USA we still have a long way to go to make Vision Zero a reality.

In addition to improvements to existing methods both on the hardware and the

algorithmic side, we need to explore novel and innovative ways of how each sub-module

of an autonomous system’s architecture (e.g. perception, planning, and control) can

contribute to safer driving in the future. Traditionally autonomous systems rely on

1https://www.who.int/gho/road_safety/mortality/number_text/en/
2https://www.statista.com/statistics/191660/fatality-rate-per-100000-licensed-

drivers-in-the-us-since-1988/
3https://visionzeronetwork.org/about/what-is-vision-zero/
4https://www.itf-oecd.org/sites/default/files/docs/08targetssummary.pdf

19

https://www.who.int/gho/road_safety/mortality/number_text/en/
https://www.statista.com/statistics/191660/fatality-rate-per-100000-licensed-drivers-in-the-us-since-1988/
https://www.statista.com/statistics/191660/fatality-rate-per-100000-licensed-drivers-in-the-us-since-1988/
https://visionzeronetwork.org/about/what-is-vision-zero/
https://www.itf-oecd.org/sites/default/files/docs/08targetssummary.pdf

Figure 1-1: Fatality Rate in the USA. “The timeline shows the fatality rate per 100,000
drivers licensed to operate a motor vehicle in the United States from 1990 to 2016.
The fatality rate stood at 16.9 deaths per 100,000 licensed drivers in 2016”2.

a perception module to sense the environment and localize, on a planning module

to compute target actions and a control module to actuate the vehicle in order to

execute the target actions. On the perception side increasing safety could mean to

develop more accurate, robust and weather invariant sensors. It could also mean to

use existing sensors in new ways and to exploit a new signal range which could be

used for obstacle detection or early collision warning.

1.1 Motivation

The high-level idea is to improve safety by increasing the situational awareness of the

human driver or the autonomous car. Perception modules consisting out of sensors

and algorithms interpreting the sensor’s data help to identify obstacles. Conceptu-

ally speaking, increasing the perception horizon (i.e. decreasing the blind spot areas)

would allow earlier detections and thus give more time to prevent collisions. Specif-

ically, we aim to detect unexpected dynamic obstacles out of the direct line of sight

20

from the viewpoint of the moving ego vehicle based on shadows. This would help to

detect moving persons behind buildings or parked cars.

But current sensor solutions (e.g. LiDAR, RADAR, Ultrasonic, Cameras, etc.)

and algorithms widely used in ADAS applications require direct sight of dynamic

obstacles for detection and/or classification. Some methods can handle partial oc-

clusion of objects but anticipating collisions with unseen obstacles and thus avoiding

dangerous situations have so far been impossible.

Thus, it is a key unsolved problem to detect obstacles even before they are directly

visible. Such obstacles could e.g. be pedestrians running on the street while hidden

due to parked cars from the viewpoint of an approaching car (Fig. 1-2).

Figure 1-2: ShadowCam use case. A pedestrian runs on the street while hidden from
the viewpoint of the approaching car.

The results of this thesis are providing evidence that the proposed algorithms

could ultimately help to make driving safer for pedestrians as well as drivers and safe

lives.

Observing human drivers’ and operators’ behavior gives an intuitive idea of how a

solution for this problem could look like. In certain situations, humans can perceive

obstacles even when they are completely occluded.

One technique used by humans consciously or even sub-consciously for detecting

hidden dynamic obstacles is observing changes in illuminance. Via the change in

illuminance humans can infer an approaching person or vehicle around a corner or

21

anticipating a car backing out of a driveway. A pronounced and easily observable

cue is the illumination change generated by car-lights at night, which is used by

humans to anticipate an approaching vehicle e.g. at intersections. Inferring motion

of obstacles around corners becomes considerably more challenging during daytime or

while operating a mobile robotic platform in a well-lit indoor environment. We explore

whether in these scenarios, shadows can be used as a cue, providing information on

e.g. whether a potential obstacle behind a corner is in motion. Use of shadows in

obstacle detection systems is particularly challenging as it requires motion detection

despite a sometimes barely visible shadow (i.e. low signal-to-noise ratio (SNR)).

1.2 Problem Setup

To approach this new problem, we are looking at indoor corners during different times

of the day and at corners where it is physically possible to cast a shadow. We aim

to classify video sequences into “dynamic” or “static” depending on whether or not

someone is moving behind the corner from the viewpoint of a relatively slow-moving

autonomous vehicle platform (ca. around 3mph).

3

1

2
4

3

1

2

Figure 1-3: Problem Setup. We compare the performance of two image registration
methods as part of the ShadowCam pipeline: On the left side we place visual fidu-
cial markers (i.e. AprilTags) on the ground plane and on the right we use a visual
odometry method (i.e. DSO) for image registration.

To focus on the algorithmic development, we first registered the video sequences

with visual fiducial markers (i.e. AprilTags) on the ground plane. The second ap-

proach relies on a visual odometry method (i.e. DSO) to register the sequences into

the same coordinate system (Fig. 1-3). This increases the generalizability of our

22

method since we can run the ShadowCam algorithm on any corner without placing

AprilTags markers on the ground plane beforehand. In Fig. 1-3 number (1) marks

the autonomous wheelchair, (2) the known Region of Interest (ROI) where a shadow

is expected to be detected and (3) the dynamic obstacle out of the line of sight. (4)

are the visual fiducial markers (i.e. AprilTags) placed on the ground plane.

1.3 Key Contributions

This thesis presents a novel method and algorithm for using shadows as features

observed with a passive sensor (e.g. camera) to avoid collisions with unseen dynamic

obstacles. The proposed algorithm could ultimately help to save lives. Using a shadow

as a feature is a recent concept in image processing where the focus lies usually on the

removal of the shadow and the corresponding signal gets treated as unwanted noise.

Inferring useful information from a shadow or from a small illumination change on

the ground is a challenging problem since it is usually a weak signal (i.e. low SNR).

Such a weak signal becomes even harder to observe from a moving platform as this

introduces more noise to the system.

We assume that we operate the system indoors at corners where it is physically

possible to cast a shadow for a moving obstacle, the ROI is known as described in

Sec. 1.2 and given speeds at around 3mph for both the obstacle and the ego vehicle.

Creating a solution for the described problem under these assumptions includes the

following key contributions presented in this thesis:

∙ A novel method for shadow-based motion detection of dynamic obstacles oc-

cluded behind corners.

∙ Extensive evaluations on synthetic data and recordings of real-world corner

experiments.

∙ Implementation of our algorithm as an open-source Robotic Operating System

(ROS) package, as well as publication of a comprehensive dataset of evaluation

scenes.

23

∙ Integration of all code to run in real-time on a full-scale autonomous wheelchair.

∙ Comparison of the classification performance of our algorithm using visual fidu-

cial tags (i.e. AprilTags (AT)) and a visual odometry (i.e. Direct Sparse Odom-

etry (DSO)) as the image registration methods.

1.4 Outline

The next chapter gives an overview of the related works (Chap. 2).

Chap. 3 presents the technical approach to solve the described problem and gives

more details about the two used image registration methods in Sec. 3.2 and Sec. 3.3.

The chapter about the experimental setup (Chap. 4) introduces all platforms

ranging from simulation (Sec. 4.2) to the real world experiments (Sec. 4.1 and 4.3)

with an autonomous wheelchair (Sec. 4.4). It closes with the description of our

annotation tool (Sec. 4.5).

In the result chapter (Chap. 5) we present how the ShadowCam algorithm per-

forms in the experimental settings from Chap. 4 and we close with the conclusions

in Chap. 6 and future work outlook in Sec. 6.2.

24

Chapter 2

Related Work

There have been several works on perception for mobile robotics in non-line-of-sight

(NLoS) scenarios. Most research in that context considers ultra-wideband (UWB)

systems for localization, as e.g. in [36], and ranges up to using WiFi signals for NLoS

perception [1] (Fig. 2-1). A first approach for explicitly seeing around corners for

mobile robotics was presented in [44] using a drone which can be launched from a

car as an additional source of information (Fig. 2-1). In contrast, the method of this

thesis relies on a vision-based approach and does not require hardware infrastructure,

assumptions about the occluding material, or deployment of drones.

Figure 2-1: NLoS Scenarios. The image on the left “shows the experimental setup of
a trial which consisted of a single person moving around in a conference room” [1].
The image on the right “shows the initial plan for the quadcopter to view some of
these blind regions” [44].

25

2.1 Handling Object Occlusion

Consideration of occlusion for intelligent transportation systems mostly focused on

improved tracking by improving detectors of other vehicles [27, 13] and pedestri-

ans [29] while assuming partial visibility or a merely a temporary occlusion. In [9],

explicit modelling of occlusions was also used for broader scene understanding. In

contrast to these approaches, we do not assume even partial visibility of the potential

obstacle but use, when available, a shadow instead.

2.2 Shadow Processing

In many fundamental computer vision tasks shadows could cause problems. “For in-

stance, shadows can deteriorate the performance of object recognition, stereo, shape

reconstruction, image segmentation and scene analysis” [21]. Therefore shadow pro-

cessing typically focuses on its removal [21, 32, 12, 2, 35] in single images and in video

sequences. “In digital photography, information about shadows and their removal can

help to improve the visual quality of photographs. Shadows are also a serious concern

for aerial imaging and object tracking in video sequences” [21] (Fig. 2-2).

Figure 2-2: Shadow Removal. On the left: “Given an original image with a shadow
mask (first row), the method is able to extract exact shadows (second row) and to
automatically recover the shadow-less images (third row)” [21]. On the right: On the
top images with shadows are shown and below the corresponding shadow invariant
image [8].

Another important example where shadow removal is helpful are vision-based lo-

26

calization systems. They “rely on place models based on scene appearance recorded as

an image. However, image formation is an interplay of both scene structure and the

current lighting conditions. Ideally the same place would always produce the same

image, but observations are strongly influenced by illumination” [8]. Therefore in mo-

bile robotic applications, shadow removal is particularly relevant for improving visual

localization, because it enables generating a more weather invariant representation of

the environment [8, 24] (Fig. 2-2).

In [23] shadows are also used in motion detection, that work assumes a different

scenario involving a static camera and also considers visibility of the tracked object.

In contrast to these works, we explicitly use shadows as cues in our system.

2.3 Hidden Scene Recovery

Computer vision approaches which infer about hidden scenery usually rely on Time-

of-flight cameras [30, 37, 38, 22, 20, 14]. Time-of-flight cameras are prone to interfer-

ence from other unpredictable lighting sources and therefore mostly rely on carefully

controlled environments (Fig. 2-3).

Using an active sensing approach, as described in [43], “a laser pulse that lasts

less than one trillionth of a second is used as a flash and the light returning from

the scene is collected by a camera at the equivalent of close to 1 trillion frames per

second. Because of this high speed, the camera is aware of the time it takes for the

light to travel through the scene. This information is then used to reconstruct shape

of objects that are visible from the position of the wall, but not from the laser or

camera”1.

It was recently shown that lighting from behind the corner and the created faint

penumbra on the ground can be used for creation of a 1D video [3] from a static

camera in pure passive sensing setting. The stylized diagram (Fig. 2-3) “shows a

typical scenario: two people – one wearing red and the other blue – are hidden from

the camera’s view by a wall. Only the region shaded in yellow is visible to the camera.

1http://web.media.mit.edu/~raskar/cornar/

27

http://web.media.mit.edu/~raskar/cornar/

To an observer walking around the occluding edge (along the magenta arrow), light

from different parts of the hidden scene becomes visible at different angles” [3].

Drawing inspiration from this work, our proposed approach considers shadows

and uses them for motion detection from a moving platform. This contrasts with

most perception systems which explicitly consider shadows so far, since they mostly

focus on its removal. The underlying intuitive idea here is that shadows change the

light intensity of pixels from the ground plane close to a corner when it is physically

possible to cast a shadow. On a registered and stabilized image sequence such a

change of pixel values can be observed with a filter. A decision module can then be

based on a threshold. This allows an autonomous vehicle to interact with (e.g. stop

for) dynamic obstacles out of the line of sight and increase safety.

Figure 2-3: Hidden Scene Recovery. On the left: “The seemingly impossible task
of recording what is beyond the line of sight is made feasible by ultra-fast imaging.
A new form of photography, Femto-photography, exploits the finite speed of light
and analyzes “echoes of light” ”1 [43]. On the right: To construct a 1-D video of an
obscured scene an RGB video is recorded with a consumer camera [3].

2.4 Change Detection

Change detection is usually the problem of identifying gradual or sudden temporal

changes between two frames of a video. Change detection is often done in the context

28

of organizing and sequencing videos for the television industry. “Shot-change detection

is the process of identifying changes in the scene content of a video sequence so that

alternate representations may be derived for the purposes of browsing and retrieval,

e.g. key-frames may be extracted from a distinct shot to represent it” [41]. According

to [41], there are three major approaches for this problem.

The first approach is using color histograms and compares the color compositions

of two frames. Any difference in the histograms that exceeds a certain threshold

indicates that a change occurred between the two images. Experiments with this

method [41] show that generally, average colors of frames not only ignore luminance

but are ultimately not rich enough features to capture change or motion.

As further detailed in [5, 41, 31], the second approach is to detect and model

the motion of objects in between two frames. This can be done by either estimating

the optical flow of the object in the frames or by estimating the physical, real-world

motion of the object. Estimating the optical flow of the object relies on comparing

pixels between frames, whereas estimating the real motion of the object involves

developing a two-dimensional affine motion. Both these approaches are sensitive to

noise.

Thirdly and lastly, [41, 18] discuss change detection using MPEG compressed

data. Compressing data into MPEG or MPEG-2 formats allows one to extract higher

level semantic information from the videos’ hyper parameters that allow to infer

information about change between images.

2.5 Action Recognition

With the recent success of neural networks and deep learning, a whole host of new

techniques came about that made solving the problem of action recognition a feasible

task. Action recognition is usually the task of analyzing not only the contents of

a video, but also how this content changes over time. Since 2010, a number of

convolutional neural networks-based approaches have been developed. We will discuss

some of more pertinent ones of those described in [33] below (Fig. 2-4).

29

Figure 2-4: Action Recognition approaches. K represents the number of frames in a
video and N represents the N neighboring frames in a video [6].

The earliest approach is discussed in [16] and a more generalized version of [16] is

presented in [17]. This approach involves a single stream of 2-dimensional recurrent

convolutions on multiple clips sampled from a video. The average of the predictions

on each clip is taken to be the prediction for the whole video. This method failed

to classify motion features of objects in the video as it was unable to capture the

temporal aspects of an action well. Additionally, the sampling of clips led to false

label assignments to each clip.

Evolving from [17], [7] and [40] attempt to solve [17]’s problem of failing to capture

temporal features by introducing a two-stream architecture of 2-dimensional convo-

lutions, where one stream is used for spatial features and the other for temporal

features. The two streams are then fused together in the last convolutional layer

either using a SVM or a 3-dimensional convolutional layer. This performed slightly

better than [17].

The next approach, as introduced by [39] and further developed by [10], is similar

to [17]. Instead of 2-dimensional convolutions, the authors utilized 3-dimensional

convolutions. The proposed architecture is based on 3 by 3 by 3 convolution kernels

at each layer performed quite well while maintaining compact features. This approach

captured long-term temporal features quite well despite struggling to classify more

complex actions.

Finally, [6] reinvents the work done by [7] and inflates the state-of-the-art 2-

dimensional CNNs trained on ImageNet such that the two streams use 3-dimensional

30

convolutions instead of 2-dimensional ones. These two new streams are then fused

together using a SVM or another linear classifier. This approach has achieved very

good precision and recall metrics for action recognition.

31

32

Chapter 3

Technical Approach

The problem is about detecting dynamic obstacles out of the direct line of sight of

a moving ego vehicle based on shadows. Conceptually we aim to increase safety by

increasing the situational awareness of the human driver when ShadowCam is used

an additional ADAS or of the autonomous vehicle when ShadowCam is used as an

additional perception module. In this chapter we highlight the specific challenges of

this problem and explain our technical approach to address these. The core module

of the ShadowCam pipeline is the classification of frame sequences (Alg. 4) which

enables the human driver or the autonomous vehicle to avoid potential collision with

dynamic obstacles out of the direct line of sight.

It is challenging to come up with a general solution for the described NLoS prob-

lem. At some corners moving objects are physically not able to cast a shadow, at

others and in most cases the shadow is a low SNR signal. This signal highly depends

on various nuisance factors — these include size of the object, speed of the move-

ment, lighting, reflection properties of the floor, color of the floor, ego motion, among

others. Despite these difficulties (as shown in [3]) it is possible to create a signal of a

moving obstacle behind a corner from a static camera. But to actually make use of

the shadow signal in a practical way, e.g. as a safety feature for autonomous vehicles,

it needs to work on a moving platform. This requirement (1) adds even more noise

to the system and thus makes it harder to achieve a reliable detection accuracy and

(2) the implementation of the algorithm needs to be real-time capable.

33

We are presenting a motion detection algorithm based on shadows as features

from the viewpoint of a moving vehicle. We look at corners where moving objects

are physically able to cast a shadow. The algorithm runs on a cyclic buffer and in a

pre-processing step projects all images of the buffer to the same viewpoint (Sec. 3.1).

On these registered image sequences, we run the ShadowCam algorithm to detect

dynamic obstacles (Fig. 3-1). For the registration step we compare two techniques:

∙ Visual fiducial markers (i.e. AprilTags) placed on the ground plane (Sec. 3.2)

∙ Visual odometry method (i.e. DSO) to get the rotation matrix and the trans-

lation vector between each frame for the projection into the same coordinate

system (Sec. 3.3)

The ROI could be determined using the map that the autonomous wheelchair

uses to localize itself, other place recognition algorithms [42], or a deep-learning-

based detector, but determining the ROI is not the focus of this work. Instead we use

hand annotations for each corner to crop the ROI where we expect to see a shadow.

Fig. 3-1 and Alg. 3 show how we embedded ShadowCam in the perception, plan-

ning and control cycle of the autonomous vehicle, which is in our case a wheelchair.

The ShadowCam pipeline consists out of five steps. First, we run a cyclic buffer with

the image stream from the camera. Then we run two different image registration

methods (either based on AprilTags (Sec. 3.2) or on DSO (Sec. 3.3)) on this buffer.

In Sec. 3.1 we introduce more details about the image registration process. This step

also includes the ROI selection based on the annotations. The output of the second

step is a registered buffer (i.e. frame sequence) with ROI selection. During the third

step (i.e. pre-processing step) we compute the mean image of the current sequence,

resize and amplify the signal. The output of the third step is a frame sequence which

has the same size for both image registration method. This allows us to interchange

the image registration methods seamlessly. The classification algorithm of the Shad-

owCam pipeline (Alg. 4) in the fourth step decides based on the pre-processed image

sequence whether it is safe to continue along the path. The vehicle interface in the

fifth and last step then executes this decision.

34

Vehicle

Images from Camera

• Cyclic Buffer

Registration and ROI

• AprilTag Detection
• Image Rectification
• ROI Selection

• Resizing
• Mean Image
• Color Amplification

• Dynamic Threshold
• Classify pixels
• Action

Pre-Processing ShadowCam

• Excecution

• Cyclic Buffer

Images from Camera Registration and ROI

• DSO Tracking
• Image Rectification
• ROI Selection

Figure 3-1: Overview of the ShadowCam Pipeline (Alg. 3). We run a cyclic buffer
over the frames of the camera mounted on top of the autonomous vehicle. After the
pre-processing steps – including image registration and ROI selection (Sec. 3.2 and
3.3) – we classify sequences (Alg. 4) and ensure that the vehicle avoids collisions with
unseen obstacles based on shadows.

3.1 Image Registration

In the literature image registration is usually referencing to the process of transform-

ing multiple images into the same coordinate system. This process can be split into

four steps [47]:

∙ Feature detection (e.g. Oriented FAST and rotated BRIEF (ORB), scale-

invariant feature transform (SIFT) or speeded up robust features (SURF)-

features)

∙ Feature matching

∙ Estimating the homography based on the matched feature points

∙ Resampling and transformation of the image with an appropriate interpolation

technique

35

In this case (Eq. 3.1) the homography 𝐻 transforms points of two planes (up to a

scale-factor 𝑠) with 8 Degrees of Freedom (DOF):

𝑠

⎡⎢⎢⎢⎣
𝑥

′

𝑦
′

1

⎤⎥⎥⎥⎦ = 𝐻

⎡⎢⎢⎢⎣
𝑥

𝑦

1

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
ℎ11 ℎ12 ℎ13

ℎ21 ℎ22 ℎ23

ℎ31 ℎ32 ℎ33

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
𝑥

𝑦

1

⎤⎥⎥⎥⎦ (3.1)

Fig. 3-2 visualizes a planar surface from the view point of two cameras and shows

how 𝐻 projects image 1 to the coordinate frame of image 2. This allows to overlay

two or more images from the same environment but shot from different angles. We

show in the following the two methods we chose for image registration.

Figure 3-2: Planar World. Rotation and Translation of Camera Frames [15].

3.2 Visual Fiducial System: AprilTags

To be able to focus on the algorithmic development in a first iteration we sought for

a straight forward way to register images reliably. Placing visual fiducial markers on

the ground plane was the favorable option.

We use AprilTags [28, 45] to provide features for sequence registration. April-

Tags are a visual fiducial system. The tags can be created from a normal printer,

and the open-source “AprilTag detection software computes the precise 3D position,

orientation, and identity of the tags relative to the camera”1. The open-source imple-

mentation is real-time capable. We placed 13 AprilTags on the same plane at which

1https://april.eecs.umich.edu/software/apriltag

36

https://april.eecs.umich.edu/software/apriltag

we expect to detect a shadow. In theory one tag would be enough, but most of the

time only a subset of the AprilTags gets accurately detected and by adding more

tags we increase the numerical stability. The unique IDs of the tags can be used for

cropping the ROI where we expect to see a shadow. We take the ID of the furthest

tag from the ego vehicle and crop a dynamic rectangle using the size of that tag,

which results in a rectangle that is larger the closer we are to the corner.

As described in [45] the detection steps are (1) binarizing the input image with an

adaptive threshold (2) segmentation based on connections between black and white

regions (3) fitting of squads to cluster of border pixels (4) outputting valid tag detec-

tions.

Relying only on the AprilTags on the ground plane as features for the image

registration process has two major advantages:

∙ Feature matching is fast since every tag has a unique ID

∙ Since all tags are placed on the ground plane, we only consider matched points

on the ground plane to compute the homography

ORB or SIFT features would not only be on the ground plane but all over the scene

and thus would have a possibly negative impact on the resulting homography. Solving

for the homography in this case would mean to get a good overall transformation

result, but in our case, we care mostly about an accurate homography for the ground

plane where we expect to detect a shadow.

Algorithm 1 gives an overview of the sequence stabilization process with AprilTags.

For all frames in the cyclic-buffer we find the maximum set of commonly detected

tags (step 3) and compute homographies (step 5) based on the matched points (step

4). This homography then transforms all frames 𝑓𝑖 in the buffer to the view point of

the first camera frame (transformation from 𝑐𝑖 to 𝑐0 in step 6).

37

Algorithm 1 AprilTag Image Registration Algorithm
1: 𝑑0 ← tagDetection(0)

2: for all i=1; i< buffer.length; i++ do

3: 𝑑𝑖 ← tagDetection(i)

4: 𝑚𝑖 ← findMatchingPoints()

5: 𝐻𝑐0
𝑐𝑖
← computeHomography()

6: 𝑓0 ← warpPerspective(𝑓𝑖)

Figure 3-3: AprilTag Matches. Example matches of the AprilTags on the ground
plane where the image on the right is closer to the corner. Each tag has a unique ID
which allows finding corresponding points fast and easily.

3.3 Visual Odometry Method: DSO

Many different visual odometry methods have been developed for the past 15 years.

Various methods found their way into wide ranging applications in robotics and aug-

mented reality. On a higher level the literature separates this line of work based on

the data association design choice [46] (Fig. 3-4). Some of the most recent examples

are shown in Fig. 3-5. Our choice for DSO is mainly driven by two requirements:

∙ The code is open-source, works and real-time capable (i.e. ca. 20Hz)

∙ The visual odometry method should also perform reliably in hallways and areas

where only very few textural features exist

Specifically, we looked at the open-source implementations of ORB-SLAM [25] and

DSO. But since ORB SLAM is a feature-based method it works better in feature richer

environments. We run our experiments mainly in hallways without many textural

38

features. In theory DSO performs in this setting more reliably. DSO is a sparse and

direct method for monocular visual odometry. It “jointly optimizes full likelihood

for all involved model parameters, including camera poses, camera intrinsics, and

geometry parameters (inverse depth values)” [11]. We tried the open-source code of

DSO and ORB-SLAM. We ran initial tests which could confirm that DSO performs

better in our experiment settings.

After this initial review and evaluation, we moved forward with DSO and modified

the open-source code so that it integrates seamlessly the ShadowCam pre-processing

pipeline.

Figure 3-4: Design choices for data association. Direct (a) vs. feature based (b)
methods [46].

Figure 3-5: Visual SLAM Methods. Recent keyframe-based visual SLAM system
with either open or closed source code [46]. Column 1: Publication year. Column 2:
Name of the method. Column 3: Open our closed source code.

The open-source implementation of DSO2 computes the position for each frame

(𝑀 𝑐
𝑤) which consists out of the rotation matrix 𝑅 and the translation vector 𝑡. We

adapted the source code and integrated it into our pre-processing pipeline required

to run ShadowCam algorithm.

2https://github.com/jakobengel/dso

39

https://github.com/jakobengel/dso

In the following we describe how we obtain the homography 𝐻 mathematically

from 𝑅 and 𝑡. As indicated in Fig. 3-2 the homography is proportional to the

information given by the planar surface equation, the rotation matrix 𝑅 and the

translation vector 𝑡 between two image frames

𝐻 ∝ 𝑅− 𝑡𝑛𝑇 (3.2)

where 𝑛 designates the normal of the local planar approximation of the scene [34].

Symbols used in this section are described in Table 3.1.

Algorithm 2 gives an overview of how the following equations are connected to get

𝐻 from 𝑅 and 𝑡 for each frame. We obtain 𝑅 and 𝑡 for the first frame in the buffer

and register all following frames with respect to the first frame (in Alg. 2 denoted

as 𝑐2). This essentially means that all frames are projected into the same coordinate

system.

We annotate three points on the ground plane and in the world frame 𝑤. This

results in reasonable transformations for most pixels on the ground plane. This is

important since later we want to classify shadows close to a corner on this plane.

After we obtain 𝑅 and 𝑡 of frame 𝑓𝑖 we can transform the points on the plane and

in the world frame 𝑤 to the camera frame 𝑐1. 𝑀 𝑐
𝑤 in homogeneous form3 transforms

points from the world frame (denoted as 𝑤) into the camera frame (denoted as 𝑐):

⎡⎢⎢⎢⎢⎢⎢⎣
𝑋𝑐

𝑌𝑐

𝑍𝑐

1

⎤⎥⎥⎥⎥⎥⎥⎦ = 𝑀 𝑐
𝑤

⎡⎢⎢⎢⎢⎢⎢⎣
𝑋𝑤

𝑌𝑤

𝑍𝑤

1

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎣ 𝑅𝑐
𝑤 𝑡𝑐𝑤

01×3 1

⎤⎦
⎡⎢⎢⎢⎢⎢⎢⎣
𝑋𝑤

𝑌𝑤

𝑍𝑤

1

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑟11 𝑟12 𝑟13 𝑡𝑥

𝑟21 𝑟22 𝑟23 𝑡𝑦

𝑟31 𝑟32 𝑟33 𝑡𝑧

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
𝑋𝑤

𝑌𝑤

𝑍𝑤

1

⎤⎥⎥⎥⎥⎥⎥⎦ (3.3)

Given 𝐾 the camera’s intrinsic matrix and 𝑀 𝑐
𝑤 the camera’s pose we can obtain the

3https://docs.opencv.org/3.4.1/d9/dab/tutorial_homography.html

40

https://docs.opencv.org/3.4.1/d9/dab/tutorial_homography.html

Algorithm 2 DSO Image Registration Algorithm
1: planePoints𝑤 ← parametersFromFile()

2: 𝑅𝑐2 ← getRotationMatrix(0) ◁ Rotation matrix of first frame in cyclic buffer

3: 𝑡𝑐2 ← getTranslationVector(0) ◁ Translation vector of first frame in cyclic buffer

4: for all i=1; i< buffer.length; i++ do

5: 𝑅𝑐1 ← getRotationMatrix(i)

6: 𝑡𝑐1 ← getTranslationVector(i)

7: planePoints𝑐1 ← Eq. 3.3 ◁ Transformation of world plane points to 𝑐1

8: 𝑅𝑐2
𝑐1
← Eq. 3.6 ◁ Obtaining rotation matrix from 𝑐1 to 𝑐2

9: 𝑡𝑐2𝑐1 ← Eq. 3.7 ◁ Obtaining translation vector from 𝑐1 to 𝑐2

10: 𝑛𝑐1 ← computeNormal(planePoints𝑐1)

11: 𝑑𝑐1 ← computeDistance()

12: 𝐻𝑐2
𝑐1
← Eq. 3.8 ◁ Calculating homography matrix

13: 𝑓𝑐2 ← warpPerspective(𝑓𝑐1)

image points directly from world points in the following way:

𝑠

⎡⎢⎢⎢⎣
𝑢

𝑣

1

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
𝑓𝑥 0 𝑐𝑥

0 𝑓𝑦 𝑐𝑦

0 0 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
𝑟11 𝑟12 𝑟13 𝑡𝑥

𝑟21 𝑟22 𝑟23 𝑡𝑦

𝑟31 𝑟32 𝑟33 𝑡𝑧

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎣
𝑋𝑤

𝑌𝑤

𝑍𝑤

1

⎤⎥⎥⎥⎥⎥⎥⎦ = 𝐾 𝑀 𝑐
𝑤

⎡⎢⎢⎢⎢⎢⎢⎣
𝑋𝑤

𝑌𝑤

𝑍𝑤

1

⎤⎥⎥⎥⎥⎥⎥⎦ (3.4)

With both positions of the camera (𝑀 𝑐1
𝑤 and 𝑀 𝑐2

𝑤 , where 𝑐2 is the camera frame of the

first image in the cyclic-buffer) we can find the transformation for a 3D point from

camera frame 𝑐1 to 𝑐2:

𝑀 𝑐2
𝑐1

= 𝑀 𝑐2
𝑤 · (𝑀 𝑐1

𝑤)−1 =

⎡⎣𝑅𝑐2
𝑤 𝑡𝑐2𝑤

03×1 1

⎤⎦ ·
⎡⎣(𝑅𝑐1

𝑤)𝑇 − (𝑅𝑐1
𝑤)𝑇 · 𝑡𝑐1𝑤

01×3 1

⎤⎦ (3.5)

This allows us to specify the rotation matrix 𝑅

𝑅𝑐2
𝑐1

= 𝑅𝑐2
𝑤 · (𝑅𝑐2

𝑤)𝑇 (3.6)

41

and the translation vector 𝑡 between two frames

𝑡𝑐2𝑐1 = 𝑅𝑐2
𝑤 ·

(︁
− (𝑅𝑐1

𝑤)𝑇 · 𝑡𝑐1𝑤
)︁

+ 𝑡𝑐2𝑤 (3.7)

with the distance 𝑑 as the dot product between the plane normal and a point on the

plane. This leads to the homography 𝐻 from 𝑐1 to 𝑐2

𝐻𝑐2
𝑐1

= 𝑅𝑐2
𝑐1
−

𝑡𝑐2𝑐1 · (𝑛𝑐1)
𝑇

𝑑𝑐1
(3.8)

which is the same as Eq. 3.2 including scaling. The implementation of these equations

can be found here https://github.com/fnaser/dso.

𝑀𝑤
𝑐 Camera pose, transformation from camera 𝑐 to world 𝑤 frame (4x4 matrix)

𝑅𝑤
𝑐 Rotation matrix, rotation from camera 𝑐 to world 𝑤 frame (3x3 matrix)

𝑡𝑤𝑐 Translation vector, translation from camera 𝑐 to world 𝑤 frame (3x1 matrix)

𝐻𝑐2
𝑐1

Homography matrix, projection from camera 𝑐1 to 𝑐2 frame (3x3 matrix)

𝐾 Camera intrinsics (3x3 matrix)

𝑛𝑐1 Plane normal in camera frame 𝑐1 (3x1 matrix)

𝑑𝑐1 Distance between camera 𝑐1 and plane (skalar)

Table 3.1: Symbol Table. Description of variables used in this section.

42

https://github.com/fnaser/dso

3.4 Dynamic Threshold

Algorithms 3 and 4 sketch out how we implemented the ShadowCam. For the ac-

tual C++ code, we refer to the open-source ROS package https://github.mit.edu/

fnaser/dso_ros. Algorithm 3 first gives an overview of the main loop. The classifi-

cation procedure, Algorithm 4, shows how we determine “dynamic” or “static” which

is our core algorithmic contribution.

Algorithm 3 ShadowCam Pipeline
1: list← global var

2: while true do

3: 𝑓 ← getFrame()

4: 𝑟1 ← ATregistration(f) ◁ Image registration based on AprilTags (Alg. 1)

5: or

6: 𝑟2 ← DSOregistration(f) ◁ Image registration based on DSO (Alg. 2)

7: if checkImageRegistration(r) then

8: 𝑠← createSequence(f, list) ◁ Running cyclic buffer

9: 𝑐← classifySequence(s) ◁ Classifying sequence (Alg. 4)

10: 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝐼𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒(𝑐)

Our system uses a cyclic frame buffer approach to achieve real-time performance.

This means we can output a detection result whenever a new image fulfills the re-

quirements to get appended to the sequence, e.g. we require a maximum number of

detected AprilTags above a defined quality level.

Once a new image gets appended to the sequence, we either identify corresponding

tags or use DSO to compute a homography 𝐻 for each frame to get projected to

the viewpoint of the first frame in the sequence. In other words, we apply image

registration to all frames 𝑖 in the current sequence 𝑗 according to

𝑓𝑗,𝑖(𝑥, 𝑦) = 𝑓 ′
𝑗,𝑖(ℎ(𝑥), ℎ(𝑦)) . (3.9)

After the image registration step, we crop according to the tags the ROI. To reduce

43

https://github.mit.edu/fnaser/dso_ros
https://github.mit.edu/fnaser/dso_ros

Algorithm 4 Classify Sequence
1: procedure classifySequence(𝒮)

2: 𝑓 ← 𝑚𝑒𝑎𝑛(𝒮) ◁ Calculating the mean image of the sequence 𝒮

3: 𝑠𝑢𝑚← 0 ◁ Initializing the sum over the whole frame sequence

4: 𝑐← 0 ◁ Initializing the classification output (0 = “static”)

5: for all 𝑓 ∈ 𝒮 do

6: 𝑓 ← 𝑐𝑜𝑙𝑜𝑟𝐴𝑚𝑝𝑙𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛(𝑓, 𝑓) ◁ Amplifying weak signals (Eq. 3.12)

7: 𝑓 ← 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙𝐹 𝑖𝑙𝑡𝑒𝑟(𝑓)

8: 𝑓 ← 𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑(𝑓) ◁ Thresholding pixels based on mean and

standard deviation (Eq. 3.14)

9: 𝑓 ← 𝑚𝑜𝑟𝑝ℎ𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙𝐹 𝑖𝑙𝑡𝑒𝑟(𝑓)

10: 𝑠𝑢𝑚← 𝑠𝑢𝑚 + 𝑠𝑢𝑚𝑃𝑖𝑥𝑒𝑙𝑠(𝑓)

11: if 𝑠𝑢𝑚 >= 𝑐𝑎𝑚𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then:

12: 𝑐← 1 ◁ Classifying the sequence (1 = “dynamic”)

13: return c.

noise, we down-sample each cropped and registered image using bilinear interpolation

to a 100× 100 patch,

𝑓𝑗,𝑖 = resize(𝑓𝑗,𝑖, (𝑤, ℎ)) . (3.10)

Then we compute the mean image over all down-sampled images, i.e.,

𝑓𝑗 =
1

𝑛

𝑛∑︁
𝑖=1

𝑓𝑗,𝑖 . (3.11)

We subtract the mean image from each frame in the current sequence and apply a

Gaussian blur before we amplify the difference to the mean [3]. That is, we compute

𝑑𝑗,𝑖 = |𝐺
(︀
(𝑓𝑗,𝑖 − 𝑓𝑗), 𝑘, 𝜎

)︀
| · 𝛼 (3.12)

where 𝐺 is a linear blur filter of size 𝑘 using isotropic Gaussian kernels with covariance

matrix diag(𝜎2, 𝜎2). We chose 𝜎 depending on 𝑘 according to 𝜎 = 0.3·((𝑘−1)·0.5−1)+

44

0.8 as in [4]. We call 𝛼 the amplification parameter since it amplifies the difference

to the mean image. (Based on empirical observations, 𝑘 has been set to 3 and 𝛼

has been set to 5 for all experiments.) This process serves as color amplification and

helps to improve the detectability of a shadow (sometimes even if the original signal is

invisible to the human eye). In other words, this process increases the signal-to-noise

ratio. Fig. 3-6 depicts an example of an image before and after the color-amplification

process. As it can be observed the shadow is much better detectable after the color

amplification. After the frame is color amplified, we run a temporal low-pass filter

𝑡𝑗,𝑖 = 𝑑𝑗,𝑖 · 𝑡 + 𝑑𝑗,𝑖−1 · (1− 𝑡) (3.13)

where 𝑡𝑗,𝑖 is the filtered result of the difference images 𝑑𝑗,𝑖. To become more robust

against different corners and light conditions, we take inspiration from [19] and apply

a “dynamic” threshold. We take the difference from the mean of each channel of

the filtered frame as a criterion to determine motion with respect to the standard

deviation of the filtered image,

𝑐𝑗,𝑖 =

⎧⎨⎩ 0, ∀|𝑡𝑗,𝑖 − 𝑡𝑗,𝑖| < 𝑤 · 𝜎(𝑡𝑗,𝑖)

1, ∀|𝑡𝑗,𝑖 − 𝑡𝑗,𝑖| ≥ 𝑤 · 𝜎(𝑡𝑗,𝑖)
(3.14)

where 𝑤 is a tune-able parameter that depends on the noise distribution. We set 𝑤 = 2

for all our experiments. The underlying assumption here is that “dynamic” pixels are

further away from the mean, since they change more drastically. A combination of

dilation and erosion is used to first connect pixels which got classified as motion and

then erosion is used to reduce noise. We are applying morphological ellipse elements

with two different kernel sizes [4], i.e.,

𝑐𝑗,𝑖 = dilate(𝑐𝑗,𝑖, 1) , 𝑐𝑗,𝑖 = erode(𝑐𝑗,𝑖, 3) .

At the end, we sum up all pixels under the intuitive assumption that more movement

45

in between frames will result in a higher sum

𝑠𝑗 =
𝑛∑︁

𝑖=1

𝑐𝑗,𝑖(𝑥, 𝑦) . (3.15)

To classify the whole sequence as either “dynamic” or “static” we then apply a

camera-specific threshold. We show in Sec. 5 how the threshold can be determined.

The data appears to prove what sounds intuitively correct: A less noisy image results

in fewer miss-qualified pixels which results in a lower threshold. This implies that

a better camera (frame rate and resolution) and a better image registration quality

lead to a smaller threshold.

Figure 3-6: Color Amplification. On the left side is an original Canon camera frame
and on the right side the corresponding color-amplified frame.

On the vehicle interface side, we run a temporal filter on the detection results

to further smooth the signal. Once the ShadowCam detects an obstacle behind the

corner the autonomous vehicle stops until it is safe to continue. An example of how

this process could look like on real-world data is visualized in Fig. 3-9 and Fig. 3-10.

46

Figure 3-7: Ego-view. The autonomous wheelchair approaches a corner without direct
sight of what is going on behind the corner.

Figure 3-8: Image Analysis. Left: The cropped, re-sized and registered image. Mid-
dle: Example of a frame which contains no moving obstacle behind the corner. Right:
Example of a frame which contains movement. The white areas correspond to a
shadow signal.

47

Figure 3-9: Algorithm Steps with AT (1). The first column is representing the input
stream of images from the camera in the cyclic buffer. The second column shows
which tags got detected by the AprilTag detection software. The third and last
column shows how the tag detections were used to register all images to the view
point of the first image in the first row.

48

Figure 3-10: Algorithm Steps with AT (2). In the first column we see again the
registered images. The second column shows the cropped region of interest. The
third column the re-sized and color-amplified version of the cropped images. The
fourth and last column displays in which areas the algorithm detected movement
based on a dynamic threshold.

49

3.5 Summary

In this chapter we present our technical approach to tackle the problem of detecting

moving obstacles out of the direct line of sight from the view point of the ego vehicle

based on shadows. We incorporated two image registration methods in the same

pipeline. During pre-processing we amplify the sometimes-weak shadow signal. The

decision whether it is safe to move ahead is based on a pixel sum per sequence and a

threshold.

50

Chapter 4

Experimental Setup and Data

Collection

This chapter gives an overview under which circumstances and how we collected the

dataset to evaluate the technical approach from Chapter 3. Chapter 5 presents then

the performance of our technical approach on the dataset we present in this chapter.

In general, we want to compare the classification accuracy between AprilTags and no

AprilTags and between “dynamic” and “static” sequences. Thus, we are interested in

collecting data in the real-world under four main circumstances:

∙ AprilTags with dynamic obstacle around corner (i.e. “dynamic” sequence)

∙ AprilTags without dynamic obstacle around corner (i.e. “static” sequence)

∙ No AprilTags with dynamic obstacle around corner (i.e. “dynamic” sequence)

∙ No AprilTags without dynamic obstacle around corner (i.e. “static” sequence)

To evaluate the algorithms of the ShadowCam pipeline (Fig. 3-1) in different

scenarios and to analyze the performance statistically, we collected data in a motion-

capture room (referred to as the Holodeck), created synthetic corners with different

properties in a simulation (e.g. Blender1 and Sec. 4.2), and collected real-world data

1https://www.blender.org/

51

https://www.blender.org/

using different cameras. We composed the entire dataset to cover a broad range of

the mentioned nuisance factors, such as size of the object, speed of the movement,

lighting, reflection properties of the floor, color of the floor, ego motion, among others.

The experiments in the Holodeck and in simulation allow us to analyze the spatial

performance of the algorithm, since we know the exact position of the moving obstacle

behind the corner. Additionally, we can label each sequence based on the ground-

truth. For the real-world data collection, we compare two labeling techniques:

∙ Complete videos are labeled as “dynamic” or “static” depending on whether or

not a person was instructed to move behind the corner during video recording.

This leads to potentially mislabeled sequences in the complete videos, since the

person behind a corner does not always move and the shadow is sometimes not

visible on the ground plane close to the corner from the viewpoint of the moving

ego vehicle.

∙ Single frames are labeled with the annotation tool we developed (Sec. 4.5). As

will be shown in the results (Chap. 5) this improves the overall accuracy on

average.

4.1 Holodeck

The controlled test setup in the Motion Capture environment (i.e. Holodeck) enables

labeling of each sequence automatically. There, we collected data with a stationary

Canon EOS 70D camera using a EFS 17 − 58 mm lens. The frame-rate was set to

30 fps, using codec H.264 at a resolution of 1920× 1080. The motion capture system

tracks the moving object behind the corner at around 100 Hz. We synchronize the

video stream2 with the motion-capture data and label a sequence as “dynamic” when

more than half of the frames contain a moving person behind the corner, otherwise

it is labeled as “static”.

In the Holodeck we were also able to vary a few scene parameters, such as the size

2Data synchronization in the Holodeck https://youtu.be/GCAjBHeh744

52

https://youtu.be/GCAjBHeh744

of the person behind the corner, the light conditions produced by switching on and

off different ceiling lights and the material of the ground on which the ShadowCam

tries to detect shadows. Intuitively, we would expect a better signal when the moving

object is closer to the corner, which is confirmed by our spatial analysis of the signal

in the Holodeck test setup shown in Fig. 4-1 and 4-2.

Figure 4-1: Holodeck Setup. The left image shows how we varied the size of the
moving object behind the corner: Wearing a winter jacket, sitting on a chair with
rollers and walking normally. The right image shows the corner wall and a person
walking from the top view.

3 m

1.5 m

2.5 m

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

Holodeck Performance Heatmap

0.2

0.4

0.6

0.8

1

NaN

Figure 4-2: Holodeck Performance. The left plot shows the region in which the person
behind the corner walked randomly from the top-view. The right plot shows the
spatial performance of the algorithm (with regard to the mean position of the moving
person in the blue area) to correctly classify a sequence as “dynamic” or “static”. The
darker the blue, the higher the classification accuracy for both classes.

53

4.2 Simulation in Blender

We created a synthetic dataset with Blender, to test the algorithm under a greater

variety of lighting conditions, textures, person sizes, and material properties. “Blender

is a free and open source 3D creation suite. It supports the entirety of the 3D

pipeline-modeling, rigging, animation, simulation, rendering, compositing and motion

tracking, even video editing and game creation”3. With a Python script we access

Blender’s API to change the scene parameters dynamically and get ground-truth data

for image registration and object motion. We use Blender’s “Cycles Renderer” with

only 10 samples to create one frame of size 960 × 540. This results in more noisy

images making it harder for the algorithm to detect a shadow and thus providing

more realistic data. In the real-world we are also facing noisy images, e.g. due to

motion blur. The chosen area light casts shadows with soft edges based on ray tracing.

We change the textures of the scenes randomly. Floor and walls are changed

independently which results in more combinations. We chose from 30 texture images

(Fig. 4-3) to create 30 different corners. We render for each corner 1, 000 frames for

both classes (“dynamic” and “static”) which sums up to 50, 000 synthetic images and

around 6.2 GB.

In addition to the change of the texture, we change the material properties such

as surface quality (e.g. roughness) and reflection strength (e.g. mirror or carpet)

randomly. The position and color of the light, the path of the moving platform with

the camera, and the scale and texture of the person behind the corner are randomly

modified within certain boundaries. E.g. the height of the occluded person ranges

from 0.75m to 2.2m (see Fig. 4-4 and Fig. 4-5). For both camera and person, the

speed of motion changes independently for each corner randomly within the range

1− 3 m/s.

3https://www.blender.org/

54

Figure 4-3: Examples textures. Textures we use to create different scenes with
Blender. We choose various textures ranging from dark to bright colors.

ROI

3 m

2 m

8 m

16 m

8 m

2,5 m 2 m

Figure 4-4: Blender Scene. In addition to material changes (such as texture or reflec-
tion properties) we change the position of the light and the path of the camera. The
person walks randomly at different speeds within the blue box.

55

Figure 4-5: Simulation example corners. Examples of how we create random corners
in the simulation.

56

4.3 Real-World Corner Data Collection

Besides the controlled environments in the Holodeck and Blender we evaluated how

the algorithm performs “in the wild”. We created a real-world dataset with 4 different

cameras. With the Canon and the webcams, we collected 85, 000 images of around 1

hour of data resulting in ca. 7.4 GB in total. With the global shutter camera from

IDS4 we collected around 42, 000 images at around 20Hz resulting in ca. 73.4 GB in

total. To not only cover different types of corners, but also different image qualities,

we chose the following cameras:

∙ Canon EOS 70D and the EFS 17−58 mm lens (single-lens reflex (SLR) camera)

for AprilTags as image registration step: The frame-rate was set to 30 fps, with

codec H.264 and image dimensions 1920× 1080.

∙ Webcam Logitech HD Webcam C525 (low-end webcam) for AprilTags as image

registration step: The frame rate was set to 24 fps, with codec VP8 and image

dimensions 1280× 720.

∙ Webcam Logitech HD Webcam C925-e (high-end webcam) for AprilTags as

image registration step: The frame rate was set to 20 fps, with codec VP8 and

image dimensions 1280× 720.

∙ IDS uEye UI-3241LE-M-GL (monochrome, global shutter CMOS) for DSO as

image registration step: The frame rate was set to 20 fps, with png-compression

and image dimensions 1280× 1024.

We chose mainly corners where it is physically possible for a moving object behind

a corner to cast a shadow. For these corners humans, if they pay close attention, might

be able to see a shadow of an approaching person on the ground. We collected data

ranging from high reflection floors and stone to dark carpet (see Fig. 4-6). In all real-

world videos, we (1) label each complete video as “dynamic” or “static” depending

on whether or not a person was asked to walk behind the corner or (2) with an

4https://www.ids-imaging.us/home.html

57

https://www.ids-imaging.us/home.html

annotation tool on a frame by frame basis. The camera is moving in a range of 1 to 3

meters back and forth at around 3mph, whereas the person behind the corner moves

randomly in a similar range and pace.

58

Figure 4-6: Real-world corner examples. On the left side images from videos recorded
with the Canon and AprilTags. On the right side images of the same corners from
videos recorded with the IDS uEye and DSO.

59

4.4 Autonomous Vehicle Setup

The algorithm was also tested in motion on an autonomous wheelchair (see Fig. 4-7)

which has been designed as an indoor counterpart to the autonomous car presented

in [26]. Therefore, the wheelchair has a very similar sensor configuration and a soft-

ware stack based on ROS. This enables us to run (besides vehicle specific software

parts, such as the low-level control) the same software packages on different vehicle

types. This setup enables easily deploying a similar functionality to a real car. For

the experiments, we added a (1) Logitech HD Webcam C925-e and (2) IDS uEye

on top of the Wheelchair’s top laser scanner to increase the look-ahead distance and

improve the angle at which the cameras perceive the environment. Once the Shad-

owCam detects movement behind the corner we adjusted the control algorithm of the

wheelchair so that it stops if movement is detected. As soon as the way is clear again

the wheelchair resumes the forward motion.

2D LiDAR

IMU

Encoder
2D LiDAR

Touch Screen

Figure 4-7: Autonomous wheelchair and the main sensors. We mounted the camera
for the ShadowCam algorithm on top of the top LiDAR. Only the camera is required
to run the ShadowCam algorithm.

The autonomous systems operate on a given map and with pre-defined path. The

60

localization approach is based on laser scan matching, for re-planning in case of a

moving obstacle we are using an RRT* variant (rapidly exploring random tree) and

for path following a pure pursuit controller implementation.

4.5 Annotation Tool

The annotation tool allows us to hand label images on a frame-by-frame basis. We

observed that by labeling complete videos as “static” or “dynamic” the labels are not

accurate sometimes.

The user can load a csv file with labels per complete video and modify the label by

stepping through all images. On the bottom a progress bar displays how many of the

images in the video have been annotated. The top row contains our labeling options.

The most important being “static” or “dynamic”. Next to this classification are the

other labeling options for (1) indoor or outdoor (2) in which mode the video was

recorded (e.g. walking, wheelchair, car) (3) the camera type (e.g. Canon, Webcam,

IDS uEye) and (4) date of the recording.

The output of the annotation process is a new csv file with the same structure

but appended columns containing the updated label information.

61

Figure 4-8: Annotation Tool. The user interface for hand labeling each image of a
video on a frame per frame basis.

4.6 Summary

This chapter presents the data collection modalities which are required to provide

evidence to the hypothesis that (1) the classification accuracy is in a similar range

with and without AprilTags. (2) The classification accuracy is for both sequences

“dynamic” and static” better than random. (3) The algorithm should generalize to

different corners, materials and light conditions.

62

Chapter 5

Results

We quantitatively analyze the classification accuracy, real-time capability of the al-

gorithm and demonstrate the use of ShadowCam integrated into an autonomous

wheelchair. Specifically, we are evaluating the performance of two image registra-

tion methods (AprilTags from Sec. 3.2 and DSO from Sec. 3.3), the effect of new

labels from the annotation tool (Sec. 4.5) and compare the classification accuracy of

“dynamic” and “static” sequences. The success metric is as follows e.g.: When the

ShadowCam pipeline classifies 7 out of 10 “static” sequences as “static” the classifi-

cation accuracy would be 70%. The higher the classification accuracy the better the

system performs.

Boxplots, histograms and ROC analysis are visualizing the performance of the

ShadowCam algorithm on the respective datasets in Fig. 5-1, 5-2, 5-3, 5-4. The

ShadowCam algorithm computes one value for each sequence which represents the

sum over all “dynamic”-classified pixels (Eq. 3.15). The better the distributions of

this value (for the cases with and without a moving obstacle) can be separated, the

higher the classification accuracy can be once the threshold is set to the optimal point.

For example in a “static” sequence with 1% as “dynamic” miss-classified pixels, the

method would yield a threshold value of 255, 000 (= 100 px× 100 px× 10 images×

1%×255 pixel value, where the image dimensions are 100, the length of the sequence

is 10 and the maximum pixel value is 255). All sequences with values less than the

specified threshold are classified as “static” and all sequences with values greater (or

63

equal) than the specified threshold are classified as “dynamic” (Alg. 4).

In order to determine the threshold value upon which we classify a sequence

as “dynamic” or “static”, we examine the histograms over all corners of a specific

recording setup (e.g. simulation or real-world) and found the noise of the camera to

be correlated with the choice of the threshold. This confirms the intuition that higher

noise levels lead to higher miss-classification rates. Table 5.1 gives an overview of the

final thresholds we chose to create the mean classification accuracy plots in Fig. 5-1.

For the evaluation on the wheelchair, we implemented the ShadowCam algorithm

in C++. For the two image registration methods we analyze the real-time perfor-

mance:

∙ AprilTag image registration (Sec. 3.2): The implementation of a cyclic frame

buffer enables us to compute a classification output at around 30 Hz for a

sequence length of 10 frames. But since the camera we use on the wheelchair

only runs at 20 Hz and only in around 1/3 of the images enough AprilTags

get detected, the rate on the real system is around 7 Hz. The low rate of

AprilTag detection is mostly due to motion blur. However, for the speed of the

wheelchair 7 Hz is fast enough, and the performance could be easily increased by

switching to a better camera with a higher frame rate and/or image registration

method. Our experiments with the autonomous wheelchair show that even

with consumer grade cameras (such as the Logitech Webcam) the signal can be

detected reliably.

∙ DSO image registration (Sec. 3.3): To enable DSO we up-graded the camera on

the wheelchair to a global shutter camera which can run up to 60 fps. For the

experiments we run it at 20 fps. In a distributed setup where one laptop runs

the autonomous software and the other laptop runs the ShadowCam algorithm

we can output classification results at around 20 Hz.

Because our system is designed as an additional safety feature, we aim for a low

rate of false “dynamic” classifications to provide a smooth driving experience (Fig. 5-

1) without unnecessary interruptions. That is, when the algorithm detects movement

64

then it is very likely someone is actually moving behind the corner. Thus, the majority

of sequences get classified as “static” even if they sometimes contain a moving obstacle.

It requires a strong movement behind the corner for the sequence to get classified as

“dynamic”.

We compare the classification accuracy with two labelling techniques (1) based

on videos which got labeled as a whole and (2) hand labels for each frame (new label

from hand annotation = NL). We are expecting better results with the same algorithm

if the labels are more accurate, since “dynamic” labeled videos contain also “static”

sequences where e.g. the person behind the corner is not moving or the shadow is

physically not visible.

Camera Type Threshold Percent of Pixel Number of Corners

Holodeck 200000 ≈ 1% 1

Blender 220000 ≈ 1% 30

Canon 500000 ≈ 2% 11

Webcam 650000 ≈ 2.5% 3

IDS Ueye 700000 ≈ 2.5% 7

Table 5.1: Dataset Overview. Depending on the noise level of the image registration
method and the camera recording quality we set a different threshold for the sum of
the sequence (Eq. 3.15) for each camera type.

Our results show that it is possible to detect moving obstacles based on shadows

out of the line of sight from a moving platform at indoor corners provided that the

object can physically cast a shadow, we have access to reliable image registration,

and the region of interest is known a priori (e.g. through a specific detector, map or

annotation). Our algorithm is easy to deploy (it has only a few tune-able parameters)

and generalizes to different corner settings when the image registration method is set

to DSO. Importantly, we analyzed performance on different floors, light conditions

and object sizes.

65

5.1 Overall Performance

With the threshold per camera type from Table 5.1 we run the ShadowCam algorithm

on 7 corners for AT (= AprilTags) (Sec. 3.2) and DSO (= Direct Sparse Odometry)

(Sec. 3.2) as image registration steps. Our experiments give further evidence that

it is possible to detect moving obstacles from a moving platform at indoor corners

where it is physically possible for a dynamic obstacle to cast a shadow at low speeds

(e.g. 3mph). Fig. 5-1 indicates the mean classification accuracy for each data collec-

tion mode. Importantly we can observe that for both classes “static” and “dynamic”

the accuracy is well above random 50%. Additionally, even when we remove April-

Tags and rely instead on DSO as the image registration method we can maintain a

classification accuracy of around 70%. Overall, we can also observe – which makes

intuitively sense – that it’s easier to detect “static” sequences than it is to detect

moving shadows. As expected, we are able to perform very well on the simulated

frames from Blender with a mean accuracy of above 85%.

Figure 5-1: Classification Performance per class and method. As the distributions
of the histogram (Fig. 5-3) suggest, we observe a low number of false positives.
The classification accuracy for “static” sequences is high, whereas it is harder to
detect movement based on shadows (i.e. it is harder to classify “dynamic” sequences
correctly). The mean performance of the algorithm on real-world data acquisition
methods is for both classes above 60% and overall even around 70%.

66

5.2 Effect of new Labels

We are also interested in the impact of the new labels (NL) from the annotation tool

(Sec. 4.5). Fig. 5-2 compares the per class performance (“static” = ST and “dynamic”

= DY) for both image registration methods before and after NL.

AT DY ATNL DY AT ST ATNL ST
0

10

20

30

40

50

60

70

80

90

100

C
la

s
s
if
ic

a
ti
o
n
 A

c
c
u
ra

c
y
 [
%

]

AT: Performance per Class before and after NL

DSO DY DSONL DY DSO ST DSONL ST
0

10

20

30

40

50

60

70

80

90

100

C
la

s
s
if
ic

a
ti
o
n
 A

c
c
u
ra

c
y
 [
%

]

DSO: Performance per Class before and after NL

Figure 5-2: Effect of NL. On the left: For frames registered with AT we can observe
that the mean accuracy for “dynamic” sequences increases around 5% and stays almost
the same for “static” sequences. On the right: For frames registered with DSO we
can observe that mean accuracy decreases which implies that e.g. some previously as
“dynamic” labeled sequences did not contain movement from a shadow.

For the AT image registration we can observe on the left side of Fig. 5-2 that after

NL the performance increases for DY. This effect can be explained by the observation

that a label per complete video is likely to lead to miss-labeled frames (e.g. a sequence

doesn’t contain a moving shadow but gets labeled as “dynamic”). Therefore, it makes

sense that a dataset with cleaner labels boosts especially the performance on the DY

side. For ST experiments most sequences – even with a label per complete video – are

labeled accurately, since we made sure that most of the time no one would interfere

the data collection and cast a moving shadow.

For the DSO image registration we can observe on the right side of Fig. 5-2 that

the mean classification accuracy for both classes is reduced after NL. At first this

might sound counter-intuitive, but it makes sense after a closer look at the underlying

data. The image registration method with DSO is noisier which causes texture on

the ground to change over time and to be detected as movement even though there

67

is no “dynamic” shadow. After NL, more sequences from a video labeled completely

as “dynamic” are then correctly labeled as “static”. These sequences are then miss-

classified due to the texture movement on the ground caused by a noisier image

registration in comparison to AT. Despite this effect the mean classification accuracy

with DSO is well above 70%.

5.3 Performance on real-world Data

In this section we have a closer look at how the two image registration methods

perform on the real-world data (i.e. we zoom in Fig. 5-1 on “Canon (AT)” and “IDS

Ueye (DSO)”). As introduced in Sec. 4.3 the dataset equals for the AprilTag case to

around 60 mins and around 4000 sequences and for the DSO case to around 40 mins

and 1500 sequences (where each sequence consists out of 10 frames). This sums up

to around 100 mins and 5500 sequences of real-world experiment data. With a mean

classification accuracy of around 70% for both image registration methods this means

that ShadowCam classifies 3850 sequences or 70 mins correctly into the categories

“dynamic” or “static” depending on whether a dynamic obstacle was moving behind

the corner. This helps to prevent a potential collision with a “dynamic” obstacle

out of the direct line of sight. Since we aim for an algorithm parametrization which

allows a smooth driving experience ShadowCam only outputs a “stop” signal when

the movement behind the corner is relatively strong. Thus, the classification accuracy

for both image registration methods is higher for “static” sequences.

The plots (Fig. 5-2, 5-3, 5-4) indicate coherent trends. DSO is weaker on ST

sequences and stronger on DY than AT. This is for example reflected in the heatmap

(Fig. 5-4) with the center of AT being higher and more to the right, where higher

means a higher true positive rate for ST sequences and further to the right a higher

false positive rate.

68

Figure 5-3: Signal Distributions. Histograms of the sum of the sequences (Eq. 3.15)
for various corners with AprilTags on the left and without AprilTags and DSO as the
image registration method on the right. The distributions of “dynamic” and “static”
sequences explain the mean classification accuracy of around 70% when the threshold
is set as the black vertical line indicates.

0 0.2 0.4 0.6 0.8 1

False Positive

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e
 P

o
s
it
iv

e

AprilTags: ROC for TP Static

AT C1

AT C2

AT C3

AT C4

AT C5

AT C6

AT C7

0 0.2 0.4 0.6 0.8 1

False Positive

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e
 P

o
s
it
iv

e

DSO: ROC for TP Static

DSO C1

DSO C2

DSO C3

DSO C4

DSO C5

DSO C6

DSO C7

0 0.2 0.4 0.6 0.8 1

False Positive

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e
 P

o
s
it
iv

e

AprilTags: Heatmap for TP Static

0 0.2 0.4 0.6 0.8 1

False Positive

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e
 P

o
s
it
iv

e

DSO: Heatmap for TP Static

Figure 5-4: Receiver-Operating-Characteristic (ROC). Curves of data collected with
AprilTags on the left and without on the right with the thresholds from Table 5.1.
TP stands for true positive. If the heatmaps would have their center in the top left
corner the classification accuracy would be 100%.

69

5.4 Evaluation of AprilTags as the Image Registra-

tion per Corner

In this section we show the classification performance for each individual corner in

the dataset with AprilTags as the image registration methods (Sec. 3.2). For each

corner we collected data with and without a “dynamic” obstacle.

For each corner we show (1) an example image from the input video stream on

the top left corner (2) the distribution of “dynamic” and “static” sequences on the

top right (3) the cropped ROI in the bottom left and (4) the mean classification

performance per class before and after hand labelling the data on the bottom right.

For most corners the new labels increased the classification accuracy. The corners

in the dataset cover a broad range of light conditions and floor materials.

Figure 5-5: AT Corner 1. A bright environment with a lot of natural light from win-
dows and a stone floor. The relatively strong shadow signal makes a good distinction
between DY and ST possible.

70

Figure 5-6: AT Corner 2. A reflective industry style floor with no natural light
sources. Due to the ego motion the reflection of light on the ground leads to more
miss-classifications on the ST side and thus a lower accuracy.

Figure 5-7: AT Corner 3. Concrete style floor with a strong natural light source from
the left side. A relatively distinct distribution leads to a classification accuracy on
the DY side in the high 60ties.

71

Figure 5-8: AT Corner 4. Carpet style floor with a strong natural light source from the
left. Due to the placement of the tags only relatively few sequences can be registered.

Figure 5-9: AT Corner 5. Carpet style floor and almost no natural light, mostly lamps.
The prominent feature on the ground would sometimes be detected as movement.

72

Figure 5-10: AT Corner 6. Carpet style floor with natural light from the ceiling. This
leads to a physical shadow cast in a bad angle for detection.

Figure 5-11: AT Corner 7. Industry style floor with no natural light and low reflection
properties. Very good constellation for classification (both ST and DY).

73

5.5 Evaluation of DSO as the Image Registration per

Corner

To complement Sec. 5.4 this section includes the detailed analysis of the same corners

but without AprilTags and instead with DSO as the image registration method (Sec.

3.3). For each corner we collected data with and without a “dynamic” obstacle. We

can observe that the image registration with DSO is noisier and can make it harder

to distinguish pixel changes over time induced either by a moving shadow or by a

noisy registration. Overall (as for AT Sec. 5.4) the performance for ST sequences is

higher than for DY.

The structure per corner out of the dataset follows the one from AT where we

show an example image from the input video stream, the distribution, ROI and

performance before and after NL. The four red points in the bottom left images mark

the annotations for the ROI.

Figure 5-12: DSO Corner 1. A bright environment with a lot of natural light from
windows and a stone floor with strong contrasting gaps. The gaps in the floor also
cause some miss-classification on the DY side before NL.

74

Figure 5-13: DSO Corner 2. A reflective industry style floor with no natural light
sources and contrasting floor structures. Due to the floor structures it’s harder to
classify “static” sequences.

Figure 5-14: DSO Corner 3. Concrete style floor with a strong natural light source
from the left side which also causes a strong edge on the ground. This makes it harder
to distinguish DY from ST.

75

Figure 5-15: DSO Corner 4. Carpet style floor with a strong natural light source from
the left (depending on the time of day). This results in a relatively strong shadow
signal.

Figure 5-16: DSO Corner 5. Carpet style floor and almost no natural light, mostly
lamps from the ceiling. After NL the accuracy for DY increases and decreases for ST.

76

Figure 5-17: DSO Corner 6. Carpet style floor with natural light from the ceiling and
a strong feature on the ground. For this corner exists more “static” sequences in the
database than “dynamic”.

Figure 5-18: DSO Corner 7. Industry style floor with no natural light and low
reflectively. This setting allows relatively good classification.

77

5.6 Summary

In this chapter we applied the technical approach (Chap. 3) to the collected and

labeled dataset (Chap. 4). We demonstrate that our hypotheses hold. (1) The

classification accuracy is in a similar range with and without AprilTags of around

70% when both the obstacle’s and the ego vehicle’s speed is at around 3mph and the

ROI is known. (2) The classification accuracy is for both sequences “dynamic” and

static” better than random. (3) The algorithm is generalizing to different corners,

materials and light conditions for both image registration methods (Sec. 5.4 and Sec.

5.5).

78

Chapter 6

Conclusions

From a high-level point of view, we look at a low SNR signal and reduce the SNR

even further by adding camera movement. By making the assumption that the ROI is

known we reduce our problem to the core research problem of motion detection based

on shadows from a slow-moving platform (around 3mph). For the image registration

step we compare AprilTags with DSO and were able to show that even with a visual

odometry method in feature poor indoor environments the signal can be detected with

our ShadowCam algorithm. This algorithm is a real-time capable motion detection

algorithm which is robust against noise but is still able to detect a low SNR signal.

To the best of our knowledge we present the first autonomous wheelchair which can

detect and react to out of the line of sight moving obstacles based on their shadows.

6.1 Lessons Learned

The most important learning – from the initial idea for this work until we were able

to detect first shadows from moving obstacles – was to iterate often and to learn from

mistakes, in other words changing the plan, but not the goal. Focusing on the core

research problem also helped. In a first step we assumed we could rely on an almost

perfect image registration method and placed AprilTags on the ground plane. We

first had to give evidence to the hypothesis that it is possible to detect shadows from

a moving platform. In a second iteration we integrated a visual odometry method

79

into the ShadowCam pipeline. Since visual odometry is an active research area itself

this approach was riskier, but also enabled us to generalize the ShadowCam pipeline

to any corner without AprilTags.

For rapid prototyping we first developed in Python and then ported the algorithms

to C++ based on OpenCV and ROS to achieve real-time performance.

On the one hand, working with real-world data, complex hardware and software

systems such as the autonomous wheelchair adds another challenging dimension to

the problem. On the other hand, mastering this challenge and demonstrating the

integration of a real-time capable implementation of the ShadowCam pipeline into an

autonomous system validates our results even more.

6.2 Future Work

We are excited to further explore more application areas for our motion detection

algorithm and ways to improve accuracy and robustness.

So far we only looked at indoor corners where it is physically possible to cast a

shadow for a moving obstacle. Another major challenge will be to come up with a

way of detecting whether it is physically possible to cast a shadow e.g. from behind

a corner or a parked car. When it is physically not possible to cast a shadow, the

autonomous car should not rely on ShadowCam to detect a moving shadow out of the

line of sight of the ego vehicle. One idea to come closer to a solution for this problem

might be a prediction of the light source and direction. This would allow the system

to predict from which side it would be possible to cast a shadow and which height

the moving obstacle needs to reach to be able to cast a detectable shadow.

Another option worth exploring might be a more data and deep learning driven

approach for the classification into “static” or “dynamic” sequences. This could help

to boost accuracy. One could also explore the possibility of not only classifying into

“static” or “dynamic” sequences but also predicting e.g. the speed of the movement

and the direction. This would allow to continue driving for example when the obsta-

cle is moving away from the ego vehicle’s direction of driving. Without this added

80

functionality the system would detect movement and stop or slow down to prevent a

collision even when the obstacle is walking away.

Reflection of movement on windows or on parked cars might be another way to

detect obstacles out of the direct line of sight. This might be possible with a motion

detection algorithm like ShadowCam in combination with a system that detects and

registers not only areas close to a corner but more relevant areas such as mirror like

surfaces.

Continuing with a stereo vision setup might also help to stabilize frame sequences.

We are also planning to collect more data and to test the algorithm at higher speeds.

This might pave the way to bring the ShadowCam algorithm as an additional safety

feature to autonomous cars.

6.3 Summary

This thesis is mostly based on the work we presented at ITSC 2018 “ShadowCam:

Real-Time Detection Of Moving Obstacles Behind A Corner For Autonomous Vehi-

cles”. In essence, we were able to show that a shadow cast by a moving obstacle out

of the direct line of sight shouldn’t only be treated as unwanted noise in an image

but can actually provide safety relevant features. We hope this research will lead to

safer driving and inspire others to treat shadows more like an additional signal than

as unwanted noise. The new dataset can be used for further research and in classes

related to signal processing and computer vision.

81

82

Appendix A

Source Code

∙ https://github.mit.edu/fnaser/dso_ros

∙ https://github.mit.edu/fnaser/dso

∙ https://github.mit.edu/fnaser/shadow_cam

∙ https://github.mit.edu/fnaser/cornercam

∙ https://github.mit.edu/fnaser/ueye

∙ https://github.mit.edu/fnaser/five-video-classification-methods

∙ https://github.com/fnaser/usb_cam

∙ https://github.com/mit-drl/knightrider-mobility

∙ https://github.com/mit-drl/knightrider-common

∙ https://github.com/mit-drl/pub-2018-naser-cornernet

∙ https://github.com/mit-drl/deepknight

83

https://github.mit.edu/fnaser/dso_ros
https://github.mit.edu/fnaser/dso
https://github.mit.edu/fnaser/shadow_cam
https://github.mit.edu/fnaser/cornercam
https://github.mit.edu/fnaser/ueye
https://github.mit.edu/fnaser/five-video-classification-methods
https://github.com/fnaser/usb_cam
https://github.com/mit-drl/knightrider-mobility
https://github.com/mit-drl/knightrider-common
https://github.com/mit-drl/pub-2018-naser-cornernet
https://github.com/mit-drl/deepknight

84

Bibliography

[1] Fadel Adib and Dina Katabi. See Through Walls with WiFi! In Proceedings of
the ACM SIGCOMM Conference, 2013.

[2] Nijad Al-Najdawi, Helmut E. Bez, Jyoti Singhai, and Eran. A. Edirisinghe. A
survey of cast shadow detection algorithms. Pattern Recogn. Lett., 33(6):752–764,
April 2012.

[3] Katherine L Bouman, Vickie Ye, Adam B Yedidia, Frédo Durand, Gregory W
Wornell, Antonio Torralba, and William T Freeman. Turning Corners Into Cam-
eras: Principles and Methods. In Proceedings of the Conference on Computer
Vision and Pattern Recognition (CVPR), 2017.

[4] Gary Bradski and Adrian Kaehler. Learning OpenCV: Computer vision with the
OpenCV library. O’Reilly Media, Inc., 2008.

[5] ZHU Yun-fang BWU Jing, DU Xin and GU Wei-kang. Adaptive Fuzzy Filter
Algorithm for Real-time Video Denoising. In 2008 9th International Conference
on Signal Processing, 2008.

[6] Joao Carreira and Andrew Zisserman. Quo Vadis, Action Recognition? A New
Model and the Kinetics Dataset. In Proceedings of the Conference on Computer
Vision and Pattern Recognition (CVPR), 2018.

[7] Axel Pinz Christoph Feichtenhofer and Andrew Zisserman. Convolutional Two-
Stream Network Fusion for Video Action Recognition. In Proceedings of the
Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

[8] Peter Corke, Rohan Paul, Winston Churchill, and Paul Newman. Dealing with
Shadows: Capturing Intrinsic Scene Appearance for Image-Based Outdoor Lo-
calisation. In Proceedings of the International Conference on Intelligent Robots
and Systems (IROS), 2013.

[9] Vikas Dhiman, Quoc-Huy Tran, Jason J. Corso, and Manmohan Chandraker. A
Continuous Occlusion Model for Road Scene Understanding. In Proceedings of
the Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

85

[10] Rob Fergus-Lorenzo Torresani Du Tran, Lubomir Bourdev and Manohar Paluri.
Learning Spatiotemporal Features with 3D Convolutional Networks. In Proceed-
ings of the Conference on Computer Vision and Pattern Recognition (CVPR),
2014.

[11] Jakob Engel, Vladlen Koltun, and Daniel Cremers. Direct sparse odometry.
CoRR, abs/1607.02565, 2016.

[12] Graham D. Finlayson, Mark S. Drew, and Cheng Lu. Entropy Minimization for
Shadow Removal. International Journal of Computer Vision, 85(1):35–57, 2009.

[13] Thomas Frank, Michael Haag, Henner Kollnig, and Hans-Hellmut Nagel. Track-
ing of Occluded Vehicles in Traffic Scenes. In Proceedings of the European Con-
ference on Computer Vision (ECCV), 1996.

[14] Genevieve Gariepy, Francesco Tonolini, Robert Henderson, Jonathan Leach, and
Daniele Faccio. Detection and Tracking of Moving Objects Hidden from View.
Nature Photonics, 10(1):23–26, 2016.

[15] Christiano Gava. 2D projective transformations (homographies).
https://ags.cs.uni-kl.de/fileadmin/inf_ags/3dcv-ws11-12/3DCV_WS11-
12_lec04.pdf. Accessed: 2018-12-10.

[16] Georgia Gkioxari, Ross Girshick, and Jitendra Malik. Contextual action recog-
nition with r*cnn. In The IEEE International Conference on Computer Vision
(ICCV), December 2015.

[17] Marcus Rohrbach Subhashini Venugopalan Sergio Guadarrama Kate Saenko
Jeff Donahue, Lisa Anne Hendricks and Trevor Darrell. Long-term recurrent
convolutional networks for visual recognition and description. In Proceedings of
the Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

[18] Jesus Bescos. Real-time shot change detection over online MPEG-2 video. IEEE
Transactions on Circuits and Systems for Video Technology, 14(4):475–484, 2004.

[19] Wu Jing, Du Xin, Zhu Yun-fang, and Gu Wei-kang. Adaptive Fuzzy Filter
Algorithm for Real-Time Video Denoising. In Proceedings of the International
Conference on Signal Processing (ICSP), 2008.

[20] Achuta Kadambi, Hang Zhao, Boxin Shi, and Ramesh Raskar. Occluded Imaging
with Time-of-Flight Sensors. Transactions on Graphics (ToG), 35(2):15, 2016.

[21] Salman H. Khan, Mohammed Bennamoun, Ferdous Sohel, and Roberto Togneri.
Automatic Shadow Detection and Removal from a Single Image. Transactions
on Pattern Analysis and Machine Intelligence, 38(3):431–446, 2016.

[22] Martin Laurenzis, Andreas Velten, and Jonathan Klein. Dual-mode Optical
Sensing: Three-Dimensional Imaging and Seeing Around a Corner. Optical En-
gineering, 56(3), 2017.

86

https://ags.cs.uni-kl.de/fileadmin/inf_ags/3dcv-ws11-12/3DCV_WS11-12_lec04.pdf
https://ags.cs.uni-kl.de/fileadmin/inf_ags/3dcv-ws11-12/3DCV_WS11-12_lec04.pdf

[23] A. Leone and C. Distante. Shadow Detection for Moving Objects based on
Texture Analysis. Pattern Recognition, 40(4):1222–1233, 2007.

[24] Will Maddern, Alexander D. Stewart, and Paul Newman. LAPS-II: 6-DoF day
and night visual localisation with prior 3D structure for autonomous road vehi-
cles. In Proceedings of the Intelligent Vehicles Symposium (IV), 2014.

[25] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos. Orb-slam: A versatile and
accurate monocular slam system. IEEE Transactions on Robotics, 31(5):1147–
1163, Oct 2015.

[26] Felix Naser, David Dorhout, Stephen Proulx, Scott Drew Pendleton, Hans An-
dersen, Wilko Schwarting, Liam Paull, Javier Alonso-Mora, Marcelo H Ang,
Sertac Karaman, Russ Tedrake, John Leonard, and Daniela Rus. A Parallel Au-
tonomy Research Platform. In Proceedings of the Intelligent Vehicles Symposium
(IV), 2017.

[27] Eshed Ohn-Bar and Mohan Manubhai Trivedi. Learning to Detect Vehicles
by Clustering Appearance Patterns. Transactions on Intelligent Transportation
Systems, 16(5):2511–2521, 2015.

[28] Edwin Olson. AprilTag: A Robust and Flexible Visual Fiducial System. In Pro-
ceedings of the International Conference on Robotics and Automation (ICRA),
2011.

[29] Wanli Ouyang and Xiaogang Wang. A Discriminative Deep Model for Pedes-
trian Detection with Occlusion Handling. In Proceedings of the Conference on
Computer Vision and Pattern Recognition (CVPR), 2012.

[30] Rohit Pandharkar, Andreas Velten, Andrew Bardagjy, Everett Lawson, Moungi
Bawendi, and Ramesh Raskar. Estimating motion and size of moving non-line-
of-sight objects in cluttered environments. In Proceedings of the Conference on
Computer Vision and Pattern Recognition (CVPR), 2011.

[31] Marc Gelgon Patrick Bouthemy and Fabrice Ganansia. A Unified Approach to
Shot Change Detection and Camera Motion Characterization. IEEE Transac-
tions on Circuits and Systems for Video Technology, 9(7):1030–1044, 1999.

[32] Rishi Ramakrishnan, Juan Nieto, and Steve Scheding. Shadow compensation for
outdoor perception. In Proceedings of the International Conference on Robotics
and Automation (ICRA), 2015.

[33] Rohit Ghosh. Deep Learning for Videos: A 2018 Guide to Action Recog-
nition. http://blog.qure.ai/notes/deep-learning-for-videos-action-
recognition-review. Accessed: 2018-12-03.

[34] Guy Rosman, Shachar Shem-Tov, David Bitton, Tal Nir, Gilad Adiv, Ron Kim-
mel, Arie Feuer, and Alfred M. Bruckstein. Over-parameterized optical flow using

87

http://blog.qure.ai/notes/deep-learning-for-videos-action-recognition-review
http://blog.qure.ai/notes/deep-learning-for-videos-action-recognition-review

a stereoscopic constraint. In Alfred M. Bruckstein, Bart M. ter Haar Romeny,
Alexander M. Bronstein, and Michael M. Bronstein, editors, Scale Space and
Variational Methods in Computer Vision, pages 761–772, Berlin, Heidelberg,
2012. Springer Berlin Heidelberg.

[35] Andres Sanin, Conrad Sanderson, and Brian C Lovell. Shadow detection: A
survey and comparative evaluation of recent methods. Pattern recognition,
45(4):1684–1695, 2012.

[36] Chee Kiat Seow and Soon Yim Tan. Non-Line-of-Sight Localization in Multipath
Environments. Transactions on Mobile Computing, 7(5):647–660, 2008.

[37] Dongeek Shin, Ahmed Kirmani, Vivek K Goyal, and Jeffrey H Shapiro. Photon-
Efficient Computational 3-D and Reflectivity Imaging with Single-Photon De-
tectors. Transactions on Computational Imaging, 1(2):112–125, 2015.

[38] Dongeek Shin, Feihu Xu, Dheera Venkatraman, Rudi Lussana, Federica Villa,
Franco Zappa, Vivek K Goyal, Franco NC Wong, and Jeffrey H Shapiro. Photon-
efficient imaging with a single-photon camera. Nature communications, 7, 2016.

[39] Ming Yang Shuiwang Ji, Wei Xu and Kai Yu. 3D Convolutional Neural Networks
for Human Action Recognition. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 35(1):221–231, 2013.

[40] Karen Simonyan and Andrew Zisserman. Two-stream convolutional networks
for action recognition in videos. In Z. Ghahramani, M. Welling, C. Cortes,
N. D. Lawrence, and K. Q. Weinberger, editors, Advances in Neural Information
Processing Systems 27, pages 568–576. Curran Associates, Inc., 2014.

[41] Rangachar Kasturi Ullas Gargi and Susan H. Strayer. Performance Characteriza-
tion of Video-Shot-Change Detection Methods. IEEE Transactions on Circuits
and Systems for Video Technology, 10(1):1–13, 2000.

[42] Koen Van De Sande, Theo Gevers, and Cees Snoek. Evaluating color descriptors
for object and scene recognition. Transactions on Pattern Analysis and Machine
Intelligence, 32(9):1582–1596, 2010.

[43] Andreas Velten, Thomas Willwacher, Otkrist Gupta, Ashok Veeraraghavan,
Moungi G Bawendi, and Ramesh Raskar. Recovering three-dimensional shape
around a corner using ultrafast time-of-flight imaging. Nature communications,
3:745, 2012.

[44] Alex Wallar, Brandon Araki, Raphael Chang, Javier Alonso-Mora, and Daniela
Rus. Foresight: Remote Sensing for Autonomous Vehicles Using a Small Un-
manned Aerial Vehicle. In Proceedings of the Conference on Field and Service
Robotics (FSR), 2018.

88

[45] John Wang and Edwin Olson. AprilTag 2: Efficient and Robust Fiducial Detec-
tion. In Proceedings of the International Conference on Intelligent Robots and
Systems (IROS), 2016.

[46] Georges Younes, Daniel C. Asmar, and Elie A. Shammas. A survey on non-filter-
based monocular visual SLAM systems. CoRR, abs/1607.00470, 2016.

[47] Barbara Zitova and Jan Flusser. Image registration methods: a survey. Image
and vision computing, 21(11):977–1000, 2003.

89

	Introduction
	Motivation
	Problem Setup
	Key Contributions
	Outline

	Related Work
	Handling Object Occlusion
	Shadow Processing
	Hidden Scene Recovery
	Change Detection
	Action Recognition

	Technical Approach
	Image Registration
	Visual Fiducial System: AprilTags
	Visual Odometry Method: DSO
	Dynamic Threshold
	Summary

	Experimental Setup and Data Collection
	Holodeck
	Simulation in Blender
	Real-World Corner Data Collection
	Autonomous Vehicle Setup
	Annotation Tool
	Summary

	Results
	Overall Performance
	Effect of new Labels
	Performance on real-world Data
	Evaluation of AprilTags as the Image Registration per Corner
	Evaluation of DSO as the Image Registration per Corner
	Summary

	Conclusions
	Lessons Learned
	Future Work
	Summary

	Source Code

