
SolidVC - A Decentralized Framework for Verifiable
Credentials on the Web

by

Kayode Yadilichi Ezike

S.B. EECS | Massachusetts Institute of Technology | 2017

Submitted to the Department of Electrical Engineering and Computer
Science

in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2019

c○ Massachusetts Institute of Technology 2019. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

February 20, 2019

Certified by. .
Lalana Kagal

Principal Research Scientist
Thesis Supervisor

Accepted by .
Katrina LaCurts

Chair, Master of Engineering Thesis Committee

2

SolidVC - A Decentralized Framework for Verifiable

Credentials on the Web

by

Kayode Yadilichi Ezike

Submitted to the Department of Electrical Engineering and Computer Science
on February 20, 2019, in Partial Fulfillment of the

Requirements for the Degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Credentials are an integral part of our lives, as they express our capabilities and enable
access to restricted services and benefits. In the early 2010s, the Verifiable Claims
Working Group of the World Wide Web Consortium (W3C) proposed a specifica-
tion for what is now the Verifiable Credentials Data Model. This living specification,
which is still in development, outlines a cogent framework for the issuance, storage,
presentation, and verification of credentials on the Web. Many of the leading Verifi-
able Credentials projects leverage Distributed Ledger Technology (DLT), potentially
compromising Web interoperability and sometimes exposing otherwise personal data.
SolidVC is a decentralized Verifiable Credentials platform built with the open pro-
tocols of the Web. It is implemented on top of Solid, a Web framework developed
at MIT in 2016 that allows decentralized applications to interact with personal user
data to provide services in an access controlled environment.

Thesis Supervisor: Lalana Kagal
Title: Principal Research Scientist

3

4

Acknowledgments
Every great feat involves the confluence of a diverse set of people contributing a
diverse set of skills, ideas, and overall support at the perfect time. In this section, I
will attempt to express due gratitude to everyone that made this thesis possible.

I’ll start by thanking Tim Berners-Lee and Lalana Kagal for accepting me into
the Decentralized Information Group and giving me the opportunity to execute on
an amazing project. Tim, your visionary leadership is one that I have never taken
for granted and your passion for improving your revolutionary brainchild project, the
Web, inspires me to continue to fearlessly seek better alternatives to the status quo.
Lalana, I couldn’t have asked for a better research supervisor. Your brilliance is not
only in your ability to understand the current needs of academia, but in your ability
to communicate these to a young and relatively inexperienced student and in a way
that illustrates its significance. Thank you for showing me nothing but the best of
guidance, patience, and support throughout my time in your group.

Thanks to Dmitri Zagidulin and Ruben Verborgh for lending your expertise and
patient support for all things Solid and Linked Data. Thanks also to Juan Freuler
for providing insights on the role of Web technologies on policy and society. I have a
tremendous level of respect and appreciation for the three of you.

Anne Hunter, the Course VI department truly has an angel in you! Your ability
to interact so graciously with students in the face of an onslaught of responsibilities
is a quality that I have always admired. Additionally, your lighthearted approach to
life has reassured me that one can certainly lead a successful, yet fun life.

Throughout my half-decade stint at MIT, I have encountered some of the best
and brightest people in the world. Thanks to every Professor, Teaching Assistant,
Research Assistant, faculty, staff, and student of every level with whom I have in-
teracted. You are all very special. Special thanks to Intervarsity, Chorallaries, and
African Students Association for giving me a community away from home!

I would like to take this time to thank all of the friends who have supported me
throughout my time here. Hassan Kané, thanks for helping me live life on the edge
and for being an inspirational friend. Dayanna Espinoza, thanks for keeping up with
me throughout all of our all-nighters and for being a caring friend. Ryan Robinson,
thanks for taking on the risk as my first friend at MIT and for being a supportive
friend. Urenna Nwogwugwu, thanks for tolerating such a goofball of a friend since
elementary school and for being a constant over the years. Aritro Biswas, thanks for
being by my side since freshman year and for serving as a reliable source of comic
relief throughout my toughest times at MIT. To those not mentioned, thank you
sincerely for shaping my MIT experience in your own unique way.

To the Nigerian Catholic Community (NICCOM) and New York’s Nigerian/Igbo
community at large, thank you for believing in me from day one. This thesis is the
reward of every aunty, uncle, and kid that supported me over the years. Igbo Kwenu!

Family, there is not enough paper in the world to duly thank you for all the love
and support you have shown me from day one. Mommy and Daddy, thank you for
being the best parents that a Nigerian boy growing up in America could possibly ask
for. Your sacrifices over the years have been second to none (and they are paying
off!). I love you guys! Jide, thanks for being a great role model. I have always looked
up to you and I appreciate the time I have gotten to grow closer to you over the
past 3-4 years in Boston and as a roommate over the past half-year. Best of luck
with your PhD program at MIT! Adaugo, thank you for being more than a sister.
You are one of my best friends and I don’t take our relationship for granted. Best
of luck charting your academic, professional, and personal path beyond Cornell and
please know that I am always here for you! Last, but not least: Dioka! You are the
light of the household and you have always inspired me to achieve more than I believe
possible at times. I pray that you continue to grow and develop into a strong, healthy,
and independent man that can contribute meaningfully to society. I love you Didi!

5

6

Contents

1 Introduction 15

2 Background 17

2.1 Verifiable Credentials . 17

2.2 Solid . 18

2.2.1 Solid Benefits . 18

2.3 Linked Data . 19

2.3.1 Ontology Design . 21

2.3.2 Linked Data Benefits . 22

2.4 WebID . 23

2.5 Linked Data Notifications . 24

2.6 SPARQL . 26

2.7 Digital Signatures . 28

2.7.1 Linked Data Signatures . 29

3 Related Work 31

3.1 edX . 31

3.2 Mozilla Backpack . 32

3.3 uPort . 32

3.4 Blockcerts . 33

3.5 Hypercerts . 33

4 System Overview 35

7

4.1 Design Principles . 35

4.1.1 Web Interoperability . 35

4.1.2 Identity Flexibility . 36

4.1.3 Credential Sovereignty . 37

4.1.4 General Accessibility . 37

4.2 Stakeholders . 38

4.3 Ontology . 38

4.4 Protocols . 39

4.4.1 Setup . 39

4.4.2 Request . 40

4.4.3 Issuance . 42

4.4.4 Sharing . 45

4.4.5 Verification . 46

4.4.6 Revocation . 48

4.5 Additional Features . 50

4.5.1 Credential Review . 50

4.5.2 Credential Download . 51

4.6 Use Case: Driving License . 51

4.6.1 Setup . 51

4.6.2 Request . 51

4.6.3 Issuance . 52

4.6.4 Verification/Revocation . 52

5 Future Work 55

5.1 Command Line Tool . 55

5.2 Extended RDF Serialization Support 56

5.3 Expiry Support . 56

5.4 SolidVC Extensibility . 57

5.5 Credential Persistence . 58

5.6 One-to-Many SolidVC-Solid Account Mapping 58

8

5.7 Issuer Discovery . 59

6 Conclusion 61

9

10

List of Figures

2-1 Sample RDF Graph . 21

2-2 LDN at a Glance (sourced from https://www.w3.org/TR/ldn) 25

2-3 Sample SPARQL Data . 27

2-4 Sample SPARQL Query . 27

2-5 Sample SPARQL Output . 27

4-1 Sample Credential . 39

4-2 The Request and Issuance Protocols 41

4-3 The Request Interface . 42

4-4 The Issuance Interface . 44

4-5 The Sharing Interface . 45

4-6 The Verification Protocol . 46

4-7 The Verification Interface Upon Success 47

4-8 The Revocation Interface . 48

4-9 Tabulator View of REVOKED Credential Status 49

4-10 The Review Interface . 50

4-11 The Verification Interface Upon Failure 53

11

12

List of Tables

3.1 Credential System Comparison . 34

13

14

Chapter 1

Introduction

There has always been a need for us to reliably identify and vet individuals in our

society. Everything from deciding whether someone can re-enter a live concert to

determining whether a person is allowed to run a medical practice requires a robust

mechanism for ascertaining one’s identity and capabilities. Any system, technical or

otherwise, which provides this critical service of certification must achieve a core set

of desiderata, chief of which include secure distribution of credentials to deserving

individuals, seamless assertion of credentials at a later point in time, and reliable

verification of the provenance of credentials.

With the overall deterioration of public trust in politically unstable countries, in-

cluding none other than the United States and Italy [12], the work around verifiable

identity claims has become more important than ever before. People are desperately

seeking solutions to everything from "fake news" [13], which has become a veritable

commandment for major news outlets and social media platforms, to online iden-

tity fraud, which has attracted the attention of technical and financial institutions

alike [14]. While there is no magic-bullet solution for these issues, the identity and

credential communities have produced a plethora of proposals, specifications, and im-

plementations for technologies of varying degrees of security, complexity, and scope

that solve different segments of the puzzle [15]. However, the technical development

in this space has not come without its limitations.

Many credentialing services have wooed the masses with their highly technical

15

approaches to certification, that almost certainly has blockchain or some other form

of Decentralized Ledger Technology (DLT) baked into its construction. Others have

sacrificed privacy and self-sufficiency either out of lapse in foresight or perception of

technical debt. Whatever the reason, I believe that there is still space for a certifica-

tion service that uses the best of what the Web has to offer to create a decentralized

ecosystem of standardized, verifiable credentials.

In this paper, I propose SolidVC as a robust solution to many of the issues outlined

above. SolidVC is a decentralized Verifiable Credentials framework that empowers

users to seamlessly manage their personal credentials, while leveraging the best of

time-tested technologies, such as Linked Data (or the Semantic Web); Digital Signa-

tures; and, most fundamentally, the World Wide Web (henceforth, the Web).

SolidVC provides mechanisms for the following critical services:

∙ Requesting credentials from any other participating user

∙ Issuing credentials to any other participating user

∙ Verifying the credibility and provenance of a credential

∙ Revoking credentials that were previously issued

Also included are the following supplementary services:

∙ Downloading credentials to one’s personal computer

∙ Sharing credentials with any other participating user

∙ Reviewing relevant messages from other participating users (such as credential

requests and credential issuance notifications)

This thesis includes a comprehensive discussion of my approach for providing the

aforementioned credential management services as well as an outline of an expected

use case.

16

Chapter 2

Background

In order to effectively identify the contributions of this paper, I present in this chapter

a few fundamental technologies that underpin SolidVC [4].

2.1 Verifiable Credentials

In modern society, there are several aspects of identity that citizens are expected to

produce for privileged access to certain activities and services. Drivers are expected

to conjure up their license on demand upon a police officer’s request. International

travelers are expected to locate their passport when booking a flight. Young adults

are expected to present government ID before ordering an alcoholic beverage. Each of

these documents serve as evidence for an individual’s right to partake in a particular

activity. However, as constructed, they each bear considerable risk of loss, theft, and

exploitation, not to mention that they are often cumbersome to manage and assert.

Verifiable Credentials (previously Verifiable Claims) is a specification that was

introduced by W3C’s Verifiable Claims Working Group in the early half of this decade.

The goal was to establishing a standard for issuing and verifying statements associated

with an entity in a secure, private, and mechanic way [6]. Each credential contains

a series of claims (i.e., RDF [23] statements) asserted by an authoritative entity

(the Issuer) about another entity (the Subject), owned by yet another entity (the

Holder ; often identical to the Subject but, not always [7]) and verified by a final

17

entity (the Inspector/Verifier). If implemented with open standards, as is the hope

of many interest groups [6], users will be able to store their credentials in an identity

provider (IdP) of their choice, migrate them seamlessly between IdPs, and assert

them at will. It is the belief of many in the Web credentialing community that

Verifiable Credentials will automate authentication and authorization for consumers

and consequently reduce the cost of service delivery for providers.

2.2 Solid

Solid is a Web-based framework of decentralized applications interacting with care-

fully managed personal data to provide desirable services to users [2]. The goal of

Solid is to empower users to regain control of their data by removing it from the sticky

"data silos" of social media and consumer application juggernauts and returning it

to the full ownership and control of users, where it once belonged.

In the Solid ecosystem, users have access to applications that provide services

such as contact management, meeting scheduling, and e-mail. These users store their

personal data in a personal online datastore (pod), so that whenever an application

wants to access information about a user, it must first perform an authentication

protocol to discover their identity and profile data via a unique WebID assigned by

an identity provider of the user’s choice. One of the key requirements of pod servers,

which store Solid pods, is that they must support Access Control Lists (ACLs), which

place constraints on the type of access that applications may exercise on resources.

For example, one constraint that a user might decide to apply to their pod is that

applications may only append to documents or containers. Properties like these will

be key for the SolidVC architecture, discussed in later chapters.

2.2.1 Solid Benefits

There is a great variety of tools that could have been used to offer credential services,

as will be discussed later. The following are some of the reasons I decided to leverage

Solid to implement SolidVC:

18

∙ Solid was designed with the goal of empowering users to establish a greater

control of their data. It uses ACLs as a mechanism for safeguarding access to

their personal data and decentralized storage as a means of minimizing data

exploitation by third-party applications.

∙ In Solid, users store their data in a pod that can be hosted anywhere of their

choosing (including their own personal computer).

∙ Solid uses Linked Data (discussed in Section 2.3) to help users learn useful

information about their data and the data of others to the extent that they are

allowed.

∙ Solid exposes a SPARQL [30] endpoint for users to perform authenticated

queries on user data. SPARQL will be discussed in greater detail in Section

2.6.

∙ In Solid, there is no notion of a central database that stores and manages all

data and facilitates communication between users. Rather, Solid applications

leverage Linked Data and WebIDs (discussed in Section 2.4) to discover other

users on the platform, learn publicly available information about them, and

interact with them.

2.3 Linked Data

In the early days of the Web, it operated solely as a global Document Management

System (DMS) [1] that stored documents for later use and could be linked to other

documents via hypertext. As many readers in this community are likely familiar, these

"links" (as they are colloquially referenced) are typically in the form of formatted

text that navigate the document’s viewer to another document. If the viewer is lucky,

these links are sometimes titled with human readable language and/or described

with surrounding text. However, this is by no means a requirement for publishing

Web documents. Worse yet, even this construction proves challenging for machine

readability, and consequently data relationship discovery.

19

If it is unclear why the above setup foils most machines, imagine designing a Web

crawler program charged with the rather onerous task of discovering all relationships

intended by Web developers in a subset instance of the Web as constructed above,

based solely on the text in the connected documents. For example, in a research

setting, this Web crawler would have to learn to classify some links in a research paper

as literature references; others as personal contributions, such as a URI of the resource

implemented by the author; and others as personal information, such as a link in the

Acknowledgments section that advocates for a local pizza shop that offered the best

slices in town, great customer service, and a friendly studying environment during the

writing period of the paper. With this arbitrary set of relationships in a research paper

alone, hopefully the reader can glean a clear sense of how such an underspecified task

as relationship discovery can be challenging for humans and machines alike. It requires

a non-trivial level of machine processing, parsing, interpolation, and intelligence to

discover meaningful relationships. Additionally, even if one could build an accurate

enough system that meets these specifications, at the end of the day, it’s just that:

accurate enough. There is no reliable way to guarantee 100% relationship discovery

accuracy unless the Web was annotated in a more meaningful way.

The root of the aforementioned problem is that the Web in its native form is

like an unlabeled graph. The hypertext links often represent some sort of semantic

relationship between documents intended by the author and are such an integral lever

of our experience on the Web. However, there are no explicit semantics associated

with these links. The only way that data consumers can ascertain with 100% accuracy

the intended relationships of documents published by Web developers is if they had

an explicit mechanism of naming links. This is where Linked Data comes in. Linked

Data (or the Semantic Web, as it is sometimes referred) is a set of principles for

generating semantic information on the Web. The most natural mental model for

Linked Data is a labeled graph. Each node in the graph represents an arbitrary

entity, which can be anything from a person to an organization to even a grouping of

relationship attributes [24].

A sizable subset of the nodes in Linked Data are documents that can be deref-

20

Figure 2-1: Sample RDF Graph

erenced (visited on the Web) from the Uniform Resource Identifier (URI) - which

also serves as a Uniform Resource Locator (URL) in this case - that identifies the

document on the Web. Inside these documents are a series of statements about the

document that are expressed as a series of (SUBJECT, PREDICATE, OBJECT)

triples 1. An example triple is the following:

<Kayode Ezike> <knows> <Lalana Kagal>

This abstract representation of relationships on the Web is known as the Resource

Description Framework (RDF) [23] and is often represented as a graph structure.

There are many types of statements in RDF, including assertions of employment

at a company, ownership of a phone number, or association of a signature with a

document. Figure 2-1 illustrates a sample RDF graph that encompasses the simple

RDF statement above.

2.3.1 Ontology Design

The discussion above explains most of the key components of Linked Data, but it is

missing one critical part. As presented thus far, Linked Data does not allow for a

1These are often called quads when referenced from outside of the context of the document. In
this terminology, the fourth element is an identification of the remote document storing the statement

21

meaningful Web, as each document simply has its own set of statements that declare

relationships between nondescript entities. For example, in the statement above,

there is no way for a consumer of this document to disambiguate the name "Kayode

Ezike" (uniqueness notwithstanding). This is not a label that is globally identifiable,

since there is no uniform means of resolving it as an identifier. Neither is "knows"

or "Lalana Kagal". The type of identifiers used for the subjects and objects in this

case are application dependent, but are commonly expressed as WebIDs or DIDs.

In Section 2.4, I will discuss WebIDs in greater detail, as this is the more relevant

identifier scheme in the current Solid and SolidVC ecosystems. As for predicates,

such as knows, there are stricter requirements for what they mean, so that any two

consumers reading a document have the same understanding of its meaning. This

disambiguation is outlined in an ontology. Ontologies describe the meaning of terms,

such as knows, name, homepage, and publicKey. They are specified at a URL that

both identifies the ontology unequivocally and explains to consumers reading an RDF

document what exactly is meant by the contained predicate terms, including their

domain (subject space) and range (object space). For example, there is a popular

ontology called Friend of a Friend (FOAF) that describes many different types of

social attributes and relationships. With this framework established, a more precise

representation of the running RDF statement in this chapter is the following:

<https://kezike.mit.edu/profile#me>

<http://xmlns.com/foaf/0.1/knows>

<https://lkagal.mit.edu/profile#me> 2

SolidVC includes an ontology known as svc [5] that describes the various kinds of cre-

dentials and messages that are managed, displayed, and transmitted on the platform.

2.3.2 Linked Data Benefits

There are many advantages for Web users to leverage Linked Data on the Web:

2These are not real websites and are only used here for demonstrative purposes

22

∙ Users are able to query the Web in a manner similar to that of querying a

relational database. Tools such as SPARQL [30] support this kind of access.

∙ Users are able to discover useful information about other people on the Web.

This opens up an opportunity for increased collaboration and community build-

ing around certain skills, traits, interests, values, and ideals on the Web.

∙ Stakeholders have a standard means of defining, annotating, and understanding

data on the Web.

∙ Users are encouraged to share, reuse, and extend open ontologies so that a

network effect of sorts is created around established communication standards

on the Web. In other words, with this open source philosophy, more users

will be able to understand each other and there would be less confusion in

communication and information processing online.

∙ Users enjoy a concise means of representing data and asserting claims on the

Web. For example, an individual’s personal website can simply be a compilation

of statements that link to other documents, such as their CV/resume, their

alma mater’s homepage, their Github account, their Twitter account, and a

professional image.

For many of the Linked Data operations, I employed an open source library called

rdflib [25]. This tool is one of the primary technologies of the Solid ecosystem that

enables users to read, write, update, and delete local and remote RDF data in Solid.

In later sections, I will explore even further why Linked Data is such an integral

component of SolidVC and Solid (short for Social Linked Data) at large.

2.4 WebID

WebID is an authentication protocol that uses URIs to uniquely identify users on the

Web. In its original specification, it employs public-key cryptography to associate a

user with a WebID. For some time, Solid was using this variant of WebIDs until it

23

decided to switch to the standard username-password authentication protocol. How-

ever, WebIDs continue to be a staple of the platform and the Web for purposes of

account access and identification. The typical form of a WebID is the following:

https://uname.example.com/.../profile#XYZ, where:

∙ uname is the user’s username

∙ example.com is an IdP

∙ /.../ is a valid path hosted by the IdP

∙ profile is the name of the user’s profile document, which contains RDF state-

ments about them

∙ XYZ is a URI fragment that allows relative access to a secondary resource from

a primary resource

WebIDs are the identifier of choice in the SolidVC ecosystem because of Solid’s

native support thereof. I am content with this decision because it is the foundation

of much of the functionality on the platform, including Linked Data Notifications,

discussed in Section 2.5. Additionally, I believe that http(s) URIs are great identifiers

because many people are already familiar with this Web-based construct and already

own software that readily supports its resolution and dereferencing: the Web browser.

2.5 Linked Data Notifications

Most messaging platforms today are closed systems that rely on a controlled, cen-

tralized means of coordinating communication in a particular format that is available

only to participants in the platform. This is great for many use cases, but not all.

There are situations in which a user may want to share information with a group

of people without the need for agreeing on a single third party application for each

recipient to use. In other words, they would simply like to use the Web - arguably the

24

Figure 2-2: LDN at a Glance (sourced from https://www.w3.org/TR/ldn)

most universal communication application known to mankind - to share information

with others globally. Linked Data Notifications is perfect for this latter use case.

Linked Data Notifications [27] (LDN) is a protocol that was developed by the

Social Web Working Group of the W3C for the seamless sharing and reuse of noti-

fications that are generated by producers in one context and received by consumers

in another context. In the specification, notifications are treated like persistent, first-

class objects in that they have their own URI and may be fetched for later use in

different contexts. The goal of LDN is to democratize access to data that could be

useful to a broad audience and encourage productive collaboration on the Web.

The following is a high-level overview of the Linked Data Notifications workflow:

1. A user desires to send a message from its machine (the Sender) to a user on

another machine (the Target)

2. The Sender issues a SPARQL request to the Target to discover its inbox (the

Receiver), which is defined by the Linked Data Platform (LDP) ontology as

LDP:inbox

25

3. The Receiver reveals the data in an access controlled manner to a third party

(the Consumer)

4. The Consumer discovers the inbox in the same manner in which the Sender

does, ultimately processing it as they see fit. This request often involves fetching

the content of the inbox via a SPARQL request, which is defined by the LDP

ontology as LDP:contains

Linked Data Notifications are a core part of SolidVC. There are a number of

notifications that are necessary or convenient for the application, including credential

request messages, credential issuance messages, and credential sharing messages. In

later chapters, it will be made clear just how important Linked Data Notifications

are in SolidVC.

2.6 SPARQL

Earlier, I mentioned that one of the benefits of Linked Data is that it enables us to

query the Web more efficiently by organizing data and representing relationships in

a more meaningful way. This capability seems like an aspirational feature for the

Web to provide, as it would enable insight discovery across globally distributed data

sources. The SPARQL Protocol and RDF Query Language (SPARQL) was developed

in 2008 by the namesake W3C Working Group in order to bring this aspiration to

fruition. As the name suggests, the goal of SPARQL is to provide a robust querying

language for RDF data on the Web. SPARQL allows users to enforce particular graph

patterns that serve as filters while searching the Semantic Web. For those already

familiar with Structured Query Language (SQL), it will not require much of a leap

in knowledge to understand SPARQL.

The best way to understand SPARQL is with a simple example. Here is a sample

data source, query, and output in SPARQL:

26

Data:

Figure 2-3: Sample SPARQL Data

Query:

Figure 2-4: Sample SPARQL Query

Output:

Figure 2-5: Sample SPARQL Output

SPARQL is an essential component of most Linked Data applications, as there

will almost always be a need to read, write, update, and delete RDF data that

27

match a particular pattern. In SolidVC, the need for this tool arises during LDN’s

inbox discovery mechanism, public key posting during setup and discovery during

verification, and updating of credential status list during revocation and discovery

during verification. These are just the beginnings of SPARQL’s utility in SolidVC

and Linked Data at large.

2.7 Digital Signatures

We use signatures everyday to associate our identity to documents as a mark of

approval or endorsement. In the physical world, we secure the veracity of these

signatures by signing documents with financial and legal institutions, which record

our signatures for later consultation and verification. While this works for many

cases, it is not always effective. For one, there are people who make a living off of

accurately forging signatures. In fact, they could likely forge the current reader’s

signature if given enough time to practice. For this reason, there is also no way of

inextricably associating an individual to a signed document, as any professional forger

could have generated the signature. Finally, there is no way to detect alteration of

the document in transit from the signer to the verifying party, a loophole which could

falsely associate the signer to forged claims.

Digital signatures solve all of the aforementioned problems observed with physical

signatures. These are mathematically based schemes for ascertaining the authenticity

of documents and messages in digital format. The use of the word "authenticity"

here refers precisely to the absence of the shortcomings discussed in the previous

paragraph. Without delving too deeply into the detail, the typical digital signature

scheme involves the following critical operations:

∙ generateKeyPair : Most digital signature schemes employ asymmetric cryptog-

raphy, which feature a public key, which may be shared with others, and a

private key, which must be kept as a secret in order to deliver on the guarantees

discussed above. The generateKeyPair algorithm is responsible for producing

this key pair for users.

28

∙ sign: Before signing a document, it is important to get it into a uniform format,

so that anyone seeking to verify a signature at a later point in time can be

sure that they are referring to the same underlying representation of the data.

This step is called normalization (or canonicalization). For example, one simple

normalization method for a key-value store represented in JSON is to recursively

order each key alphabetically and select predefined delimiters for representing

key-value mappings and for separating these pairs (so long as these delimiters

are forbidden from existing in the input documents). The normalized message is

then typically passed into a hashing algorithm, which converts an input sequence

of bits to a deterministic output sequence of bits. The output of the hashing

algorithm is a digest that is unique to the input bit string in the ideal case.

Finally, this digest is encrypted with the private key to produce a signature

value that others can verify at a later time.

∙ verify : Whenever a third party wants to verify the authenticity of a signed

message, they use the public key to decrypt the signature value and check that

it matches the hashed message.

2.7.1 Linked Data Signatures

Linked Data Signatures is a specification that was developed by the Web Payments

and Credentials Working Group at the W3C. The specification proposes a mechanism

for applying digital signatures to Linked Data documents. As alluded earlier, it is

very critical to establish a standard means of normalizing Linked Data documents

for signature and verification purposes. This is because there are so many different

serializations of RDF (N3, JSON-LD, RDF/XML, etc.) and because the presence of

blank nodes [24] complicates this process, since they are named arbitrarily by different

applications. However, after years of research into this problem, it has ultimately been

solved by various skolemization, leaning, and labelling mechanisms [37] [38].

Most of the important elements of Linked Data Signatures have already been

discussed. At this point, the reader knows that a Linked Data document contains a set

29

of claims, statements, and assertions whose relationship terms are defined by various

open ontologies. Additionally, the reader knows that digital signatures enable a strong

association between individuals and digital claims through the use of mathematical

schemes that normalize, hash, encrypt, and decrypt messages in deterministic ways.

Therefore, the only thing missing in the discussion of Linked Data Signatures is the

mapping between these two technical domains.

It is important to note that Linked Data is simply data that is structured in a

certain format that optimizes for knowledge discovery on the Web. In other words, any

operations that can be performed on arbitrary data can theoretically also be applied

to Linked Data. The main challenge is in coming up with a uniform representation

for this data so that it can be signed with confidence that Verifiers will be able

to unequivocally link it to the signer. The Linked Data Signatures specification

does not prescribe particular canonicalization, digest, or signature algorithms, but

allows for users to attach a proof to their signed document, which specifies these

algorithms, as well as any necessary parameters and metadata that were used to

configure the signature process, including the creator, the signature date, and the

plaintext signature value itself, among other other things. Aside from these essential

items, signers are free to add any other RDF statement to the document.

Linked Data Signatures is an integral component of SolidVC, as it is used to issue

and verify signed credentials in the platform. I used an implementation of Linked

Data signatures that is implemented and maintained by Digital Bazaar called jsonld-

signatures [29] that operates in the JSON-LD space. This is a developing, but robust,

tool for Web-based signatures that exposes an API for various signature algorithms (or

suites), including RSA, Koblitz, and Ed25519, among others. The jsonld-signatures

library serves as the engine for a lot of the activity in SolidVC, including credential

request, issuance, verification, revocation, and eventually sharing (which currently is

an unsigned process). In later chapters, I will explore how exactly these signatures

are used and why they are so important.

30

Chapter 3

Related Work

There exists a large number of certification services that offer a unique set of utilities.

In this chapter, I present a broad survey of these credentialing platforms and the pros

and cons of each. This is by no means an exhaustive set of systems, but rather a

reasonably representative group that demonstrates the different types of approaches

that have been implemented in certification systems to date.

3.1 edX

There has been a surge in Massive Open Online Courses (MOOC) [16] over the past

8-10 years with an emerging realization that there is no formal connection between

class size and learning outcome [18]. With this developing online ecosystem, many

communities have developed unique credentialing mechanisms for its users. Among

the more robust platforms in this space is edX. In this system, users can obtain a

special certificate for completing a course. This certificate is then hosted on edX for

future expression by the Subject and consumption by Verifiers.

As great of a social service as this is, it is missing many of the important elements

of a certification service, including self-sufficiency and portability. The Verifier must

consult the Issuer of the credential and parse the site-specific credential into a uniform

representation, a task that will inevitably be different for each site, considering that

each will likely have its own unique way of representing credentials.

31

3.2 Mozilla Backpack

Prior to Verifiable Credentials, Mozilla had specified a model for representing, signing,

and verifying credentials digitally. Conceived in 2011, Open Badges [19] would prove

to be the undeniable predecessor to the Verifiable Credentials specification [20]. Per-

haps the most popular implementation of Open Badges is Mozilla Backpack, which

allows users to collect badges from disparate sources into a single location, like a dig-

ital wallet of sorts. This tool has achieved a moderate degree of success throughout

its lifetime, enjoying participation from thousands of organizations worldwide and an

order of badge instances in the millions [21].

Mozilla Backpack was a major step in the direction of enabling a robust ecosystem

of personal, interoperable, and well-defined digital credentials. The problem is that

in its current form, it is a centralized system: should Backpack disappear tomorrow,

so too would all of your precious credentials.

3.3 uPort

As Distributed Ledger Technology (DLT) continues to penetrate digital services at

an alarming rate, they have made a name for themselves in the Identity Management

(IdM) realm. In 2016, ConsenSys introduced uPort, a self-sovereign identity mobile

platform that is backed by the Ethereum blockchain. Much of its value proposition

is in its accommodation for individuals to persist and manage representation of their

identity and credentials on a globally consistent storage and runtime in Ethereum.

This is a big win for the DLT community, but there are still a number of challenges to

address. For one, the degree and complexity of control for the user is overwhelming,

as the uPortID recovery protocol can lead to a compromised uPort instance and

undetected trustee replacement, which could lead to an irreversibly compromised

uPortID. Another crucial problem is the use of a centralized registry to map uPortID

to identity attributes, as this public resource could leak otherwise private information

about user-provider relationships [17].

32

3.4 Blockcerts

Continuing the series of work around DLT-enabled certification systems, Blockcerts

[9] was developed in 2016 as a Bitcoin-backed credentialing platform that was designed

for the "context of academic, professional, and workforce credentialing" [10]. The four

main components of the Blockcerts ecosystem are the Issuer, Certificate, Verifier, and

Wallet. Like Mozilla Backpack, Blockcerts produces certificates that are compliant

with Open Badges, strategically ingratiating itself with a strong ecosystem that is

quickly becoming a canonical element of enterprise Information Management Systems

(IMS) worldwide.

For all that it has going for it, Blockcerts falls short of an ideal certification

tool for at least one critical reason: centralized credential storage during revocation.

Since the Issuer stores the credential revocation list, including entire credentials and

not just their status, there is an undesirable coupling between credential and Issuer.

Maintenance of the revocation list by the Issuer also implies privileged knowledge of

existence and use of credentials, rendering them liable to exploitation.

3.5 Hypercerts

Hypercerts was developed as an extension to Blockcerts, specifically to provide a more

independent revocation mechanism and a persistent storage solution for credentials.

It uses Ethereum smart contracts to manage the status of credentials, a feature that

elegantly supports revocation by Issuers, Subjects, and third parties alike. Addition-

ally, Hypercerts leverages InterPlanetary File System (IPFS) as the storage solution

in order to produce permanent, content-addressable credentials. Its primary focus is

to provide a certification service that overcomes the shortcomings in privacy, inter-

operability, and self-sufficiency that befall predecessor credentialing systems.

Hypercerts is an amalgamation of bleeding edge technologies that combine to make

a robust credentialing system. However, that is also part of the problem: it introduces

a lot of complexity that it could have potentially done without. Blockchains and DLTs

33

Table 3.1: Credential System Comparison

System Verifiability Self-
Sufficiency Interoperability Revocability Web-

Native
edX 3 5 5 3 3

Mozilla
Backpack 3 5 3 3 3

uPort 3 3 3 3 5

Blockcerts 3 5 3 3 5

Hypercerts 3 3 3 3 5

SolidVC 3 3 3 3 3

are great for achieving credential consistency and persistence, but they bring with

them their own baggage. Part of the beauty and the horror of blockchain technology

is that there is such a great diversity of them. It’s good in that each one offers its

own set of benefits in privacy, security, and temporal/spacial performance. It’s bad in

that there is little to no interoperability between these systems and platform adoption

becomes as much of a sociopolitical problem as a technical one. Additionally, there

are legitimate concerns about the privacy and scalability of these systems [22], among

other things. These concerns do not represent a normative indictment on DLT, as

the potential for the technology is almost undeniable. Rather, I believe that for a

system as critical as credentialing, it is important to deploy solutions that have been

battle-tested on the order of generations.

34

Chapter 4

System Overview

In this chapter, I present SolidVC [4], a decentralized implementation of the Verifiable

Credentials specification, that leverages various ontologies, protocols, and specifica-

tions of the Web to deliver a robust and extensible credentialing system.

4.1 Design Principles

SolidVC represents the confluence of a number of core design principles. This section

provides an in-depth discussion of these principles and explains how they inform some

of the major design decisions on the platform.

4.1.1 Web Interoperability

Many of the design decisions in SolidVC are based on the natural constructions of

the Web. As discussed earlier in the Background chapter, I have elected to utilize

many of the open Web protocols and specifications that already exist, such as Linked

Data Signatures, Linked Data Notifications, SPARQL, and WebID. The primary

contribution in SolidVC is its composition of these technologies in a novel way that

leverages the access controlled data management environment offered by Solid.

My reasoning for this prioritization of the Web over other platforms is that the Web

is a time-tested application that already solves many of the engineering challenges

35

that SolidVC would otherwise need to solve on its own. The clearest examples of

such challenges are name resolution and stakeholder communication. For example,

there are instances in which SolidVC accepts from the user the temporary location

of a credential and facilitates a series of actions that involve fetching a document for

rendering or processing purposes. Similarly, there are many instances in which a user

is prompted to enter the ID of an individual for the ultimate goal of communicating

with the individual associated with that ID or discovering an attribute about the

individual. The Web and its sibling technologies offer each of these core functions

out of the box, allowing SolidVC to focus on the other critical aspects of its service.

4.1.2 Identity Flexibility

A natural extension of Section 4.1.1 is SolidVC’s use of the natural identity and au-

thentication scheme in the Linked Data context: WebIDs. As alluded previously,

much of the interactions on the platform are most naturally performed with WebIDs.

However, SolidVC makes accommodations for alternate means of identifying creden-

tials on the platform. This is because the primary use for credential identification is

for updating its status and not necessarily locating and fetching it.

In SolidVC, I have a general set of recommendations for identity schemes that

are sensible and tractable. One such prescription is that the identity-generating

stakeholder (i.e., the Issuer) use IDs that are maintained in an isolated namespace

controlled by them, such as URIs that reside in a path that they own. However, this

is only a recommendation that I believe would be beneficial to the user and is by no

means an enforced requirement.

A final note on identity management is that SolidVC makes no provisions for

Issuers to manage credentials. It is left as an exercise for Issuers and other identity-

generating stakeholders to decide on a system for mapping users to credentials if

necessary. This was a deliberate decision that is informed by the philosophy that

personal data tracking should not be a default feature, but rather an intentional

process that requires a non-trivial amount of effort to implement. This is in line with

Solid’s proclaimed mission of enhanced personal data control for users.

36

4.1.3 Credential Sovereignty

One of the primary goals of SolidVC is to treat credentials as first-class objects. In

line with the Verifiable Credentials specification, a credential should contain within

it all that is needed to verify its provenance and its dynamic status. There should be

minimal reliance on any of the stakeholders producing or consuming the credential.

There should also be minimal requirements for persistent location. Particularly, a

user should be able to control and migrate their credentials as they see fit, so long as

the integrity can be secured via mechanisms such as digital signatures. In Chapter

5, I will discuss a special case for accommodation of persistence for certain types of

credentials in which negative historical evaluations are business critical.

4.1.4 General Accessibility

SolidVC is an open source tool that anyone can download and use. There are no

restrictions on the stakeholder roles that users can assume on the platform. I have

expectations for which profiles will gravitate toward each role, but these are not

necessarily enforced by a central SolidVC committee (or anything of the sort) that

assigns roles. For example, while it is not difficult to imagine that large institutions,

such as governments, universities, and banks would experience the greatest benefit

in being an Issuer, there is nothing preventing a citizen from being an Issuer for

their own personal causes and ventures. Additionally, there is nothing preventing

users from assuming multiple stakeholder roles for different purposes, as SolidVC

exposes a seamless mechanism for switching roles. For an example of where this

multiplicity of roles might be useful, consider the following scenario: Employee A,

who has collaborated with Employee B on multiple projects in the past, would like

to vouch for them to enable future employment opportunities for the latter. While

Employee A owns their own personal credentials, such as an academic diploma and

a driving license, they also have the desire to deliver credentials to others.

37

4.2 Stakeholders

There are three main stakeholders in SolidVC: Subject, Issuer, and Verifier. These

are no different than those specified in the Verifiable Credentials specification [6]. The

reader should note that SolidVC makes no distinction between Subject and Holder,

choosing to adopt the former terminology throughout the system terminology. Ad-

ditionally, SolidVC adopts Verifier as the term for the stakeholder that inspects the

validity of a credential, alternatively known as Relying Party in traditional certifica-

tion ecosystems, and more recently known as Inspector in the Verifiable Credentials

specification. In Section 4.4, I will specify the behavior of each of these stakeholders.

4.3 Ontology

The fuel of any credentialing system is the verifiable credential that proves skills own-

ership and enables service access. In SolidVC, I represent credentials with a custom

ontology called svc [5]. This ontology encapsulates metadata such as the credential

type (i.e., Education, Health, Finance, etc.), the embedded claims, the Subject, the

Issuer, and a proof. This ontology standardizes credentials on the platform.

The main resource types in the svc ontology are Credential and CredentialStatus-

List. Credential represents the self-sufficient credentials that are requested, issued,

shared, and verified in SolidVC. Some of the key properties of this resource are id,

domain, issuerId, and subjectId. Meanwhile, the CredentialStatusList resource type

represents the evolving status of a credential and includes properties such as creden-

tialStatus, credentialId, revocationReason, and revocationDate.

In the svc ontology, it is clear that there are parallels between some of the prop-

erties I have defined and some defined in other open ontologies. For these properties,

my decision to include them nevertheless is due either to a slight nuance in meaning

or to a perceived necessity to outline all of the integral credentialing properties on

the platform, for the sake of future users and students of svc.

38

Figure 4-1: Sample Credential

4.4 Protocols

SolidVC consists of a number of well-defined protocols for managing credentials. In

this section, I will outline these protocols in detail.

4.4.1 Setup

In order to use SolidVC, there are a number of dependencies that the user must install

in their local environment (henceforth, svcLocal) and in a public SolidVC-provisioned

folder that resides in the user’s Solid pod (henceforth, svcRemote). This process re-

quires that the user has a Solid account, complete with a WebID and pod (See [2]

and [3] for specification of a Solid-compliant pod). I have provided a script (hence-

forth, svcSetup) that checks and establishes that the aforementioned prerequisites

and constraints are maintained in svcLocal and svcRemote.

Before anything else, svcSetup downloads a number of software dependencies that

SolidVC needs to operate properly. After this process, the user is prompted to provide

the credentials of a Solid account in their control. Users are encouraged to have a Solid

39

account beforehand, as SolidVC depends heavily on the ownership of this account.

With this information, svcSetup authenticates the user to their account in preparation

of privileged access.

After svcSetup authenticates the user to their account, it proceeds to generate

and store a cryptographic key pair, which will be used for signing and verifying

credentials on the platform. With this preliminary data, SolidVC is poised to perform

its first privileged access of the user’s account: publication of the user’s public key to

svcRemote.

Next, svcSetup prompts the user to provide the desirable location for their public

key in svcRemote. This takes the form of an existing, public folder, which often resides

in the user’s pod, but not necessarily. The public key is then posted to this location.

However, this public key is only as useful as it is discoverable. This is where Linked

Data makes its first appearance in SolidVC. Particularly, svcSetup updates the user’s

Solid profile document to point to their public key. Now, when future stakeholders

need to access a user’s public key - as they will during the Verification protocol in

Section 4.4.5 - they can easily find it by referring to the user’s profile.

At this point, most of the setup for SolidVC is complete. The only thing that

remains is setting up the remote credential status folder. As with the public key

folder, svcSetup prompts the user for an existing, public folder that will store metadata

about credentials, such as expiry and revocation. I will discuss this folder in detail in

Section 4.4.6.

By the end of the Setup protocol, svcSetup has output a convenient configuration

file that stores information such as the user’s Solid WebID, the location of their

public key folder, and the location of their credential status folder. This information

is partially for the user’s sake (i.e., in the case of WebID) and partially for SolidVC’s

sake (i.e., in the case of the public key folder and the credential status folder).

4.4.2 Request

To kickoff the credentialing process, the Subject may optionally request the Issuer for

a credential. This process is not included in the Verifiable Credentials specification;

40

the Subject and Issuer may communicate in an offline communication channel or the

Issuer may already know to issue the credential, depending on the context. Never-

theless, I have decided to include an interface for the Subject to explicitly request

a credential from the Issuer via Linked Data Notifications as a convenience to the

stakeholders involved.

Figure 4-2: The Request and Issuance Protocols

A credential request is a lot like a credential. For one, it includes a series of

metadata about the credential, such as the domain, title, description, and Issuer ID.

In essence, it is a credential specifying the desired credential and, in fact, a credential

request is represented by the same resource type as a credential proper in the svc

ontology. Another important similarity between requests and credentials is that they

are signed by the creator.

In Solid, there is no notion of filtering spam or otherwise suspicious messages in

the inbox. Everything that is sent to a user is processed and displayed the same way.

With Linked Data Signatures, this could at least be partially addressed by requiring

that each message is signed by the sender. This is precisely the utility that the

Request protocol provides. When a Subject requests for a credential, the application

automatically signs the request. With this provision, a user cannot request for a

credential on behalf of another user without detection, which reduces the potential

for the type of Denial of Service (DoS) attack that involves launching credential

41

requests as a proxy for an unsuspecting victim from multiple different Issuers.

Figure 4-3: The Request Interface

Because a credential requires the verifiable completion of a set of achievements,

the Subject is encouraged to provide a minimal set of data for identity and capability

resolution. Figure 4-3 illustrates the Subject’s perspective on the platform during

a typical request. Additionally, Section 4.6 will explain in greater detail what this

process entails.

4.4.3 Issuance

An Issuer can directly create, sign, and issue a credential to a knowingly deserving

Subject. This interface is useful if the Issuer already has the proof and user infor-

mation that they need to reward a Subject with a credential and, consequently, a

credential request would be superfluous. As alluded earlier, the issuance of a creden-

tial is a lot like the request for one, as they each involve specification of claims about

a resource, where the resource in this case is the Subject, as opposed to the credential

in the latter case.

The Issuance protocol features, underneath the hood, the first instance of Linked

42

Data Signatures. To implement the digital signature infrastructure, I utilized jsonld-

signatures [29], as discussed in Chapter 2.

The Issuance protocol consists of the following detailed steps:

1. Parse N3-serialized credential into rdflib [25] quad store.

2. Add credential metadata (i.e., id, domain, and credentialStatus) statements to

quad store.

3. Serialize credential quad store into JSON-LD in preparation for jsonld-signatures

activity.

4. Load key pair from svcLocal.

5. Sign credential with key pair.

6. Submit signed credential to Subject of interest.

7. Instantiate new rdflib quad store that will contain credential status metadata.

8. Add credential status metadata (i.e., credentialId and credentialStatus) to quad

store. Note that the Issuer has complete freedom over the choice of credential

ID, as there is no expectation that this ID be dereferenceable on the Web,

considering the sovereignty of credentials on the platform. I will revisit this

idea later.

9. Serialize credential status quad store into N3.

10. Submit new credential status document to credential status folder in svcRemote.

From the user perspective, the issuance process is relatively simple. It involves

entering the domain (i.e., Education, Health, Finance, etc.) of the credential, the ID

of the Subject, and the credential in plaintext (See Figure 4-4 for a visual illustration

of the Issuer’s view during this process). Currently, the toughest aspect of the issuance

process may be producing the plaintext credential depending on the user’s familiarity

and proficiency with RDF, as it involves entering a credential in the form of RDF

43

Figure 4-4: The Issuance Interface

statements. At the time of this writing, the platform only accepts data in the N3

RDF serialization format, but there are already steps being made to accommodate

other formats, including JSON-LD and N-Quads. In fact, there are also possible

accommodations that can be made for human readable claims, which could simply

dump the statement(s) into the value field of a single RDF statement with a special

predicate designated by svc. Finally, there will likely be provisions for submitting

credentials via file upload.

Another note on RDF serialization in SolidVC: although credentials are accepted

from Issuers in N3, they are stored in the JSON-LD format and in the text/plain

Multipurpose Internet Mail Extensions (MIME) type. The reasoning behind this

roundabout means of processing and storing credentials has to do with a seeming

oversight in rdflib, in which the library parses documents signed by jsonld-signatures

in a shortcut "syntactic sugar" kind of N3 format, but is not able to parse these

credentials back into an rdflib quad store; in a sense, rdflib is writing checks it can’t

cash in this edge case. Additionally, Tabulator (Solid’s visual interface) has limi-

tations that does not yet allow users to view documents in the application/json+ld

MIME type and does not even allow the storage of documents in the application/json

MIME type (let alone viewing); hence, I am intermittently storing credentials in the

text/plain MIME type. So long as the credential can be serialized into JSON-LD,

44

this proves not to be a problem at rendering time. In any event, I plan on working

with the Solid and rdflib developer communities to address some of these issues so

that credentials can be processed and stored in any format.

4.4.4 Sharing

Sharing is another relatively simple process. There are two ways to share credentials

with stakeholders:

1. File Upload: In this mode, the Subject wielding control over the credential

can upload a local credential-bearing file from their computer. This method

illustrates the Credential Sovereignty philosophy, as discussed in Section 4.1.

2. URI Provision: In this mode, the Subject wielding control over the credential

provides the URI of the credential and the ID of the stakeholder, often a Verifier.

This triggers a fetch of the credential from the URI and an LDN-supported

communication of the content. To reiterate, the URI itself is not shared with

the stakeholder, since this is an unreliable attribute of the credential in SolidVC.

Rather, the actual content of the credential is shared.

Figure 4-5: The Sharing Interface

Figure 4-5 illustrates visually the Subject’s experience in SolidVC during a typical

45

request. One desirable feature addition of the Sharing protocol would allow users to

sign shared credentials and specify metadata about the usage of credentials, such as

expiry and other useful conditions. I will discuss this in greater detail in Chapter 5.

4.4.5 Verification

A Verifiable Credentials management system is only as useful as its ability to verify

signed credentials. For this reason, I have provided a rather trivial means for verifying

credentials. The user simply needs to enter the temporary URL of the credential to

verify its provenance. The Verification protocol involves a number of key steps:

Figure 4-6: The Verification Protocol

1. Fetch credential from user-provided URL.

2. Search credential for Issuer ID.

3. Discover Issuer public key from Issuer ID via LDN.

4. Search credential for URL of its status document.

5. Fetch credential status (i.e., ACTIVE, EXPIRED, REVOKED, etc.) and

related metadata, (i.e., expiryDate, revocationReason, etc.) from remote cre-

dential status folder established during svcSetup.

46

6. Search credential for jsonld-signatures proof.

7. Use combination of public key and proof to verify that the nominal Issuer was

indeed the Issuer of the credential. Note that SolidVC (and all other Verifiable

Credentials platforms) does not have a mechanism for preventing fabrication of

credentials. In other words, a credential is only as valuable as one’s trust in the

Issuer. This is a social problem that is yet unsolved, and consequently out of

scope of SolidVC, as it requires insight into the heart and intent of the Issuer.

Figure 4-7: The Verification Interface Upon Success

Realistically, credential verification would typically happen in the background as

an application or service consumes a credential. Nevertheless, I have provided in

SolidVC this utility interface for verifying credentials as a sanity check. To bring this

work full circle, I envision an emerging ecosystem of applications operating in their

own context and consuming credentials whenever it is necessary to permit access to

47

restricted services. Refer to Figure 4-7 for a depiction of the Verifier’s experience

upon verification of a valid credential. Additionally, Figure 4-11 exposes an example

of when verification exposes an invalid credential.

4.4.6 Revocation

A truly robust certification service should provide a clean mechanism for revoking

credentials. The Verifiable Credentials specification prescribes the use of the creden-

tialStatus property to augment the credential with useful metadata [6]. This field

points to another credential that describes the state of the original credential, includ-

ing revocation information, if necessary. An interesting property of this design is that

it is effectively using a credential to describe another credential, similar to credential

requests. In SolidVC, the user is simply prompted to enter the ID of the credential

and the reason for revocation. Figure 4-8 presents the modest interface that users

engage during revocation.

Figure 4-8: The Revocation Interface

The following is a comprehensive outline of the technical steps involved in the Revo-

cation protocol given minimal user input:

1. Fetch local credential status folder into local rdflib quad store.

2. Search for credential status document with credential ID provided by user.

48

3. If credential ID is not present in the user’s credential status folder, return and

report to user. Otherwise, prepare to update the relevant credential status

document with revocation metadata.

4. Load revocation metadata into a local rdflib quad store. Relevant metadata

include reason and date of revocation, as well as the REVOKED state among

other things. In a separate quad store, load RDF statements that may be living

in the credential status document, but is incongruent with a revoked credential.

Such data includes the previous state (i.e., ACTIVE or EXPIRED) or other

metadata associated with that state

5. Submit a SPARQL PATCH request including these insertions and deletions to

the credential status.

6. Report whether credential status update was successfully recorded.

Figure 4-9: Tabulator View of REVOKED Credential Status

An important note to make about revocation that has been mentioned in various ways

but cannot be overstated is that the user input is a unique ID, but not necessarily a

URL. This is the ID of the credential and is stored in the credential status document

simply as a means of referring to the credential in a user’s credential status folder

for purposes of update. It is also important to note at this point that while this

design was implemented for credential-location independence, there is still a need for

the credential status documents to be location-dependent, since the credentials refer

to these. For this reason, the credential status document is stored as a URL in the

credential object.

49

Figure 4-10: The Review Interface

4.5 Additional Features

4.5.1 Credential Review

In the Issuer view, a user can review their outstanding requests and decide whether

to approve or reject depending on the perceived credibility of data that was provided

by the Subject. In the event of a rejection, the Issuer is encouraged to include a useful

feedback message that the Subject can use to improve their chances of approval in

the future. Upon approval, the document is normalized and signed with the Issuer’s

cryptographic key pair. The document is finally delivered back to the deserving Sub-

ject, once again via Linked Data Notifications. The Subject now owns that credential

in their access controlled Solid pod and is free to manage visibility as they please. 1

Another important aspect of this view is the verifiability of credential requests.

In particular, next to each message is a thumbnail image of a check mark or an ex

mark, indicating whether the credential was signed by the proclaimed subject. This

is important for filtering out spam-like requests. See Figure 4-10 for an illustration

of this.

1Note: The Issuer can ultimately reject a request for any reason, including questionable public
history and suspicious user identity.

50

4.5.2 Credential Download

To emphasize that credentials are self-sufficient and location-independent, SolidVC

allows users to download credentials from their inbox onto their personal computer.

With a local copy of credentials, users have the flexibility to migrate their credentials

from Solid/SolidVC to another platform and to share their credentials with stake-

holders outside of the platform.

4.6 Use Case: Driving License

In this section, I provide a discussion of a typical use case of SolidVC in the context

of motor vehicle certification. The point of the ensuing scenario is to incite the

imagination of readers for the kind of credentialing activity that SolidVC supports. 2

4.6.1 Setup

Alice is interested in receiving a driving license in the State of Massachusetts. Before

she can engage in this transaction with the Massachusetts Registry of Motor Vehicles

(RMV), she first downloads SolidVC and executes svcSetup. Assume that the RMV

has already downloaded SolidVC and executed svcSetup. Fortunately for users, it is

necessary to run svcSetup only once. The output of this single run enables arbitrarily

many interactions with future stakeholders.

4.6.2 Request

First, Alice visits the SolidVC Subject interface. Next, she enters the WebID of

the RMV, a SolidVC-compliant Issuer, and selects the Transportation option. She

proceeds to enter the relevant request metadata, including the WebID of an RMV

employee named Chris, and an optional title and description for the request.

2Many of the figures and claims in this section, such as personal names, institutional policies,
and organizational affiliations with SolidVC are fictional, but are referenced henceforth as real for
demonstrative purposes alone

51

In future versions of SolidVC, the entry of metadata such as the Transportation

credential type might lead to a series of other user prompts, such as the Country/State

and type of driving license of interest. Ultimately, the output of this process may be

a credential request template for Alice to complete or a useful Web link informing

her of required documents to upload and include in the request 3. See Chapter 5 for

a discussion on how to improve the request process, including Issuer discovery.

4.6.3 Issuance

When Chris visits the SolidVC Issuer interface, he finds Alice’s request waiting for

him in his inbox. Chris reviews Alice’s request and the attached information and

immediately returns a rejection notice, explaining that Alice must complete a month-

long driving course and take an hour-long driving test in person. Alice uses the linked

resources in the rejection notice to apply for the driving course and independently

prepare for the driving test. After a month, Alice has completed the course and taken

the test and Chris assesses that she is certified to drive in the State of Massachusetts.

Because he already has some of her information in the system from their previous

correspondence, he can proceed directly to the Issue panel of the Issuer interface to

create, sign, and return a new motor vehicle credential to Alice.

4.6.4 Verification/Revocation

Elated about her new license, Alice sneaks out in the evening with her Mother’s car to

celebrate with friends. By the end of the night, she had been intoxicated to the point

of motor deficiency, but was confident that she could safely return her friends to their

destinations. However, within moments on the road, Alice was stopped by the Boston

Police Department for questioning, suspecting that she had been driving under the

influence. After a brief assessment which involved ascertaining the validity of her

license via the SolidVC Verifier interface, the cops reported Alice’s poor behavior

to Chris from the RMV, who subsequently decided to revoke the new license using

3https://www.mass.gov/passenger-class-d-drivers-licenses

52

SolidVC’s revocation functionality. The result is a REVOKED status that would

appear in the credential status document associated with Alice’s license (See Figure 4-

9 for reference). In the future, there is the possibility that SolidVC could incorporate

a reporting mechanism that can be used to report adverse behavior of Subjects to

Issuers for the sake of encouraging disciplinary action, such as revocation. This

functionality could very likely be subsumed by the Request interface.

Figure 4-11: The Verification Interface Upon Failure

53

54

Chapter 5

Future Work

There are many conceivable ways in which SolidVC can be extended to provide a more

robust certification service. The following is a discussion of the major improvements

that would bring SolidVC closer to its full potential. Many of the items in this chapter

are already underway and may already be implemented by the time of this paper’s

publication. Nevertheless, I find it necessary to clarify them as work items in progress.

5.1 Command Line Tool

As constructed, SolidVC is great for non-technical users that wish to issue and receive

verifiable credentials. However, I believe that a more technical crowd would appreciate

a command line tool that would allow for them to interact with the system from the

comfort of their favorite command-line interface. With such a tool, Subjects would be

able to request credentials and review their credential repository and Issuers would

be able to review and service credential requests all from a tool like Terminal on

Unix-based systems or Command Prompt on Windows-based systems.

An additional use for a command line tool is the support of rule-based credentialing

systems. In many use cases, it is best for human beings to issue credentials if the

policy checking and achievement resolution involves a series of human interactions,

such as third-party reference checking and other such forms of due diligence. However,

for other credentials, issuance requires checking adherence to a set of encoded rules.

55

So long as the credential request can express the attributes of interest in a machine-

readable manner, automated credential issuance would be a natural extension and

economic convenience for many extant credentialing systems.

5.2 Extended RDF Serialization Support

As mentioned in Section 4.4.3, SolidVC only supports N3 in its current form. However,

there are many other popular RDF serializations, such as JSON-LD and N-Quads.

As such, I am planning to add support for these and possibly other additional formats

as the relevant developer communities iron out some of the wrinkles in the supporting

technologies, per an earlier discussion.

5.3 Expiry Support

Previous sections outlined some of the accepted values in the range for credentialSta-

tus. One such value was EXPIRED. This status is important in the credentialing

ecosystem because it hints at the potential for skills to wane over time. For this

reason, SolidVC ought to have a robust mechanism for enforcing expiry. For many of

the possible values for credentialStatus, it makes sense for a human being to explicitly

apply the new status. The challenge with expiry is that while specification of the

date is rather simple (just another statement in the credential), application of the

new state in the credential status document is not as simple. Therefore, in order to

enforce the invariant that the status of the credential resides reliably in the credential

status document, revisions can be made to add an expires field that stakeholders can

use to express the expiry date in the input credential. During issuance, the SolidVC

Issuance protocol would search for this field in the credential and add it to the cre-

dential status document if it exists. Later, during verification, SolidVC would check

this field, compare it to the current time, and report to the interested party if the

associated credential has expired. Alternatively, SolidVC could include a cron job

that periodically searches through the credential status folder and updates the status

56

of the relevant document to be EXPIRED if necessary.

In addition to credential expiry, there ought to also be a mechanism for verification

expiry for shared credentials. In other words, a user should be able to specify in

the credential sharing process that the verifier can inspect it for only a restricted

time frame, after which access would be curbed. This kind of restriction requires

additional thought to enforce. Upon embarking on a thought experiment similar to

that which explores issuance-time credential expiry specification, per the previous

paragraph, one would find that it is no problem to tag a credential with the expires

field during credential sharing, but that it is another enigma altogether to enforce

that the verifier can no longer access the credential, since it is a self-sufficient entity

that is not managed by a central authority and, hence, can be inspected to the extent

desired once received. One idea to combat unfettered access is to encourage users

during sharing to migrate extra-sensitive credentials to a folder that only the Subject

can write and update. Expiry would then be enforced via manual or automatic

deletion at the appropriate time and reported to the verifier via a "404 Not Found"

error from subsequent reads.

5.4 SolidVC Extensibility

In Section 4.6, I discussed a very specific use case for SolidVC in the context of man-

aging motor vehicle credentials. However, there are so many other types of credentials

that could potentially be supported by SolidVC. These include academic credentials,

citizenship credentials, and even professional credentials, such as the certification to

practice medicine or law. A case could even be made for temporary credentials that

require periodic certification examinations for renewal.

The key point of uncertainty with extended support is whether SolidVC should

offer it natively or if the better approach is to allow the emergence of an ecosystem

of apps and services that will port with SolidVC, almost like what Blockstack [31]

and even Solid have managed to do. I can conceive potential pros and cons with

each approach and believe that this design decision should be made with careful

57

consideration thereof.

5.5 Credential Persistence

Decentralization is both a friend and an enemy of SolidVC. On the one hand, it allows

for any entity to deliver a credential to any other entity and for the receiving entity

to wield ultimate control over that credential. On the other hand, it may give the

Subject too much control. Consider a more complex credential that records credit

scores. If a Subject receives a poor credit score, they may simply decide to delete it or

the Subject may even prevent an Issuer from issuing credentials on their behalf. This

is an example of a use case where credential persistence is perhaps just as important

as credential control, as it is more critical for a service such as a Real Estate agency

to have this information than it is for the aspiring tenant to be able to hide it.

This is an open area of research, but some preliminary approaches that come to

mind include the VeresOne Method [33] and the WebLedger Protocol [34], which lever-

age Decentralized Identifiers (DID) [32], among other relevant technologies. Should

SolidVC choose to adopt some of these technologies, the preferred application domain

would be toward the persistence of the credential status documents. Ideally, the cre-

dential should remain location-independent. With this modification, the risk that

Issuers currently pose on the platform, in the form of a lost or damaged credential

status document, is significantly reduced.

5.6 One-to-Many SolidVC-Solid Account Mapping

Currently, there is a one-to-one mapping between SolidVC accounts and Solid ac-

counts. I would like to expand this to a one-to-many mapping, so that users can

enjoy the utilities of SolidVC from any and all of their Solid accounts. My initial

vision is to enable account switching, such that the application experience is mod-

eled as a context switch. However, the long-term vision is for SolidVC to behave

like a mashup [36], managing and displaying in a single interface credential informa-

58

tion sourced from multiple Solid accounts. With these changes, SolidVC could truly

become a one-stop shop for all things credentials on the Web.

5.7 Issuer Discovery

At the moment, there is no explicit means for discovering SolidVC-compliant Issuers

on the platform. When a Subject wants to request a credential, they are just expected

to know the WebID of an Issuer that leverages SolidVC to deliver credentials, let alone

of the kind in which the Subject is interested. More research should be invested in

discovering Issuers in a reliable and efficient way.

59

60

Chapter 6

Conclusion

SolidVC is a decentralized, Web-based, Verifiable Credentials framework that priori-

tizes democratized access and personal credential control. The history of credentials

on the Web is a storied one that has witnessed a fair share of political and capitalistic

manipulation, technical mismanagement, and outright corruption. With a careful

and minimalist Web-native approach, such as SolidVC, I believe that the fate of Web

credentials is in good hands.

61

62

Bibliography

[1] Berners-Lee, Tim; Weaving the Web: The Original Design and Ultimate Destiny

of the World Wide Web by its Inventor ; Harper 1999

[2] Mansour, Essam; Sambra, Andrei Vlad; Hawke, Sandro; Zereba, Maged; Ca-

padisli, Sarven; Ghanem, Abdurrahman; Aboulnaga, Ashraf; Berners-Lee, Tim;

A Demonstration of the Solid Platform for Social Web Applications ; WWW

’16 Companion Proceedings of the 25th International Conference Companion on

World Wide Web (WWW) 2016.

[3] Solid Homepage; https://solid.inrupt.com

[4] Ezike, Kayode; Solid Verifiable Credentials ; https://github.com/kezike/

solid-vc

[5] Ezike, Kayode; Solid Verifiable Credentials Ontology ; http://dig.csail.mit.

edu/2018/svc

[6] Sporny, Manu; Longley, Dave; Verifiable Credentials Data Model ; https://w3c.

github.io/vc-data-model

[7] Lee, Sunny; Otto, Nate; Verifiable Credentials Use Cases ; https://w3c.github.

io/vc-use-cases

[8] uPort: Open Identity System for the Decentralized Web; https://www.uport.me

[9] Blockcerts: The Open Standard for Blockchain Credentials ; https://www.

blockcerts.org

63

https://solid.inrupt.com
https://github.com/kezike/solid-vc
https://github.com/kezike/solid-vc
http://dig.csail.mit.edu/2018/svc
http://dig.csail.mit.edu/2018/svc
https://w3c.github.io/vc-data-model
https://w3c.github.io/vc-data-model
https://w3c.github.io/vc-use-cases
https://w3c.github.io/vc-use-cases
https://www.uport.me
https://www.blockcerts.org
https://www.blockcerts.org

[10] Schmidt, Philipp; Blockcerts: An Open Infrastructure for Academic

Credentials on the Blockchain; https://medium.com/mit-media-lab/

blockcerts-an-open-infrastructure-for-academic-credentials-on-the-blockchain-899a6b880b2f

[11] Santos, João; Hypercerts: A Non-Siloed Blockchain-Based Certifica-

tion Service; https://github.com/inesc-id/dclaims-pm/blob/master/

thesis-project-doc/Hypercerts_project.pdf

[12] Friedman, Uri; Trust Is Collapsing in America; https://www.theatlantic.

com/international/archive/2018/01/trust-trump-america-world/550964

[13] Ahmad, Wajeeha; Dealing with Fake News: Policy and Technical

Measures ; https://internetpolicy.mit.edu/wp-content/uploads/2018/04/

Fake-news-recommendations-Wajeeha-MITs-IPRI.pdf

[14] McWaters, Jesse; A Blueprint for Digital Identity: The Role of Financial In-

stitutions in Building Digital Identity ; http://www3.weforum.org/docs/WEF_A_

Blueprint_for_Digital_Identity.pdf

[15] ID2020 ; https://id2020.org

[16] Massive Open Online Course; https://en.wikipedia.org/wiki/Massive_

open_online_course

[17] Dunphy, Paul; Petitcolas, Fabien A. P.; A First Look at Identity Management

Schemes on the Blockchain

[18] Lederman, Doug; Does Class Size Matter? ; https://www.insidehighered.

com/views/2007/12/06/does-class-size-matter

[19] Open Badges ; https://openbadges.org

[20] Appelcline, Shannon; Open Badges are Verifiable Credentials ; https://github.

com/WebOfTrustInfo/rebooting-the-web-of-trust-spring2018/blob/

master/final-documents/open-badges-are-verifiable-credentials.md

64

https://medium.com/mit-media-lab/blockcerts-an-open-infrastructure-for-academic-credentials-on-the-blockchain-899a6b880b2f
https://medium.com/mit-media-lab/blockcerts-an-open-infrastructure-for-academic-credentials-on-the-blockchain-899a6b880b2f
https://github.com/inesc-id/dclaims-pm/blob/master/thesis-project-doc/Hypercerts_project.pdf
https://github.com/inesc-id/dclaims-pm/blob/master/thesis-project-doc/Hypercerts_project.pdf
https://www.theatlantic.com/international/archive/2018/01/trust-trump-america-world/550964
https://www.theatlantic.com/international/archive/2018/01/trust-trump-america-world/550964
https://internetpolicy.mit.edu/wp-content/uploads/2018/04/Fake-news-recommendations-Wajeeha-MITs-IPRI.pdf
https://internetpolicy.mit.edu/wp-content/uploads/2018/04/Fake-news-recommendations-Wajeeha-MITs-IPRI.pdf
http://www3.weforum.org/docs/WEF_A_Blueprint_for_Digital_Identity.pdf
http://www3.weforum.org/docs/WEF_A_Blueprint_for_Digital_Identity.pdf
https://id2020.org
https://en.wikipedia.org/wiki/Massive_open_online_course
https://en.wikipedia.org/wiki/Massive_open_online_course
https://www.insidehighered.com/views/2007/12/06/does-class-size-matter
https://www.insidehighered.com/views/2007/12/06/does-class-size-matter
https://openbadges.org
https://github.com/WebOfTrustInfo/rebooting-the-web-of-trust-spring2018/blob/master/final-documents/open-badges-are-verifiable-credentials.md
https://github.com/WebOfTrustInfo/rebooting-the-web-of-trust-spring2018/blob/master/final-documents/open-badges-are-verifiable-credentials.md
https://github.com/WebOfTrustInfo/rebooting-the-web-of-trust-spring2018/blob/master/final-documents/open-badges-are-verifiable-credentials.md

[21] Surman, Mark; An Update on Badges and Back-

pack ; https://medium.com/read-write-participate/

an-update-on-badges-and-backpack-5a06fab252ea

[22] Blenkinsop, Connor; Blockchain’s Scaling Problem, Explained ; https://

cointelegraph.com/explained/blockchains-scaling-problem-explained

[23] Resource Description Framework ; https://www.w3.org/RDF

[24] RDF 1.1 Concepts and Abstract Syntax ; https://www.w3.org/TR/

rdf11-concepts

[25] Linked Data API for JavaScript ; Read-Write Linked Data Organization; https:

//github.com/linkeddata/rdflib.js

[26] WebID ; https://www.w3.org/wiki/WebID

[27] Capadisli, Sarven; Guy, Amy; Lange, Christoph; Auer, SÃűren; Sambra, Andrei;

Berners-Lee, Tim; Linked Data Notifications: A Resource-Centric Communication

Protocol

[28] Longley, Dave; Sporny, Manu; Allen, Christopher; Linked Data Signatures Spec-

ification; https://w3c-dvcg.github.io/ld-signatures

[29] JSON-LD Linked Data Signatures Library ; Longley, Dave; Lehn, David I.;

Sporny, Manu; Collier, Matt; Wood, Harlan T.; Duffy, Kim H.; https://github.

com/digitalbazaar/jsonld-signatures

[30] Prud’hommeaux, Eric; Seaborne, Andy; SPARQL Query Language for RDF ;

https://www.w3.org/TR/rdf-sparql-query

[31] Blockstack Apps ; https://app.co/blockstack

[32] Reed, Drummond; Sporny, Manu; Longley, Dave; Allen, Christopher; Grant,

Ryan; Sabadello, Markus; Decentralized Identifiers ; https://w3c-ccg.github.

io/did-spec

65

https://medium.com/read-write-participate/an-update-on-badges-and-backpack-5a06fab252ea
https://medium.com/read-write-participate/an-update-on-badges-and-backpack-5a06fab252ea
https://cointelegraph.com/explained/blockchains-scaling-problem-explained
https://cointelegraph.com/explained/blockchains-scaling-problem-explained
https://www.w3.org/RDF
https://www.w3.org/TR/rdf11-concepts
https://www.w3.org/TR/rdf11-concepts
https://github.com/linkeddata/rdflib.js
https://github.com/linkeddata/rdflib.js
https://www.w3.org/wiki/WebID
https://w3c-dvcg.github.io/ld-signatures
https://github.com/digitalbazaar/jsonld-signatures
https://github.com/digitalbazaar/jsonld-signatures
https://www.w3.org/TR/rdf-sparql-query
https://app.co/blockstack
https://w3c-ccg.github.io/did-spec
https://w3c-ccg.github.io/did-spec

[33] Sporny, Manu; Longley, Dave; Webber, Chris; Veres One DID Method

[34] Sporny, Manu; Longley, Dave; Web Ledger Protocol

[35] Lemmer, Christopher; Miller, Mark S.; Linked Data Capabilities

[36] Endres-Niggemeyer, Brigitte; Semantic Mashups - Intelligent Reuse of Web Re-

sources ; Springer 2013

[37] Hogan, Aidan; Skolemising Blank Nodes while Preserving Isomorphism; WWW

’15 Proceedings of the 24th International Conference on World Wide Web

(WWW) 2015.

[38] Hogan, Aidan; Canonical Forms for Isomorphic and Equivalent RDF Graphs:

Algorithms for Leaning and Labelling Blank Nodes ; ACM Transactions on the

Web (TWEB) 2017.

66

	Introduction
	Background
	Verifiable Credentials
	Solid
	Solid Benefits

	Linked Data
	Ontology Design
	Linked Data Benefits

	WebID
	Linked Data Notifications
	SPARQL
	Digital Signatures
	Linked Data Signatures

	Related Work
	edX
	Mozilla Backpack
	uPort
	Blockcerts
	Hypercerts

	System Overview
	Design Principles
	Web Interoperability
	Identity Flexibility
	Credential Sovereignty
	General Accessibility

	Stakeholders
	Ontology
	Protocols
	Setup
	Request
	Issuance
	Sharing
	Verification
	Revocation

	Additional Features
	Credential Review
	Credential Download

	Use Case: Driving License
	Setup
	Request
	Issuance
	Verification/Revocation

	Future Work
	Command Line Tool
	Extended RDF Serialization Support
	Expiry Support
	SolidVC Extensibility
	Credential Persistence
	One-to-Many SolidVC-Solid Account Mapping
	Issuer Discovery

	Conclusion

