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Abstract

Autonomous Surface Vehicles (ASV) are a highly active area of robotics with many
ongoing projects in search and rescue, environmental surveying, monitoring, and be-
yond. There have been significant studies on ASVs in riverine, coastal, and sea
environments, yet only limited research on urban waterways, one of the most busy
and important water environments. This thesis presents an Urban Autonomy System
that is able to meet the critical precision, real-time and other requirements that are
unique to ASVs in urban waterways. LiDAR-based perception algorithms are pre-
sented to enable robust and precise obstacle avoidance and object pose estimation on
the water.

Additionally, operating ASVs in well-networked urban waterways creates many
potential use cases for ASVs to serve as re-configurable urban infrastructure, but this
necessitates developing novel multi-robot planners for urban ASV operations. Effi-
cient sequential quadratic programming and real-time B-spline parameterized mixed-
integer quadratic programming multi-ASV motion planners are presented respectively
for formation changing and shapeshifting operations, enabling use cases such as ASV
docking and bridge-building on water. These methods increase the potential of urban
and non-urban ASVs in the field. The underlying planners in turn contribute to the
motion planning and trajectory optimization toolbox for unmanned aerial vehicles
(UAVs), self-driving cars, and other autonomous systems.

Thesis Supervisor: Daniela Rus
Title: Andrew (1956) and Erna Viterbi Professor, CSAIL Director
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Chapter 1

Introduction

Since the advent of field robots, autonomy has been a core goal in the field of robotics.

Unmoored from fixed positions, robots can move through space, increasing the com-

plexity of their environments and the interactions they have with those environments.

This raises important questions of how mobile robots independently perceive their en-

vironments, reason about them and act upon them. Better understanding the design

of autonomy system components and how they interact to enable autonomy in a mo-

bile robot could potentially expand the roles robots can safely and confidently take

to serve humans within society.

1.1 Recent Developments

While autonomous mobile robots have been used in relatively tightly scoped robotics

competitions, deployed in purpose built warehouses and sailed in the open oceans,

it was only recently with the DARPA Grand Challenge and initiatives following it

that quad-rotors could deliver packages in China and autonomous cars could drive on

public roads in California, albeit with supervision [30, 10, 53]. These developments

raise important questions about which challenges remain unconquered, what high-

level design principles and novel algorithms have been employed in building autonomy

systems for cars, and how these newfound capabilities translate to other kinds of

autonomous systems such as autonomous surface vehicles.
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1.2 Motivation

This thesis envisions an autonomous surface vehicle (ASV) capable of performing

multi-boat operations in challenging urban environments. While significant advances,

have been made for self-driving cars, ASVs have limited autonomy capabilities and

only in riverine, coastal and sea environments. While research groups and companies

are actively developing self-driving cars on busy and challenging urban roadways,

autonomous surface vehicles have seen no deployments in similarly challenging inland

and urban waterways.

In the same way rain and weather affect self-driving cars, waves and reflections

on the water make perception difficult for ASVs. Where cars are able to use reliable

odometry for localization, ASVs cannot and have to rely more on radar and GPS

which provide only rough measurements. These difficulties expand the safety margins

that need to be factored in for planning, yielding systems that can only navigate

safely in large, relatively open areas. The challenges experienced by each autonomy

module make it challenging to operate ASVs in urban settings, let alone multi-ASV

operation in urban-settings. I demonstrate an ASV system design, robust perception

algorithms and novel multi-boat planning algorithms, tackling the challenges facing

ASVs in urban settings at multiple levels.

By putting together the building blocks outlined in this thesis, I hope to enable

new kinds of autonomy on water. First, I want robots to achieve on water what

has been achieved on land, safely navigating with ease and autonomously providing

new kinds of on-demand services, like ride-sharing and municipal waste-collection.

Second, I hope to enable ASVs to collaborate and reconfigure as needed, one moment

carrying out individual missions across the city and the next latching together to form

a bridge.

18



1.3 Roboat

The Roboat is an ASV being built according to this vision as part of a collabora-

tion between various labs at MIT, including the Senseable City Lab and Distributed

Robotics Lab, as well as local partners AMS and Waternet. After centuries of im-

portance to the society and economy of Amsterdam, the canals are presently used in

a more limited capacity. The Roboat project envisions strengthening the civil and

commercial purposes of the canals through the creation of an autonomous boat plat-

form that will enable a range of new uses for the canals in the areas of transportation,

municipal waste collection and food distribution. To fully realize these use cases, the

Roboat must navigate through the canals, avoid collisions with boats and other ob-

jects on the water, and in some cases, interact with such objects by more intelligent

means [63].

Figure 1-1: Roboat in the Tokyo Harbor
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1.4 Contributions

.

Drawing from perception and planning approaches developed in self-driving car

and unmanned aerial vehicle research, I present an urban autonomy system for

Roboat, as well as a novel ASV for urban waterways, focusing particularly on contri-

butions in robust LiDAR-based perception and multi-robot trajectory optimization.

1.4.1 Urban Autonomy System

The design of the Roboat’s autonomy system, the selection of and interaction between

software and hardware components, is a crucial part of creating an infrastructure ca-

pable of executing the use cases mentioned in the Roboat subsection above. It is

important that the computations and actions necessary can be performed by the sys-

tem components, and that the components interact in a fast, reliable and interpretable

manner to perform these use cases [5, 24, 38].

While there are many ASVs for coastal and marine applications [18, 34, 33], these

have limited autonomy in perception and planning. Few besides the Roboat meet the

hardware and software requirements necessary to work in challenging urban condi-

tions. [33, 59, 29, 42].

1.4.2 LiDAR-based Perception

As part of this system, it is important that the Roboat have sensors to record its

environment and software components to interpret and represent sensor input. A

Roboat must perceive to determine where it is and avoid collisions.

There are few ASVs with the requisite hardware to perform reliable obstacle de-

tection and avoidance in narrow environments, and no other such ASVs are able to

dynamically avoid obstacles and perform precise object pose estimation in narrow

quarters [29, 42, 59].
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1.4.3 Multi-Robot Trajectory Optimization

Equipped with LiDAR-based perception, the Roboat is prepared to understand its

environment and plan appropriately in urban contexts. In the real world, the Roboat

must plan to safely and expediently complete its objective, whether that be taking

a tourist from the IJ to the Rijksmuseum, collecting municipal waste and dropping

it off at the waste to energy plant, or coordinating with other Roboats to form a

temporary bridge. A Roboat must plan, considering its state and goals to determine

its actions.

While many ASVs operate individually and some act as part of multi-robot sys-

tems, which involves sharing sensor measurements and state information or coordinat-

ing plans, there is only limited research on modular reconfigurable ASVs [33, 40, 50].

In reconfigurable robotic systems, robots physically make contact and interact with

each other to change the physical dimensions and dynamics of the system as a whole.

Roboat implements a modular and reconfigurable design to enable the re-purposing

of urban infrastructure when the system is used to create platforms or bridges on

water. In their paper, Ohara et al. present a system for creating a structure out of

boats, but this system requires that part of the configuration be attached to a docking

structure and does not consider the task of reconfiguring the boats from this docked

structure to another one [40]. This thesis presents novel contributions to the field

which allow for truly reconfigurable modular ASVs. I present a real-time reconfigu-

ration motion-planner for multi-robot systems, drawing from trajectory optimization

formulations for UAVs. [9, 28, 62, 32].

1.4.4 Summary

In summary, this thesis contributes the following:

• A Complete Surface Vehicle Urban Autonomy System Architecture

– Precise trajectory planning and tracking

– Reliable performance in highly dynamic urban environments
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• LiDAR-based Perception Algorithms

– Reliable detection and avoidance of static and dynamic obstacles

– Precise object pose estimation on water

• Multirobot Trajectory Optimization Algorithms

– Efficient concurrent formation changing with SQP optimization

– Real-time modular robot shapeshifting with MIQP and SQP optimization

– Shapeshifting on water

1.5 Outline

In Chapter 2, I extensively discuss prior work related to the contributions made in

this thesis. In chapter 3, I outline the design of the Urban Autonomy System for

the Roboat, focusing particularly on its software architecture and ROS packages.

In Chapter 4, I discuss various perception algorithms for filtering, clustering and

model fitting I integrated and implemented to perform robust obstacle detection and

object pose estimation on water. In Chapter 5, I present the two multi-boat plan-

ning scenarios of formation changing and shapeshifting, and I demonstrate efficient

optimization-based methods for solving them. Finally, in Chapter 6, I conclude with

lessons learned from my undertakings and outline sketches of where research in urban

ASVs can take us.
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Chapter 2

Related Work

2.1 Urban Autonomy System

Current USVs are usually deployed for coastal and marine applications [18, 34, 33].

These USVs, shown in Table 2.1, have limited maneuverability (especially in shape

and actuation), and limited autonomy (especially in perception and planning), mak-

ing them unable to meet the autonomy requirements for applications in narrow and

crowded urban environments.

Table 2.1: Autonomy Analysis of Typical USVs ([18, 34, 33])

USVs Shape Actuation Localization Perception Planning Control
ARTEMIS V-hull Under GPS+IMU N N fuzzy
ACES Catamaran Under GPS+IMU N N fuzzy
SCOUT Kayak Under GPS+IMU RF N PID
AutoCat Catamaran Under GPS+IMU RF N PID
Owl MK USVs V-hull Under GPS+IMU RF N cluster-space
Seadoo Challenger 2000 V-hull Under GPS+IMU radar N PID
Wave Glider V-hull Under GPS+IMU+acoustic N N Y, unclear
Springer Catamaran Under GPS+IMU+speedlog N N LQG
Blackfish V-hull Over GPS+IMU N N backstepping
Roaz II Catamaran Under GPS+IMU radar+camera C&C Y, unclear
Minion 2016[59] Catamaran Under GPS+IMU LiDAR+camera Y, unclear Y, unclear

N stands for none. Here, Perception and Planning refer to object detection and obstacle avoidance respectively.

As highlighted by Liu et al. the shape of the hull can affect an ASV’s vulnerability

to capsizing in rough water and its thruster configuration may determine whether it

is underactuated or not which has strong implications for its maneuverability [33].

Besides the Blackfish, few USVs are fully or over-actuated, making them hard to
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maneuver in tight urban settings. Furthermore, most employ catamaran-shaped or

V-hulls, making them fast and stable in ocean settings, but not easily sideways-

maneuverable in urban settings. Here, I demonstrate a system that has superior

maneuverability characteristics for narrow urban settings.

To safely navigate in urban waterways, a USV should localize itself with decimeter-

level accuracy. Current USVs typically use GPS and IMU (fused by an extended

Kalman filter (EKF) or unscented Kalman filter (UKF)) for meter-level precision

[33]. These GPS-IMU-based approaches can be unstable in urban waterways, where

GPS signals are often severely attenuated. Naeem et al. proposed a reliable multi-

sensor navigation system which includes GPS, compass, speed log, and a depth sensor

to account for sensor failure, but it cannot guarantee high accuracy [38]. To date,

there is no feasible solution for accurate urban USV localization. Here, I propose

a system which depends on LiDAR, camera, and IMU to provide a decimeter-level

precision in GPS-attenuated dynamic urban waterways.

2.2 LiDAR-based Perception

2.2.1 Obstacle Detection and Tracking

In the context of perception for ASVs, existing studies mostly consider detection be-

tween cooperating vehicles [3, 57], while other environmental obstacles are commonly

ignored expect for these several studies [20, 13, 66, 59]. For example, Heidarsson et

al. [20] employed a profiling sonar in shallow water, but the low resolution of the

single beam limits the obstacle detection accuracy[20]. Moreover, vision-based sys-

tems have also been used, but are usually designed for imprecisely detecting obstacles

at more than 100 meters [66, 13]. In addition, Thompson et al. utilized a support

vector machine (SVM) classifier on LiDAR pointclouds [66]. Nevertheless, moving

obstacles cannot be classified due to limitations of their occupancy grid. Hence, I

propose to use LiDAR as the main sensor and employ the Euclidean clustering and

contour tracking algorithms to obtain reliable and accurate state estimation of static
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and moving obstacles.

2.2.2 Object Pose Estimation

In the broader context of perception, precisely determining the pose of a specific

known object is a desirable property for many operations, in addition to being able

to roughly detect any object. I extend this to precise pose-detection for ASVs. There

are some recent methods that have gained traction in camera and LiDAR-based pose

estimation, including signed distance function based optimizations to fit the model

configuration to point-cloud data, QR tags to determine pose from an RGB data,

and deep convolution neural networks to infer pose from RGB, RGB-D and point-

cloud data [51, 41, 17, 12, 43]. In Dense Articulated Realtime Tracking(DART)[51],

a Kalman filter is composed with a optimization-based measurement update that

minimizes a signed distance function for observed object pointclouds straying outside

the model’s bodies. This framework reliably tracks articulated joints such as robotic

arms and hands, but requires a manual initialization and relies on dense pointcloud

data, which our VLP-16 cannot provide outside of a small lab environment. Apriltags

are another popular framework for determining the pose of an object, by recognizing

unique tags embedded on the object with a camera [41]. While such tags are simple to

use, and reliable in favorable conditions, changes in lighting such as reduced visibility,

low-light and orientation make them much less reliable. In recent years, deep convo-

lutional neural networks, have also become popular for predicting pose [17, 12, 43].

While they can accurately detect pose over a wide range of object variations, they

require significant amounts of training data and can’t infer on or detect samples out

of the training distribution. Finding concise input data representations that reduce

this burden is still an open area of research.

As a preliminary test I attempted using iterative closest point (ICP), a classical

approach that attempts to fit a segmented Roboat pointcloud to a model pointcloud.

The fit was subpar, as shown in Fig. 2-1, because of the low density, water noise, and

LiDAR vantage point induced nonuniform model-sampling inherent in the segmented

Roboat pointcloud.
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(a) Side View (b) Front View

Figure 2-1: ICP Pose Estimation: LiDAR measurement in red, Model in black. A
grey arrow shows the difference between them, indicating ICP has a large bias.

Wasik et al. demonstrate [65] a simple, efficient and robust approach to detecting

and tracking the position of circular robots in medium-density pointclouds that em-

ploys optimization-based circle-fitting, but is unable to to determine the orientation

of robots. I adapt the clustering approach I use in obstacle detection for an even-

simpler random sample consensus(RANSAC) circle-fitting of multiple features on a

boat to determine a precise position and orientation.

2.3 Multi-Robot Trajectory Optimization

Motion planning is another area that is critical to advancing ASV autonomy. While

in many instances agents or subsets of agents can be considered independently and

standard planning approaches such as A*, dynamic programming (DP), sampling-

based methods and trajectory optimization can be applied independently to each

agent to obtain kinematically or dynamically feasible trajectories (eg. when flying

a few quadrotors over a large field) as agents collaborate, operate more densely or

the number of agents increases the light coupling between agents grows stronger and

new methods need to be considered. This is the case for multi-ASV planning in tight

urban environments.
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2.3.1 Formation Changing

In the context of formation changing, when there are many agents operating closely

together and the potential for collisions grows, robots cannot be considered indepen-

dently. One approach to this coupling is to maintain decoupled plans, but replan

based on undesired interactions. One algorithm taking such an approach is Conflict

Based Search (CBS), which calculates individual plans but replans with added con-

straints when conflicts are predicted to obtain an overall solution [55]. While CBS

performs well in situations with a few conflicts or bottlenecks, it is NP-hard and does

not scale well to the prospect of many conflicts. Another strategy is to explicitly

consider agents as one coupled system and plan over the entire system. This could be

extremely costly, especially when using methods guaranteeing global optimality, such

as DP or Mixed Integer Programming(MIP), as the number of state variables scales

linearly, and the compute time exponentially with the number of agents [52]. Addi-

tionally, while MIP over a system of agents can handle a continuous state space, DP

and CBS operate over a discretized state space. While practical optimal time formu-

lations have also been found using network flow methods, discretization and growing

computational intractability still underlay these approaches [67]. Given these con-

siderations, trajectory optimization and sampling based planning methods, provide

likely solutions to finding feasible and low-makespan paths as they operate over a

continuous space and are able to provide locally optimal and asymptotically opti-

mal plans, in the cases of sequential quadratic programming (SQP) and randomly

expanding random trees star (RRT*) respectively[25].

SQP optimizations have been successfully used before to plan robust trajecto-

ries over decoupled agents [7]. I share a trajectory optimization based approach to

minimum makespan formation planning for boats that takes into account the above

considerations.
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2.3.2 Shapeshifting

Another important motion planning opportunity for using optimization on the Roboat

is shapeshifting, the task of reconfiguring the shape of Roboats latched together.

While shapeshifting is an exciting area of research and there is significant research on

modular robotics and shapeshifting with sheets, mobile robots, cubes and UAVs [19,

46, 45, 68], there is no prior research in shapeshifting on water. Ohara et al. present

an algorithm for assembling shapes on water but provide no means of reassembling the

structure nor dealing with localization-less boats [40]. Saldana et al. demonstrate

a way to assemble and change the formation of boats in a decentralized manner,

but demonstrate no experimental results and make similar assumptions about robot

sensor homogeneity [50]. Thus, I endeavour to present reliable and experimentally

validated algorithms generating shapeshifting trajectories on water, using a mixed

integer programming optimization.

Other mixed integer approaches employ polynomial basis functions [9], requiring

costly semi-definite constraints to contain the trajectory in obstacle-free regions, or

optimize the placement of linear trajectory segment, requiring a large number of

integer variables [37]. Our approach manages to use B-Splines in a MIP regime, using

less variables to generate smooth paths and requiring no expensive SDP constraints.

Our formulation is similar to that employed by Usenko et al. for high-speed replan-

ning of a quadrotor’s trajectory. They use an unconstrained optimization approach

that runs faster than our but does not guarantee a solution and has a much higher

failure rate [62]. Flores and Milam cleverly formulate the trajectory generation in the

presence of obstacles problem as a non-linear program, representing their trajectory

using non-uniform rational b-splines (NURBS). NURBS generally allow for more ex-

pressive trajectories but in their case obstacle avoidance is guaranteed by fixing the

placement of control points and optimizing over the weighting of their points [11].

In our case, a simpler representation is used and the control points are directly op-

timized over, not unnecessarily restricting the convex hulls of the path prior to the

optimization. Additionally, I provide runtimes demonstrating the real-time nature of
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our system.

Other polynomial-based approaches exist but do not rigorously address collision

avoidance [32, 6]. Liu et al. sample points along curves to guarantee collision avoid-

ance for a sum of polynomial basis functions trajectory but are unable to guarantee

such properties over the entire path. [6] Chen et al. provide a real-time solution

search-based quadrotor trajectory planner with a similar parameterization, but it-

eratively trajectory checking and waypoint addition is needed to guarantee collision

avoidance. Our solution guarantees obstacle avoidance directly from the MIQP and

provides more optimal results with a SQP smoothing pass over the first result while

also running in real-time.

Overall, the approaches to ASV system design, perception and multi-robot plan-

ning presented in the subsequent chapters advance the state of the art in autonomy

for ASVs, expanding their applicability in urban settings and the broader horizons of

what they are capable of achieving.
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Chapter 3

Urban Autonomy System

To begin to tackle the challenges faced by ASVs operating in dense urban waterways,

instead of coastal, marine or large inland waterways, one must start by taking a

holistic look how an ASV’s system design shapes its performance for an intended task.

As highlighted by Liu et al. the shape of the hull can affect an ASV’s vulnerability

to capsizing in rough water, its thruster configuration may determine whether it is

underactuated or not which has strong implications for its maneuverability, and its

sensor choice may determine the reliability of localization in different environmental

conditions [33]. In addition to these factors considered by Liu, there are also software

architecture design factors, the choice of third party packages and configuration of

purpose-built software modules mapped to their intended function in the system, that

place similar constraints on system functionality and performance [56]. I look at these

questions through the lens of operating ASVs in the Amsterdam canal environment

for the use cases highlighted in the introduction. Towards the goal of creating such

an ASV, we constructed an approximately 1/4 scale prototype of the Roboat.

This chapter provides an overview of the prototype platform I used in experiments

and on which the algorithms described in subsequent chapters are deployed on, first

addressing the hardware and then the software. The methodology followed and unique

system design aspects will be highlighted in the corresponding hardware and software

sections.
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3.1 Hardware

3.1.1 Hull and Actuators

The hull and thruster configuration on the Roboat, pictured in Fig. 3-1b, was designed

with carrying capacity and maneuverability in mind. The full scale Roboat will

ultimately transport 2 metric tons, in passengers or municipal waste. The prototype

is similarly transporting a significant mass in components, given its size. Thus, a

barge-like rectangular shape was chosen for maximal capacity. The rectangular shape

is also easy to tile in the situation that multiple boats are latched side by side to make

a floating platform [63]. Maneuverability is also important in urban scenarios. The

curvature in the hull on all sides allows for relatively easy motion in all directions,

as well as rotation, making the Roboat easy to navigate quickly in tight spaces [35].

The flat shape and uniform curvature would not be suitable for marine environments,

as turbulent water would cause the boat to oscillate heavily. The Roboat though is

operating in a calmer and shallower urban canal environment and this trade-off in

favor of carrying capacity and maneuverability is well worth it [35, 14, 33].

Similar considerations were made in choosing the thruster configuration. The

Roboat is outfitted with 4 thrusters, attached to the hull in the directions indicated

by the arrows at the mount points shown in Fig. 3-1b. The direction of thrusters 1

and 2 is perpendicular to that of thrusters 3 and 4. Some ASVs have all thrusters

in the same direction, letting them move faster, but that significantly limits their

maneuverability [8]. Following such a convention on the Roboat would be especially

unwarranted as Amsterdam’s canals have a low speed limit of 6 km/h. Our thruster

configuration makes the Roboat fully actuated, allowing it rotate and accelerate its

position in any direction, regardless of its orientation, on a water surface.

3.1.2 Sensors

The Roboat is outfitted with several sensors to maximize performance in relatively

dense city environments with obstacles at a distance of centimeter to tens of meters.
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(a) Roboat in the water with labeled components

(b) Roboat hull without other components. Thruster mount points are labeled.

Figure 3-1: Roboat Hardware Overview
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While many marine ASVs rely primarily on GPS or RADAR for global positioning

this would not work for the Roboat which needs to operate in the dense and po-

tentially GPS denied environment of the city [33, 38]. Also sonar has a very low

resolution for precise mapping in shallow water and urban environments as demon-

strated here [20]. Additionally, most marine systems rely primarily on a mono or

stereo camera for perception, but this can only provide low precision measurements

at several meters [66, 13]. In an urban canal environment, where obstacles are much

closer, sub-centimeter level precision is preferable. Instead, a unique combination of a

sixteen beam LiDAR (Velodyne VLP-16) and IMU(Microstrain GX5-25) are primar-

ily used to provide high precision localization and perception. The LiDAR measures

the relative 3D position of obstructed points in the sensor’s range.

As Liu mentions there is only minimal research into ranging sensor use on ASVs

[33]. The IMU provides 3 axis angular velocity. Together, the LiDAR pose estimation

and the IMU measurements are filtered in an EKF. From this an MPC controller,

can use the localization to follow a trajectory. This EKF-MPC architecture is further

described in our paper [64].

Cameras and GPSs are still useful as secondary sensors. An RGB-D camera

(Intel Realsense D435) is mounted on the boat for higher resolution, but slightly

lower precision, perception. This augments but does not replace the LiDAR’s use

for perception, which suffers from lower vertical resolution. Similarly, a GPS, may

be added to augment the LiDAR’s use for localization, which suffers in the open

environments that are rarely encountered.

3.1.3 Electronics

The electronics were selected to optimize for real-time localization, perception, plan-

ning and control, while increasing the operating-time of the Roboat. A powerful yet

efficient Intel NUC (Intel Core i7-8650U) with 8 threads, outfitted with 32 GB of

memory is used as the main computer. A computer with 8 threads can process many

processes in parallel,w which is important to our software system made up of many

modules running concurrently. The 8 threads running at 1.9 GHz, along with the
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32GB of RAM are also a good fit for processing significant amounts of pointcloud

data. Using a GPU to process the perception data would be even faster, but would

consume 200-300 Watts compared to the less than 60 watts consumed by the NUC,

thus causing the battery to deplete much more quickly.

In addition to the NUC, a 32-bit auxiliary processor, STM32F103, is used for

converting the forces from the main controller to the corresponding actuator signals.

3.2 Software

I designed the Roboat’s software with the widely used and performant Robotics Op-

erating System (ROS) middleware, segmenting modules into ROS packages with a

hierarchical structure [2]. The task of perception and planning in a dense urban envi-

ronment with many obstacles, necessitates our system to perform more operations at

a higher frequency than a typical ASV, closer to that of Autonomous Cars. Based on

the 10Hz suggested rate of the primary sensor, the LiDAR, as well the response time

of the physical boat to control inputs, I designed most components to run faster than

10Hz and the entire system to perform feedback control at 10Hz with minimal delay.

The system described below runs on the onboard computer, which is accessible via

SSH from a WiFi-connected laptop.

In architecting the software system for the Roboat, the reusability and clean map-

ping from functional components to their design in the implementation were priori-

tized, using the ROS best practices and tips for large projects. This includes the use

of top level launch files for the application layer in the roboat_launch package, as

well an additional top level launch file for each package. Arguments and parameter

files can easily be changed to alter the flow of the launch files and ROS message

topics, making the the code easily reusable. I also used existing third party libraries

and packages where they fit our needs and added minimal complexity to the code-

base. Where they did not, I built concise, reusable and easy to maintain software, or

refactored existing related code to be more general, depending on ease [31, 1, 56].
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3.2.1 Functional Layers

On a conceptual level, the operations of the autonomy system are split into three

layers: the application layer, perception and planning layer and control layer. These

layers are shown in Fig. 3-2a. First, the application layer contains the use case specific

operations and manages the execution of the other layers. This layer determines the

operational mode of the boat, whether the boat is carrying goods to a point or latching

to another boat, and coordinates the execution of the other necessary components in

the lower layers. Second, the perception and planning layer contains algorithms for

processing sensor data, updating the state of the world, and planning trajectories and

commands to be carried out by controllers in the even lower planning layer. Third,

the control layer contains hardware components as well as algorithms for generating

actuator commands from detailed plans.

3.2.2 Roboat Packages

The corresponding ROS package implementations are shown in 3-2b. Using ROS

message topics, nodes within these packages can easily communicate with other nodes

in the same or other packages. Note that there is a simple clean mapping from

the functional layers to the packages implementing layer functionalities. [54, 56].

Although some functional sub-modules in these layers are implemented in the same

ROS packages to combine functional sub-modules requiring similar dependencies (eg.

3D Localization and 3D Mapping are both implemented by roboat_localization), their

underlying software class and function implementations, not shown in the figure, are

cleanly separated. Listed here is a description of main the the packages developed for

the Roboat and their use.

∙ roboat_autonomy filters LiDAR data based on the boat environment and task

∙ roboat_core manages sensors, low-level serial communication and actuator con-

trol

∙ roboat_launch coordinates the execution of a task setup amongst by calling other
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packages with the relevant configuration

∙ roboat_localization localizes the boat with LiDAR, IMU and Camera data. It

manages Autoware’s NDT for LiDAR scan matching and employs robot local-

ization for EKF filtering and rtabmap visual odometry

∙ roboat_utils contains utility scripts for commanding the boat with a joypad from

a laptop, configuration files and an installer script for the Roboat setup

The packages can easily be used independently and stacked for more complex

tasks. Simple tasks like trajectory tracking can be launched with roboat_launch

and will only call roboat_core and roboat_localization. Similarly, LiDAR point-

cloud filtering is accomplished by only launching roboat_core and roboat_autonomy

with roboat_launch. With more complex tasks such as path planning with obstacle

avoidance, requiring trajectory tracking, as well as pointcloud filtering and planning,

roboat_launch can coordinate the execution of all the system packages.

3.2.3 Third Party Packages

In addition to the above purpose built packages, the Roboat software stack makes

heavy use of the following excellent open source packages.

∙ ACADO Toolkit generates efficient MPC controllers in c for Roboat_core [22]

∙ autoware scan matches LiDAR pointcloud to map and plans paths [26]

∙ drake robotics toolbox with python bindings used for trajectory optimization

∙ graph-tool constructs and computes on large graphs [44] [58]

∙ point cloud lib manipulates and processes LiDAR data in Roboat autonomy [47]

∙ shapely manipulates and analyzes planar geometric objects [16]

A more extensive list of packages used can be found in appendix A.
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3.2.4 System Usage

The system described in this chapter was used for all experiments in [63], [64] and

[36], as well as those in the subsequent perception chapter. The experiments from

the multi-robot trajectory optimization chapter were carried out on a pared down

prototype multi-boat system architecture based on that used by Park et al. [49]. In

the future, those functionalities too could be integrated into this architecture, giving

the multi-boat setups additional perception and localization autonomy capabilities,

for real-world multi-boat system deployment.
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Chapter 4

LiDAR-based Perception

4.1 Obstacle Detection and Tracking

For an autonomous surface vehicle like the Roboat to safely navigate in areas with

unmapped obstacles, obstacle detection and tracking of other vehicles and objects in

the canal environment is crucial. This allows it to understand its environment so that

it may appropriately plan and act.

4.1.1 Approach

Because of the narrow and crowded environments, navigating in urban waterways

necessitates that both the object detection and tracking are reliable, which is typically

not the case for ASVs in open waters. On the other hand, driverless cars always

consider that objects like pedestrians and bicycles may enter their roadways from

the outside. However, ASVs don’t need to pay attention to this. Hence, I crop the

waterway before representing obstacles. In particular, I use LiDAR to perceive the

surroundings in three steps: cropping to filter out the irrelevant objects and noise,

euclidean clustering to detect obstacles and contour tracking to track obstacles over

time. These are shown in Fig. 4-1 and laid out in detail as algorithm 1.
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Figure 4-1: Roboat Perception Pipeline Diagram: the filtering, detection and tracking
modules are used to obtain the real-time obstacle contours from the LiDAR pointcloud
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Algorithm 1: Obstacle Detection and Tracking Algorithm
Input: pointcloud, contours

1 filteredPointcloud = [];
2 for p in pointcloud do
3 if |p.x|<∆ and |p.y|<∆ and 𝑧𝑡ℎ<p.z and inCanal(p) then
4 filteredPointCloud.append(p);
5 end
6 end
7 clusters = cluster(filteredPointcloud, 𝑐th, 𝑐min);
8 for cluster in clusters do
9 contour = polygonContour(cluster);

10 for oldContour in contours do
11 if not oldCountour.matched and match(oldCountour, contour, 𝜄th, 𝜅th)

then
12 oldContour.update(contour);
13 break;
14 end
15 end
16 if not contour.matched then contours.append(contour) ;
17 end
18 for contour in contours do
19 if time-contour.updateTime > 𝑇𝑡ℎ then contours.remove(contour) ;
20 contour.matched = False
21 end
22 ;
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Crop Filtering

Given an input LiDAR pointcloud 𝑃in, I use cropping filters to constrain the detection

space within the waterway in lines 2-6 of the algorithm. This makes the obstacles I

Canal Crop

Center Crop
 

Tracked Obstacle

ᵂ

ᵂ

Figure 4-2: Pointcloud Filtering: Sequential crop filters applied prior to Euclidean
clustering (top down view). Pointcloud map in grey, measured points in yellow, points
also in 2∆ cropping area in orange and points also in waterway in red.

detect more relevant and reduces the computational load on the system. As shown in

Fig 4-2, I first crop 𝑃in to a size of 2∆× 2∆ in the 𝑥− 𝑦 plane and apply a minimum

threshold 𝑧th to the 𝑧-axis to obtain 𝑃crop, centered on the boat-fixed frame. It

should be noted that the 𝑧th threshold is important because the ground filters used

by autonomous cars are not usable on the non-uniformly registered water texture.

Afterwards, I transform 𝑃crop from a body-fixed frame to an earth-fixed frame with

the transformation matrix 𝑇 , yielding 𝑃crop. Last, I filter 𝑃crop based on the waterway

edges to obtain candidate points 𝑃out lying within the boundaries. Thus, I only retain

points belonging to proximal obstacles.
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Pointcloud Clustering

To identify obstacles present in 𝑃out in line 7 of the algorithm I employ the Euclidean

clustering implementation in Point Cloud Lib (PCL), an effective and computationally

efficient density based clustering algorithm by Rusu [48]. It represents 𝑃𝐶𝑜𝑢𝑡 as a

kd-tree and iteratively associates a point with other points within a threshold 𝐿2

distance 𝑑𝑡ℎ to obtain cluster candidates. Cluster candidates containing more than

a threshold number of points 𝑐𝑚𝑖𝑛 are labeled as clusters. Clusters with centroids

within a threshold 𝐿2 inter-cluster distance 𝑐𝑡ℎ are merged.

I tuned the clustering radius 𝑑th, minimum cluster size 𝑐min and inter-cluster merg-

ing distance 𝑐th. I set 𝑑th relatively high because of the low density of VLP16 LiDAR

points. I use a relatively large 𝑐th to cluster non-convex obstacles such as kayakers

as one. I discriminatively set 𝑐min to enable clustering small obstacles, while filtering

out noise from waves. Considering these factors in our parameter choice enables our

ASV to cluster obstacles on the water of varying sizes, even in choppy conditions.

Obstacle Tracking

I use a contour tracker adapted from that proposed here [26] in lines 8-21 of the

algorithm, representing the convex hull of each cluster with a polygon in the 𝑥 − 𝑦

plane. Each obstacle is given a unique ID and tracked over time. An obstacle in one

time step is matched to one from the previous time step if the centroid moves less

than 𝜄th and the detected area changes by no more than a factor of 𝜅th. Lastly, an

obstacle is remembered for 𝑇th at its last reported location, if it is not observed, and

remove after that time. This allows for robust tracking, even in the most difficult

and noisy detection environments, and enables safe planning when passing close to

Table 4.1: Parameter Values Used in Obstacle Detection and Tracking

Condition Parameters
Δ 𝑧th 𝑑th 𝑐th 𝑐min 𝜄th 𝜅th 𝑇th

Indoor 5.0 -0.4 0.5 1.5 20 1.0 3.0 5
Outdoor 10.0 -0.4 0.5 1.5 40 1.5 3.0 10

Note: Δ, 𝑧th, 𝑑th and 𝑐th in meters. 𝑇th in seconds. 𝜄th, 𝜅th and 𝑐min no units.
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Figure 4-3: Detection IoU Values: results for Roboat moving along an obstacle-free
path: Path (a) is followed during the test yielding the IoU values in (b) along it
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obstacles in urban waterways.

4.1.2 Experimental Evaluation

I carried out experiments along the path in Fig. 4-3(a) to determine the accuracy

of tracked contours at different 𝑥 distances relative to an obstacle. The boat system

in Chapter 3 was used during these experiments. The accuracies in Fig. 4-3(b) are

measured in terms of the intersection over union (IoU) or Jaccard Index, using the

detected contours and the ground truth contour. From Fig. 4-3(b), it is visible that

the robot consistently detects the obstacle (IoU > 0), except for the blind zone of the

LiDAR when the robot is too close to the object. In these regions the last detected

contour is used by the planner. The noisy IoUs indicate that the swaying of the robot,

caused by the water disturbances, affects sensor visibility a lot across different object

surfaces.

Figure 4-4: Roboat Visualization: Roboat following path in green. Detected obstacle
pointcloud shown in purple with resulting tracked obstacle countour in red.

Taking a look at the position of the Roboat, clustered points and obstacle contour

from one time step along the path in Fig. 4-3, it is visible that the contour well

represents the contour of the relevant pointcloud cluster in this time step. It does

not, however, well match the contour of the box obstacle. To alleviate these effects,

aggregating obstacle pointclouds and contours from different vantage points across

time, using scan-matching, might help. This will allow us to obtain a more consis-

tent contour with better IoU. Additionally, detecting obstacles based on a library of
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candidate shape priors might help the tracked contours more closely match detected

obstacle shapes. Overall, our solution for obstacle detection and tracking is effective

because it always consistently detects and tracks obstacles in real-time. This opens

the way for transplanting ASVs from open water to urban waterway applications.

4.2 Object Pose Estimation

While for many objectives such as obstacle avoidance, detection and tracking will

suffice, more complicated objectives such as connecting with another robot or planning

through contact require a more precise estimate of an other robot’s state to be reliably

completed. Here, I present a revision of the perception pipeline for determining the

pose of another Roboat, which is closely related to the obstacle avoidance task in the

previous section.

In the obstacle avoidance scenario, I made no assumptions about what kinds of

objects could be encountered and obtained position estimates with a relatively simple

algorithm and model with few parameters. All I desired was a quick position estimate

with decimeter precision for obstacle avoidance planning. Obtaining a more precise

estimate is difficult, unless I make assumptions about the objects I will encounter

or create a more complicated model. In the latching scenario for which knowing the

pose of another Roboat is desired, I can limit the scope to just obtaining a precise

pose for other Roboats, thus simplifying the task.

4.2.1 Approach

In Fig. 4-5a Roboat A is sensing Roboat B with a LiDAR and determining its pose

based on the detection of a feature in the pointcloud, 2 cones on Roboat B, as showing

in 4-5b. By detecting two cones on boat with two cones, and precisely knowing their

position, a reliable pose for that boat can be inferred. This is the principle behind

the RANSAC method I am using. Similar to the obstacle avoidance scenario, the

perception pipeline for Roboat A, is broken down into three components: Filtering,

Detection and Tracking.
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(a) Experiment Setup (b) Roboat B With Cones

Figure 4-5: Object Pose Estimation: boat A with LiDAR detects boat B.

Filtering and Euclidean Clustering

Just as for obstacle detection and tracking, filtering and clustering are required to

focus on relevant areas of the input point-cloud and segment relevant objects. A

similar water and area crop, as well as canal shape crop are used to reduce the

pointcloud to objects contained in the canal or pool area. In addition to that, the

pointcloud is cropped to a limited number of beams to limit the scope to the relevant

cone height, and improve the clustering speed.

Detection

A similar clustering approach is used as in the previous section, but RANSAC is

used to fit circles to the cones and determine their position. For clustering, euclidean

clustering was also used here but different model parameters shown in table 4.2 were

employed to cluster small cones, instead of obstacles of variable size.

RANSAC is a popular method whereby data points are randomly sampled to fit

a model, and the fitted model is accepted if it reliably fits a large fraction of the

unsampled points. The RANSAC function in PCL was used to fit a circle to points

belonging to a candidate cone cluster. A minimum radius, 𝑟𝑚𝑖𝑛, and maximum
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Figure 4-6: Roboat Pose Estimation Perception Pipeline Diagram: the filtering, de-
tection and tracking modules are used to obtain real-time object pose estimates from
the LiDAR pointcloud. Future components shown in light orange.
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radius, 𝑟𝑚𝑎𝑥, are set for the circle. A threshold 𝑑2𝑡ℎ is used for choosing inliers.

Other methods such as fitting a cone, instead of a circle were also tried but yielded

noisy and error-prone results due to the increased larger of model parameters relative

to the low number of sample points, a similar issue to that experienced by ICP, which

DART and could potentially also be prone to. As shown in Fig. 4-7a this method

yields precise results for the center positions of the two cones on the boat, despite the

sparsity of the pointcloud around the cones.

Tracking

As of now the two cone detections are averaged to yield the center of the Boat, and the

vector between them is used to determine the orientation of the Boat. This approach

works for one boat, but would need to be modified for multiple boats. Additionally,

tracking would be needed, to expand this to detecting cones over multiple boats or

with occlusion between frames changes. Using the contour-based matching from the

previous section would not provide the results needed for precise pose tracking.

Table 4.2: Parameter Values Used in Object Pose Estimation

Δ 𝑧th 𝑑th 𝑐th 𝑐min 𝑐max 𝑟min 𝑟max 𝑑2th
5.0 0.03 0.05 0 20 40 0.025 0.08 0.04

Note: Δ, 𝑧th, 𝑑th, 𝑐th, 𝑟min 𝑟max and 𝑑2th in meters. 𝑐min and 𝑐min no units.

4.2.2 Experimental Evaluation

Two experiments were tried with the configuration shown in Fig. 4-5a. In these

experiments, Roboat A is equipped with the autonomous setup described in chapter

3 and observes Roboat B with a LiDAR. Roboat B is simply a handheld hull with

cones. Roboat B is static in experiment one and moves along an arc in experiment

two.

The resulting fits at the static point and along the arc can be observed in 4-7. For

both the static and moving cases, the detected results show a model fitting well with

the LiDAR points. the Roboat edges line up well with the colored contours in the
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Roboat Model Pointcloud RANSAC Circle Centers

Lab Member Moving Roboat from LiDAR

Pool Wall from LiDAR

Roboat from LiDAR Water from LiDAR

(a) Static Roboat: visible features in the pointcloud, circle centers fit to
cones, and the resulting Roboat model fit are labeled.

(b) Moving Roboat: accumulated pointcloud and Roboat model fits at
different time points while Roboat moves along an arc.

Figure 4-7: RANSAC Circle Fitting-based Pose Estimation Results
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Table 4.3: Number of Successful Pose Estimation Steps on All Pointclouds

Experiment Pointclouds
All Successful Clustering Successful RANSAC

Static 321 320 232
Moving 871 334 143

Note: success indicates operation produced a result for both feature cones

pointcloud and the cone on the pointcloud well matches the relative position of the

cone on the model. The difference in results is noticeable however, at time points 1

and 5 in the moving case where there is no model fit. In those situations the density

of the pointcloud at the cone or the occlusion of one or more of the cones by the others

precluded matching the cones to the model. Overall, out of all the pointclouds for the

first experiment both cones were clustered in 320 instances and fit in 232 instances.

Out of all the pointclouds for the second experiment both cones were clustered in 334

instances and fit in 334. In the cases where there are sufficient clusters, a lower quality

pose can still be obtained if the fit is not within the 4cm threshold for 𝑑2𝑡ℎ. What the

plots demonstrates is that my method and representation can provide precise results

for detecting the pose of another Roboat, but have difficulty with consistent results

in occlusion-causing configuration extrema brought on by motion. Possible amends

for these factors, including tracking are discussed below.

To further the results demonstrated here to more boats, and improve robustness to

occlusions, tracking on multiple levels and combining RANSAC with other methods

will be explored in future work. A limitation of the current system is the inability

to deal with a situation where there are multiple other boats as the current method

used two cones to determine another Roboat’s center and orientation. An expectation

maximization algorithm to estimate the correspondence of cones to boats, similar to

[23], would be an interesting approach to extend to the challenging task of on-water

precise pose estimation in future work.

Another difficulty the current system encounters is its vulnerability to occlusion.

A potential limitation, as discussed above, which could be causing this is the lack of

tracking for the cones. In the future a filtering approach such as a GM-PHD filter
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could be employed to reliably track a varying number of candidate cones, as opposed

to an EKF which would require fixing the number of cones and continually observing

them. Additionally, given an initial guess from RANSAC and tracking, and further

filtering of a pointcloud’s outliers, given this initial guess, it might be feasible to use

ICP or DART to yield a more precise fit in the context of occlusion.

The last current difficulty, is detection from a slight distance where pointcloud

density around the cones drops, in these contexts a more nuanced model that is able to

distinguish cones with less points could be suitable. Given preliminary segmentation

using euclidean clustering, and the limited amount of data for encoding a cone, shallow

convolution neural networks could be a good candidate for yielding a small yet more

refined cone detection model and would be an interesting area to explore.
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Chapter 5

Multi-Robot Trajectory Optimization

5.1 Formation Changing

An important aspect of planning in multi-robot systems is coordination. In formation

movement, multiple robots coordinate to move together at a certain orientation or

distance from each other. A challenging aspect of moving in formations is handling

situations where the formation has to change. In this section, I present a formulation

for executing such formation changes with ASVs such as Roboats.

5.1.1 Approach

First, an assignment from agents to goals is calculated, which I find using the Hun-

garian algorithm. The assignment method is derived from work done by Turpin,

Michael and Kumar which demonstrates a provably optimal assignment and plan for

holonomic agents. The plan is able to achieve an instantaneous maximum velocity

for a mean squared distance cost, given sufficient clearance between all initial and

goal positions [60]. While these conditions do not hold for our agents, trajectory

optimization surmounts these difficulties and shows good results nonetheless.

Second, as a crucial step, an initial trajectory consisting of states and velocities

for each agent is calculated to drastically improve compute time for trajectory opti-

mization. Two methods are explored: a linear interpolation and a novel shape-based
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interpolation. In the realm of formation control and planning, shape has often been

used as a reference for designing and stabilizing reference trajectories over relative

positions of agents or the distances between them [39]. Here, for the shape-based

interpolation, an approximate transformation from the end to start formation frame

is found and used as a reference for assignment and linear interpolation of a trajectory

initialization.

Third, to find a final trajectory, an SQP is executed starting from the initialized

trajectory. This combination of techniques performs robustly when finding trajecto-

ries for dense formation change and takes under two minutes in most cases, which I

demonstrate on up to 9 boats in simulation.

In subsection 2, the I describe the assignment scheme in detail. In subsection 3,

I provide an overview of the two trajectory initializations provided to the trajectory

optimizer in different plans, as well as adjustments to the assignment scheme that

were made in the context of shape-based initialization. In subsection 4, I discuss the

system dynamics and the trajectory optimization that I use to generate trajectories.

In subsection 5, I show the robust simulation results my methodology produces across

a range of formation changes. In subsection 6, I show experimental results.

5.1.2 Goal Assignment

To find a trajectory which moves an unlabeled formation of boats from an initial

formation to a final formation in a timely fashion, I formulate the problem as finding

the minimum makespan, the minimum time required for the final formation to be

complete. As such, the problem is not well formulated for a nonlinear program, as

the final formation constraints are ill defined without a clear assignment of boats to

goal position in the final formation (Figure 5-1).

X𝑁
𝑖 = G𝑗 ⇐⇒ 𝜑𝑖,𝑗 = 1 (5.1)

X𝑁
𝑖 = X𝑁

𝑗 =⇒ 𝑖 = 𝑗 (5.2)
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Figure 5-1: Assignment: matching initial and final boat configurations

With X𝑁
𝑖 representing the state of boat 𝑖 at time 𝑁 , let’s use 𝜑 to represent an

assignment of boats to goals 𝐺 such that no two boats share the same final position

(5.1) and (5.2). For this, I employ the Hungarian algorithm, an 𝑂(𝑛3) algorithm

which minimizes the following cost over 𝜑 given costs C𝑖,𝑗.

min
𝜑

∑︁
𝑖,𝑗

𝜑𝑖,𝑗C𝑖,𝑗 (5.3)

As demonstrated by Turpin, Michael and Kumar, minimizing the cost of the

mean square distance between start and end position assignments can directly provide

constant velocity, collision free trajectory by interpolating the position for holonomic

robots with radius 𝑅 if all positions in X0 and X𝑁 are at least 2
√

2𝑅 apart [60]. This

does not hold for all possible boat formations and formation changes, but it has the

potential to provide a good initialization for finding a collision free trajectory.

While using a second order norm is possible, in a later paper Turpin et al. demon-

strate that by using a higher order norm, the cost approaches the minimum makespan

assignment, albeit providing collision free trajectories with additional steps [61].
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C𝑖,𝑗 = ||G𝑗 −X𝑁
𝑖 ||50 (5.4)

As an optimization is later performed on these trajectories, this is not a worry.

As such, the cost function above is used (5.4).

5.1.3 Trajectory Initialization

To calculate initial trajectories, two methods were considered: linear interpolation

and shape based interpolation.

Linear Initialization

In the case of linear interpolation, the initial and final formations are interpolated over

to determine trajectory initialization (5.5) and obtain linear trajectories as shown in

Fig. 5-2. X1 and X𝑁−1 are equal to X0 and X𝑁 , respectively, to allow the boat to

accelerate and decelerate in a compatible way according to the Euler method state

integrals used for the trajectory optimization. Given the assignment from above

and minimal collisions, this proximity to dynamically feasible trajectory places the

initialization in a relatively convex space close to minima, making it a good candidate.

X𝑖 =
(𝑖− 1)X𝑁 + (𝑁 − 𝑖− 1)X𝑖)

𝑁 − 2
∀𝑖 ∈ [1, 𝑁 − 1] (5.5)

Ẋ𝑖 =
X𝑖+1 −X𝑖

∆𝑡
∀𝑖 ∈ [0, 𝑁 − 1] (5.6)

I determine velocity for a state in a way similar to how it is defined in the Euler

method state transition constraints, by calculating a constant velocity between the

present and subsequent position (5.6). Lastly, ∆𝑡 was initialized to 0.5.

Shape-based Initialization

In the case of shape-based initialization, the goal is to get the starting formation into

the final formation’s shape and then move it to the final position as shown in Fig.
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5-2. Drawing from formation strategies, the goal here is to bring the robots toward

a shape, after which a trajectory can be robustly followed without collisions. While

this trajectory is not explicitly used, the goal is to produce highly feasible trajectories

and initialize trajectory optimization near desired convex minima.

x𝑁 =

∑︀
𝑖X

𝑁
𝑖

𝐾
(5.7)

X𝑆 = 𝑅(̇X𝑁 − x𝑁) + T + x𝑁 (5.8)

I first determine an approximate offset T and rotation R between X𝑁 and X0

frames with the mean position of boats in X𝑁 subtracted, where 𝐾 is the number of

boats (5.7). This subtraction helps with finding a rotation about the center of X𝑁

and a translation of this center, resulting in a shorter initialization trajectory. The

calculations of T and R are performed with 10 iterations of the iterative closest point

(ICP) algorithm [4]. Using this initialization method, the assignment cost in (5.4) is

computed between the start position 𝑋0 of the boat and end shape transformed to

the start position X𝑆, where S is 50 for all my plans (5.8).

X𝑖 =
(𝑖− 1)X𝑆 + (𝑆 − 𝑖− 1)X𝑖)

𝑆 − 1
∀𝑖 ∈ [1, 𝑆] (5.9)

X𝑖 =
(𝑖− 𝑆)X𝑁 + (𝑁 − 𝑖− 1)X𝑆)

𝑁 − 𝑆 − 1
∀𝑖 ∈ [𝑆,𝑁 − 1] (5.10)

Paralleling the linear trajectory initialization approach, I also use linear interpola-

tion for the shape-based initialization, but this is performed between 𝑋0, 𝑋𝑆 and 𝑋𝑁

(5.9) and (5.10). Velocity is determined in the same way as the linear interpolation

case (5.6).

5.1.4 Nonlinear Programming

I obtain trajectories by taking one of the initializations and performing a direct tran-

scription trajectory optimization. The state transition, input magnitude and collision
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(a) linear interpolation (b) shape-based interpolation

Figure 5-2: Different Trajectory Initialization Strategies for Optimization

avoidance constraints, as well as a min ∆𝑡 objective, are framed as an SQP and solved

using the drake python framework with the SNOPT solver [27, 15]. In all optimiza-

tions, the number of knot points was 𝑁 + 1 for 𝑁 = 100.

State Transition Constraints

I follow the notation developed by Fossen for marine vehicles and employed by Wang

et al. [12, 63]. In the model used here, V𝑖
𝑏, the velocity of each boat 𝑏 at time 𝑖 in

the boat frame, is represented using a manipulator equation where M, C and D are

the mass, coriolis and drag matrices respectively (5.11).

MV̇𝑖
𝑏 + C𝑏(V

𝑖
𝑏)V

𝑖
𝑏 + DV𝑖

𝑏)V
𝑖
𝑏 = BU𝑖

𝑏 (5.11)

Given the state X𝑖
𝑏 = [𝑥 𝑦 𝜓]𝑇 , a transformation matrix R(𝜓) from the boat body

frame to the inertial frame can be computed (5.12).

R(𝜓) =

⎡⎢⎢⎢⎣
cos𝜓 − sin𝜓 0

sin𝜓 cos𝜓 0

0 0 1

⎤⎥⎥⎥⎦ (5.12)

This in turn allows me to represent the state derivative Ẋ𝑖
𝑏 corresponding to the
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Figure 5-3: Oblique View of Autonomous Boat. I use two coordinate systems: inertial
coordinates

∑︀
𝑖, 𝑂𝑖-𝑥𝑦 and body-fixed coordinates

∑︀
𝑏, 𝑂𝑏-𝑥𝑏𝑦𝑏. Green arrows stand

for positive force and blue arrows stand for negative force. [63]

body frame velocity V𝑖
𝑏, thus leading to (5.13).

Ẋ𝑖
𝑏 = R(𝜓)V𝑖

𝑏 (5.13)

Finally, the Euler method approximation state update constraints for V𝑖
𝑏 and X𝑖

𝑏

used in the trajectory optimization are represented thus.

V𝑖+1
𝑏 = V𝑖

𝑏 + ∆𝑡(BU𝑖
𝑏 −M−1(V𝑖

𝑏(C(Vi
b) + D(Vi

b))) (5.14)

X𝑖+1
𝑏 = X𝑖

𝑏 + ∆𝑡R(𝜓)V𝑖
𝑏 (5.15)
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Input Constraints

Torque limits of 4 newtons are placed on every input on every boat to attain reasonable

actuator behavior (5.16).

|U𝑖
𝑏| < 4 (5.16)

Collision Constraints

All above constraints would be commonplace in any trajectory optimization context

with this boat model. To frame this problem as a multiagent one and avoid conflicts

between trajectories of different boats, collision constraints are added. The boats are

represented as circles with a radius derived at their widest orientation and constrained

to maintain at least this distance as well as a minimum clearance from each other

(5.17).

||X𝑖
𝑏1
−X𝑖

𝑏2
||2 >=

√
𝑊 2 +𝐻2 + 𝐶 | 𝑏1! = 𝑏2 (5.17)

Lastly ∆𝑡 is constrained between 5 and 100 seconds.

Together, the minimum time objective, state update constraints, input constraints

and collision constraints provide a sufficient framework to obtain optimized feasible

trajectories.

5.1.5 Simulation Results

I conducted planning on 9 different formation changes show in Fig. 5-4. While trajec-

tory optimization without a defined initialization only finds trajectories for some of

the formation changes involving four or less boats, the linear interpolation initialized

optimizations is able to find trajectories in all cases and the shape-based one is able

to find trajectories in most.
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Figure 5-4: Formation Change Scenarios: 9 different formation changes with a di-
verse range of geometries, constant spacing between boats and constant mean state
offset. Initial state in light gray, end state in orange. A dark gray region around the
rectangular boats represents the clearance constraint region.

Trajectory Initialization

The initializations for the linear interpolation case need no further explaining as they

are strictly defined, given the above specifications. Here I give an analysis of the

calculated transformations and initializations for the shape-based initialization that

employed ICP. ICP finds optimal or close to optimal fits for most final formations to

initial formations, but does not guarantee an optimal fit and failed in some instances.

As can be seen in Fig. 5-5 ICP finds practically optimal fits, even in many cases

where no perfect transformation between initial and final points exists, but fails in

some cases where a perfect transformation does exist. For plan 6 in Fig. 5-4 a perfect

fit between the initial and final triangular formation does exist but ICP instead finds

a local minima in Fig. 5-5.

In some other cases, such as plan 5, a perfect fit is found but ICP cannot find

the minimum rotation trajectory, turning in the direction requiring a larger rotation.

These defects in the shape-based initialization using ICP most likely affect trajectories
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(a) close ICP fit (b) suboptimal ICP fit

Figure 5-5: ICP Fitting: Initial and end state in gray and light orange respectively,
with the ICP fit of the end state to the initial state in dark orange and gray. While
ICP is able to find close to optimal fits in many situations (a), it does not guarantee
an optimal fit or transformation (b).

optimized from this initialization and the performance of this method relative to the

linear interpolation.

Simulation Evaluation

Performing direct transcription trajectory optimization works reliably for determining

trajectories for boats, even in the more difficult plans with up to 9 boats as is shown

in table 5.1. While SQP without an initialization converges to a solution in plans 1

and 4, linear initialization and shape-based initialization result in convergence to a

solution in 8 and 7 plans out of 9 respectively.

While trajectory optimization without an initialization works for the 1 boat plan

and one of the 4 boat plan, it is unable to cope reliably with multiple boats in a

highly non-convex space. Additionally, in the 4 boat case where it succeeded it took

over 90 seconds to compute a solution, a time comparable to finding trajectories from

initializations for 9 boats. As can be seen in Fig. 5-6 from the trajectory found

with a linear initialization for plan 9, solutions consist of significant crossings and

overlaps between trajectories of different boats. The SQP optimization is unable to

find a solution from no initialization and needs a close guess to work well. Linear and

shape-based initializations provide this close guess.

Observing the results in Table 5.1, it can be noted that linear initializations con-
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verge to a solution in more cases and finds solutions faster that offer shorter time

trajectories than shape-based ones, only hitting an iteration limit in plan 8, and even

in that case providing a feasible trajectory upon closer inspection. Further analysis

also revealed no significant difference in the input costs of boat initializations’ final

trajectories. The sum of the average squared input across all boats nor the maximum

of the average sum squared input over all boats between both trajectories, indicating

that both methods performed comparably in terms of actuator torques, although this

Table 5.1: Results of Trajectory Optimization

Plan initialization final time solve time solver status

1 - 6.45 0.68 Solution Found
line 6.45 0.66 Solution Found

shape 6.45 0.60 Solution Found

2 - 10.75 8.25 Iteration Limit
line 9.43 4.04 Solution Found

shape 9.43 4.28 Solution Found

3 - 12.52 55.30 Iteration Limit
line 9.44 24.41 Solution Found

shape 9.44 56.40 Solution Found

4 - 9.13 92.24 Solution Found
line 9.13 25.64 Solution Found

shape 11.41 49.67 Iteration Limit

5 - 11.87 76.50 Iteration Limit
line 6.43 26.07 Solution Found

shape 7.87 31.71 Solution Found

6 - 44.52 70.39 Iteration Limit
line 8.36 29.95 Solution Found

shape 8.36 24.86 Solution Found

7 - 47.75 120.36 Iteration Limit
line 8.36 268.88 Solution Found

shape 11.95 898.94 Solution Found

8 - 51.53 131.65 Unknown Error
line 7.64 83.33 Iteration Limit

shape 11.03 371.34 Iteration Limit

9 - 48.38 180.19 Iteration Limit
line 7.64 83.33 Solution Found

shape 13.31 136.88 Unknown Error

65



Figure 5-6: Superimposed States Near 𝑋𝑁 for Plan 9: Boats manage to avoid colli-
sions despite their concurrent motion and significant overlaps in their configuration
spaces over all time.

was not explicitly placed in a cost function. It should be noted that the variance across

input magnitudes at any instance for the final trajectories was larger for the linear in-

terpolation than the shape-based initialization; this is likely because the shape-based

initialization interpolates a common offset over all boats which contributes most of

the velocity for the smaller formations.

In Fig. 5-7 the initialized and final trajectories for the linear and shape-based

cases show the big differences in the initializations and solutions for both methods.

First, a different assignment between boats and end points is found as assignment

happens directly over start and end points in the linear case, but over the ICP shape

in the shape-based initialization case. While the linear interpolation starts straight

and converges to a curve close to the line, the shape-based initialization starts with

significant curvature and converges further away from the initialization to straighter

trajectories with close to constant curvature. Observing other trajectories also shows

that the shape-based initialization undergoes more change in most, but not all tra-
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(a) linear initialization and final trajectory (b) shape-based initialization and final trajectory

Figure 5-7: Formation Change Trajectories: Initial and final formations shown in
gray and orange respectively for plan 5. Dashed lines show the initialized trajectory
and solid lines show the final trajectory.

jectories, indicating that the initialization is further from any minima.

While linear initialization performs better in all observed cased in terms of com-

pute time and the minimum makespan objective, it should be noted that the shape

transformation matrices found with ICP were suboptimal in many cases and could

have contributed to the simple linear interpolation initialization outperforming shape-

based initialization according to all considered metrics. Importantly, it must be noted

that these are preliminary results and the resulting trajectories were not evaluated

for robustness to disturbances. Shape-based initialization have the potential to be

valuable when considering robustness or other metrics not evaluated her, as well as

when optimizing over other objectives. Additional results are available online.1.

The Hungarian algorithm for goal assignment, linear and shape-based interpola-

tion for trajectory initialization and trajectory optimization, using direct transcrip-

tion, from initial to goal formations proves to be a winning combination. The efficacy

of this method was demonstrated on up to 9 simulated boats in very close proxim-

ity, making this a promising combination in the class centralized coupled planning

algorithms.

All initializations perform significantly better than the no-initialization scenario

1A video demonstrating the formation changing approach and simulation results is visible here:
https://youtu.be/kd0PPfe8hwg
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and linear initialization provides superior results to shape-based initialization for the

minimum makespan objective. My results demonstrate that fast and concurrent

trajectories close to the linear trajectories considered by Turpin et al. can be achieved

even in conditions where all the constraints of C-CAPT do not hold and when a higher

order assignment cost is used.

Nonetheless, the novel shape-based initialization explored her performs well. Vari-

ants of ICP, employing gradient-descent methods such as BFGS instead of SVD for

ICP fitting, should be considered in the future to provide a more optimal transfor-

mation for the shape-initialization. Such an approach may yield superior results than

those demonstrated here. Additionally, it must be noted that shape methods under-

lay much of formation control and evaluating shape-based initialization of trajectory

optimization from a robustness perspective when executing trajectories is an avenue

for exploration.

5.1.6 Experimental Evaluation

(a) Roboat: simple setup with range-finding beacons above
the boat and a magnetic latching system around the sides

(b) Beacon System: units are
mounted around the pool to help
the Roboat localize

Figure 5-8: Setup for Formation Changing Experimental Evaluation

Two generated trajectories for simulated plan 7 with shape initialization were
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Figure 5-9: Formation Changing Pool Test for Plan 9: simulated trajectories shown
in black, two tracked trajectories shown in blue and orange with dashed lines showing
the real trajectory. Red points indicate evaluated collisions. A collision is observable
between a tracked and simulated trajectory.
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evaluated in the pool with the setup shown in Fig. 5-8. A simple beacon system

was used for localization, to validate the trajectories. In the future they could be

employed on the system described in chapters 3 and 4. For more details on the setup

and controller please refer to the following paper by Park et al. [49].

All 9 trajectories for a large triangle to square formation change are presented

in Fig. 5-9. Two trajectories, shown in blue and orange were tested in the pool,

with dashed lines indicating the tracking result. The two boats are able to safely

track the trajectory, without collisions between each other. When evaluating the

tracking result against the other simulated trajectories, however, a collision can be

observed between the real boat with an orange trajectory and a simulated boat, for

parts of the trajectory shown in red. Despite the trajectory abiding by the input

constraints described earlier and boat following a scaled trajectory not exceeding

0.3m/s, the controller has difficulty tracking the trajectory accurately in the pool

environment. An average tracking error of 0.4m and 1.2m are experienced respectively

on the orange and blue trajectories. This is likely because the boat was heavily

modified between the current and previous setup, invalidating the model parameters.

Besides the observance of collisions between one pair of real and simulated boats, the

formation changing worked well. With a well tuned controller this method should be

scalable to testing all 9 boats in water.
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5.2 Shapeshifting: Reconfiguration Planning

Another important opportunity for using optimization on the Roboat is shapeshifting,

the task of reconfiguring the shape of Roboats latched together. In such a scenario,

pictured in Fig. 5-10, Roboats must plan an unlatch move and re-latch to change

their shape. The boats used can be heterogeneous, meaning that in the case of the

figure, only the ones labeled in red have localization abilities but manage to guide the

other boats because of their attachment. This has many potential use-cases, including

changing the shape of a large on-water platform or bridge and rearranging a Roboat

in a convoy to fit through a canal opening.

In the previous section, we used sequential quadratic programming to effectively

generate motion for one or multiple boats and considered the distance between boats’

centers to apply collision constraints. In a shapeshifting scenario, where even tighter

motion is desired, more precise non-convex constraints, considering each of the boats’

edges, would need to be used to achieve close collision free motion. While there

are nonlinear-programming approaches that directly grapple with such pairwise con-

straints between edges of rotating shapes, this becomes more difficult as the shapes

become more complex, the likelihood of an NLP not finding a solution increases.

There exist other approaches that attempt to deal with this non-convexity split-

ting the original problem into convex sub-problems or asking a different non-convex

problem. Mixed integer programming is a favorable methodology I will consider in

this chapter for addressing such problems. Non-convex situations can be dealt with in

a Mixed Integer Program (MIP) by partitioning them into convex problems and us-

ing integer variables to combine such sub-problems. Given such a formulation, Mixed

Integer Programming is guaranteed to find the optimal solution to the problem given

sufficient time. While it may often take a significant amount of time to solve a Mixed

Integer Programs, there are approaches for generating tighter, more quickly solvable

formulations. In our case, an MIP is used to find a valid, close to optimal trajectory

in a planning corridor, and this solution is passed to an NLP solver with a slightly

different formulation for refinement.
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Figure 5-10: Shapeshifting: unlatching and latching to change the shape of Roboats.
All localization-less workers remain connected to a worker.

In this section, I find the trajectory for a shape-shift by representing the trajectory

as a quadratic B-Spline and employing a Mixed Integer Quadratic Programming

(MIQP) formulation for the placement of the spline’s control points. Constraints are

employed on the spline, and these constraints maintain the spline’s expressiveness

while ensuring collision avoidance during transitions between different convex hulls

in the configuration space. This provides a new way to generate smooth trajectories

in near real-time.

5.2.1 Approach

My approach is broken into the steps shown in Fig 5-11. First, a pre-processing stage

generates a configuration space graph. This is completed by providing the necessary

steps in the shapeshift, calculating the Minkowski sum for static "obstacle" shapes,

and generating a graph of linked convex polygons which the configuration space can

be partitioned into. Second, in a trajectory optimization stage, a set of states and

control inputs are found. This is completed by searching the graph for a free corridor

in which the moving shape can move, optimizing a B-spline trajectory through this

corridor, and scaling and discretizing the generated trajectory.

5.2.2 Pre-processing: Representing the Configuration Space

A configuration space for the reconfigured portions of shape is found by taking its

Minkowski sum with the stationary portion of the shape over four cardinal orienta-
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tions. Additionally, a Minkowski sum is taken between a 360 degree rotated sweep of

this reconfigured portion and the static shape to determine the obstacle free regions

where the boat can rotate unimpeded. A slight buffer is also added around these

shapes, except for near the latch points to provide for safety. While other approaches

use many more slices, this simple representation of the configuration space in four

slices, instead of the convention of using many more over all rotations [28] allows for

a speedy calculation of the trajectory optimization.

Minkowski Sum of Polygonal Shapes

Given two shapes of boats, the Minkowski sum of the stationary shape with the

moving one is found. This operation is completed for all four directions the boat can

face, as well as the sweep obtained from rotating the boat. Unlike other approaches

that require generating a map over many more angles, by only considering the angles

the boat will latch at and the places a boat can rotate in, a more efficient, albeit

suboptimal, solution is found.

Configuration Space Partitioning into Polygons

We use the Hertel-Mehlhorn algorithm to partition the configuration space into convex

regions. This method guarantees a speedy partitioning consisting of no more than

four times the optimal number of regions in 𝑂(𝑛3) in the number of points [21].

Graph Representation

The partitioning is represented as a graph with the convex hulls represented as vertices

and shared edges and overlaps as edges. Connections are made in O(𝑛2) time in the

number of hulls between the layers, representing the different rotations of the Roboat.

A depth first search over this graph finds a corridor over the configuration space to

use in the trajectory optimization [44].
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5.2.3 MIQP Trajectory Optimization

To optimize over the space of all trajectories for a boat shape through the polygons

delineated in the configuration space we cannot simply rely on the same kind of op-

timization used in the last section since we will have several OR constraints which

cannot be represented with sequential quadratic programming. Hence, we turn to

Mixed Integer Quadratic Programming (MIQP), an optimization in which the ob-

jective is quadratic, the constraints are all linear and both can also contain integer

variables.

Mixed Integer Quadratic Programming

We use a simplified state and transition model of the boat from the last section which

does not include rotation. In the last section, rotation was included to represent the

entire boat shape being moved as one boat. The pydrake optimization framework

was used to implement the optimizations [58].

Acceleration Cost In the MIQP, a fixed time interval is set for the state transi-

tions, as nonlinear terms are not permitted in the constraints. Therefore, I optimize

the acceleration in this case to obtain a smooth path.

min
∑︁
𝑖

�̈�𝑖(𝑡)
𝑇 �̈�𝑖(𝑡) (5.18)

Collision Constraints Unlike the previous section where pairwise constraints were

placed on the distance between boats, here we only have a boat shape and configu-

ration space of polygon regions. Thus we constrain each state in the path to lie in

a valid place in the configuration space by creating 𝐻 , a binary matrix. There’s 𝑁

rows for each transition between states, 𝑀 columns for each polygon. Rows summing

to 1, as well as a 1 at an index, indicates that the boat is in that column’s polygon

for that row’s state transition.
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𝐻 ∈ {0, 1}𝑀×𝑁−1 (5.19)∑︁
𝐻𝑖 = 1 | 0 ≤ 𝑖 ≤ 𝑁 + 1 (5.20)

I can constrain the physical state of the boat shape to lie in the right polygons

during the state transitions by constraining the start and end state for each to lie in

the polygons, as shown in Fig. 5-12 from Deits and Tedrake [9].

Figure 5-12: A trajectory in which each linear segment is required to remain entirely
within one of the convex obstacle-free regions indicated by the colored boxes. This
requirement ensures that the entire trajectory is collision-free [9].

This works because the boat shape is represented as a transition between states

along lines, and the polygons are convex, guaranteeing that a line within them con-

necting two points is contained in the polygon.

This is represented with the following equation

𝐵ℎ ≤ 𝐴ℎ𝑥𝑖+𝑗 | 𝐻 𝑖
ℎ = 1, 𝑗 ∈ {0, 1} (5.21)

which is implemented in the MIQP as follows

𝑀(𝐻ℎ
𝑖 − 1) + 𝐵ℎ ≤ 𝐴ℎ𝑥𝑖+𝑗 | 𝑗 ∈ {0, 1} (5.22)
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5.2.4 Adding Rotation

As is, we can obtain x-y paths, but rotation for the boats is not defined. An additional

step is produced to yield smooth rotations. The angle 𝜃, angular velocity �̇� and

angular acceleration 𝜃 are defined as follows.

𝜃 ∈ N𝑁+1 (5.23)

�̇� ∈ N𝑁 (5.24)

𝜃 ∈ N𝑁×2 (5.25)

Angle transition constraints 𝜃 and �̇� represent the angle and angular velocity,

respectively, at the control points, while 𝜃 represents a constant acceleration for the

first and second half of each state transition. Based on this, the angle transition

constraints are defined as follows.

𝜃𝑖 = 𝜃𝑖−1 + �̇�𝑖−1 +
1

2
((

1

2
)2𝜃0

𝑖−1) +
1

2
(
1

2
𝜃0
𝑖−1 + (

1

2
)2𝜃1

𝑖−1) (5.26)

= 𝜃𝑖−1 + �̇�𝑖−1 + .375𝜃0
𝑖−1 + .125𝜃1

𝑖−1 (5.27)

�̇�𝑖 = �̇�𝑖 +
𝜃0
𝑖−1 + 𝜃1

𝑖−1

2
(5.28)

Angular acceleration cost As was done with the x-y state, a quadratic cost is

applied to smooth the angle as follows. This has no effect on the x-y state as that

was obtained in the previous optimization.

∑︁
𝑖

min𝜃𝑇
𝑖 𝜃𝑖 (5.29)

Angle collision constraints Similar to the prior MIQP optimizations, the angle at

control points is constrained to lie in valid regions. As there are no spline guarantees

here, additional constraints are placed on the angular velocity. Together with the
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angle constraints, this ensures that state transitions remain in the acceptable angle

ranges for each polygon.

∀𝑗 ∈ {0, 1}, 𝑖 ∈ N | 0 ≤ 𝑖 ≤ 𝑁 (5.30)

𝜃ℎ
𝑚𝑖𝑛 +𝑀(𝐻ℎ

𝑖+𝑗 − 1) ≤ 𝜃𝑖 ≤𝑀(1 −𝐻ℎ
𝑖+𝑗) + 𝜃ℎ

𝑚𝑎𝑥 (5.31)

(𝜃ℎ
𝑚𝑖𝑛 − 𝜃ℎ

𝑚𝑎𝑥) +𝑀(𝐻ℎ
𝑖+𝑗 − 1) ≤ �̇�𝑖 ≤𝑀(1 −𝐻ℎ

𝑖+𝑗) + (𝜃ℎ
𝑚𝑎𝑥 − 𝜃ℎ

𝑚𝑖𝑛) (5.32)

Quadratic B-Spline Trajectory Representation

While the MIQP can be easily implemented with linear transitions between x-y states,

this requires an exceeding number of states to create a smooth path. This is acceptable

in an SQP implementation which runs in polynomial time, but not for an MIQP which

generally runs in a time exponential to the number of integer variables. Therefore, a

curve-based parameterization is desirable for the MIQP.

Quadratic B-Splines B-splines are an ideal solution for representing trajectories

as they provide an efficient way of specifying a smooth path, with spline segments

capable of representing any polynomial of degree B with B+1 control points. Ad-

ditionally, compared to other smooth parameterizations, B-splines have a convexity

guarantee which ensures that spline segments lie in the convex hull of control points

defining them.

This is done by recursively defining scaling factors for the 𝑖th control point and

𝑘th order along the trajectory with the Cox-de Boor formula.

𝐵𝑖,𝑘(𝑡) =
𝑡− 𝑇𝑖

𝑇𝑖+𝑘−1 − 𝑇𝑖𝐵𝑖,𝑘−1(𝑡)
+

𝑇𝑖+𝑘 − 𝑡

𝑇𝑖+𝑘 − 𝑇𝑖+1𝐵𝑖+1,𝑘−1(𝑡)
(5.33)

𝐵𝑖,1(𝑡) =

⎧⎪⎨⎪⎩1 if 𝑇𝑖 ≤ 𝑡 < 𝑇𝑖+1

0 otherwise

(5.34)

The sum of the control points multiplied by their scaling factors yields the follow-
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ing B-spline equation:

𝑝𝑘(𝑡) =
∑︁
𝑖

𝐵𝑖,𝑘(𝑡)𝛼𝑖 (5.35)

In this thesis, a uniform quadratic B-spline will be used. Any second order poly-

nomial equations can be described with B-splines of order 𝑘 = 3. Uniform B-splines

have evenly spaced 𝑇𝑖 in Eq. 5.34, which means that 𝑝(𝑡) can be easily represented

as the following:

𝑝(𝑡) = 𝑝3(𝑡) =

⎛⎜⎜⎜⎝
1

𝑡
Δ
− 𝑖

( 𝑡
Δ
− 𝑖)2

⎞⎟⎟⎟⎠
𝑇

𝑀3

⎛⎜⎜⎜⎝
𝛼𝑖−1

𝑇

𝛼𝑖
𝑇

𝛼𝑖+1
𝑇

⎞⎟⎟⎟⎠ | 𝑖 ≤ 𝑡

∆
< 𝑖+ 1 (5.36)

where in the case of quadratic B-splines, 𝑀3 is constant and

𝑀3 = 0.5

⎛⎜⎜⎜⎝
1 1 0

−2 2 0

1 −2 1

⎞⎟⎟⎟⎠ (5.37)

Initial and Final State Constraints To constrain the B-spline to start at the

initial state and end at the final state, the additional control points are defined be-

fore and after the the 0th as well as from 𝑁th control points and are respectively

constrained to equal the initial and final states.

𝛼 ∈ N𝑁+5×2 (5.38)

𝛼0,𝛼−1,𝛼−2 = 𝑥0 (5.39)

𝛼𝑁 ,𝛼𝑁+1,𝛼𝑁+2 = 𝑥𝑁 (5.40)

Acceleration Cost As in the standard MIQP formulation, a cost is placed on the

acceleration to force the boat shape to follow the smoothest possible trajectory in the

allotted time.
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min

∫︁ 𝑁+1

−1

𝑝(𝑡)𝑇𝑝(𝑡)𝑑𝑡 (5.41)

The acceleration can be simplified, as demonstrated by Usenko et al. [62]. ∆ is

set to 1 during the optimization but scaled later to generate the final trajectory for

tracking.

𝑝𝑖(𝑡) =
1

∆2

⎛⎜⎜⎜⎝
0

0

2

⎞⎟⎟⎟⎠
𝑇

𝑀3

⎛⎜⎜⎜⎝
𝛼𝑖−1

𝑇

𝛼𝑖
𝑇

𝛼𝑖+1
𝑇

⎞⎟⎟⎟⎠ | 𝑖 ≤ 𝑡

∆
< 𝑖+ 1 (5.42)

𝑝𝑖(𝑡) =
1

∆2
𝑏𝑇𝑀3

⎛⎜⎜⎜⎝
𝛼𝑖−1

𝑇

𝛼𝑖
𝑇

𝛼𝑖+1
𝑇

⎞⎟⎟⎟⎠ | 𝑖 ≤ 𝑡

∆
< 𝑖+ 1 (5.43)

As 𝑀3 and 𝑏 are constant, this yields the following quadratic equation to be

minimized in the optimization, yielding a smooth trajectory for the boat shape:

argmin
𝑝

∫︁ 𝑁+1

−1

𝑝(𝑡)𝑇𝑝(𝑡)𝑑𝑡 = (5.44)

argmin
𝑝

𝑁+1∑︁
𝑖=−1

𝑡𝑟(

⎛⎜⎜⎜⎝
𝛼𝑖−1

𝑇

𝛼𝑖
𝑇

𝛼𝑖+1
𝑇

⎞⎟⎟⎟⎠
𝑇

𝑀𝑇
3 𝑏

𝑇𝑏𝑀3

⎛⎜⎜⎜⎝
𝛼𝑖−1

𝑇

𝛼𝑖
𝑇

𝛼𝑖+1
𝑇

⎞⎟⎟⎟⎠) (5.45)

Control Point Edge Constraints The strong convex hull property of B-splines

guarantees that spline segments lie in the convex hull of control points defining them.

In our quadratic B-spline case, this means that any point on the trajectory segment

between knot points is guaranteed to lie in a triangle if the three control points

defining it lie in the polygon.

As in the standard MIQP formulation where constraints were placed on the states

to contain the state transitions in convex regions 5.22, constraints are placed on the
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control points in the quadratic B-Spline formulation.

𝑀(𝐻ℎ
𝑖 − 1) + 𝐵ℎ ≤ 𝐴ℎ𝛼𝑖+𝑗 | 𝑗 ∈ {0, 1} (5.46)

Polygon Transition Edge Constraints Using the Strong Hull Property The

above constraint is sufficient if the trajectory is entirely contained in one polygon.

Special additional precautions need to be taken in the MIQP case when the trajectory

moves from one polygon to another, since the convex hull of three consecutive polygon

transition control points will not be contained in one polygon. When this occurs, we

ensure that the triangle made by these three control points is fully contained in the

union of two polygons.

𝜶i

𝜶i+1𝜶i-1

𝒑(t)

𝛽𝜶i-1+(1-𝛽)𝜶i+1

Figure 5-13: Collision Avoidance Constraints at Polygon Transitions: constraining
the control points 𝛼𝑖−1 and 𝛼𝑖+1 to pass through the blue triangle insures 𝑝(𝑡) stays
in the union of the grey polygons.

Theorem 5.2.1 Given three consecutive points 𝛼𝑖−1, 𝛼𝑖 and 𝛼𝑖+1, with 𝛼𝑖−1𝛼𝑖 lying

in one convex polygon and 𝛼𝑖𝛼𝑖+1 lying in another, the convex hull of these points

lies in the union of the polygons if 𝛼𝑖−1𝛼𝑖+1 intersects with their intersection.

Proof 5.2.1 If the line segment 𝛼𝑖−1𝛼𝑖+1 passes through the intersection of two con-

vex hulls, some point 𝑥 along this line segment lies in the intersection, since 𝛼𝑖 and
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𝑥 lie in both polygons as does 𝑥𝛼𝑖. Therefore,
△

𝑥𝛼𝑖𝛼𝑖−1 lies in the first polygon

and
△

𝑥𝛼𝑖𝛼𝑖+1 lies in the second polygon, showing
△

𝛼𝑖−1𝛼𝑖𝛼𝑖+1 lies in the union of the

polygons. �

At such polygon transition points shown in Fig. 5-13, I constrain a point between

𝛼𝑖−1 and 𝛼𝑖+1 to lie in the intersection between the polygons they respectively lie

in. Thereby, according to 5.2.1,
△

𝛼𝑖−1𝛼𝑖𝛼𝑖+1 lies in the union of the polygons, and

according to the strong hull property of B-splines, the Quadratic B-Spline 𝑝(𝑡) will

remain in
△

𝛼𝑖−1𝛼𝑖𝛼𝑖+1 for the segment defined 𝛼𝑖−1, 𝛼𝑖 and 𝛼𝑖+1.

In the MIQP optimization, we simplify the condition such that we require the

halfway point between first and third transition control points to be contained in

both the pre and post transition polygons. This allows us to formulate the condition

as the following linear constraint.

This can be represented with the following equation:

𝐵ℎ ≤ 𝐴ℎ
𝛼𝑖−1 + 𝛼𝑖+1

2
| 𝐻 𝑖−1

ℎ + 𝐻 𝑖
ℎ = 1 (5.47)

A More Optimal Polygon Transition Constraint While a constraint on
△

𝛼𝑖−1𝛼𝑖𝛼𝑖+1

yields a trajectory contained in the C-Space polygons, relaxing this constraint does

not necessarily mean that the B-spline is not constrained in the C-Space polygons,

as shown in Fig. 5-14. In the case of Uniform Quadratic B-splines, where control

points are evenly spaced in time, at polygon transition points, 𝑝(𝑖) is tangent to both

𝛼𝑖−1𝛼𝑖 and 𝛼𝑖𝛼𝑖+1( eg. 𝑝(𝑖) = 𝛼𝑖+𝛼𝑖−1

2
and 𝑝(𝑖 + 1) = 𝛼𝑖+𝛼𝑖+1

2
). The acceleration is

also a constant −−−−→𝛼𝑖𝛼𝑖+1 −−−−−→𝛼𝑖−1𝛼𝑖 during this interval, according to Eq. 5.43, yielding

a quadratic curve that stays above the line segment 𝑝(𝑖)𝑝(𝑖+ 1). Requiring this cut

hull,
△

𝑝(𝑖)𝛼𝑖𝑝(𝑖+ 1), instead of the larger convex hull
△

𝛼𝑖−1𝛼𝑖𝛼𝑖+1 it is contained in, to

lie in the union of convex polygons allows a wider range of B-splines to be considered,

producing a more optimal result.

Thus, in my final formulation, a point along the line segment 𝑝(𝑖)𝑝(𝑖+ 1) is con-

strained as shown in Fig. 5-15. This can be represented with the following equation.
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(a) Control Point Hull and Cut Hull in Polygon Union

(b) Only Cut Hull in C-Space Polygon Union

(c) Control Point Hull and Cut Hull outside Polygon Union

(d) Control Point Hull, Cut Hull and B-Spline outside Polygon Union

Figure 5-14: Comparing Different Hulls for Containing B-Spline in C-Space: keeping
the cut hull triangle (orange) in the union of the convex hulls (grey outlined) provides
a tighter constraint than the control point triangle (blue) for keeping the B-spline
(black) in the union of the convex hull polygons. As shown in (c), it is still possible
for both triangle to stray outside this union, but the B-Spline to remain inside.
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𝜶i

𝜶i+1𝜶i 1

𝛽𝒑 i 1 1 𝛽 𝒑 i 1

𝒑 t 𝒑 i 1𝒑 i 1

Figure 5-15: Constraints at Polygon Transitions: constraining the line between points
𝑝(𝑖 − 1) and 𝑝(𝑖 + 1) to pass through the blue triangle is a tighter constraint than
that shown in 5-13 for ensuring 𝑝(𝑡) stays in the union of the grey polygons.

𝛽 ∈ (0, 1)𝑁−2 (5.48)

𝐵ℎ ≤ 𝐴ℎ(𝛽𝑖
𝛼𝑖−1 + 𝛼𝑖

2
+ (1 − 𝛽𝑖)

𝛼𝑖 + 𝛼𝑖+1

2
) | 𝐻 𝑖−1

ℎ + 𝐻 𝑖
ℎ = 1 (5.49)

By setting 𝛽 to 0.5, I can represent this in my optimization as the following linear

mixed integer constraint.

𝑀(𝑗𝐻ℎ
𝑖−1 − 𝑗𝐻ℎ

𝑖 − 1) + 𝐵ℎ ≤ 𝐴ℎ
1

2
(
𝛼𝑖−1 + 𝛼𝑖

2
+

𝛼𝑖 + 𝛼𝑖+1

2
) | 𝑗 ∈ {1,−1} (5.50)

Scaling

As a final step, the B-spline trajectories are scaled in time to meet the desired kine-

matic constraints. This is easily done by changing ∆ in Eq. 5.43 after the optimization

to evaluate the trajectory.
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5.2.5 SQP Smoothing

This last transition constraint restricts the shape of the B-spline in unnecessary ways,

since setting 𝛽 to 0.5 may not necessarily be optimal. Therefore, a new scheme

is considered, in addition to the Line and B-spline-based MIQP formulations. In

this scheme, the MIQP B-spline optimization result is used to determine the integer

variables. This result is used in an SQP optimization, using the resulting control

points from the MIQP optimization as an initialization. In this second optimization,

𝛽 is set by directly constraining it according to Eq. 5.49, resulting in refined control

point placements and a more optimal B-spline for minimal extra computation.

5.2.6 Simulation Evaluation

I compared the three representations described previously in a series of simulation

experiments presented in table 5.2 and Fig. 5-16. No scaling was done to evenly

compare the optimization results. The experiments cover a range of trajectories

involving shape changes over a varying number of boats, from 2 to 12. A fixed number

of control points, 11, were used in each simulation. The solve times and average costs

over the control points are listed, with the fastest and lowest cost values highlighted

respectively for each experiment when there is not a three way tie.

As can be observed, the simple line representation generally yields the fastest total

solve times, which is only surpassed by the MIQP only B-spline representation for one

experiment. While it is generally faster, the B-spline representation achieves compa-

rable results on accuracy, sometimes surpassing the Line representation, although it

generally takes longer due to the more complicated representation. In the Refined

B-spline, this MIQP result is taken, fixing the control point hull placements, and

optimizing their precise in hull positions, yielding a generally lower cost result, while

only taking slightly longer. This benefit comes despite the fact that the B-spline rep-

resentations yield a twice differentiable continuous trajectory, maintaining stronger

obstacle avoidance guarantees. Thus, running in 0.1-0.3 seconds, this refined B-spline

optimization yields high quality real-time trajectories.
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Table 5.2: Solve Times and Costs For Different Optimization Strategies: best in bold

Representation Plan
Solve Time (s) Average Cost

Initial Final Total Position Angle

Line

1 line to L - 0.120 0.122 1.540 0.000
2 T to block - 0.110 0.110 12.226 0.000
3 line to block - 0.110 0.115 4.530 0.000
4 line to L 2 - 0.120 0.121 2.010 9.740
5 Ls to block - 0.060 0.057 8.892 38.980
6 line to block 2 - 0.190 0.188 5.610 0.000
7 rhombus to block - 0.100 0.100 56.658 0.000
8 past - 0.110 0.105 7.700 0.000
9 pool a - 0.110 0.110 2.390 0.000
10 pool b - 0.100 0.101 4.660 9.740

B-Spline

1 line to L - 0.230 0.230 1.930 0.000
2 T to block - 0.110 0.106 28.150 0.000
3 line to block - 0.200 0.200 6.210 0.000
4 line to L 2 - 0.180 0.180 1.730 8.700
5 Ls to block - 0.060 0.060 62.460 34.801
6 line to block 2 - 0.240 0.240 7.500 0.000
7 rhombus to block - 0.040 0.044 1008.360 0.000
8 past - 0.170 0.170 6.260 0.000
9 pool a - 0.250 0.250 3.340 0.000
10 pool b - 0.130 0.130 5.100 8.700

Refined B-Spline

1 line to L 0.230 0.037 0.270 1.034 0.000
2 T to block 0.100 0.024 0.130 12.510 0.000
3 line to block 0.200 0.025 0.230 3.590 0.000
4 line to L 2 0.190 0.032 0.230 1.324 8.700
5 Ls to block 0.090 0.023 0.110 17.340 34.801
6 line to block 2 0.230 0.033 0.260 4.143 0.000
7 rhombus to block 0.040 0.027 0.070 82.860 0.000
8 past 0.210 0.026 0.240 5.794 0.000
9 pool a 0.240 0.029 0.270 2.185 0.000
10 pool b 0.260 0.026 0.280 3.305 8.700
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1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Figure 5-16: Visualization of Shapeshifts Optimized in Table 5.2: dark orange rectan-
gles are static boats and light orange blocks are moving boats for which a trajectory
is found.
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Figure 5-17: Shapeshifting Plan 7 Graph-search: selected corridor hulls colored

I also reviewed the trajectories for plan 7 in detail, the rhombus to block path

that involves a shape of 12 boats separating into two triangles, with one of the tri-

angles moving to generate a rectangle. The selected hulls from the graph search are

demarcated in Fig. 5-17. The resulting trajectories for each optimization variant for

plan 7 are shown in Fig. 5-18. As expected, the line-based trajectory produces the

most jagged trajectories, which would tracking it hard and potentially impossible.

The B-spline trajectory, is more continuous but takes a relatively long path which

is slow. This is unnecessary, as a safety buffer has already been accounted for. The

refined B-spline yields the best combination of these factors, producing a smooth yet

short path. The resulting collision-free trail of the boats from the refined B-spline

path is visible in Fig. 5-19.

5.2.7 Experimental Evaluation

I carried out pool experiments with a setup similar to the previous formation changing

section to evaluate the superior refined B-spline method in practice. During these

tests, the generated trajectories from simulated plans 9 and 10 were used on the

88



(a) Line trajectory through selected hulls (b) B-spline trajectory through selected hulls

(c) Refined B-spline trajectory through selected
hulls

Figure 5-18: Shapeshifting Trajectories for Plan 7 Using Different Representations:
Line trajectory is short but yields jagged results, while Refined B-spline trajectory is
smooth and short
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Figure 5-19: Boat Trails During B-spline Trajectory for Plan 7: moving boats in black
and static boats in light grey. Final state of moving boat in solid black.
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moving boat, and the static boats were fastened to the wall of the swimming pool. In

the scaling stage, the trajectories were scaled to a velocity of no more than 0.1 m/s.

In the first test, a formation of two boats shapeshifts from a square to a line,

as shown in Fig. 5-21. Five tests were conducted. Four went successfully, and

one ended with boats getting stuck right before latching due to friction between the

latching parts. The position trajectories, followed by the moving boat during one

such test, is pictured in Fig. 5-23.

Next, I carried out pool experiments, changing the shape of two boats from one

rectangle to another, as shown in Fig. 5-22. This experiment requires a total of three

boats, instead of two, and makes the moving boat rotate. Five tests were conducted

and three went successfully. On two occasions, a slight collision occurred between the

static boats and moving boat when the moving boat rotated. The position trajectories

followed by the moving boat during a successful test is pictured in Fig. 5-24.

(a) Plan 9: 5.9cm, 0.06 radians avg. error (b) Plan 10: 10.8cm, 0.26 radians avg. error

Figure 5-20: Shapeshift Trajectory Tracking: references solid, actual values dashed

The first series of tests was almost entirely successful, while the second series

was more challenging. Looking at the trajectory plots in Fig. 5-23 and 5-24 and

evaluating the tracking quality for both tests in Fig. 5-20, tracking is noticeably

better in an experiment for the first shapeshift compared to an experiment from

the second shapeshift. Particularly apparent is that the average angle tracking error

increased from 0.06 to 0.26 radians. Errors in the untuned model, also experienced in

the formation changing section, and a relatively fast rotation could be contributing
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factors to the witnessed light collisions. These can easily be fixed by changing the time

scaling used and spending more experimental time identifying the model parameters

for the modified Roboat.

Overall, the method described works really well. My formulation of the shapeshift-

ing problem and the trajectory optimization method are robust, even in the presence

of tracking error, allowing for trajectories that successfully latch and shapeshift on

the water.
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(a) Roboats in Square (b) Roboats in Line

Figure 5-21: Shapeshifting Plan 9: closest boat in (a) tracks the generated trajectory.
This takes the Roboats from a square, shown in (a), to a line, shown in (b).

(a) Roboat turning from first rectangle (b) Roboats in new rectangle

Figure 5-22: Shapeshifting Plan 10: closest boat in (a) tracks the generated trajectory.
This takes the Roboats from on rectangle to another
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(a) Trajectory Plot: planned B-spline in black, actual in red, with
search corridor convex hulls in other colors

(b) Boat Trails During the Above Actual Trajectory: moving boats
in black and static boats in grey

Figure 5-23: Boat Motion During Shapeshift Plan 9
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(a) Trajectory Plot: planned B-spline in black, actual in red, with
search corridor convex hulls in other colors

(b) Boat Trails During the Above Actual Trajectory: moving boats
in black and static boats in grey. Moving boat rotates before relo-
cating

Figure 5-24: Boat Motion During Shapeshift Plan 10
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Chapter 6

Conclusion

In this thesis I worked towards developing the system design, as well as perception and

planning algorithms to bring reliable autonomy to single and multi-robot autonomous

surface vehicle (ASV) systems in urban environments.

In the third chapter, I examined the hardware and software needs of an urban ASV,

and contribute to the sensor choice and software architecture necessary for developing

full autonomy capabilities in ASVs. The Roboat, our ASV, is able to operate in highly

dynamic urban environments and perform precise trajectory planning and tracking,

leveling my contribution to the overall design and my sole contribution to the software

system design.

In the fourth chapter, I demonstrated a sequence of perception algorithms for fil-

tering, detecting and tracking obstacles LiDAR pointclouds, as well as a variation of

this sequence of algorithms for even more precise object pose estimation. The contri-

butions of this chapter include reliable dynamic obstacle detection and tracking, as

well as precise object pose estimation on water. Enabled by this perception subsys-

tem, the Roboat is able to reliable avoid obstacle and navigate in narrow urban canal

environments.

In the fifth chapter, I presented trajectory optimization algorithms for planning

in multi-robot scenarios on water. A multi-boat minimum-makespan formation plan-

ning algorithm is presented that allows ASVs to efficiently change from one formation

to another using sequential quadratic programming. This work contributes a valu-
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able exploration of concurrent and close motion for formation changing on water.

I then conclude by designing an efficient trajectory-planner for the closely related

shapeshifting problem, explored for the first time on water. My contribution of a

real-time mixed integer programming B-spline-parameterized trajectory planner aids

in generating smooth and efficient trajectories and is broadly relevant to all kinds of

mobile robots.

As a whole, by drawing on technologies and methods present in other autonomy

platforms and designing systems and algorithms for water-based use cases in urban

environments, this thesis makes a significant contribution in advancing ASV auton-

omy and making ASVs more broadly relevant.

6.1 Future Work

From a systems perspective this thesis makes headways in single-ASV system design.

This provides a solid groundwork for designing multi-ASV systems, especially those

leveraging tight linkages with each other and wider data sources and computing de-

vices in the urban environment to provide cohesive services to the urban populace.

Such a cohesive multi-robot systems have been demonstrated in factory and ware-

house environments. Further advancements in the design of such systems on the water

could enable new kinds of infrastructure. This could play a major part in seamlessly

providing citizens with municipal services and giving citizens and planners insights

into the underlying infrastructure, as imagined by the Roboat project.

While LiDAR-based perception was heavily explored in this thesis, there is much

room for research in the area of multimodal perception on water. LiDAR and RGB-D

data are used separately in the current system and could be fused for outlier rejec-

tion and increased precision and resolution in detection and tracking. For the pose-

estimation task there is room for improvement, given more precise tracking algorithms

on water that could for improved robustness to occlusions and low density distant

pointcloud returns. In both obstacle detection and tracking, and pose detections good

results were obtained, but the limitation of simple features and hand-tuned classical
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computer vision features were evident. Exploring concise yet expressive models for

pattern recognition, such conditional random fields and neural networks, is an excit-

ing avenue of research on water. This could improve tracking and pose detection, and

enable object recognition. Improving the robot’s ability to reliably recognize features

in its environment is critical to improving the Roboat’s planning performance in all

non-trivial environments.

Lastly, this thesis combines and employs SQP optimization-based motion planning

approaches in new domains and shows novel contributions in MIQP spline-based pa-

rameterization. Firstly, while trajectory planning across multiple robots was explored

in this thesis, the ultimate goal of this system is to provide municipal services. These

services are currently contained in the separate application layer, but a Task and

Motion Planning optimization approach could achieve synergies between application

and trajectory planning, a rarely explored area on the water. Similarly the current

approach assumes a separate and reliable localization system, but there is room for

making the perception-planning boundary more porous and researching active per-

ception approaches to plan paths that improve perception. Considering perception

in planning could allow heterogeneous robots to exceed their shapeshifting abilities

and plan motion across an entire unlatched formation, by planning paths that allow

blind-robots to stay localized.

As a whole, the development of the Roboat urban autonomy system and novel

algorithms described in this thesis, leave open many exciting avenues for exploration

in Amsterdam’s and other cities’ waterways.
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Appendix A

Software Packages

Included here is an extensive but non-exaustive list of software packages used. There

are several minor depedendencies that are installed as subdependencies and may not

be listed here.

A.1 Urban Autonomy System and Perception

• System Packages

ACADO toolkit C++ optimization and control toolkit with C code genera-

tion functionality

eigen C++ library for linear algebra

fast csv parser C++ header-only library for reading csv files

git version control tool

robot operating system (ROS) Kinetic recent LTS version of popular robotics

middleware

openssh server ssh server for accessing Roboat

terminator powerful multi-terminal emulator terminals

vim powerful text editor that runs in terminal
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• Roboat ROS Packages1

roboat_acado enerates MPC controllers for roboat_core with ACADO code

generation

roboat_autonomy] filters LiDAR data based on the boat environment and

task. Also includes, visual odometry launch files for rtabmap.

roboat_core manages sensors, low-level serial communication and actuator

control

roboat_launch coordinates the execution of a task setup amongst by calling

other packages with the relevant configuration

roboat_localization localizes the boat with LiDAR, IMU and Camera data.

It manages Autoware’s NDT for LiDAR scan matching and employs robot

localization for EKF filtering and rtabmap visual odometry

roboat_utils contains utility scripts for commanding the boat with a joypad

from a laptop, configuration files and an installer script for the Roboat

setup

• Additional ROS Dependencies

apriltags2 QR tag-based pose estimation

autoware open-source autonomous car platform

joy joypad drivers

point cloud lib (PCL) pointcloud data formats and processing tools

microstrain_3dm_gx5_45 IMU drivers. Includes 3dm_gx5_25 drivers.

realsense Intel realsense RGB-D camera drivers for ROS

rosserial ROS message communication over serial

rtabmap visual odometry algorithms interface

serial serial communication
1these packages may or may not be publicly available
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velodyne velodyne LiDAR drivers and ROS messages

wstool ros workspace dependency manager

A.2 Trajectory Optimization

• System Dependencies

Docker virtualization tool for managing container-based software environments

Drake C++ Robotics Toolbox with python bindings. Includes flexible opti-

mization solver interfaces.

Mosek solvers for many kinds of optimization, including MIQP

SNOPT nonlinear optimization solver

• Python Packages

graphtool constructs and computes on large graphs

icp icp implementation. Hosted by ClayFlannigan on Github.

ipython browser-based interface for notebook programming

matplotlib plotting and visualization tool

numpy matrix-based numerical tools and algorithms

pypolypart python interface for polypart, a C++, based polygon partitioning

library. hosted by chozabu on Github

scipy scientific computing tools

shapely manipulates and analyzes planar geometric objects

tabulate printing table-formatted data

• Developed Packages

multiboatTrajectoryOptimization implements methods for formation chang-

ing described in chapter 5. Release planner on Github

https://github.com/bgheneti/MultiboatTrajectoryOptimization
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shapeshifting implements methods for shapeshifting described in chapter 5.

Release planned on Github

https://github.com/bgheneti/shapeshifting
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