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Real-Time Household Energy Prediction: Approaches and

Applications for a Blockchain-Backed Smart Grid

by

Michelle Lauer

Abstract

In the current era of Internet of Things (IoT) devices, household solar panels, and
increasingly affordable local energy storage, energy grid systems are facing a new set
of challenges that they were not originally designed to support. Energy systems of the
near future must be capable of supporting these new technologies, but new technology
can also be leveraged to improve reliability and efficiency overall. A major source of
potential improvements comes from the increase of connected devices that are capable
of dynamically adjusting their behavior, and offer new data that can be used for opti-
mization and prediction. Energy predictions are used today at the bulk power system
level to ensure demand is met through appropriate resource allocation. As energy sys-
tems become more responsive, prediction will be important at more granular system
levels and timescales. Enabled by the rise in available data, existing research has
shown some machine learning models to be superior to traditional statistical models
in predicting long-term aggregate usage. However, these models tend to be compu-
tationally expensive; if machine learning prediction models are to be used at short
timescales and performed close to the end nodes, there is a need for more efficient
models. Additionally, most machine learning models today do not take advantage of
the known and studied properties of the underlying energy data. This thesis explores
the circumstances under which machine learning can be used to make predictions more
accurately than existing methods, and how machine learning and statistical methods
can serve to complement each other (specifically for short timescales at the household
level). We find that basic machine learning models outperform other baseline and
statistical models by using energy usage trends observed from statistical methods to
better engineer the input features. For the increasingly distributed energy systems
that these predictive models aim to support, the distributed nature of blockchain
technology has been proposed as a good match for managing such systems. As an
example of one possible distributed management implementation, this thesis presents
a novel blockchain-enabled architecture that provides privacy for users, information
security through improved household-level prediction, and takes into consideration
the security vulnerabilities and computational constraints of the participants.

Thesis Supervisor: Marija Ilic
Title: Senior Research Scientist
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Chapter 1

Introduction

1.1 Motivation

The landscape of household energy usage and interactions with the grid is undergoing

rapid development. In today’s energy systems, Independent System Operators (ISOs)

— responsible for ensuring demand is met at all times given physical constraints —

operate at the bulk transmission level. ISOs therefore have little reason to manage or

model how this energy is then distributed at more granular levels closer to the ends of

the grid. Short term, house-hold level prediction was neither possible nor useful until

the recent rise in Internet of Things (IoT) devices and the potential for household-level

participation in the grid. IoT device use, industry deregulation, increasingly cost-

competitive household-level energy storage, and new types of generation sources are

all putting pressure on the existing grid to be more flexible and responsive. With these

changes, new opportunities have opened for technology to improve energy systems,

but these opportunities come hand-in-hand with new challenges related to optimizing

efficiency, coordinating interactions, and securing data. The increase in smart devices

and participation by end nodes requires and enables more intelligent grid design.

Computationally efficient approaches for predicting energy usage are necessary

for such designs, because more logic is moving away from aggregators towards the

responsive end nodes of the system, which have less computational power. Econom-

ically incentivizing household-level participation in the dynamics of the electricity

17



grid can lower costs for consumers, reduce strain on the grid, and improve efficiency.

Transactive Energy Management (TEM) is defined by NIST to refer to “techniques

for managing the generation, consumption, or flow of electric power within the electric

power system through the use of economic or market-based constructs while consider-

ing grid reliability constraints” [1]. Predictions of future energy usage are critical for

establishing appropriate economic incentives in a TEM grid model, and for supporting

real-time responsiveness by smart devices.

The field of low-memory energy prediction is currently dominated by statisti-

cal learning approaches. Existing and ongoing work demonstrates the effectiveness

of such models to predict energy consumption for devices that are highly correlated

with ambient conditions; for example, Section 2.3.1 shows one example of a model de-

veloped to perform computationally inexpensive, short-term wind forecasting. These

statistical learning methods require model parameters to be set before data is passed

in, such as determining how continuous variables should be discretized, or approxi-

mating the shape of noise. The success of these models is highly dependent upon the

preset parameters.

Due to the challenge and importance of selecting appropriate model parameters,

machine learning presents an alternative that does not require physical parameters

to be known beforehand; these parameters can be learned by the model instead. Be-

fore the prevalence of IoT devices and accompanying “big data” that exists today

at increasing volumes, machine learning models could only be adequately trained at

longer timescales due to the absence of sufficient training data for shorter timescales.

For this reason, there exist gaps in the types of approaches used to do short-term

prediction with low computational cost. More specifically, most machine learning

approaches that have been developed today demonstrate the effectiveness of com-

plex deep learning models in learning long-term trends even with noisy data. The

machine learning models most successful in learning these trends also generally have

the most complex model architectures and are therefore the most computationally-

and memory-intensive. Despite this downfall, there has not yet been adequate explo-

ration of developing computationally efficient, short-term, household-level predictive
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models. Machine learning methods are well-suited for this type of problem because

these models can derive patterns directly from data which might be noisy or might

not have clear physical intuition. The possible solution space will not be bounded by

some fixed expected form, since the physical parameters necessary for most statisti-

cal models can be learned rather than preset. An important caveat to this proposed

advantage is that machine learning models themselves are parameterized as well.

However, these parameters are not typically on the form of the data, but instead on

the learning architecture, and the process by which a model arrives at a solution.

1.2 Unsolved Problems

Machine learning strategies for energy forecasting have been designed to predict long-

term aggregate energy usage, and have been highly successful at satisfying that goal.

However, the success of these strategies is not directly transferable to implementation

in the grid, because smart device-enabled end node participation requires computa-

tionally efficient models in terms of time and space. A largely unsolved question

is whether machine learning is a more accurate forecasting tool at the short-term

household level, or if statistical methods should continue to be used.

The motivation behind developing household-level prediction models is largely

driven by the desire to incorporate them in responsive and dynamic grids. A ma-

jor concern with such an implementation, where devices communicate directly with

the grid, is that this two-way exchange exposes both parties to many potential vul-

nerabilities in terms of cybersecurity. Insecure demand response systems could lead

to major problems such as privacy leakages, hardware failure, or power outages. For

these reasons, as we move toward more connected and interactive grids, security must

be at the forefront of design decisions.
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1.3 Thesis Goals

1.3.1 Summary

The goal of this thesis is to evaluate existing options and explore new machine-

learning backed options for short-term household-level energy forecasting with low

computational cost. This goal is largely enabled by the increasing number of IoT

devices that are tracking household energy usage, thus opening the door for more

data-based energy forecasting. Some of the recently developed strategies discussed in

Chapter 2 use machine learning to train complex models capable of using historic data

(and sometimes other spatio-temporal factors) to learn usage patterns. However, a

downside of these models is that they are computationally expensive, requiring high

memory and storage. Making models that are computationally efficient is crucial

for being able to make real-time predictions at high levels of granularity and for

being able to distribute this computation. Looking ahead toward an energy future

with more adaptation logic moving away from system operators and towards the end

users, local computation will enable a scalable model where end users can be dynamic

participants in a secure and distributed smart grid.

1.3.2 Primary Objectives

Objective 1 : Evaluate different machine learning energy forecasting models

and compare their predictive capabilities with existing statistical models.

Objective 2 : Design a system architecture for a blockchain-backed en-

ergy system, and assess the underlying blockchain architectures that align

well with the goals of such a system.

1.3.3 Outline

The remainder of this thesis is outlined as follows: Chapter 2 provides background on

the current structure and state of the electricity grid, and introduces new directions
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that grid management is moving towards. This chapter also includes a discussion

of existing models for predicting energy usage. Chapter 3 demonstrates the effec-

tiveness of various modeling experiments using both statistical and machine learning

approaches for short-term household energy usage prediction. These predictions can

be used by the various components of a smart grid system in order to generate optimal

bids and schedules. An explanation of blockchain technologies relevant to energy is

provided in Chapter 4, in order to provide background for the system design presented

in Chapter 5. This design focuses on the interactions between distributed energy re-

sources and local neighborhood-scale compute nodes, with a focus on system security

given the types of components participating in the system. Chapter 6 concludes with

the contributions of this thesis, and future work.
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Chapter 2

Energy Grid Background

2.1 Today’s Energy Grid

2.1.1 US Energy History

At a high level, the way that electricity travels from a power plant to a consumer can

be broken into four stages: generation, transmission, distribution, and retail [2]. In

the US, generation has typically come from a variety of renewable and nonrenewable

sources, from coal and natural gas to solar and hydro power, shown in Figure 2-1.

Figure 2-1: US energy generation comes from a mix of different sources, both renew-
able and nonrenewable.

To manage the electricity grid in the face of this array of generation sources, the
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traditional model of US utilities was that of a fully vertically integrated utility, where

a single entity had control over all four stages of the supply chain. This business

model was supported by the fact that electricity generation was believed to be a

natural monopoly, where high upfront costs created a cost-related barrier to entry.

This meant that even without any prohibitive policies, there would be little economic

incentive for other parties to enter the market, due to an inability to compete. The

National Energy Policy Act of 1992 marked a shift in energy policy by legalizing and

outlining a market for competitive wholesale electricity generation [3]. This allowed

private entities, known as “merchant generators”, to participate in the wholesale

electricity market, bringing about competition in a previously monopolized system.

The rationale behind restructuring the market and moving away from a monopo-

lized system was to provide consumer benefits due to better-aligned incentives. Dereg-

ulation could introduce competition that would in turn motivate market participants

to drive down marginal costs. This could be done at the level of a single plant improv-

ing their operating costs, or at the dispatch level, since building a system to support

a mix of plants could improve coordination between regions as well. While many of

these positive changes were reflected as the number of deregulated systems increased,

a deregulated market also resulted in a new set of technical challenges. In a deregu-

lated, wholesale electricity market, generators submit bids for electricity production.

These bids can come in many different forms depending on the market, and the de-

tails of when different generators will participate in production vary in complexity.

Additionally, these bids can be placed in advance and over varying timescales. Initial

attempts at deregulation demonstrated a need for improved market design to support

this new system. One such change was adjustable electricity pricing, making demand

more elastic to prevent the kinds of fluctuations seen in what is now known as the

California Electricity Crisis [4].

2.1.2 Independent System Operators

To manage modern deregulated wholesale electricity markets, ISOs were established

to maintain balance in grid operations. Since electricity has historically been costly
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to store, the role of an ISO is to match supply and demand such that electricity needs

are met at all times. This task is challenging, because there is little margin for error

– mismatched supply and demand change the frequency of the grid’s electricity, and

large changes in frequency are damaging to the hardware [2]. ISOs rely upon pre-

dictions for a variety of purposes ranging from setting appropriate prices to deciding

which power plants need to be in operation. Different use cases require different levels

of granularity and access to different data. For example, prices might be set one day

ahead, but demand needs to be satisfied every second.

2.1.3 Rise of Prosumer Behavior

The use of renewable energy is on this rise, particularly as concerns about climate

change grow. Renewable energy sources such as solar and wind require more grid

support than fossil fuels, because they are inherently intermittent sources. Since this

inconsistent output does not necessarily align with demand for energy, a responsive

grid system is necessary to ensure that demand can be met. The idea of end users

being not only consumers, but instead “prosumers” who both consume and produce

energy puts additional strain on the grid. Prosumer behavior is becoming increasingly

economically viable as energy storage becomes more affordable, and household-level

generation sources like rooftop solar gain traction. The adoption of these and other

distributed energy resources (DERs) requires a strategy for integrating them into

existing infrastructure. DERs also introduce the possibility of shifting more logic and

energy exchange closer to the end users in local transactions.

2.2 Toward Smarter Grids

2.2.1 Demand Response

Unlike most other services, energy users are typically passive consumers who use en-

ergy without regards to the current price, then pay for that usage at the end of their

payment period based on their energy provider’s price. Contrast that with a model
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where energy consumption is dependent upon transparent energy prices that are con-

stantly changing in response to the market. This second type of model presents the

opportunity to increase efficiency and save consumers money. Consumers could be

encouraged to use energy at lower price times, and built into these economic incen-

tives, peak loads would be leveled out and redistributed. Unpacking this a bit more,

if we assume that when energy demand is high, prices will be higher, then there may

be the opportunity to reduce strain on the grid by economically incentivizing con-

sumers to decrease their consumption during peak periods and increase consumption

during off-peak periods instead. This would offer the dual benefit of both reducing

maximum load capacity, and lowering the rate of change. One option to provide this

type of economic incentive would be to add tariffs or offer payments to users who

adjust their usage to help optimize these loads.

Smart devices (i.e. smart thermostats, water heaters, etc.) enable this type of

responsiveness without requiring a consumer to take any direct action, and potentially

without having any impact on their realized usage. For example, imagine a scenario

where a consumer has an electric vehicle that they charge overnight in their home,

with the requirement that in the morning when they leave for work, their vehicle must

be fully charged. A smart charging device could be programmed such that rather than

charging the vehicle fully as soon as it gets plugged in, the device is charged during

the 4 hour window over the course of the night where the predicted prices are the

lowest.

Demand response motivated through economic incentives can be described as

transactive energy management (TEM). These economic incentives can be used for

load management on both the supply- and demand-sides. One example of a system

designed to model and simulate transactive energy management is the novel Dynamic

Monitoring and Decision Systems (DyMonDS) framework, discussed further in sec-

tion 5.3 [5]. At a high level, DyMonDS supports scaling by operating under the

proposition that each power system agent needs to share only minimal information

with its neighbors (defined by some interface), and can still arrive at the same op-

timal energy allocation solution as a fully centralized method; treating each device
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as its own black box with specified inputs and outputs reduces the complexity of an

otherwise intractable high-dimensional optimization problem. Power system agents

are thus abstracted to the level of detail specified by their interface variables. With

this type of system, electric power systems can become active participants in the grid,

where agents participate by placing bids based upon predicted knowledge and their

own physical constraints [6].

Figure 2-2: Example of a smart household setup, adopted by the Pecan Street house-
holds whose data is used for this thesis. Facilitated by the Network Optimized Dis-
tributed Energy System (NODES), smart homes communicate with the grid, and
receive signals from the retail market. Within a household, individual devices com-
municate with a smart BluCube device, which is then responsible for communicating
with the broader grid system. This figure shows one example of a household with two
smart devices: an electric vehicle charger an HVAC system.

Each device has a unique set of physical constraints that define its ability to par-

ticipate in such a system, but we can represent different devices with a common model

that includes a device controller as well as the mathematical equations describing the

physically defined parameters. The controller must also be aware of external distur-

bances that influence device behavior, and impact how the device should respond to

various higher-level signals. For example, if there is a household with a smart HVAC

system, we can imagine that if we know that the temperature outside is very hot, and

have learned that at a particular time of day, people tend to frequently open doors

(letting hot air into the household and requiring more energy to keep the household at

a constant temperature), then the controller can use this information when determin-

ing the optimal device settings and communicating its needs to the grid. Figure 2-2
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shows an example of a connected household setup with a smart home capable of com-

municating with the grid; this is the setup used in the Pecan Street homes whose

data is used in this thesis.

2.3 Previous Modeling Work

2.3.1 Low-Memory Statistical Models

Increasing volumes of data and IoT devices do not guarantee that machine learning

will be the best approach to energy forecasting. Despite the potential benefits of

machine learning previously discussed, current research is also ongoing for exploring

more traditional statistical methods within these new contexts, such as in [7]. These

models were constructed with the explicit goal of achieving high accuracy with less

data, while balancing the trade-off between accuracy lost when ignoring some features.

They found their daily predictions at 30 minute intervals to have comparable results

to Artificial Neural Network (ANN) models, due to the ability to better generalize

than the highly parameterized ANN models.

In a wind-specific example, the primary goal is to develop a data-driven statisti-

cal model that is both interpretable, and capable of capturing the rapidly-changing

dynamics of wind [8]. Three of the models explored were a persistent forecasting

model, an autoregressive model, and a novel “spatio-temporal trigonometric diurnal

model”. The persistent forecasting model assumes that the wind reading for the next

period will be the same as the current reading, which works well for very short term

forecasting. The autoregressive model assumes future windspeed is a linear combina-

tion of past wind speeds. The final model is a space-time statistical model that takes

into account spatio-temporal information as well as past data; it assumes variation in

wind data follows a normal distribution (truncated to the non-negative, real domain),

so building this model requires picking appropriate parameters to define this normal

distribution.

These are just a few examples of an area of research dedicated to improving energy
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modeling. In general, a commonality between these models is that there is an ongo-

ing challenge to balance model complexity with generalizability and computational

efficiency.

2.3.2 Existing Machine Learning Approaches

Some work has been done to use machine learning for energy forecasting, and to com-

pare it to more traditional mathematical approaches. In [9], predictions are made

for every minute of a 2 hour period. The baseline math model used is an Auto-

Regressive Moving Average (ARMA) model. They compare this to a Support Vector

Machine (SVM), and two different ANNs – a Nonlinear Auto-Regressing (NAR) re-

current ANN, and an Long Short-Term Memory (LSTM) network. These two ANN

models are well-suited for timescale predictions because both maintain some concept

of “memory”. For each timestep, the NAR tracks the actual values from n previous

timesteps, and also the most recent predicted value using the same network struc-

ture. For the LSTM, memory cells are used instead of neurons as the base unit for

the machine learning architecture. These can store up to an unbounded amount of

historic data, making it a good model for time-series data with potentially long time

dependencies. For timesteps greater than 40 minutes, the two ANN approaches were

the most successful, but for 0 to 40 minutes, the SVM performed the best. All these

models performed better than the baseline ARMA model.

A more complex deep learning approach is taken in [10], where a combination

Convolutional Neural Network (CNN) and LSTM model is used for electricity price

forecasting. This paper also discusses many existing approaches that have been taken

for price forecasting. The focus of this thesis is on predictions for usage rather than

price, but usage is used to determine price, and price can be used as a driver for

usage change, so the two are closely connected. Their findings determined that SVMs

sometime fail to learn data trends, and thus lead to highly volatile results. While the

other models were much less volatile, their hybrid architecture that combines findings

from different types of models outperformed all other machine learning approaches

for predicting hour-ahead data based on the previous 24 hours.
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In [11], some previous ANN approaches for energy prediction are discussed that

take ambient conditions into account. A challenge with ANNs (like any parameterized

method) is that optimal parameter tuning can have a large impact on model accuracy,

but can also be highly dataset dependent. This makes it challenging to use models

designed for one dataset out-of-the-box and apply them to another, even if the form

of the data is the same. For this reason, the approach to developing an accurate

model is just as valuable as the architecture of the model itself, such that the same

reasoning can be extended to different datasets if it is the case that the original model

was overfitted to the given data. This paper found that the most promising methods

were those that combined neural networks with other algorithms (e.g. using machine

learning for model parameter estimation).
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Chapter 3

Data-Driven Forecasting

All of the data used in this chapter is drawn from the Pecan Street Dataport [12].

The analyzed usage data is collected per device every 15 minutes. See Appendix A

for more information about the data.

3.1 Baseline Statistical Models

Robust statistical and machine learning approaches like those discussed in Chapter 2

demonstrate the ability of existing models to well-encapsulate energy usage while

taking advantage of spatial or temporal aggregation to smooth out fluctuating real

time usage patterns. To see if these types of models translate well to household-level

energy forecasting, we use as baseline a “persistent” model (PSS) that predicts that

the energy usage in period t will be the same as the usage in period t − 1. PSS

modeling tends to perform well for short-term forecasting like the 15-minute-ahead

modeling done here. Coupled with the fact that the energy data being modeled is

linked with physical constraints and usage behaviors that prevent large fluctuations,

any models that outperform PSS can be considered quite successful [8].
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3.1.1 Error Metrics

To evaluate model performance and compare the baseline, statistical, and machine

learning approaches, we use mean absolute error (MAE) and mean squared error

(MSE). Let yj be the true energy consumption value at certain time, and ŷj be the

predicted value, across n total samples.

MAE =
1

n

n∑
j=1

|yj − ŷj|

MSE =
1

n

n∑
j=1

(yj − ŷj)2

For models that outperform the baseline, we indicate the percent improvement of

each of these metrics relative to the baseline PSS model.

3.2 Stochastic Modeling

The primary statistical model that we will analyze in this thesis is a model recently

developed for simulating usage based on data collected at 15-minute intervals, like

the Pecan Street data [13]. We will reconstruct this model, developed for simulating

load at the substation level, and apply it to the household level. The model combines

learning from many prior modeling attempts by leveraging a Markov approximation

for modeling transitions from one time period to the next, but adds an additional

layer of complexity by using historical data to take daily periodicity into account.

3.2.1 Preliminary Energy Usage Representation

We begin with the assumption that we have one typical daily load “profile” type,

meaning that we evaluate all daily observations as if they all belong in a single cluster.

This assumption is relaxed in Section 3.2.3. In this model, load usage is represented

as a stochastic process, so the inputs to the model are individual observations of load

usage. To demonstrate the construction of this model, we will first walk through a toy

example, only using observations for days within one particular month (these results
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are for June 2016). Data is collected every 15 minutes and summed across all devices

within this individual household, termed “use” in the given dataset. For each of the

96 time periods per day, we take the mean across all of the different days, shown in

Figure 3-1.

Figure 3-1: Mean daily use values, where the shaded range spans one standard devi-

ation above and below the mean. Power is measured in kW.

The mean values for each of the 96 time periods are then sorted in increasing

order, and scaled such that they represent a cumulative distribution function (CDF),

as shown in Figure 3-2. This CDF can be used to divide the space of possible usage

values into discrete states. This example is divided into NUM STATES = 6 equally

sized states. Note that the number of states can be increased such that the mean for

the state more closely represents the encapsulated data, but highly granular states

will involve jumps between states for small fluctuations. This division into discrete

states gives us an initial probability of being in each state, denoted as pi s, a vector

of length NUM STATES whose values sum to 1; for equally sized states, the probability

of being in any given state is simply 1/NUM STATES.
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Figure 3-2: CDF of mean usages values for each 15-minute time segment (96 segments

per day).

To find the stationary transition probabilities between each of these states, we

can walk through the mean values over the course of the day, and count the number

of times we see a transition from one state to another. Note that this is counting

the transitions across the day of the mean values shown in Figure 3-1, rather than

counting the transitions for each individual daily observation. Let stationary P be

the matrix of dimension NUM STATES× NUM STATES counting these transitions, where

stationary P[i][j] is incremented for each transition from state i to state j, as

shown in Figure 3-3.


10 6 1 0 0 0
6 6 4 0 0 0
0 3 7 3 3 0
0 1 3 7 5 0
0 0 0 6 5 4
0 0 1 0 3 12


Figure 3-3: Transition matrix given 6 sorted states, demonstrating the trend that the
transition counts are grouped along the diagonal of the matrix. This indicates that
usage tends to stay in the same state for consecutive time periods.
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Intuitively, the observation that the transition matrices have higher values along

the main diagonal supports the generally accepted claim that PSS is an appropriate

baseline model, since a value at the diagonal indicates that mean usage stayed within

the same state between two consecutive periods.

3.2.2 Refining the Model

Notice that with the model so far, the probability of being in a particular state is

fixed and equal to the value at the state’s index in pi s. However, energy usage

behavior exhibits daily periodicity (in addition to being impacted by other periodic

factors), which these pi s state probabilities fail to take into account. To take daily

time-dependency into account, the probability of being in each state will be assigned

per time period. Each state has its own mean usage value, so state probabilities are

assigned such that the expected value during a given time period is exactly equal to

the observed mean. This is an under-determined problem, so the reweighting is done

such that it deviates from the original pi s as little as possible. The result is a new

set of state probabilities, one for each time segment.

Next, the transition probabilities are adjusted such that they are compatible with

the reweighted state probabilities. More specifically, the transition probabilities must

satisfy the condition that the total probability of transitioning from any of the pre-

vious states into a particular state is equal to the adjusted state probability. This

is again an under-determined problem, so we will select these values such that they

deviate as little as possible from the original stationary P values. The matrix equa-

tions used to generate these adjusted state and transition probabilities are shown

explicitly in [13].

Once these adjusted matrices are successfully calculated, the original paper uses

them to simulate daily loads. New simulated loads are generated through Markov

chain Monte Carlo (MCMC) sampling. Each of the plots in Figure 3-4 is an inde-

pendent simulated load, constructed assuming 6 states. Figure 3-5 shows simulated

models for the same data, but with 3, 12, and 24 states.
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Figure 3-4: Orange is the observed daily mean over the day, blue is simulated (with

6 states)

36



Figure 3-5: Sample simulation with 3, 12, and 24 states (left, center, right)

3.2.3 Clustering Loads

In this section, we relax the previous assumption that all load profiles fall into a single

load profile type. Rather than gathering all the daily loads together, we instead cluster

the loads into different profiles based off the shape of the load over the course of the

day. The approach used here (suggested in the original paper as a possible clustering

mechanism) is k-Means clustering of the load profiles. “Inertia” measures the sum of

squared distances of samples to their closest cluster center. Inertia will decrease as the

number of clusters k increases, but increasing k also increases the risk of overfitting.
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Figure 3-6: The inertia of the k-means clustering decreases as the value of k increases.

Note that there is not a particularly distinct “elbow” in this graph, which would point

to an optimal k value.

To determine an optimal value of k, we will look for an “elbow” in the graph of

inertia vs k, and select the k value at that transition point. Ideally, the shape of this

graph would be such that as k increases, inertia decreases steadily up to a point, then

levels out. We pick k to be at that levelling out point (the “elbow”), since smaller

k reduces the risk of overfitting, and increasing k beyond that point does little to

improve inertia. The actual inertia graph for this data is shown in Figure 3-6, and

the resulting clusters for k=10 are shown in Figure 3-7. The matrix modeling process

previously discussed can be carried out independently for the data within each of the

clustered load profiles.

3.2.4 Predictions

The transition matrices between states provide a mechanism for prediction as well as

simulation. Transition matrices have the additional benefit of indicating not only the

expected next step, but also show other possible next states with some probability.

Two different approaches are taken to using the transition matrices for prediction.

Given the time of day and the previous usage value, the predicted next value will be

equal to 1) the mean value for the maximum likelihood next state or 2) a weighted av-
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Figure 3-7: k-means clusters for k = 10

erage of the means of the next possible states, using the transition probability weights.

These will be denoted as “max” and “dot” prediction, respectively. Notice that due to

the Markov assumption, real-time energy prediction can be done using these methods

by evaluating a single vector within one time-period’s transition matrix.

For the statistical model, real time prediction requires one transition matrix for

each time period across the day for each cluster. For the model selected here with

12 possible states, 96 time periods, and 6 clusters, the amount of memory required is

12*12*96*6*8 = 663552 bytes, assuming 8 byte matrix values.
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Clustering is challenging for prediction problems because each day as a whole is

assigned to a cluster, so at the beginning of the day, the cluster is not yet known.

These prediction experiments assume that a day will belong to the same cluster as

the previous day. Figure 3-8 shows that while this may be a reasonable assumption

for some households where adjacent days are typically within the same cluster, the

assumption may be insufficient for others, whose clusters appear randomly dispersed.

Potential future work includes how to better predict clusters, or how to generate more

human interpretable clusters.

Figure 3-8: Load profile clusters as determined by daily k-means clustering for two
different households. Each of the 6 clusters is assigned a different color. The clusters
for the household on the left appear to correlate with seasonal variation, while the
clusters on the right are not so readily interpretable.

3.2.5 Results and Discussion

Performance varies household to household, but we will look at two households that

encapsulate some of different modeling outcomes. These are the same households

whose data is displayed in Figure A-1 and Figure A-2, and despite the differences

between these households, the trends between models are consistent, and consistent

with the dataset as a whole. All of the results shown in Table 3.1 are for the afore-

mentioned statistical model, conducted with 12 states and 6 clusters.
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Household 1 MAE MSE Model Size (bytes)
Baseline PSS 0.370 0.475 8

No cluster, dot 0.410 0.449 1.11e5
No cluster, max 0.405 0.447 1.11e5
Clustered, dot 0.409 0.458 6.64e5
Clustered, max 0.413 0.504 6.64e5

Household 2 MAE MSE Model Size (bytes)
Baseline PSS 0.448 0.587 8

No cluster, dot 0.514 0.605 1.11e5
No cluster, max 0.505 0.601 1.11e5
Clustered, dot 0.486 0.569 6.64e5
Clustered, max 0.505 0.842 6.64e5

Table 3.1: Results of statistical modeling experiments relative to the PSS baseline,
using 12 states and 6 clusters

These results indicate that the baseline model performs better than the stochastic

statistical model when applied to household level energy usage, but also that clus-

tering seems to be a useful technique for the model. The particular results shown

here seem to indicate that using the dot product prediction approach is better when

using clustered data, and the max prediction approach is better for unclustered data,

but across a wider dataset, there is no clear winner between them. One potential

downside of both of these prediction strategies is that they are bounded by the mean

value for the lowest-valued bucket the mean value for the highest-valued bucket. For

this reason, the model always fails to accurately predict high spikes in usage because

the prediction will never rise above the mean value for the highest bucket for either

strategy.

For Household 1, the mean energy usage value across the day is 0.657, so the

baseline error represents a 56.3% error rate, with even larger error for the statistical

model. To try to understand why there is such a high error rate, we start by looking

at the spread of the data. The mean standard deviation value across the 96 time

periods is 0.724, with the mean and standard deviation across all 150,000 samples

shown in Figure 3-9. Upon initial inspection, there is clearly a wide spread in the data.

Ideally, clustering would help with this high spread of data, and for some clusters, the

41



Figure 3-9: Mean daily use values for Household 1, where the shaded range spans one
standard deviation above and below the mean. Power is measured in kW.

prediction accuracy is quite high. However, even clustering fails to capture a subset of

the days whose predictions are highly inaccurate, making the overall clustered results

comparable to the unclustered results. This can be seen in Table 3.2, where despite

the fact that a plurality of results fall into Cluster 2, with the lowest error metrics,

the results are greatly skewed by the high error predictions in the Cluster 5.

Household 1 MAE MSE Cluster Size
Cluster 0 0.419 0.529 2784
Cluster 1 0.423 0.453 5376
Cluster 2 0.348 0.406 12096
Cluster 3 0.411 0.458 3456
Cluster 4 0.441 0.387 4992
Cluster 5 0.812 1.18 1152
Overall 0.409 0.458 29856

Table 3.2: Error metrics from Household 1 for each cluster, using dot prediction.

However, even for the highest accuracy cluster, an MAE of 0.348 is still 53.0%

error relative to the mean of 0.657. It is not entirely surprising that the 15-minute

time periods are extremely challenging to predict due to high fluctuations that are

typically smoothed out in predictive models that average over longer time periods.

Therefore, the fact that this model relies heavily upon mean values over each day does

not give the model the capacity to match the volatile nature of the actual usage values.
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This can be clearly seen by comparing the shape of the representative cluster loads

in Figure 3-10 to a random snapshot of real usage over the course of five consecutive

days, shown in Figure 3-11.

Figure 3-10: Representative clusters for Household 1 data, found using k-Means clus-
tering with 6 clusters

Figure 3-11: Snapshot of daily usage for Household 1, where the vertical red lines
divide days.
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3.3 Machine Learning Experiments

3.3.1 Feature Engineering

Overall Approach

Many machine learning models are capable of deriving meaning from relatively un-

structured data. However, understanding the nature of the data being modeled is

important for deciding what types of inputs should be passed in, and enables more

sophisticated engineering of the features being passed into the model. The goal of

these experiments is not only to see if any basic machine learning models demonstrate

superior predictive capabilities relative to statistical models, but also to determine

what type of features inform accurate predictions.

General Cleaning

Some households do not have (or do not have detection for) all of the possible devices

listed in Table C.2, so columns referring to undetected devices were removed. Addi-

tionally, sparsely throughout the dataset, there are some entries where one particular

device lacks data. For simplicity, those entries are removed from the dataset. Some

of the machine learning models are sensitive to input scaling, so the weather data

values which have highly varied units are adjusted by removing the mean and scaling

to unit variance.

Handling Periodicity

A challenge of modeling highly time-dependent data is passing in time as an input

while maintaining a measure of relative closeness. For example, looking at the hour

of a day, a prediction model might learn that usage tends to be similar at times that

are closer together. However, if we pass in hour of the day as a value between 0 and

23, then this model will see 0 and 23 as being the furthest apart and the least similar,

whereas they are in fact adjacent times. To account for this, periodic features are

split into two components: a sine component and a cosine component. In this case,
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hour 4 is instead represented with sin hour = sin(4/24) and cos hour = cos(4/24).

This both regularizes the data and maintains relative temporal distance.

Some known time-dependent trends are directly passed into the model as distinct

features. For example, given the knowledge that PSS is an effective model for short-

term forecasting, when predicting the usage at time t, the usage at t − 1 is passed

in directly as a parameter (along with the 7 periods before). Daily periodicity is

another known trend; the entire statistical model from [13] is built off the assumption

that daily periodicity exists. To take this into account, when generating the usage

prediction at period t on day d, we will also pass in usage at period t on day d − 1

(and the 7 days before).

3.3.2 Selection of Meaningful Features

Identifying the features that are helpful for prediction was done iteratively by in-

crementally adding in or removing features depending on their effect on model per-

formance. Specific numerical values referenced in the preliminary evaluation in this

section are for particular households, but the takeaways from feature selection and

model comparison hold generally across households in the Pecan Street dataset with-

out loss of generality.

kNN for Feature Selection

A simple kNN model was used for preliminary evaluation of relevant variables to

include in the prediction models. kNN is very sensitive to scaling, and a refined

model would require a distance metric optimized for the particular input data. For

the generic kNN model here, weather data (whose range is highly varied across the

different types of measurements) are scaled to unit variance with the mean removed.

The default scoring mechanism used between kNN trials is the coefficient of determi-

nation R2, which is sufficient to differentiate between including particular variables

for this coarse initial pass through the data.

For a kNN model using only weather and temporal variables, excluding any data
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on usage from previous time periods, the kNN model suggests that year can be ex-

cluded, and that day-of-year better encapsulates annual information than the combi-

nation of month-of-year and day-of-month. For this type of model, kNN with k values

between 3 and 10 achieved peak R2 scores; the highest score was 0.361. A prediction

model that did not rely on usage from previous intervals would be an extremely pow-

erful tool, because predictions could be made far in advance, and would not require

much (if any) real-time computation.

However, as a separate experiment, only previous time period predictions were

used, and this model achieved significantly higher R2 scores. Depending on the num-

ber of previous intervals included, all of these models achieved peak R2 score with on

the order of hundreds of neighbors. All of the models performed similarly, but the

best such model included the previous 5 intervals, for an R2 of 0.472. This confirms

that fluctuations of household level data at short time spans prove too challenging to

model without taking real-time data into account.

Combining these two types of experiments, and using weather and temporal data

in addition to previous usage values, R2 for the kNN model decreased slightly to 0.455.

For more robust models, adding inputs should not decrease prediction accuracy, only

increase training time as the model learns to ignore superfluous features. The final list

of variables included as inputs to the machine learning models is listed in Table 3.3.

3.3.3 Prediction

The models included in these experiments include RF, MLP, and SVR (see Ap-

pendix B). These models were selected because they can be constructed to have simple

architectures while generally maintaining predictive power; they have also been used

in previous work at aggregate levels, so they are used again here to determine whether

their modeling capabilities as demonstrated at the aggregate level translates effec-

tively to household-level prediction. Additionally, the architectures are varied across

these models with the aim of gleaning more insights into what type of input data

is useful for predictions and how those inputs can best be combined. The learning

models explored here are built with the intention of being implemented in distributed
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manner, enabling more local computation, so memory and processor-intensive deep

learning approaches are not evaluated in this thesis. However, a better understanding

of household-level usage can serve to guide the direction for more refined deep learn-

ing models, which have already proven to be powerful tools for long-term prediction

at aggregate levels [11, 10].

Each model was tuned independently by splitting the data into a training set with

80% of the data and a test set with the remaining 20%, selected randomly across the

dataset. The different models require particular intrinsic values to be set beforehand

that parameterize the architecture of the model. To find the optimally tuned model,

a grid search of the parameter space was performed to determine the best version of

each type of model.

RF

The RF models validated the kNN conclusions about the types of useful features;

namely that the excluding previous usage as an input results in much lower predictive

accuracy than the results with only previous values, with R2 values of 0.372 and 0.483,

respectively. The combined model, with both types of features, had the highest score

with R2 = 0.547.

The multiple decision tree base of the RF structure enables the model to estimate

the relative “importance” of the input features, defined as the features whose variance

best characterize the variance of the dataset. The relative importance of the features

included in the combined model are shown in Table 3.3. Additionally, since RF

regression is robust to feature scaling, this type of modeling is a particularly useful

tool for determining what to pass into the model without additional preprocessing.

The selected RF model uses 10 estimators with a maximum depth of 10 levels.

Results for Household 1 and Household 2 are shown in Table 3.4. The size of this

model is 8.36e5 bytes, comparable to the size of the statistical model described pre-

viously. Increasing the number of estimators improves predictive accuracy, but also

increases model size. For example, for Household 1, using 1000 estimators and with

no bounds on maximum tree depth, the RF model achieves MAE of 0.341 and MSE
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feature RF importance (H1) RF importance (H2)
temperature 0.0148 0.0106
dew point 0.00850 0.00683
humidity 0.00963 0.00573

apparent temperature 0.0181 0.00916
pressure 0.00960 0.00602

wind speed 0.00869 0.00621
cloud cover 0.00469 0.00298

precip probability 0.00171 0.00225
sin hour 0.00559 0.0101
cos hour 0.0224 0.0172

sin minute 0.00139 0.000784
cos minute 0.00160 0.000961

sin dayofyear 0.00723 0.00882
cos dayofyear 0.00856 0.00777
dayofweek 0 0.000335 0.000528
dayofweek 1 0.000756 0.000237
dayofweek 2 0.000495 0.000502
dayofweek 3 0.000478 0.000291
dayofweek 4 0.00114 0.000273
dayofweek 5 0.000411 0.000339
dayofweek 6 0.000506 0.000593

1 intervals before 0.713 0.740
2 intervals before 0.0318 0.0224
3 intervals before 0.0234 0.0151
4 intervals before 0.0255 0.0599
5 intervals before 0.0204 0.0188
6 intervals before 0.0151 0.0124
7 intervals before 0.0256 0.0106

1 days before 0.00172 0.00323
2 days before 0.00236 0.00356
3 days before 0.00285 0.00362
4 days before 0.00219 0.00288
5 days before 0.00346 0.00358
6 days before 0.00305 0.00270
7 days before 0.00267 0.00307

Table 3.3: Relative importance of input features for the RF regression model. The
feature that varies more importance than any of the others by an order of magnitude
is “1 intervals before”, which stores the usage value from the previous 15 minute time
period.
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of 0.313, but this model also requires 8.50e9 bytes of storage, and is significantly more

time consuming to train for only marginal accuracy gains.

MAE MSE
Baseline (H1) 0.370 0.475
RF (H1) 0.344 (-7.03%) 0.315 (-33.7%)
Baseline (H2) 0.448 0.587
RF (H2) 0.400 (-10.7%) 0.404 (-31.2%)

Table 3.4: RF results for model with 10 estimators and maximum depth of 10 levels

MLP

As previously discussed, deep learning models that have received a lot of attention

as a new tool for long term forecasting will not be considered due to the physical

limitations of embedded smart devices. However, this does not mean excluding all

layered neural networks, and basic MLP models are considered here. Different layer

architectures and the resulting errors and size of model are shown in Table 3.5.

All of the architectures shown are sized comparably to the statistical model, and

the error metrics indicate that the larger MLP models do not improve model per-

formance. While there is no clear winner amongst the architectures in Table 3.5, we

select the (32, 32) hidden layer architecture as the best model representative of the

MLP approach to be used for further comparison.

SVR

Constructing an SVR model using all of the household data is computationally infea-

sible for most household IoT devices within the desired timeframe (order of minutes).

With all of the data, this model achieves low error results with MAE of 0.328 and

MSE of 0.350. Despite these relatively high accuracy results, in order for the cal-

culation to be computationally feasible for the desired use case, the training dataset

was reduced to 4% of the original size. Artificially restricting the possible learning is

not an ideal way to reduce model size, but the predictions are still comparable to the
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Layers MAE MSE Model size (bytes)
(8) 0.364 0.339 1.77e4

(8,8) 0.360 0.336 2.04e4
(8,8,8) 0.351 0.334 2.31e4

(8,8,8,8) 0.354 0.336 2.54e4
(16) 0.364 0.337 2.75e4

(16,16) 0.353 0.331 3.56e4
(16,16,16) 0.361 0.336 4.45e4

(16,16,16,16) 0.350 0.336 5.25e4
(32) 0.363 0.336 4.55e4

(32,32) 0.350 0.333 7.89e4
(32,32,32) 0.351 0.335 1.13e5

(32,32,32,32) 0.348 0.340 1.48e5
(64) 0.370 0.337 8.38e4

(64,64) 0.355 0.332 2.15e5
(64,64,64) 0.357 0.334 3.49e5

(128) 0.359 0.334 1.58e5
(128,128) 0.361 0.332 6.86e5

(128,128,128) 0.355 0.333 1.21e6

Table 3.5: Possible MLP hidden layer architectures, where “Layers” describes the
hidden layer structure (i.e. (16, 16, 16) has three hidden layers between the input
and output layers, and each hidden layer has 16 neurons)

other ML models with MAE of 0.354 and MSE of 0.350. Results from all machine

learning models are summarized in Table 3.6.

3.3.4 Results

The final selected results for the machine learning models discussed in Section 3.3.3

are shown in Table 3.6. All models demonstrate superior predictive performance over

the baseline PSS model, with RF regressor being the best predictor.

MAE MSE Model Size (bytes)
Baseline 0.370 0.475 8

RF 0.344 (-7.03%) 0.315 (-33.7%) 8.36e5
MLP 0.350 (-5.41%) 0.333 (-29.9%) 7.89e4
SVR 0.354 (-4.32%) 0.350 (-26.3%) 8.40e5

Table 3.6: Household 1 results for the aforementioned ML models
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3.4 Takeaways

These results indicate that computationally efficient machine learning models per-

form better than the baseline persistent forecasting model, evaluating performance

based on MAE and MSE for the 15-minute data in the Pecan Street dataset. The

particular statistical modeling approach described in Section 3.2 performs worse than

the baseline model.

Periodicity is a distinctive and important characteristic of energy usage that should

be taken into account in modeling. However, the statistical modeling approach

demonstrates that understanding periodic trends is insufficient for the challenging

problem of predicting highly noisy data. Periodicity is still taken into account in the

machine learning models, but is not explicitly represented in the model architecture.

Instead, it is introduced through the input features.

Statistical models less heavily reliant upon periodic trends that use PSS as a

foundation might outperform the baseline model. However, the machine learning

models still have a major benefit that the structure and relationships between various

features do not have to be set a priori, and can instead be learned. On the other hand,

if these predictions are to be used to extrapolate and understand usage at a higher

level, the fact that results may not be readily interpretable presents a barrier to

understanding the reasoning behind the predictions and behavior. Another downside

of the machine learning models is that bounds on predicted values are not as readily

available as the statistical approach. For these models, error can be used as a proxy

for variance.

An important quality to note about all of the methods described in this chapter

is that training can be done in advance such that whatever model is being used can

run in real time without retraining. The model can then be continually trained and

improved in the background as new data come in, but it is not necessary to entirely

retrain the models in real time given sufficient training data.

In summary, for short-term household-level prediction, machine learning models

that incorporate knowledge derived from other types of modeling about usage patterns
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demonstrate the best predictive performance. Thus, machine learning should be seen

as a powerful tool that will not necessarily replace other types of modeling, but that

can be used in conjunction with other models.

As another example, and one that could be pursued in future work, machine

learning can also be incorporated into physics-based energy usage models where the

shape of the load is known, but the particular parameters are unknown (see Figure 3-

12). Existing research has indicated strong potential for machine learning to predict

physical parameters that can then be used for more traditional models. A particular

type of parameter estimation crucial for managing device-level grid interactions is

being able to accurately model human behaviors within smart homes that cause

devices to respond. For an HVAC system, this could be an estimation of behavioral

patterns that cause disturbances (e.g. opening/closing doors, more people being in

a space increasing the temperature). For an electric vehicle charging system, this

could be estimating patterns of when people connect their vehicles to their charging

devices. Current models assume constant parameters for these power disturbances.

Future work could include exploration of parameter estimation to see if a learnable

pattern can be derived. This is closely tied to modeling granular energy usage, since

these disturbances are directly linked to usage.
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Figure 3-12: The models built for predicting energy usage take in as inputs previous
usage values and/or ambient conditions such as temperature, wind, precipitation,
etc. For both statistical models and machine learning models, there are some intrinsic
parameters (i1, i2, ...) that determine the model architecture. The component outlined
in red shows the difference between the machine learning and statistical models:
machine learning models should be able to learn external physical parameters pi (so
the red boxed portion can be removed), while statistical models will pass these in
explicitly. Alternatively, machine learning models may be able to learn the pi values
to be passed in to statistical predictive models.
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Chapter 4

About Blockchain

4.1 Motivation: Connection to Household-Level

Prediction

In the previous chapter, we discussed methods for improving short-term household-

level energy prediction. Having accurate predictions is incredibly valuable in smart

grid systems to ensure optimal interactions between the distributed participants and

system components. At the device level, improved prediction allows devices to better

prepare for anticipated future usage, and ensure that they have access to the resources

they need in order to satisfy those needs. At the aggregate level, predictions enable

optimal scheduling and energy allocation to the lower level devices.

Given this improved predictive capacity, there is a need for a secure way to commu-

nicate this information between different participants, complying with computation

and temporal constraints. Blockchain is currently being explored as a potential tool

for facilitating these types of interactions, so the remainder of this chapter will focus

on providing some background on blockchain technology and its use cases for energy

systems. Next, in Chapter 5, we propose a novel system architecture that describes

how smart energy devices can be connected to the grid in a secure and dynamic

system.
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4.2 Blockchain Background

Even if electricity consumers are not intimately familiar with the intricacies of pre-

dicting demand response and real-time electricity pricing, most people pay a utility

bill to their local electricity company, and have some intuitive understanding about

how electricity makes its way to their homes. In contrast, most public knowledge

about blockchain is limited to having heard about Bitcoin or other cryptocurrencies.

Bitcoin: the harbinger of popularized blockchain usage that acted as a tipping point

for public awareness about blockchain technology. In 2008, Satoshi Nakamoto’s pa-

per described an implementation for a digital currency boasting the ability to support

secure transactions without requiring a trusted third party [14].

This is partially achieved via a distributed ledger, where every transaction is

completely transparent and publicly available; this can be thought of as a public and

permanent database, where no data are ever erased. The fact that this database can

be viewed by anyone in the system means that if Wallet 1 transfers all of its currency

to Wallet 2, then if Wallet 1 later tries to purchase something, everyone is able to see

that Wallet 1 lacks the necessary funds, without requiring any third party validation.

All transactions, validation, and maintenance is done in a peer-to-peer (P2P) manner,

rather than requiring a centralized authority. More details about how new data is

written to this publicly maintained ledger will be discussed in Section 4.5.

4.3 Pairing Blockchain and Energy

The P2P nature of blockchain has the potential to be a good match for increasingly

P2P electricity systems. One use case includes supporting direct P2P energy trad-

ing systems. Numerous companies are currently exploring test-cases for electricity

microgrids, where microgrid participants can directly transact with each other (see

Section 4.4.3). As generation and transactive capabilities move closer to the end nodes

of the electricity grid, more usage data will enable better coordination between the

different players. More data will give larger-scale system operators improved mod-
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eling to predict consumption and market patterns to reduce strain on the grid. It

will also eliminate the need to for extensive auditing or data validation. Supporting

this conclusion, PricewaterhouseCoopers published an analytical report in 2017 that

identifies six criteria for assessing the potential of blockchain solutions [15]:

1. Multiple parties share data - multiple participants need to view common infor-

mation

2. Multiple parties update data - multiple participants take actions that need to

be recorded and change the data

3. Requirement for verification - participants need to trust that the actions that

are recorded are valid

4. Intermediates add cost and complexity - removal of central authority record

keeper intermediaries has the potential to reduce cost and complexity

5. Interactions are time-sensitive - reducing delays has business benefits

6. Transaction interaction - transactions created by different participants depend

on each other

Blockchain energy companies today are building solutions that satisfy the above

criteria, with a large degree of variation in the types of approaches they are taking.

Introducing blockchain to energy systems not only provides a new behind-the-scenes

implementation of existing grid interactions, but also has the potential to provide

improvements to areas that are not currently being addressed well, if at all. These

areas include cybersecurity, privacy, single-point vulnerabilities, common-mode fail-

ures, and billing [16].

4.4 Blockchain Energy Moves to Industry

The potential for blockchain to disrupt the energy sector has been recognized by

many groups, taking a variety of different approaches to solving energy problems
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using blockchain. A majority of the companies can be categorized into two groups:

energy tracking and demand response.

4.4.1 Smart Contracts and Tokens

Before looking into some examples of these two categories of companies, we first intro-

duce some blockchain-related concepts relevant to the blockchain energy conversation:

smart contracts and tokens. A smart contract is a piece of code that is automatically

executed once an agreed-upon set of conditions is met, typically built on the Ethereum

blockchain. The classic example that Nick Szabo used when first coining the term

was comparing a smart contract to a vending machine: when coins are inserted into

the machine (meeting the conditions), an item falls out of the machine (automatically

executed outcome) back to the person who inserted the coins. On the blockchain,

this asynchronous protocol provides a way for two parties to agree upon an exchange

without needing to trust each other, because the code that will be executed when the

contract conditions are met is publicly visible [17]. The payment used to execute a

smart contract typically comes in the form of a token. However, tokens have other

uses as well. For example, a token might represent a real-world asset (security token)

or grant purchasing power for a particular good or service (utility token). It is very

typical of blockchain energy companies to issue at least one new token to facilitate

part of their services.

4.4.2 Energy Tracking

Many energy consumers today want the ability to choose and track where their en-

ergy originates. Additionally, being able to trace energy production is essential for

properly issuing Renewable Energy Credits (RECs). In the United states, RECs are

used as a mechanism to incentivize using renewable energy sources; RECs are legally

recognized, and issued according to the amount and type of renewable electricity gen-

erated [18]. However, the existing process of buying and selling RECs is complicated

and costly due to high overhead costs. RECs are poorly audited and often doubled-
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counted due to the challenges of working with so many different organizations [19].

Launched out of MIT, SolarCoin aims to solve part of this problem by issuing 1

SLR token for each 1 MWh of solar electricity generation, similar to a REC. SLRs

can be exchanged for other currencies, or redeemed directly with providers who have

elected to participate in the SolarCoin ecosystem [20]. Swytch.io is taking a more

complex approach by using their oracle technology to reward participants with Swtych

tokens based on the marginal “impact” of a unit of energy. They use a new Proof

of Production (PoP) protocol to validate the smart meter data they receive, com-

paring observed data to estimates, and flagging outliers to maintain system integrity

[21]. Both of these companies take advantage of data sent directly from the source,

providing a compelling alternative to the expensive and incomplete manual auditing

that exists today. The data from these devices is also used for improving models and

predictions of energy production and consumption.

4.4.3 Demand Response

Demand response resources are resources that are able to dynamically adjust to and

supplement more centralized energy resources depending on how energy is being con-

sumed. In the US, demand response (DR) capacity comprises around 9% of peak

demand. Although this is much higher than average global adoption, DR resources

suffer from structural issues. Most DR programs rely upon manual processes, and for

utilities that do not have accurate load modeling and monitoring, this contributes to

high costs and response errors [19].

At the time of writing, there are already many blockchain companies exploring

solutions that handle demand response and optimize the sources of energy for con-

sumers. Grid+ uses a hardware agent that can be easily installed into a home to

learn typical energy usage patterns. The agent uses these patterns to decide where

and when to purchase energy, selecting the most efficient sources. Grid+ has also

developed an innovative blockchain-backed payment system, making it easy for users

to pay for energy without requiring user knowledge about the underlying payment

infrastructure [22]. Grid+ is one of the primary projects under the umbrella of Con-
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senSys, a company whose mission is “building the infrastructure, applications, and

practices” on the Ethereum platform [23]. Taking a slightly different approach, Drift

also uses smart software to find the most efficient energy available, but focuses on

working with local utilities to create more accurate forecasts for ISOs to use [24].

An even more direct solution to demand response is to support local microgrids,

where participants can transact directly with each other. One notable example of

such a system is the Brooklyn Microgrid, led by LO3 Energy. Like Swytch, they

take more than just the watt-hours of energy produced into account; their “exergy”

concept represents the portion of energy available for useful work, which includes

where, how, and when the energy is produced. They have developed a platform

to support a localized energy marketplace that is integrated together with existing

grid infrastructure, where prosumers can autonomously transact. Distributed system

operators use transaction data to manage energy use, load balancing, and demand

response [25]. The blockchain energy space is moving forward internationally as well;

Conjoule and Verv are two examples of companies that have built blockchain-backed

P2P energy trading systems in Europe [26, 27].

4.5 Consensus Mechanisms

So far, blockchain has been discussed as a tool that might play a role in energy-related

applications. However, the technology itself poses some energy-related concerns. In

order to maintain a distributed ledger, there must be a mechanism to determine

what can be added to this ever-growing chain of data. In most blockchain systems,

new data to be added to the chain is broadcast and disseminated throughout the

whole network; after enough data have accrued, a node selected by the consensus

mechanism writes the new block to the chain, and typically receives a reward. Due to

the decentralized nature of blockchain, different entities participating in a blockchain

network might have conflicting ideas about what should go into the next block, either

because they have an incomplete view, or because they are trying to manipulate the

network to their own advantage. In order to ensure that the network is kept in sync
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and maintained equitably, various consensus mechanisms have been proposed.

4.5.1 Proof of Work

Proof of Work (PoW) schemes rely on the fact that some computations are hard

to solve, but easy to verify. A simple example is solving for the prime factors of a

large number: finding the prime factors is computationally expensive, but once they

have been found, simply taking the product will verify their correctness. Bitcoin uses

a hashing-based PoW algorithm as this cryptographic puzzle, and the first entity

(“miner”) to solve this puzzle gets to add a new “block” to the chain, where each

block contains contains a list of transactions. Once the block has been mined, it is

added to the chain, and those transaction are executed. The miner also receives a

reward in bitcoins.

In order to mine a block, a miner must find some number (the nonce) such that

the hash of the nonce and block is less than some threshold value. Computing a

hash value is computationally simple, but reversing a hash function is not, so the

miner must repeatedly try different possible nonce values until they are able to find

a suitable nonce. Once they have done so, they will broadcast their solution to

the network, and it will be easy for other participants to verify their solution. In

PoW schemes like this one, the probability of a certain node successfully mining a

block is proportional to the hashing power of that node, which explains the enormous

electricity usage dedicated to solving these PoW challenges [28]. A Bitcoin Energy

Consumption Index estimates that at the time of this thesis, Bitcoin’s current annual

electricity consumption is estimated to be 47 TWh, emitting an additional 23,000 kt

of carbon dioxide per year [29].

A major benefit of using PoW is that the blockchain can be permissionless, mean-

ing that the participants in the system are not required to trust each other, and

there is no need for authentication. This is because no single participant will be able

to overpower the network unless they are able to control at least 51% of the total

computing power. However, mining blocks is becoming increasingly difficult due to

the high computing power already in the network. As a result, some miners now
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participate in mining pools, where many miners work together and split the payout

if they are successful [30]. This is exacerbated by the disproportionate gains from

being able to invest upfront money in specialized mining machines. Thus, the system

is becoming increasingly centralized [31].

4.5.2 Proof of Stake (PoS)

PoS is another category of consensus mechanisms that enables public, permissionless

blockchains. In PoS, a node is given validating power that enables them to write a

new block. Rather than requiring the solution to some sort of cryptographic challenge

like with PoW, validating power is allocated based on the amount of that network’s

base currency they hold (known as their stake). The amount of stake that a node

has is directly proportional to the probability that they will get validating power.

Therefore, putting more currency into the network increases the stake of that node

proportional to the value added, so there is less risk of centralization compared to

PoW. Additionally, since there is no iterative hashing involved, a major benefit of

PoS is that there is no need for huge amounts of electricity consumption [31].

4.5.3 Proof of Authority

PoW and PoS dominate the blockchain space, but the Energy Web Foundation (EWF)

has developed a Proof of Authority mechanism called Aura. EWF is an open-source,

scalable blockchain platform specifically designed for the energy sector’s regulatory,

operational, and market needs [32]. In their protocol, there are specialized “authority

nodes”, also known as “validators”, and only these nodes are able to create new

blocks. Block signing is conducted in rounds, where validators are designated a time

slot during which they can create and sign a new block. Additional mechanisms are

in place to ensure that even if a validator becomes disconnected from the network

or attempts to act maliciously, the generally agreed upon and most recent block

will be accepted [30]. Like PoS, Proof of Authority does not rely on high electricity

consumption.

62



4.5.4 Consensus Mechanism Considerations

Many other consensus mechanism options exist, fit for different use cases and network

types. Two major points of consideration are 1) trust within the network and 2)

network speed. These points are largely defined within the consensus mechanisms by

who gets to validate new blocks and how they perform the validation, respectively.

A tradeoff between trustlessness and speed typically exists because in a trustless or

anonymous setting, there is more potential for malicious actors to manipulate the

system to their own benefit, so the validation process must be more robust.

63



64



Chapter 5

Secure Blockchain-Enabled

DyMonDS Design

5.1 Design Goals

In this section, we introduce the Secure Blockchain-Enabled DyMonDS design, with

implementation details in the subsequent system design. The primary aim of this

design is to support robust smart grid management in an architecture with a high

focus on system security. This is done by proposing a practical implementation plan

for the framework proposed in [5], referred to as the Dynamic Monitoring and De-

cisions Systems (DyMonDS). The DyMonDS framework operates in a setting where

embedded smart energy devices participate in a minimal information exchange with

coordinators, responsible for using that information to find optimal energy alloca-

tion and scheduling solutions to send back to the devices. This framework has been

shown to arrive at the same optimized solution as a fully centralized system, despite

its distributed nature and minimal information exchange.

Another complementary goal for this design is is to offer a functional blockchain

use case for supporting energy systems, along with a more general discussion of some

the challenges and practical use cases of blockchain for grid management. In the

context of the discussion from Chapter 4, we can break down the blockchain discussion

into three components: what data is written to the ledger, who is participating in
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the exchange, and how the ledger is maintained. The ledger will include the data

relevant for the DyMonDS calculations sent from the embedded IoT devices, and the

optimal solutions. Only trusted nodes are permitted to participate in the network,

and these nodes together represent a centralized body responsible for validating and

maintaining the network. However, even these nodes that are considered “trusted”

will be internally validated through physics-based and data-driven methods. This is

partially achieved via the strategies discussed in Chapter 3 by generating real-time

energy predictions, and identifying anomalous behavior that deviates substantially

from the predicted values.

5.2 System Participants

Participants in this system design fall under two categories: distributed energy re-

sources (DERs) and compute nodes. While the remainder of this architecture will

be described in reference to a system with these two types of participants, it can be

extended to any two-tiered architecture with participants of varying security levels

and computational capabilities. For the particular setup described here, DERs in-

clude smart IoT energy devices, which can include both uncontrollable loads such as

photovoltaic cells and controllable loads such as smart water heaters, thermostats, or

small local storage. These household IoT devices have relatively limited local mem-

ory and processing power, so their primary responsibility is to communicate their

local data to the compute nodes rather than performing much complex computation

locally. The compute nodes are connected to each other via a meshed blockchain

network, where compute nodes in different neighborhoods are synchronized in order

to avoid single-point failures and allow for internal P2P validation. Each compute

node is responsible for coordinating the DERs within its region and for interfacing

between the DERs and higher system-level signals. This setup is shown in Figure 5-1,

where household DERs communicate with their neighborhood compute node through

a structured communication protocol described in Section 5.4.

66



Figure 5-1: DERs (black) directly communicate with their local neighborhood com-
pute node (blue). Compute nodes are connected to each other via a blockchain
network.

5.3 DyMonDS Framework

5.3.1 Coordination through Device Controllers

Coordinating DER behavior within the context of the overall grid system is a chal-

lenging problem due to the many factors and potentially competing objectives that

impact the effectiveness of such a system. At the device level, any individual device

has its own set of local computations that determine how it will respond to various

signals. These behaviors might be driven by direct user input, controllable cyber sig-

nals, or responses to exogenous drivers [33]. At the system level, controllable smart

devices are powerful tools for optimizing system performance, but the constraints out-

lined by each device’s physical characteristics or user preferences must be maintained

in order to ensure that quality of service (QoS) specifications are met.
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In today’s grid, small DERs typically respond to signals that are generated locally

like the state of the system (e.g. state of charge) and measurable exogenous variables

(e.g. temperature). The responses are typically a basic ON/OFF operation, where

the DERs draw or inject unconditional amounts of power when needed. However,

as IoT devices become more intelligent and capable of more fine-grained control and

real-time responsiveness, there arise more opportunities for adjusting behavior such

that grid-level commitments are satisfied over slower time intervals, but fast device-

specific actions are optimized for the user. Specifically, there is some flexibility in

when energy is drawn or injected such that customers have all of their needs satisfied

in practice, but where the actions are optimally timed such that their electricity bill is

minimized. In a system where participating devices implement a minimal interface as

defined by the DyMonDS framework, this seemingly intractable problem is reduced

to a convex optimization problem with a unique solution, which the compute nodes

can then communicate back to the respective devices [5].

5.3.2 Minimal Information Exchange

The optimizations within the proposed DyMonDS framework are economically driven,

so DERs are responsible for generating bids to send to the compute nodes. The

interface that each participating device implements in order to facilitate optimized

interactions with the grid is defined by the triplet of stored energy (E), power (P ), and

rate of change of power (Ṗ ). The generated bids are a direct function of this triplet,

shown in the upper layer of Figure 5-2 [34]. The intermediate generalized droop

layer as described in [35] maps upper level energy and power data to lower level QoS

specifications. For this generalized control figure, characteristics of the particular

device are taken into account at the lower layer to ensure that the QoS specifications

are met and that the various input signals are appropriately accounted for. The

DyMonDS framework allows all such devices to participate in this connected system as

long as the appropriate interface is implemented, regardless of the underlying design.

The device-specific logic is not directly exposed outside of the interface, which helps

protect the devices from cyber attack by abstracting away from the internal control
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Figure 5-2: Interactive modeling and control design for DERs

system. When the compute node, acting as a coordinator for the system, receives

this information from all of the neighborhood devices, it can then take the physical

constraints and generated bid functions into account, and send back to each device a

control signal for the next time interval. In [35], we see that for both real and reactive

power, these signals exhibit linear grid interactions, enabling this distributed system

to arrive at the same convex minimum solution as a fully centralized system.

The composite nature of this type of modeling enables this framework to scale

well to various levels of the electricity grid. Likewise, the implementation for commu-

nicating this information as described in the following sections is not specific to DERs

and compute nodes, but can be extended further up the layers of grid interactions,

or potentially applied to different domains.

5.4 Secure Communication Protocol

The information that needs to be communicated in the DyMonDS framework as

shown in Figure 5-2 will be exchanged between DERs and compute nodes via a
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structured TCP-liked protocol. In this type of exchange, when a data packet is sent,

a record of this interaction is stored; when a packet is received, the recipient sends an

acknowledgement. If a communication failure occurs, the sender is aware that they

did not receive the acknowledgement they were expecting from the recipient, and can

resend the data. For memory-limited DERs, this means that after they send relevant

data to the compute nodes, they can clear this data from their local memory once

the compute node acknowledges the data receival.

Any type of information exchange across a public network exposes the system to

potential security vulnerabilities, so the data must be stored and communicated in a

secure manner. In this system, the two main security considerations are protecting

participant privacy and maintaining data integrity. Participant privacy refers not

only to ensuring that individual household energy data is kept confidential, but also

keeping the internal mechanisms of the IoT devices and bid generation functions

hidden [36]. Data integrity is crucial for the DyMonDS exchange because the solutions

are based upon the aggregation of individual device characteristics and bids functions,

so if the individual devices are compromised, the optimal solution may be skewed. In

general, protecting against smart grid security breaches is crucial because a breach

could expose personal data, increase costs, damage hardware, or cause power outages.

5.4.1 IoT Security

The rate of IoT adoption today in practice is outpacing the policies necessary to ensure

secure implementation. Building a physical structure requires complying with a set of

building codes, but there exists no parallel set of standards for building new software.

A set of security policies is proposed in [37], and considered while evaluating the best

ways to incorporate different components of this system design. Many IoT devices

have been developed without a focus on security, so due to hardware and budget

constraints, security mechanisms are typically quite limited [38, 39]. Additionally,

the fact that these devices are typically directly connected to some public network

means that they are a prime candidate for cyber attack. For the secure system design

here, this means that even if the communication between DERs and compute nodes
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is secured, the DERs still have the potential to become corrupted by external sources.

5.4.2 Protecting Privacy and Data Integrity

Data integrity is crucial for this system, because the data being broadcast by the

DERs determines the optimized system-level solutions. To evaluate security, we con-

sider potential avenues for an attacker to infiltrate the system. This includes attacks

where the DERs themselves are corrupted, the stored data is corrupted, or the data

is corrupted while being communicated.

To impede malicious DERs from entering the system, onboarding new devices

requires going through the centralized management source to confirm device identity.

This can be done by working directly with hardware companies to confirm existence

of uniquely identifiable devices, or by developing a device’s reputation over time based

on its supposed identity [40]. This is useful for establishing new DER integrity at

the onset, but as discussed above, IoT devices are particularly susceptible to cyber

attack due to inadequate security mechanisms. For this reason, they will be subject

to continual validation even after being incorporated into the system to ensure that if

the device becomes corrupted after it is already actively participating in the system,

this behavior can be detected. This validation is discussed further in Section 5.6.

Public-key encryption is used to prevent attackers from viewing or altering stored

data or data that is being exchanged between the DERs and compute nodes. All

stored and exchanged data is encrypted, such that only the intended recipient is able

to decrypt the data and reveal the underlying message using their private key. Thus,

any attacker who attempts to read this data will be unable to do so without access to

the private key. At a high level, these encryption schemes rely on the fact that some

problems are computationally infeasible to solve, but easy to validate.

Public-key cryptography will be used in two other ways to ensure that attackers

cannot infiltrate the system. One potential attack could involve an actor who pretends

to be an onboarded DER and sends a message to the local compute node. There is

thus a needs for a method to guarantee that the parties exchanging data are who they

claim to be. To achieve this, all exchanges will be signed with a digital signature; this

71



involves the sender using their own private key to “sign” each message such that the

recipient can use the signer’s public key to confirm the identity of the sender, but in

such a way that the sender’s private key is not exposed. In another type of attack,

although unlikely, a malicious attacker who is unable to read or forge data (since

we have already protected against that) may simply try to take down the system by

altering the messages that are exchanged in what is known as a “man-in-the-middle”

attack. In such an attack, the malicious actor would intercept the message, alter

its contents, and forward it along to the intended recipient. Although this would

most likely result in a meaningless decrypted message, if the attacker had managed

to acquire some knowledge of the form of the data or the encryption scheme being

used, it may be possible for them to alter the message in such a way that the result

is realistic, but incorrect data. This type of data modification can be prevented by

attaching a message authentication code (MAC) to every message that is sent across

the network. A MAC is generated directly from the decrypted message, so given a

MAC, the recipient can decrypt the message and easily verify that the MAC is valid

for that message. If the message is altered, the MAC will no longer be valid.

Public-key cryptography is a recognized and established method of ensuring sys-

tem security, but at its root, it relies upon the assumption that the private keys are

entirely secured. In all of the aforementioned security schemes, if the private keys

are exposed, then encrypted messages can be decrypted, and identities can be easily

forged. Particularly given the discussion of the security concerns around IoT devices,

extra care should be taken to protect these private keys, so the security of the system

as a whole can be strengthened by using a private key management scheme. Such

schemes designed for smart devices in particular already exist and include policies

for key generation, distribution, and management that make acquiring these private

keys even more challenging for attackers [41, 42, 43].
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5.5 Blockchain Utilization

5.5.1 Challenges of Blockchain for Energy

Looking at blockchain in general, one of the major benefits of this tool is the ability

to establish trustless networks where any party can participate, and malicious actors

are implicitly prevented from overtaking the network due to computational barriers.

However, trustlessness is challenging for energy systems because the data being ex-

changed is reliant upon physical devices, so there needs to be some sort of verifiable

link between the reported data detected by the hardware and the hardware itself.

Without a verifiable link, there would be no way to confirm that energy data being

recorded was actually linked to a physical device. In order to establish this connec-

tion, there already needs to be some semblance of trust in the system, breaking pure

trustlessness. While this might seem like a reversion away from some of the power of

blockchain as tool, putting this system in context, current energy grid participants

are already required to fully trust a centralized governing body with little informa-

tion about its underlying logic. This system adds security and transparency over the

existing setup.

Rather than utilizing a trustless consensus mechanism where anyone can partici-

pate, we instead propose using an underlying blockchain architecture like the Energy

Web Foundation’s Proof of Authority that allows only trusted validators to partici-

pate in writing to the chain [30]. Compute nodes thus act as validators, but in order

to add an extra layer of system security, they will also be subject to P2P validation

as described in Section 5.6. If new compute nodes want to join the system, they

must first be identified as trusted by the other compute nodes or otherwise certified

by a trusted source. An additional benefit and necessity of this type of consensus

mechanism is that network speed can be maintained even as the system scales. In

this setting of real time responsive bidding and behavioral adjustments, the network

must be able to validate blocks quickly.

DERs thus participate in the blockchain network only indirectly through their

neighborhood compute node. Not only does this protect the integrity of this trusted
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network due to the susceptibility of IoT devices to cyber-attack, but even if IoT

devices could be trusted, typical smart energy devices lack the memory and processing

capabilities necessary to participate in maintaining the complete ledger, replicated

across all participating devices.

5.5.2 Blockchain in Secure DyMonDS Implementation

We have so far established that in this system, DERs communicate with compute

nodes through a secure communication protocol, and compute nodes act as relatively

trusted nodes in a private blockchain network. The actual data being recorded in the

distributed ledger that makes up the “blocks” is exactly the data that is necessary

for the DyMonDS exchange shown in Figure 5-2. An example of how the new data

is written is shown in Figure 5-3.

Figure 5-3: Snapshot of the blockchain ledger that is replicated across all compute
nodes. Each “block” in the chain stores data about the bids and optimally computed
clearing results. In this figure, there are three neighborhoods, and all of the results at
time t-2 and t-1 have already been published to the chain. At time t, the data from
N3 (dotted lines) have been broadcast, but not yet synchronized across all devices.
After synchronization, the new block can be appended to the chain (black arrow).

In this example setup, there are three neighborhoods denoted as N1, N2, and

N3. All of the DERs in N1 will communicate their bids to the N1 compute node,

which then calculates an optimal solution for the system using an internal clearing
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mechanism, taking into account other system-level objectives. Once it has found

an optimal solution, it broadcasts this solution to the other compute nodes, and

proposes adding this data to the chain. Each of the compute nodes is performing

this same task, so once they have mutually exchanged the new data and synchronized

the new block across compute nodes, the new block can be added to the chain. The

results are then sent back to the DERs, which will adjust their behavior according

to the optimized solution. Note that this setup assumes collaborative neighborhoods

that are willing to exchange information about local bids and solutions; additional

consensus logic would be needed if there was not mutual trust between neighborhood

compute nodes.

In this system, blockchain is effectively used like a shared database with protected

read and write capabilities. One major vulnerability of many existing energy systems

is that with a traditional database model, the server storing information relevant for

system management is not only at risk of single-point failure if the server goes down,

but it also acts as a bottleneck if all information exchange must go through the same

machine. Blockchain is designed with a P2P backbone, so it aligns very naturally

with the distributed nature of the DyMonDS framework, and is setup well for real-

time validation and information exchange. Blockchain is also well-suited to support

the DyMonDS framework because the minimal-exchange infrastructure prevents the

ledger from needing unbounded amounts of memory capacity.

5.6 Validation through Learning

As discussed previously, IoT devices are particularly vulnerable to cyber-attack due to

limited security mechanisms and virtually no policy to regulate security requirements.

Additionally, while the compute nodes together act as a centralized management

body, the security of the system a whole is much stronger if these nodes are not

blindly trusted. To address both of these concerns, the system will be continually

validated in real time so that if previously trusted sources become corrupted, this can

be identified in a P2P manner.
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Using machine learning to identify anomalous energy behavior has been done at

various levels of the grid as shown in [44, 45, 46]. Other approaches model threats with

mathematical processes like in [47], and consider complications such as identifying

corruption even in the face of many compromised components [48].

An advantage for detecting suspicious behavior in this setting is that the data

being exchanged in a smart grid is quite constrained in the possible values that can

be taken on. This is partially due to physical constraints of the system that can-

not be violated, and partially dictated by known user preferences and responses to

ambient conditions. This means that a compute node can detect whether the data

it is receiving from a particular DER is possible using physics-based modeling given

the properties of that particular device. This serves as a baseline for identifying cor-

rupted devices. These physics-based models can be further developed by taking into

consideration known periodic energy usage trends that can be extrapolated through

decomposition modeling as shown in [49].

To take into account the fact that energy usage follows particular patterns at more

granular levels depending on the type of device, user preferences, and ambient con-

ditions, data-driven predictive modeling can be used to characterize “typical” usage

behavior. The models and experiments explored in Chapter 3 focus on developing

predictive models for household-level prediction at short time intervals. Refining these

types of prediction mechanisms is useful for the devices to anticipate and optimize

for expected future usage, but is also useful for protecting system integrity. If real-

ized usage substantially deviates from predicted usage based off previously learned

typical behavior, then this may be an indication that the device has been corrupted.

However, note that due to the inherent noisiness of usage patterns at short time in-

tervals, determining what constitutes a significant enough deviation to be flagged as

potentially corrupt is a margin which needs to be learned as well.
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Chapter 6

Conclusion

6.1 Contributions

We will evaluate the contributions of this thesis with respect to the two primary ob-

jectives introduced in Section 1.3.2, shown again here:

Objective 1 : Evaluate different machine learning energy forecasting models

and compare their predictive capabilities with existing statistical models.

We have constructed a statistical prediction model based off of a successful stochastic

simulation model, and found that due to the noisiness of household-level data, PSS

outperforms this statistical model. Basic machine learning models were explored,

and these models were able to outperform PSS, with RF Regressor as the lowest er-

ror model. However, these models are not blindly data-driven, but rather, the input

features take into account periodic and ambient factors known to be relevant for en-

ergy. The results from this section more generally indicate that known periodic trends

that are accurate at spatial or temporal aggregation levels largely fail to capture the

noisiness of short-term prediction at the household level. For this reason, PSS is a

good estimate of future usage, and an even better model will take this information

into account directly, and supplement with other features for further accuracy gains.

Objective 2 : Design a system architecture for a blockchain-backed en-
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ergy system, and assess the underlying blockchain architectures that align

well with the goals of such a system. We have presented a system design that

leverages the optimal minimal-exchange DyMonDS framework in order to enable se-

cure communication between between household-level DERs and neighborhood-level

compute nodes. Using the mathematical formulations necessary to provide optimal

grid-wide solutions and designing a system around them is a crucial step in order to

change and improve grid management today; in doing so, making such systems cyber-

secure at the outset rather than as an afterthought will be necessary for being able to

support these increasingly interconnected systems. In the process of constructing this

design, the challenges and potential use cases of blockchain as a tool for supporting

highly interconnected energy systems are described.

While these contributions have primarily been posed within the context of dereg-

ulated industry environments, they are valuable for regulated settings as well, where

there is still a need for accurate predictive mechanisms and secure information ex-

change.

6.2 Future Work

For household-level prediction, some avenues for future work include experimenting

with using learning from one household to better understand another. The mod-

els shown in this thesis treat different households as entirely independent. Another

direction is to focus on improving statistical methods. Many statistical models in-

volve some form of clustering, but this is challenging to utilize for prediction because

clusters are typically based on the load profile as a whole, which is unknown at the

beginning of the day. Thus, using machine learning to predict which cluster a current

load is likely to fall into would be a useful tool for better characterizing real-time

data. Alternatively, rather than using standard k-means clustering or other purely

mathematically-driven models, finding a way to cluster the data such that the clusters

better-represent some interpretable situation (i.e. seasonal, rainy day, etc.) could be
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helpful for ISOs to understand the different types of possible usage scenarios.

For the Secure Blockchain-Enabled DyMonDS design, the primary candidate for

future work is to test the system and confirm that the time-requirements for bid

generation and scheduling can be met. Additionally, the design presented in this paper

describes the interactions between household DERs and local neighborhood compute

nodes, but this same architecture can be extended to higher, more aggregated levels

of the energy grid system, or to other domains entirely. Such an extension requires

further work to develop a more formal process for onboarding new actors in a secure

manner.
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Appendix A

About the Data

Pecan Street is a research and development organization whose goal is to work to-

wards technical and policy solutions for challenges related to energy and water [12].

The first step in accomplishing this goal is to develop a detailed understanding of

energy and water use behavior. Their claim of providing the worlds best data on

consumer energy and water consumption behavior is backed by a network of over

1000 active research participants primarily located in Texas, Colorado, and Califor-

nia. The database includes information about households participating in various

usage-related experiments, since many research institutions have taken advantage of

the Pecan Street households to test out energy solutions.

The participating homes have IoT devices streaming data down to second-by-

second granularity from devices like water heaters, solar panels, lights, and more. This

data is accessible to university researchers, and the analysis conducted throughout

this thesis is all done using Pecan Street data, although the intention is to demonstrate

and compare methodologies that can be applied independently of the datasource.

The primary sources of data used throughout this thesis come from two data ta-

bles: weather and electricity egauge 15min. The weather table contains weather

data each hour for Austin, Texas; Boulder, Colorado; and San Diego, California.

Each participating household has a unique dataid, so using the Dataport Metadata

file (accessed through the Spotlight section of the Pecan Street Dataport), weather

can be linked to households through their location. A complete list of the columns
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accessible from each of these tables is shown in Appendix C.

The dataport can be queried directly using SQL queries; The following query,

for example, retrieves relevant weather data for the homes in San Diego: SELECT

localhour, temperature, dew point, humidity, apparent temperature, pressure,

wind speed, cloud cover, precip probability FROM university.weather WHERE

latitude = 32.778033 AND longitude = -117.151885;

The following figures show some examples of the shapes of various device loads

collected at 15-minute intervals for two of the Pecan Street households.

Use

Grid

Water Heater

Figure A-1: Snapshot of energy usage data collected for a single household. Vertical
red lines separate days.
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Grid

Generation

Water Heater

Figure A-2: Snapshot of data collected for a household with solar generation.
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Appendix B

Basic Machine Learning Models

This appendix introduces some popular regression methods and how they can be

used with the given Pecan Street data to predict household energy usage. We discuss

at relatively high level the intuition behind some common regression methods, and

what their role might be in energy modeling and prediction. Note that we discuss

only regression methods (as opposed to classification methods), since we are trying to

predict a particular energy output value. We will sometimes refer to real or predicted

energy value as the “label”. The inputted data can be represented by a vector of

features, each of which has a numerical value.

B.1 k-Nearest Neighbors

For k-Nearest Neighbors (kNN) classification, the label of some new test point is

determined by finding the most common label of the k points which are closest to

the test point. Similarly, kNN regression finds the k points closest to the test point,

and averages their labels, outputting this as the label for the test point. The two key

factors that have a large impact on the performance of this algorithm are 1) selecting

an suitable value of k, and 2) defining an appropriate distance metric. An example

of kNN classification is shown in Figure B-1.
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Figure B-1: Example of k-Nearest Neighbors classification. On the left k=7, so the
new test point X will have a blue predicted label. On the right, k=3, so X will have
an orange predicted label

B.2 Random Forest Regression

A random forest model is built using a collection of individual decision trees. Decision

trees can be used to build regression models by splitting up the original data into

decreasing sized subsets, with the goal that as the data is split, the subsets are

similar according to a particular attribute. At each step of the decision tree process,

the attribute and split are selected so as to reduce the standard deviation within each

side of the split; each internal decision node thus has a particular attribute, as well

as the criteria for splitting (i.e. the value is greater/less than some threshold). For

regression, the value outputted at the leaf nodes at the bottom of the tree can be

found by averaging the values of all of the training data that falls into that final leaf

node.

A random forest regressor (RF Regressor) is called a “forest” because it is com-

prised of a set of decision trees, all built from the same data. The trees will not be

identical due to the randomness added to the model: in the process of determining

which attribute to next split on, instead of considering all of the possible attributes,

the algorithm will only look at a random subset. After conducting this process inde-

pendently to create multiple decision trees, the results of all of the trees are averaged

to output the final result. This randomness makes RF Regressors quite robust against

overfitting.
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The tree structure used in RF Regression makes it possible to extract the rela-

tive importance of different attributes of the data in determining the final outcome.

However, a disadvantage is that since the model does not generate aggregate trends

or continuous visual outputs, it is not conducive to qualitative analysis.

Figure B-2: Random forest regression model. Each decision tree may be split on
different attributes at each node, and the end result will be the average prediction
across all models.

B.3 Multilayer Perceptron

A multilayer perceptron (MLP) is a feedforward neural network, whose basic structure

consists of an input layer, some number of hidden layers (≥ 1), and an output layer.

For example, for energy usage prediction, the input layer will be the data taken

from Pecan Street, and the output will be the expected energy usage. Each hidden

layer consists of at least one neuron. Each neuron takes in a weighted sum of the

values from the previous layer (and potentially a bias term) and passes this into a

non-linear activation function, outputting the result of the function. An MLP can

exactly reconstruct a linear regression model, but can also be used for data that is not
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linearly structured. This type of model can thus learn patterns that are dependent

upon particular combinations of input features.

Figure B-3: Multi-layer Perceptron architecture with 2 hidden layers. The different
components of the vector input will be passed in as each node of the input layer, and
the final energy consumption prediction is the result in the output layer.

B.4 Support Vector Regression

For binary classification problems, support vector machines (SVMs) aim to find a

hyperplane to separate this data with some margin. Breaking this statement down:

some data is not linearly separable, so kernel functions are used to transform the

data into a new space where it ideally becomes separable. Various model parameters

determine the width of the margin around the hyperplane (a smaller margin will

classify more points correctly, but a larger margin may generalize better) and whether

points far from the hyperplane will be considered when tweaking the location of the

plane. These are typically notated as C and γ, respectively. Similarly for regression,

all predictions are restricted to be within some constant bound ε of the actual label,

similar to the margin concept for classification. The ε bound introduces regularization

to the problem as high ε will be less sensitive to misclassification and may generalize

better, but low ε will more closely fit the data.
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Appendix C

Accessed Pecan Street Data Tables

Table C.1: Weather Available Data

temperature
dew point
humidity
apparent temperature
pressure
wind speed
cloud cover
precip probability

89



Table C.2: Household Usage Available Data

dataid jacuzzi1
local 15min kitchen1
use kitchen2
air1 kitchenapp1
air2 kitchenapp2
air3 lights plugs1
airwindowunit1 lights plugs2
aquarium1 lights plugs3
bathroom1 lights plugs4
bathroom2 lights plugs5
bedroom1 lights plugs6
bedroom2 livingroom1
bedroom3 livingroom2
bedroom4 microwave1
bedroom5 office1
car1 outsidelights plugs1
clotheswasher1 outsidelights plugs2
clotheswasher dryg1 oven1
diningroom1 oven2
diningroom2 pool1
dishwasher1 pool2
disposal1 poollight1
drye1 poolpump1
dryg1 pump1
freezer1 range1
furnace1 refrigerator1
furnace2 refrigerator2
garage1 security1
garage2 shed1
gen sprinkler1
grid utilityroom1
heater1 venthood1
housefan1 waterheater1
icemaker1 waterheater2

winecooler1
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