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Chapter 1

Introduction

Testing code is an integral part of the software development process [17]. It is standard

practice to develop a test suite which any new code must pass before being released

for production. The quality of industrial software produced often depends heavily

on how extensive the test suite is, since developers rely on the tests catching their

bugs before the code is released. It is therefore very useful to be able to gauge the

effectiveness of a test suite.

Ideally, a test suite would test that the program behaves as expected for every

possible input; that would guarantee that the program is correct. However, the space

of all possible inputs is practically infinite for most industrial programs. Hence,

this approach is almost always impossible (except perhaps a few low-level hardware

implementations where the number of possible inputs is tractable).

This leads us to the concept of code coverage. Even though it might be impractical

to run our code on every possible input, we would like to exercise every part of the

codebase as often as possible through the test suite. Intuitively, if running our tests

exercises a certain part of our code, we gain confidence on that part of the code if the

tests pass. Thus, we can judge a test suite by the parts of the source code it exercises.
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1.1 Overview and Applicability

In this thesis, I present a system that helps programmers with the aforementioned

evaluation. Using my tools, one can run a test suite on a program and quickly

determine the extent of coverage achieved by that suite. Specifically, my system

outputs whether MC/DC (defined below in section 1.3) has been achieved by the test

suite for each boolean expression in the target program. Note that for many of the

metrics mentioned below, it is often impossible to achieve 100% coverage because of

the code structure (programmers often build redundancies in their code to improve

readability, robustness or even performance). Keeping this in mind, I produce detailed

information when maximum coverage is not achieved within a file or a module.

Certain regulatory and certification authorities require full MC/DC coverage. For

example, the DO-178B standard requires it for all level A software used in the avi-

ation industry, and automotive standard ISO 26262 highly recommends it for ASIL

(Automotive Safety Integrity Level) D software [15]. Software developers in these

industries can use tools like mine to determine which parts of their system are in-

sufficiently tested, and can add more tests to achieve the desired level of coverage.

In cases where getting 100% coverage is impossible, they have to provide adequate

justification in order to get their code certified.

Even when 100% coverage is not an explicit requirement, developers might try

to achieve the same anyway to gain confidence in the correctness of their software.

For example, SQLite, a very popular database management system, is advertised

to achieve full MC/DC coverage with their testing ([10]) and it has a reputation for

being highly reliable. In some applications, certain core components are deemed more

important to get working correctly, and are subjected to more intensive testing (e.g.

OS kernels). Systems like mine can be used to ensure full MC/DC coverage for those

components. Lastly, my system can also be used as a profiling tool to just get an

idea of how extensively each part of a codebase is tested, and developers can make

informed decisions about which components they want to test more.
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1.2 Standard Coverage Metrics

The notion of part was deliberately left vague earlier. Different definitions of part

lead to different coverage metrics. We explore a few of the popular definitions in the

subsections below.

1.2.1 Function Coverage

The simplest notion of part corresponds to functions in a program. A test suite

satisfies function coverage if and only if all of the functions in the source code are

executed when we run our tests. This is one of the weakest metrics in existence.

1.2.2 Statement Coverage

Instead of the functions, we can also consider the statements of the program as its

units. Statement coverage monitors whether each statement is executed by the test

suite. Note that this is a strictly stronger metric than function coverage. Statement

coverage almost always implies function coverage since most functions contain at

least one statement. However the reverse is not true, since it’s possible to have

conditional code within a function that is not executed even though the function

itself gets executed.

1.2.3 Branch Coverage

Branch coverage, also known as decision coverage, asks whether every branching point

in the program assumed both true and false values. This is strictly stronger than

statement coverage. As long as both branch directions are taken at every decision

point, we are bound to execute every statement reachable from the start. But even

when statement coverage is achieved, some branches may not evaluate to both values;

in C, a do - while loop that executes only once provides a simple example.
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1.2.4 Condition Coverage

Condition coverage is very similar to decision coverage. Instead of requiring every

boolean decision to assume both possible values, this metric requires every individual

condition appearing in boolean expressions to take both values. As an example, if we

have the following code :

i f ( x && y ) {

. . .

}

branch coverage requires that the decision in the if statement evaluates to both true

and false while condition coverage requires that x and y individually assume both

values.

1.2.5 Condition / Decision Coverage (C/DC)

A test suite is said to satisfy C/DC if and only if it satisfies branch coverage as well as

condition coverage. Obviously, this is a strictly stronger metric than both condition

coverage and decision coverage by themselves.

1.2.6 Multiple Condition Coverage (MCC)

This is one of the strongest coverage metrics in use. MCC requires that every possible

combination of boolean assignments to conditions must be covered for each expres-

sions. In the above example, we would require the following 4 assignments:

• x = true, y = true

• x = true, y = false

• x = false, y = true

• x = false, y = false

12



Clearly, MCC is stronger than C/DC. However, for a boolean expression with n

conditions, this metric requires 2n executions with distinct truth value combinations.

This exponential blowup makes MCC infeasible in a lot of practical situations.

1.3 Modified Condition / Decision Coverage (MC/DC)

The MC/DC metric was introduced by avionics software development guidance docu-

ment DO-178B [3]. This document mandated that the test suite for the most critical

software (whose failure can lead to loss of life) must satisfy MC/DC, a more stringent

form of condition/decision coverage. This metric is weaker than MCC, but is almost

as good at catching bugs.

1.3.1 Definition

The following 4 conditions need to be satisfied for this metric :

• Each entry and exit point is invoked.

• Each decision takes every possible outcome.

• Each condition in a decision takes every possible outcome.

• Each condition in a decision is shown to independently affect the outcome of

the decision.

The first condition is only slightly stronger than function coverage, and follows

from statement coverage. The next two conditions are exactly decision coverage and

condition coverage, respectively. The last condition is the main feature distinguishing

MC/DC.

A condition independently affects the outcome of the decision if and only if flipping

the value of that condition keeping the other values constant might change the decision

outcome.
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1.3.2 Example

Consider the boolean expression

d = a && (b | | c )

The full truth table corresponding to this is given below:

Row a b c d

1 T T T T

2 T T F T

3 T F T T

4 T F F F

5 F T T F

6 F T F F

7 F F T F

8 F F F F

To satisfy decision coverage, we just need to choose one of the first 3 rows and one

of the last 5 rows. To satisfy condition/decision coverage, we could choose rows 1, 6

and 7. However, we need to choose at least 4 rows to satisfy MC/DC.

One combination of rows satisfying MC/DC is rows 2, 3, 4 and 5. Only changing

the value of b changes the decision between rows 2 and 4. Similarly, only changing

the value of c changes the decision between rows 3 and 4. We haven’t chosen such

a pair corresponding to a. However, a independently impacts the value of d in row

5 while being false (since flipping a would lead to row 1, where d is true), and it

independently impacts the value of d in rows 2 and 3 while being true (since flipping

a would lead to rows 6 and 7 respectively, where d is false). Thus we have shown

that all the conditions independently impact the decision while assuming both truth

values. It is easy to check that condition/decision coverage is also satisfied by these

group of rows.
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1.3.3 Motivation

Observe that the definition of MC/DC requires 2 separate test vectors corresponding

to each condition in a boolean expression; one where the condition evaluates to true

and impacts the final decision, and another one where the condition evaluates to false

and impacts the final decision. The number of tests needed to satisfy MC/DC is

therefore linear in the number of conditions an expression has, which is much smaller

than the exponential number required to satisfy MCC. However, the description of

the metric is significantly more complicated. Intuitively, MC/DC seeks to guarantee

that if your program calculates the wrong value for any one of the conditions, it would

calculate the wrong value for the whole decision at least once (corresponding to the

test where that condition independently affects the decision).

1.4 Thesis Organization

This project involves significant changes in multiple layers of the compiler. Chapter 2

describes how we modify the front-end to annotate certain nodes in the AST as well as

determine which nodes should be processed for instrumentation. Chapter 3 describes

the algorithms used to instrument nodes corresponding to boolean expressions and

explores various optimizations to improve space and time overheads. In Chapter

4, we discuss the various changes made outside the compiler which were necessary

to support MC/DC as a stand-alone feature of the Green Hills developer suite. In

Chapter 5, we demonstrate the results obtained using the optimization techniques

presented in the thesis.
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Chapter 2

Front-End Modifications

The front-end of the compiler is responsible for parsing the source program, perform-

ing syntactic & semantic analysis, and producing an abstract syntax tree. In the

following sections, I describe the different modifications made to this layer.

2.1 Maintaining Position Information

Like most of the other code coverage metrics we discussed, the definition of MC/DC

is very closely tied to the source files of a program. The developer writing the tests

needs to know which expressions in the source file were properly covered, and which

were not. In order to display this information, we have to keep track of the start

and end position (including line number, column and file name) of each expression

we instrument.

I added an extra field in the expression nodes used in the AST to hold the position

range corresponding to that expression. This field first gets populated as we scan the

file to create individual tokens for each symbol appearing in the source code. I also

ensure that as we build the tree, each node maintains its position range by properly

combining the position ranges of its children.

The front-end often modifies expressions from their original form in the source.

For example, during semantic analysis, integer conditions inside an if or while clause

get a ! = 0 appended to them. It is important to identify each such case and ensure

17



that expression modified by the compiler have the same position range as the original

expression they are derived from.

I do not maintain meaningful position information for expression inside macro

definitions. This is a deliberate choice. Macro substitution takes place at the prepro-

cessing stage, and the compiler front-end only sees the expanded form. As a result,

all such expressions have their position range set to the position range of the macro

invocation site. I could have modified the preprocessor to avoid this issue, but that

would mean treating each macro invocation as a call to the same body of code, which

violates the spirit of macros.

2.2 Handling Inline Functions

For the purpose of code coverage, inline functions should not be treated any differently

from normal functions. One reason for this is that the inline keyword only serves as

a hint to the compiler; the compiler can inline functions which are not so marked (e.g.

if it is a member function containing just a simple return expression) and can refuse

to inline functions which are marked inline without generating an error message (e.g.

if the function is too large).

Consider the following code snippet:

i n l i n e bool foo ( ) {

return x | | y ;

}

. . .

d = foo ( ) && z ;

There are two boolean expressions in the above code, and they should be instrumented

separately. However, the front-end simply replaces the node corresponding to an inline

function call by the node corresponding to the appropriate function body, creating

one composite expression

d = ( x | | y ) && z ;

18



Although the above two expressions for d are semantically equivalent, MC/DC

for the two code snippets entail different requirements and hence, this substitution

is illegal when performing MC/DC instrumentation. To prevent this, I create a

temporary variable t and perform the following replacement:

d = ( t = x | | y , t ) && z ;

Note that this retains semantic equivalence, while not merging the two expressions

from the source file. As mentioned in the previous section, this ensures that the

position range of the comma expression node I generated is the same as the position

range of the function call node in the source (foo() in our example).

2.3 Identifying Expressions to Instrument

MC/DC is applicable to all boolean expressions. However, a lot of intuitive ap-

proaches to identify such expressions are not general enough.

It is tempting to look at the type of an expression to determine whether it is

boolean. The problem with this approach is versions of C predating C99 didn’t have

a bool type. Since boolean variables are internally represented by integers, we can’t

rely on the type of an expression to determine whether the expression should be in-

strumented or not. Another sensible approach would be instrumenting expressions

inside if, while, do-while and for clauses (this is a standard approach for imple-

menting branch coverage instrumentation). Although this takes care of most boolean

expressions in practice, MC/DC requires even assignments and return statements to

be instrumented if they involve boolean expressions. Instead, I use the topmost op-

erator in the AST node corresponding to an expression. An expression is considered

boolean if and only if it is a result of a relational (<,>,<=, >=,==, ! =) or a logical

(!, ||,&&) operator.

Since the definition of MC/DC mentions individual conditions as well as the

final decision, MC/DC instrumentation can’t be implemented in a modular fash-

ion. I determine which expressions qualify as decisions, and pass only those to

our instrumentation function. In order to do this, I added an extra parameter

19



is outermost expression to the function that processes expression nodes. This

parameter is always set to true for non-recursive calls and almost always false for

recursive calls, which is expected. However, there are a few cases where this is true

in a recursive call. The first operand of a comma operation is treated as its own

expression, not a sub-expression, and is instrumented accordingly. The same holds

for each operand of a ternary if, array subscripts, function call arguments and the

right-hand side of an assignment operation.

20



Chapter 3

Instrumentation Process

After the front-end passes certain expression objects for instrumentation, I replace

them by functionally equivalent expressions which stores some extra information used

for coverage in special sections of memory. This involves the most complicated piece

of code in this project.

3.1 Known Algorithms

I experimented with different algorithms for instrumentation. I briefly describe 3 of

those algorithms below. I also show the effect of transforming an expression using

the algorithm on the following boolean expression :

D = A && (B | | C)

3.1.1 Naive Implementation

The simplest algorithm for instrumentation is just recording the value of each con-

dition as well as the decision every time the code is run. If the expression has n

conditions, this method requires 2n+1 bits to instrument it. Since I use a 32-bit

logging variable, this algorithm can handle expressions with up to 4 conditions.

I create an accumulator variable whose first bit represents the decision and the

further bits represent the individual conditions in order. As we evaluate each condi-

21



tion, I keep updating this variable. Finally, I use the accumulator variable to get the

index of the bit to mark in the logging variable.

The sample expression is turned into the following:

D = ( accum = 0 ,

r e s = ( ( temp = A, accum |= ( temp ? 2 : 0 ) , temp ) &&

( ( temp = B, accum |= ( temp ? 4 : 0 ) , temp ) | |

( temp = C, accum |= ( temp ? 8 : 0 ) , temp ) ) ) ,

accum |= ( r e s ? 1 : 0 ) ,

l o g g i n g |= 1 << accum ,

r e s )

3.1.2 Implied Decision Algorithm

We can improve on the previous algorithm by noticing that if we record the value

of each condition, the decision can be calculated in the post-processing stage. Thus,

we can simply omit recording the decision. If the expression has n conditions, this

method requires 2n bits to instrument it. Since I use a 32-bit logging variable, this

algorithm can handle expressions with up to 5 conditions.

The details of this algorithm are almost exactly the same as the previous one,

except that we don’t need a bit in the accumulator variable for the result. However,

I now need to record the expression in order to be able to recalculate the decision.

The sample expression is turned into the following:

D = ( accum = 0 ,

r e s = ( ( temp = A, accum |= ( temp ? 1 : 0 ) , temp ) &&

( ( temp = B, accum |= ( temp ? 2 : 0 ) , temp ) | |

( temp = C, accum |= ( temp ? 4 : 0 ) , temp ) ) ) ,

l o g g i n g |= 1 << accum ,

r e s )

22



3.1.3 Masking Algorithm

The masking algorithm is a space-efficient algorithm for MC/DC instrumentation.

This algorithm requires only 2 bits per condition to instrument a boolean expression.

Since I use a 32-bit logging variable, this algorithm can handle expressions with up

to 15 conditions (2 bits are reserved for the decision). However, the extra complexity

needed to save space makes this slower than the previous approaches.

In this algorithm, the ith condition is represented by bits 2i + 1 and 2i + 2 of

the logging variable. While evaluating the expression, our instrumentation calculates

which conditions have an independent effect on the decision with what value in the

accumulator variable. The algorithm traverses the boolean expression tree by doing

a Depth-First Search. Whenever a leaf node is evaluated, we know that it has an

independent effect on the expression at that point. So, if the leaf node had position i

in the expression, I set bit 2i+1 (if the variable was true) or bit 2i+2 (if the variable

was false) in the accumulator. Finally, if the decision overall is false I set the last bit

and otherwise, I set the penultimate bit.

However, the result of the evaluation sometimes masks previous subexpressions.

If this variable caused the right child of an AND node to be false, the left child of

that AND node ceases to independently affect the final expression (because the AND

would evaluate to false regardless of its left child). Similarly, if this variable caused

the right child of an OR node to be true, the left child of that OR node gets masked

out. I keep track of these cases and remove all bits set in the left children getting

masked out when applicable.

In some cases, a particular evaluation of a condition determines the final decision.

The algorithm also keeps track of when that’s the case. In those cases, I flush the

accumulator to the logging variable.

This is what our sample expression is converted into:
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D = ( accum = 0 ,

r e s =

(A ? ( accum |= 4 , 1)

: ( accum |= 8 , l o g g i n g |= accum , 0) ) &&

( (B ? ( accum |= 16 , l o g g i n g |= accum , 1)

: ( accum |= 32 , 0 ) ) | |

(C ? ( accum |= 64 , accum &= ˜48 , l o g g i n g |= accum , 1)

: ( accum |= 128 , accum &= ˜12 , l o g g i n g |= accum , 0 ) ) ) ,

l o g g i n g |= (1 << r e s ) ,

r e s )

Note that a variable which isn’t evaluated due to short circuiting doesn’t affect the

decision. Bits corresponding to such variables remain 0, which is the correct value.

Therefore we don’t need any special processing for short- circuited variables.

3.2 Preliminary Design

It’s pretty clear from the above discussion that the implied decision algorithm is

strictly better than the naive implementation. Therefore, I use the implied decision

algorithm for all decisions with less than six conditions. For decisions with 6-15

conditions, I use the masking algorithm. If we encounter a decision with 16 or more

conditions, I do not instrument it. A recursive function that traverses the expression

tree is used at the beginning to count the number of conditions.

Without any further optimizations, this incurs unacceptably high space and time

overheads.

3.3 Optimizing single-variable Decisions

In practice, it turns out that a large fraction of boolean expressions contain only

one condition. Most notably, the loop condition for a for loop is generally a single

comparison and if and while clauses generally contain a single variable or condition.
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Therefore, optimizing our instrumentation for single-condition decisions can lead to

significant improvements in overall performance.

Note that the implied decision algorithm transforms a boolean variable x into

accum = 0 ,

r e s = ( temp = x , accum |= ( temp ? 1 : 0 ) , temp ) ,

l o g g i n g |= (1 << accum ) ,

r e s

It is easy to see that we do not need so many instructions in this simple case. In

fact, all we need to do is to record the value of x. Keeping that in mind, we can

simplify the above to decision coverage instrumentation as follows :

r e s = x ,

l o g g i n g |= ( r e s ? 2 : 1 ) ,

r e s

Note that although this captures the same information, the format is slightly

different. In this version, the last bit records if the decision was ever false, whereas

in the previous version the last bit records whether the condition was ever wrong.

Therefore, if the single condition is negated, we should interpret the logging variable

a bit differently.

We can use this algorithm whenever the expression to be instrumented contains

a single condition.

3.4 Removing the branch instruction from DC in-

strumentation

Profiling the code shows that majority of the time overhead still comes from instru-

menting single-condition expressions. In particular, the branch expression generated

by ternary if-expression is expensive. To try to get rid of that branch, it is tempting

to rewrite the DC instrumentation code as

25



r e s = x ,

l o g g i n g |= (1 << r e s ) ,

r e s

Since res is a boolean variable the above transformation is almost always valid.

However, since boolean variables are internally just integers, the above code doesn’t

behave as expected if the result variable is greater than 1 (which can happen if we

had an integer constant inside an if clause, for example).

We can fix the above issue by ensuring that res can only be 0 or 1. A simple

way to do that is the following:

r e s = x ,

l o g g i n g |= (1 << ( r e s != 0 ) ) ,

r e s

Although this form looks slightly more complicated than the code in the previous

section, getting rid of the branch instruction actually reduces timing overhead by a

significant margin.

3.5 Future work

The two optimizations mentioned above brought the overhead down to a reasonable

level. I also considered a few other optimization ideas which I ended up discarding.

Further research into these avenues might produce promising results.

3.5.1 Optimizing two-condition decisions

We saw in section 3.3 that we can use the specific form of the boolean expression

to create customized instrumentation code which incurs less overhead than the fully

general implied decision algorithm. This insight can be used to optimize boolean

expressions with 2 conditions too.

As an example, consider the expression x && y. When instrumented, this gets

turned into

26



accum = 0 ,

r e s = ( ( temp = x , accum |= ( temp ? 1 : 0 ) , temp ) &&

( temp = y , accum |= ( temp ? 2 : 0 ) , temp ) ) ,

l o g g i n g |= 1 << accum ,

r e s

We can actually eliminate the accumulator and the temporary variable altogether

by replacing the above with

x ? ( y ? ( l o g g i n g |= 8 , 1) : ( l o g g i n g |= 4 , 0 ) )

: ( l o g g i n g |= 1 , 0)

This expression has the same number of branch instructions, and gets rid of a few

assignments and a shift instruction. In fact, we can use a similar trick as in 3.4 to

get rid of the branch instruction generated by the inner if-expression if we use the

following semantically equivalent code snippet.

x ? ( temp = y , l o g g i n g |= (4 << ( temp != 0 ) ) , temp )

: ( l o g g i n g |= 1 , 0)

Some special handling would be required if any of these conditions were negated,

but the above represents a viable proof of concept. Similar optimizations could be

done for x || y too.

I decided that the marginal benefit provided by these optimizations is not worth

the extra complexity to handle all the cases indicated above at the current stage of

development. As these instrumentation tools see more use, I might consider revisiting

that decision. Some of these optimizations could also be combined with the loop

optimization discussed next.

3.5.2 Loop Optimization

A lot of boolean expressions come from loop constructs. Since these expressions

are evaluated quite a lot of times and each evaluation results in at least 1 write to

memory (since the logging variable is in memory), it is no surprise that runtime
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overhead drops significantly once we stop instrumenting loop conditions. Therefore,

optimizing instrumentation of these loop conditions could potentially lead to large

improvements.

Note that the body of a for or while loop is executed if and only if the loop

condition evaluates to true. Furthermore, the loop condition evaluates to false if and

only if we exit the loop normally (not through a break, throw, goto or return

statement). These observations can be leveraged to avoid a linear number of writes

to memory in the case where the loop expression has a single condition.

I create a local boolean variable which is set to false at loop initialization. I

set it to true at the start of the body of the loop. This variable denotes whether

the condition ever evaluated to true. Before every statement inside the loop body

that takes the control flow outside the loop (such as break), I insert an instruction

to set the logging variable to 2 (since the loop condition was set to true but not

false). Finally, I create a new basic block between the block for evaluating the loop

condition and the first block following the loop such that if the condition evaluates

to false, control reaches this new basic block before going to the block immediately

after the loop as usual. In this block, I set the logging variable to twice the local

variable I created plus 1 (the least significant bit is set since the loop condition was

set to false, and the second least significant bit should be set if and only if the loop

body was ever executed).

Based on our initial experiments so far, this seems to be a very promising optimiza-

tion. However, identifying all commands which take control flow outside the loop,

and in particular dealing with goto statements and nested loops, is quite challeng-

ing. Once the feature is somewhat more stable, I plan to implement this optimization

fully. It might also be possible to extend this optimization by moving instrumentation

instructions out of multiply nested loops.

3.5.3 Removing instrumentation when possible

One interesting feature all the algorithms presented above share is that the bits of the

logging variable are never erased. If we somehow knew that a certain bit is already
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set, we could remove the part of instrumentation responsible for setting that bit.

In practice, a binary is first generated from the source code. We then run the

binary against a multitude of tests. Finally, I use logical or to combine the corre-

sponding logging variables from each run and then analyze it. Instead, I could analyze

the logging variables after each test is run. If MC/DC is already satisfied for a cer-

tain expression, I can remove all the instructions responsible for instrumenting that

decision from the binary. In certain cases, I could use an even more precise method

to eliminate more instructions (e.g. if a certain condition is covered when using the

masking algorithm, I can delete just the instructions instrumenting that variable).

This could potentially trim down the binary as we go through our test suite, and

both the time and space overhead could go down a lot for the later tests.

It is theoretically possible to remove the extra instructions even earlier if the

program has permission to write to the text section. Self-modifying code could get

rid of the above instructions as soon as they become redundant, as evidenced in [8],

[22] and [6]. If the instrumentation overhead turns out to be too high for users, this

could be a very promising avenue of research.
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Chapter 4

Supporting utilities

I had to make a few other changes in various parts of the Green Hills code-base to

fully support MC/DC instrumentation. The logging variables mentioned above are

emitted in a special section; I had to add an option to the linker which includes that

section into the section map. The driver (the program that reads input from the

command line and calls the compiler and linker with appropriate arguments) also

needed a little modification. It now recognizes the option -mcdc and passes the

aforementioned option to the linker and the debug flag corresponding to MC/DC

instrument to the compiler when this option is passed.

4.1 Interpreting results of instrumentation

All the modifications discussed above change the executable file produced when we

build a program. Running this executable has all the same effects as running an exe-

cutable built without my changes, except that it also populates the logging variables

with appropriate coverage information. These logging variables are stored in two

special sections of the executable file. A separate program was written to interpret

these sections and display coverage information in a human-readable way.

Depending on the structure of the expression, I use one of 3 different algorithms

I discussed earlier to record information. If the expression has a single boolean con-

dition, I use DC instrumentation as described in section 3.4. If it has between two
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and five conditions, I use the implied decision algorithm from section 3.1.2. I use the

masking algorithm from section 3.1.3 if the expression has between six and fifteen

conditions. It is necessary for the interpreter program to know which logging variable

represents which expression and which algorithm was used to encode the information

present in it. Furthermore, note that the implied decision algorithm relies upon the

interpreter to figure out the value of the decision based on the values of its conditions;

I therefore need to also record the structure of the expression.

In the compiler, I actually collect all of this information. When an expression

is instrumented, I record the name of the file it belongs to as well as its starting

and ending line and column numbers. I then traverse the AST corresponding to the

expression and record the boolean structure in reverse Polish notation (for example,

the expression a && (b || !c) is recorded as A(X)(O(X)(N(X)))). While traversing,

I also record the start and end positions of each of the conditions.

The interpreter program first reads the auxiliary information and counts the num-

ber of conditions (Xs in our notation) to figure out the algorithm used. It then displays

the form of the expression and the relevant source position information about the en-

tire decision as well as all the conditions. The rest depends on the specific algorithm

used.

If DC instrumentation was used, I only need to figure out if the condition was

negated by checking if there is an odd number of Ns. The last two bits of the logging

variable describe if the decision was ever set to false and true, respectively. I use

them to determine the values taken by the decision as well as those taken by the

condition. Then I display the values taken by the condition, draw the full truth table

and indicate which rows were encountered.

If the masking algorithm was used, I don’t have enough information to deduce

which rows of the full truth table were encountered. Therefore, I simply read the

last two bits of the logging variable to determine the values taken by the decision,

and keep reading pairs of bits from the right starting at the third least significant bit

to determine if each condition impacted the decision while assuming true and false

values.
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In case the implied decision algorithm was used, I use the form of the expression

recorded to build a simplified AST. If the ith least significant bit is set, the indices of

the 1 bits in the binary expansion of i−1 correspond to the conditions that evaluated

to true in one particular execution of the expression. By mimicking the evaluation

process on our simplified AST, I can also figure out which conditions were evaluated

to false and which conditions were never evaluated due to short-circuiting. Thus, I

can record which row of the truth table this execution corresponds to, as well as which

conditions impacted the decision with what values. I combine all of this information

as I iterate through all the set bits of the logging variable, and then display it.

Sometimes, the same expression has multiple logging variables associated with it.

For example, every invocation of an inline function creates a separate logging variable.

To handle these correctly, our interpreter program doesn’t display the coverage infor-

mation as soon as a logging variable is processed. Instead, it stores all the relevant

information in a giant class. After all the variables are processed, it identifies entries

corresponding to the same expression (the source information must match exactly)

and merges them. Once all the entries in our class have distinct source positions, I

group them by file name, and display them in order of line number.

4.2 Testing

The testing of this feature was mostly done manually. Our test suite consists of func-

tions with different kinds of boolean expressions in them. I call these functions with

different combinations of arguments, and check if the coverage information displayed

for each function is correct.

I’ve tested every possible combination of arguments for all possible boolean ex-

pressions with one and two conditions. I also test all possible boolean expressions

with three conditions; if the truth table has four rows I try all combinations of those

rows, and I try about 18 combinations when the truth table has five rows. I tested

a few randomly chosen expressions with four and five rows. To test the masking

algorithm, I tested a few expressions with six, ten and fifteen conditions, respectively.
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I have tests with expressions inside for, while and do-while loop conditions. I’ve

tested expressions in if clauses, return statements and assignments. To test whether

the source position information is collected properly, I’ve tested inline functions and

macros. I also have tests using member functions and member variables of C++

classes.

Before this feature is released as a part of a product, it will go through more inten-

sive testing. Internal teams at Green Hills have started using the feature, and their

feedback is being continuously incorporated to make MC/DC instrumentation more

robust and bug-free. Regression tests are added whenever a new bug is discovered.
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Chapter 5

Experimental Results

I discussed a few optimizations which were explored during development in sections

3.3, 3.4, 3.5.2 and 3.5.1. In the following sections, we’ll explore how they impact both

the space and the time overhead of MC/DC instrumentation.

5.1 Benchmark Suites

To evaluate various characteristics of my system, I used a large set of benchmark suites

available at Green Hills. In the following sections, I use a small but representative

subset of that to demonstrate my results and overall trends. I’ll now go over each of

those benchmarks and provide a brief description and some statistics. All of these

suites were derived from third-party software, but had to be modified enough in order

to be integrated into the Green Hills testing environment.

Some of the suites contain a single program, whereas some contain many. In the

latter case, the different constituent programs generally share code, which makes it

impossible to mechanically calculate aggregate statistics from combining individual

test statistics.

• zlib is a compression library [9] that provides in-memory compression and de-

compression functions, including integrity checks of the uncompressed data. It

includes some unit tests which also serve as examples of how to use the library;
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these are not meant to test the zlib library extensively. It contains approxi-

mately 6700 lines of code. When I ran this, my tools detected and instrumented

844 decisions, out of which only 242 (≈ 29%) satisfy MC/DC.

• stanford is a suite of benchmarks that are relatively short, both in program

size and execution time. It contains simple, standard programs such as matrix

multiplication and sorting routines. It contains approximately 600 lines of code.

There were 155 boolean decisions instrumented, 135 (90%) of which satisfy

MC/DC. Table 5.1 provides statistics for individual tests in this suite.

• specint is derived from benchmark suites published by the Standard Perfor-

mance Evaluation Corporation (SPEC) [12]. This mostly consists of the integer

benchmarks from the now obsolete CPU89 suite. Selected files from later release

including CPU92 [11] and CPU95 [20] were also included. These suites were

designed to provide a comparative measure of compute-intensive performance

across the widest practical range of hardware using workloads developed from

real user applications. Among other things, specint includes a lisp interpreter

and a PLA optimizing tool. It contains more than 10000 lines of code. This

is a legacy test suite at Green Hills, and we can’t run these programs anymore

because of hardware compatibility issues. So I used this only for calculating

space overhead by compiling the files with and without various optimizations

enabled, and comparing the sizes of the resulting binaries generated.

• fbench is a floating point intensive benchmark. It contains two programs: one

implementing an optical design ray tracing algorithm and one calculating the

Fast Fourier Transform of a square matrix. These are self-contained programs;

they can be compiled and run directly and don’t need any input files or param-

eters. It contains around 500 lines of code. The first program has 20 boolean

expressions, 12 (60%) of which satisfy MC/DC. The second program has 26

such expressions, 22 (≈ 85%) of which satisfy MC/DC. Overall, there are 45

boolean expressions here, 33 (≈ 73%) of which satisfy MC/DC.

36



• eembc2 is a collection of the automotive, networking, office and telecom bench-

marks published by the Embedded Microprocessor Benchmark Consortium (EMBC)

[18]. It contains around 14600 lines of code. My program instrumented 1166

expressions in this suite, 786 (≈ 70%) of which satisfy MC/DC. More detailed

statistics and description are provided in the appendix.

• dhrystone is a synthetic computing benchmark intended to be representative of

system programming [23]. The author collected statistics about the frequencies

of different programming structures such as assignments control statements,

function calls, structs, arrays, different types of loops, different operators, etc.

appearing in real-life applications, and tried to recreate those statistical ratios

in this benchmark. The entire benchmark suite consists of 2 .c files and a

header file; the programs don’t do anything meaningful and there are no tests.

It contains 375 lines of code. There were only 18 expressions here, 5 (≈ 28%)

of which satisfy MC/DC.

• coremark is a benchmark that measures the performance of microcontrollers

and CPUs used in embedded systems. Some of the algorithms implemented

here include list processing (find and sort), matrix manipulation (common ma-

trix operations), state machine (determine if an input stream contains valid

numbers), and CRC (cyclic redundancy check). The programs resemble appli-

cation code written by end users. Each program has one test associated with

it to validate its functionality. Input files are included in the suite which are

needed to test some of these programs. It contains roughly 91500 lines of code.

We instrumented a total of 2326 boolean expressions, 629 (≈ 27%) of which

satisfy MC/DC. Table 5.1 provides statistics for individual tests in this suite.

5.2 Time Overhead

To measure the timing overhead, I used two benchmark suites; coremark and stanford.

Below, we present the total number of decisions in each test of these suites and the
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corresponding MC/DC coverage achieved.

Test Name
Number of
Decisions

Number of Decisions
Satisfying MC/DC

MC/DC
Percentage

coremark pro cjpeg2 542 127 23%
coremark pro core2 311 81 26%
coremark pro linpack2 291 53 18%
coremark pro loops2 385 113 29%
coremark pro nnet2 276 61 22%
coremark pro parser2 356 35 10%
coremark pro radix3 240 46 19%
coremark pro sha2 108 11 10%
coremark pro zip2 826 88 11%
coremark test 117 90 77%

stanford bubble 8 7 88%
stanford intmm 7 7 100%
stanford mm 7 7 100%
stanford oscar 15 14 93%
stanford perm 6 5 83%
stanford puzzle 62 59 95%
stanford queens 10 9 90%
stanford quick 11 10 91%
stanford towers 10 5 50%
stanford trees 20 13 65%

Table 5.1: Coverage Information of Stanford and Coremark Test Suites

The following tables display the overhead for each test in both of those suites, and

also provide aggregate statistics.

First, we consider the two optimizations on single-condition decisions. In the table

below, the first column represents the overhead of an unoptimized implementation.

The second column aggregates this information using geometric means for each suite.

The next 3 columns describe the effect of the first optimization from 3.3, while the

following 3 columns are dedicated to the impact of removing the branch condition

as described in 3.4. Within each group of 3 columns, the first column shows the

overhead of instrumentation, the second column shows the percentage improvement

over the unoptimized version, and the third column shows the same data as the first

column aggregated for the entire suite using geometric means.
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Test Name
Unoptimized

Instrumentation
Optimization 1 Optimization 2

coremark pro cjpeg2 81.65%

75.43%

72.71% 4.92%

68.59%

34.31% 26.06%

47.58%

coremark pro core2 212.89% 202.92% 3.19% 151.11% 19.74%
coremark pro linpack2 161.04% 139.47% 8.27% 111.80% 18.86%
coremark pro loops2 21.90% 19.93% 1.61% 7.16% 12.09%
coremark pro nnet2 133.06% 120.10% 5.56% 59.90% 31.39%

coremark pro parser2 9.43% 7.43% 1.83% 5.91% 3.22%
coremark pro radix3 14.44% 12.70% 1.53% 5.45% 7.86%
coremark pro sha2 1.96% 1.73% 0.23% 1.27% 0.68%
coremark pro zip2 69.51% 62.72% 4.01% 53.22% 9.61%

coremark test 202.53% 179.81% 7.51% 131.08% 23.62%

stanford bubble 147.05%

102.48%

126.65% 8.26%

92.20%

45.69% 41.03%

55.72%

stanford intmm 189.33% 149.06% 13.92% 115.66% 25.46%
stanford mm 84.39% 59.84% 13.31% 49.93% 18.69%

stanford oscar 61.10% 56.30% 2.98% 34.29% 16.64%
stanford perm 10.41% 5.31% 4.63% -21.44% 28.85%
stanford puzzle 236.58% 223.36% 3.93% 175.21% 18.23%
stanford queens 195.04% 182.45% 4.27% 183.86% 3.79%
stanford quick 104.49% 88.91% 7.62% 22.36% 40.17%
stanford towers 77.36% 73.75% 2.04% 51.32% 14.68%
stanford trees 37.16% 54.52% -12.66% 16.63% 14.97%

Table 5.2: Reduction of Time Overheads due to Single Condition Decision Optimiza-
tions

Note that the first optimization reduces overhead by roughly 10%, while the second

optimization (just removing a branch instruction) causes a further 30 - 40% drop.

These two optimizations bring the average time overhead down from 88% to 52%.

This is a pretty significant improvement, and both of these optimizations were kept

in the final version.

The next table showcases the 2 optimizations mentioned in 3.5.1 and 3.5.2. We

follow the same overall syntax as in the previous table, except that the baseline to

compare with is now a version of MC/DC with the previous two optimizations en-

abled. In each group, the first and last columns represent the absolute overhead for

instrumentation, while the middle column (if present) shows the percentage improve-

ment as compared to the baseline.

It is readily apparent that optimizing two-condition decisions is only slightly help-

ful; it generally has a negligible impact, but in some cases, it improves performance

significantly. The overall gain is around 3%. The loop optimization is also of a similar

nature, but gains from it are much more frequent as well as substantial. Taken to-

gether, these two optimizations have the potential to farther halve the time overhead
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Test Name
Instrumentation

with optimized DC
2-condition Optimization Loop Optimization

coremark pro cjpeg2 34.31%

47.58%

36.35% -1.52%

42.26%

33.85% 0.35%

26.33%

coremark pro core2 151.11% 105.89% 18.01% 133.93% 6.84%
coremark pro linpack2 111.80% 109.46% 1.11% 1.42% 52.12%
coremark pro loops2 7.16% 7.19% -0.03% -3.34% 9.80%
coremark pro nnet2 59.90% 59.97% -0.04% 6.28% 33.53%

coremark pro parser2 5.91% 4.24% 1.57% 4.63% 1.21%
coremark pro radix3 5.45% 6.91% -1.39% -0.21% 5.37%
coremark pro sha2 1.27% 1.27% 0.00% 1.27% 0.00%
coremark pro zip2 53.22% 50.43% 1.82% 53.56% -0.22%

coremark test 131.08% 98.38% 14.15% 95.52% 15.39%

stanford bubble 45.69%

55.72%

45.69% 0.00%

53.48%

8.09% 25.81%

29.22%

stanford intmm 115.66% 115.66% 0.00% 0.24% 53.52%
stanford mm 49.93% 49.93% 0.00% 0.69% 32.85%

stanford oscar 34.29% 34.29% 0.00% 30.73% 2.65%
stanford perm -21.44% -21.44% 0.00% 3.06% -31.19%
stanford puzzle 175.21% 176.48% -0.46% 59.63% 42.00%
stanford queens 183.86% 145.14% 13.64% 183.72% 0.05%
stanford quick 22.36% 22.35% 0.01% 10.07% 10.04%
stanford towers 51.32% 51.22% 0.07% 52.38% -0.70%
stanford trees 16.63% 16.40% 0.20% 16.26% 0.32%

Table 5.3: Reduction of Time Overheads after Optimizing Two-condition Decisions
and Loops

of MC/DC instrumentation.

5.3 Space Overhead

The space overhead was measured using a large set of benchmarks; these are used

for evaluating compiler optimizations throughout the company. A total of almost 3.3

million lines of code were instrumented. I’ll show the results from a small subset of

these benchmarks to highlight the overall trends. The next two tables are exactly

analogous to the previous two tables in 5.2, except that the numbers refer to the size

of the binary generated instead of the time taken to execute it.

Observe that both of the single-condition optimizations are quite effective on all

of the benchmarks; the aggregate overhead goes down from 78% to 62%. The next

two optimizations are, however, almost ineffective; so they are considered mainly for

improving performance and not size overhead.
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Test Name
Unoptimized
Instrumentation

Optimization 1 Optimization 2

coremark 84.85%

77.89%

73.71% 6.03%

67.20%

67.94% 9.15%

61.74%

dhrystone 29.08% 24.50% 3.55% 21.91% 5.56%
eembc2 91.22% 78.72% 6.53% 72.39% 9.85%
fbench 49.99% 42.47% 5.01% 38.80% 7.46%
specint 93.00% 79.04% 7.23% 72.04% 10.86%
stanford 96.13% 82.29% 7.06% 75.32% 10.61%
zlib 117.58% 103.20% 6.61% 95.94% 9.95%

Table 5.4: Reduction of Size Overheads due to Single Condition Decision Optimiza-
tions

Test
Name

Instrumentation
with optimized DC

Two-condition Optimization Loop Optimization

coremark 67.94%

61.74%

65.06% 1.72%

59.29%

63.87% 2.43%

59.70%

dhrystone 21.91% 21.91% 0.00% 21.29% 0.51%
eembc2 72.39% 68.62% 2.18% 70.53% 1.07%
fbench 38.80% 37.05% 1.26% 37.58% 0.88%
specint 72.04% 69.43% 1.52% 70.22% 1.06%
stanford 75.32% 73.31% 1.14% 71.09% 2.41%
zlib 95.94% 90.52% 2.76% 95.06% 0.45%

Table 5.5: Reduction of Size Overheads after Optimizing Two-condition Decisions
and Loops
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Chapter 6

Related Work

Achieving high code coverage has always been considered important for good testing;

the notion was around as early as 1963 [16]. The various metrics I described in sec-

tion 1.2 are fairly standard by now [2]. Tools for computing branch and statement

coverage are commonly available ([4], [1]). There has been a lot of research to op-

timize the instrumentation required for coverage. [22] and [6] introduce the idea of

dynamic instrumentation to reduce the overhead of statement coverage. In [8], the

authors combine static and dynamic instrumentation to speed up branch coverage

instrumentation.

The notion of MC/DC was introduced by document DO-178B [3] in 1992, where

the Federal Aviation Administration (FAA) mandated MC/DC for testing all level A

(the most safety critical) software. The definition of MC/DC was later expanded to

include masking MC/DC in 2001 ([7], [14]) and document DO-178C formally accepted

the modified decision in 2010 [5]. The definition of MC/DC given in section 1.3 follows

this masking definition. [21] gives a justification of why masking MC/DC should be

accepted for certification purposes, and [13] conducts an empirical study establishing

that satisfying this definition of MC/DC is not significantly harder than satisfying

Condition/Decision Coverage, but it catches a wider range of bugs. However, the

dependence of the MC/DC definition on source code makes it extremely sensitive to

small semantically equivalent changes; [19] shows that performing MC/DC analysis

on inlined vs non-inlined code leads to drastically different results.

43



There has been limited investigation into implementing MC/DC instrumentation.

The masking algorithm described in 3.1.3 was first described in [24]. In [25], the

authors used that algorithm to develop a flexible non-intrusive approach for compute

metrics similar to MC/DC.
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Chapter 7

Conclusion

This thesis presents the design of a system that allows programmers to visualize

which parts of their code achieve modified condition/decision coverage (MC/DC)

after that run their test suite. This tool is built on top of the Green Hills C/C++

compiler. I inserted static instrumentation by modifying the abstract syntax tree

(AST) generated in the computer back end. I also modified some of the compiler front

end code to maintain and propagate position information for each such expression.

I wrote a separate utility program that interprets the extra data generated by the

instrumented code and uses the associated position information to produce human

readable output.

Although the main algorithms for instrumentation were already known, it was a

significant engineering challenge to adapt them to an industrial compiler that has

to deal with a myriad of unusual cases. Integrating my system into the Green Hills

testing environment also required a fair bit of work. Finally, I had to make several

benchmark-driven tweaks and optimizations to the instrumentation process in order

to bring the space and time overhead down to acceptable levels. As shown in section

5.2, I was able to cut down the time overhead by almost a factor of 3.

As previously mentioned, internal teams at Green Hills Software have already

started using this system. However, further testing is necessary before this system

can be released to production.

45



46



Appendix A

EEMBC benchmarks

As mentioned earlier, there are 4 subcategories in our eembc benchmark suite; these

roughly correspond to the AutoBench, Networking, OABench and TeleBench suites

published by EMBC. These suites contain utility programs useful in specific indus-

tries, and those programs are tested extensively to ensure correctness.

In the table next page, we describe the number of boolean decisions in each in-

dividual test of these 4 suites and their MC/DC coverage statistics. Note that each

row corresponds to a unique test. Some programs have only one test file associated

with them whereas others have multiple tests using different datasets to test them;

for example, the last 4 rows all test a Viterbi encoding program using 4 different

datasets. Some of these tests require images or sound clips as input files, while others

are self-contained C programs.
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Test Name
Number of
Decisions

Number of Decisions
Satisfying MC/DC

MC/DC
Percentage

eembc11 auto a2time01 58 43 74.14%
eembc11 auto aifftr01 55 40 72.73%
eembc11 auto aifirf01 37 19 51.35%
eembc11 auto aiifft01 48 33 68.75%
eembc11 auto basefp01 37 22 59.46%
eembc11 auto bitmnp01 185 119 64.32%
eembc11 auto cacheb01 25 9 36.00%
eembc11 auto canrdr01 41 23 56.10%
eembc11 auto idctrn01 71 56 78.87%
eembc11 auto iirflt01 79 52 65.82%
eembc11 auto matrix01 102 70 68.63%
eembc11 auto pntrch01 55 29 52.73%
eembc11 auto puwmod01 92 65 70.65%
eembc11 auto rspeed01 38 17 44.74%
eembc11 auto tblook01 42 21 50.00%
eembc11 auto ttsprk01 62 22 35.48%
eembc11 net ospf dijkstra 81 22 27.16%
eembc11 net packet flow 1 m 52 21 40.38%
eembc11 net packet flow 2 m 52 21 40.38%
eembc11 net route lookup 58 22 37.93%
eembc11 office dithering 24 10 41.67%
eembc11 office image rotation 54 40 74.07%
eembc11 office text processing 70 41 58.57%
eembc11 telecom autcor00 data 1 24 9 37.50%
eembc11 telecom autcor00 data 2 24 9 37.50%
eembc11 telecom autcor00 data 3 24 9 37.50%
eembc11 telecom conven00 data 1 26 12 46.15%
eembc11 telecom conven00 data 2 26 12 46.15%
eembc11 telecom conven00 data 3 26 12 46.15%
eembc11 telecom fbital00 data 1 31 14 45.16%
eembc11 telecom fbital00 data 2 31 13 41.94%
eembc11 telecom fbital00 data 3 31 13 41.94%
eembc11 telecom fft00 data 1 37 13 35.14%
eembc11 telecom fft00 data 2 37 13 35.14%
eembc11 telecom fft00 data 3 37 13 35.14%
eembc11 telecom viterb00 data 1 30 16 53.33%
eembc11 telecom viterb00 data 2 30 16 53.33%
eembc11 telecom viterb00 data 3 30 16 53.33%
eembc11 telecom viterb00 data 4 30 14 46.67%

Table A.1: Coverage Information of EEMBC test suite
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