
Combating Fake News with Adversarial Domain
Adaptation and Neural Models

by

Brian Xu
B.S., Massachusetts Institute of Technology (2018)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2019

c○ Massachusetts Institute of Technology 2019. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

February 1, 2019
Certified by. .

James R. Glass
Senior Research Scientist

Thesis Supervisor
Certified by. .

Mitra Mohtarami
Research Scientist
Thesis Supervisor

Accepted by .
Katrina LaCurts

Chair, Master of Engineering Thesis Committee

2

Combating Fake News with Adversarial Domain Adaptation

and Neural Models

by

Brian Xu

Submitted to the Department of Electrical Engineering and Computer Science
on February 1, 2019, in partial fulfillment of the

requirements for the degree of
Master of Computer Science and Engineering

Abstract

Factually incorrect claims on the web and in social media can cause considerable
damage to individuals and societies by misleading them. As we enter an era where
it is easier than ever to disseminate “fake news” and other dubious claims, automatic
fact checking becomes an essential tool to help people discern fact from fiction. In this
thesis, we focus on two main tasks: fact checking which involves classifying an input
claim with respect to its veracity, and stance detection which involves determining
the perspective of a document with respect to a claim. For the fact checking task,
we present Bidirectional Long Short Term Memory (Bi-LSTM) and Convolutional
Neural Network (CNN) based models and conduct our experiments on the LIAR
dataset [Wang, 2017], a recently released fact checking task. Our model outperforms
the state of the art baseline on this dataset. For the stance detection task, we present
bag of words (BOW) and CNN based models in hierarchy schemes. These architec-
tures are then supplemented with an adversarial domain adaptation technique, which
helps the models overcome dataset size limitations. We test the performance of these
models by using the Fake News Challenge (FNC) [Pomerleau and Rao, 2017], the
Fact Extraction and VERification (FEVER) [Thorne et al., 2018], and the Stanford
Natural Language Inference (SNLI) [Bowman et al., 2015] datasets. Our experiments
yielded a model which has state of the art performance on FNC target data by using
FEVER source data coupled with adversarial domain adaptation [Xu et al., 2018].

Thesis Supervisor: James R. Glass
Title: Senior Research Scientist

Thesis Supervisor: Mitra Mohtarami
Title: Research Scientist

3

4

Acknowledgments

I would like to thank my thesis advisors Mitra Mohtarami and James Glass for their

efforts in guiding and assisting with my research. Without their efforts, my thesis

would not have been possible. I would also like to thank all of my friends and family

for their unwavering love and support throughout my academic journey.

5

6

Contents

1 Introduction 17

1.1 Motivation . 17

1.2 Problem Descriptions . 18

1.3 Contributions . 20

1.4 Outline . 21

2 Related Work 23

2.1 Fact Checking . 23

2.2 Stance Detection . 25

2.3 Adversarial Domain Adaptation . 26

3 The Fact Checking Problem 29

3.1 Dataset Description . 29

3.2 Method . 32

3.2.1 CNN Architecture . 32

3.2.2 Bi-LSTM Architecture . 33

3.2.3 Stacked LSTM and CNN Model Architecture 33

3.2.4 Evaluation Metrics . 34

3.3 Experiments . 35

3.3.1 CNN Experiments . 36

3.3.2 Bidirectional LSTM Experiments 37

3.3.3 Stacked Bidirectional LSTM and CNN Experiments 37

3.4 Analysis . 38

7

3.5 Discussion . 39

3.6 Summary . 40

4 Stance Detection using Adversarial Domain Adaptation 41

4.1 Datasets . 41

4.1.1 Fake News Challenge . 42

4.1.2 Fact Extraction and VERification 43

4.1.3 Stanford Natural Language Inference 45

4.2 Method . 46

4.2.1 Feature Extraction Component 47

4.2.2 Label Prediction Component 48

4.2.3 Domain Adaptation Component 48

4.2.4 Model Parameters and Training Procedure 49

4.3 Experiments . 50

4.3.1 Baselines . 50

4.3.2 Evaluation Metrics . 51

4.3.3 Model Configurations . 52

4.4 Results and Analysis . 54

4.4.1 Performance Analysis: FEVER → FNC 54

4.4.2 Performance Analysis: SNLI → FNC 55

4.4.3 Performance Analysis: SNLI → FEVER 59

4.4.4 Performance Analysis: FNC → FEVER 61

4.4.5 Training Loss Trends . 61

4.5 Summary . 62

5 Stance Detection Demonstration 65

5.1 Demonstration System Design . 65

5.2 An Example through the Demonstration System 66

5.3 Technologies . 71

5.4 Extensibility . 71

5.5 Summary . 72

8

6 Conclusion 73

6.1 Summary . 73

6.2 Future Work . 74

9

10

List of Figures

3-1 Model of a generic CNN as presented in [Kim, 2014]. The input sen-

tence is first converted into a matrix of word vectors. Then, kernels of

filter size 2 and 3 are applied, with multiple filters per filter size. The

vectors are then pooled and the results are fully connected to a hidden

layer. 32

3-2 Model of a generic LSTM cell as presented by Chen [Chen, 2016].

LSTM cells contain a input and output gates of a LSTM cell control

information flow to and from the memory unit. Additionally, LSTM

cells have a forget gate, which can be used to remove information from

the memory cell. 34

3-3 Diagram of Bi-LSTM and CNN model. The input layer is first fed into

the Bi-LSTM layer. The features extracted from the Bi-LSTM layer

are then fed into the convolutional layer. Finally, the output from the

convolutional layer is fed into a fully connected hidden layer before

undergoing classification via a final softmax layer. 35

4-1 The architecture of our model for stance detection which uses adver-

sarial domain adaptation. 47

4-2 Exploring learning with adversarial domain adaptation across differ-

ent domains (SNLI, FEVER, and FNC datasets) and tasks (stance

detection and textual inference tasks). 50

11

4-3 The classification and domain adaptation losses on validation data

across training epochs for our best FEVER→FNC model; BOW +

CNN + DA with the hierarchy scheme. 62

5-1 The high level design of the demonstration system. The client sends a

claim-document pair to the server to be analyzed. Upon receiving the

request, the server processes the input texts, gives them through our

pretrained stance detection model, and then returns the results. The

client receives these results and displays them to the user. 66

5-2 The input page of the demonstration system. The user can enter two

text inputs as claim and document. Then, the inputs are processed by

the demonstration system after clicking the submit button. 67

5-3 The first part of the results page contains a color key and statistics of

our model predictions for the input claim-document pair at a holistic

level. The sentences in the document that support the predictions are

highlighted. 68

5-4 The second part of the results page contains model predictions specific

to each sentence in the document. In particular, the specific sentence

along with the claim is passed to the model and the model predictions

are displayed. 69

5-5 This figure is in continuous of the previous part of the system outputs

at sentence level. 70

12

List of Tables

1.1 Examples of data used for the fact checking task. 18

1.2 Examples of data used for the stance detection task. 19

3.1 Examples of claim, label pairs from the LIAR dataset. 30

3.2 Label frequency distribution for the LIAR dataset. 31

3.3 Party affiliation frequency distribution for the LIAR dataset. 31

3.4 Model Accuracy Results. The ’Wang’ prefix denotes results from orig-

inal LIAR paper [Wang, 2017]. Suffixes subject, party, credit, and all

indicate that the corresponding pieces of metadata were used. Best

model was picked by choosing the highest validation accuracy model

out of 10 trained. Avg indicates average accuracy over 10 trained models. 39

4.1 Randomly chosen examples of claim-document pairs and their labels

from the FNC dataset. The relevant snippet from each document is

displayed. 42

4.2 Label frequency distribution for the FNC dataset. 43

4.3 Randomly chosen examples of data from the FEVER dataset. The

name of each document associated with the claim is given in italics,

followed by the relevant snippet from the document. 44

4.4 Label frequency distribution for the FEVER dataset. 44

4.5 Randomly chosen examples of data from the SNLI dataset. The premise-

hypothesis pairs are considered as the claim-document pairs. 45

4.6 Label frequency distribution for the SNLI dataset. 45

13

4.7 FEVER → FNC. Results on the FNC test data for models trained using

FNC training data and FEVER data. BOW, CNN and DA refer to

our model when it uses bag of words features, convolutional features,

and domain adaptation, respectively. When DA is present, square

brackets indicate which features are passed to the domain adaptation

component. The hierarchy in parentheses refers to our model with

two level prediction scheme as explained in section 4.3.3. We show the

results of the models based on the smallest loss for validation set across

5 independent runs. 53

4.8 SNLI → FNC. Results on the FNC test data for models trained using

FNC training data and SNLI data. BOW, CNN and DA refer to our

model when it uses bag of words features, convolutional features, and

domain adaptation, respectively. When DA is present, square brackets

indicate which features are passed to the domain adaptation compo-

nent. The hierarchy in parentheses refers to our model with two level

prediction scheme as explained in section 4.3.3. We show the results

of the models based on the smallest loss for validation set across 5

independent runs. 56

4.9 SNLI → FEVER. Results on the FEVER test data for models trained

using FEVER training data and SNLI data. BOW, CNN and DA refer

to our model when it uses bag of words features, convolutional features,

and domain adaptation, respectively. When DA is present, square

brackets indicate which features are passed to the domain adaptation

component. The hierarchy in parentheses refers to our model with

two level prediction scheme as explained in 4.3.3. We show the results

of the models based on the smallest loss for validation set across 5

independent runs. 58

14

4.10 FNC → FEVER. Results on the FEVER test data for models trained

using FEVER training data and FNC data. BOW, CNN and DA refer

to our model when it uses bag of words features, convolutional features,

and domain adaptation, respectively. When DA is present, square

brackets indicate which features are passed to the domain adaptation

component. We show the results of the models based on the smallest

loss for validation set across 5 independent runs. 60

15

16

Chapter 1

Introduction

1.1 Motivation

The problem of false or misleading news articles, sometimes referred to as “fake news”,

is not a new phenomena. Even more than a century ago, fake news, under the alias

“yellow journalism”, had already been exerting massive influence on important global

events, such as U.S. foreign policy.1 Prior to the internet, though, fake news could

be contained fairly well because the only effective method of effectively spreading

written information was through the newspaper. Almost all newspaper articles were

fairly well vetted as they were generally written by professional journalists and peer

reviewed by professional editors. Publishing fake news was strongly discouraged, as

such an article could easily cost a journalist or editor their job and their reputation.2

Now, the rapid rise of social media and other internet media allows anyone to

write anything about anything, often in an anonymous manner. Since publishing

fake news via this medium is much easier and without significant risk, fake news has

seen a resurgence which continues to this day. This rise has prompted increasing

awareness of the negative influence of fake news and how it can unfairly influence

public opinion on various events and policies [Mihaylov et al., 2015, Mihaylov and

Nakov, 2016, Vosoughi et al., 2018]. Today, the fake news problem has, without a

1https://history.state.gov/milestones/1866-1898/yellow-journalism
2http://time.com/4858683/fact-checking-history/

17

Label Claim

pants-fire In the case of a catastrophic event, the Atlanta-area offices of the
Centers for Disease Control and Prevention will self-destruct.

half-true However, it took $19.5 million in Oregon Lottery funds for the Port
of Newport to eventually land the new NOAA Marine Operations
Center-Pacific.

true The Chicago Bears have had more starting quarterbacks in the last
10 years than the total number of tenured (UW) faculty fired during
the last two decades.

Table 1.1: Examples of data used for the fact checking task.

doubt, made its way into the public limelight, most notably during the recent 2016

US Presidential Election.3

Currently, all credible fact checking has to be done manually and the process is

very labor intensive. Given a claim, a human fact checker needs to look up different

credible sources and discern their stances on the issue. Then, the fact checker must

decide, based on that information, whether the claim is true or not. Due to the sheer

amount of fact check worthy claims that are posted to the internet every day, it is

simply not feasible to have human fact checkers confirm or refute each claim. In order

to prevent fake news from misleading readers, a fast, automated mechanism to check

the veracity of news claims is necessary. Figuring out how to create such an model

is a field of active research which this thesis contributes to. In the next section, we

discuss the specific research problems covered in this work.

1.2 Problem Descriptions

First, we work on the fact checking problem by framing it as a single classification

problem. In particular, given a claim 𝑐 we aim to determine how factual 𝑐 is on

some predetermined scale of veracity. For this task, we work mainly on the LIAR

dataset [Wang, 2017]. This dataset provides a large number of claims and factuality

3https://www.bbc.com/news/world-us-canada-37896753

18

Claim Robert Plant Ripped up $800M Led Zeppelin Reunion Contract.

Label Document

agree . . . Led Zeppelin’s Robert Plant turned down £500 MILLION to
reform supergroup. . . .

disagree . . . Robert Plant’s publicist has described as “rubbish” a Daily Mir-
ror report that he rejected a £500m Led Zeppelin reunion. . . .

discuss . . . Robert Plant reportedly tore up an $800 million Led Zeppelin
reunion deal. . . .

unrelated . . . Richard Branson’s Virgin Galactic is set to launch Space-
ShipTwo today. . . .

Table 1.2: Examples of data used for the stance detection task.

labels scraped from Politifact4, a reputable fact checking media source. The factuality

labels provided for each claim range from true, to barely-true, to pants-fire. Each of

the provided claims further comes with some associated metadata, such as the speaker

and the subject of the claim. Some examples of LIAR data are displayed in Table 1.1.

Next, we also work on a problem known as the stance detection task which is a

critical subtask for commonly proposed automatic fact checking processes. The fact

checking problem is often postulated to consist of a multistage process involving the

following steps [Vlachos and Riedel, 2014]:

1. Retrieve potentially relevant documents as evidence for the claim [Mihaylova

et al., 2018, Karadzhov et al., 2017b].

2. Predict the stance of each document with respect to the claim [Mohtarami et al.,

2018, Baly et al., 2018].

3. Estimate the trustworthiness of the documents (e.g. in the Web context, the

site of a Web document could be an important indicator of its trustworthiness).

4. Finally, make a decision based on the aggregation of (2) and (3) for all docu-

ments from (1) [Mihaylova et al., 2018].

4https://www.politifact.com/

19

Stance detection is step (2) of this process. Formally, given a claim 𝑐 and a document

𝑑, we aim to determine the stance of 𝑑 relative to 𝑐. Stances can be defined one of

the following: agree, disagree, discuss, unrelated, where a stance of agree indicates

that a given document 𝑑 agrees with the corresponding claim 𝑐. An example for

each label is shown in Table 1.2. In this thesis, we present neural based models to

address this task and evaluate the models on a publicly available dataset, the Fake

News Challenge [Pomerleau and Rao, 2017]. The dataset contains a large number

of (claim, document) pairs along with the stance label relating each pair. We also

conduct experiments which use the Fact Extraction and VERification dataset [Thorne

et al., 2018] and Stanford Natural Language Inference dataset [Bowman et al., 2015]

for this task.

1.3 Contributions

Our contributions to the previously discussed research problems can be summarized

as:

1. We construct neural based models for the fact checking task that can outperform

existing baselines for the LIAR dataset.

2. We are the first to apply adversarial domain adaptation for the stance detection

task. In particular, we evaluate the relationships between the Fake News Chal-

lenge dataset, the Fact Extraction and VERification dataset, and the Stanford

Natural Language Inference dataset for this task through adversarial domain

adaptation.

3. By leveraging adversarial domain adaptation, we create a stance detection

model that can outperform existing state of the art models for the Fake News

Challenge dataset.

Each of these contributions will be discussed in detail in the remainder of this

thesis. The next section provides an outline of the following chapters.

20

1.4 Outline

Next in Chapter 2, we will discuss previous work related to the fact checking and

stance detection problems. Then, in Chapter 3, we will detail our experiments on the

fact checking problem evaluated on the LIAR dataset. After, in Chapter 4, we will

describe our experiments where we apply adversarial domain adaptation on models

for the stance detection task. Following that, in Chapter 5, we explain the design and

implementation of a demonstration system for our state of the art stance detection

model. Finally, in Chapter 6, we summarize our work and discuss possibilities for

future work.

21

22

Chapter 2

Related Work

In this chapter, we will examine previous work for the fact checking problem and

the stance detection problem. For both of these problems, we will survey popular

datasets and discuss notable models and results. Also, we will discuss work related

to adversarial domain adaptation, a technique we use for the stance detection task.

In particular, we will examine its relationship to other domain adaptation methods

and notable usages.

2.1 Fact Checking

Much of the existing research for the fact checking problem chooses to apply neural

methods [Wang, 2017, Karadzhov et al., 2017c, Karadzhov et al., 2017a] such as con-

volutional neural networks (CNNs) and long short term memory (LSTMs) to solve the

problem. In general, text input is converted into high dimensional word embedding

vectors, such as pretrained Word2Vec [Mikolov et al., 2013a] or GloVe [Pennington

et al., 2014] vectors, before being consumed by those architectures. The word em-

bedding assigned to each word represents that word’s meaning in relation to other

words.

A large amount of previous work also focuses on extracting a wide variety of

other features to help models predict labels. For example, one paper [Karadzhov

et al., 2017a] extracts a great variety of features from training data including TF-

23

IDF features [Ramos et al., 2003], part of speech frequencies and pointwise mutual

information (PMI) [Bouma, 2009]. After these features are extracted, classifiers such

as a support vector machine (SVM) [Cortes and Vapnik, 1995] can then be used on

those features to produce an overall classification.

Other research in the task has focused on extracting information from sources

outside the provided training data [Karadzhov et al., 2017c, Ciampaglia et al., 2015].

This is a logical step, because in order for a person to determine the veracity of a claim,

he or she would likely start establishing a ground truth by looking at other credible

sources. One approach to acquiring useful outside information is through internet

search engines. In [Karadzhov et al., 2017c], the proposed model utilizes several

search engines including Google, Bing, etc. and retrieves a relevant snippet from each

relative to the claim being analyzed. In order to gauge the credibility of the search

results found, they compiled a domain blacklist by manually examining the domains

of the top 100 most frequently used domains. If a search result comes from a domain

on the blacklist, information from that result will not be used. While this filtering is

by no means foolproof, as credible domains can still have bad information, authors

believe this method provided sufficient information for the task. After applying a

series of LSTMs on the representations of the retrieved information, the model is able

to use SVMs and multilayer perceptrons to predict the veracity of the original claim.

Another approach taken to solve the fake news problem is to extract features from

existing knowledge graphs such as DBpedia [Bizer et al., 2009]. These knowledge

graphs are constructed in an attempt to relate the information on the web; DBpedia

in particular uses data from Wikimedia and contains information on more than 4.5

million structured content. After defining the concept of semantic proximity and

tying a truthfulness metric to the knowledge graph, one paper [Ciampaglia et al., 2015]

leverages DBpedia by creating a model which finds the maximal semantic proximity of

a claim in question. Based on the truthfulness measure corresponding to the relevant

maximal semantic proximity path, the model can then predict whether the claim

is true or false. While this approach seems effective for fairly simple fact checking

statements (such as “x is married to y”), they noted that the model struggled with

24

more complex claims.

2.2 Stance Detection

The stance detection task is currently a very active area of research. There have

been several datasets created for the purpose of stance detection including the Fake

News Challenge [Pomerleau and Rao, 2017], SemEval-2016 Task 6 [Mohammad et al.,

2016], Emergent [Ferreira and Vlachos, 2016], and most recently the Fact Extraction

and VERification dataset [Thorne et al., 2018]. A variety of models have been used

to achieve top performing results on these datasets.

One common approach which achieved a top result on the FNC dataset is the

multilayer perceptron model [Riedel et al., 2017]. In this model, TF and TF-IDF

features are used to represent the input. After passing the input vector through a

hidden layer, the model predicts the input article’s stance using a softmax layer.

Despite the simplicity of this model, it yields one of the top results for the task.

Next, the best performing model for the FNC dataset effectively applied a com-

bination of a decision tree model and a deep CNN model [Baird et al., 2017]. The

decision tree model involves first extracting many features from the given claim and

document, including count features, sentiment features, etc. Then, a gradient boosted

decision tree model is applied on these features to produce a classification. The CNN

model is implemented by applying convolutions to the word embedding representa-

tion of the data, a common text classification technique [Kim, 2014]. The outputs of

the convolutional layers are then fed to a series of fully connected layers before being

fed into a final softmax layer for classification. The logits produced from these two

models are then combined to make a final prediction.

Another relatively simple but effective method for stance detection is a LSTM

model approach. This method was used by MITRE [Zarrella and Marsh, 2016] and

produced the top score on SemEval-2016 Task 6 Task A. After converting the text

input into a matrix of word vectors, their model fed that matrix into a LSTM model

(one word at a time) along with some metadata on the subject of the input text. The

25

final LSTM output was then fed into a hidden layer which was then used to predict

the stance label of the input text. Their results demonstrate the predictive power of

LSTMs on short to medium length text inputs.

The bidirectional variant of the LSTM architecture, in which the input text is

passed both forwards and in reverse, has also been successfully used to achieve state

of the art results on the same dataset [Augenstein et al., 2016]. The model first

processes the subject of a claim through a bidirectional LSTM. Then, the output

is fed in as metadata to a separate bidirectional LSTM which processes the actual

claim. In this way, the model is able to to pay specific attention to subjects.

Finally, the recently proposed memory network architecture [Sukhbaatar et al.,

2015] has been successfully used for the stance detection task [Mohtarami et al., 2018].

Memory networks were designed to remember past information, and have been shown

to perform better than traditional architectures such as RNNs in many applications.

This is because memory networks are better suited to handle semantic relationships

with entire paragraphs of text, which can be useful for tasks such as stance detection.

2.3 Adversarial Domain Adaptation

The purpose of domain adaptation is to configure data that is useful in the source

domain for use in a different target domain. This technique is especially useful when

the source domain has plentiful labeled data, but the target domain has little to no

labeled data. When using data from a different domain, it is usually necessary modify

it to fit the target domain as there are usually differences in data distributions. There

have been a large variety of ideas on how to conduct domain adaptation; we will

highlight several of these approaches next. This problem is still an area of active

research.

Of the many possible ways to conduct domain adaptation, we are particularly

interested in the approaches which require minimal dataset specific alterations. One

possible approach to accomplish this is to sample data from a carefully selected source

domain which is similar to the target domain [Gong et al., 2013]. Known as land-

26

marks, these similar pieces of data can be automatically identified. After identifi-

cation, landmarks can then be used to effectively relate the source domain and the

target domain, allowing for provably easier domain adaptation tasks.

Another approach is to conduct a feature space transformation of the source data

so that it is closer to that of the target data by using a method such as transfer com-

ponent analysis [Pan et al., 2011]. The transfer component analysis method attempts

to find transfer components across domains in a Reproducing Kernel Hilbert Space

using Minimum Mean Discrepancy to measure of distance between distributions. The

transfer components are selected so that the subspace spanned by these components

contains data from different domains which are similar in distribution to each other.

So, in theory, data from one domain from this space can then be used in a different

domain without concerns about distribution related discrepancies.

Adversarial domain adaption differs from previous approaches in that it is able to

directly minimize the difference in feature space distributions [Ganin and Lempitsky,

2014]. This method works by training an adversary that tries to predict, given the

features produced by the model, the domain from which the features came from. If

the adversary can accurately predict the original domain, then it was able to identify

distribution related differences in the features produced from the different domains.

Because the model tries to maximize the adversary’s loss, the model is incentivized

to learn to choose features which ensure that the adversary performs poorly. So, the

features produced by a fully trained model should be very similar among different

domains in terms of their distribution. By utilizing the recently proposed backprop-

agation architecture to implement adversarial domain adaptation [Ganin and Lem-

pitsky, 2014], both the model and the adversary can be trained jointly. We note that

previous implementations of this idea involved a multistep process training process;

one step for the classifier and one step for the adversary.

So far, adversarial domain adaptation has seen success on popular computer vision

datasets such as MNIST [Ganin and Lempitsky, 2014] and the idea has been used with

limited success on the natural language processing tasks such as text classification [Liu

et al., 2017] and speech recognition [Sun et al., 2017]. As part of this thesis, we

27

will explore the novel idea of applying adversarial domain adaptation to the stance

detection problem. To the best of our knowledge, this technique has never been

applied to the stance detection task or any of the datasets used in this thesis.

28

Chapter 3

The Fact Checking Problem

In this chapter, we will discuss our work on the fact checking problem. As discussed

earlier in Section 1.2, this problem involves classifying an input claim 𝑐 based on the

veracity of that claim. To compare the effectiveness of our ideas on this task to other

techniques, we evaluate models on the LIAR dataset [Wang, 2017]. We will begin by

examining the dataset before explaining our experiments and results.

3.1 Dataset Description

The LIAR dataset contains claims, their labels, and some metadata for each claim

including information about the speaker, subject, party affiliation, and credit history.

At the time of these experiments, this was a new and relatively unexplored dataset

whose size is more than an order magnitude larger than any other similar dataset

available at the time. The dataset is very balanced in terms of label classes and the

data is drawn from PolitiFact1, generally known as a reputable source.

First, we will examine some basic properties of the LIAR dataset. The average

number of words for each of these claims is 18.0. Each of the claims are labeled by

one of the six following labels in order of least true to most true: pants-fire, false,

barely-true, half-true, mostly-true, and true. Examples of claims corresponding to

each label can be found in Table 3.1. The distribution of labels is fairly balanced as

1http://www.politifact.com/

29

Label Claim

pants-fire Says that in a hearing, Rep. Gabrielle Giffords suggested to Gen.
David Petraeus that the Army put more emphasis on less environ-
mentally damaging methods, like stabbing or clubbing enemy forces
in order to minimize the carbon output.

false Under the Cash for Clunkers program, all we’ve got to do is ... go
to a local junkyard, all you’ve got to do is tow it to your house.
And you’re going to get $4,500.

barely-true Says Rush Limbaugh made it clear hed rather see the country fail
than President Barack Obama succeed.

half-true The Social Security trust fund is sound. Without anything being
done, it would function well into 2038; and even after that time with
no changes, we could pay 80 percent of the benefits that people have
earned.

mostly-true High school students arrested on campus are twice as likely not to
graduate and four times less likely to graduate if they’ve appeared
in court.

true Says George LeMieux was one of two Republicans who voted for
President Barack Obama’s jobs bill.

Table 3.1: Examples of claim, label pairs from the LIAR dataset.

shown in Table 3.2, with the exception of the pants-fire label which has significantly

fewer occurrences. Between the train, valid, and test partitions, the distributions are

also fairly similar.

According to the metadata available in the dataset, there are 144 distinct subjects

covered by the claims in the LIAR dataset, with the top five most common ones being

’economy’, ’health-care’, ’taxes’, ’federal-budget’, and ’education.’ Claims may have

multiple different subjects associated with them if appropriate. Each subject occurs

an average of 193 times overall in the dataset.

There are 3, 312 distinct speakers in the LIAR dataset with the top five most

common ones being ’barack-obama’, ’donald-trump’, ’hillary-clinton’, ’mitt-romney’,

and ’john-mccain’. Each distinct speaker has an average of 3.9 claims in the dataset.

The claims also have a fairly even distribution of party affiliation between Democrat

and Republican parties throughout the train, validation, and test data set as shown

in Figure 3.3.

30

Label Overall Train Valid Test

pants-fire 1049 841 116 92
false 2508 1996 263 249

barely-true 2106 1657 237 212
half-true 2632 2119 248 265

mostly-true 2458 1966 251 241
true 2059 1682 69 208

Table 3.2: Label frequency distribution for the LIAR dataset.

There is also credit history metadata for each claim. This metadata contains total

counts of pants-fire, false, barely-true, half-true, and mostly-true for each speaker. It is

important to note that the true label counts are missing; the reason for this is unclear.

As mentioned in the original LIAR paper [Wang, 2017], the label corresponding to

the claim being examined must be removed from these counts before using the credit

metadata. Otherwise, because many speakers have only one or a few total claims,

the credit metadata would act as almost a direct mapping to the label of the claim.

Party Overall Train Valid Test

Republican 5675 4507 597 517
Democrat 4144 3343 395 406

None 2183 1746 223 214

Table 3.3: Party affiliation frequency distribution for the LIAR dataset.

To illustrate, if the current label is not removed from the credit metadata, then

a naive maximum likelihood model using the credit metadata will result in accura-

cies of 43.03%, 45.48%, 43.09% for the training data, validation data, and test data

respectively. This is a significantly better performance than any baseline model can

perform. If the label of the current statement is removed from the credit metadata,

the same maximum likelihood model yields 21.87%, 24.61%, 23.67% accuracy for the

training, validation, and test datasets. This is much more reasonable. After this mod-

ification, the credit metadata can be used without being unrealistically predictive of

the label.

31

Figure 3-1: Model of a generic CNN as presented in [Kim, 2014]. The input sentence
is first converted into a matrix of word vectors. Then, kernels of filter size 2 and 3
are applied, with multiple filters per filter size. The vectors are then pooled and the
results are fully connected to a hidden layer.

3.2 Method

For our experiments, we used the Convolutional Neural Network (CNN) architecture,

Bidirectional Long Short Term Memory (Bi-LSTM) architecture, and a stacked bidi-

rectional LSTM and CNN architecture (Bi-LSTM+CNN). These are similar to the

models that were implemented in the original LIAR paper [Wang, 2017], which we

use as baselines for comparison.

3.2.1 CNN Architecture

Originally created to be used for image processing problems, CNNs have found ef-

fective application in various NLP applications when applied to word embedding

matrices [Kim, 2014]. Generally speaking, CNNs contain at least one convolutional

layer which takes the input and convolves it over a kernel.

If we define 𝑛 to be the size of the word vector, the convolution kernels are generally

of dimensions 𝑖 by 𝑛, where 𝑖 is a positive integer, which produce outputs representing

𝑖-gram models. For example, if the size of the word vector is 300, and the kernel size

is 2 by 300, the convolution will convolve two word vectors at a time and output

32

information corresponding to every consecutive pair of words. In other words, it

captures bigram information. Often, more than one kernel size will be used to capture

dependencies amongst different numbers of consecutive words.

After convolving the input, a simple but powerful architecture involves connecting

the output of the convolutional layer to a hidden layer which is then connected to an

output layer. A diagram of such a model, borrowed from previous work [Kim, 2014],

is shown in Figure 3-1.

3.2.2 Bi-LSTM Architecture

An older, but equally effective approach to classifying textual content is to use a Long

Short-Term Memory (LSTM) model [Hochreiter and Schmidhuber, 1997]. A LSTM

is similar to the Recurrent Neural Network (RNN) in that it leverages information

from previous inputs for processing the current input. In general for natural language

applications, individual words are passed in one at a time to RNNs and the recurrent

structure allows each word to utilize information about the previous words. However,

RNNs struggle to handle longer sequences of inputs as the information from previous

inputs are lost quickly. LSTMs counteract this information loss by using memory

units, which can selectively save input information within the cell itself. An example

diagram of a LSTM cell can be found in Figure 3-2.

Bidirectional LSTMs are an extension of LSTMs and involve using two LSTMs

at once; one which takes sentence input in forward order and the other in backwards

order [Graves and Schmidhuber, 2005]. This way, for each input, the model gets

sequential information for inputs before and after it. With this extra information,

bidirectional LSTMs are able to outperform LSTMs for many tasks [Graves and

Schmidhuber, 2005].

3.2.3 Stacked LSTM and CNN Model Architecture

Although the bidirectional LSTM model is capable of remembering information over

a long sequence of inputs, it’s not able to capitalize on the n-gram coherence of the

33

Figure 3-2: Model of a generic LSTM cell as presented by Chen [Chen, 2016]. LSTM
cells contain a input and output gates of a LSTM cell control information flow to and
from the memory unit. Additionally, LSTM cells have a forget gate, which can be
used to remove information from the memory cell.

CNN model. In order to take advantage of the strengths of both models, a stacked

bidirectional LSTM and CNN model can be used. The model is created by modifying

the previous bidirectional LSTM model to process the input through a bidirectional

LSTM layer followed by a CNN layer before being fully connected to a hidden layer.

It’s been found that for some applications, using this combination of layers pro-

duces better results than using just one. For example, for the problem of question

answer matching [Tan et al., 2016], the stacked LSTM and CNN model outperforms

both the LSTM only model and the CNN only model. For our work, we will expand

on this model by using a bidirectional LSTM rather than just a LSTM as we believe

that the extra sequential information will benefit the model. An example of a stacked

LSTM and CNN architecture is shown in Figure 3-3.

3.2.4 Evaluation Metrics

We use the following evaluation metrics to evaluate our models:

34

Figure 3-3: Diagram of Bi-LSTM and CNN model. The input layer is first fed into
the Bi-LSTM layer. The features extracted from the Bi-LSTM layer are then fed into
the convolutional layer. Finally, the output from the convolutional layer is fed into a
fully connected hidden layer before undergoing classification via a final softmax layer.

(i) Average Accuracy: The accuracy of models averaged over multiple trainings.

Accuracy is defined as the number of correctly classified examples divided by

their total number of examples.

(ii) Best Accuracy: The accuracy of the trained model with highest validation

accuracy. This metric is to allow direct comparison to the results of the original

LIAR paper.

3.3 Experiments

For the LIAR task, we optimized baseline models using CNN and bidirectional LSTM

architectures in combination with the given metadata. We also experimented with the

novel idea of applying the stacked bidirectional LSTM (Bi-LSTM) and CNN model

to this task. After tuning some hyperparameters, each of these models exceeds the

original LIAR paper significantly in terms of accuracy. Each of the models described

35

next in this section were implemented using the Keras deep learning library.

3.3.1 CNN Experiments

For our models involving CNNs, we imitated and improved upon the basic construc-

tion described in the original LIAR paper [Wang, 2017] with several improvements to

improve performance. That construction was inspired by a recently proposed model

for using CNNs on text classification problems [Kim, 2014] as discussed in Section

3.2.1.

First, our model converted the input claim into a matrix of word vectors. Although

the original paper used Word2Vec [Mikolov et al., 2013a] vectors trained on Google

News2, we discovered that GloVe [Pennington et al., 2014] vectors performed better

for the task, particularly the pretrained 840B token common crawl set.3 That matrix

of embeddings was then subject to a Keras embedding layer with embedding training

enabled. This trained the embeddings to be more specialized for the LIAR dataset,

slightly improving the overall performance.

Then, the model convolves the input matrix on filter sizes of 2, 3, and 4 with 128

filters for each filter size. This effectively extracts bigram, trigram and quadgram

information about the input claim. Alternative filter amounts and sizes were tried,

but no arrangement found improved upon the current setting. A ReLU activation is

used for the convolution. After, the convolution output is subject to average pooling.

The original construction employed max pooling but we found that average pooling

gives much better results. After these operations, a single value is output from each

filter.

The model then concatenates all of the output values together into a single vector.

That vector is then subject to dropout at a rate of 0.2. If any metadata is used, it

is then concatenated to the resulting vector. Finally, the model connects the vector

to a fully connected hidden layer with 100 neurons. That layer is then fed into a

softmax layer which predicts the claim label. Both the dropout rate and hidden layer

2https://github.com/mmihaltz/word2vec-GoogleNews-vectors
3https://nlp.stanford.edu/projects/glove/

36

size chosen as a result of tuning.

We trained each model with 20 epochs using the Adam optimizer rather than the

traditional Stochastic Gradient Descent which the paper originally used. Using Adam

allowed us to use much fewer training epochs and actually allowed training to converge

onto better models. The model with lowest validation loss was chosen from training.

The model almost always started overfitting to the training data by epoch 5, so fewer

training epochs could have been used. The accuracy results for our models and the

original reported results can be found in Figure 3.4. Using a TITAN X GPU, each

model took less than 5 minutes to train.

3.3.2 Bidirectional LSTM Experiments

For the bidirectional LSTM model (Bi-LSTM), we also converted the input claim into

GloVe word vectors and passed the matrix into a Keras embedding layer. The output

was then subject to a bidirectional LSTM layer. After tuning, we decided that input

and recurrent dropout rates of 0.4 and an output dimension of 64 for the LSTM were

approximately optimal. Note that because the LSTM was bidirectional, the actual

output dimension was 64 * 2 = 128.

The output vectors after every word was processed through the LSTM were saved

and concatenated into one large vector, which was then subject to a dropout at a

rate of 0.2. Similar to the CNN model, any metadata was concatenated at this step

and the result was fully connected to a 100 neuron hidden layer. That hidden layer

is then connected to a softmax layer which predicts the label of the input claim. As

before, this model was trained with 20 epochs using the Adam optimizer. Using a

TITAN X GPU, each model took less than 15 minutes to train.

3.3.3 Stacked Bidirectional LSTM and CNN Experiments

The Stacked Bidirectional LSTM and CNN model (Bi-LSTM+CNN) takes the matrix

of word embeddings from the Keras embedding layer and first processes it through a

Bidirectional LSTM layer. After tuning, the same set of parameters for the Bidirec-

37

tional LSTM also had good results for the combined model; the dropout rates were

set to 0.4 and the output dimension was set to 64 for one direction of the LSTM.

Then, the output of the LSTM was passed into the convolutional layer. Again,

it turns out that the same parameters for the convolutional layer as the CNN model

produced strong results. To reiterate, the filter sizes chosen were 2, 3, and 4 and

each filter size had 128 filters. The dropout rate was 0.2 in the convolutional step

and average pooling was used. The output of the convolutional layer along with any

metadata is then passed through a dropout layer of rate 0.2 and then fully connected

to a hidden layer of size 100. Finally, the hidden layer is connected to the softmax

layer which predicts the labels. The model was trained with 20 epochs with the Adam

optimizer. Using a TITAN X GPU, each model took less than 15 minutes to train.

3.4 Analysis

The results of our experiments are shown in Table 3.4. Our CNN model with any

subset of metadata outperformed the original reported results by 1% to 5% across

the board in terms of validation accuracy. This lead to a higher test accuracies in

general. Furthermore, these results are in line with those reported before, indicating

that the model produces consistent results. Next, for the Bi-LSTM model, our models

outperformed the previously reported accuracies by more than 5% each. Our results

show that the Bi-LSTM model is actually comparable to the CNN models, despite the

results that the original paper indicating otherwise. Finally, our stacked Bi-LSTM

and CNN model generally performed similarly to the CNN model. This makes sense

since the CNN layer was the last layer before the multilayer perceptron used for label

prediction. It indicates that the LSTM layer prior to that CNN layer did not provide

any additional useful information.

38

Model Best Val Best Test Avg Val Avg Test

1. Wang-CNN 26.0 27.0 N/A N/A
2. Wang-CNN+subject 26.3 23.5 N/A N/A
3. Wang-CNN+party 25.9 24.8 N/A N/A
4. Wang-CNN+credit 24.6 24.1 N/A N/A
5. Wang-CNN+all 24.7 27.4 N/A N/A
6. Wang-Bi-LSTM 22.3 23.3 N/A N/A

7. CNN 28.0 27.4 27.0 26.3
8. CNN+subject 27.8 26.9 26.3 26.8
9. CNN+party 30.4 27.9 28.3 27.0
10. CNN+credit 29.0 27.5 27.4 27.8
11. CNN+all 30.0 28.6 28.8 28.2

12. Bi-LSTM 27.5 24.6 26.4 25.8
13. Bi-LSTM+subject 27.3 26.8 26.1 25.8
14. Bi-LSTM+party 28.8 26.8 26.6 26.2
15. Bi-LSTM+credit 27.2 25.8 26.0 26.7
16. Bi-LSTM+all 28.3 26.0 26.8 26.3

17. Bi-LSTM+CNN 28.0 28.0 27.0 26.8
18. Bi-LSTM+CNN+subject 27.7 27.0 26.8 27.2
19. Bi-LSTM+CNN+party 29.9 26.3 28.5 26.6
20. Bi-LSTM+CNN+credit 28.8 28.4 27.7 27.6
21. Bi-LSTM+CNN+all 31.0 27.6 28.9 28.1

Table 3.4: Model Accuracy Results. The ’Wang’ prefix denotes results from original
LIAR paper [Wang, 2017]. Suffixes subject, party, credit, and all indicate that the
corresponding pieces of metadata were used. Best model was picked by choosing the
highest validation accuracy model out of 10 trained. Avg indicates average accuracy
over 10 trained models.

3.5 Discussion

In addition to the provided metadata, we also experimented with using other meta-

data such as part of speech frequency. However, we did not see any significant im-

provements with this metadata; in fact performance decreased when it was used. We

also tried other model constructions, such as a parallel rather than a stacked Bi-LSTM

and CNN model and a stacked CNN Bi-LSTM model in which the CNN layer came

first. Both of these models did not improve the performance.

Though it might be possible that the methods mentioned can be used in a more

39

effective way for this task, we believe that even a fully optimized model using these

techniques will not significantly exceed the results we presented here. Part of the

problem is that the problem space is simply too large for the amount of data provided

by the LIAR dataset. Possible approaches to resolve this issue include using additional

data or innovating new models which can better utilize existing information. Another

possible approach is to break down the fact checking problem into multiple smaller

tasks, each with a smaller problem space following a breakdown mentioned in Section

1.2. Then, existing data might be better leveraged to solve these tasks with smaller

problem spaces before being combined to create a fact checking system.

In addition, a particular issue with this data is about lack of clarity on how the

data labels are defined; the line between adjacent label classes such as barely-true and

half-true are especially unclear even for humans. So, it will also be hard for a machine

trained on LIAR data to make this distinction as well. Likely, a disambiguation of

the label classes will allow for better performance.

Because we could not overcome these challenges for the LIAR task, we pivoted to

focus our work on a smaller subproblem of fact checking known as stance detection.

This problem has the advantage of having a much small problem space as well as a

larger set of available data. We will discuss our experiments regarding stance detection

in the next chapter.

3.6 Summary

We presented CNN and bidirectional LSTM (Bi-LSTM) based models for the LIAR

dataset which significantly exceeded previous baselines. These results show that both

neural models have similar potential in the task, contrary to what previous results

showed. Also, we presented other model ideas we tried, such as the stacked CNN

and Bi-LSTM model, though these more complex models did not see any significant

performance gain.

40

Chapter 4

Stance Detection using Adversarial

Domain Adaptation

In this chapter, we discuss our work on the stance detection problem. As discussed

earlier in Section 1.2, this problem involves automatically determining the perspective

of a document relative to a claim. Here, we focus our experiments on the novel idea

of applying adversarial domain adaptation to address this problem, particularly when

the labeled data is limited.1 The upcoming sections will discuss our datasets (Sec-

tion 4.1), method (Section 4.2), experiments (Section 4.3) and findings (Section 4.4).

4.1 Datasets

For the stance detection problem, we primarily focus on using the Fake News Chal-

lenge (FNC) dataset [Pomerleau and Rao, 2017], a publicly available stance detection

dataset, to evaluate our models. Since the dataset has very limited labeled data for

some label classes, we supplement it with data from the Fact Extraction and VER-

ification (FEVER) [Thorne et al., 2018] dataset, an independent stance detection

dataset (see Section 4.1.2), and with data from the Stanford Natural Language In-

ference (SNLI) [Bowman et al., 2015] dataset, which was created for a related task

1Results from a portion of these experiments were published in the 2018 NIPS Continual Learning
Workshop [Xu et al., 2018].

41

Label Claim Document

agree Hundreds of Palestinians
flee floods in Gaza as Israel
opens dams

Hundreds of Palestinians were evacu-
ated from their homes Sunday morning
after Israeli authorities opened a num-
ber of dams near the border . . .

disagree Spider burrowed through
tourist’s stomach and up
into his chest

Fear not arachnophobes, the story of
Bunbury’s “spiderman” might not be all
it seemed. Perth scientists have cast
doubt over claims that a spider bur-
rowed into a man’s body during his first
trip to Bali . . .

discuss Soon Marijuana May Lead
to Ticket, Not Arrest, in
New York

Law-enforcement officials tell the New
York Times that soon the NYPD may
issue tickets for low-level marijuana
possession rather than making arrests
. . .

unrelated N. Korea’s Kim has leg in-
jury but in control

You want a gold Apple Watch, you say?
Then it’s going to cost you... a lot. The
vanilla variant of Apple’s newest wrist-
worn wearable device only costs $349
. . .

Table 4.1: Randomly chosen examples of claim-document pairs and their labels from
the FNC dataset. The relevant snippet from each document is displayed.

(i.e., textual inference problem; see Section 4.1.3). Next, we will discuss each of these

datasets in depth.

4.1.1 Fake News Challenge

The FNC dataset contains claim-document pairs, with labels which explain the stance

relationship between them. The possible labels are agree, disagree, discuss, and unre-

lated. Randomly selected samples from the FNC dataset are displayed in Table 4.1.

The dataset is partitioned into train and test sets. Combined, there are about 75k

claims in total, and the train set has approximately twice as many claims as the test

set. Each claim is on average about 11 words long, and each corresponding document

is about 360 words long. As shown in Table 4.2, there is a significant imbalance of

the frequency of each label class. In particular, the agree and disagree classes have

42

Label Overall Train Test

agree 5,581 3,678 1,903
disagree 1,537 840 697
discuss 13,373 8,909 4,464

unrelated 54,894 36,545 18,349

total 75,485 49,972 25,413

Table 4.2: Label frequency distribution for the FNC dataset.

relatively few data points. Comparing the train and test sets, the label distributions

are approximately the same. However, there is a slightly higher proportion of disagree

labels in the test set.

4.1.2 Fact Extraction and VERification

The Fact Extraction and VERification (FEVER) dataset is constructed such that a

claim is associated with some number of related Wikipedia documents, each document

is assigned as either SUPPORTS or REFUTES label based on its stance relationship

to the claim. The claim is then assigned an overall label, either SUPPORTS or RE-

FUTES based on its relationship to all of the associated evidence documents. If there

are no associated documents, the claim is labeled as NOT ENOUGH INFO. Some

randomly chosen examples from the FEVER dataset are displayed in Table 4.3. As

shown in Table 4.4, there are about 80k SUPPORTS claims, 30k REFUTES claims,

and 35k NOT ENOUGH INFO claims. Since there are no associated documents with

NOT ENOUGH INFO claims, we end up not using these labels.

In our work, we use the FEVER dataset to supplement the FNC dataset using

the domain adaptation technique by hypothesizing that FEVER SUPPORTS and

REFUTES labels are similar to FNC agree and disagree labels respectively. However,

we have to reformat the FEVER dataset slightly to make it similar to the format of

the FNC dataset in which each example consists of a single document and a single

claim. Thus, we break up any claim that is associated with more than a single

document into multiple claim-document pairs. For example, the claim shown in the

43

Label Claim Document

SUPPORTS Felicity Jones was in a 2014
British biographical roman-
tic drama movie.

1. "Felicity_Jones" : In 2014, her per-
formance as Jane Hawking in The The-
ory of Everything also met with critical
acclaim, garnering her nominations for
. . .
2. "The_Theory_of_Everything_(2014
_film)" : The Theory of Everything is a
2014 biographical romantic drama film
which is set at Cambridge University
. . .

REFUTES The People vs. Larry Flynt
is an unproduced screen-
play.

1. "The_People_vs._Larry_Flynt" :
The People vs. Larry Flynt is a 1996
American biographical drama film . . .

Table 4.3: Randomly chosen examples of data from the FEVER dataset. The name
of each document associated with the claim is given in italics, followed by the relevant
snippet from the document.

Label Train Dev Test

SUPPORTS 80,035 3,333 3,333
REFUTES 29,775 3,333 3,333

NOT ENOUGH INFO 35,639 3,333 3,333

total 145,449 9,999 9,999

Table 4.4: Label frequency distribution for the FEVER dataset.

first row of Table 4.3 is associated with two documents, and is converted into two

separate claim-document pairs. After this modification, we end up with more data

points than officially reported by FEVER [Thorne et al., 2018] with around 102k

SUPPORTS labels and around 37k REFUTES labels from the train dataset.2 The

FEVER average claim and document lengths are respectively 8 and 313 words which

is almost the same as FNC as explained in Section 4.1.1.

Note that, the FEVER dataset also contains some annotations at the sentence

level for each document with respect to its corresponding claim. However, we use the

2As the FEVER development and test datasets had not been released at the time of these
experiments, we have not used those datasets.

44

Label Claim Document

entailment A person on a horse jumps over
a broken down airplane.

A person is outdoors, on a horse.

neutral A person on a horse jumps over
a broken down airplane.

A person is training his horse for
a competition.

contradiction A person on a horse jumps over
a broken down airplane.

A person is at a diner, ordering
an omelette.

Table 4.5: Randomly chosen examples of data from the SNLI dataset. The premise-
hypothesis pairs are considered as the claim-document pairs.

Label Train Dev Test

entailment 183,416 3,329 3,368
contradiction 183,187 3,278 3,237

neutral 182,764 3,237 3,219

total 549,367 9,844 9,824

Table 4.6: Label frequency distribution for the SNLI dataset.

entire document when we supplement the FNC dataset as the documents in FNC are

long length. In contrast, we use the FEVER annotations at the sentence level with

the SNLI dataset as the SNLI data consists of sentences (see Section 4.4).

4.1.3 Stanford Natural Language Inference

The Stanford Natural Language Inference (SNLI) dataset was created for the tex-

tual inference problem and is significantly larger than either the FNC or FEVER

datasets, with about 550k total data points. This dataset contains sentence-sentence

pairs (premise-hypothesis pairs) with labels to show whether the two input sentences

warrant an entailment, contradict, or neutral relationship to each other. Some ran-

domly chosen examples of the SNLI dataset are displayed in Table 4.5. Also, as shown

in Table 4.6, the dataset is well balanced with around 183k of data points for each

label.

The task of this dataset (i.e., textual inference) is different from the task of the

45

FNC and FEVER datasets (i.e., stance detection). However, the entailment and

contradiction labels in SNLI can be considered as being similar to the agree and

disagree labels in the FNC dataset and the SUPPORTS and REFUTES labels in the

FEVER dataset. It’s also possible to interpret neutral label in SNLI to be similar

to discuss in FNC, although the connection is not as strong. In this chapter, we

also investigate the impact of using the SNLI dataset through a domain adaptation

technique to supplement the FNC and FEVER datasets.

We consider the premise-hypothesis pairs in SNLI as the claim-document pairs.

This means both the claim and the document in SNLI are only a single sentence.

This results in a notable difference between the average length of the documents in

SNLI, around 14 words, and the documents in the FNC and FEVER datasets, a

couple hundred words, making it harder to leverage for domain adaptation. Ideally,

though, our models can pick some features that are independent of the length of the

documents, so that the SNLI data may be able to help improve these features.

4.2 Method

Previously proposed approaches for stance detection generally contain two compo-

nents [Baird et al., 2017, Hanselowski et al., 2017, Riedel et al., 2017]: a feature

extraction component followed by a class label prediction component. In this thesis,

we present a model for stance detection that augments the traditional models with a

third component: a domain adaptation component.

Our domain adaptation component uses adversarial learning [Ganin and Lempit-

sky, 2014] to encourage the feature extraction component to select common, rather

than domain specific, features when input data is from multiple different domains.

This allows the model to better leverage source domain for better prediction on data

from target domain.

The general architecture of our model is shown in Figure 4-1. As illustrated, the

inputs are first given to the “Feature Extraction Component” to compute their fea-

tures and representations. These features are then passed to the “Label Prediction

46

Figure 4-1: The architecture of our model for stance detection which uses adversarial
domain adaptation.

Component” and then to the “Domain Adaptation Component.” In the model, while

both latter components try to minimize their own losses, the feature extraction com-

ponent attempts to maximize domain classification loss to encourage better mixture

of examples from different domains. The components of the model are described in

detail below.

4.2.1 Feature Extraction Component

This component takes the input claim 𝑐 and document 𝑑 and converts them to their

semantic representations and features. To do this, we use bag of words (BOW)

related features, essentially TF and TF-IDF weighted features. We select these BOW

features as they are useful to filter documents with unrelated stance labels as we

will show in Section 4.4. Furthermore, we also use a convolutional neural network

(CNN) approach discussed in Section 3.2.1 for learning representations of claims and

documents. To recap, we use a CNN because it can capture 𝑛-grams and long range

dependencies [Yu et al., 2014], and can extract discriminative word sequences that

are common in the training instances [Severyn and Moschitti, 2015]. These traits

make CNNs useful for dealing with long documents [Mohtarami et al., 2016].

47

4.2.2 Label Prediction Component

The label prediction component uses a multilayer perceptron (MLP) with a fully

connected hidden layer followed by a softmax layer which employs cross entropy loss

as the cost function. This component will predict stance labels as agree, disagree,

discuss, or unrelated for a given set of claim and document features.

4.2.3 Domain Adaptation Component

The domain adaptation component contains a domain classifier which includes a MLP

followed by a softmax layer. Given a set of features for a claim-document pair, the

domain classifier predicts which domain the features originated from.

The domain classifier acts as an adversary because the model is constructed to

encourage the feature extraction component to maximize the domain classifier loss,

while the domain adaptation component itself attempts to minimize that same loss.

This is because a high domain classifier loss implies that the domain classifier is

unable to accurately discern whether a set of features belongs to the source or the

target domain. This implies that the features extracted from the input examples are

common to both the source and target domains, which is the ultimate goal of the

adversarial domain adaptation technique.

To achieve the desired adversarial behavior, the features from the feature extrac-

tion component are passed to a gradient reversal layer before being passed to the

domain classifier. The gradient reversal layer is a simple identity transform during

forward propagation and multiplies the gradient by a negative constant (the gradient

reversal constant 𝜆) during backpropagation [Ganin and Lempitsky, 2014]. In partic-

ular, if we define the downstream domain loss to be 𝐿𝑑 and the upstream parameters

to be 𝜃𝑓 , the gradient reversal layer essentially replaces the partial derivative 𝜕𝐿𝑑

𝜕𝜃𝑓

with −𝜆𝜕𝐿𝑑

𝜕𝜃𝑓
. Effectively, this encourages the upstream components to maximize 𝐿𝑑

while the downstream domain classifier tries to minimize 𝐿𝑑. The desired adversarial

training behavior can be achieved through normal model training.

In order to avoid noise from the domain classifier during initial stages of training, 𝜆

48

is generally set to a schedule which starts small and increases steadily during training

with:

𝜆𝑝 =
2

1 + 𝑒𝑥𝑝(−𝛾 × 𝑝)
− 1 (4.1)

where 𝑝 represents the fraction of training epochs elapsed. This allows the domain

classifier to train properly initially before being influenced by the gradient reversal

layer. Meanwhile, the learning rate starts high and decays over time with:

𝜇𝑝 =
𝜇0

(1 + 𝛼× 𝑝)𝛽
(4.2)

where 𝑝 represents the fraction of training epochs elapsed. The learning rate schedule

has the dual purpose of encouraging conversion as well as allowing for strong initial

domain classifier training. The specific settings for the parameters 𝛾 in domain adap-

tation constant, and 𝛼 and 𝜇0 in learning rate formulas are described in Section 4.3.

4.2.4 Model Parameters and Training Procedure

For our CNN model, we use 300-dimensional word embeddings from Word2Vec [Mikolov

et al., 2013b], which were trained on Google News, and 100 feature maps with filter

width {2, 3, 4}. We set the maximum word lengths of the input claims and documents

to be 50 and 500 respectively, where these values are close to the average length for

claims and documents in the target train data. For the BOW model, we keep the

hyperparameters and features to be the same as the baseline model [Riedel et al.,

2017].

Our models are trained using the Adam optimizer, and 20% of the train data is set

aside as validation data. In the models with domain adaptation (DA) component,

equal amounts of both source and target data are randomly selected at each epoch

during training. Finally, we fine tune all the hyperparameters of our models on

validation data which contains equal amounts of source and target data.

49

Figure 4-2: Exploring learning with adversarial domain adaptation across different
domains (SNLI, FEVER, and FNC datasets) and tasks (stance detection and textual
inference tasks).

To reduce domain classifier noise and promote convergence, the gradient reversal

constant and learning rate are respectively defined as 𝜆𝑝 and 𝜇𝑝 in Formula 4.1 and

Formula 4.2 in Section 4.2.3. The parameters in the formulas are set to the values

that used successfully by previous work [Ganin and Lempitsky, 2014] as 𝛾 = 10,

𝜇0 = 0.01, 𝛼 = 10, 𝛽 = 0.75.

4.3 Experiments

In this chapter, we aim to explore the effect of adversarial domain adaptation across

different domains with both similar and dissimilar tasks. As Figure 4-2 shows, the

similar tasks are based on stance detection where we consider FNC and FEVER

datasets. The dissimilar tasks that we consider are stance detection (FNC or FEVER

datasets) and textual inference (SNLI dataset) tasks. We first describe the baselines

(Section 4.3.1), evaluation metrics (Section 4.3.2), our models with different config-

urations (Section 4.3.3), and then we present our results and analysis across these

datasets (Section 4.4).

4.3.1 Baselines

When we use FNC as the target domain, we compare our domain adaptation (DA)

model to the following previous work that applied their models on FNC data as target

50

domain:

(i) Gradient Boosting, which is the Fake News Challenge baseline, and it trains a

gradient boosting classifier using handcrafted features reflecting polarity, refute,

similarity and overlap between documents and claims.3

(ii) TALOS [Baird et al., 2017], which was ranked first at FNC. It uses a weighted-

average between gradient-boosted decision trees (TALOS-Tree) and a deep con-

volutional neural network (TALOS-DNN).

(iii) UCL [Riedel et al., 2017], which was ranked third at FNC; this model trains a

softmax layer using 𝑛-gram features (e.g., TF and TF-IDF). We compare with

this model because our BOW model is similar to it and uses the same features.

Note that, since the FEVER data is a recently released dataset at the time of this

work, there has not been any well known baselines available for the dataset. Thus,

when we use FEVER data as the target domain, we only perform relative comparisons

between our own models.

4.3.2 Evaluation Metrics

We use the following evaluation metrics to evaluate our models:

(i) Macro-F1: The average of the 𝐹1 score for each class.

(ii) Accuracy: The number of correctly classified examples divided by their total

number of examples.

(iii) Weighted-Accuracy: This metric is presented by Fake News Challenge4 which

is a two level scoring scheme. It gives 0.25 weight to the correctly predicted

examples as related or unrelated. It further gives 0.75 weights to the correctly

predicted related examples as agree, disagree, or discuss.
3The source code of the FNC baseline is available at https://github.com/FakeNewsChallenge/

fnc-1-baseline
4Scorer is available at www.fakenewschallenge.org

51

4.3.3 Model Configurations

We present different variations of our models where each uses a subset of components

and features shown in Figure 4-1. In particular, we try using different subsets of

BOW features and CNN features during feature extraction and try both using and

not using the domain adaptation component for each one. These variations help

us to conduct ablation analysis on these information sources. The baseline and our

models are trained to predict stance labels on target data; {agree, disagree, discuss,

unrelated} for target FNC data and {SUPPORTED, REFUTED} for target FEVER

data.

For the experiments with target FNC data, we further apply a two level hierarchy

prediction scheme in our models, where the first level predicts whether the label is

related or unrelated, and then the predicted related labels are passed to the second

level to predict agree, disagree, and discuss labels. The reason of using this two

level hierarchy scheme with target FNC data is that the current FNC models already

perform well for the first level of the hierarchy scheme. For the first level, we use the

BOW model which achieves an F1 performance of 97.7% for unrelated and 93.9% for

related labels. Then, the second level is trained with respect to the components and

datasets used in the model.

We also conduct specific experiments for certain domain pairs (𝑠𝑜𝑢𝑟𝑐𝑒→𝑡𝑎𝑟𝑔𝑒𝑡):

(𝑖) For SNLI→FNC, we map the SNLI neutral labels to the FNC discuss labels to

investigate if there is an impact. (𝑖𝑖) For SNLI→FEVER and FNC→FEVER, we

balance the label distribution of the data over classes during training and (𝑖𝑖𝑖) we

use the annotated sentences of a document that are specified as being relevant to the

claim, rather than using the entire document.

52

Model Source Target Weigh.
Acc. Acc. Macro

F1

F1 Scores
agree/disagree/discuss/unrelated

1. Gradient Boosting - FNC 75.2 85.4 45.7 14.8 / 2.0 / 69.5 / 96.5
2. TALOS (#1st in FNC) - FNC 82.0 89.1 57.8 53.8 / 3.6 / 76.0 / 97.9
3. TALOS-DNN - FNC 60.8 66.5 41.8 27.6 / 9.3 / 47.4 / 82.7
4. TALOS-Tree - FNC 83.1 89.5 56.8 53.4 / 0.2 / 76.3 / 98.4
5. UCL (#3rd in FNC) - FNC 81.7 88.5 57.9 47.9 / 11.4 / 74.7 / 97.6

6. BOW - FNC 81.1 88.6 56.0 49.2 / 2.5 / 74.8 / 97.6
7. CNN - FNC 40.8 71.3 23.3 0.3 / 0.0 / 10.0 / 83.0
8. BOW+CNN - FNC 74.9 86.8 52.2 41.4 / 0.0 / 72.1 / 95.2
9. BOW (hierarchy) - FNC 80.7 88.5 57.3 49.5 / 7.5 / 74.3 / 97.7
10. CNN (hierarchy) - FNC 79.9 87.9 56.0 54.9 / 0.2 / 71.1 / 97.7
11. BOW + CNN (hierarchy) - FNC 80.3 88.2 56.5 56.0 / 0.0 / 72.1 / 97.7

12. BOW FEVER FNC 78.5 86.4 56.3 48.8 / 9.8 / 69.4 / 97.1
13. [BOW + DA] FEVER FNC 72.9 81.5 48.6 44.5 / 2.0 / 51.7 / 96.1
14. BOW (hierarchy) FEVER FNC 78.8 87.3 57.2 51.7 / 10.2 / 69.1 / 97.7
15. [BOW + DA] (hierarchy) FEVER FNC 78.5 87.1 56.4 51.6 / 8.3 / 68.0 / 97.7

16. CNN FEVER FNC 41.3 64.3 27.3 17.4 / 2.0 / 11.0 / 78.8
17. [CNN + DA] FEVER FNC 39.0 64.3 24.0 13.5 / 0.2 / 3.3 / 78.9
18. CNN (hierarchy) FEVER FNC 79.0 87.4 56.6 51.9 / 7.5 / 69.3 / 97.7
19. [CNN + DA] (hierarchy) FEVER FNC 79.1 87.7 57.9 51.2 / 11.4 / 71.3 / 97.7

20. BOW + CNN FEVER FNC 71.7 84.5 51.5 44.6 / 5.6 / 60.2 / 95.6
21. BOW + [CNN + DA] FEVER FNC 71.9 84.6 51.4 44.9 / 4.4 / 60.6 / 95.6
22. BOW + CNN (hierarchy) FEVER FNC 79.6 87.8 56.6 53.1 / 5.1 / 70.6 / 97.7
23. BOW + [CNN + DA] (h.) FEVER FNC 80.3 88.2 60.0 54.6 / 15.1 / 72.6 / 97.7

Table 4.7: FEVER → FNC. Results on the FNC test data for models trained using
FNC training data and FEVER data. BOW, CNN and DA refer to our model when
it uses bag of words features, convolutional features, and domain adaptation, respec-
tively. When DA is present, square brackets indicate which features are passed to
the domain adaptation component. The hierarchy in parentheses refers to our model
with two level prediction scheme as explained in section 4.3.3. We show the results
of the models based on the smallest loss for validation set across 5 independent runs.

53

4.4 Results and Analysis

4.4.1 Performance Analysis: FEVER → FNC

Table 4.7 shows the results of different models when FNC is considered as the target

test data. Lines 1-5 show the results for baseline models explained in Section 4.3.1.

As the results show, they perform weakly on agree and disagree stances, likely due to

the small size of labeled data. Only 1.7% and 7.3% of the FNC data examples carry

disagree and agree labels. Lines 6-23 show the results of different configurations of

our model as explained in Section 4.3.3. First, we examine the models trained using

only FNC data (lines 6-11). Lines 6-8 show the results for BOW, CNN and their

combinations respectively; the results of these models with the hierarchy scheme are

shown in lines 9-11. The results show that the hierarchy scheme helps models to

perform better, especially for the CNN model where its result improves from 23.3%

F1 (line 7) to 56% (line 10). However, these models don’t improve the baseline results,

and they still struggle with identifying agree and disagree labels.

We then examine the impact of using the FEVER data on the performance of

the model (lines 12-23) when FNC is considered as the target test data. Lines 12-

15 show the results for the BOW model with and without the hierarchy scheme

and domain adaptation (DA) component. The results show that domain adaptation

using FEVER data does not improve the results for the BOW model. While the exact

reason is unclear, perhaps this is because BOW features tend to be very discrete and

extremely domain dependent. This makes it hard to transfer any useful BOW features

across datasets.

We further repeat these experiments with the CNN model and, as shown in lines

16-19, the CNN model with the hierarchy scheme performs significantly better in

terms of F1 score when the domain adaptation component is used. Looking at the

breakdown of F1 scores for each label, this improvement is due to an improvement in

the performance for agree and disagree labels. The difference in Macro F1 between

lines 18 and 19 shows that using domain adaptation can provide a significant benefit

in this context.

54

Though the CNN results are improved, they are still worse than the baselines.

To make more improvement, we propose to supplement the BOW features with the

CNN features. In this case, the model can better leverage FNC data with the BOW

features, while still retaining the boost from using FEVER data via the CNN features.

Lines 20-23 show the results for our model when using a combination of the BOW and

CNN models. As the results show, the combination model can boost performance for

all metrics. The combination of the BOW and CNN models when using the FEVER

dataset and domain adaptation technique has the best F1 performance compared to

all models including the baselines. This demonstrates that not only domain adapta-

tion used in this manner can be effective, but it is good enough to exceed previous

state of the art results. As expected, the disagree and agree classes have significant

improvement when using FEVER dataset, since the FEVER data supplements only

agree and disagree labels.

In summary, the results show:

∙ The hierarchy scheme can help our models to perform better across all metrics.

∙ Our best model is the combination of BOW, CNN+DA, and the hierarchy

scheme. It outperforms the baselines, especially on the most important classes:

disagree and agree.

∙ The source FEVER data can improve the performance of our model for target

FNC data through adversarial domain adaptation, when uses CNN model (see

lines 16-19 in Table 4.7) or BOW+CNN model (see lines 20-21 in Table 4.7).

4.4.2 Performance Analysis: SNLI → FNC

Table 4.8 shows the results of different models on the target FNC test data. Lines

1-5 show the results for baseline models and lines 6-23 show the results of different

configurations of our model as explained in Section 4.3.3. The results of lines 1-11

are obtained when only the FNC train data is used, and lines 12-23 show the results

55

Model Source Target Weigh.
Acc. Acc. Macro

F1

F1 Scores
agree/disagree/discuss/unrelated

1. Gradient Boosting - FNC 75.2 85.4 45.7 14.8 / 2.0 / 69.5 / 96.5
2. TALOS (#1st in FNC) - FNC 82.0 89.1 57.8 53.8 / 3.6 / 76.0 / 97.9
3. TALOS-DNN - FNC 60.8 66.5 41.8 27.6 / 9.3 / 47.4 / 82.7
4. TALOS-Tree - FNC 83.1 89.5 56.8 53.4 / 0.2 / 76.3 / 98.4
5. UCL (#3rd in FNC) - FNC 81.7 88.5 57.9 47.9 / 11.4 / 74.7 / 97.6

6. BOW - FNC 81.1 88.6 56.0 49.2 / 2.5 / 74.8 / 97.6
7. CNN - FNC 40.8 71.3 23.3 0.3 / 0.0 / 10.0 / 83.0
8. BOW+CNN - FNC 74.9 86.8 52.2 41.4 / 0.0 / 72.1 / 95.2
9. BOW (hierarchy) - FNC 80.7 88.5 57.3 49.5 / 7.5 / 74.3 / 97.7
10. CNN (hierarchy) - FNC 79.9 87.9 56.0 54.9 / 0.2 / 71.1 / 97.7
11. BOW + CNN (hierarchy) - FNC 80.3 88.2 56.5 56.0 / 0.0 / 72.1 / 97.7

SNLI Neutral = Discuss

12. BOW (hierarchy) SNLI FNC 79.7 87.8 56.3 44.8 / 10.0 / 72.5 / 97.7
13. [BOW + DA] (hierarchy) SNLI FNC 79.8 87.9 55.2 39.3 / 10.6 / 73.3 / 97.7
14. CNN (hierarchy) SNLI FNC 79.6 87.7 55.1 49.3 / 1.7 / 71.7 / 97.7
15. [CNN + DA] (hierarchy) SNLI FNC 79.3 87.6 52.5 33.7 / 4.5 / 74.0 / 97.7
16. BOW + CNN (hierarchy) SNLI FNC 80.6 88.4 57.7 48.7 / 10.2 / 74.0 / 97.7
17. BOW + [CNN + DA] (h.) SNLI FNC 80.5 88.4 56.0 42.6 / 9.3 / 74.2 / 97.7

SNLI Neutral Unused

18. BOW (hierarchy) SNLI FNC 79.2 87.5 57.8 49.6 / 12.9 / 71.0 / 97.7
19. [BOW + DA] (hierarchy) SNLI FNC 78.6 87.2 58.7 49.6 / 17.9 / 69.4 / 97.7
20. CNN (hierarchy) SNLI FNC 79.1 87.5 56.5 49.4 / 8.0 / 70.8 / 97.7
21. [CNN + DA] (hierarchy) SNLI FNC 77.3 86.3 55.5 50.5 / 7.0 / 66.6 / 97.7
22. BOW + CNN (hierarchy) SNLI FNC 79.4 87.7 57.7 51.6 / 10.1 / 71.4 / 97.7
23. BOW + [CNN + DA] (h.) SNLI FNC 79.5 87.7 55.6 53.8 / 4.2 / 70.6 / 97.7

Table 4.8: SNLI → FNC. Results on the FNC test data for models trained using FNC
training data and SNLI data. BOW, CNN and DA refer to our model when it uses
bag of words features, convolutional features, and domain adaptation, respectively.
When DA is present, square brackets indicate which features are passed to the domain
adaptation component. The hierarchy in parentheses refers to our model with two
level prediction scheme as explained in section 4.3.3. We show the results of the
models based on the smallest loss for validation set across 5 independent runs.

56

of different configurations of our model when we use additional train data from a

different domain and different task (i.e., SNLI) in addition to the FNC data. Lines

12-17 show the results when we map the entailment, contradiction and neutral labels

in SNLI to the agree, disagree and discuss labels in FNC. In addition, lines 18-23

show the results when we discard the neutral label in SNLI.

Overall, the results show that using SNLI and domain adaptation technique does

not have a significant positive impact on the FNC target test data. While it results

in an improvement on the F1 score for the agree and disagree labels, it significantly

drops the performance for the discuss label. This is likely because the SNLI and

FNC datasets are designed for different tasks and that there is a large difference in

the data distribution between the two datasets; they cover different topics and the

SNLI dataset consists of sentence to sentence relationships, as opposed to sentence

to document relationships in FNC. However, there is a promising result in Table 4.8

when using BOW and domain adaptation with the hierarchy scheme and without

using the SNLI neutral label. It outperforms all models including baselines in terms

of F1 score (line 19).

In summary, the results show:

∙ The best F1 performance is achieved by our model when it uses the combina-

tion of BOW and the hierarchy scheme with domain adaptation. It slightly

outperforms the baselines on F1, especially on the disagree label class (see line

19).

∙ In general, the source SNLI data doesn’t seem to improve the performance of

our model for target FNC data through adversarial domain adaptation. This

is probably because of the significant differences between the tasks, such as the

differences in task purpose (inference vs stance detection), and distributional

differences such as a difference in topics and a large difference in terms of average

document length.

57

Model Source Target Acc. Acc.
supports/refutes

Macro
F1

F1

supports/refutes

FEVER Article

1. BOW - FEVER 62.5 95.9 / 28.4 57.5 72.1 / 42.8
2. CNN - FEVER 61.6 97.1 / 25.3 55.7 71.9 / 39.5
3. BOW + CNN - FEVER 61.7 97.7 / 25.0 55.7 72.1 / 39.2
4. BOW SNLI FEVER 60.7 96.8 / 23.9 54.6 71.4 / 37.7
5. [BOW + DA] SNLI FEVER 61.8 93.9 / 29.1 57.2 71.3 / 43.0
6. CNN SNLI FEVER 59.4 96.7 / 21.2 52.4 70.6 / 34.1
7. [CNN + DA] SNLI FEVER 57.8 96.6 / 18.1 49.8 69.8 / 29.8
8. BOW + CNN SNLI FEVER 60.9 95.1 / 25.9 55.3 71.0 / 39.6
9. TF + [CNN + DA] SNLI FEVER 60.9 95.4 / 25.7 55.4 71.2 / 39.5

FEVER Article + Balanced Labels

10. BOW - FEVER 65.2 82.2 / 47.9 64.1 70.5 / 57.7
11. CNN - FEVER 66.0 79.4 / 52.4 65.4 70.3 / 60.4
12. BOW + CNN - FEVER 66.8 80.2 / 53.1 66.1 70.9 / 61.2
13. BOW SNLI FEVER 64.4 79.3 / 49.1 63.5 69.2 / 57.7
14. [BOW + DA] SNLI FEVER 64.6 79.8 / 49.1 63.7 69.5 / 57.8
15. CNN SNLI FEVER 62.3 82.2 / 42.0 60.6 68.8 / 52.4
16. [CNN + DA] SNLI FEVER 61.1 84.2 / 37.5 58.7 68.6 / 48.8
17. BOW + CNN SNLI FEVER 63.3 69.8 / 56.6 63.1 65.8 / 60.4
18. BOW + [CNN + DA] SNLI FEVER 63.8 72.6 / 54.8 63.4 66.9 / 59.9

FEVER Sentence + Balancing

19. BOW - FEVER 68.0 81.1 / 54.6 67.4 72.0 / 62.7
20. CNN - FEVER 66.8 78.2 / 55.2 66.4 70.6 / 62.1
21. BOW + CNN - FEVER 68.1 77.2 / 58.8 67.8 71.1 / 64.5
22. BOW SNLI FEVER 66.8 77.4 / 55.9 66.4 70.3 / 62.4
23. [BOW + DA] SNLI FEVER 65.4 80.8 / 49.6 64.5 70.4 / 58.6
24. CNN SNLI FEVER 64.8 82.7 / 46.5 63.6 70.5 / 56.6
25. [CNN + DA] SNLI FEVER 63.7 82.3 / 44.7 62.3 69.7 / 54.8
26. BOW + CNN SNLI FEVER 65.5 72.2 / 58.6 65.3 68.0 / 62.6
27. BOW + [CNN + DA] SNLI FEVER 65.8 72.8 / 58.7 65.6 68.4 / 62.8

Table 4.9: SNLI → FEVER. Results on the FEVER test data for models trained
using FEVER training data and SNLI data. BOW, CNN and DA refer to our model
when it uses bag of words features, convolutional features, and domain adaptation,
respectively. When DA is present, square brackets indicate which features are passed
to the domain adaptation component. The hierarchy in parentheses refers to our
model with two level prediction scheme as explained in 4.3.3. We show the results of
the models based on the smallest loss for validation set across 5 independent runs.

58

4.4.3 Performance Analysis: SNLI → FEVER

Table 4.9 shows the results of different models on the target FEVER test data. Similar

to the previous section, lines 1-9 show the results when all train data is used, while

lines 10-18 show the results when FEVER train data is balanced across classes. Since

the FEVER dataset has more stance annotations at the sentence level (as compared

to document level), we repeat our experiments at the sentence level (lines 19-27); note

that the source SNLI data contains short length sentences. In these experiments, the

entailment and conflict labels in source SNLI correspond to the SUPPORTS and

REFUTES labels in target FEVER.

The results show that both balancing the labels (lines 10-18) and considering

FEVER examples at the sentence level (lines 19-27) can significantly improve model

performance; around 5% on Accuracy and Macro F1 with balanced labels, and around

3% improvement with sentences instead of entire documents.

The results indicate that SNLI data is not able to improve the results on FEVER

data through adversarial domain adaptation, and there is a negligible difference when

using domain adaptation compared to not using it. The reason is, most likely, due to

the difference between the different tasks that created the SNLI and FEVER datasets.

In summary, the results show:

∙ Balancing the FEVER train data can generally help the models to perform

better (comparing lines 1-9 with lines 10-18), and the results at sentence level

(lines 19-27) are much better than results at document level (lines 1-18).

∙ The best performance is achieved with the combination of BOW and CNN

without domain adaptation and with balanced train data at sentence level (see

line 21).

∙ In general, the source SNLI data can’t improve the performance of our model for

target FEVER data with adversarial domain adaptation, even at sentence level.

This might be because of the considerable task difference between FEVER and

SNLI.

59

Model Source Target Acc. Acc.
supports/refutes

Macro
F1

F1

supports/refutes

FEVER Article

1. BOW - FEVER 62.5 95.9 / 28.4 57.5 72.1 / 42.8
2. CNN - FEVER 61.6 97.1 / 25.3 55.7 71.9 / 39.5
3. BOW + CNN - FEVER 61.7 97.7 / 25.0 55.7 72.1 / 39.2
4. BOW FNC FEVER 57.3 96.9 / 16.8 48.8 69.6 / 28.0
5. [BOW + DA] FNC FEVER 57.3 96.2 / 17.6 49.3 69.5 / 29.1
6. CNN FNC FEVER 56.8 99.1 / 13.6 46.9 69.9 / 23.9
7. [CNN + DA] FNC FEVER 56.8 97.9 / 14.9 47.5 69.6 / 25.4
8. BOW + CNN FNC FEVER 58.8 98.9 / 17.9 50.5 70.8 / 30.1
9. TF + [CNN + DA] FNC FEVER 56.6 95.7 / 16.7 48.4 69.0 / 27.8

FEVER Article + Balanced Labels

10. BOW - FEVER 65.2 82.2 / 47.9 64.1 70.5 / 57.7
11. CNN - FEVER 66.0 79.4 / 52.4 65.4 70.3 / 60.4
12. BOW + CNN - FEVER 66.8 80.2 / 53.1 66.1 70.9 / 61.2
13. BOW FNC FEVER 59.8 71.0 / 48.4 59.3 64.1 / 54.4
14. [BOW + DA] FNC FEVER 60.6 73.1 / 47.9 59.9 65.2 / 54.6
15. CNN FNC FEVER 57.7 91.9 / 22.7 51.7 68.7 / 34.7
16. [CNN + DA] FNC FEVER 56.1 98.1 / 13.2 46.2 69.3 / 23.0
17. BOW + CNN FNC FEVER 57.8 94.1 / 20.7 51.1 69.3 / 32.8
18. BOW + [CNN + DA] FNC FEVER 50.5 100.0 / 0.0 33.6 67.1 / 0.0

Table 4.10: FNC → FEVER. Results on the FEVER test data for models trained
using FEVER training data and FNC data. BOW, CNN and DA refer to our model
when it uses bag of words features, convolutional features, and domain adaptation,
respectively. When DA is present, square brackets indicate which features are passed
to the domain adaptation component. We show the results of the models based on
the smallest loss for validation set across 5 independent runs.

60

4.4.4 Performance Analysis: FNC → FEVER

Table 4.10 shows the results of different models on the target FEVER test data. Lines

1-9 show the results when all train data is used at each epoch for training, while lines

10-18 show the results when the FEVER train data is balanced across SUPPORTS

and REFUTES labels. In these experiments, the agree and disagree labels in source

FNC are mapped to the SUPPORTS and REFUTES labels in target FEVER data.

Overall, the results show that the source FNC is not able to improve the perfor-

mance on the target FEVER data. None of the domain adaptation models outperform

the BOW and CNN model trained only on FEVER data. The reasons are that the

number of FNC agree and disagree labels is just a fraction of the size of the SUP-

PORTS and REFUTES labels in the FEVER data, and FNC data is imbalanced in

terms of label frequency.

In summary, the results show:

∙ The best performance is achieved by the combination of BOW and CNN without

domain adaptation and with balanced train data (see line 12).

∙ In general, the source FNC does not improve the performance of our models

tested on target FEVER data. Possible reasons include the fact that the source

FNC is much smaller than target FEVER data, and that the source FNC is

different and unbalanced and may bias the model incorrectly.

4.4.5 Training Loss Trends

While the logic behind the adversarial domain adaptation model makes sense in the-

ory, we sought to empirically confirm the impact of the domain adaptation technique

on changing the classification and domain losses during training. To do this, we ex-

amine the losses of the best FEVER→FNC model, the BOW + [CNN + DA] with

the hierarchy scheme, after each training epoch. The data is shown in Figure 4-3.

From the figure, we can see that both losses are unstable during the early epochs of

training. This is because of the learning rate and gradient reversal constant schedules,

which couple an initially high learning rate with an initially low gradient reversal

61

Figure 4-3: The classification and domain adaptation losses on validation data across
training epochs for our best FEVER→FNC model; BOW + CNN + DA with the
hierarchy scheme.

constant. Then, after around 10 epochs, the classification and domain adaptation

losses plateau as training stabilizes. In general, the classification loss slowly decreases

as the label prediction component in the model attempts to minimize its loss, while

the domain adaptation loss slowly increases as the model attempts to maximize the

domain loss so that it cannot distinguish between its source and target examples as

we discussed in Section 4.2.3.

4.5 Summary

In summary, we demonstrated that using adversarial domain adaptation with our

models (the BOW and CNN based models) could improve the stance detection task

on the target data depending on matching between the target and source datasets

in terms of data distribution, topics, desired tasks, etc. In particular, our domain

adaptation model could outperform existing state of the art results for the FNC tar-

get data when using the source FEVER data, and the FEVER data was successfully

used to supplement FNC which has a limited label data through domain adapta-

62

tion. We repeated our experiments with domain adaption using source SNLI data

for target FNC, using source FNC data for target FEVER, and using source SNLI

for target FEVER. The results of these experiments showed that the source data

through domain adaptation couldn’t significantly improve the performance on target

data. Overall, our results show that adversarial domain adaptation can be used suc-

cessfully for the stance detection task. However, it requires careful data selection and

similar tasks.

63

64

Chapter 5

Stance Detection Demonstration

In this chapter, we introduce an automatic demonstration system created to detect

the stance between an input claim and document pair. For our model, we use our best

trained model (see Chapter 4) which was produced when (𝑖) using the combination

of TF and CNN models, (𝑖𝑖) using source data through the adversarial domain adap-

tation technique, and (𝑖𝑖𝑖) using the hierarchy scheme. This model outperforms the

state of the art performance on the publicly available Fake News Challenge dataset.

In the following sections, we will discuss in detail the architecture and design of our

system.

5.1 Demonstration System Design

The demonstration system essentially has two sides; server and client. Our pretrained

stance detection model is located at the server side. Figure 5-1 shows the high level

design of the system. The user at the client side inputs a claim-document pair;

there are not any restrictions on the contents of these inputs. Then, the client sends

an HTTP request to the server for the model with the desired inputs to detect the

stance between the input pair. The server then processes the inputs by tokenizing the

text, removing stop words, and extracting the TF and TFIDF features. Then, these

inputs are passed to our pretrained model, and the predicted output is sent back to

the user. The output is a set of predicted scores in the hierarchy scheme for related

65

Figure 5-1: The high level design of the demonstration system. The client sends a
claim-document pair to the server to be analyzed. Upon receiving the request, the
server processes the input texts, gives them through our pretrained stance detection
model, and then returns the results. The client receives these results and displays
them to the user.

or unrelated, then for agree, disagree and discuss. Finally, to give a set of rationales

for the model prediction, the server further processes the claim with each sentence

in the document, and the stance scores for the sentences in the input document with

respect to the claim are returned to the user. The relevant sentences in the document

are highlighted and color coded corresponding to the stance labels.

5.2 An Example through the Demonstration System

Figures 5-2, 5-3, 5-4, and 5-5 are screenshots of our demonstration system when an

example input is passed through the system. Figure 5-2 displays the input page

in which the user can submit two text inputs as claim and document. Figure 5-3

displays the system predicted stance score at document level, and the sentences in

the document that support the predictions are highlighted. Figure 5-4 and Figure 5-5

display the predicted stance score for each sentence in the document with respect to

the given claim.

66

Figure 5-2: The input page of the demonstration system. The user can enter two text
inputs as claim and document. Then, the inputs are processed by the demonstration
system after clicking the submit button.

67

Figure 5-3: The first part of the results page contains a color key and statistics of our
model predictions for the input claim-document pair at a holistic level. The sentences
in the document that support the predictions are highlighted.

68

Figure 5-4: The second part of the results page contains model predictions specific
to each sentence in the document. In particular, the specific sentence along with the
claim is passed to the model and the model predictions are displayed.

69

Figure 5-5: This figure is in continuous of the previous part of the system outputs at
sentence level.

70

5.3 Technologies

Our pretrained model is created using Python 3 Tensorflow1. Our demonstration

system uses the Flask2 framework. For preprocessing the inputs, e.g., tokenizing and

stop word removal steps, we use Keras3 library functions. To extract BOW features,

e.g., TF and TF-IDF), we use existing scikit-learn4 library functions. Finally, the

server is currently being run on a lab cluster CPU computer.

5.4 Extensibility

The current design is easily extensible and additional models, especially Python mod-

els, can be included to the system over time to demonstrate progress on the task.

When adding models to the demo, there are potentially some possible concerns

include memory restrictions and prediction latency. If the model takes up too much

memory, then the server process may freeze or otherwise fail. This would happen if

the model has a very large amount of parameters to the point where the amount of

memory required exceeds the RAM available for the server process. To resolve this

issue, either the amount of memory that the model is fetching should be reduced or

a machine with a larger memory capacity should be used. Next, the latency of the

system is directly linked with how long it takes to load the saved model, process the

inputs, and predict the outputs. Currently the model is fairly light weight. However,

if the new added model is more computationally expensive, then the latency can

significantly increase for the user. In this case, there is a trade-off between the speed

(with using a simpler model) and performance (with using a complex model with high

accuracy) of the system.

1https://www.tensorflow.org/
2http://flask.pocoo.org/
3https://keras.io/
4https://scikit-learn.org/

71

5.5 Summary

We presented a demonstration system to serve our best model to process arbitrary

user determined input. Our current best model is based on using BOW and CNN

features, hierarchy schemes, and domain adaptation that could achieve the state of the

art result on a publicly available benchmark. This system is helpful in demonstrating

this model for stance detection task. Furthermore, it is designed in an extensible

manner which makes it easy to add future state of the art models.

72

Chapter 6

Conclusion

6.1 Summary

In this thesis, we presented neural and adversarial domain adaptation approaches to

solve the problem of fact checking and the problem of stance detection. The primary

contributions of this work are summarized as follows.

Fact Checking: The fact checking task involves predicting whether a given textual

claim is factually true or not. To address this task, we presented improved CNN

and LSTM models as well a novel stacked Bi-LSTM and CNN model. Our models

outperformed several baselines including the state of the art. We performed our

experiments using a publicly available dataset, LIAR.

Stance Detection: The stance detection task involves predicting the perspective

of a document to an input claim. To address this task, we presented different config-

urations of BOW and CNN based models that use the adversarial domain adaptation

technique. We performed our experiments using FNC, FEVER and SNLI datasets.

We found that using source FEVER data for target FNC data improves model per-

formance for the FNC task. This is likely because the source is much larger than

the target data and both datasets are created for the same task, allowing for useful

information transfer.

73

Stance Detection Demonstration System: Finally, we created a demonstration

system to help users understand the current capabilities of presented models. In

particular, the user is able to enter arbitrary textual claim and document and get

the model predictions at document and sentence level. This helps to demonstrate the

strengths and shortcomings of the models, and it can be useful in benchmarking for

future progress in the field.

6.2 Future Work

The ultimate goal of fact checking and stance detection tasks is to create a system

which can alert users about misleading information or fake news by presenting enough

evidence. The fact checking task directly addresses this problem by outputting the

final decision on an input claim as to whether it is factually true or not. The stance

detection task outputs the stances of documents against claims; these outputs can be

aggregated and used as evidence for the fact checking decision.

For the fact checking task, as examined in this thesis, one major issue is the lack

of labeled data. This is while neural models need sufficient data to be trained. So

far, most of the fact checking datasets (e.g., LIAR dataset) are very limited in size,

with most of topics only having a handful of claims and with most of the speakers

only having a single claim. These challenges make it hard to train a model on such

datasets to achieve a good result. Therefore, it is important to develop more labeled

data for this task.

The stance detection task also suffers from dataset size problems. Most of the

existing datasets for this task have undesirable biases, due to the way that they are

created. For example, the FNC dataset has around 100k claims, however often the

same documents are associated many times to different claims. This means that the

dataset is not as diverse as the size would suggest. Furthermore, the FNC dataset is

very imbalanced in terms of label frequency, which de facto limits the performance of

the models over all stance labels. Additional carefully constructed datasets would be

very useful to help advance research on this problem.

74

To tackle the dataset size limitation issue, we applied adversarial domain adapta-

tion in order to use data from similar datasets, e.g. FEVER and SNLI, to supplement

each other. We achieved state of the art performance using source FEVER data on

target FNC data with this method, and this method could possibly be applied for

other similar datasets. While we used the adversarial domain adaptation technique

for our work, other domain adaptation techniques can be also investigated to see if

they are more effective. Finally, any future datasets that are related to the stance

detection task can be tested using domain adaptation to potentially improve existing

tasks.

75

76

Bibliography

[Augenstein et al., 2016] Augenstein, I., Rocktäschel, T., Vlachos, A., and
Bontcheva, K. (2016). Stance detection with bidirectional conditional encoding.
CoRR, abs/1606.05464.

[Baird et al., 2017] Baird, S., Sibley, D., and Pan, Y. (2017). Talos targets disinfor-
mation with fake news challenge victory. In Fake News Challenge.

[Baly et al., 2018] Baly, R., Mohtarami, M., Glass, J., Màrquez, L., Moschitti, A.,
and Nakov, P. (2018). Integrating stance detection and fact checking in a uni-
fied corpus. In Proceedings of the 16th Annual Conference of the North American
Chapter of the Association for Computational Linguistics, New Orleans, LA, USA.

[Bizer et al., 2009] Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., Cy-
ganiak, R., and Hellmann, S. (2009). Dbpedia - a crystallization point for the web
of data. Web Semant., 7(3):154–165.

[Bouma, 2009] Bouma, G. (2009). Normalized (pointwise) mutual information in
collocation extraction. In From Form to Meaning: Processing Texts Automatically,
Proceedings of the Biennial GSCL Conference 2009, volume Normalized, pages
31–40, Tübingen.

[Bowman et al., 2015] Bowman, S. R., Angeli, G., Potts, C., and Manning, C. D.
(2015). A large annotated corpus for learning natural language inference. In
Proceedings of the 2015 Conference on Empirical Methods in Natural Language
Processing (EMNLP). Association for Computational Linguistics.

[Chen, 2016] Chen, G. (2016). A gentle tutorial of recurrent neural network with
error backpropagation. CoRR, abs/1610.02583.

[Ciampaglia et al., 2015] Ciampaglia, G. L., Shiralkar, P., Rocha, L. M., Bollen, J.,
Menczer, F., and Flammini, A. (2015). Computational fact checking from knowl-
edge networks. CoRR, abs/1501.03471.

[Cortes and Vapnik, 1995] Cortes, C. and Vapnik, V. (1995). Support-vector net-
works. Machine learning, 20(3):273–297.

[Ferreira and Vlachos, 2016] Ferreira, W. and Vlachos, A. (2016). Emergent: a novel
data-set for stance classification. In HLT-NAACL.

77

[Ganin and Lempitsky, 2014] Ganin, Y. and Lempitsky, V. (2014). Unsupervised
domain adaptation by backpropagation. arXiv preprint arXiv:1409.7495.

[Gong et al., 2013] Gong, B., Grauman, K., and Sha, F. (2013). Connecting the dots
with landmarks: Discriminatively learning domain-invariant features for unsuper-
vised domain adaptation. In International Conference on Machine Learning, pages
222–230.

[Graves and Schmidhuber, 2005] Graves, A. and Schmidhuber, J. (2005). Framewise
phoneme classification with bidirectional lstm and other neural network architec-
tures. Neural Networks, 18(5):602 – 610. IJCNN 2005.

[Hanselowski et al., 2017] Hanselowski, A., PVS, A., Schiller, B., and
Caspelherr, F. (2017). Team Athene on the fake news challenge.
https://medium.com/@andre134679/team-athene-on-the-fake-news-challenge-
28a5cf5e017b.

[Hochreiter and Schmidhuber, 1997] Hochreiter, S. and Schmidhuber, J. (1997).
Long short-term memory. Neural Computation, 9(8):1735–1780.

[Karadzhov et al., 2017a] Karadzhov, G., Gencheva, P., Nakov, P., and Koychev, I.
(2017a). We built a fake news & click-bait filter: What happened next will blow
your mind! In Proceedings of the 2017 International Conference on Recent Ad-
vances in Natural Language Processing, RANLP ’17, Varna, Bulgaria.

[Karadzhov et al., 2017b] Karadzhov, G., Nakov, P., Màrquez, L., Barrón-Cedeño,
A., and Koychev, I. (2017b). Fully automated fact checking using external sources.
In Proceedings of the International Conference Recent Advances in Natural Lan-
guage Processing, RANLP 2017, pages 344–353. INCOMA Ltd.

[Karadzhov et al., 2017c] Karadzhov, G., Nakov, P., Màrquez, L., Barrón-Cedeño,
A., and Koychev, I. (2017c). Fully automated fact checking using external sources.
CoRR, abs/1710.00341.

[Kim, 2014] Kim, Y. (2014). Convolutional neural networks for sentence classifica-
tion. CoRR, abs/1408.5882.

[Liu et al., 2017] Liu, P., Qiu, X., and Huang, X. (2017). Adversarial multi-task
learning for text classification. arXiv preprint arXiv:1704.05742.

[Mihaylov et al., 2015] Mihaylov, T., Georgiev, G., and Nakov, P. (2015). Finding
opinion manipulation trolls in news community forums. In Proceedings of the Nine-
teenth Conference on Computational Natural Language Learning, pages 310–314.
Association for Computational Linguistics.

[Mihaylov and Nakov, 2016] Mihaylov, T. and Nakov, P. (2016). Hunting for troll
comments in news community forums. In Proceedings of the 54th Annual Meeting
of the Association for Computational Linguistics, pages 399–405, Berlin, Germany.

78

[Mihaylova et al., 2018] Mihaylova, T., Nakov, P., Marquez, L., Barron-Cedeno, A.,
Mohtarami, M., Karadzhov, G., and Glass, J. (2018). Fact checking in community
forums. In Proceedings of AAAI, New Orleans, LA, USA.

[Mikolov et al., 2013a] Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013a).
Efficient estimation of word representations in vector space. CoRR, abs/1301.3781.

[Mikolov et al., 2013b] Mikolov, T., Sutskever, I., Chen, K., Corrado, G., and Dean,
J. (2013b). Distributed Representations of Words and Phrases and their Composi-
tionality. CoRR, abs/1310.4546.

[Mohammad et al., 2016] Mohammad, S., Kiritchenko, S., Sobhani, P., Zhu, X., and
Cherry, C. (2016). Semeval-2016 task 6: Detecting stance in tweets. In Proceedings
of the 10th International Workshop on Semantic Evaluation (SemEval-2016), pages
31–41, San Diego, California. Association for Computational Linguistics.

[Mohtarami et al., 2018] Mohtarami, M., Baly, R., Glass, J., Nakov, P., Màrquez, L.,
and Moschitti, A. (2018). Automatic stance detection using end-to-end memory
networks. In Proceedings of the 16th Annual Conference of the North American
Chapter of the Association for Computational Linguistics, NAACL-HLT ’18, New
Orleans, LA, USA.

[Mohtarami et al., 2016] Mohtarami, M., Belinkov, Y., Hsu, W.-N., Zhang, Y., Lei,
T., Bar, K., Cyphers, S., and Glass, J. (2016). Sls at semeval-2016 task 3: Neural-
based approaches for ranking in community question answering. In Proceedings
of NAACL-HLT Workshop on Semantic Evaluation, pages 753–760, San Diego,
California. Association for Computational Linguistics.

[Pan et al., 2011] Pan, S. J., Tsang, I. W., Kwok, J. T., and Yang, Q. (2011). Do-
main adaptation via transfer component analysis. IEEE Transactions on Neural
Networks, 22(2):199–210.

[Pennington et al., 2014] Pennington, J., Socher, R., and Manning, C. (2014). Glove:
Global vectors for word representation. In Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP), pages 1532–1543.

[Pomerleau and Rao, 2017] Pomerleau, D. and Rao, D. (2017). Fake news challenge.

[Ramos et al., 2003] Ramos, J. et al. (2003). Using tf-idf to determine word relevance
in document queries. In Proceedings of the first instructional conference on machine
learning, volume 242, pages 133–142.

[Riedel et al., 2017] Riedel, B., Augenstein, I., Spithourakis, G. P., and Riedel, S.
(2017). A simple but tough-to-beat baseline for the fake news challenge stance
detection task. CoRR, abs/1707.03264.

[Severyn and Moschitti, 2015] Severyn, A. and Moschitti, A. (2015). Learning to
rank short text pairs with convolutional deep neural networks. In Proceedings of

79

the 38th International ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 373–382. ACM.

[Sukhbaatar et al., 2015] Sukhbaatar, S., Weston, J., Fergus, R., et al. (2015). End-
to-end memory networks. In Advances in neural information processing systems,
pages 2440–2448.

[Sun et al., 2017] Sun, S., Zhang, B., Xie, L., and Zhang, Y. (2017). An unsupervised
deep domain adaptation approach for robust speech recognition. Neurocomputing,
257:79–87.

[Tan et al., 2016] Tan, M., dos Santos, C. N., Xiang, B., and Zhou, B. (2016). Im-
proved representation learning for question answer matching. In ACL (1).

[Thorne et al., 2018] Thorne, J., Vlachos, A., Christodoulopoulos, C., and Mittal, A.
(2018). Fever: a large-scale dataset for fact extraction and verification. In Pro-
ceedings of the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long
Papers), pages 809–819. Association for Computational Linguistics.

[Vlachos and Riedel, 2014] Vlachos, A. and Riedel, S. (2014). Fact checking: Task
definition and dataset construction. In Proceedings of the ACL 2014 Workshop on
Language Technologies and Computational Social Science, pages 18–22, Baltimore,
MD, USA.

[Vosoughi et al., 2018] Vosoughi, S., Roy, D., and Aral, S. (2018). The spread of true
and false news online. Science, 359(6380):1146–1151.

[Wang, 2017] Wang, W. Y. (2017). "liar, liar pants on fire": A new benchmark
dataset for fake news detection. CoRR, abs/1705.00648.

[Xu et al., 2018] Xu, B., Mohtarami, M., and Glass, J. (2018). Adversarial doman
adaptation for stance detection. In Proceedings of the Thirty-second Annual Con-
ference on Neural Information Processing Systems (NIPS)–Continual Learning.

[Yu et al., 2014] Yu, L., Hermann, K. M., Blunsom, P., and Pulman, S. (2014). Deep
learning for answer sentence selection. CoRR, abs/1412.1632.

[Zarrella and Marsh, 2016] Zarrella, G. and Marsh, A. (2016). MITRE at semeval-
2016 task 6: Transfer learning for stance detection. CoRR, abs/1606.03784.

80

