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Abstract

The goal of fusion energy research is to build an economically competitive reactor.
This is difficult due to the complicated system composing a reactor and the nonlin-
earities it entails. Practically, to even get to the neighborhood of an economic reactor
requires hundreds of simulations – which in turn necessitate quick running fusion
systems codes. Moving towards these economic reactors then involves finding what
design parameters provide the most leverage in lowering reactor costs.

As highlighted by the difference between European and American designs, however,
the most important decision for tokamaks is whether to run them as pulsed or steady-
state. This paper aims to fairly compare the two modes of operation using a single,
comprehensive model. Benchmarked against other codes, this model actually shows
that no fusion reactor is achievable without some technological advancements. This
can be seen through every referenced design using nonstandard values of 𝐻 and 𝑁𝐺.

The interesting result this paper shows is that developing high-temperature super-
conducting (HTS) tape could actually make both steady-state and pulsed tokamaks
economically competitive against solar and coal. Further, this HTS tape actually has
different best uses for the two modes of operation, appearing in the magnet structures
of: TF coils for steady state and the central solenoid for pulsed. Developments in
this technology should produce economic reactors within the coming decade.

Thesis Supervisor: Jeffrey P. Freidberg
Title: Professor of Nuclear Science and Engineering (Emeritus)
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Chapter 1

Introducing Fusion Reactor Design

The central goal of fusion energy research is to build an economically competitive

nuclear reactor. It has long been joked, though, that fusion power will always be

twenty years away. This is mainly due to the nonlinearities inherent to a reactor

system and the high upfront cost of building new machines. The model developed

for this paper uses standard theory and empirical fits to find cost trends from this

nonlinear system. An important conclusion is that building an economic reactor using

existing technology would be impossible. One solution may be improving magnet

technology – as MIT is exploring with high-temperature superconducting (HTS) tape.

As can be seen by comparing the European and American/Asian fusion reactor design

efforts, though, one of the most important decisions is whether to run the reactor as

pulsed (EU1,2) or steady-state (US3 and Korea4). The distinction between the two

mainly manifests itself in the choice of auxiliary current drive: inductive for pulsed

and lower hybrid for steady-state.5 With the model built for this thesis, it is possible

to perform a direct comparison of these two modes of operation.

Due to the speed and simplicity of the model, hundreds of reactors can be simulated

in minutes. Further, the model has been benchmarked against other ones from the

literature,3,6–8 allowing it to answer several critical questions regarding the compari-

son of the two modes of operation. A major finding of this is that HTS tape should
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Figure 1-1: Cut-Away of Tokamak Reactor

The three main components of a magnetic fusion reactor are: the tokamak structure, the
plasma fuel, and the coiled solenoid at the center. Here, the directions of the magnetic
field (𝐵0) and plasma current (𝐼𝑃 ) variables are shown to be in the toroidal direction.

appear in different places for the two modes of operation: within the central solenoid

for pulsed machines and inside the TF coils for steady-state ones. A more apparent

finding is that pulsed can be competitive and the US should investigate it further.

1.1 Distinguishing Pulsed from Steady-State

The leading candidate for the first economically competitive fusion reactor is a toka-

mak. As shown in Fig. 1-1, tokamaks are doughnut-shaped metal structures that

use magnets to confine their fusion-grade plasmas. The challenge in building such a

device comes from the various physics and engineering constraints it must satisfy –

i.e. not surpassing acceptable levels of neutron damage, plasma pressure, etc.

One of the most contentious points of reactor design, however, is whether to run it

as: pulsed (the European effort1,2) or steady-state (the American/Asian approach3,4).

Here, pulsed operation refers to how a reactor is ramped up and down several times
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Figure 1-2: Comparison of Pulsed and Steady-State Current

Inside a pulsed reactor, current is ramped up and down several times a day – with
downtime in-between. Steady state reactors are meant to remain on for weeks or months.

a day. Whereas steady-state implies a machine is functionally kept ramped up the

entirety of its fifty-year campaign. These behaviors are shown in Fig. 1-2. The

difficulties involved with the two modes of operation are then: cyclical stresses for

pulsed devices and expensive current drive for steady state ones.5

The main way these two modes of operation, pulsed and steady-state, influence reactor

design, however, is through the current balance equation (derived later). What this

means practically is a tokamak plasma requires some current to stay in equilibrium

and this current has to be partially generated by auxiliary systems: inductively for

pulsed and non-inductively for steady-state.5 To fairly compare the two modes of

operation thus requires a generalized handling of current balance that can incorporate

both sets of auxiliary systems.

1.2 Pricing a Fusion Reactor

To truly compare tokamaks used as fusion reactors, though, the obvious metrics are

costs. ITER – the most expensive experiment in the world9,10 – has a history full of
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countries backing out for high construction costs and rejoining only after they finally

get lowered.5 The problem is $20B is a lot of money and 20 years is a long time.

Moreover, approximating true costs of the experiment is made difficult due to the

need to project (or neglect) economies-of-scale for expensive components, such as the

superconducting magnets and irradiated materials.

Therefore, this paper adopts stand-ins for the conventional capital cost and cost-

per-watt metrics. This is done for simplicity, both in: formulating the relations and

conveying the two metrics to physicists. The approximation for the capital cost –

how much a tokamak costs to build – is then the magnetic energy.11

𝑊𝑀 ∝ 𝑅3𝐵2 (1.1)

In this magnetic energy proportion relation, the tokamak’s major radius – R – is

involved in a volumetric term (𝑅3) and B is the strength (in Teslas) of the toroidal

magnetic field. This quantity simply states that the two surefire ways to make a

machine more expensive are to build it bigger and to use stronger magnets. As these

terms also improve confinement, this cost introduces a trade-off between size and

magnet technology. This is why the proposed ARC reactor – designed with HTS tape

– could be half the size of ITER, which uses conventional LTS technology.5,6

The next metric, the cost-per-watt, is defined by dividing the capital cost (i.e. the

magnetic energy) by the main source of power output. For tokamaks, this source of

power is fusion – discussed in more detail in Appendix C. The cost-per-watt thus

measures how economically competitive a reactor will be once it is build. This is how

to compare the rate of return for different base-load power sources (e.g. fission, coal,

and solar).

𝐶𝑊 =
𝑊𝑀

𝑃𝐹
(1.2)

A final correction can be made on the cost-per-watt to account for reactor downtime,

which is fundamental to pulsed operation. This is handled through the duty factor

(𝑓𝑑𝑢𝑡𝑦) that is defined as the ratio of a reactor’s quasi-steady-state flattop duration
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to the entire pulse length of a tokamak – as shown in Fig. 1-2. In the context of the

cost-per-watt, it scales down the fusion power:

𝐶𝑊 =
𝑊𝑀

𝑓𝑑𝑢𝑡𝑦 · 𝑃𝐹
(1.3)

For a steady-state reactor, this duty factor is assumed to be held at one. Pulsed

machines, on the other hand, can see up to thirty minutes of downtime,8 which leads

to duty factors around 80%. Analysis in Section 4.1.4, however, shows that pulsed

reactors may also have duty factors near unity.

Combined, these two cost metrics allow designers to pinpoint economically competi-

tive tokamaks within reactor space. Although not rigorous in an engineering context,

these capital cost and cost-per-watt approximations do provide true physics meaning

when comparing different machines – whether they run as pulsed or steady-state.

1.3 Modeling Fusion Systems

Before reactors can be priced, though, they have to be modeled. Therefore the first

half of this thesis is devoted to the theory behind tokamak design. Emphasis is placed

more on a physicist’s intuition than an engineer’s costing rigor. This is justified by

the nonlinearities inherent to fusion systems and rationalized by this paper’s results

matching more sophisticated models with high fidelity.

Stepping back, however, a fusion systems model is an approach to designing reactors

based on satisfying various physics and engineering constraints. There are already

many of these models in the field.6,7, 12–18 Zero-dimensional (0-D) systems models then

form a particular subclass of these that reduce the inherently 3-D problem of design

to a collection of scalar, averaged values. This reduction in complexity allows models

to be orders of magnitude faster. The natural corollary of which is that hundreds of

reactors can be simulated in minutes.
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Within the context of reactor design, these 0-D systems models serve an important

role due to their speed and simplicity. Although not truly self-consistent,∗ these

models are capable of exploring large areas of reactor space. This is especially

important in the early stages of tokamak planning when researchers are selecting

a design point. These models also have use when searching for general costing trends

– as shown in this document.

What makes this paper’s systems model different from others in the field, though, is

its generalized handling of both modes of tokamak operation: pulsed and steady-

state. This was necessitated by a desire to fairly compare the two. The most

fundamental result of this analysis is that both modes are actually capable of leading

to economically competitive reactors – assuming some technological advancements.

1.4 Discussing HTS Magnet Technology

As mentioned, no economically competitive fusion reactor can be built using existing

technology – regardless of whether it runs as pulsed or steady-state. This is why MIT

has been exploring HTS magnet technology for their SPARC reactor in an effort to

nearly double the maximum achievable field strength. What this paper shows is that

this logic is indeed correct and HTS may be the final magnet advancement needed

for the conventional fusion paradigm (i.e. D-T fuel, H-Mode, etc.)

More concretely, this paper shows that new HTS technology is capable of lowering

reactor costs – both for pulsed and steady-state operation. Further, this HTS tape

has different uses within the two modes of operation – as set by cost concerns (see

Figs. 1-3 and 1-4). This analysis shows that HTS should be employed in the TF coils

for steady-state reactors and in the central solenoid for pulsed ones. This is because

pulsed machines require lower toroidal field strengths, which are achievable with less

expensive LTS (low-temperature superconducting) magnets.

∗For speed concerns, 0-D fusion systems models often ignore self consistency in quantities like
pressure profiles and use empirical fits to estimate values such as the confinement time.
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Now that the problem has been thoroughly introduced, we will go over the theory

behind steady-state and, then, pulsed tokamaks. A couple detours will be taken along

the way to show how the model can be incorporated into a fusion systems code. This

code – Fussy.jl – is the topic of Appendix B and is freely available at:

git.io/tokamak
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Figure 1-3: Steady State Magnet Components

Steady-state reactors benefit from increased toroidal field strength until neutron wall
loading starts to dominate design (at around 10-15 T for Charybdis). This is well within

the range accessible to HTS magnets.
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Figure 1-4: Pulsed Magnet Components

Pulsed reactors are shown to receive strong decreases in reactor cost as the central solenoid
field strength is increased, until around 20 T. However, the TF coils do not receive the

same cost reduction with field strength – as shown by the minimum cost appearing at 5 T.
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Chapter 2

Designing a Steady-State Tokamak

This chapter explores a simple model for designing steady-state tokamaks. In the

next couple chapters, the model is first formalized for use in a systems code and then

generalized to handle pulsed operation. These derivations highlight that the only

difference between the two modes of operation is how they generate their auxiliary

plasma current: lower-hybrid current drive (LHCD) for steady-state operation and

inductive sources for when a reactor is purely pulsed.5

Along the way, equations will be derived that get rather complicated. To remedy the

situation, a distinction between dynamic and static variables is now given, which will

allow splitting most equations into dynamic and static parts. Dynamic values – i.e.

the tokamak’s major radius (𝑅0) and magnet strength (𝐵0), as well as the plasma’s

current (𝐼𝑃 ), temperature (𝑇 ), and density (𝑛) – are first-class variables in the model

(see Table 3.1). Everything is derived to relate them. Static values, on the other

hand, can be treated as code inputs, which remain constant throughout a reactor

solve. These most obviously include the various geometric and profile parameters

introduced next section.

The overall structure of this chapter, then, is built around developing an equation

for plasma current in a steady-state tokamak. It is shown that this value arises from

balancing current in a reactor using both a plasma’s own bootstrap current (𝐼𝐵𝑆),
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as well the tokamak’s auxiliary driven current (𝐼𝐶𝐷). These relations necessitate

geometric parameters and plasma profiles, which will be given shortly. Along the

way, definitions will also be needed for the Greenwald density (𝑁𝐺) and the fusion

power (𝑃𝐹 ). What is shown by this is that the current does not actually depend

directly on the major radius (𝑅0) or magnet strength (𝐵0) of a tokamak – allowing

these variables to be put off until next chapter.

2.1 Defining Plasma Parameters

As mentioned previously, the zero-dimensional model derived here can closely ap-

proximate solutions from higher-dimensional codes that might take many hours to

run. The essence of reducing three-dimensional behaviors to one dimensional profiles

– and zero-dimensional averaged values – begins with defining the most important

plasma parameters. These are the: current density (J), temperature (T), and density

(n) of a plasma.

Solving this problem most generally usually involves decoupling the geometry of the

plasma from the shaping of its nearly parabolic radial-profiles – both of which will be

explained shortly.

2.1.1 Understanding Tokamak Geometry

The first thing people see when they look at a tokamak is its geometry – see Fig. 2-1.

How big is it? Is it stretched out like a bicycle tire or compressed to the point of being

nearly spherical? Would a slice across the major radius result in two cross-sections

that were: circular, elliptic, or triangular?

These questions lend themselves to the three important geometric variables – the

inverse aspect ratio (𝜀), the elongation (𝜅), and the triangularity (𝛿). The inverse
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Figure 2-1: Geometry of a Tokamak

This diagram is of a tokamak’s toroidal (top) view and the poloidal cross section of a slice
across its major axis. Included are the four components of a reactor: the plasma, its

metallic blanket, the toroidal field magnets surrounding them, and the central solenoid.
These have thicknesses of a, b, c and d, respectively. 𝑅𝐶𝑆 is where the solenoid begins.

aspect ratio is a measure of how stretched out the device is, or formulaically:

𝑎 = 𝜀 ·𝑅0 (2.1)

This says that the minor radius (a), measured in meters, is related to the major radius

of the machine (𝑅0) through 𝜀. Or more tangibly, the minor radius is related to the

two small cross-sections that result from a slice across a machine’s major radius.

The two remaining geometric parameters – 𝜅 and 𝛿 – are then related to the shape

of the poloidal cross-sections. As the name hints, elongation (𝜅) is a measure of how

stretched out the tokamak is vertically – is the cross-section a circle or an oval? The

triangularity (𝛿) is then how much the cross-sections point outward from the center

of the device. All three’s effects can be seen in Fig. 2-2. Their exact usage within

describing flux surfaces is then explained in Appendix E.

These geometric factors also allow the volumetric and surface integrals governing

fusion power and bootstrap current to be condensed to simple radial ones – see

Eqs. (E.24) and (E.25). The only remaining step is to define the radial profiles

for: the density (n), temperature (T), and current density (J) of a plasma.
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Figure 2-2: Geometric Parameters

These three geometric parameters allow the toroidal cross-sections to scale radially (𝜀),
stretch vertically (𝜅), and become more triangular (𝛿).

2.1.2 Prescribing Plasma Profiles

The first step in defining radial profiles is realizing that all three quantities are

essentially parabolic – i.e. the temperature, density and current density, shown in

Fig. 2-3, are peaked at some radius (usually the center) and then decay to zero

somewhere before the walls of the tokamak enclosure.

Although not self-consistent, these profiles do capture enough of the physics to ap-

proximate relevant phenomenon, such as transport and fusion power.19
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Figure 2-3: Radial Plasma Profiles

The three most fundamental profiles of a fusion plasma are its temperature, density, and
current. These allow the model to reduce from three dimensions to just half of one.

The Density Profile

To begin, density has the simplest profile. This is because it is relatively flat,

remaining near the average value – 𝑛 – throughout the body of the plasma until

quickly decaying to zero near the edge of the plasma.∗ For this reason, a parabolic

profile with a very low peaking factor – 𝜈𝑛 – is well suited.

𝑛(𝜌) = 𝑛 · (1 + 𝜈𝑛) · (1− 𝜌2)𝜈𝑛 (2.2)

Here, 𝜌 is a normalized radial-like flux label, with 𝜌 = 0 occurring at the magnetic

axis and 𝜌 = 1 being at the outer plasma surface (i.e. the 95% surface). The variable

𝑛 is then referred to as the volume-averaged density because using the volume integral

– given by Eq. (E.24) – over the density profile results in that value, after dividing

through by the volume (–𝑉 ):

𝑛 =

∫︀
𝑛(r) 𝑑r

–𝑉
(2.3)

∗Even in H-Mode plasmas where density profiles have a pedestal,20 they usually have much less of
a peak than temperatures21 – especially in a reactor setting.22
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A final point to make is this parabolic profile allows for a short closed-form relation

for the Greenwald density limit – substantially simplifying this fusion systems model.

The Temperature Profile

The use of a parabolic profile for the plasma temperature is slightly more dubious.

This is because H-Mode plasmas are actually highly peaked at the center, decaying

to a non-zero pedestal temperature near the edge before finally dropping sharply to

zero. This model chooses to forego this pedestal representation for a simple parabolic

one – although the pedestal approach is discussed in Appendix D. Analogous to the

density, the profile treats 𝑇 as the average value and 𝜈𝑇 as the peaking parameter.

𝑇 (𝜌) = 𝑇 · (1 + 𝜈𝑇 ) · (1− 𝜌2)𝜈𝑇 (2.4)

The Current Density Profile

The plasma current density is the third profile and cannot safely be represented by a

simple parabola. This is because having an adequate bootstrap current relies heavily

on a profile being peaked off-axis – i.e. at some radius not at the center. This hollow

profile can then be modeled with the commonly given plasma internal inductance (𝑙𝑖).

Concretely, the current’s hollow profile is described by:

𝐽(𝜌) = 𝐽 · 𝛾
2 · (1− 𝜌2) · 𝑒𝛾𝜌2

𝑒𝛾 − 1− 𝛾
(2.5)

The intermediate 𝛾 quantity can then be numerically solved for from the plasma

internal inductance using the following relations – with 𝑏𝑝 representing the normalized

poloidal magnetic field. These are derived in Appendix F.

𝑙𝑖 =
4𝜅

1 + 𝜅2

∫︁ 1

0

𝑏2𝑝 𝜌 𝑑𝜌 (F.7)
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𝑏𝑝(𝜌) =
−𝑒𝛾𝜌2(𝛾𝜌2 − 1− 𝛾)− 1− 𝛾

𝜌 (𝑒𝛾 − 1− 𝛾)
(2.6)

Combined, these three geometric parameters and profiles lay the foundation for this

zero-dimensional fusion systems model.

2.2 Solving the Steady Current

As suggested, one of the most important equations in a fusion reactor is current

balance. In steady-state operation, all of a plasma’s current (𝐼𝑃 ) must come from

a combination of its own bootstrap current (𝐼𝐵𝑆), as well as auxiliary current drive

(𝐼𝐶𝐷). This can be represented mathematically as:

𝐼𝑃 = 𝐼𝐵𝑆 + 𝐼𝐶𝐷 (2.7)

The goal is then to write equations for bootstrap current and driven current. This will

make heavy use of the Greenwald density limit. The steady current will then be shown

to be only a function of temperature! In other words, this current is independent of

a tokamak’s geometry and magnet strength. As will be pointed out then, though, a

subtlety arises that will bring the two back into the picture – self-consistency in the

current drive efficiency (𝜂𝐶𝐷).

2.2.1 Enforcing the Greenwald Density Limit

The Greenwald density limit is a density limit that applies to all tokamaks. It sets a

hard limit on the density and how it scales with current and reactor size. Although

currently lacking a true first-principles theoretical explanation, it does have a real

meaning within the design context. Operate at too low a density and run the risk of

never entering H-Mode. Run the density too high, and cause the tokamak’s plasma
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to disrupt. To this, Fig. 2-4 shows that most shots exist in the regime between the

two extremes.

As no theoretical backing exists, the Greenwald density limit can simply be written

(with citation) as:23

𝑛̂ = 𝑁𝐺 ·
(︂
𝐼𝑃
𝜋𝑎2

)︂
(2.8)

Here, 𝑛̂ has units of 1020 particles
m3 , 𝑁𝐺 is the Greenwald density fraction, and 𝐼𝑃 is

again the plasma current (measured in mega-amps). The final variable is then the

minor radius – a – which was previously defined through:

𝑎 = 𝜀 ·𝑅0 (2.1)

The next step is transforming the line-averaged density (𝑛̂) into the volume-averaged

version (𝑛) used in this model. Harnessing the simplicity of the density’s parabolic

profile allows this relation to be written in a closed form as:

𝑛̂ =

√
𝜋

2
·

(︃
Γ (𝜈𝑛 + 2)

Γ
(︀
𝜈𝑛 +

3
2

)︀)︃ · 𝑛 (2.9)

Here, Γ( · · · ) represents the gamma function: the non-integer analogue of the factorial

function.

Combining these pieces allows the volume-averaged density to be written in standard-

ized units as:

𝑛 = 𝐾𝑛 ·
(︂
𝐼𝑃
𝑅2

0

)︂
(2.10)

𝐾𝑛 =
2𝑁𝐺

𝜀2 𝜋3/2
·

(︃
Γ
(︀
𝜈𝑛 +

3
2

)︀
Γ (𝜈𝑛 + 2)

)︃
(2.11)

The format of the previous equation pair will be used throughout the remainder of

the paper. The top equation relates dynamic variables (i.e. 𝑛, 𝐼𝑃 , and 𝑅0), while the

static-value coefficient (𝐾𝑛) lumps together static quantities, such as: 𝑁𝐺, 𝜀, 2, 𝜋,

and 𝜈𝑛.
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Figure 2-4: Greenwald Density Limit

The Greenwald Limit is a robust metric of what densities an H-Mode plasma can attain –
here referred to as a Greenwaldian region. Although empirical in nature, it accurately

predicts when a tokamak will undergo degraded plasma transport.23,24
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2.2.2 Declaring the Bootstrap Current

The first term to define in current balance, Eq. (2.7), is the bootstrap current. This

bootstrap current is a mechanism of tokamak plasmas that helps supply some of the

current needed to keep a plasma in equilibrium. Its underlying behavior stems from

particles stuck in banana-shaped orbits on the outer edges of the device propelling

the majority species along their helical trajectories around the tokamak.

Utilizing the surface integral from Eq. (E.25), the bootstrap current (𝐼𝐵𝑆) can be

written in terms of the temperature and density profiles:

𝐼𝐵𝑆 = 2𝜋𝑎2𝜅𝑔

∫︁ 1

0

𝐽𝐵𝑆 𝜌 𝑑𝜌 (2.12)

𝐽𝐵𝑆 = 𝑓

(︂
𝑛, 𝑇,

𝑑𝑛

𝑑𝜌
,
𝑑𝑇

𝑑𝜌

)︂

≡ −4.85 · 𝑛 · 𝑇 ·
𝑅0

√
𝜀 𝜌

𝑑𝜓/𝑑𝜌
·
(︂
1

𝑛

𝑑𝑛

𝑑𝜌
+ 0.54

1

𝑇

𝑑𝑇

𝑑𝜌

)︂ (2.13)

Here, g is a geometric factor (of order 1) given by Eq. (E.14). While the second

definition for the bootstrap current density – 𝐽𝐵𝑆 – comes from using well known

theoretical results plus several simplifying assumptions, including the large aspect

limit. The value of 𝑑𝜓/𝑑𝜌 is given in Appendix F.

As shown later in the results, bootstrap fractions are often under-predicted by this

model. This is due to parabolic profiles (i.e. for the temperature) having much less

steep declines near the edge (i.e. in their derivatives) than characteristic H-Mode

profiles with pedestals. This implies that the area most positively impacted by a

pedestal profile for temperature would be the bootstrap current derivation. The

instructions to do so are given in Appendix D.4.

Finally, summarizing the results of Appendix F, the bootstrap current is found to be

only a function of temperature and static variables! In standardized units, it can be
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written as:

𝐼𝐵𝑆 = 𝐾𝐵𝑆 · 𝑇 (2.14)

𝐾𝐵𝑆 = 4.879 ·𝐾𝑛 ·
(︂

1 + 𝜅2

2

)︂
· 𝜀5/2 ·𝐻𝐵𝑆 (2.15)

𝐻𝐵𝑆 = (1 + 𝜈𝑛)(1 + 𝜈𝑇 )(𝜈𝑛 + 0.054𝜈𝑇 )

∫︁ 1

0

𝜌 5/2 ( 1− 𝜌 2 ) 𝜈𝑛+𝜈𝑇−1

𝑏𝑝
𝑑𝜌 (2.16)

Quickly noting, this 𝐻𝐵𝑆 term serves as the analogue of static-value coefficients (e.g.

𝐾𝐵𝑆 and 𝐾𝑛) when they contain an integral. And 𝑏𝑝 represents the poloidal magnet

strength given by Eq. 2.6.

2.2.3 Deriving the Fusion Power

The next segue on our journey to solving for the steady current is deriving the fusion

power (𝑃𝐹 ), which appears in current drive. A comprehensive introduction to this is

given in Appendix C. Summarized, however, a formula for fusion power from a D-T

reaction – in megawatts – is given by the following volume integral:25

𝑃𝐹 =

∫︁
𝐸𝐹 𝑛𝐷 𝑛𝑇 ⟨𝜎𝑣⟩ 𝑑r (2.17)

𝐸𝐹 = 17.6 MeV (2.18)

This 𝐸𝐹 quantity is the energy created from a deuterium-tritium fusion reaction.

The 𝑛𝐷 and 𝑛𝑇 variables then represent the density of the deuterium and tritium

ions, respectively. Assuming a 50-50 mixture of the two, they can be related to the

electron density – i.e. the one used in this model – through the dilution factor (𝑓𝐷).

This dilution factor represents the decrease in available fuel from part of the plasma

actually being composed of non-hydrogen gasses:

𝑛𝐷 = 𝑛𝑇 = 𝑓𝐷 ·
(︁𝑛
2

)︁
(2.19)
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Lastly, the fusion reactivity, ⟨𝜎𝑣⟩, is a nonlinear function of the temperature, T, which

the model approximates using the Bosch-Hale tabulation (described in Appendix C).

As this tabulated value appears inside an integral, it seems important to point out

that the temperature is now the most difficult dynamic variable to handle – over 𝑅0,

𝐵0, 𝑛, and 𝐼𝑃 . This will come into play when the model is formalized next chapter.

The next step in the derivation of fusion power is transforming the three-dimensional

volume integral (see Eq. 2.17) into a zero-dimension averaged value. First, the volume

integral for this model’s geometry is given by:

𝑄𝑉 = 4𝜋2𝑅0𝑎
2𝜅𝑔

∫︁ 1

0

𝑄(𝜌)𝜌 𝑑𝜌 (E.24)

Where Q is an arbitrary function of 𝜌 and g is a geometric factor approximately equal

to one – both described in Appendix E. The fusion power can now be rewritten as:

𝑃𝐹 = 𝑔𝜅𝐸𝐹𝑅0 (𝜋𝑎𝑓𝐷)
2

∫︁ 1

0

𝑛2⟨𝜎𝑣⟩𝜌 𝑑𝜌 (2.20)

In standardized units, this becomes:

𝑃𝐹 = 𝐾𝐹 · 𝑛2 ·𝑅3
0 · (𝜎𝑣) (2.21)

𝐾𝐹 = 278.3 · 𝑓 2
𝐷 · (𝜀2𝜅𝑔) (2.22)

Where the standardized fusion reactivity is now,

(𝜎𝑣) = 1021 (1 + 𝜈𝑛)
2

1∫︁
0

(1− 𝜌2) 2𝜈𝑛⟨𝜎𝑣⟩ 𝜌 𝑑𝜌 (2.23)

At this point, the current drive needed for steady-state can now be defined.
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2.2.4 Using Current Drive

As may have been lost along the way, this chapter’s mission is to define a formula for

steady current – from the current balance equation for steady-state tokamaks:

𝐼𝑃 = 𝐼𝐵𝑆 + 𝐼𝐶𝐷 (2.7)

In standardized units, current drive is often formulated in the literature as:26

𝐼𝐶𝐷 = 𝜂𝐶𝐷 ·
(︂
𝑃𝐻
𝑛𝑅0

)︂
(2.24)

Here, 𝜂𝐶𝐷 is the current drive efficiency with units
(︀ MA

MW-m2

)︀
and 𝑃𝐻 is the heating

power – in megawatts – driven by LHCD (and absorbed by the plasma).∗

Let it be known, though, that driving current in a plasma is hard! In fact, pulsed

reactor designers (i.e. European fusion researchers) think it is so difficult, they may

choose to forego it completely – focusing only on inductive sources that necessitate

reactor fatigue and downtime.

For LHCD, a common current drive efficiency (𝜂𝐶𝐷) seen in many designs is 0.3± 0.1

in the standard units.3,6, 26 It is however inherently a function of all the plasma

parameters – with subtlety put off until the discussion of self-consistency. For now it

assumed to have some constant/static value.

The remaining step in deriving an equation for driven current (𝐼𝐶𝐷), then, is finding

a formula for the heating power (𝑃𝐻). The way fusion systems models – like this one

– handle the heating power is through the physics gain factor, Q. Sometimes referred

to as big Q, this value represents how many times over the heating power (𝑃𝐻) is

amplified as it is transformed into fusion power (𝑃𝐹 ):

𝑃𝐻 =
𝑃𝐹
𝑄

(2.25)

∗A more formal introduction to LHCD, as well as the reasoning behind selecting it over neutral
beam (NBCD) and electron cyclotron current drive (ECCD), are given in Appendix G.
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Now, utilizing the previously defined Greenwald density and fusion power:

𝑛 = 𝐾𝑛 ·
(︂
𝐼𝑃
𝑅2

0

)︂
(2.10)

𝑃𝐹 = 𝐾𝐹 · 𝑛2 ·𝑅3
0 · (𝜎𝑣) (2.21)

The current from LHCD can be written as:

𝐼𝐶𝐷 = 𝐾𝐶𝐷 · 𝐼𝑃 · (𝜎𝑣) (2.26)

𝐾𝐶𝐷 = (𝐾𝐹𝐾𝑛) ·
𝜂𝐶𝐷
𝑄

(2.27)

As 𝜂𝐶𝐷 and Q appear within a static coefficient, it is implied that both remain con-

stant throughout a solve. This subtlety is lifted when handling 𝜂𝐶𝐷 self-consistently,

which will be discussed shortly. However, even in this context, it proves beneficial to

think of 𝜂𝐶𝐷 as a sequence of static variables – set by the model rather than the user.

2.2.5 Completing the Steady Current

The goal of this chapter has been to derive a simple formula for steady current (𝐼𝑃 ).

The problem started with current balance in a steady-state reactor:

𝐼𝑃 = 𝐼𝐵𝑆 + 𝐼𝐶𝐷 (2.7)

Two equations were then found for the bootstrap (𝐼𝐵𝑆) and driven (𝐼𝐶𝐷) current:

𝐼𝐵𝑆 = 𝐾𝐵𝑆 · 𝑇 (2.14)

𝐼𝐶𝐷 = 𝐾𝐶𝐷 · 𝐼𝑃 · (𝜎𝑣) (2.26)
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Combining these three equations and solving for the total plasma current (𝐼𝑃 ) – in

mega-amps – yields:

𝐼𝑃 =
𝐾𝐵𝑆 𝑇

1−𝐾𝐶𝐷(𝜎𝑣)
(2.28)

This is the answer we have been seeking!

As mentioned before, this simple formula appears to only depend on temperature!∗

Apparently, the plasma should have the same current at some temperature (i.e.

𝑇 = 15 keV), regardless of the size of the machine or the strength of its magnets. This

has the important corollary that each temperature maps to only one current value.

Further, each temperature would then map to a single magnet strength, capital cost,

etc. (as shown next chapter).

As has become a mantra, though, the subtlety of this behavior lies in the self-

consistency of the current-drive efficiency – 𝜂𝐶𝐷.

2.3 Handling Current Drive Self-Consistently

Although a thorough description of the wave theory behind lower-hybrid current

drive (LHCD) is well outside the scope of this text, it does motivate the solving of a

tokamak’s major radius (𝑅0) and magnet strength (𝐵0). It also shows how what was

once a simple problem has now transformed into a rather complex one – a common

occurrence with plasmas.

The logic behind finding a self-consistent current-drive efficiency is starting at some

plausible value (i.e. 𝜂𝐶𝐷 = 0.3), solving for the steady current – i.e. 𝐼𝑃 = 𝑓(𝑇 ) – and

then somehow iteratively creeping towards a value deemed self-consistent. What this

means is that in addition to the solver described in the last section, there needs to

be a black-box function that solutions are sent through to get better guesses at 𝜂𝐶𝐷.

∗This dependence only on temperature refers to dynamic variables. The plasma current can still be
highly volatile to many of the static variables, such as: 𝜀, 𝜅, 𝑁𝐺, 𝑓𝐷, 𝜈𝑛, 𝑙𝑖, etc.
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The black-box function we use is a variation of the Ehst-Karney model.27 A thorough

description of this algorithm is given in Appendix G.

As mentioned previously, a self-consistent 𝜂𝐶𝐷 is found once a trip through the

Ehst-Karney black-box results in the same 𝜂𝐶𝐷 as was sent in – to some tolerable

level of error. This consistency incorporates an explicit dependence on the tokamak

configuration. Mathematically,

𝜂𝐶𝐷 = 𝑓(𝑅0, 𝐵0, 𝑛, 𝑇 , 𝐼𝑃 ) (2.29)

As such, to recalculate it after every solution of the steady current requires a value

for both 𝐵0 and 𝑅0 – the targets of this model’s primary and limiting constraints.

These will be the highlight of the next chapter.
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Chapter 3

Formalizing the Systems Model

The goal of this chapter is to take a step back from the steady current derivation and

see the larger picture behind reactor design. As such, a more in-depth description

of static and dynamic variables is given. This discussion of dynamic variables will

then lend itself to a description of the framework underpinning the fusion systems

model. As such, we will now need formulas for the radius and magnet strength of the

tokamak. Moving forward, the current will remain a connecting piece as we redirect

focus to pulsed tokamaks and compare the underlying solvers of the two schemes.

The end result of this analysis will then be equations that allow the density (𝑛),

current (𝐼𝑃 ), major radius (𝑅0), and magnet strength (𝐵0) to be written as functions

of the temperature (𝑇 ) and static variables (e.g. 𝜈𝑛, 𝑁𝐺, 𝑓𝐷). These formulas are

the product of applying constraints required for all tokamak reactors with several

other limiting constraints. The constraints relevant to all tokamak reactors are: the

Greenwald limit, current balance, and power balance. Limiting constraints then

include: the Troyon beta limit, the kink safety factor, the wall loading limit, the

maximum power constraint, and the heat loading limit.

Actual methodologies for solving for the five dynamic variables simultaneously – i.e.

for 𝑇 , 𝑛, 𝐼𝑃 , 𝑅0, 𝐵0 – are put off until Chapter 5 when current balance is in a

generalized form.

41



3.1 Explaining Static Variables

In this model, static variables are ones that remain constant while solving for a

reactor. These include geometric scalings (i.e. 𝜀, 𝛿, 𝜅), profile parameters (i.e. 𝜈𝑛, 𝜈𝑇 ,

𝑙𝑖), and a couple dozen physics constants related to pulsed and steady-state design

(e.g. Q, 𝑁𝐺, 𝑓𝐷). For a complete list of static variables, consult Appendix A.1. The

point to make now is that this model treats static variables as immutable objects. As

such they often reside in static coefficients – 𝐾� – which are treated as constants.

3.2 Connecting Dynamic Variables

Dynamic variables – i.e. 𝑇 , 𝑛, 𝐼𝑃 , 𝑅0, 𝐵0 – are the first-class variables of this fusion

systems model. They represent the fundamental properties of a plasma and tokamak

(which constitute a fusion reactor). As such, they will be reintroduced one at a time,

explaining how they fit into the model – with the equations capable of representing

them.

Table 3.1: Dynamic Variables

Symbol Name Units
𝐼𝑃 Plasma Current MA
𝑇 Plasma Temperature keV
𝑛 Electron Density 1020 m−3

𝑅0 Major Radius m
𝐵0 Magnet Strength T

At its core, this fusion systems model is a simple algebra problem: solve five equations

with five unknowns (i.e. 𝑇 , 𝑛, 𝐼𝑃 , 𝑅0, 𝐵0). Although this naive approach would work,

we can do a little better by reducing these five equations down to just one. This was

already done while deriving the steady current. It just happened that the current

was not directly dependent on the tokamak size (𝑅0) or magnet strength (𝐵0).∗

∗Note that the magnet strength (𝐵0) used throughout this text refers particularly to the strength
of the toroidal magnetic field on axis – i.e. at 𝜌 = 0.
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This will prove more challenging for the generalized current needed for pulsed op-

eration. Even so, this equation will still be reduced to one equation with a single

unknown – 𝐼𝑃 . A solution to which can be solved much faster than the naive 5

equation approach. This is one reason the model is so fast.

The Plasma Temperature – 𝑇

The plasma temperature, measured in keV (kilo-electron-volts), is one of the most

nonlinear variables in the fusion systems framework. It first proved troublesome

when it was shown that a pedestal profile – not the parabolic one used here – would

be needed for an accurate calculation of bootstrap current. The black-box tabulation

for reactivity – (𝜎𝑣) – which appeared inside the fusion power only further exposed

this nonlinearity.

Acknowledging that temperature is the most difficult to handle parameter prompts

its use as the scanned variable. What this means practically is scanning temperatures

is the most straightforward method to produce curves of reactors. By example, a scan

may be run over the average temperatures (𝑇 ): 10, 15, 20, 25, and 30 keV – where

each corresponds to its own reactor with its own toroidal field strength (𝐵0), plasma

current (𝐼𝑃 ), etc. In equation form, this becomes:

𝑇 = 𝑐𝑜𝑛𝑠𝑡. (3.1)

The constant value, here, happens to be 10 keV in one run, 15 keV for the next, and

30 keV in the fifth.

The Plasma Density – 𝑛

The Greenwald density limit is a constraint with a simple form that applies to all

tokamak reactors.23 It is for this reason – as well as being a good approximation –

that a parabolic profile was rationalized over a pedestal (H-Mode) one for the density.
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Repeated, the Greenwald limit is:

𝑛 = 𝐾𝑛 ·
𝐼𝑃
𝑅2

0

(2.10)

Where 𝐾𝑛 is given by Eq. (2.11). This is an exceptionally simple relationship and

why it guided the model. Unlike the next three variables, it is actually used in their

derivations.

The Plasma Current – 𝐼𝑃

The plasma current is what separates steady-state from pulsed operation. From

before, the steady current was found to be:

𝐼𝑃 =
𝐾𝐵𝑆𝑇

1−𝐾𝐶𝐷(𝜎𝑣)
(2.28)

This was derived by setting the total current equal to the two sources of current:

bootstrap and current drive. In fractional form, this can be written as,

𝐼𝑃 = 𝐼𝐵𝑆 + 𝐼𝐶𝐷 → 1 = 𝑓𝐵𝑆 + 𝑓𝐶𝐷 (3.2)

This says that the current fractions of bootstrap and current drive must sum to one.

As shown next chapter, inductive sources can be included into this current balance:

1 = 𝑓𝐵𝑆 + 𝑓𝐶𝐷 + 𝑓𝐼𝐷 (3.3)

This equation shows how steady-state and pulsed operation can coexist (see Fig. 3-1).

The final point to make is reducing the model to being purely pulsed – i.e. neglecting

the current drive:

1 = 𝑓𝐵𝑆 + 𝑓𝐼𝐷 (3.4)

Therefore, the next chapter will generalize the steady current to allow pulsed oper-

ation, and then simplify it to the purely pulsed case. Just as steady current faced
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𝑓𝐵𝑆

𝑓𝐶𝐷 𝑓𝐼𝐷

Current Balance

Steady State
Purely Pulsed

Figure 3-1: Current Balance in a Tokamak

In a tokamak, there needs to be a certain amount of current – and that current has to
come from somewhere. All efficient reactors have an adequate bootstrap current. What

provides the remaining current is what distinguishes steady state from pulsed operation.

self-consistency issues with 𝜂𝐶𝐷, this current will also involve its own root solving

conundrum – the description of which will be given in the following two chapters.

The Tokamak Magnet Strength – 𝐵0

The tokamak magnet strength has no unique equation to eliminate it. With foresight,

the one this model uses is the power balance equation essential to every reactor.

Similar to current balance, power balance is what separates a reactor from a device

incapable of producing net electricity. As such, it is referred throughout this document

as: the primary constraint. It will be derived later this chapter.

The Tokamak Major Radius – 𝑅0

Much like the magnet strength, the major radius has no unique relation to express it.

This model therefore uses the radius equation to handle a reactor’s various physics

and engineering constraints. This list of requirements further restricts reactor space
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to the curves shown in the results section. Collectively, these are referred to as the

limiting constraints – discussed later this chapter. These constraints just all happen

to depend on the size of the reactor – the reason they are chosen to represent the

radius.

3.3 Enforcing Power Balance

What separates a reactor from a device incapable of producing net electricity is power

balance. Within a tokamak, it accounts for how the power going into a plasma’s

core exactly matches the power coming out of it. To approximate this conservation

equation, two sets of power will be introduced: the sources and the sinks.

The sources have mainly been introduced at this point – they include the alpha

power (𝑃𝛼) from fusion reactions and the heating power (𝑃𝐻), as well as a new ohmic

power term (𝑃Ω). The remaining two powers – the sinks – then appear through the

radiation and heat conduction losses, which will be given shortly. In equation form,

power balance becomes: ∑︁
𝑠𝑜𝑢𝑟𝑐𝑒𝑠

𝑃 =
∑︁
𝑠𝑖𝑛𝑘𝑠

𝑃 (3.5)

or expanded to fit this model:

𝑃𝛼 + 𝑃𝐻 + 𝑃Ω = 𝑃𝐵𝑅 + 𝑃𝜅 (3.6)

For clarity, the left-hand side of this equality are the sources. Whereas the remaining

two are sinks, i.e. Bremsstrahlung radiation (𝑃𝐵𝑅) and heat conduction losses (𝑃𝜅).

3.3.1 Collecting Power Sources

As suggested, the two dominant sources of power in a tokamak are: alpha power

(𝑃𝛼) and auxiliary heating (𝑃𝐻). From Appendix C, it was determined that alpha

particles (i.e. helium nuclei) carry around 20% of the total fusion power; or as we put
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it mathematically:

𝑃𝛼 =
𝑃𝐹
5

(C.4)

Additionally, it was determined that the heating power is what was eventually am-

plified into fusion power – or through equation:

𝑃𝐻 =
𝑃𝐹
𝑄

(2.25)

The final source term is then the ohmic power (𝑃Ω). This contribution term is the

same as what occurs when current is run through a copper wire. From a simple

circuits picture, the power across the plasma is related to its current and resistance

– in our standardized units – through:7

𝑃Ω = 106 · 𝐼2𝑃 ·𝑅𝑃 (3.7)

This fusion systems model, then, handles the plasma resistance (𝑅𝑃 ) with the neo-

classical Spitzer resistivity. Through equation,5

𝑅𝑃 =
𝐾𝑅𝑃

𝑅0𝑇
3/2

(3.8)

𝐾𝑅𝑃 = 5.6𝑒−8 ·
(︂
𝑍𝑒𝑓𝑓
𝜀2𝜅

)︂
·
(︂

1

1− 1.31
√
𝜀+ 0.46𝜀

)︂
(3.9)

Combined with the Greenwald limit, ohmic power can be written more compactly as,

𝑃Ω = 𝐾Ω ·
(︂
𝑛2𝑅3

0

𝑇
3/2

)︂
(3.10)

𝐾Ω = 106 · 𝐾𝑅𝑃

𝐾2
𝑛

(3.11)

With the sources defined, we are now in a position to discuss the two sink terms used

in this model’s power balance.
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3.3.2 Approximating Radiation Losses

All nuclear reactors emit radiation. From a power balance perspective, this means

some power has to always be reserved to recoup from its losses – measured in megawatts.

In a fusion reactor, the three most important types of radiation are: Bremsstrahlung

radiation, line radiation, and synchrotron radiation.

This model chooses to only model Bremsstrahlung radiation – as it usually dominates

within the plasma’s core.∗ However, adding the effects of line-radiation and syn-

chrotron radiation would drive results closer to real-world experiments. For example,

line-radiation would better account for the effects of heavy impurities that are emitted

from the divertor plate and first wall.

For clarity, Bremsstrahlung – or braking – radiation is what occurs when a charged

particle (e.g. an electron) is accelerated by some means. In a tokamak, this happens

all the time as electrons collide with the ion species.28 This term can then be described

by the following volume integral:5

𝑃𝐵𝑅 =

∫︁
𝑆𝐵𝑅 𝑑 r (3.12)

Where the radiation power density (𝑆𝐵𝑅) is given by:

𝑆𝐵𝑅 =

(︃ √
2

3
√
𝜋5

· 𝑒6

𝜀20𝑐
3ℎ𝑚

3/2
𝑒

)︃
·
(︀
𝑍𝑒𝑓𝑓 𝑛

2 𝑇 1/2
)︀

(3.13)

The constants in the left set of parentheses all have their usual physics meanings (i.e.

c is the speed of light and 𝑚𝑒 is the mass of an electron). What is new is the effective

charge: 𝑍𝑒𝑓𝑓 . This effective charge is defined through:5

𝑍𝑒𝑓𝑓 =
1

𝑛𝑒

∑︁
𝑗

𝑛𝑗𝑍
2
𝑗 (3.14)

The effective charge is, therefore, a scheme for reducing the charge each ion has to

∗Within most designs, Bremsstrahlung radiation outweighs the other two’s contribution, to core
power balance, two-to-one.3,8
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a single representative value. Fundamental charge, here, is what: neutrons lack,

electrons and hydrogen have one of, and helium has two. As such, a plasma with a

purely deuterium and tritium fuel would have an effective charge of one. This value

would then quickly rise if a Tungsten tile – with 74 units of charge – were to fall into

the plasma core from the walls of the tokamak.∗

Using the volume integral – seen in the derivation of fusion power – then allows the

Bremsstrahlung power to be written in standardized units as:

𝑃𝐵𝑅 = 𝐾𝐵𝑅 𝑛
2 𝑇

1/2
𝑅3

0 (3.15)

𝐾𝐵𝑅 = 0.1056
(1 + 𝜈𝑛)

2 (1 + 𝜈𝑇 )
1/2

1 + 2 𝜈𝑛 + 0.5 𝜈𝑇
𝑍𝑒𝑓𝑓 𝜀

2 𝜅 𝑔 (3.16)

This power term represents the radiation power losses involved in power balance. All

that is needed now is a formula for heat conduction losses – one of the most difficult

plasma behaviors to model to date.

3.3.3 Estimating Heat Conduction Losses

Heat is energy that moves about randomly on a microscopic level. Macroscopically,

it generally moves from hotter areas to colder ones. As hinted by the plasma profile

for temperature, heat emanates from the center of a plasma and migrates towards the

walls of its tokamak enclosure. It therefore is a critical quantity to calculate when

balancing power that is entering and leaving the plasma core.

The difficulty of estimating heat conduction, though, lies in the nonlinear behaviors

of plasmas – i.e. no quick-running computation today can properly model it. As

such, reactor designers have turned towards experimentalists for empirical scaling

laws based on the dozen or so strongest tokamaks in the world. These are collectively

referred to as confinement time scalings, e.g. the ELMy H-Mode Scaling Law.

∗Typical effective charges (𝑍𝑒𝑓𝑓 ) for a reactor are expected to be between 1 and 3.3,6, 8

49



The derivation of this heat conduction loss term (𝑃𝜅), therefore, starts in a manner

similar to the previous powers. To begin, an equation for 𝑃𝜅 can be found using the

following volume integral:5

𝑃𝜅 =
1

𝜏𝐸

∫︁
𝑈𝑑r (3.17)

This volume integral includes two new terms: the confinement time (𝜏𝐸) and the

internal energy (U). Before explaining these terms, a qualitative description is in

order. As mentioned previously, the heat – or microscopically random – energy is

captured by the internal energy (U). The confinement time (𝜏𝐸) is, then, how long it

would take for the heat to undergo an e-folding if the device was shut down.

An actual formula for confinement time will be delayed until the end of this section,

when it is needed for solving the magnet strength (𝐵0). The internal energy (U),

however, can be given now as it has its typical physics meaning. This assumes that

all three plasma species are held at nearly the same temperature (T) as the electrons:

𝑈 =
3

2
(𝑛+ 𝑛𝐷 + 𝑛𝑇 )𝑇 (3.18)

The density of deuterium and tritium – 𝑛𝐷 and 𝑛𝑇 , respectively – are again related

to the electron density (used in this model) through the dilution factor, assuming a

50-50 mix of D-T fuel:

𝑛𝐷 = 𝑛𝑇 = 𝑓𝐷 ·
(︁ 𝑛
2

)︁
(3.19)

After several substitutions, the equations here can be combined to form an equation

for 𝑃𝜅 – the heat conduction losses – in standardized units:

𝑃𝜅 = 𝐾𝜅
𝑅3

0 𝑛 𝑇

𝜏𝐸
(3.20)

𝐾𝜅 = 0.4744 (1 + 𝑓𝐷)
(1 + 𝜈𝑛) (1 + 𝜈𝑇 )

1 + 𝜈𝑛 + 𝜈𝑇
( 𝜀2 𝜅 𝑔 ) (3.21)

Now that all five terms have been defined in power balance, the next step is expanding

it and solving for the tokamak’s toroidal magnetic field strength: 𝐵0.
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3.3.4 Writing the Lawson Parameter

Before arriving at a formula for the magnet strength (𝐵0) using power balance, it

seems appropriate to take a detour and explain an intermediate solution: the Lawson

Parameter.25 Within the fusion community, the Lawson Parameter is the cornerstone

in any argument on the possibility of a tokamak ever being used as a reactor.

An equation for the Lawson Parameter – sometimes referred to as the triple product

– is easily found in the literature as:5

𝑛 · 𝑇 · 𝜏𝐸 =
60

𝐸𝐹
· 𝑇 2

⟨𝜎𝑣⟩
(3.22)

Similar to the steady current derived earlier, the right-hand side is only dependent

on temperature. Further, as the left-hand side is a measure of difficult to achieve

parameters, the goal is to minimize both sides. As shown in Fig. 3-2, this occurs

when the plasma temperature is around 15 keV – a fact well known by many fusion

engineers. As will be seen, this is a simplified result of our model. This is why

𝑇 = 15 keV is not always the optimum temperature – but is usually in the right

neighborhood of a reasonable reactor design.

As all the terms in power balance have already been defined, the starting point will

be simply repeating the standardized equations for all five included powers.

𝑃𝛼 =
𝑃𝐹
5

(C.4)

𝑃𝐻 =
𝑃𝐹
𝑄

(2.25)

𝑃Ω = 𝐾Ω ·
(︂
𝑛2𝑅3

0

𝑇
3/2

)︂
(3.10)

𝑃𝐵𝑅 = 𝐾𝐵𝑅 𝑛
2 𝑇

1/2
𝑅3

0 (3.15)

𝑃𝜅 = 𝐾𝜅
𝑅3

0 𝑛 𝑇

𝜏𝐸
(3.20)
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Figure 3-2: Power Balance in a Reactor

Power balance is what differentiates a reactor from a net power loss experiment. When
cast as the Lawson Parameter for fusion, it explains why D-T fusion plasmas often have a

temperature around 15 keV.

With the fusion power again being,

𝑃𝐹 = 𝐾𝐹 · 𝑛2 ·𝑅3
0 · (𝜎𝑣) (2.21)

These can then be substituted into power balance:

𝑃𝛼 + 𝑃𝐻 + 𝑃Ω = 𝑃𝐵𝑅 + 𝑃𝜅 (3.6)

After a couple lines of algebra, power balance can be rewritten in a form analogous

to the triple product:

𝑛 · 𝑇 · 𝜏𝐸 =
𝐾𝜅 𝑇

2(︁
𝐾𝑃 (𝜎𝑣) +𝐾𝑂𝐻 𝑇

−3/2
)︁
−𝐾𝐵𝑅 𝑇

1/2
(3.23)

𝐾𝑃 = 𝐾𝐹 ·
(︂
5 +𝑄

5×𝑄

)︂
(3.24)
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As expected, this shares a form similar to the simple Lawson Parameter:

𝑛 · 𝑇 · 𝜏𝐸 =
60

𝐸𝐹
· 𝑇 2

⟨𝜎𝑣⟩
(3.22)

The main difference is that this model does not ignore ohmic power and radiation

losses completely. The inclusion of radiation for example sometimes bars a range of

temperatures from being physically realizable.∗ With this intermediate relation in

place, the goal is now to give a formula for the confinement time and solve it for the

magnetic field strength (𝐵0) – thus giving the Primary Constraint.

3.3.5 Finalizing the Primary Constraint

The goal now is to transform the Lawson Parameter into an equation for magnet

strength (𝐵0). This choice to solve the equation for 𝐵0 was motivated by the goals

of analysis and how it will fit into the fusion systems model. To solve the primary

constraint, the confinement time scaling law will now need to be introduced. At the

end, a complicated – albeit highly useful – relation will be the reward.

The energy confinement time, 𝜏𝐸, is one of the most difficult to obtain terms in all of

fusion energy. It is an attempt to reduce all the nonlinear behaviors of a plasma to

a simple measure of how fast its internal energy would be ejected from the tokamak

if the device was instantaneously shut down. As such, reactor designers have turned

toward experimentalists for empirical scaling laws based on a database of the world’s

tokamaks (see Fig. 3-3). These all share a form similar to:

𝜏𝐸 = 𝐾𝜏 𝐻
𝐼 𝛼𝐼
𝑃 𝑅𝛼𝑅

0 𝑎𝛼𝑎 𝜅𝛼𝜅 𝑛𝛼𝑛 𝐵 𝛼𝐵
0 𝐴𝛼𝐴

𝑃 𝛼𝑃
𝑠𝑟𝑐

(3.25)

This regressional fit is how the field actually designs machines (i.e. ITER).30 Let it be

∗The denominator of Eq 3.23 has discontinuities when the 𝐾𝐵𝑅 𝑇
1/2

term exactly equals the
parenthesised one. Therefore, valid reactors only exist outside the discontinuities, when the entire
triple product is finite and positive.
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Figure 3-3: H-Mode Confinement Time Scaling

This plot shows how well the ELMy H-Mode Scaling Law does for fitting 𝜏𝐸 to the
ITER98 database of global tokamaks. For most values, the fit is at least 80% accurate

with the measured value.29

known, though, that fits of this kind often do remarkably well, having relative errors

less than 20% on interpolated data.29 The new terms in this equation are: 𝑃𝑠𝑟𝑐, 𝐾𝜏 ,

H, A, and the 𝛼� factors.

First, the loss power is a metric used in the engineering community to quantify the

power being transported out of the “core” of the plasma by charged particles (i.e. not

the neutrons).7 To optimize fits, experimentalists have defined this as a combination

of the source power terms:

𝑃𝑠𝑟𝑐 = 𝑃𝛼 + 𝑃𝐻 + 𝑃Ω (3.26)

Moving on, 𝐾𝜏 is simply a constant fit-makers use in their scalings. Whereas H is

the enhancement factor over this empirical fit. Next, A is the average mass number

of the fuel source, in atomic mass units. Where for a 50-50 D-T fuel, this is 2.5, as

deuterium weighs two amus and tritium weighs three. Lastly, the alpha factors (e.g.
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𝛼𝑛, 𝛼𝑎, 𝛼𝑃 ) are fitting parameters that represent each variable’s relative importance

in the scaling.

For ELMy H-Mode, this confinement scaling law can be written as:

𝜏𝐻𝐸 = 0.145𝐻
𝐼0.93𝑃 𝑅1.39

0 𝑎0.58 𝜅0.78 𝑛 0.41𝐵0.15
0 𝐴0.19

𝑃 0.69
𝑠𝑟𝑐

(3.27)

However, similar scaling laws can be written for L-Mode, I-Mode, etc. One final

remark to make before moving on is that even these fits have subtleties. The value

of 𝜅, for example, may have a slightly different geometric meaning from tokamak to

tokamak. And the exact definition of loss power – 𝑃𝑠𝑟𝑐 – introduces an even larger

area of discrepancy.

Returning to the problem at hand, though, this model’s Lawson Parameter (eq. 3.23)

can be simplified after expanding the left-hand side using the Greenwald density and

substituting in a confinement time scaling law. After a few lines of algebra, this can

be transformed into a formula for 𝐵0!

𝐵0 =

(︂
𝐺𝑃𝐵

𝐾𝑃𝐵

·
(︁
𝐼
𝛼*
𝐼

𝑃 𝑅
𝛼*
𝑅

0

)︁−1
)︂ 1

𝛼𝐵

(3.28)

𝐺𝑃𝐵 =
𝑇 ·
(︁
𝐾𝑃 (𝜎𝑣) +𝐾Ω 𝑇

−3/2
)︁𝛼𝑃(︁

𝐾𝑃 (𝜎𝑣) +𝐾Ω 𝑇
−3/2 −𝐾𝐵𝑅 𝑇

1/2
)︁ (3.29)

𝐾𝑃𝐵 = 𝐻 ·

(︃
𝐾𝜏𝐾

𝛼*
𝑛

𝑛

𝐾𝜅

)︃
· (𝜀𝛼𝑎 𝜅𝛼𝜅 𝐴𝛼𝐴) (3.30)

Here, we have added new starred alpha values for the density, current, and radius:

𝛼*
𝑛 = 1 + 𝛼𝑛 − 2𝛼𝑃 (3.31)

𝛼*
𝐼 = 𝛼𝐼 + 𝛼*

𝑛 (3.32)

𝛼*
𝑅 = 𝛼𝑅 + 𝛼𝑎 − 2𝛼*

𝑛 − 3𝛼𝑝 (3.33)
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This equation for 𝐵0 – derived from power balance – is thus the primary constraint

for reactor design. It is the first step in connecting the plasma (i.e. 𝑛, 𝑇 , and 𝐼𝑃 ) to

its tokamak enclosure (i.e. 𝐵0 and 𝑅0). The remaining step is finding an equation –

or in this case, equations – for the major radius of the device. These radius equations

will collectively be referred to as: the limiting constraints.

3.4 Collecting Limiting Constraints

As of now, the only missing equation within our list of dynamic variables – i.e. 𝑅0, 𝐵0,

𝑇 , 𝑛, and 𝐼𝑃 – is for the major radius of the tokamak. This equation will come from

around five potential limits, each either physical or engineering-based. These limits

will then correspond to different curves through reactor space. As will be shown,

many of the reactors on these curves will be invalid (as they violate at least one of

the other limits). To this, our analysis is always based on selecting the most stringent

criterion.

Before tackling the subject of finding reactors that exist on the fine line of satisfying

every limiting constraints, however, it is essential to collect them one-by-one. These

are: the Troyon Beta Limit, the Kink Safety Factor, the Wall Loading Limit, the

Power Cap Constraint, and the Heat Loading Limit.

The goal of this section is to solve for each of these constraints on the major radius.

As with the primary constraint, this choice of solving for 𝑅0 was not completely

unique, just motivated by physics and engineering concerns. It just so happens that

each limit described here depends on the size of a reactor – which is not true for the

magnetic field strength.

3.4.1 Introducing the Beta Limit

The Beta Limit is the most important limiting constraint – especially for steady-

state reactors. It sets a maximum on the amount of pressure a plasma is willing
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to tolerate. As with future limiting constraints, literature-based equations will be

transformed into formulas for 𝑅0. Each will then contain some limiting quantity that

can be handled by a static variable – as 𝛽𝑁 will be used shortly.

The starting point for this limit is to define the important plasma physics quantity:

the plasma beta (𝛽). This value is a ratio between a plasma’s internal pressure and

the pressure exerted on it by the tokamak’s magnetic configuration. Mathematically,5

𝛽 =
plasma pressure

magnetic pressure
=

𝑝(︁
𝐵2

0

2𝜇0

)︁ (3.34)

Using this model’s temperature and density profiles, the volume-averaged pressure

(𝑝) can be written in units of atmospheres (i.e. atm) as:

𝑝 = 0.1581 (1 + 𝑓𝐷)
(1 + 𝜈𝑛) (1 + 𝜈𝑇 )

1 + 𝜈𝑛 + 𝜈𝑇
𝑛 𝑇 (3.35)

Moving forward, the final step is plugging this definition for the plasma beta into

the Troyon Beta Limit derived using standard MHD stability analysis. This equation

can be written in the following form, where 𝛽𝑁 is the normalized plasma beta – i.e.

a static variable usually set between 2% and 4%.12

𝛽 = 𝛽𝑁
𝐼𝑃
𝑎𝐵0

(3.36)

Substituting the plasma 𝛽 from eq. 3.34, into this relation results in the model’s first

equation for the tokamak radius:

𝑅0 =
𝐾𝑇𝐵𝑇

𝐵0

(3.37)

𝐾𝑇𝐵 = 4.027× 10−2 ·
(︂
𝐾𝑛 𝜀

𝛽𝑁

)︂
· (1 + 𝑓𝐷) ·

(1 + 𝜈𝑛) (1 + 𝜈𝑇 )

1 + 𝜈𝑛 + 𝜈𝑇
(3.38)

As mentioned, this is often the dominating constraint in a steady-state reactor. The
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one that usually dominates pulsed designs – the kink safety factor – will be the focus

of the next subsection.

3.4.2 Giving the Kink Safety Factor

Just like how the Troyon Beta Limit set a fluids-based maximum on plasma pressure,

the Kink Safety Factor sets one on the plasma’s current. This constraint usually

only appears in pulsed designs, as it is assumed that getting to this high a current in

steady-state (with only LHCD) would prove extremely unpractical.

The starting point, again, is an equation from the literature for the kink condition:7,31

𝑞* = 5𝜀2 · 𝑅0𝐵0

𝐼𝑃
·
(︂
1 + 𝜅2 · (1 + 2𝛿2 − 1.2𝛿3)

2

)︂
(3.39)

Here the safety factor – 𝑞* – typically has values around 3.

Rearranged, the kink safety factor can now be written in standardized units as:

𝑅0 =
𝐾𝑆𝐹 𝐼𝑃
𝐵0

(3.40)

𝐾𝑆𝐹 =
𝑞*
5𝜀2

·
(︂

2

1 + 𝜅2 · (1 + 2𝛿2 − 1.2𝛿3)

)︂
(3.41)

This relation is the limiting constraint important for most pulsed reactor designs. As

with the Beta Limit, these two are derived through plasma physics alone. The re-

maining limiting constraints, however, are engineering-based in origin – they include:

the Wall Loading Limit, the Power Cap Constraint, and the Heat Loading Limit.

Each will be defined shortly.

3.4.3 Working under the Wall Loading Limit

The first engineering-based limiting constraint – the wall loading limit – will prove

to be an important quantity when determining the magnet strength at which reactor
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costs begin to increase. As hinted, its definition originates from nuclear engineering

concerns: it is a measure of the maximum neutron damage a tokamak’s walls can

take over the lifetime of the machine.∗

The first step in deriving a limiting constraint for wall loading is a description of the

problem it models. In a reactor, fusion reactions typically make high-energy neutrons

– with around 14.1 MeV of kinetic energy – that collide with the tokamak enclosure.

Therefore a simple metric would be limiting the amount of neutron power that can

be unloaded on the surface area of a tokamak. This can be written as:13

𝑃𝑊 =
𝑃𝑛
𝑆𝑃

(3.42)

𝑆𝑃 = 4𝜋2𝑎𝑅0 ·
(︀
1 + 2

𝜋
(𝜅2 − 1)

)︀
𝜅

(3.43)

Here, 𝑆𝑃 is the surface area of the tokamak’s inner wall and 𝑃𝑛 is the neutron power

derived in Appendix C. The quantity, 𝑃𝑊 , then serves a role analogous to: 𝛽𝑁 for

the beta limit and 𝑞* for the kink safety factor – it is a static variable representing

the maximum allowed wall loading. For fusion reactors, 𝑃𝑊 is assumed to be around

2-4 MW
m2 . It will be shown that the wall loading limit is important in any tokamak,

however – regardless of operating mode (i.e. steady-state or pulsed).

Finishing this limiting constraint, the Wall Loading limit can be written in standard-

ized units as:

𝑅0 = 𝐾𝑊𝐿 · 𝐼
2
3
𝑃 · (𝜎𝑣)

1
3 (3.44)

𝐾𝑊𝐿 =

(︂
𝐾𝐹𝐾

2
𝑛

5𝜋2𝑃𝑊
· 𝜅
𝜀
· 1

1 + 2
𝜋
· (𝜅2 − 1)

)︂ 1
3

(3.45)

∗For clarity, the wall loading limit should actually be an energy fluence limit. It is converted to an
instantaneous power limit for ease of design purposes.
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3.4.4 Setting a Maximum Power Cap

As opposed to the previous three limiting constraints, the maximum power cap is more

of a constraint set by economic competitiveness. Because no conventional reactor –

coal, solar, or otherwise – has a 4000 MW reactor, neither should fusion.∗ It makes

sense from a practical position after realizing the long history of tokamaks being

delayed, underfunded, or completely canceled. Mathematically, this has the simple

form:

𝑃𝐸 ≤ 𝑃𝐶𝐴𝑃 (3.46)

Here, 𝑃𝐶𝐴𝑃 is the maximum allowed power output of a reactor. Similar to the other

limiting quantities, 𝑃𝐶𝐴𝑃 is treated as a static variable (i.e. set to 4000 MW). The

electrical power output of the reactor (𝑃𝐸) is then related to the fusion power by:5

𝑃𝐸 = 1.273 𝜂𝑇 · 𝑃𝐹 (3.47)

The variable 𝜂𝑇 in this equation is the thermal efficiency of the reactor – which is

usually found to be around 40%. And the constant in front (i.e. 1.273) represents

some extra power the reactor makes as fuel is bred by the fusion neutrons passing

through a tokamak’s lithium-filled blanket. Explicitly this results from including the

energy released by lithium-6 as it undergoes neutron capture (𝐸𝐿𝑖).5

1.273 =
𝐸𝐹 + 𝐸𝐿𝑖

𝐸𝐹
(3.48)

𝐸𝐿𝑖 = 4.8MeV (3.49)

Substituting in fusion power and solving for the major radius results in:

𝑅0 = 𝐾𝑃𝐶 · 𝐼 2
𝑃 · (𝜎𝑣) (3.50)

∗Note that this 4000 MW (electric) is a maximum. A 1000 MW reactor would obviously not violate
this constraint. Instead it would likely be pressing on either the kink or beta limit.
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𝐾𝑃𝐶 = 𝐾𝐹𝐾
2
𝑛 ·
(︂
1.273 𝜂𝑇
𝑃𝑚𝑎𝑥

)︂
(3.51)

This limiting constraint can be used to create curves of reactors, although it is mainly

used as a stopping point for designs – i.e. if you get to the power-cap regime, you

have gone too far. This is different than the next constraint, which is fundamentally

an unsolved problem within the modern tokamak design paradigm.32

3.4.5 Listing the Heat Loading Limit

Fusion plasmas are hot. The commonly given relation is one electron volt is around

20,000 ∘F – which would make 15 keV equate to around a quarter-billion Fahrenheit.

Although this connotation of temperature is slightly deceptive, heat damage to a

tokamak is an all too real concern. The problem is there is currently no solution

to the problem. Although researchers have explored various types of heat divertors,

none have been shown to withstand the gigawatts-per-square-meter of heat emitted

from a reactor-size tokamak.32

As such, this model takes an approach similar to the research community, calculating

it at the end as a manual check on the difficulty of building such a device – but not

using it to explicitly guide design. For completeness though, a limiting constraint will

still be derived. The first step is giving the heat loading limit commonly found in the

literature:13

𝑞𝐷𝑉 =
𝐾𝐷𝑉

𝐾𝐹

· 𝑃𝐹 𝐼
1.2
𝑃

𝑅 2.2
0

(3.52)

𝐾𝐷𝑉 =
18.31× 10−3

𝜀1.2
·𝐾𝑃 ·

(︂
2

1 + 𝜅2

)︂0.6

(3.53)

This is the heat load that impinges on an extended leg, double null divertor – primarily

from the outer midplane of the plasma core. After a simple rearrangement and
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substitution for fusion power, this becomes:

𝑅0 = 𝐾𝐷𝐻 · 𝐼𝑃 · (𝜎𝑣)
1
3.2 (3.54)

𝐾𝐷𝐻 =

(︂
𝐾𝐷𝑉𝐾

2
𝑛

𝑞𝐷𝑉

)︂ 1
3.2

(3.55)

At this point all the limiting constraints have been defined. The next step is taking

a step back and motivating the derivation of a generalized current equation suitable

for pulsed tokamaks.

3.5 Summarizing the Fusion Systems Model

Stepping back, this chapter focused on the bigger picture behind designing a zero-

dimension fusion systems model. It started with a description of various design

parameters and then moved onto explaining the five relations needed to close the

model – i.e. for 𝑇 , 𝑛, 𝐼𝑃 , 𝐵0, and 𝑅0.

Before generalizing the steady current to allow modeling pulsed reactors, however, a

quick recap of the equations will prove beneficial. The first variable described was

temperature – i.e. scan five evenly-spaced 𝑇 values between 10 and 30 keV. This was

then quickly followed by the Greenwald density limit – a simple relation that applies

to all fusion reactors. These two equations can be written as:

𝑇 = 𝑐𝑜𝑛𝑠𝑡. (3.1)

𝑛 = 𝐾𝑛 ·
𝐼𝑃
𝑅2

0

(2.10)

The next variable handled was the steady current:

𝐼𝑃 =
𝐾𝐵𝑆𝑇

1−𝐾𝐶𝐷(𝜎𝑣)
(2.28)
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As was mentioned then, this equation only depends directly on the temperature, but

is strongly affected by a tokamak’s configuration – 𝑅0 and 𝐵0 – through the current

drive efficiency (𝜂𝐶𝐷). For pulsed reactors, this equation proves too simple as it

ignores inductive current. To remedy the situation, current balance will be revisited

next chapter. The main point to make now, though, is that the 𝑅0 and 𝐵0 dependence

will be made explicit.

Moving on, the remaining equations were, then, the primary and limiting constraints

for 𝐵0 and 𝑅0, respectively. It was through these relations that a tokamak’s config-

uration was brought back into the fold. The choice of solving the two constraints

for their respective variables was not completely unique – as it was motivated by the

foresight of how they fit into the model. Repeated below, they served as the proper

vehicles for closing the system of equations.

𝐵0 =

(︂
𝐺𝑃𝐵

𝐾𝑃𝐵

·
(︁
𝐼
𝛼*
𝐼

𝑃 𝑅
𝛼*
𝑅

0

)︁−1
)︂ 1

𝛼𝐵

(3.28)

𝑅0 =
𝐾𝑇𝐵𝑇

𝐵0

(3.37)

𝑅0 =
𝐾𝑆𝐹 𝐼𝑃
𝐵0

(3.40)

𝑅0 = 𝐾𝑊𝐿 · 𝐼
2
3
𝑃 · (𝜎𝑣)

1
3 (3.44)

𝑅0 = 𝐾𝑃𝐶 · 𝐼 2
𝑃 · (𝜎𝑣) (3.50)

𝑅0 = 𝐾𝐷𝐻 · 𝐼𝑃 · (𝜎𝑣)
1
3.2 (3.54)

The next step now is to learn how to generalize the current formula and design a

pulsed tokamak reactor (see Chapter 4). After this is done, Chapter 5 will pick up

where this chapter leaves off – transforming this fusion systems model into a simple

reactor solver.

63





Chapter 4

Designing a Pulsed Tokamak

Pulsed tokamaks are the flagship of the European fusion reactor-design effort. As

such, this paper’s model will now be generalized to accommodate this mode of op-

eration. Fundamentally, this involves transforming current balance into flux balance

– by adding inductive (pulsed) sources to stand alongside the LHCD (steady-state)

ones.

The first step in generalizing current balance will be understanding the problem from

a basic electrical engineering perspective – i.e. with circuit analysis. The resulting

equation will then be transformed into the flux balance seen in other models from

the literature.7 All that will need to be done then is solving the problem for plasma

current (𝐼𝑃 ) and simplifying it for various situations – e.g. steady-state operation.

This generalized plasma current will then be found to be a function of the other

dynamic variables (i.e. 𝑅0, 𝐵0, and 𝑇 ). This, of course, is more difficult to handle

computationally than the steady current, which only depended directly on the tem-

perature (𝑇 ). A discussion about solving this new root solving problem will be the

topic of the next chapter.
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4.1 Modeling Plasmas as Circuits

Although it may have been lost along the way, what makes plasmas so interesting and

versatile – in comparison to gases – is their ability to respond to electric and magnetic

fields. It seems natural then to model plasma current from a circuits perspective (i.e.

with resistors, voltage sources, and inductors). By name, this circuit is referred to as

a transformer where: the plasma is the secondary and the yet-to-be discussed central

solenoid (of the tokamak) is the primary.

The first step in deriving a current equation is to determine the circuit equations

that govern pulsed operation in a tokamak. This will be done in two steps. First, we

will draw a circuit diagram and write equations that describe it. Next, we will use

a simple schematic for how current evolves in a transformer to reduce the resulting

differential equations to simple algebraic ones – as is the hallmark of our model.

4.1.1 Drawing the Circuit Diagram

Understanding a circuit always starts with drawing a simple diagram, see Fig. 4-1.

This figure depicts the transformer governing a pulsed reactor. The left sub-circuit

is, therefore, the transformer’s primary: the central solenoid which provides most of

the inductive current.∗ Whereas, the right sub-circuit is the plasma acting as the

transformer’s secondary.

This is handled with standard circuit equations for voltages, resistors, and inductors:11

𝑉𝑖 =
𝑛∑︁
𝑗

𝑑

𝑑𝑡
(𝑀𝑖𝑗𝐼𝑗) + 𝐼𝑖𝑅𝑖 , ∀ 𝑖 = 1, 2, .., 𝑛 (4.1)

Without going into the inductances (M) and resistances (R), the variable 𝑛 is the

number of sub-circuits, here being 2. Whereas, the variables 𝑖 and 𝑗 are the indices

of sub-circuits (i.e. 1 for the primary, 2 for the secondary). For illustrative purposes,

∗The central solenoid is a coiled metal structure that fits within the inner ring of the tokamak
enclosure. For now, every other flux source (besides this central solenoid) is neglected.
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𝐿1−
+𝑉1

𝐼1 𝐼2

𝑅2𝐿2

M

Figure 4-1: A Simple Plasma Transformer Description

A plasma transformer consists of a solenoid primary (left) and a plasma secondary (right).
They are connected by their mutual inductance, M. Note, here, that the two currents – 𝐼1

and 𝐼2 – travel in opposite directions.

this would reduce to the following relation for a battery attached to a lightbulb:

𝑉 = 𝐼𝑅 (4.2)

Back to the transformer diagram, the equations for the two subcircuits can be ex-

panded and greatly simplified. Besides ignoring every inductive source other than

the central solenoid, the next powerful assumption is treating the solenoid as a

superconductor (i.e. with negligible resistance). Lastly, the inductances between

components and themselves are held constant – independent of time. This allows

the coupled transformer equations to be written as:

𝑉1 = 𝐿1𝐼1 −𝑀𝐼2 (4.3)

−𝐼2𝑅𝑃 = 𝐿2𝐼2 −𝑀𝐼1 (4.4)

With 𝐼1 and 𝐼2 going in opposite directions. Note, here, that the subscript on M

has been dropped, as there are only two components. This was done in conjunction

to adding internal (self-)inductance terms. Mathematically, the mapping between

variables is:

𝑀 =𝑀12 =𝑀21 (4.5)
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𝐿1 =𝑀11 (4.6)

𝐿2 =𝑀22 (4.7)

Repeated, the one subscript represents the primary – the central solenoid – and the

two stands for the plasma as the transformer’s secondary. Exact definitions for the

inductances will be put off until the end of the next subsection.

4.1.2 Plotting Pulse Profiles

Up until now, little has been discussed that has a time dependence. For steady-state

tokamaks, this did not occur because it is an extreme case where pulses could last

weeks or months. By definition, though, a pulsed machine has pulses – with around

ten scheduled per day.33 For this reason, a fusion pulse is now investigated in detail.

Transformer pulses between the central solenoid and the plasma occur on the timescale

of hours. During this time, a plasma is brought up to some quasi-steady-state current

(𝐼*𝑃 ) for several hour and then ramped back down using the available flux in the

solenoid (measured in volt-seconds). For clarity, each pulse is subdivided into four

phases: ramp-up, flattop, ramp-down, and dwell. Pictorially represented in Fig. 4-2,

these divisions allow a simple scheme for transforming the coupled circuit differential

equations – from Eqs. (4.3) and (4.4) – into simple algebraic formulas.

Along the way, we will approximate derivatives with linear piecewise functions. Using

𝑡𝑖 to represent the initial time and 𝑡𝑓 as the final one, these can be written as:

𝐼 =
𝐼(𝑡𝑓 )− 𝐼(𝑡𝑖)

𝑡𝑓 − 𝑡𝑖
(4.8)

Table 4.1 shows how the data from Fig. 4-2 can be written in this piecewise fashion.

The exact definitions for the plasma’s inductive current (𝐼*𝑃 ) and the maximum

voltage in the central solenoid (𝑉𝑚𝑎𝑥) will be put off until the end of the section.
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Tokamak Circuit Profiles

Primary Current
Plasma Current (Inductive)

Primary Voltage

Figure 4-2: Time Evolution of Circuit Profiles

A circuit pulse involves four phases: (1) Ramp-Up, (2) Flattop, (3) Ramp-Down, and (4)
Dwell. In reality, flattop can last more than 90% of the pulse.8 This makes the slope of the

primary current during this phase much shallower than depicted.

The Ramp-Up Phase – RU

The first phase in every plasma pulse is the ramp-up. During ramp-up, the central

solenoid starts discharging from its fully charged values, as the plasma is brought to

its quasi-steady-state current. As this occurs on the timescale of minutes – not hours

Table 4.1: Piecewise Linear Scheme for Pulsed Operation

(a) Currents

Time I1 I2
0 −𝐼𝑚𝑎𝑥 0
t1 −𝐼 𝐼 *

𝑃

t2 +𝐼𝑚𝑎𝑥 𝐼 *
𝑃

t3 +𝐼 0
t4 −𝐼𝑚𝑎𝑥 0

(b) Voltage

Phase ti tf V1

Ramp-Up 0 𝑡1 +𝑉𝑚𝑎𝑥
Flattop 𝑡1 𝑡2 +𝑉

Ramp-Down 𝑡2 𝑡3 −𝑉 𝑚𝑎𝑥

Dwell 𝑡3 𝑡4 −𝑉 𝑚𝑎𝑥
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– resistive effects of the plasma can safely be ignored. This results in the ramp-up

equations becoming:

𝑉𝑚𝑎𝑥 =
1

𝜏𝑅𝑈
·
(︁
𝐿1 · (𝐼𝑚𝑎𝑥 − 𝐼)−𝑀 · 𝐼𝐼𝐷

)︁
(4.9)

0 =
1

𝜏𝑅𝑈
·
(︁
𝑀 · (𝐼𝑚𝑎𝑥 − 𝐼)− 𝐿2 · 𝐼𝐼𝐷

)︁
(4.10)

Simplifying these equations will be done shortly, for now the new terms are what

is important. The maximum voltage of the solenoid is 𝑉𝑚𝑎𝑥 – usually measured in

kilovolts. Next, 𝐼𝑚𝑎𝑥 is the solenoid’s current at the beginning of ramp-up. Whereas

𝐼 is the magnitude of the current once the plasma is at its flattop inductive-drive

current – 𝐼𝐼𝐷. The 𝜏𝑅𝑈 quantity, then, is the duration of time it takes to ramp-

up (i.e. RU). Again, 𝐿1 and 𝐿2 are the microhenry-scale internal inductances of the

solenoid and plasma, respectively, and M is the mutual inductance between them.

The last step in discussing ramp-up is giving the two important formulas that come

from it:

𝐼 = 𝐼𝑚𝑎𝑥 − 𝐼𝐼𝐷 ·
(︂
𝐿2

𝑀

)︂
(4.11)

𝜏𝑅𝑈 =
𝐼𝐼𝐷
𝑉𝑚𝑎𝑥

·
(︂
𝐿1𝐿2 −𝑀2

𝑀

)︂
(4.12)

The Flattop Phase – FT

The most important phase in any reactor’s pulse is flattop: the quasi-steady-state time

when the tokamak is making electricity. Flattops are assumed to last a few hours for

a profitable machine, during which the central solenoid almost completely discharges

to overcome a plasma’s resistive losses – thus, keeping it in a quasi-steady-state mode

of operation. For a steady-state reactor, this phases constitutes the entirety of the

pulse.
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Although the resistance cannot safely be neglected for the flattop – as it was for

ramp-up – the plasma’s inductive current (𝐼𝐼𝐷) is assumed constant. This leads to

its derivative in equations cancelling out! Mathematically,

𝑉 =
𝐿1

𝜏𝐹𝑇
·
(︁
𝐼𝑚𝑎𝑥 + 𝐼

)︁
(4.13)

𝐼𝐼𝐷𝑅𝑃 =
𝑀

𝜏𝐹𝑇
·
(︁
𝐼𝑚𝑎𝑥 + 𝐼

)︁
(4.14)

As with ramp-up, the simplifications will be given shortly. The new terms here,

however, are an intermediate voltage for the central solenoid (𝑉 ), and the duration

of the flattop (𝜏𝐹𝑇 ). The resistance term was given in Eq. (3.8). Solutions can now

be found by substituting 𝐼 – from Eq. (4.11) – into the flattop equations:

𝑉 = 𝐼𝐼𝐷𝑅𝑃 ·
(︂
𝐿1

𝑀

)︂
(4.15)

𝜏𝐹𝑇 =
𝐼𝑚𝑎𝑥 · 2𝑀 − 𝐼𝐼𝐷 · 𝐿2

𝐼𝐼𝐷𝑅𝑃

(4.16)

The Ramp-Down Phase – RD

Due to the simplicity – and symmetry – of this model’s reactor pulse, ramp-down is

the exact mirror of ramp-up. It takes the same amount of time and results in the

same algebraic equations. For brevity, this will just be represented as:

𝜏𝑅𝐷 = 𝜏𝑅𝑈 (4.17)

For clarity, this is the time when a plasma’s current is brought down from its flattop

value to zero.
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The Dwell Phase – DW

Where the first three phases had little ambiguity, the dwell phase changes definition

from model to model. For now, it is assumed to be the time it takes the central

solenoid to reset after a plasma has been completely ramped-down to an off setting.

To get a more realistic duty factor for cost estimates, it could include an evacuation

time, set to last up to thirty minutes.12 During this evacuation, a plasma is vacuumed

out of a device as it undergoes some inter-pulse maintenance.

Ignoring evacuation for now, the dwell phase involves resetting the central solenoid

when the plasma’s current is negligible. This corresponds to the secondary of the

transformer being an open circuit – fundamentally the central solenoid is the only

component. In equation form,

𝑉𝑚𝑎𝑥 =
𝐿1

𝜏𝐷𝑊
·
(︁
𝐼𝑚𝑎𝑥 + 𝐼

)︁
(4.18)

Or substituting in 𝐼 and solving for 𝜏𝐷𝑊 ,

𝜏𝐷𝑊 =
𝐿1

𝑀
· (𝐼𝑚𝑎𝑥 · 2𝑀 − 𝐼𝐼𝐷 · 𝐿2)

𝑉𝑚𝑎𝑥
(4.19)

4.1.3 Specifying Circuit Variables

The goal now is to collect the results from the four phases and introduce the induc-

tance, resistance, voltage, and current terms relevant to our model. This will motivate

recasting the problem as flux balance in a reactor – the form commonly used in the

literature (and discussed next section).7
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First, collecting the phase durations in one place:

𝜏𝑅𝑈 =
𝐼𝐼𝐷
𝑉𝑚𝑎𝑥

·
(︂
𝐿1𝐿2 −𝑀2

𝑀

)︂
(4.12)

𝜏𝐹𝑇 =
𝐼𝑚𝑎𝑥 · 2𝑀 − 𝐼𝐼𝐷 · 𝐿2

𝐼𝐼𝐷𝑅𝑃

(4.16)

𝜏𝑅𝐷 = 𝜏𝑅𝑈 (4.17)

𝜏𝐷𝑊 =
𝐿1

𝑀
· (𝐼𝑚𝑎𝑥 · 2𝑀 − 𝐼𝐼𝐷 · 𝐿2)

𝑉𝑚𝑎𝑥
(4.19)

These can be used in the definition of the duty-factor: the fraction of time a reactor

is putting electricity on the grid. Formulaically,

𝑓𝑑𝑢𝑡𝑦 =
𝜏𝐹𝑇
𝜏𝑝𝑢𝑙𝑠𝑒

(4.20)

𝜏𝑝𝑢𝑙𝑠𝑒 = 𝜏𝑅𝑈 + 𝜏𝐹𝑇 + 𝜏𝑅𝐷 + 𝜏𝐷𝑊 (4.21)

As will turn out, the solving of pulsed current actually only involves Eq. (4.16).

What is interesting about this, is that there is no explicit dependence on ramp-down

or dwell! Whereas ramp-up passes 𝐼 to the flattop phase, the other two are just

involved in calculating the duty factor.

The remainder of this subsection will then be defining the following circuit variables:

𝐼𝐼𝐷, 𝐼𝑚𝑎𝑥, 𝑉𝑚𝑎𝑥, 𝐿1, 𝐿2, and 𝑀 . Again, the resistance was defined last chapter as:

𝑅𝑃 =
𝐾𝑅𝑃

𝑅0𝑇
3/2

(3.8)
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The Inductive Current – 𝐼𝐼𝐷

The inductive current is what separates pulsed from steady-state operation. It comes

from rewriting the current balance given by Eq. (3.3) as:

𝐼𝐼𝐷 = 𝐼𝑃 − (𝐼𝐵𝑆 + 𝐼𝐶𝐷) (4.22)

From before, 𝐼𝑃 is the total plasma current in mega-amps, 𝐼𝐵𝑆 is the bootstrap

current, and 𝐼𝐶𝐷 is the current from LHCD (i.e. lower hybrid current drive). For this

model, the relation can be rewritten as:

𝐼𝐼𝐷 = 𝐼𝑃 ·
(︁
1−𝐾𝐶𝐷(𝜎𝑣)

)︁
−𝐾𝐵𝑆 𝑇 (4.23)

The Central Solenoid Maximums – 𝑉𝑚𝑎𝑥 and 𝐼𝑚𝑎𝑥

For this simple model, the central solenoid has two maximum values: the voltage and

current. The voltage is the easier to give value. Literature values have this around:6

𝑉𝑚𝑎𝑥 ≈ 5 kV (4.24)

The maximum current, on the other hand, can be defined through Ampere’s Law on

a coiled central solenoid:11

𝐼𝑚𝑎𝑥 =
𝐵𝐶𝑆ℎ𝐶𝑆
𝑁𝜇0

(4.25)

Here, 𝐵𝐶𝑆 is a magnetic field strength the central solenoid is assumed to operate at

(i.e. 12 T), ℎ𝐶𝑆 is the height of the solenoid, N is the number of coils, and 𝜇0 has

its usual physics meaning
(︀
i.e. 40𝜋 𝜇H

m

)︀
. As will be seen, the value of N does not

directly affect the model, as it cancels out in the final flux balance. The height of the

central solenoid will, then, be the focus of an upcoming section on improving tokamak

geometry.
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The Central Solenoid Inductance – 𝐿1

For a central solenoid with circular cross-sections of finite thickness (d), the inductance

can be written as:12

𝐿1 = 𝐺𝐿𝑇 ·
(︂
𝜇0𝜋𝑁

2

ℎ𝐶𝑆

)︂
(4.26)

𝐺𝐿𝑇 =
𝑅2
𝐶𝑆 +𝑅𝐶𝑆 · (𝑅𝐶𝑆 + 𝑑) + (𝑅𝐶𝑆 + 𝑑)2

3
(4.27)

Note that 𝑅𝐶𝑆 is the inner radius of the central solenoid and (𝑅𝐶𝑆 + 𝑑) is the outer

one. In the limit where d is negligible, this says that the inductance is quadratically

dependent on the radius of the central solenoid:

lim
𝑑→0

𝐺𝐿𝑇 = 𝐺 †
𝐿𝑇 = 𝑅2

𝐶𝑆 (4.28)

The formulas for both 𝑅𝐶𝑆 and d will be defined in a few sections.

The Plasma Inductance – 𝐿2

The plasma inductance is a composite of several different terms, but overall scales

with radius. Through equation,

𝐿2 = 𝐾𝐿𝑃𝑅0 (4.29)

This static coefficient – 𝐾𝐿𝑃 – then combines three inductive behaviors of the plasma.

The first is its own self inductance (through 𝑙𝑖).5 The next is a resistive component

through the Ejima coefficient (𝐶𝑒𝑗𝑖𝑚𝑎), which is usually set to ∼ 1/3.7 And lastly, a

geometric component – involving 𝜀 and 𝜅 – is given by the Hirshman-Neilson model.34

Mathematically,

𝐾𝐿𝑃 = 𝜇0 ·
(︂
𝑙𝑖
2
+ 𝐶𝑒𝑗𝑖𝑚𝑎 +

(𝑏𝐻𝑁 − 𝑎𝐻𝑁) (1− 𝜀)

(1− 𝜀) + 𝜅 𝑑𝐻𝑁

)︂
(4.30)
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Here the HN values come from the 1985 Hirshman-Neilson paper:

𝑎𝐻𝑁(𝜀) = 2.0 + 9.25
√
𝜀− 1.21 𝜀 (4.31)

𝑏𝐻𝑁(𝜀) = ln(8/𝜀) · (1 + 1.81
√
𝜀+ 2.05 𝜀) (4.32)

𝑑𝐻𝑁(𝜀) = 0.73
√
𝜀 · (1 + 2𝜀4 − 6𝜀5 + 3.7𝜀6) (4.33)

The Mutual Inductance – M

The mutual inductance – M – represents the coupling between the solenoid primary

and the plasma secondary. A common method for treating this mutual inductance is

through a coupling coefficient, k, that links the two self-inductances. Formulaically,

𝑀 = 𝑘
√︀
𝐿1𝐿2 (4.34)

The value of the coupling coefficient, k, is always less than (or equal to) 1, but usually

has a value around a third. With all the equations defined, we are now at a position

to explain one of the larger nuances of this fusion systems framework: determining

the pulse length of a tokamak.

4.1.4 Constructing the Pulse Length

This subsection focuses on a quantitative estimate for how to select a pulse length.

As no fusion reactor exists in the world today, the writers believe this is an acceptable

calculation. Further, the resulting length of two hours matches the durations of other

studies in the literature.7,35

Starting at the end, our goal is to find the pulse length of a tokamak reactor in

seconds – as dictated by cyclical stress concerns. The first piece of information is

the expected lifetime of the central solenoid, 𝑁 ≈ 10 years. The next is the desired
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number of pulses the central solenoid will have to last: 𝑀 ≈ 50, 000 pulses.∗ This

gives a rough estimate of around 10 pulses a day – or a flattop lasting two hours.

With the pulse length defined, we are now in a position to justify neglecting the

duty factor for pulsed reactors in this model. Using expected reactor values – while

assuming a central solenoid with around 4000 turns – leads to the following scalings:

𝜏𝐹𝑇 ∼ 𝜏𝑝𝑢𝑙𝑠𝑒 ∼ 𝑂(hours) (4.35)

𝜏𝑅𝑈 ∼ 𝜏𝑅𝐷 ∼ 𝜏𝐷𝑊 ∼ 𝑂(mins) (4.36)

As such, even pulsed tokamak reactors should have a duty factor of around unity:

𝑓𝑑𝑢𝑡𝑦 ≈ 1 (4.37)

This analysis of course would change if the central solenoid became an inexpensive

component to replace. For example, if a tokamak had a new one installed annually,

the pulse length could shorten to be on the order of minutes.

Now that all the terms in a pulsed circuit have been explored, we will move on to

rearranging the flattop equation to reproduce flux balance. This will then naturally

lead to a generalized current equation – which is the main result of the chapter.

4.2 Producing Flux Balance

The goal of this section is to arrive at a conservation equation for flux balance that

mirrors the ones in the literature. The fusion systems model this one attempts to

follow most is the PROCESS code.7 In a manner similar to power balance, flux

balance can be written as: ∑︁
𝑠𝑜𝑢𝑟𝑐𝑒𝑠

Φ =
∑︁
𝑠𝑖𝑛𝑘𝑠

Φ (4.38)

∗This 50,000 pulses is based on the values from the ITER design specifications.35
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4.2.1 Rearranging the Circuit Equation

The way to arrive at flux balance from our circuit equations is to rearrange the flattop

phase’s duration equation:

𝜏𝐹𝑇 =
𝐼𝑚𝑎𝑥 · 2𝑀 − 𝐼𝐼𝐷 · 𝐿2

𝐼𝐼𝐷𝑅𝑃

(4.16)

Multiplying through by the right-hand side’s denominator and moving the negative

term over to the left yields:

2𝑀𝐼𝑚𝑎𝑥 = 𝐼𝐼𝐷 · (𝐿2 +𝑅𝑃 𝜏𝐹𝑇 ) (4.39)

This equation is flux balance, where the left-hand side are the sources (e.g. the central

solenoid), and the other terms are the sinks (i.e. ramp-up and flattop). The source

term can currently be encapsulated within the central solenoid flux:

Φ𝐶𝑆 = 2𝑀𝐼𝑚𝑎𝑥 (4.40)

The sinks, namely the ramp-up inductive losses (Φ𝑅𝑈) and the flattop resistive losses

(Φ𝐹𝑇 ), are what drain this flux. Here, again, ramp-down and dwell are not included

as sinks because flux balance only tracks until the end of flattop. They come into

play when measuring the cost of electricity – through the duty factor from Eq. (4.20).

Relabeling terms, flux balance can now be rewritten as:

Φ𝐶𝑆 = Φ𝑅𝑈 + Φ𝐹𝑇 (4.41)

With the ramp-up and flattop flux given, respectively, by:

Φ𝑅𝑈 = 𝐿2 · 𝐼𝐼𝐷 (4.42)
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Φ𝐹𝑇 = (𝑅𝑃 𝜏𝐹𝑇 ) · 𝐼𝐼𝐷 (4.43)

On comparing these quantities to the ones from the PROCESS paper,7 Φ𝑅𝑈 and Φ𝐹𝑇

are exactly the same. The source terms, on the other hand, are off for two reasons

– both related to the central solenoid being the only source term in flux balance.

This can partially be remedied by adding the second most dominant source of flux

a posteriori – i.e. the PF coils. The second, and inherently limiting factor, is the

simplicity of the current model. All that can be shown to this regard is that the Φ𝐶𝑆

terms does reasonably predict the values from the PROCESS code.8

4.2.2 Adding Poloidal Field Coils

Adding the effect of PF coils – belts of current driving plates on the outer edges of

the tokamak – leads to as much as a 50% improvement7,8 over relying solely on the

central solenoid for flux generation. From the literature, this can be modeled as:12

Φ𝑃𝐹 = 𝜋𝐵𝑉 ·
(︀
𝑅2

0 − (𝑅𝐶𝑆 + 𝑑)2
)︀

(4.44)

Where again 𝑅𝐶𝑆 and 𝑑 are the inner radius and thickness of the central solenoid,

respectively. These will be the topic of the next section.

Moving forward, the vertical field – 𝐵𝑉 – is a magnetic field oriented up-and-down

with the ground. It is needed to prevent a tokamak plasma from drifting radially out

of the machine. From the literature, the magnitude of this vertical field (valid for a

circular plasma) is given by:7

|𝐵𝑉 | =
𝜇0𝐼𝑃
4𝜋𝑅0

·
(︂

ln
(︂
8

𝜀

)︂
+ 𝛽 𝑝 +

𝑙𝑖
2
− 3

2

)︂
(4.45)

Analogous to the previously covered plasma beta, the poloidal beta can be represented

79



by:36

𝛽𝑝 =
𝑝(︁
𝐵𝑝

2

2𝜇0

)︁ (4.46)

Where the average poloidal magnetic field comes from a simple application of Am-

pere’s law:

𝐵𝑝 =
𝜇0𝐼𝑃
𝑙𝑝

(4.47)

The variable 𝑙𝑝 is then the perimeter of the tokamak’s cross-sectional halves:

𝑙𝑝 = 2𝜋𝑎 · √𝑔𝑝 (4.48)

Here, 𝑔𝑝 is another geometric scaling factor,

𝑔𝑝 =
1 + 𝜅2(1 + 2𝛿2 − 1.2𝛿3)

2
(4.49)

After a few lines of algebra, this relation for the magnitude of the vertical magnetic

field can be written in standardized units as:

|𝐵𝑉 | =
(︂

1

10 ·𝑅0

)︂
·
(︀
𝐾𝑉 𝐼𝐼𝑃 +𝐾𝑉 𝑇 𝑇

)︀
(4.50)

𝐾𝑉 𝑇 = 𝐾𝑛 · (𝜀2 𝑔𝑃 ) · (1 + 𝑓𝐷)
(1 + 𝜈𝑛) (1 + 𝜈𝑇 )

1 + 𝜈𝑛 + 𝜈𝑇
(4.51)

𝐾𝑉 𝐼 = ln
(︂
8

𝜀

)︂
+
𝑙𝑖
2
− 3

2
(4.52)

For clarity, this will be plugged into the new PF coil flux contribution (Φ𝑃𝐹 ):

Φ𝑃𝐹 = 𝜋𝐵𝑉 ·
(︀
𝑅2

0 − (𝑅𝐶𝑆 + 𝑑)2
)︀

(4.44)

Which then gets plugged into a more complete flux balance equation:

Φ𝐶𝑆 + Φ𝑃𝐹 = Φ𝑅𝑈 + Φ𝐹𝑇 (4.53)
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The 𝑅𝐶𝑆 and 𝑑 terms found in Φ𝑃𝐹 will now be discussed as they are needed for this

more sophisticated tokamak geometry.

4.3 Improving Tokamak Geometry

From before, this fusion systems model has been said to depend on the major and

minor radius: 𝑅0 and 𝑎, respectively. Along the way, various geometric parameters

have been defined (e.g. 𝜀, 𝜅, 𝛿) to describe the geometry further. Now three more

thicknesses will be added – i.e. 𝑏, 𝑐, and 𝑑 – as well as two fundamental dimension

related to to the solenoid: its inner radius (𝑅𝐶𝑆) and height (ℎ𝐶𝑆). These are the

topics of this section.

4.3.1 Defining Central Solenoid Dimensions

The best way to conceptualize tokamak geometry is through cartoon – see Fig. 4-

3. What this shows is that there is a gap at the very center of a tokamak. This

gap extends radially outwards to 𝑅𝐶𝑆 meters where the coiled central solenoid – of

thickness 𝑑 – begins. Between the outer edge of the solenoid and the wall of the torus

(i.e. the doughnut) are the blanket and toroidal field (TF) coils.

The blanket and TF coils have thicknesses of 𝑏 and 𝑐, respectively. Before defining

them, however, it proves useful to relate them inside equations for the inner radius

(𝑅𝐶𝑆) and height (ℎ𝐶𝑆) of the central solenoid.

𝑅𝐶𝑆 = 𝑅0 − (𝑎+ 𝑏+ 𝑐+ 𝑑) (4.54)

ℎ𝐶𝑆 = 2 · (𝜅𝑎+ 𝑏+ 𝑐) (4.55)

Again, this relation is pictorially represented in Fig. 4-3. The next step is defining:

𝑏, 𝑐, and 𝑑 – to close the variable loop.
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0 RCS−R0 𝑅0 − 𝑎𝑑−𝑅𝐶𝑆

0

−hCS

−𝜅𝑎

ℎ𝐶𝑆 − 𝑐

Tokamak Dimension Diagram

Plasma
Blanket
TF Coils
Solenoid

Figure 4-3: Dimensions of Tokamak Cross-Section

Geometrically, a tokamak consists mainly of four components: the plasma, its metallic
blanket, the toroidal field magnets surrounding them, and the central solenoid. These have

thicknesses of a, b, c and d, respectively. 𝑅𝐶𝑆 is where the solenoid begins.

4.3.2 Calculating Component Thicknesses

In between the inner surface of the central solenoid and the major radius of the

tokamak are four thicknesses: 𝑎, 𝑏, 𝑐, and 𝑑. This subsection will go over them one

at a time.

The Minor Radius – 𝑎

The minor radius was the first of these thicknesses we encountered. To calculate it,

we introduced the inverse aspect ratio (𝜀) to relate it to the major radius (𝑅0):

𝑎 = 𝜀 ·𝑅0 (2.1)
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The Blanket Thickness – 𝑏

The blanket is an area between the TF coils and the torus that is composed mainly of

lithium and steel. It serves to both: protect the superconducting magnet structures

from neutron damage, as well as breed more tritium fuel from stray fusion neutrons.37

In equation form, the blanket thickness is given by:13

𝑏 = 1.23 + 0.074 ln𝑃𝑊 (4.56)

Here, 𝑃𝑊 is part of a small correction to account for extra wall loading (as discussed

in Section 3.4.3). Most blankets are, therefore, usually around a meter.6,13

Moving forward, the remaining two thicknesses – 𝑐 and 𝑑 – are handled differently:

estimating structural steel portions as well as magnetic current-carrying ones.

The Toroidal Field Coil Thickness – 𝑐

The thickness of the TF coils – 𝑐 – is a little beyond the scope of this paper. It does,

however, have a form that combines a structural steel component with a magnetic

portion. From a previous model, this can be given as:13

𝑐 = 𝐺𝐶𝐼𝑅0 +𝐺𝐶𝑂 (4.57)

𝐺𝐶𝐼 =
𝐵2

0

4𝜇0𝜎𝑇𝐹
· 1

(1− 𝜀𝑏)
·
(︂

4 𝜀𝑏
1 + 𝜀𝑏

+ ln
(︂
1 + 𝜀𝑏
1− 𝜀𝑏

)︂)︂
(4.58)

𝐺𝐶𝑂 =
𝐵0

𝜇0𝐽𝑇𝐹
· 1

(1− 𝜀𝑏)
(4.59)

The critical stress – 𝜎𝑇𝐹 – in 𝐺𝐶𝐼 implies it depends on the structural component,

whereas the maximum current density – 𝐽𝑇𝐹 – implies a magnetic predisposition

in 𝐺𝐶𝑂. The use of 𝐺� in these quantities, instead of 𝐾� is because they include
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the toroidal magnetic field strength: 𝐵0. For this reason, they are referred to as

dynamic coefficients. Lastly, the term 𝜀𝑏 represents the blanket inverse aspect ratio

that combines the minor radius with the blanket thickness:

𝜀𝑏 =
𝑎+ 𝑏

𝑅0

(4.60)

The Central Solenoid Thickness – 𝑑

Finishing this discussion where we started, the central solenoid’s thickness – 𝑑 – has

a form similar to the TF coils (i.e. 𝑐). It can be represented as:13

𝑑 = 𝐾𝐷𝑅𝑅𝐶𝑆 +𝐾𝐷𝑂 (4.61)

𝐾𝐷𝑅 =
3𝐵2

𝐶𝑆

6𝜇0𝜎𝐶𝑆 −𝐵2
𝐶𝑆

(4.62)

𝐾𝐷𝑂 =
6𝐵𝐶𝑆𝜎𝐶𝑆

6𝜇0𝜎𝐶𝑆 −𝐵2
𝐶𝑆

·
(︂

1

𝐽𝑂𝐻

)︂
(4.63)

Here, the use of 𝐾� for the coefficients signifies their use as static coefficients. There-

fore, 𝐵𝐶𝑆 must be treated as a static variable representing the magnetic field strength

in the central solenoid. For prospective solenoids using high temperature supercon-

ducting (HTS) tape, 𝐵𝐶𝑆 may be around 20T. The values of 𝜎𝐶𝑆 and 𝐽𝐶𝑆 have

similar meanings to the ones for TF coils. These are collected in Table 4.2 with

example values representative of our model.

Before moving on, it seems important to say that although 𝐾𝐷𝐼 and 𝐾𝐷𝑂 do not

Table 4.2: Example TF Coils and Central Solenoid Critical Values

(a) Stresses [MPa]

Item Symbol Limit
Solenoid 𝜎𝐶𝑆 600
TF Coils 𝜎𝑇𝐹 600

(b) Current Densities [MA/m2]

Item Symbol Limit
Solenoid 𝐽𝐶𝑆 100
TF Coils 𝐽𝑇𝐹 200
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depend on dynamic variables, 𝑅𝐶𝑆 most definitely does. This is what makes the

central solenoid’s thickness difficult.

4.3.3 Revisiting Central Solenoid Dimensions

Now that the various thicknesses have been defined (i.e. 𝑎, 𝑏, 𝑐, and 𝑑), the equations

for the solenoid’s dimensions – 𝑅𝐶𝑆 and ℎ𝐶𝑆 – can be revisited and simplified. From

before,

𝑅𝐶𝑆 = 𝑅0 − (𝑎+ 𝑏+ 𝑐+ 𝑑) (4.54)

ℎ𝐶𝑆 = 2 · (𝜅𝑎+ 𝑏+ 𝑐) (4.55)

Repeated, the four thicknesses in these equations are:

𝑎 = 𝜀 ·𝑅0 (2.1)

𝑏 = 1.23 + 0.074 ln𝑃𝑊 (4.56)

𝑐 = 𝐺𝐶𝐼𝑅0 +𝐺𝐶𝑂 (4.57)

𝑑 = 𝐾𝐷𝑅𝑅𝐶𝑆 +𝐾𝐷𝑂 (4.61)

Substituting these thicknesses into the central solenoid’s dimensions results in:

ℎ𝐶𝑆 = 2 · (𝑅0 · (𝜀𝜅+𝐺𝐶𝐼) + (𝑏+𝐺𝐶𝑂)) (4.64)

𝑅𝐶𝑆 =
1

1 +𝐾𝐷𝑅

· (𝑅0 · (1− 𝜀−𝐺𝐶𝐼)− (𝐾𝐷𝑂 + 𝑏+𝐺𝐶𝑂)) (4.65)

These are the complete central solenoid dimension formulas. To make them more
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tractable to the reader, they will now be simplified one step at a time.∗

The first simplification to make while estimating central solenoid dimensions is to

neglect the magnetic current-carrying portions of the central solenoid and TF coils.

This results in:

lim
𝐺𝐶𝑂→0

𝐾𝐷𝑂→0

ℎ𝐶𝑆 = ℎ †
𝐶𝑆 = 2𝑅0 · (𝐾𝐸𝐾 + 𝜀𝑏 +𝐺𝐶𝐼) (4.66)

lim
𝐺𝐶𝑂→0

𝐾𝐷𝑂→0

𝑅𝐶𝑆 = 𝑅 †
𝐶𝑆 =

𝑅0

1 +𝐾𝐷𝑅

· (1− 𝜀𝑏 −𝐺𝐶𝐼) (4.67)

The new static coefficient, here, is:

𝐾𝐸𝐾 = 𝜀 · (𝜅− 1) (4.68)

The next simplification is ignoring the TF coil thickness – and thus magnetic field

dependence – altogether:

lim
𝐺𝐶𝐼→0

ℎ †
𝐶𝑆 = ℎ ‡

𝐶𝑆 = 2𝑅0 · (𝐾𝐸𝐾 + 𝜀𝑏) (4.69)

lim
𝐺𝐶𝐼→0

𝑅 †
𝐶𝑆 = 𝑅 ‡

𝐶𝑆 =
𝑅0

1 +𝐾𝐷𝑅

· (1− 𝜀𝑏) (4.70)

These oversimplifications will be used later this chapter while simplifying the gener-

alized current equation to something more tractable. For now, they highlight how the

dimensions change as different components are neglected. The next step is bringing

plasma physics back into flux balance and solving for the generalized current.

∗The same simplification exercise will be done again after the generalized current is derived later
this chapter.
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4.4 Piecing Together the Generalized Current

The goal of this section is to quickly expand flux balance using all the defined

quantities and then rearrange it into an equation for plasma current – which is suitable

for root solving. This starts with a restatement of flux balance in a reactor:

Φ𝐶𝑆 + Φ𝑃𝐹 = Φ𝑅𝑈 + Φ𝐹𝑇 (4.53)

Φ𝐶𝑆 = 2𝑀𝐼𝑚𝑎𝑥 (4.40)

Φ𝑃𝐹 = 𝜋𝐵𝑉 ·
(︀
𝑅2

0 − (𝑅𝐶𝑆 + 𝑑)2
)︀

(4.44)

Φ𝑅𝑈 = 𝐿2 · 𝐼𝐼𝐷 (4.42)

Φ𝐹𝑇 = (𝑅𝑃 𝜏𝐹𝑇 ) · 𝐼𝐼𝐷 (4.43)

The first step is realizing that the central solenoid flux can now be rewritten using

the new geometry in a standardized form:

Φ𝐶𝑆 = 𝐾𝐶𝑆 ·
√︀
𝑅0𝐺𝐿𝑇 ℎ𝐶𝑆 (4.71)

𝐾𝐶𝑆 = 2𝑘𝐵𝐶𝑆 ·

√︃
𝜋𝐾𝐿𝑃

𝜇0

(4.72)

Next, we will slightly simplify the PF coil flux using a dynamic variable coefficient:

Φ𝑃𝐹 = 𝐺𝑉 · 𝐾𝑉 𝐼𝐼𝑃 +𝐾𝑉 𝑇𝑇

𝑅0

(4.73)

𝐺𝑉 =
𝜋

10
·
(︀
𝑅2

0 − (𝑅𝐶𝑆 + 𝑑)2
)︀

(4.74)

This allows us to rewrite the generalized current as:

𝐼𝑃 =
(𝐾𝐵𝑆 + 𝐺𝐼𝑈/𝐺𝐼𝑃 ) · 𝑇

1−𝐾𝐶𝐷(𝜎𝑣)− 𝐺𝐼𝐷/𝐺𝐼𝑃

(4.75)
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𝐺𝐼𝑈 = 𝐾𝑉 𝑇 𝐺𝑉 +𝐾𝐶𝑆𝑅
3/2
0 ·

√
ℎ𝐶𝑆 𝐺𝐿𝑇

𝑇
(4.76)

𝐺𝐼𝐷 = 𝐾𝑉 𝐼 𝐺𝑉 (4.77)

𝐺𝐼𝑃 = 𝐾𝐿𝑃𝑅
2
0 +

𝐾𝑅𝑃 𝜏𝐹𝑇

𝑇
3/2

(4.78)

As we will show in the next section, this form not only has a form remarkably similar

to the steady current – it reduces to it in the limit of infinitely long pulses!

4.5 Simplifying the Generalized Current

This section focuses on making various simplifications to the generalized current:

𝐼𝑃 =
(𝐾𝐵𝑆 + 𝐺𝐼𝑈/𝐺𝐼𝑃 ) · 𝑇

1−𝐾𝐶𝐷(𝜎𝑣)− 𝐺𝐼𝐷/𝐺𝐼𝑃

(4.75)

As promised, this will start with the trivial simplification of the generalized current

into the steady state one. Next it will move on to a basic simplification for the purely

pulsed case. These two activities should shed some light on how to interpret the

equation in the more complicated hybrid case (that is actually used by the model).

4.5.1 Recovering the Steady Current

The place to start with the steady current simplification is in the dynamic coefficient,

𝐺𝐼𝑃 :

𝐺𝐼𝑃 = 𝐾𝐿𝑃𝑅
2
0 +

𝐾𝑅𝑃 𝜏𝐹𝑇

𝑇
3/2

(4.78)

As can be seen, as 𝜏𝐹𝑇 → ∞, so does the coefficient,

lim
𝜏𝐹𝑇→∞

𝐺𝐼𝑃 = ∞ (4.79)
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Because 𝐺𝐼𝑈 and 𝐺𝐼𝐷 remain constant, their contribution to plasma current becomes

insignificant in this limit. Concretely,

lim
𝜏𝐹𝑇→∞

𝐼𝑃 =
𝐾𝐵𝑆 𝑇

1−𝐾𝐶𝐷(𝜎𝑣)
(4.80)

This is precisely the steady current given by Eq. (2.28)! The generalized current

automatically works when modeling steady-state tokamaks.∗

4.5.2 Extracting the Pulsed Current

For pulsed reactors, we have to resolve a similar problem – except now 𝜏𝐹𝑇 is expected

to be a reasonably sized number (i.e. 2 hours).

With an aim at intuition, the reactor is first treated as purely pulsed – having no

current drive assistance:

lim
𝜂𝐶𝐷→0

𝐼𝑃 =
(𝐾𝐵𝑆 + 𝐺𝐼𝑈/𝐺𝐼𝑃 ) · 𝑇

1− (𝐺𝐼𝐷/𝐺𝐼𝑃 )
(4.81)

Next, for simplicity-sake, the PF coil contribution to flux balance is assumed negligi-

ble, as it was always meant to be a correction term:

lim
Φ𝑃𝐹 ≪Φ𝐶𝑆

𝐺𝐼𝑈 = 𝐾𝐶𝑆𝑅
3/2
0 ·

√
ℎ𝐶𝑆 𝐺𝐿𝑇

𝑇
(4.82)

lim
Φ𝑃𝐹 ≪Φ𝐶𝑆

𝐺𝐼𝐷 = 0 (4.83)

Piecing this altogether, we can write a new current for this highly simplified case,

𝐼†𝑃 = 𝐾𝐵𝑆 𝑇 +
𝐾𝐶𝑆𝑅

3/2
0 ·

√
ℎ𝐶𝑆 𝐺𝐿𝑇

𝐾𝐿𝑃𝑅2
0 +𝐾𝑅𝑃 𝜏𝐹𝑇 𝑇

−3/2
(4.84)

∗It should be noted that this is much harder when setting 𝜏𝐹𝑇 to a large, but finite number – as
𝜂𝐶𝐷 still needs to be solved self-consistently.
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As this is not quite simple enough, these previous simplifications will be incorporated:

𝐺 †
𝐿𝑇 = 𝑅2

𝐶𝑆 (4.28)

ℎ ‡
𝐶𝑆 = 2𝑅0 · (𝐾𝐸𝐾 + 𝜀𝑏) (4.69)

𝑅 ‡
𝐶𝑆 =

𝑅0

1 +𝐾𝐷𝑅

· (1− 𝜀𝑏) (4.70)

Taking these into consideration results in the following current formula:

𝐼‡𝑃 = 𝐾𝐵𝑆 𝑇 +

(︃
𝐾𝐶𝑆𝑅

3
0

𝐾𝐿𝑃𝑅2
0 +𝐾𝑅𝑃 𝜏𝐹𝑇 𝑇

−3/2
·
(1− 𝜀𝑏) ·

√︀
2(𝐾𝐸𝐾 + 𝜀𝑏)

1 +𝐾𝐷𝑅

)︃
(4.85)

In the limit that the pulse length drops to zero (and bootstrap current is negligible),

lim
𝜏𝐹𝑇→0

𝐼‡𝑃 = 𝑅0 ·

(︃
𝐾𝐶𝑆

𝐾𝐿𝑃

·
(1− 𝜀𝑏) ·

√︀
2(𝐾𝐸𝐾 + 𝜀𝑏)

1 +𝐾𝐷𝑅

)︃
(4.86)

This implies that a purely pulsed current scales with major radius to leading order.

4.5.3 Rationalizing the Generalized Current

From the previous two subsections, we arrived at equations for infinitely large and

infinitely small pulse lengths:

lim
𝜏𝐹𝑇→∞

𝐼𝑃 =
𝐾𝐵𝑆 𝑇

1−𝐾𝐶𝐷(𝜎𝑣)
(4.80)

lim
𝜏𝐹𝑇→0

𝐼‡𝑃 = 𝑅0 ·

(︃
𝐾𝐶𝑆

𝐾𝐿𝑃

·
(1− 𝜀𝑏) ·

√︀
2(𝐾𝐸𝐾 + 𝜀𝑏)

1 +𝐾𝐷𝑅

)︃
(4.86)

What these imply at an intuitive level is that at small pulses, current scales with the

major radius. While for long pulses, current scales with plasma temperature. In the

general case, of course, the problem becomes much harder to predict – as shown by

the code’s results using Eq. (4.75).
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Chapter 5

Completing the Systems Model

As opposed to previous chapters, this one will focus on the numerics behind the

fusion systems model. A simple algebra will lead to a generalized solver for exploring

reactor space for low cost and interesting machines. This will then naturally segue

into a discussion of how plots are made and should be interpreted. The remaining

chapters will then decouple the presentation of results from their analytic conclusions.

5.1 Describing a Simple Algebra

In essence, the systems model used here is a simple algebra problem – given five

equations, solve for five unknowns. The goal is then to pick the five equations that

best represent modern fusion reactor design (as shown in Fig. 5-1). Moreover, this

selection should be done in such a way that actually reduces the system of equations

to a simple univariate root solving problem (i.e. one equation with one unknown).

As will be shown in the results, this model does reasonably well: matching other

modeling campaigns in seconds.

The logical place to start in a discussion of this algebra problem is with the three

equations fundamental to all reactor-grade tokamaks – both in steady-state and

pulsed operation. These are: the Greenwald density limit, power balance, and current
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𝑛 𝐼𝑃 𝑇 𝑅0 𝐵0

Greenwald
Limit

Current
Balance

𝑅𝛾𝑅
0 𝐵𝛾𝐵

0 𝐼𝛾𝐼𝑃 = 𝐺(𝑇 )

Figure 5-1: Equation Selection for Fusion System

This systems model selects five variables to solve for all the dynamic variables. These are
the Greenwald limit for density, current balance for the plasma current, and three

generalized formulas for the temperature, major radius, and toroidal field strength.

balance. The Greenwald density’s importance was hinted early on when it was used

to simplify every equation derived thereafter.

𝑛 = 𝐾𝑛 ·
𝐼𝑃
𝑅2

0

(2.10)

The two balance equations proved to be slightly more complicated. As was shown,

current balance was the more difficult of the two – bringing forth the notion of self-

consistency for steady-state machines and a highly-coupled multi-root equation for

pulsed ones. As such, current balance stands as the equation everything is substituted

into to do a final univariate root solve.

𝐼𝑃 =
(𝐾𝐵𝑆 + 𝐺𝐼𝑈/𝐺𝐼𝑃 ) · 𝑇

1−𝐾𝐶𝐷(𝜎𝑣)− 𝐺𝐼𝐷/𝐺𝐼𝑃

(4.75)

Although slightly buried in Eq. (4.75), the right-hand side actually depends on all the

dynamic variables (including 𝐼𝑃 through the wall loading term in blanket thickness).

Through equation,

𝐼𝑃 = 𝑓(𝐼𝑃 , 𝑇 , 𝑅0, 𝐵0) (5.1)
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The remaining equation common to all reactor-grade tokamaks is, then, power balance

– the relation that quantifies net electricity production capabilities. Due to the use

of the ELMy H-Mode scaling law for modeling the diffusion coefficient, this had the

complicated form of:

𝑅
𝛼*
𝑅

0 ·𝐵 𝛼𝐵
0 · 𝐼 𝛼

*
𝐼

𝑃 =
𝐺𝑃𝐵

𝐾𝑃𝐵

(5.2)

Although rather cumbersome, this equation actually remains relatively simple in that

all three quantities on the left-hand side are separable. To close the system, two more

equations of this form are needed. These have the following form and will be described

next.

𝑅 𝛾𝑅
0 ·𝐵 𝛾𝐵

0 · 𝐼 𝛾𝐼𝑃 = 𝐺(𝑇 ) (5.3)

5.2 Generalizing Previous Equations

Where the equations defined up to this point in the chapter are shared among all

fusion reactors, the remaining two equations – needed to close the system – must

be partially chosen by the user. These equations come in three varieties: limits,

intermediate quantities, and dynamic variables. By convention, we enforce that at

least one limit must be used. The other constraint can then come from any of the

three defined collections, which we will refer to as the closure equation.

5.2.1 Including Limiting Constraints

The limits category is composed of the limiting constraints given in Chapter 3. These

include the physics derived limits from MHD theory – i.e. the beta limit (𝛽𝑁) and the

kink safety factor (𝑞*). Where for clarity, these set maximums on the allowed plasma

pressure and current, respectively. There were, also, several engineering limits that

described: wall loading, heat loading, and maximum power capacity. For this paper,

wall loading from neutrons (𝑃𝑊 ) is assumed to be important, whereas the other two
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engineering limits are assumed to not explicitly guide design.

Combined all these limits, as well as the yet to be defined dynamic and intermediate

equations, are given in Table 5.1. These share a remarkably similar form to power

balance when put into a generalized, separable state. This hints at why the major

radius (𝑅0), the toroidal field strength (𝐵0), and the plasma current (𝐼𝑃 ) can easily

be separated and substituted out of the current balance equation.

Before moving on, it proves useful to explain the two limits not used to explicitly guide

reactor design – divertor heat loading and the maximum power capacity. The simpler

Table 5.1: Main Equation Bank

To close the system of equations for potential reactors, different equations can be used to
lock down tokamak designs. These include physics and engineering limits (L), as well as
ways to set dynamic (D) or intermediate (I) variables to constant values.

Variable Category G(𝑇 ) 𝛾𝑅 𝛾𝐵 𝛾𝐼

Power Balance - 𝐺𝑃𝐵/𝐾𝑃𝐵 𝛼*
𝑅 𝛼𝐵 𝛼*

𝐼

Beta (𝛽𝑁 ) L 𝐾𝑇𝐵𝑇 1 1 0

Kink (𝑞*) L 𝐾𝐾𝐹 1 1 -1

Wall Loading (𝑃𝑊 ) L 𝐾𝑊𝐿(𝜎𝑣)
1/3 1 0 -2/3

Power Cap (𝑃𝐸) L 𝐾𝑃𝐶(𝜎𝑣) 1 0 -2

Heat Loading (𝑞𝐷𝑉 ) L 𝐾𝐷𝑉 (𝜎𝑣)
1/3.2 1 0 -1

Major Radius (𝑅0) D (𝑅0)𝑐𝑜𝑛𝑠𝑡 1 0 0

Magnet Strength (𝐵0) D (𝐵0)𝑐𝑜𝑛𝑠𝑡 0 1 0

Plasma Current (𝐼𝑃 ) D (𝐼𝑃 )𝑐𝑜𝑛𝑠𝑡 0 0 1

Plasma Temperature (𝑇 ) D (𝑇 )𝑐𝑜𝑛𝑠𝑡/𝑇 0 0 0

Electron Density (𝑛) D (𝑛)𝑐𝑜𝑛𝑠𝑡/𝐾𝑛 -2 0 1

Plasma Pressure (𝑝) I (𝑝)𝑐𝑜𝑛𝑠𝑡/𝐾𝑛𝐾𝑛𝑇𝑇 -2 0 1

Bootstrap Current (𝑓𝐵𝑆) I (𝑓𝐵𝑆)𝑐𝑜𝑛𝑠𝑡/𝐾𝐵𝑆𝑇 0 0 -1

Fusion Power (𝑃𝐹 ) I (𝑃𝐹 )𝑐𝑜𝑛𝑠𝑡/𝐾𝐹𝐾2
𝑛(𝜎𝑣) -1 0 2

Magnetic Energy (𝑊𝑀 ) I (𝑊𝑀 )𝑐𝑜𝑛𝑠𝑡/𝐾𝑊𝑀 3 2 0

Cost-per-Watt (𝐶𝑊 ) I (𝐶𝑊 )𝑐𝑜𝑛𝑠𝑡 · (𝐾𝐹𝐾2
𝑛(𝜎𝑣)/𝐾𝑊𝑀) 4 2 -2
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of the two to reason is the heat loading limit. Although removing the gigawatts-per-

square-meter of heat is extremely difficult, it remains an unsolved problem worthy of

its own research machine.32 As such, it is only kept to provide a human-interpreted

measure of difficulty. The power cap, on the other hand, is just handled informally.

If a reactor surpasses it (i.e. 𝑃𝐸 > 4000𝑀𝑊 ), it is considered invalid.

While the maximum power cap informally sets a maximum major radius for a ma-

chine, there also exists an implicit minimum major radius. This minimum radius

occurs due to the hole-size constraint – i.e. at some point there is no longer enough

room on the inside of the machine to store the central solenoid, blanket, and TF coils.

At this point, we can now explain how various quantities in the systems model can be

set to user-given constant values. This basically allows users to treat one dynamic –

or intermediate – variable as a static one (e.g. the temperature or bootstrap fraction).

5.2.2 Minimizing Intermediate Quantities

Whereas the limits from the previous section represented constraints with real physics

and engineering repercussions, the intermediate quantities here are just used to find

when reactors reach certain user-supplied values. Most notable are the capital cost

(through the magnetic energy – 𝑊𝑀) and the cost-per-watt (𝐶𝑊 ). However, the

model also allows users to set values for the bootstrap fraction, plasma pressure,

and fusion power. As mentioned previously, these are given in Table 5.1 through a

generalized representation of the form:

𝑅 𝛾𝑅
0 ·𝐵 𝛾𝐵

0 · 𝐼 𝛾𝐼𝑃 = 𝐺(𝑇 ) (5.3)

What this collection of variables is really useful for, though, is finding minimum cost

reactors – both in a capital context as well as a cost-per-watt one. This is done in

a three stage process. The first of which is to find a valid reactor – i.e. one that

satisfies every limiting constraint. Practically, this is done by searching over a range

of scanned temperatures.
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After a valid reactor is found, its cost is recorded – leading to a drill-down stage. In

this step, the cost is continuously halved until a valid reactor cannot be found. Once

this invalid reactor is reached, it sets a bound on the minimum cost reactor. As such,

the final stage is a simple bisection step where the minimum cost is honed down to

some acceptable margin of error. This process is illustrated in Fig. 5-2.

5.2.3 Assigning Dynamic Variables

The remaining collection of closure equations is for the five dynamic variables in the

systems model: 𝑅0, 𝐵0, 𝑛, 𝑇 , and 𝐼𝑃 . As we are making equations of the following

form, the formulas for 𝑅0, 𝐵0, and 𝐼𝑃 are trivial.

𝑅 𝛾𝑅
0 ·𝐵 𝛾𝐵

0 · 𝐼 𝛾𝐼𝑃 = 𝐺(𝑇 ) (5.3)

Next, the equation for 𝑛 – shown in Table 5.1 – is a simple reversal of the Greenwald

limit. The remaining equation is then from the original temperature equation:

𝑇 = 𝑐𝑜𝑛𝑠𝑡. (3.1)

As was assumed earlier, Eq. (3.1) is sort of a default equation for the systems model.

By this, we mean reactor curves can be created by scanning over temperatures, i.e.

set 𝑇 = 5 keV in one run, 10 in the next, etc. This temperature equation also brings

up a difficulty for the algebraic solver, as it does not depend on: current, radius, or

magnet strength. Overcoming this difficulty is discussed next subsection.

5.2.4 Detailing the Equation Solver

The algorithm that motivated this generalized equation approach most notably bi-

furcates in the situation where the closure equation does not depend on 𝑅0, 𝐵0, or 𝐼𝑃

(i.e. for the temperature equation). The two scenarios are given in Eqs. (5.4) to (5.10)

– where at least 𝑅0 and 𝐵0 are substituted out of the system. In the temperature

96



1 2 3 4 5

1

2

3

Iteration

C
os

t

Step II - Bound Minimum Cost Reactor

Valid Reactor
Invalid Reactor
Bounded Cost

(a) Minimize Step II

1 2 3 4 5

0.1

0.2

0.3

0.4

0.5

Iteration

C
os

t

Step III - Hone Minimum Cost Reactor

Valid Reactor
Invalid Reactor
Bounded Cost

(b) Minimize Step III

Figure 5-2: Reactor Cost Minimization

After a valid reactor has been found, it is a simple process to find the minimum cost
reactor. This involves first continually searching for reactors that are half the cost until a
valid one can no longer be found (a). After the costing interval has been bounded by a

valid and invalid reactor, the interval is bisected until there is negligible error (b).
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case, 𝐼𝑃 is not needed to be explicitly removed.

Concretely, the root solve for the temperature scenario is for the current, whereas it

is for the temperature in all other cases. The nomenclature in the code is a solve for

Scenario I (i.e. root solving for plasma current), and a match for Scenario II (i.e. root

solving for plasma temperature).

Scenario I – Solve for 𝐼𝑃

𝑅0(𝑇 ) =
(︁
𝐺
𝛾𝐵,2

1 ·𝐺−𝛾𝐵,1

2 · 𝐼 (𝛾𝐵,1 𝛾𝐼,2−𝛾𝐵,2 𝛾𝐼,1)
𝑃

)︁ 1
𝛾𝑅𝐵𝑇 (5.4)

𝐵0(𝑇 ) =
(︁
𝐺

−𝛾𝑅,2

1 ·𝐺 𝛾𝑅,1

2 · 𝐼 (𝛾𝐼,1 𝛾𝑅,2−𝛾𝐼,2 𝛾𝑅,1)
𝑃

)︁ 1
𝛾𝑅𝐵𝑇 (5.5)

𝛾𝑅𝐵𝑇 = 𝛾𝑅,1 𝛾𝐵,2 − 𝛾𝑅,2 𝛾𝐵,1 (5.6)

Scenario II – Match for 𝑇

𝑅0(𝑇 ) =
(︁
𝐺

(𝛾𝐵,2 𝛾𝐼,3−𝛾𝐵,3 𝛾𝐼,2)
1 ·𝐺 (𝛾𝐵,3 𝛾𝐼,1−𝛾𝐵,1 𝛾𝐼,3)

2 ·𝐺 (𝛾𝐵,1 𝛾𝐼,2−𝛾𝐵,2 𝛾𝐼,1)
3

)︁ 1
𝛾𝑅𝐵𝐼 (5.7)

𝐵0(𝑇 ) =
(︁
𝐺

(𝛾𝐼,2 𝛾𝑅,3−𝛾𝐼,3 𝛾𝑅,2)
1 ·𝐺 (𝛾𝐼,3 𝛾𝑅,1−𝛾𝐼,1 𝛾𝑅,3)

2 ·𝐺 (𝛾𝐼,1 𝛾𝑅,2−𝛾𝐼,2 𝛾𝑅,1)
3

)︁ 1
𝛾𝑅𝐵𝐼 (5.8)

𝐼𝑃 (𝑇 ) =
(︁
𝐺

(𝛾𝑅,2 𝛾𝐵,3−𝛾𝑅,3 𝛾𝐵,2)
1 ·𝐺 (𝛾𝑅,3 𝛾𝐵,1−𝛾𝑅,1 𝛾𝐵,3)

2 ·𝐺 (𝛾𝑅,1 𝛾𝐵,2−𝛾𝑅,2 𝛾𝐵,1)
3

)︁ 1
𝛾𝑅𝐵𝐼 (5.9)

𝛾𝑅𝐵𝐼 = (𝛾𝑅,1 𝛾𝐵,2 𝛾𝐼,3 + 𝛾𝑅,2 𝛾𝐵,3 𝛾𝐼,1 + 𝛾𝑅,3 𝛾𝐵,1 𝛾𝐼,2)− (5.10)

(𝛾𝑅,1 𝛾𝐵,3 𝛾𝐼,2 + 𝛾𝑅,2 𝛾𝐵,1 𝛾𝐼,3 + 𝛾𝑅,3 𝛾𝐵,2 𝛾𝐼,1)
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5.3 Wrapping up the Logic

As stated at the beginning of the chapter, this systems model basically reduces to a

simple 5 equation/5 unknown algebra problem. The Greenwald density was implicitly

used in the initial derive to simplify the logic. The current balance was then delegated

to be the root solve equation. Lastly, three equations were needed to remove the major

radius and magnet strength, as well as either the current or temperature. These 16

equations were given in Table 5.1 with the generalized solution given in Eqs. (5.4)

to (5.10).

This now sets the stage for the most interesting part of the document – the results.

These will come in several forms. The first result type will be temperature scans that

allow us to validate the model against other designs from the literature. These are

created using the Scenario I solver.

The Scenario II matcher will then be used to create sensitivity studies and Monte

Carlo samplings. These simple one variable sensitivities will reveal local trends from

sweeping various static (i.e. input) variables – namely H, 𝜅, 𝐵𝐶𝑆, etc. – one at a

time. Whereas the samplings will, then, highlight global trends as many static/input

variables are allowed to vary simultaneously.

These Scenario II matchers are further subdivided in regards to the nature of their

closure equation. The first type comes from finding so called two limit solutions,

which live at the point where the beta and kink (or wall) limits are just marginally

satisfied. The second main type is then minimum cost reactors – measured in either

a capital cost or cost-per-watt context. These will be used in depth next chapter.
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Chapter 6

Presenting the Code Results

Now that our fusion systems model has been formulated and completed, the next

logical step is to build a codebase and explore reactor space. To this, the code

encompassing this document’s model – Fussy.jl – is available at git.io/tokamak (with

a short guide given in Appendix B). The results from this chapter will be divided into

three sections. The first is an attempt to test how accurate the model is by comparing

it with other codes in the field.1,6, 7 The next will be two prototypes developed to

fairly compare pulsed and steady state reactors, the initial motivation for this project.

This chapter will then conclude with a discussion on how best to lower reactor costs.

In line with the MIT mission, this will highlight how using stronger magnets leads

to more compact, economically competitive machines. The new piece of insight,

then, is how to optimally incorporate high-temperature superconducting (HTS) tape

technology – the assumed technological advancement found in the ARC design family.

Succinctly, we will show that HTS tape should be used in the TF coils for steady-state

tokamaks (i.e. 𝐵0), whereas it should only appear in the central solenoid (i.e. 𝐵𝐶𝑆)

for pulsed ones. This is a fundamentally new result!
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6.1 Testing the Code against other Models

After developing a new model, the first next step is to make sure its results are sensical.

The goal, however, is not to go too far, i.e. by: comparing it with too many models

or requiring perfect matches with their results. To this, we will compare Fussy.jl with

five designs from the literature – hopefully casting a wide enough net through reactor-

space to prove sufficient. It should be noted that for how simple this model is, it does

a remarkable job matching the other group’s more sophisticated frameworks. It also

highlights how discrepancies arise in this highly non-linear computational problem.

The first reactor design that will provide a basis for comparison is the ARC reactor.6

As it was also designed by MIT researchers, the fit is shown to be almost exact. This

of course probably involves a fair amount of inherent biases stemming from shared

scientific philosophies and knowledge base.

The next set of reactor designs come from the ARIES four-act study.3 This ARIES

team is a United States effort to reevaluate the problem of designing a fusion reactor

around once a decade. The most recent study focused on how tokamaks would look as

you assume optimistic and conservative values for physics and engineering parameters.

Although our model recovers their results, it does highlight one peculiarity of their

algorithm – reliance on the minimum achievable value of H.

The final series of reactors comes from the major codebase used among European

fusion systems experts: PROCESS.7 As such, this group actually gives an example for

pulsed vs. steady-state tokamaks. Although these designs have the most discrepancies

with our model, discussion will be given that remedy some of the shortcomings. These

basically amount to: alternative definitions for heat loss appearing in the ELMy H-

Mode Scaling Law, as well as the simplified nature of our flux balance equation –

which only accounts for central solenoid and PF coil source terms.

The most important detail to take from the comparisons done in Tables 6.1 to 6.4,

however, is that each steady state design from the literature has H factors and

Greenwald densities (𝑁𝐺) that violate standard values (i.e. 1.0). What this means
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practically is steady-state reactors are not possible in the current tokamak paradigm

– some technological advancement is needed.

6.1.1 Comparing with the PSFC ARC Reactor

As mentioned, this model matches the results from the ARC design almost perfectly –

see Table 6.1 and Fig. 6-2. This probably stems from how both models were developed

within the MIT community. Two notable discrepancies between the models, however,

are in the fusion power (𝑃𝐹 ) and bootstrap current fraction (𝑓𝐵𝑆). These discrepancies

likely arise from the use of simple parabolic profiles for temperature and, thus, can

be seen in the subsequent model comparisons.

Before moving on, though, it is important to explain how the plots and table used

for this comparison are made. First, a list of temperatures between 1 and 40 keV is

scanned to produce a set of reactors – each with their own size (𝑅0), magnet strength

(𝐵0), etc. These reactors are then turned into the curves shown in Fig. 6-2 by mapping

to their respective values. Note that 𝑅0 vs. 𝐵0 is then a measure of the accuracy in

the tokamak’s engineering, while 𝐼𝑃 vs. 𝑇 is a measure on its plasma’s physics.

Once these curves are created, a design point is chosen on them that has the least

distance to the marked point (from the original papers). These points – or reactors

– are then compared in detail in Table 6.1. Note that the output between the two is

what is different. Also for clarity, –𝑉 is the volume of a tokamak in cubic meters, and

the dash on the inductive current fraction 𝑓𝐼𝐷 implies it makes up 0% of the current.

The use of a dash for 𝛽𝑁 brings up the final piece of information needed to understand

the plots and table creation process – limiting constraints. Note that in Fig. 6-2, the

solid curve has two portions: beta and wall. These are the portions where the beta

limit and the wall loading limit are the driving constraints, respectively. For example

at 𝐵0 = 5 T, the wall loading (𝑃𝑊 ) will be much less than the maximum allowed

2.5MW/m2. This is why the dash is next to 𝛽𝑁 in Table 6.1, as it is held at the

maximum allowed value (i.e. 𝛽𝑁 = 0.026.)

103



Finally, the reason there is a dashed pulsed curve and a solid steady one is because

this reactor was run in both modes of operation. The pulsed label is actually a slight

misnomer as it implies the generalized current balance formula is used – over the

simple steady current given by Eq. (2.28). Because pulses are set to 50 years, they

are functionally steady-state regardless. The real reason the two curves diverge is

because the steady current has a self-consistent current drive efficiency (𝜂𝐶𝐷).

6.1.2 Contrasting with the ARIES ACT Studies

Moving on, the ARIES ACT study focuses on how steady-state reactors would look

under both a conservative and optimistic perspective. This is highlighted in Fig. 6-1,

which shows how costs decrease as the H factor is allowed to increase. Notice that

for every value of H, the ACT I study (i.e. the optimistic act) has a lower cost than

the design from ACT II (i.e. the conservative one).

This figure also highlights another peculiarity of the ARIES study – a reliance on the

minimum possible value of H. Note that just left of the reactor point on both plots

is a highly erratic portion of the curve. As such, if even a slightly smaller value of H

were used in either case, a quite distinct reactor would occur. This is not a robust

way to design machines. A better approach would be to build with some safety factor

– i.e at a slightly more optimistic value of H. This can be seen in ARC’s H-Sweep.

ACT I – Advanced Physics and Engineering

ACT 1 is the ARIES study that assumes advanced physics and engineering design

parameters. Although this paper’s model does a fair job recovering the results from

their paper – see Table 6.2 and Fig. 6-3 – it does show what optimistic design really

means. As can be seen, this design actually only surpasses the minimum possible

toroidal field strength by less than a Tesla! Practically, this means their reactor is

barely realizable. Trying to build a 5T device would not be possible using their stated

reactor input parameters.
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Figure 6-1: ARC and ACT Studies Cost Dependence on the H Factor

The cost of steady-state reactors can usually be reduced by increasing the enhancement
factor. As shown, though, none of these reactors are possible at the standard H = 1 value!

ACT II – Conservative Physics and Engineering

ARIES more conservative design – ACT II – is much more like ARC in nature. From

Fig. 6-4, it is obvious that this paper’s model is basically right on top of the reactor

curve made with Fussy.jl. Much like ARC, too, it shows how the model overestimates

fusion power and underestimates bootstrap fraction due to their selection of a pedestal

profile for plasma temperature. This can be seen in Table 6.3.
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6.1.3 Benchmarking with the Process DEMO Designs

The PROCESS team’s prospective designs for successors to ITER constitute the final

set of model comparisons: the steady-state and pulsed DEMO reactors. As this paper

is designed to compare these modes of operation, this study proves most informative.

It also highlights how common model decisions can dramatically alter what reactors

come out of the solvers.

The first discrepancy is how the PROCESS team defines the loss term in the ELMy H-

Mode scaling law. As shown in their paper, they actually subtract out a Bremsstrahlung

component, while leaving the fitting coefficients the same.7 After modifying Fussy.jl

to incorporate this definition, the steady-state reactor is easily reproducible in the 𝑅0

– 𝐵0 slice of reactor space.

𝑃𝐷𝐸𝑀𝑂
𝐿 = 𝑃𝑠𝑟𝑐 − 𝑃𝐵𝑅 (6.1)

Unlike the steady-state case, however, the modified power loss term does not fix the

pulsed one, as it actually draws the reactor curves further from the design in their

paper. As such, it is flux balance that is now the main culprit for discrepancies

between the two models. This makes sense, as this model uses highly simplified

source terms – namely neglecting anything but the central solenoid and PF coils (as

well as ignoring crucial physics for these two components). Even acknowledging the

differences between the two models, Fussy.jl still does reasonably well at reproducing

their much more sophisticated coding framework.

The final point to make is about selecting optimum points to build as the dynamic

variables are allowed to make curves through reactor space. Up to this point, only

steady-state tokamak designs have been explored. In every single one of these, though,

the paper values have been very close to the point where the beta and wall loading

curves intersect. This is because they all result in a minimum cost-per-watt.

For pulsed designs, on the other hand, kink curves start to appear for low magnetic

field strengths. Just as beta-wall intersections were optimum places to design for low
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cost-per-watt (𝐶𝑊 ) reactors, these beta-kink intersections will prove to be the place

where minimum capital cost (𝑊𝑀) reactors usually occur. This is discussed in more

detail in Section 6.3.1.

DEMO Steady – A Steady-State ITER Successor

As shown in Fig. 6-5 and Table 6.4, the DEMO steady reactor is the design captured

worst by the Fussy.jl model. Some discrepancy, however can be removed by using

the PROCESS team’s modified version of heat loss, as given by Eq. (6.1).7 Although

not supported by the official ITER database fit,30 the PROCESS team reduces the

absorbed power by the Bremsstrahlung power38 – which can lengthen 𝜏𝐸 by more

than 25%.8

With this correction, the 𝑅0 – 𝐵0 curve is drawn to be right on top of their model’s

design. The same cannot be said for the 𝐼𝑃 – 𝑇 curve as steady current was shown to

have little dependence on tokamak configuration (𝑅0 and 𝐵0) and, correspondingly,

the limiting constraint (e.g. beta and wall).

Note that the labels of modified and pulsed are slightly obscure in this context.

Pulsed, for starters, is actually the generalized solver that does not rely on self-

consistent current drive (i.e. in 𝜂𝐶𝐷). The modified label is then when the pulsed

solver uses the 𝑃𝐷𝐸𝑀𝑂
𝐿 value in approximating heat conductive losses.

DEMO Pulsed – A Pulsed ITER Successor

This pulsed version of DEMO is the only reactor in our collection that is not run in

steady-state. As such, it may be the most important one (i.e. it is the only pulsed

reactor). The first observation from Fig. 6-6 is that this design actually has no valid

wall loading portion – only a kink and beta curve exist! Even so, the results match

relatively well (see Table 6.5). It should be noted, however, that its current drive is

treated as an input and not handled self-consistently.
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Figure 6-2: ARC Model Comparison

Table 6.1: ARC Variables

(a) Input Variables

Input Value
𝐻 1.8
𝑄 13.6
𝑁𝐺 0.67
𝜀 0.333
𝜅95 1.84
𝛿95 0.333
𝜈𝑛 0.385
𝜈𝑇 0.929
𝑙𝑖 0.670
𝐴 2.5
𝑍𝑒𝑓𝑓 1.2
𝑓𝐷 0.9
𝜏𝐹𝑇 1.6e9
𝐵𝐶𝑆 12.77

(b) Output Variables

Output Original Fussy.jl
𝑅0 3.3 3.4
𝐵0 9.2 9.5
𝐼𝑃 7.8 8.8
𝑛 1.3 1.3
𝑇 14.0 16.8
𝛽𝑁 0.026 -
𝑞95 7.2 6.1
𝑃𝑊 2.5 2.2
𝑓𝐵𝑆 0.63 0.56
𝑓𝐶𝐷 0.37 0.44
𝑓𝐼𝐷 - -
–𝑉 141 157
𝑃𝐹 525 726
𝜂𝐶𝐷 0.321 0.316
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Figure 6-3: ARIES ACT I Model Comparison

Table 6.2: ACT I Variables

(a) Input Variables

Input Value
𝐻 1.65
𝑄 42.5
𝑁𝐺 1.0
𝜀 0.25
𝜅95 2.1
𝛿95 0.4
𝜈𝑛 0.27
𝜈𝑇 1.15
𝑙𝑖 0.359
𝐴 2.5
𝑍𝑒𝑓𝑓 2.11
𝑓𝐷 0.75
𝜏𝐹𝑇 1.6e9
𝐵𝐶𝑆 12.77

(b) Output Variables

Output Original Fussy.jl
𝑅0 6.25 6.23
𝐵0 6.0 6.0
𝐼𝑃 10.95 10.78
𝑛 1.3 1.3
𝑇 20.6 17.2
𝛽𝑁 0.0427 -
𝑞95 4.5 4.0
𝑃𝑊 2.45 2.00
𝑓𝐵𝑆 0.91 0.91
𝑓𝐶𝐷 0.09 0.09
𝑓𝐼𝐷 - -
–𝑉 582.0 621.4
𝑃𝐹 1813 1865
𝜂𝐶𝐷 0.188 0.185
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Figure 6-4: ARIES ACT II Model Comparison

Table 6.3: ACT II Variables

(a) Input Variables

Input Value
𝐻 1.22
𝑄 25.0
𝑁𝐺 1.3
𝜀 0.25
𝜅95 1.964
𝛿95 0.42
𝜈𝑛 0.41
𝜈𝑇 1.15
𝑙𝑖 0.603
𝐴 2.5
𝑍𝑒𝑓𝑓 2.12
𝑓𝐷 0.74
𝜏𝐹𝑇 1.6e9
𝐵𝐶𝑆 12.77

(b) Output Variables

Output Original Fussy.jl
𝑅0 9.75 10.22
𝐵0 8.75 9.05
𝐼𝑃 13.98 14.84
𝑛 0.86 0.82
𝑇 17.8 17.4
𝛽𝑁 0.026 0.023
𝑞95 8.0 6.6
𝑃𝑊 1.46 -
𝑓𝐵𝑆 0.77 0.66
𝑓𝐶𝐷 0.23 0.34
𝑓𝐼𝐷 - -
–𝑉 2209 2559
𝑃𝐹 2637 3460
𝜂𝐶𝐷 0.256 0.307
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Figure 6-5: DEMO Steady Model Comparison

Table 6.4: DEMO Steady Variables

(a) Input Variables

Input Value
𝐻 1.4
𝑄 24.46
𝑁𝐺 1.2
𝜀 0.385
𝜅95 1.8
𝛿95 0.333
𝜈𝑛 0.3972
𝜈𝑇 0.9187
𝑙𝑖 0.900
𝐴 2.856
𝑍𝑒𝑓𝑓 4.708
𝑓𝐷 0.7366
𝜏𝐹𝑇 1.6e9
𝐵𝐶𝑆 12.85

(b) Output Variables

Output Original Fussy.jl Modified
𝑅0 7.5 8.2 7.6
𝐵0 5.627 6.307 5.577
𝐼𝑃 21.63 30.93 22.05
𝑛 0.875 1.048 0.855
𝑇 18.07 27.83 23.00
𝛽𝑁 0.038 - -
𝑞95 4.405 3.761 4.360
𝑃𝑊 1.911 4.151 2.281
𝑓𝐵𝑆 0.611 0.424 0.492
𝑓𝐶𝐷 0.389 0.576 0.508
𝑓𝐼𝐷 - - -
–𝑉 2217 2879 2351
𝑃𝐹 3255 8971 4306
𝜂𝐶𝐷 0.4152 - -
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Figure 6-6: DEMO Pulsed Model Comparison

Table 6.5: DEMO Pulsed Variables

(a) Input Variables

Input Value
𝐻 1.1
𝑄 39.86
𝑁𝐺 1.2
𝜀 0.3226
𝜅95 1.59
𝛿95 0.333
𝜈𝑛 0.27
𝜈𝑇 1.094
𝑙𝑖 1.155
𝐴 2.735
𝑍𝑒𝑓𝑓 2.584
𝑓𝐷 0.7753
𝜏𝐹𝑇 7273
𝐵𝐶𝑆 12.77

(b) Output Variables

Output Original Fussy.jl Modified
𝑅0 9.07 8.10 7.61
𝐵0 5.67 5.48 5.71
𝐼𝑃 19.6 19.3 16.3
𝑛 0.7983 0.9795 0.9384
𝑇 13.06 13.28 13.00
𝛽𝑁 0.0259 - -
𝑞95 3.247 2.853 3.303
𝑃𝑊 1.05 1.47 1.23
𝑓𝐵𝑆 0.348 0.164 0.190
𝑓𝐶𝐷 0.096 0.106 0.103
𝑓𝐼𝐷 0.557 0.730 0.707
–𝑉 2502 1751 1452
𝑃𝐹 2037 2376 1756
𝜂𝐶𝐷 0.2721 - -
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6.2 Developing Prototype Reactors

Now that the model used in Fussy.jl has been tested against other fusion systems codes

in the field, we will develop our own prototype reactors. Because this paper is about

making a levelized comparison of pulsed and steady-state tokamaks, we will develop

middle-of-the-road reactors that only differ by operating mode. The parameters for

these two designs are captured in Tables 6.6 and 6.7.

To compare the two modes of operation, the steady-state prototype, Charybdis, is

the obvious choice to start with – as the model was tested against four of these typed

reactors. It was also pointed out that the model did remarkably well when recreating

ARC. As the authors share many of the ARC team’s philosophies, Charybdis uses

static parameters very similar to theirs.6

Next, although led to believe Charybdis’ pulsed twin reactor – Proteus – would be

created by a simple flip of the switch, it was a slight oversimplification. The first

difference is that the pulsed twin, Proteus, is assumed to be purely pulsed: 𝜂𝐶𝐷 = 0.

Further, the bootstrap current is much less important than it was for steady-state

tokamaks. This corresponds to a current profile peaked at the origin – i.e. a parabola.

Numerically, this is done by raising 𝑙𝑖 from around 0.55 to 0.6.

The final difference creates the largest change in the twin reactors: the choice of

necessary technological advancement. As mentioned several times before, the H factor

is a common way designers artificially boost the confinement of their machines. This

H value will thus be the technological advancement needed for Charybdis, the steady-

state prototype. Next, as the main conclusion of this paper is to state the advantages

of high magnetic fields, an inexpensive way to strengthen the central solenoid of

Proteus – through 𝐵𝐶𝑆 – will be employed using HTS tape.

The goal now is to impose a constraint on both reactors’ economic competitiveness

by setting their fusion power to a relatively low value – i.e. 1250 MW. As Fig. 6-7

shows, this results in Charybdis having an 𝐻 factor of 1.7 and Proteus having a 𝐵𝐶𝑆

of around 20 T. As shown in the Proteus cost curve, this was at a point where the

113



ratio between the minimum capital cost and the minimum cost-per-watt leveled off.

Note that these technological advancements (in 𝐻 and 𝐵𝐶𝑆) are necessary to get

economic – or even physically realizable – reactors. This is the same reason why all

the literature reactors used values for 𝐻 and 𝑁𝐺 that violate standard values.3,6
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Figure 6-7: Designing Reactor Prototypes

As is convention in fusion engineering, designs are built using one assumed technological
advancement. For steady-state reactors, we assume a method for improving confinement –

by increasing 𝐻. While in the pulsed case, the advancement is inexpensive magnet
technology for stronger fields in the central solenoid – 𝐵𝐶𝑆 .
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Figure 6-8: Steady State Prototype Comparison

Table 6.6: Charybdis Variables

(a) Input Variables

Input Value
𝐻 1.7
𝑄 25.0
𝑁𝐺 0.9
𝜀 0.3
𝜅95 1.8
𝛿95 0.35
𝜈𝑛 0.4
𝜈𝑇 1.1
𝑙𝑖 0.558
𝐴 2.5
𝑍𝑒𝑓𝑓 1.75
𝑓𝐷 0.9
𝜏𝐹𝑇 1.6e9
𝐵𝐶𝑆 12.0

(b) Output Variables

Output Value
𝑅0 4.13
𝐵0 10.28
𝐼𝑃 8.98
𝑛 1.47
𝑇 15.81
𝛽𝑁 0.028
𝑞95 6.089
𝑃𝑊 3.003
𝑓𝐵𝑆 0.723
𝑓𝐶𝐷 0.277
𝑓𝐼𝐷 0.0
–𝑉 225.5
𝑃𝐹 1294
𝜂𝐶𝐷 0.291
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Figure 6-9: Pulsed Prototype Comparison

Table 6.7: Proteus Variables

(a) Input Variables

Input Value
𝐻 1.0
𝑄 25.0
𝑁𝐺 0.9
𝜀 0.3
𝜅95 1.8
𝛿95 0.35
𝜈𝑛 0.4
𝜈𝑇 1.1
𝑙𝑖 0.633
𝐴 2.5
𝑍𝑒𝑓𝑓 1.75
𝑓𝐷 0.9
𝜏𝐹𝑇 7200
𝐵𝐶𝑆 20.0

(b) Output Variables

Output Value
𝑅0 6.11
𝐵0 4.93
𝐼𝑃 15.54
𝑛 1.16
𝑇 11.25
𝛽𝑁 0.028
𝑞95 2.5
𝑃𝑊 1.763
𝑓𝐵𝑆 0.2675
𝑓𝐶𝐷 0.0
𝑓𝐼𝐷 0.7325
–𝑉 732.6
𝑃𝐹 1667
𝜂𝐶𝐷 0.0
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6.2.1 Navigating around Charybdis

The Charybdis reactor is the steady-state twin developed for this paper. As men-

tioned, its parameters are similar to the ARC design. This is shown in Fig. 6-8, where

the two 𝑅0 – 𝐵0 curves are almost interchangeable. Before moving on, it proves useful

to note that the optimum place to build on these curves is where the two portions

intersect – as it minimizes costs. These cost curves are shown in Fig. 6-11.

6.2.2 Pinning down Proteus

The pulsed twin reactor, Proteus, highlights the effects of a high field central solenoid.

When compared to the Pulsed DEMO design, the 𝑅0 – 𝐵0 curve looks far more

favorable – i.e. each machine built at a certain magnet strength would be more

compact (and cheaper). An interesting facet of Proteus is that it exhibits all three

used limits: kink safety factor, Troyon beta, and wall loading. Cost curves are shown

in Fig. 6-12.

Table 6.8: Proteus and Charybdis Comparison

The twin pulsed and steady-state prototypes show general trends in terms of what values
the dynamic variables will have. As can be seen, the radius (𝑅0) of the pulsed prototype

(Proteus) is two meters larger than its steady-state twin (Charybdis).

(a) Charybdis

Output Value
𝑅0 4.13
𝐵0 10.28
𝐼𝑃 8.98
𝑛 1.47
𝑇 15.81
𝑓𝐵𝑆 0.72
𝑓𝐶𝐷 0.28
𝑃𝐹 1300
𝑊𝑀 9.48
𝐶𝑊 0.007

(b) Proteus

Output Value
𝑅0 6.11
𝐵0 4.93
𝐼𝑃 15.54
𝑛 1.16
𝑇 11.25
𝑓𝐵𝑆 0.27
𝑓𝐼𝐷 0.73
𝑃𝐹 1650
𝑊𝑀 7.09
𝐶𝑊 0.004
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6.2.3 Highlighting Operation Differences

Before moving onto general conclusions taken from the data, a quick investigation into

the pulsed vs. steady-state twin results is in order. This comparison is best abridged

in Table 6.8.

Most apparently, pulsed reactors are typically larger than steady-state ones and are

meant to be run at higher plasma currents. The former behavior was seen with the

DEMO designs,7,8 – as the larger size was needed for long pulse lengths.39 The latter

was then already mentioned while discussing how steady-state reactors never saw a

kink (current limiting) regime. Because higher currents improve confinement, pulsed

machines can also be run at much lower temperatures.

These combined effects lead to the minimum cost reactors for steady-state operation

having much higher toroidal field strengths than their pulsed counterparts. This is

discussed in Section 6.3.2 when explaining optimum use of HTS tape.

6.3 Learning from the Data

Now that the model has been properly vetted and the prototypes have been designed,

we can explore how pulsed and steady-state tokamaks scale. This will lead to three

mostly independent results. The first result will explore how to minimize costs for a

reactor by choosing optimum design points. The next will be an argument for how

to properly utilize the HTS magnet technology in component design. Lastly, we will

take a cursory look at the other parameters capable of lowering machine costs.

6.3.1 Picking a Design Point

With more than twenty design parameters, finding the most economic reactor is

computationally intractable. Locating optimum reactors, however, becomes much

more feasible when only focusing on dynamic variables – i.e. when keeping static
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Figure 6-10: Limiting Constraint Regimes

At a simple level, a reactor has around three regimes of design limiting constraints. At low
fields, the kink safety factor – through 𝑞* and Eq. (3.40) – drives design. Then at high

fields, wall loading – through 𝑃𝑊 and Eq. (3.44) – guide reactors. And between the two,
the beta limit – through 𝛽𝑁 and Eq. (3.37) – is the limiting constraint.

variables constant. This method, for example, is how all the 𝑅0 – 𝐵0 curves have

been produced this chapter. Once these curves are produced, it is up to the user to

choose which reactor on them to build. However, the guiding metric usually involves

lowering some cost, either: capital cost or cost-per-watt.

Regardless of reactor type, most economic tokamaks operate near the beta limit –

where plasma pressure is greatest. Besides being a regime highly sensitive to magnetic

field strength, the beta limit is a constraint that occurs on every reactor (seen by the

authors). This beta limit (𝛽𝑁) is usually nested between the kink limit (𝑞*) to lower

𝐵0 values and wall loading (𝑃𝑊 ) to higher ones. Understanding these regimes is the

first step towards building an intuition favoring economic machines – see Fig. 6-10.

Now that the beta limit curve has been designated as the most economic regime to

operate in (usually), the goal is to select which reactor on it is the best one to build.
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Starting with the easier of the two, the optimum design point for steady-state reactors

is the point where wall loading first starts to dominate design. Due to the wall loading

relation, given by Eq. (3.44), this causes the reactor to start increasing in size and

cost – which is bad. This conclusion is justified by the cost curves for all five reactors

in Fig. 6-11. As these show, it is also where the reactor designers pinned down their

tokamaks.∗

The problem of selecting an optimum design for the pulsed case is more difficult.

This is mainly due to there being a regime where the kink safety factor can actually

be a guiding limiting constraint. Following the conclusion from steady-state reactors

would be an oversimplification because there are actually two costs relevant to a

reactor: capital cost and cost-per-watt. These beta-wall reactors are actually the

points often best for minimizing cost-per-watt (i.e. your rate of return). The new

beta-kink reactors, then, lead to cheaper to build machines – as they minimize capital

cost. These conclusions are shown in Fig. 6-12.

Summarizing the conclusions of this subsection, the beta limit is usually the best

constraint to operate at. For lowering the cost-per-watt, a reactor should always be

run at the highest magnetic field strength (𝐵0) that has the beta limit at its maximum

allowed value. This most often occurs when wall loading takes over (for steady-state

reactors) or reactors start being physically unrealizable (for pulsed ones). Building

cheap to build reactors – i.e. minimizing capital cost – then actually proved to make

pulsed design one of trade-offs. This is because the beta-kink curve intersection

produces a low capital cost reactor, but at the price of operating at a subpar cost-

per-watt. Designers should therefore balance the two cost metrics when pinning down

a pulsed reactor.

∗Simply stated, the optimum reactor for steady-state tokamaks is one that just barely satisfies the
beta and wall loading limit simultaneously – i.e. where the two curves intersect.
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Figure 6-11: Steady State Cost Curves

Steady state reactors typically have two regimes – a lower magnet strength beta limiting
one and a high field wall loading one. As shown, each steady state scan produces a

minimum cost reactor at the point where the two regimes meet.
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(c) DEMO Pulsed Cost-per-Watt
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Figure 6-12: Pulsed Cost Curves

Pulsed reactor design is slightly more ambiguous than steady-state in terms of selecting an
operating point. These plots show that the cost-per-watt is reduced at the highest field
strength available to beta regime reactors. Whereas the minimum capital cost occurs

when the beta and kink limit are both just marginally satisfied.
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6.3.2 Utilizing High Field Magnets

The main conclusion for this paper is that high field magnets are the best route to

building a compact, economically competitive fusion reactor. In line with the MIT

ARC effort, these high fields will be built with high-temperature superconducting

(HTS) tape. This innovation is set to nearly double the strength of conventional

magnets. The real question is how to best use this technology.

At a very simple level, there are two main places strong magnets can be employed:

the toroidal fields (𝐵0) and the central solenoid (𝐵𝐶𝑆). The easier mode of operation

to start with is steady-state. This is because steady-state tokamaks do not rely on

a central solenoid to run their functionally infinite length pulses. Further, the cost

curves in Fig. 6-11 show that all the designs would benefit from toroidal fields (𝐵0)

not achievable with conventional magnets – as they can only reach around 13 T.12

The more interesting result is that pulsed reactors gain no real benefit from using HTS

toroidal field magnets – as mentioned previously in Section 6.2.3. Within the modern

paradigm (i.e. D-T fuel, H-Mode, etc), pulsed reactors never have to exceed the limits

of less expensive LTS magnets. The place HTS can really help is within the central

solenoid, which governs how long a pulse can last. Further, these improvements to

the central solenoid have diminishing returns past the range accessible to HTS tape.

Therefore HTS would, again, be more than adequate for the modern paradigm. These

conclusions are shown in Figs. 6-13 and 6-14.

Summarizing this subsection, HTS tape is one of the best ways to lower the cost of

fusion reactors at a commercial scale. For steady-state reactors, HTS works best in

the toroidal field coils (𝐵0), whereas the tape fares far better in the central solenoid

(𝐵𝐶𝑆) of pulsed reactors. As both effects saturate within the range of HTS tape,

more sophisticated magnetic technology may not be necessary. HTS is thus one

technological advancement that could help usher in an era of affordable fusion energy.∗

∗This notion of HTS technology leading the way to affordable fusion energy is in line with the 2018
FESAC TEC40 and NAS Burning Plasma41 reports.
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Figure 6-13: Pulsed 𝐵𝐶𝑆 Sensitivities

Pulsed machines become more economically attractive as their central solenoid is
strengthened. However as these plots show, the positive benefits of this have rapidly
diminishing returns. HTS tape’s magnet range happens to be inside this regime.
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(d) DEMO Pulsed 𝐵𝐶𝑆 Sampling

Figure 6-14: Pulsed Monte Carlo Sampling

As shown, pulsed machines have a preference towards small toroidal field strengths (𝐵0) –
as they minimize both capital costs and costs-per-watt. Further, increasing central

solenoid strength (𝐵𝐶𝑆) can lead to dramatically more competitive reactors. This effect
saturates at higher field strengths, however, as is shown in subfigure (b).
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6.3.3 Looking at Design Alternatives

Even in this relatively simple fusion model, there are more than twenty static/input

variables a designer can tune to improve reactor feasibility. Many have practical lim-

its, such as being physically realizable or fitting within the ELMy H-Mode database.

The goal of this subsection is, therefore, to investigate some of the more interesting

results. Although many more plots are available in Appendix H.

Capitalizing the Bootstrap Current

Besides artificially enhancing a plasmas confinement with the H-factor, steady-state

reactor designers may also heavily rely on high bootstrap currents. This is because

bootstrap current is the portion of current you do not have to pay for. The research

groups most focused on this technological advancement are General Atomic’s DIII-D24

in San Diego and PPPL’s NSTX-U in New Jersey.42 Improving bootstrap fractions

then relies on tailoring current profiles to be much more hollow.

Quickly reasoning this thought process are two sets of plots. The first plot (Fig. 6-15)

highlights how the cheapest possible steady-state designs have bootstrap fractions

approaching unity – they use almost no current drive. This makes sense as current

drive is extremely cost prohibitive (i.e. why people consider pulsed tokamaks).

The next plot (Fig. 6-16) is the parameter that determines a current profile’s peak

radius: 𝑙𝑖. As can be seen, the current peak approaches the outer edge of the plasma

as 𝑙𝑖 decreases. This in turn boosts the bootstrap fraction closer to one – leading to

inexpensive reactors.

Contextualizing the H-Factor

From before, increasing the H-factor always led to more cost effective steady-state

reactors. This is because the enhanced confinement allows for smaller machines.

This was already heavily explored in Fig. 6-1. These plots also show that steady
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Figure 6-15: Bootstrap Current Monte Carlo Sampling

The purpose of these plots is to show that a high bootstrap current always reduces the cost
of a steady state reactor – highly independent of actual input quantities (i.e. 𝜀, 𝑙𝑖, etc.)
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Figure 6-16: Internal Inductance Sensitivities

The internal inductance has a strong influence on the peaking radius (𝜌𝑚) of the hollow
profile and the bootstrap current fraction (𝑓𝐵𝑆). Lowering the internal inductance thus

makes a profile more hollow, which in turn increases the bootstrap fraction.
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state reactors would not be physically possible using a default H factor of one! In

other words, steady-state tokamaks require some technical advancement before they

can ever be used as fusion reactors.

For pulsed reactors, increasing H may always reduce capital costs, but it might

actually increase the cost-per-watt. This is because the fusion power can decrease

at a faster rate than the capital cost in a pulsed tokamak – both of which appear in

Eq. (1.3) defining the cost-per-watt. This interesting result demonstrates the unusual

behaviors of highly non-linear systems: intuition may not match model results.

Showcasing the Current Drive Efficiency

The last exploration is less about building an economic machine and more about

understanding the self-consistent current drive efficiency in steady-state tokamaks.

Using the Ehst-Karney model27 coupled with standard analysis5 leads to a remarkably

simple and accurate solver. As shown in Fig. 6-18, this model captures the physics

almost exactly for the different designs.∗

In a similar fashion as the bootstrap fraction results, the variable that most captures

how to directly maximize 𝜂𝐶𝐷 is the LHCD wave launch angle, 𝜃𝑤𝑎𝑣𝑒. When below

90∘ it is considered outside launch, whereas up to 135∘ it is considered inside launch.

Notably, these curves are not monotonic, there is an optimum launching angle – as

shown in Fig. 6-19.

It should be noted that the launch angle was not found to have a major impact. This

may be a due to an oversimplification of the model, as sources suggest inside launch

is preferable for multiple reasons.32

∗It did, however, not converge for the DEMO steady reactor. This is probably due to lack of
self-consistency for 𝜂𝐶𝐷 in their systems framework.
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Figure 6-17: Pulsed H Sensitivities

One curious result from the model is that the enhancement factor (H) can actually
increase the cost-per-watt (𝐶𝑊 ) of a tokamak reactor. This is because 𝐶𝑊 depends on

both the capital cost (𝑊𝑀 ) and the fusion power (𝑃𝐹 ). Although the two do both
generally decrease, the fusion power decreases at a faster rate for realistic values of H.
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Figure 6-18: Steady State Current Drive Efficiency

These plots shows that the Ehst-Karney current drive efficiency model27 used by
this document recovers values from other research studies with decent accuracy.
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Figure 6-19: Current Drive Efficiency vs. Launch Angle

These plots show that the Ehst-Karney model does have an optimum angle, but most
likely understates its importance – sources suggest inside launch is preferable for multiple

reasons.32
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Chapter 7

Planning Future Work for the Model

This model may run and produce interesting results, but there is always more to

be done. This chapter explores three potential fusion reactors that could help guide

real world designs. These are: a stellarator (Ladon), a steady-state/pulsed composite

(Janus), and a tokamak capable of reaching H, L, and I modes (Daedalus). The

chapter then concludes by describing several possible model improvements, including:

adding radiation sources, using pedestal profiles, and improving flux balance.

7.1 Incorporating Stellarator Technology – Ladon

A stellarator is, at a basic level, a tokamak helically twisted along the length of its

major circle (see Fig. 7-1). For a long time they were dismissed due to their poor

transport properties.5 Recent technological improvements, however, have eased this

burden – as seen with the recent Wendelstein 7-X device in Germany. The problem

now is the underdeveloped scaling laws that stem from a lack of machines and, more

fundamentally, data points.43

To use this model to properly prototype our stellarator prototype, Ladon, one would

need to replace at least: the Greenwald density limit and the confinement time scaling

law. In place of the Greenwald limit will likely be some other density or current limit,
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Figure 7-1: Cut-Away of Stellarator Reactor

A stellarator has a geometry similar to a tokamak, except it twists around its major axis.
This eliminates the need for net current to keep the device in equilibrium.

possibly the Bremsstrahlung density limit.44 This would likely require the density to

be carried throughout analysis – and consequently appear as a column in Table 5.1.

7.2 Making a Composite Reactor – Janus

The next interesting reactor would be a composite tokamak incorporating pulsed and

steady-state operation: Janus. Fundamentally, this would involve current coming

from both LHCD (steady-state), as well as inductive (pulsed) sources. How the two

can coexist is shown in Fig. 7-2. This scheme was actually already used in DEMO

Pulsed, but the current drive was not handled self-consistently. Coupling the two

current sources could reduce reliance on bootstrap current and lead to much more

compact machines.

The arguments against this are mainly technical: why build two difficult auxiliary

systems when one is needed – especially when they probably work against each other.

134



𝑓𝐵𝑆

𝑓𝐶𝐷 𝑓𝐼𝐷

Current Balance

Steady State
Purely Pulsed

Figure 7-2: Current Balance in a Tokamak

In a tokamak, there needs to be a certain amount of current – and that current has to
come from somewhere. All good reactors have an adequate bootstrap current. What

provides the remaining current is what distinguishes steady state from pulsed operation.

Although rational, it may turn out that the larger current achievable with two sources

may still lead to more economically competitive reactors.

7.3 Bridging Confinement Scalings – Daedalus

The final potential reactor – Daedalus – is designed so that it can be run in H-

Mode, L-Mode, and I-Mode. Up until now, only H-Mode (high confinement) has

been discussed due to its use in conventional reactor design. However, L-Mode (low)

and I-Mode45 (intermediate) may prove to produce more favorable scalings – in terms

of cost – as more of reactor space is explored.

To design Daedalus, the first step is actually building under H-Mode. This is because

L-Mode is available on every machine. The goal then is to find reactors that can also

reach I-Mode – simultaneously improving that scaling law’s fit and possibly making

the actual reactor more economic.
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Presented below are the three confinement scaling laws, as well as the generalized

formula. As should be noted, the I-Mode scaling currently lacks a true radial depen-

dence – as it has only been found on two machines.45 This is one reason Daedalus

would be so valuable.∗

𝜏𝐸 = 𝐾𝜏 𝐻
𝐼 𝛼𝐼
𝑃 𝑅𝛼𝑅

0 𝑎𝛼𝑎 𝜅𝛼𝜅 𝑛𝛼𝑛 𝐵 𝛼𝐵
0 𝐴𝛼𝐴

𝑃 𝛼𝑃
𝑠𝑟𝑐

(3.25)

𝜏𝐻𝐸 = 0.145𝐻
𝐼0.93𝑃 𝑅1.39

0 𝑎0.58 𝜅0.78 𝑛 0.41𝐵0.15
0 𝐴0.19

𝑃 0.69
𝑠𝑟𝑐

(3.27)

𝜏𝐿𝐸 = 0.048𝐻
𝐼0.85𝑃 𝑅1.2

0 𝑎0.3 𝜅0.5 𝑛 0.1𝐵0.2
0 𝐴0.5

𝑃 0.5
𝑠𝑟𝑐

(7.1)

𝜏 𝐼𝐸 =
0.014𝐻

0.68𝜆𝑅 · 0.22𝜆𝑎
· 𝐼

0.69
𝑃 𝑅𝜆𝑅

0 𝑎𝜆𝑎 𝜅0.0 𝑛 0.17𝐵0.77
0 𝐴0.0

𝑃 0.29
𝑠𝑟𝑐

(7.2)

𝜆𝑅 + 𝜆𝑎 = 2.2 (7.3)

A final point to make is reemphasizing that the I-Mode scaling law – developed by

the authors – is significantly underdeveloped. It is the target of ongoing research at

the MIT PSFC.45

7.4 Addressing Model Shortcomings

Before moving on to the final conclusions, we will give a quick recap of several of the

more overly simplified phenomena in this fusion systems framework. These include:

approximating temperature profiles as simple parabolas, neglecting all radiation ex-

cept Bremsstrahlung, and handling flux sources at too basic a level. This list is

non-comprehensive, as more sophisticated analysis would also improve the physics

behind: divertor heat loading, neutron wall loading, etc.

∗In H-Mode and L-Mode’s favor, they have been found on every machine that should see them.
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7.4.1 Integrating Pedestal Temperature Profiles

One of the largest shortcomings of this model is not handling plasma profiles self-

consistently. It instead treats them as simple parabolas. Although these parabolas

work for densities and L-Mode plasma temperatures, the same cannot be said for

H-Mode temperatures. This is because they have a distinct pedestal region on the

outer edge of the plasma.

The usage of pedestal temperatures – discussed in Appendix D – therefore improves

two aspects of the model: the fusion power and the bootstrap current. These were

shown in the results to be over-calculated and underestimated, respectively. First,

pedestals lower the total fusion power because they have a lower core temperature

than parabolic profiles with the same average value. Conversely, the pedestal’s quick

drop near the plasma’s edge would boost the bootstrap current, as it has a steep

derivative there.

These improvements could easily be added to the code, because temperature was

addressed to be a difficult-to-handle parameter from the beginning.

7.4.2 Expanding the Radiation Loss Term

The next area that would be improved by more sophisticated theory would be the

radiation loss term. From before, it was pointed out that the Bremsstrahlung ra-

diation was the dominant term within the plasma core and, therefore, provided a

first-order approximation. Drawing the radiation losses closer to real world values

would involve adding line radiation and synchrotron radiation. The former of which

would be needed as high-Z impurities become more important.

7.4.3 Taking Flux Sources Seriously

The final oversimplification in the model deals with the flux sources involved in a

pulsed reactor – which exist at multiple levels. First, the derivation of flux bal-
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ance started with a simple transformer between a solenoid primary and a plasma

secondary.

After we developed an equation for flux balance, we compared it to ones in the

literature (i.e. PROCESS) to build confidence in the model. To draw this equation

closer to theirs, we then added a PF coil contribution a posteriori. This implicitly

ignored coupling between most of the components. Thus leading to another source

of error for the model. Moreover, this formula for the PF coil contribution was much

simpler than ones found in other fusion systems codes.

Even though this model may be extremely simple, it still matches more sophisticated

frameworks at a much faster pace. These suggestions were just ways to account for

more realistic physics.
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Chapter 8

Concluding Reactor Discussion

The goal of this document was to fairly compare pulsed and steady-state tokamaks

– using a single, comprehensive model. The main conclusion is that both modes of

operation can produce economically competitive reactors, assuming some technolog-

ical advancement. The advancement most supported by the results was in magnet

technology, as MIT is currently exploring with high-temperature superconducting

(HTS) tape. However a more fundamental result is that pulsed operation can be

economically competitive and the United States should be putting a larger research

effort behind it.

Although some skepticism should be allotted to these conclusions, it was shown that

this simple algebraic solver was capable of matching more sophisticated frameworks

with speed and ease. This model may not provide an engineer’s level of rigor for cost

measurements, but does produce empirically-drawn costing trends applicable to the

target physics audience. Ultimately, it serves to complement higher dimension codes

when researchers want to investigate new areas of reactor space.

What the results truly show, though, is that no economic reactor can be built using

existing technology – regardless of whether it runs as pulsed or steady-state. This

is why every design from the literature exceeds standard values for 𝐻 and 𝑁𝐺.

Therefore, some technological advancement is needed. These may come from research
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and development into:

• building stronger magnets using HTS tape

• discovering reliable regimes of enhanced confinement

• producing higher bootstrap fractions with tailored profiles

• optimizing aspect ratio and elongation geometric parameters

As mentioned, using HTS tape to nearly double achievable magnet strengths is one

such advancement capable of making reactors economically viable. To best utilize

this resource, though, HTS tape should appear only in the TF coils for steady-

state machines and in the central solenoid for pulsed ones. This was because the

optimum toroidal field strength for pulsed machines was found to be achievable with

conventional low-temperature superconducting (LTS) magnets.

Further, it was shown that past the regime of magnet strengths relevant to HTS, cost

curves undergo considerably diminished returns. As such, HTS technology might be

the final major magnet advancement in the current H-Mode, D-T plasma paradigm.
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Appendix A

Cataloging Model Variables

A.1 Static Variables

Table A.1: List of Static Variables

Name Value
is_pulsed Is reactor pulsed or steady-state

𝐻 Enhancement factor for ELMy H-mode scaling
𝑄 Physics Gain (𝑃𝐹/𝑃𝐻)
𝜀 Inverse aspect ratio
𝜅95 Elongation at 95 flux surface
𝛿95 Triangularity at 95 flux surface
𝜈𝑛 Density peaking factor
𝜈𝑇 Temperature peaking factor
𝑍𝑒𝑓𝑓 Effective charge
𝑓𝐷 Dilution factor
𝐴 Average mass number (in amus)
𝑙𝑖 Internal inductance (interchangeable with 𝜌𝑚)
𝜌𝑚 Normalized radius of current peak (interchangeable with 𝑙𝑖)
𝑁𝐺 Greenwald density fraction
𝜂𝑇 Thermal efficiency of the reactor
𝜂𝑅𝐹 Efficiency of the RF antenna
𝜏𝐹𝑇 Time of flattop for reactor pulse
𝐵𝐶𝑆 Strength of magnetic field in central solenoid

(𝛽𝑁)𝑚𝑎𝑥 Maximum allowed normalized beta normal
(𝑞*)𝑚𝑎𝑥 Minimum allowed safety factor
(𝑃𝑊 )𝑚𝑎𝑥 Maximum allowed wall loading power per surface area
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A.2 Dynamic Variables

Table A.2: List of Dynamic Variables

Symbol Name Units
𝐼𝑃 Plasma Current MA
𝑇 Plasma Temperature keV
𝑛 Electron Density 1020 m−3

𝑅0 Major Radius m
𝐵0 Magnet Strength T

A.3 Intermediate Variables

Table A.3: List of Intermediate Variables (Noncomprehensive)

Name Value
𝐶𝑊 Cost-per-watt
𝑊𝑀 Magnetic energy
𝑃𝐹 Fusion power
𝑃Ω Resistive power
𝑃𝐵𝑅 Bremsstrahlung power
𝑃𝜅 Conductive heat losses
𝑃𝑊 Wall loading
𝛽𝑁 Plasma beta normal
𝑞* Kink safety factor
–V Tokamak volume in cubic meters
𝑓𝐵𝑆 Bootstrap current fraction
𝑓𝐶𝐷 Current drive fraction
𝑓𝐼𝐷 Inductive current fraction
𝑝 Volume-averaged plasma pressure

⟨𝜎𝑣⟩ Bosch-Hale fusion reactivity
𝑅𝑃 Plasma resistance
𝜏𝐸 Confinement time
𝑎 Tokamak minor radius
𝑏 Blanket thickness
𝑐 TF coil thickness
𝑑 Central solenoid thickness

𝑅𝐶𝑆 Central solenoid inner radius
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Appendix B

Simulating with Fussy.jl

Fussy.jl is a 0-D fusion systems code written using the Julia language. The reason for

choosing Julia over say Matlab or Python was due to metaprogramming concerns and

its tight-knit computational community, respectively. Incorporating the model used

throughout this paper, the code is both quick to run and matches more sophisticated

frameworks with high fidelity.

This chapter will be broken down into four steps. The first is getting a user up and

running with the code. Once the user gets to this point, hopefully they will wonder

how the code is structured – this is the second step. Next, we will explain the various

functions callable on reactor objects – the atomic data structure for Fussy.jl. And

lastly, there will be a quick tutorial.

B.1 Getting the Code to Work

The hardest step of any codebase is getting it up and running. These instructions

should get a user to a point where they are a few internet searches away from a

working copy of Fussy.jl. As an aide, you can view an interactive collection of Fussy.jl

Jupyter notebooks at the following website:

www.fusion.codes
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Although fusion.codes is a nice tool for viewing this document’s results, it is a little

slow for producing new data – and it also lacks a method for storing it. Therefore,

an advanced user should first download a copy of Julia from:

julialang.org/downloads

Currently the Fussy.jl codebase is written using v0.6, but should be v1.0 compatible

by 2020. Using Julia nomenclature, Fussy.jl is a Julia package. It can be cloned using

Julia conventions from the following Github repository:

https://github.com/djsegal/Fussy.jl.git

Once the Fussy.jl package has been cloned into your Julia package library, you should

be able to access it through the Julia REPL or a Jupyter notebook. You can now

reproduce every plot in this text. A quick test to see if your code works is:

using Fussy

cur_reactor = Reactor(15)

@assert cur_reactor.T_bar == 15

println("It works!")

If the code works, you should get a "It works!" message as output.

B.2 Sorting out the Codebase

Assuming the user got to this section, the code works and now you want to know

what you can do with it. The place to start is in the src folder, again viewable at:

git.io/tokamak

Within the src folder are several subfolders as well as a few files (e.g. Fussy.jl and

defaults.jl). In an attempt to not bore the reader, we will be painting with thick

brushstrokes. Further, the methods subfolder will be the topic of the next section –

as most involve calls on a reactor object.
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B.2.1 Typing out Structures

The place to start in any modeling framework is its data structures. These type

definitions allow the building of nested hierarchies of constructed objects. The most

atomic of these is the Reactor struct, but several other ones allow for solving broader

scoped questions (i.e. Scans, Sensitivities, and Samplings.)

The Reactor Structure

Reactors are the most atomic data structure in this fusion systems model. They

store all the fields needed to represent a reactor as it exists in reactor space. This

obviously includes its temperature, current, and radius, but also includes derived

quantities, such as the cost-per-watt and bootstrap fraction. They can be initialized,

solved, updated, and honed. Most other data structures are just wrappers to hold

these reactors – they are described next.

The Scan Structure

A Scan object is a collection of reactors made from scanning a list of temperatures.

For example, a scan of five temperatures from 5 keV to 25 keV would result in several

arrays of five reactors. Most often, one of these lists would correspond to beta reactors,

one to kink reactors, and one to wall loading reactors. There may then be fewer than

five reactors in a list if some of the reactors are invalid or fundamentally unsolvable.

This is the data structure that produces the various comparison plots in the results.

The Sensitivity Structure

Sensitivity studies are how computationalists test the effect of changing a variable

over multiple values – i.e. do a 20% sensitivity around the H factor. Like Scans,

Sensitivities store various lists of reactors, each corresponding to an interesting data

point. These include limit reactors where the beta limit and kink limit are just
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satisfied or when the beta limit and wall loading are just satisfied. Additionally, they

include the minimum capital cost reactors and the minimum cost-per-watt ones.

The Sampling Structure

The Sampling struct was created to do simple Monte Carlo runs over a reactor’s static

values. While sensitivities only allow one variable to change at a time, samplings

randomly assign a list of variables to some neighborhood of possible values. These

are how the scatter plots are made. Succinctly, where sensitivity studies show local

changes to variables, Monte Carlo samplings show global trends in reactor design.

The Equation Structure

In order to store the various equations from Table 5.1 is the Equation Struct. It stores

the 𝛾 exponents for: 𝑅0, 𝐵0, and 𝐼𝑃 . – as well as the function representing G(𝑇 ).

Repeated these are the unknowns in:

𝑅 𝛾𝑅
0 ·𝐵 𝛾𝐵

0 · 𝐼 𝛾𝐼𝑃 = 𝐺(𝑇 ) (5.3)

Concretely, there are 16 objects that use this struct – one for each equation (e.g. for

fusion power, the beta limit, and temperature assignment).

The Equation Set Structure

The step up from the Equation struct are the Equation Sets. These collections of

three equations allow 𝑅0, 𝐵0, and maybe 𝐼𝑃 to be substituted out of the current

balance root-solving equation. This is where Eqs. (5.4) to (5.10) come into play.
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B.2.2 Referencing Input Decks and Solutions

With more than twenty static variables in the model, the range of tokamak reactors

is basically infinite. To help users build a net of designs to explore reactor space are

seven input decks. These are the ones given in the results: ARC, ACT I/II, DEMO

Steady/Pulsed, Proteus and Charybdis. Coupled with the non-prototype reactors are

solution reactors that store various quantities from the original papers (e.g. 𝑃𝐹 , 𝑓𝐵𝑆,

𝑅0). These are how the comparison tables were constructed.

B.2.3 Acknowledging Utility Functions

For the uninitiated, utility functions are grab bag functions that do not really belong

in a codebase – but do anyway. This sentiment does not mean they are worthless,

just not fusion related at all. In Fussy.jl, the most notable are a normalized integral

calculator, a filter that includes numeric tolerances, and a robust root solver.

Although since incorporated into the official Roots.jl package, find_roots allows

finding an arbitrary number of roots within a bounded range. This was needed

because many roots can be found at various levels of the reactor solving problem –

i.e. for 𝐼𝑃 , 𝑇 , 𝜂𝐶𝐷, etc.

B.2.4 Mentioning Base Level Files

In addition to subdirectories within the src folder are three files: Fussy.jl, abstracts.jl,

and defaults.jl. Fussy.jl is the package’s main file that actually stores the Fussy

module. While, abstracts.jl stores various abstract structures that help clean up

other files.

Finally, defaults.jl stores various default values that are important to the codebase.

For example, this is where the various scaling law exponents are stored. It is also

where the bounding values for the different root solving problems live. These include

minimum and maximum values for: 𝐼𝑃 , 𝑇 , 𝜂𝐶𝐷.
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Now that a majority of the files have been discussed, we can turn to the reactor

methods. These constitute most of the interesting functionality within the codebase.

B.3 Delving into Reactor Methods

The reactor is the most atomic data structure in this model. It therefore makes

sense that it has many instance methods. These include all the coefficients, fluxes,

powers, etc. It also includes methods that solve a reactor, perform a match on some

field’s value, or converge 𝜂𝐶𝐷 to self-consistency. The various subdirectories within

the src/methods/reactors folder will now be discussed.

Calculations

The calculation subdirectory of reactor methods are used to set various important

values in the solver. For dynamic variables, these include: 𝑛, 𝑅0, 𝐵0, and 𝐼𝑃 . This

folder also includes the calculation of the Bosch-Hale reactivity and the Ehst-Karney

current drive efficiency.

Coefficients and Composites

The coefficients and composites directories correspond to the model’s static and dy-

namic coefficients, respectively. For clarity, static coefficients, including 𝐾𝑛 and 𝐾𝐶𝐷,

were labeled with a K. Whereas, dynamic coefficients then started with G’s – i.e. 𝐺𝑃𝐵

and 𝐺𝑉 .

Fluxes and Powers

Within flux balance and power balance were around a dozen terms or sub-terms.

Although not directly used in the conservation equations, sub-terms are used to com-

pare the model to ones from the literature. For clarity, fluxes include: Φ𝐶𝑆, Φ𝑃𝐹 ,

Φ𝑅𝑈 , Φ𝐹𝑇 , Φ𝑟𝑒𝑠, and Φ𝑖𝑛𝑑. The powers, then, include: 𝑃𝐹 , 𝑃𝐵𝑅, 𝑃𝜅, 𝑃𝑠𝑟𝑐, 𝑃𝑊 , etc.
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Profiles

The next collection of reactor methods are the various profiles. Most obviously, these

include radial plasma profiles for density, temperature, and current density. However,

this folder also includes the magnetic field strength as a function of radius – as was

used within current drive efficiency calculations.

Geometries

Additionally, there are many geometric relations. These include the various tokamak

thicknesses: a, b, c, d – as well as the radius and height of the central solenoid. This

group also includes the volume, perimeter, surface area, and cross-sectional area.

It also includes the many subscripted fields. For example, the elongation (i.e. 𝜅95)

includes the following alternative definitions: 𝜅𝑋 , 𝜅𝑃 , and 𝜅𝜏 .

Formulas

The final set of reactor methods are formulas that do not really fit anywhere else.

If a method is not related to geometry, power, calculations, etc, it ends up here.

For example, this group includes: 𝛽𝑁 , 𝑓𝐵𝑆, 𝐶𝑊 , and 𝜏𝐸. Total, there are around 25

formulas – as of the writing of this document.

B.4 Demonstrating Code Usage

Now that the Fussy.jl package has been described in detail, the final step is showing a

simple example that can recreate a figure from the results chapter. This will closely

match the Jupyter notebook available at:

www.git.io/fussy_sensitivity

Our goal will be to make a cost curve for the ARC reactor as a function of H – a so

called sensitivity study plot.
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B.4.1 Initializing the Workspace

The first step for any Fussy.jl Jupyter notebook is loading the required packages – i.e.

the Fussy.jl and Plots.jl packages. This can be done using the following commands:∗

addprocs(6)

@everywhere using Fussy

using Plots

The Plots.jl package may take a minute to load – similar to Matlab’s initial boot

time. If the kernel raises an error about Plots.jl not being installed, use the following

lines:

import Pkg

Pkg.add("Plots")

B.4.2 Running a Study

Now that the necessary packages have been loaded, we can move on to actually

running the sensitivity study. We will split this command into two steps to make it

more explicit.

The first step will be making several variables that store: boolean flags, numbers, and

symbols – which are like strings, but prefaced with a colon (:) instead of surrounded

by double quotes (").

cur_param = :H

cur_deck = :arc

is_pulsed = false

is_consistent = true

cur_sensitivity = 1.0

cur_num_points = 41

∗The addprocs and @everywhere commands are to parallelize the code. This is because
addprocs(6) activates 6 worker processes and @everywhere Fussy.jl adds Fussy.jl to the main
kernel and worker processes.
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These six variables almost completely describe a sensitivity study. The first two

say we are using the ARC reactor deck and running a sensitivity over the H-factor

parameter. Next, the two boolean values refer to the reactor (1) being treated as

pulsed or steady-state and (2) wether to handle 𝜂𝐶𝐷 self-consistently.∗ Ergo, what

these two flags do is make sure ARC is being handled as a steady-state reactor with

a self-consistent 𝜂𝐶𝐷. The last two variables are then ways to change the sensitivity

of the study (with 1.0 → 100%) and the number of reactors it will produce (i.e. 41).

Now all six of these variables can be piped into a call to the Study struct to start

running the sensitivity study:

cur_study = Study(

cur_param,

deck = cur_deck,

is_pulsed = is_pulsed,

is_consistent = is_consistent,

sensitivity = cur_sensitivity,

num_points = cur_num_points

)

Note here that the equal signs inside the parentheses are called keyword arguments,

which are common to most modern programming languages. After executing the

command, the code will need to run for a few minutes.

B.4.3 Extracting Results

At this point, a user should have a completed sensitivity study they wish to plot.

To make the plot useful, the study data structure first has to be unpacked and its

contents cleaned. This is the goal of this subsection.

First and foremost, a study has four families of reactors within it: beta-wall (i.e.

"wall"), beta-kink (i.e. "kink"), minimum capital cost (i.e. "W_M"), and minimum

∗Note that, currently, a pulsed reactor cannot be self-consistent in 𝜂𝐶𝐷 – it therefore causes an error.
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cost-per-watt (i.e. "cost"). Therefore, we will extract these reactor lists into a new

dictionary data structure:

cur_dict = Dict()

cur_dict["Beta-Wall"] = cur_study.wall_reactors

cur_dict["Beta-Kink"] = cur_study.kink_reactors

cur_dict["Min Cost-per-Watt"] = cur_study.cost_reactors

cur_dict["Min Capital Cost"] = cur_study.W_M_reactors

Next, we will want to filter out all the invalid reactors that constitute non-physically

realizable ones. These would likely be reactors that could fit in your hand or take up

a whole city block.

for (cur_key, cur_value) in cur_dict

cur_dict[cur_key] = filter(

cur_reactor -> cur_reactor.is_valid,

deepcopy(cur_value)

)

end

B.4.4 Plotting Curves

Our goal is now to turn our unpacked, clean reactor lists into plots – i.e. measuring

costs-per-watt as a function of H. For simplicity, this will lack a lot of the features

shown in the Jupyter notebook from the beginning of the section. Additionally, we

will be doing it in an iterative process made possible by the Plots.jl framework.

The first step is simply making a plot object

cur_plot = plot()

After execution, this should produce the blank 2-D plot shown in Fig. B-1.
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Figure B-1: A Blank Plot

A simple 2-D plot with no labels or data.

Next we will add a simple title and labels for the axes:

title!("ARC")

xlabel!("H")

ylabel!("Cost")

The exclamation marks ensure this title and the labels are added to the cur_plot.

Upon execution, you should see a plot with this information (Fig. B-2).

Now we will loop over the dictionary of reactors and add them one at a time.

for (cur_key, cur_value) in cur_dict

cur_x = map(cur_reactor -> cur_reactor.H, cur_value)

cur_y = map(cur_reactor -> cur_reactor.cost, cur_value)

plot!(cur_x, cur_y, label=cur_key)

end

plot!()

This results in the not very useful plot shown in Fig. B-3. Note that each label is

exactly the key assigned to it in cur_dict.
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Figure B-2: An Empty Plot

A simple 2-D plot with labels, but no data.

Figure B-3: An Unscaled Plot

A simple 2-D plot with Bad Limits.
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Figure B-4: A Scaled Plot

An example plot showing cost as a function of the H factor.

The final step is adding proper limits to make what is going on obvious to the reader:

ylims!(0, 0.03)

The addition of this can be seen in Fig. B-4.

This completes the example. At this point, you should now be able to use every

feature of Fussy.jl. Good luck!
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Appendix C

Discussing Fusion Power

In a tokamak reactor, the main source of output power is fusion. Therefore, this

chapter goes over a quick background of fusion power and describes a method for

how to calculate the reactivity term that appears inside it. The particular method

used for this reactivity approximation was done by Bosch and Hale in 1992.46

C.1 Theoretical Background

The natural place to start when introducing fusion energy is the binding energy per

nucleon curve shown in Fig. C-1. As can be seen, this function reaches a maximum

value around the element Iron (A=56). What this means at a basic level is: elements

lighter than iron can fuse into a heavier one (i.e. hydrogens into helium), whereas

heavier elements can fission into lighter ones (e.g. uranium into krypton and barium).

This is what differentiates fission (uranium-fueled) reactors from fusion (hydrogen-

fueled) ones. For fusion reactors, the most common reaction in a first-generation

tokamak will be:

2𝐻 + 3𝐻 → 4𝐻𝑒+ 1𝑛+ 𝐸𝐹 (C.1)

𝐸𝐹 = 17.6 MeV (C.2)
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Figure C-1: Comparing Nuclear Fusion and Fission

The binding energy per nucleon is what differentiates nuclear fusion from fission. Nuclei
heavier than Iron fission (e.g. Uranium), while light ones – such as Hydrogen – fuse.

What this reaction (shown in Fig. C-2) describes is two isotopes of hydrogen – i.e.

deuterium and tritium – fusing into a heavier element, helium, while simultaneously

ejecting a neutron. The entire energy of the fusion reaction (𝐸𝐹 ) is then divvied

up 80-20 between the neutron and helium, respectively. Quantitatively, the helium

(often referred to as an alpha particle) receives 3.5 MeV.

𝑃𝑛 = 0.8 · 𝑃𝐹 (C.3)

𝑃𝛼 = 0.2 · 𝑃𝐹 (C.4)

The final point to make is the main difference between the two fusion products:

helium (i.e. the alpha particle) and the neutron. First, neutrons lack a charge – they

are neutral. This means they cannot be confined with magnetic fields. As such, they

simply move in straight lines until they collide with other particles. As the structure
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Figure C-2: The D-T Fusion Reaction

In a first generation tokamak reactor, the main source of energy will come from two
hydrogen isotopes fusing into a helium particle – and ejecting a 14.1 MeV neutron.

of a tokamak is mainly metal, the neutron is much more likely to collide there than the

gaseous plasma, which is orders of magnitude less dense. Conversely, alpha particles

are charged – when stripped of their electrons – and can therefore be kept within

the plasma using magnets. What this means practically is that of the 17.6 MeV that

comes from every fusion reaction, only 3.5 MeV remains inside the plasma (within

the helium particle species).

C.2 Bosch-Hale Reactivity

The formula for fusion power used in this model makes use of a reactivity term –

(𝜎𝑣):5

𝑃𝐹 =

∫︁
𝐸𝐹 𝑛𝐷 𝑛𝑇 ⟨𝜎𝑣⟩ 𝑑r (C.5)
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Summarizing the work of Section 2.2.3, this fusion power volume integral can be

reduced to a 0-D form – assuming the geometry prescribed by this model:

𝑃𝐹 = 𝐾𝐹 · (𝑛2𝑅3
0 ) · (𝜎𝑣) [𝑀𝑊 ] (C.6)

(𝜎𝑣) = 1021 (1 + 𝜈𝑛)
2

1∫︁
0

(1− 𝜌2) 2𝜈𝑛⟨𝜎𝑣⟩ 𝜌 𝑑𝜌 (C.7)

𝐾𝐹 = 278.3 (𝑓 2
𝐷 𝜀

2𝜅 𝑔) (C.8)

This reactivity term (or volumetric fusion reaction rate) can then be approximated

by the Bosch-Hale parameterization, with coefficients given in Table C.1.46,47

⟨𝜎𝑣⟩ = 𝐶1 · 𝜃 · exp(−3𝜉) ·

√︃
𝜉

𝑚𝜇𝑐2𝑇 3
[m3/s ] (C.9)

𝜃 = 𝑇 ·
(︂
1− 𝑇 (𝐶2 + 𝑇 (𝐶4 + 𝑇𝐶6))

1 + 𝑇 (𝐶3 + 𝑇 (𝐶5 + 𝑇𝐶7))

)︂−1

(C.10)

𝜉 =

(︂
𝐵2
𝐺

4𝜃

)︂1/3

(C.11)

For D-T (Deuterium-Tritium) fuel within a standard fusion temperature regime (i.e.

𝑇 ∈ [10, 20] keV), this can be simplified to:47

⟨𝜎𝑣⟩DT = 1.1× 10−24 · 𝑇 2 [m3/s ] (C.12)

In our model, each appearance of T is set to the radial profile defined earlier – as it

appears inside an integral.

Example tabulations for this reactivity are given in Table C.2.46–48
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Table C.1: Bosch-Hale Parametrization Coefficients

2H(d,n)3He 2H(d,p)3H 3𝐻(d,n)4He 3He(d,p)4He
B𝐺 [keV1/2] 31.3970 31.3970 34.3827 68.7508
𝑚𝜇𝑐

2 [keV] 937 814 937 814 1 124 656 1 124 572
C1 5.43360×10−12 5.65718×10−12 1.17302×10−9 5.51036×10−10

C2 5.85778×10−3 3.41267×10−3 1.51361×10−2 6.41918×10−3

C3 7.68222×10−3 1.99167×10−3 7.51886×10−2 -2.02896×10−3

C4 0.0 0.0 4.60643×10−3 -1.91080×10−5

C5 -2.96400×10−6 1.05060×10−5 1.35000×10−2 1.35776×10−4

C6 0.0 0.0 -1.06750×10−4 0.0
C7 0.0 0.0 1.36600×10−5 0.0

Valid range (keV) 0.2<T𝑖 <100 0.2<T𝑖 <100 0.2<T𝑖 <100 0.5<T𝑖 <190

Table C.2: Tabulated Bosch-Hale Reactivities

T (keV) 2H(d,n)3He 2H(d,p)3H 3𝐻(d,n)4He 3He(d,p)4He
1.0 9.933×10−29 1.017×10−28 6.857×10−27 3.057×10−32

1.5 8.284×10−28 8.431×10−28 6.923×10−26 1.317×10−30

2.0 3.110×10−27 3.150×10−27 2.977×10−25 1.399×10−29

3.0 1.602×10−26 1.608×10−26 1.867×10−24 2.676×10−28

4.0 4.447×10−26 4.428×10−26 5.974×10−24 1.710×10−27

5.0 9.128×10−26 9.024×10−26 1.366×10−23 6.377×10−27

8.0 3.457×10−25 3.354×10−25 6.222×10−23 7.504×10−26

10.0 6.023×10−25 5.781×10−25 1.136×10−22 2.126×10−25

12.0 9.175×10−25 8.723×10−25 1.747×10−22 4.715×10−25

15.0 1.481×10−24 1.390×10−24 2.740×10−22 1.175×10−24

20.0 2.603×10−24 2.399×10−24 4.330×10−22 3.482×10−24
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Appendix D

Selecting Plasma Profiles
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Figure D-1: Radial Plasma Profiles

The three most fundamental properties of a fusion plasma are its temperature, density,
and current. These profiles allow the model to reduce from three dimensions to half of one.

D.1 Density – 𝑛

The Density is important to us. We use it in the Greenwald density limit, so it should

be clean in both line-averaged and volume-averaged forms. Because of its flat profile,
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a parabola is a good approximation for H-mode pulses:

𝑛(𝜌) = 𝑛 · (1 + 𝜈𝑛) ·
(︀
1− 𝜌2

)︀𝜈𝑛 (D.1)

The line average density is related to 𝑛 through:

𝑛̂ = 𝑛 ·
(︂
𝜋 1/2

2

)︂
· Γ( 𝜈𝑛 + 2 )

Γ( 𝜈𝑛 + 3/2 )
(D.2)

The convenience of this function comes from how the volumetric average comes out.

To relate this to the volume integral, we use:

𝑥 =
1

–𝑉

∫︁
𝑥(𝜌) 𝑑–𝑉 (D.3)

For a normalized radial profile that does not depend on angle,

–𝑉 =

∫︁ 1

0

𝜌 𝑑𝜌 = 1/2 (D.4)

Then, when 𝑥 = 𝑛,

𝑛 = 2

∫︁ 1

0

𝑛(𝜌)𝜌 𝑑𝜌 = 𝑛 (D.5)

Additionally, the Greenwald Density limit that we will use throughout,

𝑛̂ = 𝑁𝐺 ·
(︂
𝐼𝑀
𝜋𝑎2

)︂
(D.6)

can now be written in the following form:

𝑛 = 𝐾𝑛 ·
(︂
𝐼𝑀
𝑅 2

0

)︂
(D.7)

𝐾𝑛 =
2𝑁𝐺

𝜀2𝜋 3/2
·
(︂
Γ( 𝜈𝑛 + 3/2 )

Γ( 𝜈𝑛 + 2 )

)︂
(D.8)
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D.2 Temperature – 𝑇

The Temperature is the swept variable in our model framework. Therefore, it’s the

one we can allow people to be the most cavalier with. Additionally, as temperature

profiles are highly peaked, their pedestal region is sometimes wrongfully neglected

with a parabola.

𝑇 (𝜌) = 𝑇 · (1 + 𝜈𝑇 ) ·
(︀
1− 𝜌2

)︀𝜈𝑇 (D.9)

Therefore, our model sometimes treats the system as if it had a pedestal region. This

is mainly for the bootstrap current and fusion power, which were previously known

to misalign and overshoot, respectively.

𝑇 (𝜌) =

⎧⎪⎨⎪⎩𝑇𝑝𝑎𝑟𝑎 , 𝑥 ∈ [0, 𝜌𝑝𝑒𝑑]

𝑇𝑙𝑖𝑛𝑒 , 𝑥 ∈ (𝜌𝑝𝑒𝑑, 1]

(D.10)

Where the piecewise functions are given by,

𝑇𝑝𝑎𝑟𝑎 = 𝑇𝑝𝑒𝑑 + (𝑇0 − 𝑇𝑝𝑒𝑑) ·

(︃
1−

(︂
𝜌

𝜌𝑝𝑒𝑑

)︂𝜆𝑇)︃𝜈𝑇

(D.11)

𝑇𝑙𝑖𝑛𝑒 = 𝑇𝑠𝑒𝑝 + (𝑇𝑝𝑒𝑑 − 𝑇𝑠𝑒𝑝) ·
(︂

1− 𝜌

1− 𝜌𝑝𝑒𝑑

)︂
(D.12)

This temperature profile is related to the volume-averaged temperature through,

𝑇 · –𝑉 =

∫︁ 𝜌𝑝𝑒𝑑

0

𝑇𝑝𝑎𝑟𝑎(𝜌) 𝜌 𝑑𝜌+

∫︁ 1

𝜌𝑝𝑒𝑑

𝑇𝑙𝑖𝑛𝑒(𝜌) 𝜌 𝑑𝜌 (D.13)

Starting with the second integral,

∫︁ 1

𝜌𝑝𝑒𝑑

𝑇𝑙𝑖𝑛𝑒(𝜌) 𝜌 𝑑𝜌 =
1

3
· (1− 𝜌𝑝𝑒𝑑) · ((𝑇𝑠𝑒𝑝 + 𝑇𝑝𝑒𝑑/2) + 𝜌𝑝𝑒𝑑 · (𝑇𝑝𝑒𝑑 + 𝑇𝑠𝑒𝑝/2)) (D.14)
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The first integral can be handled by breaking it into to,

∫︁ 𝜌𝑝𝑒𝑑

0

𝑇𝑝𝑎𝑟𝑎(𝜌) 𝜌 𝑑𝜌 = 𝑇𝑝𝑒𝑑 ·
∫︁ 𝜌𝑝𝑒𝑑

0

𝜌 𝑑𝜌 +

(𝑇0 − 𝑇𝑝𝑒𝑑) ·
∫︁ 𝜌𝑝𝑒𝑑

0

(︃
1−

(︂
𝜌

𝜌𝑝𝑒𝑑

)︂𝜆𝑇)︃𝜈𝑇

· 𝜌 𝑑𝜌 (D.15)

The first sub-integral is then,

𝑇𝑝𝑒𝑑 ·
∫︁ 𝜌𝑝𝑒𝑑

0

𝜌 𝑑𝜌 =
𝑇𝑝𝑒𝑑 𝜌

2
𝑝𝑒𝑑

2
(D.16)

Utilizing the following transformation,

𝑢 =
𝜌

𝜌𝑝𝑒𝑑
(D.17)

𝑑𝜌 = 𝜌𝑝𝑒𝑑 𝑑𝑢 (D.18)

𝑢(𝜌 = 𝜌𝑝𝑒𝑑) = 1 (D.19)

The second sub-integral becomes (assuming independence from 𝑇0 and 𝑇𝑝𝑒𝑑),

(𝑇0 − 𝑇𝑝𝑒𝑑) · 𝜌2𝑝𝑒𝑑 ·
∫︁ 1

0

(︀
1− 𝑢𝜆𝑇

)︀𝜈𝑇 · 𝑢 𝑑𝑢 (D.20)

Where: ∫︁ 1

0

(︀
1− 𝑢𝜆𝑇

)︀𝜈𝑇 · 𝑢 𝑑𝑢 =
Γ (1 + 𝜈𝑇 ) Γ

(︁
2
𝜆𝑇

)︁
𝜆𝑇 · Γ

(︁
1 + 𝜈𝑇 + 2

𝜆𝑇

)︁ (D.21)

We are now in a position to solve for 𝑇0 in terms of 𝑇 :

𝑇0 = 𝑇𝑝𝑒𝑑 +
𝑇 −𝐾𝑇𝑈

𝐾𝑇𝐷

(D.22)

𝐾𝑇𝑈 = 𝑇𝑝𝑒𝑑 𝜌
2
𝑝𝑒𝑑 +

(1− 𝜌𝑝𝑒𝑑)

3
· ((2𝑇𝑠𝑒𝑝 + 𝑇𝑝𝑒𝑑) + 𝜌𝑝𝑒𝑑 · (2𝑇𝑝𝑒𝑑 + 𝑇𝑠𝑒𝑝)) (D.23)
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𝐾𝑇𝐷 = 𝜌2𝑝𝑒𝑑 ·
(︂

2

𝜆𝑇

)︂
·
Γ (1 + 𝜈𝑇 ) Γ

(︁
2
𝜆𝑇

)︁
Γ
(︁
1 + 𝜈𝑇 + 2

𝜆𝑇

)︁ (D.24)

Which although not pretty, can be plugged into the original equation.

D.3 Pressure – 𝑝

The first point to make is that we are not using the same temperature profile for

the pressure as for the temperature. This is because it would lead to hypergeometric

functions that are not worth the headache.

As most of the pressure is at the center, we use simple parabolic profile. This leads

to:

𝑝 = 0.1581 (1 + 𝑓𝐷)
(1 + 𝜈𝑛) (1 + 𝜈𝑇 )

1 + 𝜈𝑛 + 𝜈𝑇
𝑛𝑇 [𝑎𝑡𝑚] (D.25)

D.4 Bootstrap Current – 𝑓𝐵𝑆

We start with,

𝑓𝐵𝑆 =
𝐼𝐵𝑆
𝐼𝑃

=
2𝜋𝑎2𝜅

𝐼𝑃

∫︁ 1

0

𝐽𝐵 𝜌 𝑑𝜌 (D.26)

Expanding the previous equation using the following relations,

𝐽𝐵 = −4.85 ·𝑅0𝜀
1/2 ·

(︂
𝜌1/2𝑛𝑇

d𝜓/d𝜌

)︂
·
(︂

d𝑛/d𝜌

𝑛
+ 0.54 ·

d𝑇/d𝜌

𝑇

)︂
(D.27)

d𝜓
d𝜌

=
𝜇0𝑅0𝐼𝑃

𝜋
·
(︂

𝜅

1 + 𝜅2

)︂
· 𝑏𝑝(𝜌) (D.28)

Yields:

𝑓𝐵𝑆 = −𝐾𝐵𝑆

∫︁ 1

0

(︀
1− 𝜌2

)︀𝜈𝑛 ·
(︂
𝜌3/2

𝑏𝑝(𝜌)

)︂
·
(︂
𝑇

𝑛
· d𝑛
d𝜌

+ 0.54 · d𝑇
d𝜌

)︂
𝑑𝜌 (D.29)
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𝐾𝐵𝑆 = 𝐾𝑛 ·
(︂
2𝜋2 · 4.85 · 𝜀5/2

𝜇0

)︂
· (1 + 𝜈𝑛) · (1 + 𝜅2) (D.30)

Here, 𝑏𝑝 comes from:

𝑏𝑝(𝜌) =
−𝑒𝛾𝜌2(𝛾𝜌2 − 1− 𝛾)− 1− 𝛾

𝜌 (𝑒𝛾 − 1− 𝛾)
(D.31)

And the value of 𝛾 comes from the the normalized internal inductance:

𝑙𝑖 =
4𝜅

1 + 𝜅2

∫︁ 1

0

𝑏2𝑝 𝜌 𝑑𝜌 (D.32)

With our profiles,

−
(︂
𝑇

𝑛
· d𝑛
d𝜌

)︂
= 2𝜈𝑛 ·

(︂
𝑇 · 𝜌
1− 𝜌2

)︂
(D.33)

While treating temperature differently results in,

−
(︂

d𝑇
d𝜌

)︂
𝑝𝑎𝑟𝑎

=

(︃
𝑇0 − 𝑇𝑝𝑒𝑑

𝜌𝜆𝑇𝑝𝑒𝑑

)︃
· (𝜈𝑇𝜆𝑇 ) · 𝜌𝜆𝑇−1 ·

(︃
1−

(︂
𝜌

𝜌𝑝𝑒𝑑

)︂𝜆𝑇)︃𝜈𝑇−1

(D.34)

−
(︂

d𝑇
d𝜌

)︂
𝑙𝑖𝑛𝑒

=

(︂
𝑇𝑝𝑒𝑑 − 𝑇𝑠𝑒𝑝
1− 𝜌𝑝𝑒𝑑

)︂
(D.35)

Where we will be using the new symbol definition,

𝜕𝑇 = −
(︂

d𝑇
d𝜌

)︂
(D.36)

Which ultimately allows us to write,

𝑓𝐵𝑆 = 𝐾𝐵𝑆

∫︁ 1

0

𝐻𝐵𝑆 𝑑𝜌

𝐻𝐵𝑆 =
(︀
1− 𝜌2

)︀𝜈𝑛−1 ·
(︂
𝜌3/2

𝑏𝑝(𝜌)

)︂
·
(︂
2𝜈𝑛 · 𝜌 · 𝑇 + 0.54 ·

(︀
1− 𝜌2

)︀
· 𝜕𝑇

)︂
(D.37)

(D.38)
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Where the values of 𝑇 are determined through,

𝑇𝑝𝑎𝑟𝑎 = 𝑇𝑝𝑒𝑑 + (𝑇0 − 𝑇𝑝𝑒𝑑) ·

(︃
1−

(︂
𝜌

𝜌𝑝𝑒𝑑

)︂𝜆𝑇)︃𝜈𝑇

(D.39)

𝑇𝑙𝑖𝑛𝑒 = 𝑇𝑠𝑒𝑝 + (𝑇𝑝𝑒𝑑 − 𝑇𝑠𝑒𝑝) ·
(︂

1− 𝜌

1− 𝜌𝑝𝑒𝑑

)︂
(D.40)

And the values of 𝜕𝑇 are:

𝜕𝑇𝑝𝑎𝑟𝑎 =

(︃
𝑇0 − 𝑇𝑝𝑒𝑑

𝜌𝜆𝑇𝑝𝑒𝑑

)︃
· (𝜈𝑇𝜆𝑇 ) · 𝜌𝜆𝑇−1 ·

(︃
1−

(︂
𝜌

𝜌𝑝𝑒𝑑

)︂𝜆𝑇)︃𝜈𝑇−1

(D.41)

𝜕𝑇𝑙𝑖𝑛𝑒 =

(︂
𝑇𝑝𝑒𝑑 − 𝑇𝑠𝑒𝑝
1− 𝜌𝑝𝑒𝑑

)︂
(D.42)

D.5 Volume Averaged Powers

The first thing to consider in a fusion reactor is power balance. It is what separates

a net power producing reactor from a power-consuming research device.

𝑃𝛼 + 𝑃𝐻 = 𝑃𝜅 + 𝑃𝐵 (D.43)

𝑃𝛼 =
𝑃𝐹
5

(D.44)

𝑃𝐻 =
𝑃𝐹
𝑄

(D.45)

𝑃𝜅 =
3

2 𝜏𝐸

∫︁
𝑝 𝑑r [ 3𝐷 ] (D.46)

𝑃𝐵 = 5.35𝑒3𝑍𝑒𝑓𝑓

∫︁
𝑛2
𝑛

√
𝑇 𝑑r [ 3𝐷 ] (D.47)

As mentioned before, 𝑃𝐹 is handled by (𝜎𝑣) and therefore the lefthand-side uses the

pedestal temperature profiles. However, for the same reasons as discussed earlier, the

righthand-side (𝑃𝜅 and 𝑃𝐵) need to use the parabolic temperature profiles.
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Using the parabolic profiles (for 𝑛 and 𝑇 ) gives for the Bremsstrahlung radiation,

𝑃𝐵 = 𝐾𝐵 ·
(︁
𝑅3

0 𝑛
2
√︀
𝑇
)︁

[𝑀𝑊 ] (D.48)

𝐾𝐵 = 0.1056 · 𝑍𝑒𝑓𝑓 · ( 𝜀2 𝜅 𝑔 ) ·
(1 + 𝜈𝑛)

2 (1 + 𝜈𝑇 )
1/2

1 + 2 𝜈𝑛 + 0.5 𝜈𝑇
(D.49)

And a similar exercise for the thermal conduction losses results in:

𝑃𝜅 = 𝐾𝜅 ·
(︂
𝑅3

0 𝑛𝑇

𝜏𝐸

)︂
[𝑀𝑊 ] (D.50)

𝐾𝜅 = 0.4744 · (1 + 𝑓𝐷) · ( 𝜀2 𝜅 𝑔 ) ·
(1 + 𝜈𝑛) (1 + 𝜈𝑇 )

1 + 𝜈𝑛 + 𝜈𝑇
(D.51)

This concludes an exploration into a slightly more accurate profile construction. It

should be noted that these pedestals are still not self-consistent. A true description

of profiles would result in a much slower model.
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Appendix E

Determining Plasma Flux Surfaces

This chapter goes over the flux surface coordinates that define the tokamak geometry.

These are then used to approximate the surface area and volume, as well as create

surface and volume integrals.

Figure E-1: Cut-Away of Tokamak Reactor

The three main components of a magnetic fusion reactor are: the tokamak structure, the
plasma fuel, and the spring-like solenoid at the center.
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E.1 Flux Surface Coordinates

We begin with the shape of the outer plasma surface (i.e. the 95% flux surface) written

in terms of normalized coordinates x and y as follows – with 𝛼 being an angle-like

coordinate:

𝑅 = 𝑅0 + 𝑎𝑥(𝛼) (E.1)

𝑍 = 𝑎𝑦(𝛼) (E.2)

0 ≤ 𝛼 ≤ 2𝜋 (E.3)

The surface representation can now be written as:

𝑥(𝛼) = 𝑐0 + 𝑐1 cos(𝛼) + 𝑐2 cos(2𝛼) + 𝑐3 cos(3𝛼) (E.4)

𝑦(𝛼) = 𝜅 sin(𝛼) (E.5)

The constraints determining 𝑐𝑗 – for 𝑗 = 1, 2, 3 – are chosen as:

𝑥(0) = 1 (E.6)

𝑥(𝜋) = −1 (E.7)

𝑥
(︁𝜋
2

)︁
= −𝛿 (E.8)

𝑥𝛼𝛼(𝜋) = 0.3 · (1− 𝛿2) (E.9)

The last constraint, which is related to the surface curvature at 𝛼 = 𝜋, is chosen to

make sure that the surface is always convex. A trial and error empirical fit resulted

in the choice 𝑥𝛼𝛼(𝜋) = 0.3 · (1− 𝛿2). The constraint relations are easily evaluated and
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then solved, leading to values for the 𝑐𝑗,

𝑐0 = −𝛿
2

(E.10)

𝑐1 = 𝑔 (E.11)

𝑐2 =
𝛿

2
(E.12)

𝑐3 = 1− 𝑔 (E.13)

Here, g is a shaping parameter approximately equal to one:

𝑔 =
9− 2𝛿 − 0.3 · (1− 𝛿2)

8
(E.14)

E.2 Cross-sectional Area and Volume

The plasma cross-sectional area and volume can be evaluated by straightforward

calculations,

𝐴 =

∫︁∫︁
𝑑𝑅𝑑𝑍 = 𝑎2

∫︁∫︁
𝑑𝑥𝑑𝑦 = 𝑎2

∫︁ 2𝜋

0

𝑥
𝑑𝑦

𝑑𝛼
𝑑𝛼

= 𝜋𝑎2𝜅𝑔

(E.15)

–𝑉 =

∫︁∫︁∫︁
𝑅𝑑𝑅𝑑𝑍𝑑Φ = 2𝜋𝑎2

∫︁∫︁
𝑅𝑑𝑥𝑑𝑦

= 2𝜋𝑎2𝑅0

∫︁ 2𝜋

0

(︂
𝑥+ 𝜀

𝑥2

2

)︂
𝑑𝑦

𝑑𝛼
𝑑𝛼 ≈ 2𝜋𝑎2𝑅0

∫︁ 2𝜋

0

𝑥
𝑑𝑦

𝑑𝛼
𝑑𝛼

= 2𝜋2𝑅0𝑎
2𝜅𝑔

(E.16)

The second form of the volume integral makes use of the small inverse aspect ratio

expansion, 𝜀≪ 1, which is a good approximation and used throughout the analysis.
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E.3 Surface and Volume Integrals

Eqs. (E.4) and (E.5) are simple formulas describing the shape of the outer plasma

surface. We next modify the model so that it gives a plausible description of the

interior flux surfaces as well. The idea is to introduce a normalized flux label, which

is radial-like in behavior. This label is denoted by 𝜌 and 𝜌 ∈ [0, 1] with 𝜌 = 1 being

the outer plasma surface (i.e. the 95% surface) and 𝜌 = 0 being the magnetic axis.

Additional trial and error results in the following representation for the flux surfaces,

𝑥(𝜌, 𝛼) = 𝜎(1− 𝜌2) + 𝑐0𝜌
4 + 𝑐1𝜌 cos(𝛼) + 𝑐2𝜌

2 cos(2𝛼) + 𝑐3𝜌
3 cos(3𝛼) (E.17)

𝑦(𝜌, 𝛼) = 𝜅𝜌 sin(𝛼) (E.18)

with 𝜎 being the shift of the magnetic axis. Usually, 𝜎 ∼ 0.1 for a high field tokamak.

Lastly, we note that in the course of the work it will be necessary to integrate functions

of 𝜌 over the volume and cross-sectional area of the plasma. Specifically we will need

to evaluate:

𝑄𝑉 =

∫︁∫︁∫︁
𝑄(𝜌)𝑅𝑑𝑅𝑑𝑍𝑑Φ ≈ 2𝜋𝑅0𝑎

2

∫︁∫︁
𝑄(𝜌)𝑑𝑥𝑑𝑦 (E.19)

𝑄𝐴 =

∫︁∫︁
𝑄(𝜌)𝑑𝑅𝑑𝑍 = 𝑎2

∫︁∫︁
𝑄(𝜌)𝑑𝑥𝑑𝑦 (E.20)

0 RCS−R0 𝑅0 − 𝑎𝑑−𝑅𝐶𝑆

0

−hCS

−𝜅𝑎

ℎ𝐶𝑆 − 𝑐

Tokamak Dimension Diagram

Plasma
Blanket
TF Coils
Solenoid

Figure E-2: Dimensions of Tokamak Cross-Section
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Here, 𝑄(𝜌) is an arbitrary function of 𝜌 such as pressure or temperature. In the large

aspect ratio limit, both integrals require the evaluation of the same quantity:

𝐾 =

∫︁∫︁
𝑄(𝜌)𝑑𝑥𝑑𝑦 (E.21)

To evaluate this integral, we need to convert from 𝑥, 𝑦 coordinates to 𝜌, 𝛼 coordinates.

Using the Jacobian of the transformation leads to

𝐾 =

∫︁∫︁
𝑄(𝜌)(𝑥𝜌𝑦𝛼 − 𝑥𝛼𝑦𝜌)𝑑𝜌𝑑𝛼 (E.22)

Here,

𝑥𝜌𝑦𝛼 − 𝑥𝛼𝑦𝜌 = 𝜅 sin(𝛼) ·
(︀
𝑐1𝜌 sin(𝛼) + 2𝑐2𝜌

2 sin(2𝛼) + 3𝑐3𝜌
3 sin(3𝛼)

)︀
+ 𝜅𝜌 cos(𝛼) ·

[︁
− 2𝜌𝜎 + 4𝜌3𝑐0 + 𝑐1 cos(𝛼) + 2𝑐2𝜌 cos(2𝛼) + 3𝑐3𝜌

2 cos(3𝛼)]︁
(E.23)

Since Q is only a function of 𝜌, the 𝛼 integral can be carried out analytically. The

only term that survives the averaging are the ones containing 𝑐1. A simple integration

over 𝛼 then yields the desired results:

𝑄𝑉 = 4𝜋2𝑅0𝑎
2𝜅𝑔

∫︁ 1

0

𝑄(𝜌)𝜌 𝑑𝜌 (E.24)

𝑄𝑆 = 2𝜋𝑎2𝜅𝑔

∫︁ 1

0

𝑄(𝜌)𝜌 𝑑𝜌 (E.25)
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Appendix F

Expanding on the Bootstrap Current

The bootstrap current fraction – 𝑓𝐵𝑆 – is an important parameter that enters in

the design of tokamak reactors. It must be calculated with reasonable accuracy to

determine how much external current drive is required. The value of 𝑓𝐵𝑆 thus has

a strong impact on the overall fusion energy gain. Obtaining reasonable accuracy

requires a moderate amount of analysis, which is presented in a following section.

The results are summarized below.

F.1 Summarized Results

The analysis is based on an expression for the bootstrap current valid for arbitrary

cross section assuming (1) equal temperature electrons and ions 𝑇𝑒 = 𝑇𝑖 = 𝑇 , (2) large

aspect ratio 𝜀≪ 1, and (3) negligible collisionality 𝜈* → 0. Under these assumptions

the bootstrap current J𝐵𝑆 ≈ 𝐽𝐵𝑆 e𝜑 has the form

𝐽𝐵𝑆 = −3.32𝑓𝑇 · (𝑅0 𝑛𝑇 ) ·
(︂
1

𝑛

𝑑𝑛

𝑑𝜓
+ 0.054

1

𝑇

𝑑𝑇

𝑑𝜓

)︂
(F.1)

Here, 𝑓𝑇 ≈ 1.46 (𝑟/𝑅0)
1/2 is an approximate expression for the trapped particle

fraction and 𝜓 is the poloidal flux.
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The analysis next section shows that Eq. (F.1) leads to an expression for the bootstrap

fraction, assuming for simplicity elliptical flux surfaces, that can be written as:

𝑓𝐵𝑆 =
𝐼𝐵𝑆
𝐼

=
2𝜋𝑎2𝜅

𝐼

∫︁ 1

0

𝐽𝐵𝑆 𝜌 𝑑𝜌 =
𝐾𝐵𝑆

𝐾𝑛

𝑛𝑇𝑅2
0

𝐼2𝑃
(F.2)

𝐾𝐵𝑆 = 4.879 ·𝐾𝑛 ·
(︂

1 + 𝜅2

2

)︂
· 𝜀5/2 ·𝐻𝐵𝑆 (F.3)

𝐻𝐵𝑆 = (1 + 𝜈𝑛)(1 + 𝜈𝑇 )(𝜈𝑛 + 0.054𝜈𝑇 )

∫︁ 1

0

𝜌 5/2 ( 1− 𝜌 2 ) 𝜈𝑛+𝜈𝑇−1

𝑏𝑝
𝑑𝜌 (F.4)

𝑏𝑝(𝜌) =
−𝑒𝛾𝜌2(𝛾𝜌2 − 1− 𝛾)− 1− 𝛾

𝜌 (𝑒𝛾 − 1− 𝛾)
(F.5)

𝐽𝜑(𝜌) = − 𝐼

𝜋𝑎2𝜅

[︃
𝛾2(1− 𝜌2)𝑒𝛾𝜌

2

𝑒𝛾 − 1− 𝛾

]︃
(F.6)

In this expression 𝑏𝑝 is a normalized form of the poloidal magnetic field derived from

a prescribed model for the total flux surface averaged current density profile 𝐽𝜑(𝜌).

The 𝐽𝜑(𝜌) profile, in analogy with the density and temperature profiles, is not self-

consistent but is chosen to have a plausible experimental shape characterized by the

parameter 𝛾. The profile can have either an on-axis (𝛾 < 1) or off-axis peak (𝛾 > 1).

The normalized internal inductance 𝑙𝑖 and radial location of the current peak 𝜌𝑚 are

related to the value of 𝛾 by:

𝑙𝑖 =
4𝜅

1 + 𝜅2

∫︁ 1

0

𝑏2𝑝 𝜌 𝑑𝜌 (F.7)

𝜌𝑚 =

⎧⎪⎨⎪⎩
(︁

𝛾
𝛾−1

)︁1/2
, 𝛾 > 1

0, 𝛾 < 1

(F.8)
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F.2 Detailed Analysis

The starting point for the analysis is the general expression for the bootstrap current

in a tokamak with arbitrary cross section.49 This expression can be simplified by

assuming (1) equal temperature electrons and ions 𝑇𝑒 = 𝑇𝑖 = 𝑇 , (2) large aspect ratio

𝜀 ≪ 1, and (3) negligible collisionality 𝜈* → 0. The bootstrap current J𝐵𝑆 ≈ 𝐽𝐵𝑆 e𝜑

reduces to

𝐽𝐵𝑆 = −3.32𝑓𝑇 · (𝑅0 𝑛𝑇 ) ·
(︂
1

𝑛

𝑑𝑛

𝑑𝜓
+ 0.054

1

𝑇

𝑑𝑇

𝑑𝜓

)︂
(F.9)

Several values of the trapped particle fraction 𝑓𝑇 have been given in the literature.50

For simplicity we use a form valid for large aspect ratio. This is a slightly optimistic

value but saves a large amount of detailed calculation. It can be written as,

𝑓𝑇 ≈ 1.46

√︂
𝑟

𝑅0

= 1.46
√
𝜀𝜌 (F.10)

Here, as in the main text, 𝜌 is a radial-like flux surface label that varies between

0 ≤ 𝜌 ≤ 1. In other words 𝜓 = 𝜓(𝜌). Under these assumptions the bootstrap current

reduces to:

𝐽𝐵𝑆 = −4.85𝑅0𝜀
1/2

(︂
𝜌1/2 𝑛𝑇
𝑑𝜓/𝑑𝜌

)︂(︂
1

𝑛

𝑑𝑛

𝑑𝜌
+ 0.054

1

𝑇

𝑑𝑇

𝑑𝜌

)︂
(F.11)

Since we have specified profiles for 𝑛(𝜌) and 𝑇 (𝜌) all that remains in order to be able

to evaluate 𝐽𝐵𝑆(𝜌) is to determine 𝜓′ = 𝑑𝜓/𝑑𝜌. Keep in mind that at this point, in

spite of the approximations that have been made, the expression for 𝐽𝐵𝑆(𝜌) is still

valid for arbitrary cross section.

The analysis that follows shows how to calculate 𝜓′ for an arbitrary cross section

including finite aspect ratio. As an example an explicit expression for large aspect

ratio, finite elongation ellipse is obtained. Consider the Grad-Shafranov equation for

the flux: Δ*𝜓 = −𝜇0𝑅𝐽𝜑. We integrate this equation over the volume of an arbitrary
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flux surface making use of Gauss’ theorem, which leads to:

∫︁
𝑆

n · ∇𝜓
𝑅2

𝑑𝑆 = −𝜇0

∫︁
𝑉

𝐽𝜑
𝑅
𝑑r (F.12)

Next, assume that the coordinates of the flux surface can be expressed in terms of 𝜌

and an angular-like parameter 𝛼 with 0 ≤ 𝛼 ≤ 2𝜋. In other words, the flux surface

coordinates can be written as 𝑅 = 𝑅(𝜌, 𝛼) = 𝑅0 + 𝑎𝑥(𝜌, 𝛼) and 𝑍 = 𝑍(𝜌, 𝛼) =

𝑎𝑦(𝜌, 𝛼). The functions 𝑅(𝜌, 𝛼) and 𝑍(𝜌, 𝛼) are assumed to be known. The term on

the left hand side can be evaluated by noting that

𝑑l = 𝑑𝑙t (F.13)

𝑑𝑙 = (𝑅2
𝛼 + 𝑍2

𝛼)
1/2𝑑𝛼 (F.14)

t =
𝑅𝛼e𝑅 + 𝑍𝛼e𝑍
(𝑅2

𝛼 + 𝑍2
𝛼)

1/2
(F.15)

n = e𝜑 × t =
𝑍𝛼e𝑅 −𝑅𝛼e𝑍
(𝑅2

𝛼 + 𝑍2
𝛼)

1/2
(F.16)

𝑑𝑆 = 𝑅𝑑𝜑𝑑𝑙 = 2𝜋𝑅(𝑅2
𝛼 + 𝑍2

𝛼)
1/2𝑑𝛼 (F.17)

It then follows that

n · ∇𝜓 =
1

(𝑅2
𝛼 + 𝑍2

𝛼)
1/2

(︂
𝑍𝛼

𝜕𝜓

𝜕𝑅
−𝑅𝛼

𝜕𝜓

𝜕𝑍

)︂
=

1

(𝑅2
𝛼 + 𝑍2

𝛼)
1/2

𝑑𝜓

𝑑𝜌
𝑍𝛼𝜌𝑅 −𝑅𝛼𝜌𝑍 (F.18)

We can rewrite the last term by noting that

𝑑𝑅 = 𝑅𝜌𝑑𝜌+𝑅𝛼𝑑𝛼 → 𝑑𝜌 = (𝑍𝛼𝑑𝑅−𝑅𝛼𝑑𝑍) / (𝑅𝜌𝑍𝛼 −𝑅𝛼𝑍𝜌)

𝑑𝑍 = 𝑍𝜌𝑑𝜌+ 𝑍𝛼𝑑𝛼 → 𝑑𝛼 = (−𝑍𝜌𝑑𝑅 +𝑅𝜌𝑑𝑍) / (𝑅𝜌𝑍𝛼 −𝑅𝛼𝑍𝜌)

(F.19)

from which follows
𝜌𝑅 =

𝑍𝛼
(𝑅𝜌𝑍𝛼 −𝑅𝛼𝑍𝜌)

𝜌𝑍 = − 𝑅𝛼

(𝑅𝜌𝑍𝛼 −𝑅𝛼𝑍𝜌)

(F.20)
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the normal gradient reduces to

n · ∇𝜓 =

√︀
𝑅2
𝛼 + 𝑍2

𝛼

(𝑅𝜌𝑍𝛼 −𝑅𝛼𝑍𝜌)

𝑑𝜓

𝑑𝜌
(F.21)

Using this relation we see that the left hand side of Eq. (F.12) can now be written

as: ∫︁
𝑆

n · ∇𝜓
𝑅2

𝑑𝑆 = 2𝜋
𝑑𝜓

𝑑𝜌

∫︁ 2𝜋

0

𝑅2
𝛼 + 𝑍2

𝛼

(𝑅𝜌𝑍𝛼 −𝑅𝛼𝑍𝜌)

𝑑𝛼

𝑅
(F.22)

Consider now the right hand side of Eq. (F.12). The critical assumption is that the

current density is approximated by its flux surface averaged value, 𝐽𝜑(𝜌, 𝛼) ≈ 𝐽𝜑(𝜌).

This is obviously not self-consistent with the Grad-Shafranov equation. Even so, it

should suffice for present purposes where we only need to evaluate global volume

integrals. Also, in the same spirit as prescribing 𝑛(𝜌) and 𝑇 (𝜌) we assume that 𝐽𝜑(𝜌)

is also prescribed. Under these assumptions the right hand side of Eq. (F.12) simplifies

to:
−𝜇0

∫︁
𝑉

𝐽𝜑
𝑅
𝑑r = −2𝜋𝜇0

∫︁
𝐴

𝐽𝜑𝑑𝐴

= −2𝜋𝜇0

∫︁ 𝜌

0

𝑑𝜌

∫︁ 2𝜋

0

𝐽𝜑 (𝑅𝜌𝑍𝛼 −𝑅𝛼𝑍𝜌) 𝑑𝛼

≈ −2𝜋𝜇0

∫︁ 𝜌

0

𝑑𝜌

[︂
𝐽𝜑

∫︁ 2𝜋

0

(𝑅𝜌𝑍𝛼 −𝑅𝛼𝑍𝜌) 𝑑𝛼

]︂
(F.23)

Combining the results in Eqs. (F.22) and (F.23) leads to the required general expres-

sion for 𝑑𝜓/𝑑𝜌,

𝑑𝜓

𝑑𝜌

∫︁ 2𝜋

0

𝑅2
𝛼 + 𝑍2

𝛼

(𝑅𝜌𝑍𝛼 −𝑅𝛼𝑍𝜌)

𝑑𝛼

𝑅
= −𝜇0

∫︁ 𝜌

0

𝑑𝜌

[︂
𝐽𝜑

∫︁ 2𝜋

0

(𝑅𝜌𝑍𝛼 −𝑅𝛼𝑍𝜌) 𝑑𝛼

]︂
(F.24)

Next, to help specify a plausible choice for 𝐽𝜑 it is useful to define the kink safety

factor and the actual local safety factor. The kink safety factor is defined by

𝑞* =
2𝜋𝑎2𝐵0

𝜇0𝑅0𝐼

(︂
1 + 𝜅2

2

)︂
(F.25)
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where

𝐼 =

∫︁
𝐽𝜑𝑑𝐴 =

∫︁ 1

0

𝑑𝜌

[︂
𝐽𝜑

∫︁ 2𝜋

0

(𝑅𝜌𝑍𝛼 −𝑅𝑎𝑍𝜌) 𝑑𝛼

]︂
(F.26)

This leads to

1

𝑞*
=

𝜇0𝑅0

2𝜋𝑎2𝐵0

(︂
2

1 + 𝜅2

)︂∫︁ 1

0

𝑑𝜌

[︂
𝐽𝜑

∫︁ 2𝜋

0

(𝑅𝜌𝑍𝛼 −𝑅𝛼𝑍𝜌) 𝑑𝛼

]︂
(F.27)

Similarly, the local safety factor can be expressed as

𝑞(𝜌) =
𝐹 (𝜌)

2𝜋

∫︁
𝑑𝑙

𝑅𝐵𝑝

(F.28)

Here, 𝐹 (𝜌) = 𝑅𝐵𝜑. Substituting 𝑅𝐵𝑝 = n · ∇𝜓 then yields

𝑞(𝜌) =
𝐹 (𝜌)

2𝜋𝜓′

∫︁ 2𝜋

0

1

𝑅
(𝑅𝜌𝑍𝛼 −𝑅𝛼𝑍𝜌) 𝑑𝛼 (F.29)

with 𝜓′ = 𝑑𝜓/𝑑𝜌.

For present purposes we can obtain relatively simple analytic expressions for all the

quantities of interest by assuming the flux surfaces are concentric ellipses, char-

acterized by 𝑅 = 𝑅0 + 𝑎𝜌 cos𝛼 and 𝑍 = 𝜅𝑎𝜌 sin𝛼. We also assume low 𝛽 so

that 𝐹 (𝜌) ≈ 𝑅0𝐵0. This model accounts for elongation but neglects the effects of

triangularity and finite aspect ratio. The derivatives in Eqs. (F.24), (F.27) and (F.29)

can now be easily evaluated. Also, after some trial and error we chose 𝐽𝜑(𝜌) to be a

plausible profile which is peaked off-axis at 𝜌 = 𝜌𝑚.

𝐽𝜑(𝜌) = − 𝐼

𝜋𝑎2𝜅

[︃
𝛾2 (1− 𝜌2) 𝑒𝛾𝜌

2

𝑒𝛾 − 1− 𝛾

]︃
(F.30)

Here, 𝛾 = 1/(1− 𝜌2𝑚).
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These profiles are substituted into Eq. (F.24) after which each of the integrals can be

evaluated analytically. A straightforward calculation yields:

𝜌
𝑑𝜓

𝑑𝜌
= −2𝜇0𝑅0𝑎

2

(︂
𝜅2

1 + 𝜅2

)︂∫︁ 𝜌

0

𝐽𝜑𝜌𝑑𝜌

=
𝜇0𝑅0𝐼

𝜋

(︂
𝜅

1 + 𝜅2

)︂
(1 + 𝛾 − 𝛾𝜌2) 𝑒𝛾𝜌

2 − 1− 𝛾

𝑒𝛾 − 1− 𝛾

(F.31)

The safety factors are given by

1

𝑞*
=

𝜓′(1)

𝜅𝑎2𝐵0

𝑞(𝜌)

𝑞*
=
𝜌𝜓′(1)

𝜓′(𝜌)

(F.32)

Eq. (F.31) is now substituted into the expression for the bootstrap current given by

Eq. (F.11). The resulting expression can then be integrated over the plasma cross

section to yield the bootstrap fraction. A straightforward calculation leads to:

𝑓𝐵𝑆 =
𝐼𝐵𝑆
𝐼

=
2𝜋𝑎2𝜅

𝐼

∫︁ 1

0

𝐽𝐵𝑆 𝜌 𝑑𝜌 =
𝐾𝐵𝑆

𝐾𝑛

𝑛𝑇𝑅2
0

𝐼2𝑃
(F.33)

𝐾𝐵𝑆 = 4.879 ·𝐾𝑛 ·
(︂

1 + 𝜅2

2

)︂
· 𝜀5/2 ·𝐻𝐵𝑆 (F.34)

𝐻𝐵𝑆 = (1 + 𝜈𝑛)(1 + 𝜈𝑇 )(𝜈𝑛 + 0.054𝜈𝑇 )

∫︁ 1

0

𝜌 5/2 ( 1− 𝜌 2 ) 𝜈𝑛+𝜈𝑇−1

𝑏𝑝
𝑑𝜌 (F.35)

𝑏𝑝(𝜌) =
−𝑒𝛾𝜌2(𝛾𝜌2 − 1− 𝛾)− 1− 𝛾

𝜌 (𝑒𝛾 − 1− 𝛾)
(F.36)

This is the desired result.
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Appendix G

Elaborating on the Current Drive

The driven current fraction – 𝑓𝐶𝐷 – is an important parameter that enters in the

design of steady-state tokamak reactors. It must be calculated with reasonable

accuracy to determine how much bootstrap current is required. The value of 𝑓𝐶𝐷

thus has a strong impact on the overall fusion energy gain. Obtaining reasonable

accuracy requires a moderate amount of analysis, which is presented in a following

section. The results are summarized below.

G.1 Summarized Results

We assume that current drive is provided by lower hybrid waves because of the

corresponding relatively high efficiency and naturally occurring off-axis peaking which

aligns with the bootstrap current. The externally driven lower hybrid current (𝐼𝐶𝐷)

is given in terms of the current drive efficiency, 𝜂𝐶𝐷, defined as follows:26

𝐼𝐶𝐷 = 𝜂𝐶𝐷
𝑃𝐻
𝑛20𝑅0

=
𝜂𝐶𝐷
𝑄

𝑃𝐹
𝑛20𝑅0

(G.1)

Here, for simplicity and slightly optimistically, we assume that 100% of the klystron

RF power, 𝑃𝐻 , is absorbed in the plasma.
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The current drive fraction 𝑓𝐶𝐷 = 𝐼𝐶𝐷/𝐼𝑃 can then be written as,

𝑓𝐶𝐷 = 𝐾𝐶𝐷
𝜂𝐶𝐷𝑛20𝑅

2
0(𝜎̂𝑣)

𝐼𝑃
(G.2)

𝐾𝐶𝐷 = 278
𝑓 2
𝐷𝜀

2𝜅

𝑄
(G.3)

Typical values for 𝜂𝐶𝐷 are around 0.3.26 However, this current drive efficiency is

actually a function of: 𝑛, 𝑇 , and 𝐵0. This dependence must be included in the

design to obtain reliable results. A self consistent calculation of 𝜂𝐶𝐷 = 𝜂𝐶𝐷(𝑛, 𝑇 ,𝐵0)

requires considerable analysis, the details of which are presented next section.

G.2 Detailed Analysis

To design a steady state fusion reactor, it is necessary to calculate 𝜂𝐶𝐷 for lower

hybrid current drive (LHCD). Recall that the driven lower hybrid current 𝐼𝐶𝐷 is

related to the lower hybrid RF klystron power absorbed by the plasma 𝑃𝐻 by the

relation:

𝐼𝐶𝐷 = 𝜂𝐶𝐷
𝑃𝐻
𝑛20𝑅

(G.4)

Here, 𝑃𝐻 = 𝜂𝑅𝐹𝑃𝑅𝐹 , with 𝑃𝑅𝐹 equal to the total wall power used for current drive

(plus heating) and 𝜂𝑅𝐹 ≈ 0.5 is the conversion efficiency from wall power to RF

absorbed power. Also, 𝑛20 = 𝑛20(𝜌𝐽) and 𝑅 = 𝑅(𝜌𝐽 , 𝜃) are the density and major

radius evaluated at the minor radius 𝜌 = 𝜌𝐽 and launch angle 𝜃 with 𝜌𝐽 corresponding

to the location of the peak driven current density: 𝐽max = 𝐽𝐶𝐷(𝜌𝐽 , 𝜃). The angle 𝜃 is a

known quantity set by the experimental configuration while 𝜌𝐽 is yet to be determined.

The value of 𝜂𝐶𝐷 is related to a normalized quantity 𝜂, the efficiency usually calculated

in the literature, by a series of connecting formulas. The inter-relations start with

𝜂𝐼 =

∫︀
𝐴
𝐽𝐶𝐷𝑑𝐴∫︀

𝑉
𝑆𝐻𝑑𝑉

≈ 1

2𝜋

[︂
𝐽𝐶𝐷
𝑅𝑆𝐻

]︂
𝜌𝑗 ,𝜃

=
𝜂𝐿𝐻
2𝜋𝑅

[︂
𝐽𝐶𝐷
𝑅𝑆𝐿𝐻

]︂
𝜌𝐽 ,𝜃

(G.5)
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where 𝜂𝐼 = 𝐼𝐶𝐷/𝑃𝐻 A/W is the overall current drive efficiency measuring how many

delivered watts of klystron RF power are required to drive one ampere of current. For

simplicity and slightly optimistically all delivered power is assumed to be absorbed

by the plasma. Also, 𝑆𝐻(𝜌, 𝜃) is the klystron power density delivered to the plasma,

whose absorption is localized around 𝜌 = 𝜌𝐽 .

Due to various losses, only a fraction of the absorbed klystron power, 𝜂𝐿𝐻 ≈ 0.75,

actually drives current. These losses have to do with the fact that the power spectrum

arising from a realistic waveguide array has both positive and negative lobes – it

is not an ideal positive delta function. The combination of finite spectral width

plus oppositely driven current from the negative lobe implies that only a portion of

the total absorbed power actually drives a net positive current. The result of this

discussion is that the power density, 𝑆𝐿𝐻 , driving lower hybrid current is related to

the delivered klystron power density by 𝑆𝐿𝐻 = 𝜂𝐿𝐻𝑆𝐻 .

Now, the efficiency, 𝜂 usually calculated in the literature is defined by:

𝜂 (𝜌𝐽 , 𝜃) =

[︂
𝐽𝐶𝐷/𝑒𝑛𝑣𝑇𝑒

𝑆𝐿𝐻/𝑚𝑒𝑛𝜈0𝑣2𝑇𝑒

]︂
𝜌𝑗 ,𝜃

(G.6)

𝑣𝑇𝑒 (𝜌𝐽) =

[︂
2𝑇𝑒
𝑚𝑒

]︂1/2
𝜌𝐽

(G.7)

𝜈0 (𝜌𝐽) =

[︂
𝜔4
𝑝𝑒 ln Λ

2𝜋𝑛𝑒𝑣3𝑇𝑒

]︂
𝜌𝐽

(G.8)

It then follows that

𝜂𝐼 =
𝜂𝐿𝐻
2𝜋

[︂
𝑒

𝑅𝑚𝑒𝜈0𝑣𝑇𝑒

]︂
𝜌𝑗 ,𝜃

𝜂 (𝜌𝐽 , 𝜃) (G.9)

From Eq. (G.4), we see that 𝜂𝐶𝐷 = 𝜂𝐼 [𝑛20𝑅]𝜌𝑗 ,𝜃, which leads to the desired conversion

relation:

𝜂𝐶𝐷 =
𝜂𝐿𝐻
2𝜋

[︂
𝑒𝑛20

𝑚𝑒𝜈0𝑣𝑇𝑒

]︂
𝜌𝑗

𝜂 (𝜌𝐽 , 𝜃) = 0.06108
𝜂𝐿𝐻
ln Λ

𝑇𝑘𝜂 (G.10)
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An expression for 𝜂

Needed for the design code is an expression for 𝜂(𝜌𝐽 , 𝜃). Such an expression, valid for

arbitrary 𝜌, has been determined by Ehst and Karney27 – based on a sophisticated

theoretical analysis combined with extensive numerical results. Once 𝜌𝐽 is determined

we set 𝜌 = 𝜌𝐽 in the expression for 𝜂(𝜌, 𝜃). Ehst and Karney find that a good fit for

𝜂(𝜌, 𝜃) can be written as:

𝜂 = 𝐶𝑀𝑅𝜂0 (G.11)

For LHCD, the parameters appearing in Eq. (G.11) have the form:

𝑀 = 1 (G.12)

𝑅(𝜌, 𝜃) = 1− 𝜀𝑛𝜌𝑛 (𝑥2𝑟 + 𝑤2)
1/2

𝜀𝑛𝜌𝑛𝑥𝑟 + 𝑤
𝑛 = 0.77 𝑥𝑟 = 2.47 (G.13)

𝐶(𝜌, 𝜃) = 1− exp
(︀
−𝑐𝑚𝑥2𝑚𝑡

)︀
𝑚 = 1.38 𝑐 = 0.778 (G.14)

𝜂0(𝜌, 𝜃) =
𝐾

𝑤
+𝐷 +

8𝑤2

5 + 𝑍𝑐𝑓𝑓
𝐾 =

2.12

𝑍𝑒𝑓𝑓
𝐷 =

3.83

𝑍0.707
𝑒𝑓𝑓

(G.15)

All quantities have been defined except for 𝑥2𝑡 (𝜌, 𝜃) and 𝑤(𝜌, 𝜃). The quantity 𝑤

is a normalized form of the resonant particle velocity which absorbs energy and

momentum from the lower hybrid wave,

𝑤(𝜌, 𝜃) =
𝜔

𝑘‖𝑣𝑇𝑒
=

𝑐

𝑣𝑇𝑒

1

𝑛‖
(G.16)

with 𝑛‖ the parallel index of refraction. The value of 𝑛‖(𝜌, 𝜃) will be discussed shortly.

The quantity 𝑥2𝑡 is a toroidal correction associated with the fact that trapped particles

cannot contribute to toroidal current flow. It can be expressed in terms of the local

mirror ratio by

𝑥2𝑡 (𝜌, 𝜃) = 𝑤2

(︂
𝐵

𝐵𝑀 −𝐵

)︂
(G.17)
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where from simple guiding center theory assuming that 𝐵 ≈ 𝐵𝜑,

𝐵𝑀 =
𝐵0

1− 𝜀𝜌
(G.18)

𝐵 =
𝐵0

1 + 𝜀𝜌 cos 𝜃
(G.19)

Calculation of 𝑛2
‖(𝜌, 𝜃)

The next step in the evaluation of 𝜂𝐶𝐷 is the calculation of 𝑛2
‖(𝜌, 𝜃). Its value

is determined by the requirements for accessibility from the plasma edge into the

absorption layer. The relevant physics follows from an analysis of the cold plasma

dispersion relation given by

𝑛2⊥(𝜌, 𝜃) = −
𝐾‖

2𝐾⊥

⎧⎨⎩𝑛2‖ −𝐾⊥ +
𝐾2
𝐴

𝐾‖
±

[︃(︂
𝑛2‖ −𝐾⊥ +

𝐾2
𝐴

𝐾‖

)︂2

+
4𝐾⊥𝐾

2
𝐴

𝐾‖

]︃1/2⎫⎬⎭ (G.20)

The plus sign corresponds to the desired root and is often referred to as the slow

wave.

In the lower hybrid regime the relevant ordering of parameters is

𝜔𝑝𝑒/Ω𝑒 ∼ 𝜔𝑝𝑖/𝜔 ∼ 𝑛‖ ∼ 1

𝜔𝑝𝑖/Ω𝑖 ∼ 𝜔/Ω𝑖 ∼ Ω𝑒/𝜔 ∼ 𝑛⊥ ∼
√︀
𝑚𝑖/𝑚𝑒 ≫ 1

(G.21)

leading to the following simple forms for the elements of the dielectric tensor

𝐾⊥(𝜌, 𝜃) = 1 +
𝜔2
𝑝𝑒

Ω2
𝑒

−
𝜔2
𝑝𝑖

𝜔2
∼ 1

𝐾𝐴(𝜌, 𝜃) =
𝜔2
𝑝𝑒

𝜔Ω𝑒

∼
√︀
𝑚𝑖/𝑚𝑒

𝐾‖(𝜌) = −
𝜔2
𝑝𝑒

𝜔2
∼ 𝑚𝑖/𝑚𝑒

(G.22)

The first requirement for accessibility is that the function under the square root

be positive. When this function passes through zero there is a double root for 𝑛2
⊥

causing a mode conversion from the slow wave to the fast wave. The fast wave does
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not propagate into the plasma. It is reflected back out through the plasma surface,

obviously an undesirable result. Avoiding mode conversion requires a sufficiently large

value of 𝑛2
‖ to keep the function under the square root positive. This value must satisfy

𝑛2
‖(𝜌, 𝜃) ≥

[︃
𝐾

1/2
⊥ +

(︂
−𝐾

2
𝐴

𝐾‖

)︂1/2
]︃2

(G.23)

Since 𝜂𝐶𝐷 ∝ 1/𝑛2
‖ we see that current drive efficiency is maximized when 𝑛2

‖(𝜌, 𝜃) is

minimized – the inequality in Eq. (G.23) must be set to equality.

At this point there is an important subtlety that must be taken into account. The

issue is that the wavelength spectrum of the applied klystron source is not a delta

function – it has a finite half width, Δ𝑛‖ ≈ 0.2, and a negative lobe. For simplicity,

we have modeled the spectrum as rectangular and ignore the negative lobe. The

negative lobe is accounted for through the value of 𝜂𝐿𝐻 , since this power obviously

does not drive current in the desired direction. Now, Eq. (G.23) is an inequality and

we want to minimize 𝑛2
‖(𝜌, 𝜃) over all 𝜌 for the given 𝜃 where the power is absorbed.

Therefore, we must use the equality sign in Eq. (G.23) for the strictest case – that

𝑛‖ (𝜌𝐽 , 𝜃) =
(︀
𝑛‖ (𝜌𝐽 , 𝜃)−Δ𝑛‖

)︀
– where 𝜌𝐽 and 𝜌𝐽 (both as yet undetermined) are the

corresponding strictest and average radii where power is absorbed.

With this in mind, after substituting the simplified expressions for the elements of

the dielectric tensor we obtain

𝑛2
‖ (𝜌𝐽 , 𝜃) =

[︃(︂
1− 1− 𝜔̂2

𝜔̂2
𝑋

)︂1/2

+𝑋1/2

]︃2
(G.24)

𝑋 (𝜌𝐽 , 𝜃) =
𝜔2
𝑝𝑒 (𝜌𝐽)

Ω2
𝑒 (𝜌𝐽 , 𝜃)

(G.25)

𝜔̂2 (𝜌𝐽 , 𝜃) =
𝜔2

Ω𝑒 (𝜌𝐽 , 𝜃) Ω𝑖 (𝜌𝐽 , 𝜃)
(G.26)

The question now is how do we choose the frequency: 𝜔̂? There are actually three

constraints on the frequency and we must choose the strictest one to determine 𝜔̂2.
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The constraints are as follows:

𝜔2 > 𝜔2
𝐿𝐻 (𝜌𝐽 , 𝜃) Avoid mode conversion before reaching 𝜌𝐽 , 𝜃

𝜔2 > 4𝜔2
𝐿𝐻 (𝜌𝐽 , 𝜃) Avoid the PDI before reaching 𝜌𝐽 , 𝜃

𝜔2 > 𝑘2⊥ (𝜌𝐽 , 𝜃) 𝑣
2
𝛼 Avoid coupling to 𝛼 particles before reaching 𝜌𝐽 , 𝜃

(G.27)

Here, 𝜔2
𝐿𝐻 (𝜌𝐽 , 𝜃) = 𝜔2

𝑝𝑖/
(︀
1 + 𝜔2

𝑝𝑒/Ω
2
𝑒

)︀
is the square of the lower hybrid frequency and

𝑣𝛼 = (2𝐸𝛼/𝑚𝛼)
1/2 is the alpha particle speed. Also, PDI denotes parametric decay

instability. The second and third constraints are approximate values, used here for

simplicity.

Each of these constraints is substituted into the expression for 𝑛2
‖. We find that in

the regime of interest the 𝛼 particle coupling requirement is the strictest. We thus

choose the frequency to satisfy 𝜔/𝑘⊥ = 𝑣𝛼, or in normalized units:

𝑛2
⊥ (𝜌𝐽 , 𝜃) =

𝑐2

𝑣2𝛼
(G.28)

This expression is simplified by evaluating 𝑛2
⊥ using Eq. (G.20) coupled with 𝑛2

‖ given

by Eq. (G.23)

𝑛2
⊥ (𝜌𝐽 , 𝜃) = −

𝐾‖

𝐾
1/2
⊥

(︂
−𝐾

2
𝐴

𝐾‖

)︂1/2

=
𝑚𝑖

𝑚𝑒

𝑋3/2

𝜔̂ [𝜔̂2(1 +𝑋)−𝑋]1/2
(G.29)

Eq. (G.29) is a quadratic equation for 𝜔̂2, which can be easily solved, yielding:

𝜔̂2 (𝜌𝐽 , 𝜃) =
1

2

𝑋

1 +𝑋
+

1

2

[︂
𝑋2

(1 +𝑋)2
+ 4𝛾2

𝑋3

1 +𝑋

]︂1/2
(G.30)

𝛾 =
𝑚𝑖

𝑚𝑒

1

𝑛2
⊥
=

2𝑚𝑖𝐸𝛼
𝑚𝑒𝑚𝛼𝑐2

= 8.562 (G.31)

This value of 𝜔̂2 is substituted into Eq. (G.24) to obtain the desired expression for

𝑛2
‖ = 𝑛2

‖(𝑋).
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Calculation of 𝜌𝐽

The calculation of 𝜌𝐽 requires a very lengthy analysis of Landau damping. We can

bypass this complication by making use of a simple rule of thumb that is reasonably

accurate. This rule states that lower hybrid power is absorbed and driven current

produced in a somewhat narrow layer of the plasma profile whose location is deter-

mined by the requirement that the parallel phase velocity be approximately equal to

three times the electron thermal speed,

𝜔

𝑘‖
≈ 3𝑣𝑇 (G.32)

The equation can be rewritten in terms of 𝑛̂‖ leading to a transcendental algebraic

equation for 𝜌𝐽 ,

(1 + 𝜈𝑇 )
(︀
1− 𝜌2𝐽

)︀𝜈𝑇 𝑛2
‖ (𝜌𝐽 , 𝜃) =

𝑚𝑒𝑐
2

18𝑇
=

28.39

𝑇 𝑘
(G.33)

This is a simple equation to solve numerically.

Calculation of 𝜌𝐽

The last step in the analysis is to map the results at the strictest absorption location

– (𝜌, 𝜃) – to the center of the absorption layer – (𝜌𝐽 , 𝜃) – where the current drive

efficiency is defined. This is easily done by noting that power is always absorbed in

at the local radius where 𝜔/𝑘‖ = 3𝑣𝑇𝑒. Consequently, the relations at 𝜌𝐽 are related

to those at 𝜌𝐽 by:

(1 + 𝜈𝑇 )
(︀
1− 𝜌2𝐽

)︀𝜈𝑇 𝑛2
‖ (𝜌𝐽 , 𝜃) =

28.39

𝑇 𝑘
(G.34)

(1 + 𝜈𝑇 )
(︀
1− 𝜌2𝐽

)︀𝜈𝑇 𝑛2
‖ (𝜌𝐽 , 𝜃) =

28.39

𝑇 𝑘
(G.35)
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Since 𝑛‖ (𝜌𝐽 , 𝜃) = 𝑛‖ (𝜌𝐽 , 𝜃)−Δ𝑛‖, it follows that 𝜌𝐽 and 𝜌𝐽 are related by:(︀
1− 𝜌2𝐽

)︀𝜈𝑇(︀
1− 𝜌2𝐽

)︀𝜈𝑇 =

[︂
1−

Δ𝑛‖

𝑛‖ (𝜌𝐽 , 𝜃)

]︂2
→ 𝜌2𝐽 = 1−

(︀
1− 𝜌2𝐽

)︀ [︂
1−

Δ𝑛‖

𝑛‖ (𝜌𝐽 , 𝜃)

]︂ 2
𝜈𝑇

(G.36)

Note that in general: 𝜌𝐽 > 𝜌𝐽 . The strictest location determining 𝑛‖(𝜌𝐽 , 𝜃) is the

innermost radial point on the temperature profile where power is absorbed.

Abridged Algorithm

Assume the following quantities are given as inputs: 𝐵0, 𝜃, 𝑛20, 𝑇 𝑘, 𝜀,Δ𝑛‖, 𝜂𝐿𝐻 . Carry

out the following steps:

1. Solve the equations below simultaneously to determine 𝑛2
‖ (𝜌𝐽 , 𝜃) , 𝜔̂

2 (𝜌𝐽 , 𝜃) , and 𝜌𝐽

𝑛2
‖ (𝜌𝐽 , 𝜃) =

[︂(︁
1− 1−𝜔̂2

𝜔̂2 𝑋
)︁1/2

+𝑋1/2

]︂2
𝜔̂2 (𝜌𝐽 , 𝜃) =

1
2

𝑋
1+𝑋

+ 1
2

[︁
𝑋2

(1+𝑋)2
+ 4𝛾2 𝑋3

1+𝑋

]︁1/2
(1 + 𝜈𝑇 ) (1− 𝜌2𝐽)

𝜈𝑇 𝑛2
‖ (𝜌𝐽 , 𝜃) =

𝑚𝑒𝑐2

2𝑇
= 28.39

𝑇𝑘

(G.37)

2. Solve for 𝜂 (𝜌𝐽 , 𝜃)

𝜂 (𝜌𝐽 , 𝜃) = 𝐶𝑀𝑅𝜂0 (G.38)

3. Solve for 𝑛‖ (𝜌𝐽 , 𝜃)

𝑛‖ (𝜌𝐽 , 𝜃) = 𝑛‖ (𝜌𝐽 , 𝜃) + Δ𝑛‖ (G.39)

4. Solve for 𝜌𝐽

𝜌2𝐽 = 1−
(︀
1− 𝜌2𝐽

)︀ [︂
1−

Δ𝑛‖

𝑛‖ (𝜌𝐽 , 𝜃)

]︂2/𝜈𝑇
(G.40)

5. Re-evaluate 𝜂 (𝜌𝐽 , 𝜃) by substituting the values of 𝜌𝐽 , 𝑛‖ (𝜌𝐽 , 𝜃) into Eq. (G.38)

6. Solve for 𝜂𝐶𝐷

𝜂𝐶𝐷 =
1

2𝜋

(︂
𝑒𝑛20

𝑚𝑒𝜈0𝑣𝑇𝑒

)︂
𝜂 = 0.06108

𝜂𝐿𝐻
ln Λ

(1 + 𝜈𝑇 )𝑇 𝑘
(︀
1− 𝜌2𝐽

)︀𝜈𝑟
𝜂 (𝜌𝐽 , 𝜃) (G.41)

In the end there will have to be some iteration with the rest of the analysis to make

sure the values of 𝑛20 and 𝑇 𝑘 are self-consistent.
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Appendix H

Compending Code Plots

This chapter gives a brief overview of the plots that come about from using this model

on several reactor prototypes: Charybdis, Proteus, ARC, DEMO Pulsed, and the two

ARIES ACT designs. The two types of results this information come in are: magnet

strength scans and cost sensitivity studies.

In the former, all static variables are kept constant and only the magnet strength

is allowed to change. Whereas, the latter focuses on changing one static variable at

a time and finding several magnet strengths that satisfy certain constraints – e.g.

the minimum capital cost or when the beta and kink limits are both just marginally

satisfied.

You can recreate all the plots shown here at the following website. Note that this

interactive plotting tool also allows you to view the Monte Carlo samplings, which

produced the scatter plots used in this document.

www.fusion.codes
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H.1 Magnet Strength Scans

This section includes the following magnet strength scans:

1. Plasma Temperature – 𝑇

2. Plasma Density – 𝑛

3. Plasma Current – 𝐼𝑃

4. Major Radius – 𝑅0

5. Plasma Pressure – 𝑝

6. Confinement Time – 𝜏𝐸

7. Current Drive Efficiency – 𝜂𝐶𝐷

8. Bootstrap Fraction – 𝑓𝐵𝑆

9. Magnetic Energy – 𝑊𝑀

10. Cost-per-Watt – 𝐶𝑊

11. Divertor Head Load – 𝑞𝐷𝑉

12. Normalized Beta Normal – (𝛽𝑁)𝑛𝑜𝑟𝑚

13. Normalized Kink Safety Factor – (𝑞95)𝑛𝑜𝑟𝑚

14. Normalized Wall Loading – (𝑃𝑊 )𝑛𝑜𝑟𝑚

15. Fusion Power – 𝑃𝐹

16. Blanket Thickness – 𝑏

17. TF Coil Thickness – 𝑐

18. Central Solenoid Thickness – 𝑑

19. Central Solenoid Height – ℎ𝐶𝑆

20. Central Solenoid Inner Radius – 𝑅𝐶𝑆
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H.1.1 Plasma Temperature – 𝑇
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(c) ARC
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Figure H-1: Magnet Scan: 𝑇 vs. 𝐵0
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H.1.2 Plasma Density – 𝑛
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Figure H-2: Magnet Scan: 𝑛 vs. 𝐵0
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H.1.3 Plasma Current – 𝐼𝑃
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Figure H-3: Magnet Scan: 𝐼𝑃 vs. 𝐵0
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H.1.4 Major Radius – 𝑅0
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Figure H-4: Magnet Scan: 𝑅0 vs. 𝐵0
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H.1.5 Plasma Pressure – 𝑝
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Figure H-5: Magnet Scan: 𝑝 vs. 𝐵0
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H.1.6 Confinement Time – 𝜏𝐸
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Figure H-6: Magnet Scan: 𝜏𝐸 vs. 𝐵0
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H.1.7 Current Drive Efficiency – 𝜂𝐶𝐷
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Figure H-7: Magnet Scan: 𝜂𝐶𝐷 vs. 𝐵0
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H.1.8 Bootstrap Fraction – 𝑓𝐵𝑆
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Figure H-8: Magnet Scan: 𝑓𝐵𝑆 vs. 𝐵0
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H.1.9 Magnetic Energy – 𝑊𝑀
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Figure H-9: Magnet Scan: 𝑊𝑀 vs. 𝐵0
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H.1.10 Cost-per-Watt – 𝐶𝑊
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Figure H-10: Magnet Scan: 𝐶𝑊 vs. 𝐵0
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H.1.11 Divertor Head Load – 𝑞𝐷𝑉
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Figure H-11: Magnet Scan: 𝑞𝐷𝑉 vs. 𝐵0
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H.1.12 Normalized Beta Normal – (𝛽𝑁)𝑛𝑜𝑟𝑚
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Figure H-12: Magnet Scan: (𝛽𝑁)𝑛𝑜𝑟𝑚 vs. 𝐵0
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H.1.13 Normalized Kink Safety Factor – (𝑞95)𝑛𝑜𝑟𝑚
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Figure H-13: Magnet Scan: (𝑞95)𝑛𝑜𝑟𝑚 vs. 𝐵0
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H.1.14 Normalized Wall Loading – (𝑃𝑊 )𝑛𝑜𝑟𝑚
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Figure H-14: Magnet Scan: (𝑃𝑊 )𝑛𝑜𝑟𝑚 vs. 𝐵0
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H.1.15 Fusion Power – 𝑃𝐹
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Figure H-15: Magnet Scan: 𝑃𝐹 vs. 𝐵0
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H.1.16 Blanket Thickness – 𝑏
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Figure H-16: Magnet Scan: 𝑏 vs. 𝐵0
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H.1.17 TF Coil Thickness – 𝑐
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Figure H-17: Magnet Scan: 𝑐 vs. 𝐵0
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H.1.18 Central Solenoid Thickness – 𝑑
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Figure H-18: Magnet Scan: 𝑑 vs. 𝐵0
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H.1.19 Central Solenoid Height – ℎ𝐶𝑆
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Figure H-19: Magnet Scan: ℎ𝐶𝑆 vs. 𝐵0
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H.1.20 Central Solenoid Inner Radius – 𝑅𝐶𝑆
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Figure H-20: Magnet Scan: 𝑅𝐶𝑆 vs. 𝐵0
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H.2 Cost Sensitivity Studies

This section includes the following cost sensitivity studies:

1. Enhancement Factor – 𝐻

2. Physics Gain – 𝑄

3. Flattop Duration – 𝜏𝐹𝑇

4. Greenwald Fraction – 𝑁𝐺

5. Dilution Factor – 𝑓𝐷

6. Effective Charge – 𝑍𝑒𝑓𝑓

7. Inverse Aspect Ratio – 𝜀

8. Elongation – 𝜅95

9. Triangularity – 𝛿95

10. Density Peaking Factor – 𝜈𝑛

11. Temperature Peaking Factor – 𝜈𝑇

12. Internal Inductance – 𝑙𝑖

13. Max Beta Normal – (𝛽𝑁)𝑚𝑎𝑥

14. Max Kink Safety Factor – (𝑞95)𝑚𝑎𝑥

15. Max Wall Loading – (𝑃𝑊 )𝑚𝑎𝑥
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H.2.1 Enhancement Factor – 𝐻
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Figure H-21: Cost Sensitivity: 𝐻 vs. 𝐵0

218



H.2.2 Physics Gain – 𝑄
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Figure H-22: Cost Sensitivity: 𝑄 vs. 𝐵0
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H.2.3 Flattop Duration – 𝜏𝐹𝑇
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Figure H-23: Cost Sensitivity: 𝜏𝐹𝑇 vs. 𝐵0
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H.2.4 Greenwald Fraction – 𝑁𝐺

0.0 0.5 1.0 1.5 2.0
0.00

0.02

0.04

0.06

0.08

0.10

𝑁𝐺

𝐶
𝑊

Charybdis

𝑤𝑎𝑙𝑙
𝑐𝑜𝑠𝑡
𝑊𝑀

(a) Charybdis

0.0 0.5 1.0 1.5 2.0
0.00

0.02

0.04

0.06

0.08

0.10

𝑁𝐺

𝐶
𝑊

Proteus

𝑘𝑖𝑛𝑘
𝑤𝑎𝑙𝑙
𝑐𝑜𝑠𝑡
𝑊𝑀

(b) Proteus

0.0 0.5 1.0 1.5
0.00

0.02

0.04

0.06

0.08

0.10

𝑁𝐺

𝐶
𝑊

ARC

𝑤𝑎𝑙𝑙
𝑐𝑜𝑠𝑡
𝑊𝑀

(c) ARC

0.0 0.5 1.0 1.5 2.0 2.5
0.00

0.02

0.04

0.06

0.08

0.10

𝑁𝐺

𝐶
𝑊

DEMO Pulsed

𝑘𝑖𝑛𝑘
𝑐𝑜𝑠𝑡
𝑊𝑀

(d) DEMO Pulsed

0.0 0.5 1.0 1.5 2.0
0.00

0.02

0.04

0.06

0.08

0.10

𝑁𝐺

𝐶
𝑊

ACT I

𝑤𝑎𝑙𝑙
𝑐𝑜𝑠𝑡
𝑊𝑀

(e) ACT I

0 1 2 3
0.00

0.02

0.04

0.06

0.08

0.10

𝑁𝐺

𝐶
𝑊

ACT II

𝑤𝑎𝑙𝑙
𝑐𝑜𝑠𝑡
𝑊𝑀

(f) ACT II

Figure H-24: Cost Sensitivity: 𝑁𝐺 vs. 𝐵0
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H.2.5 Dilution Factor – 𝑓𝐷
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Figure H-25: Cost Sensitivity: 𝑓𝐷 vs. 𝐵0
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H.2.6 Effective Charge – 𝑍𝑒𝑓𝑓
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Figure H-26: Cost Sensitivity: 𝑍𝑒𝑓𝑓 vs. 𝐵0
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H.2.7 Inverse Aspect Ratio – 𝜀
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Figure H-27: Cost Sensitivity: 𝜀 vs. 𝐵0
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H.2.8 Elongation – 𝜅95
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Figure H-28: Cost Sensitivity: 𝜅95 vs. 𝐵0
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H.2.9 Triangularity – 𝛿95
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Figure H-29: Cost Sensitivity: 𝛿95 vs. 𝐵0
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H.2.10 Density Peaking Factor – 𝜈𝑛
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Figure H-30: Cost Sensitivity: 𝜈𝑛 vs. 𝐵0
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H.2.11 Temperature Peaking Factor – 𝜈𝑇

0.0 0.5 1.0 1.5 2.0 2.5
0.00

0.02

0.04

0.06

0.08

0.10

𝜈𝑇

𝐶
𝑊

Charybdis

𝑤𝑎𝑙𝑙
𝑐𝑜𝑠𝑡
𝑊𝑀

(a) Charybdis

0.0 0.5 1.0 1.5 2.0 2.5
0.00

0.02

0.04

0.06

0.08

0.10

𝜈𝑇

𝐶
𝑊

Proteus

𝑘𝑖𝑛𝑘
𝑤𝑎𝑙𝑙
𝑐𝑜𝑠𝑡
𝑊𝑀

(b) Proteus

0.0 0.5 1.0 1.5 2.0
0.00

0.02

0.04

0.06

0.08

0.10

𝜈𝑇

𝐶
𝑊

ARC

𝑤𝑎𝑙𝑙
𝑐𝑜𝑠𝑡
𝑊𝑀

(c) ARC

0.0 0.5 1.0 1.5 2.0 2.5
0.00

0.02

0.04

0.06

0.08

0.10

𝜈𝑇

𝐶
𝑊

DEMO Pulsed

𝑘𝑖𝑛𝑘
𝑊𝑀

(d) DEMO Pulsed

0.0 0.5 1.0 1.5 2.0 2.5
0.00

0.02

0.04

0.06

0.08

0.10

𝜈𝑇

𝐶
𝑊

ACT I

𝑘𝑖𝑛𝑘
𝑤𝑎𝑙𝑙
𝑐𝑜𝑠𝑡
𝑊𝑀

(e) ACT I

0.0 0.5 1.0 1.5 2.0
0.00

0.02

0.04

0.06

0.08

0.10

𝜈𝑇

𝐶
𝑊

ACT II

𝑤𝑎𝑙𝑙
𝑐𝑜𝑠𝑡
𝑊𝑀

(f) ACT II

Figure H-31: Cost Sensitivity: 𝜈𝑇 vs. 𝐵0
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H.2.12 Internal Inductance – 𝑙𝑖
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Figure H-32: Cost Sensitivity: 𝑙𝑖 vs. 𝐵0
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H.2.13 Max Beta Normal – (𝛽𝑁)𝑚𝑎𝑥
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Figure H-33: Cost Sensitivity: (𝛽𝑁)𝑚𝑎𝑥 vs. 𝐵0
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H.2.14 Max Kink Safety Factor – (𝑞95)𝑚𝑎𝑥
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Figure H-34: Cost Sensitivity: (𝑞95)𝑚𝑎𝑥 vs. 𝐵0
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H.2.15 Max Wall Loading – (𝑃𝑊 )𝑚𝑎𝑥
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Figure H-35: Cost Sensitivity: (𝑃𝑊 )𝑚𝑎𝑥 vs. 𝐵0
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