
Diversity-Inducing Probability Measures for

Machine Learning
by

Chengtao Li
B.S., Tsinghua University (2014)

M.S., Massachusetts Institute of Technology (2016)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2019

@ Massachusetts Institute of Technology 2019. All rights reserved.

Author .... Signature redacted .........................
Department of Electrical Engineering and Computer Science

SiginatureAredacted January 31, 2019
Certified by ... ...........................

Suvrit Sra
Assistant Professor of Electrical Engineering and Computer Science

Thesis Supervisor

Certified by. Signature redacted............................
Stefanie Jegelka

Assistant Professor of Electrical Engineering and Computer Science
f. Thesis Supervisor

Accepted by... gnature redacted .........................
MASSACHUSETTS INSTITUTE \' U -J Leslie A. KolodziejskiOF r CHNOLOGY

Professor of Electrical Engineering and Computer Science
FEB 2 12019 Chair, Department Committee on Graduate Students

LIBRARIES
ARCHIVES





Diversity-Inducing Probability Measures for

Machine Learning

by

Chengtao Li

Submitted to the Department of Electrical Engineering and Computer Science
on January 31, 2019, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

Subset selection problems arise in machine learning within kernel approximation, experi-
mental design, and numerous other applications. In such applications, one often seeks to
select diverse subsets of items to represent the population. One way to select such diverse
subsets is to sample according to Diversity-Inducing Probability Measures (DIPMs) that
assign higher probabilities to more diverse subsets. DIPMs underlie several recent break-
throughs in mathematics and theoretical computer science, but their power has not yet been
explored for machine learning. In this thesis, we investigate DIPMs, their mathematical
properties, sampling algorithms, and applications.

Perhaps the best known instance of a DIPM is a Determinantal Point Process (DPP).
DPPs originally arose in quantum physics, and are known to have deep relations to linear
algebra, combinatorics, and geometry. We explore applications of DPPs to kernel matrix
approximation and kernel ridge regression. In these applications, DPPs deliver strong
approximation guarantees and obtain superior performance compared to existing methods.
We further develop an MCMC sampling algorithm accelerated by Gauss-type quadratures
for DPPs. The algorithm runs several orders of magnitude faster than the existing ones.

DPPs lie in a larger class of DIPMs called Strongly Rayleigh (SR) Measures. Instances of
SR measures display a strong negative dependence property known as negative association,
and as such can be used to model subset diversity. We study mathematical properties of
SR measures, and construct the first provably fast-mixing Markov chain that samples from
general SR measures. As a special case, we consider an SR measure called Dual Volume
Sampling (DVS), for which we present the first poly-time sampling algorithm.

While all considered distributions over subsets are unconstrained, those of interest in
the real world usually come with constraints due to prior knowledge, resource limitations
or personal preferences. Hence we investigate sampling from constrained versions of
DIPMs. Specifically, we consider DIPMs with cardinality constraints and matroid base
constraints and construct poly-time approximate sampling algorithms for them. Such
sampling algorithms will enable practical uses of constrained DIPMs in real world.
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Chapter 1

Introduction

Subset selection problems lie at the heart of many applications where a small subset of

items must be selected to represent a larger population. A typical example is kernel matrix

approximation [49, 56]. Kernel methods are widely used in machine learning and they need

to manipulate kernel matrices with operations like matrix inversion or matrix multiplication.

However, the square/cubic time complexity of these operations will be prohibitive when

the kernel matrix is large. One solution to large kernel matrix operation is to construct a

low-rank approximation of the kernel matrix. Such approximation is done by first selecting a

few rows and columns from the kernel matrix. These rows and columns are then multiplied

together in certain ways to construct the approximated matrix (See Figure 1-1). Subset

selection problems also appear in video summarization [85, 161]. A long video may take

tens of hours to watch. To get the main idea of the video quickly, we could create a "trailer"

of the video by selecting a subset of scenes and watch the trailer. A similar example is text

summarization [119] where we have a large pile of papers to read. Instead of reading the

papers page by page, we select a subset of representative paragraphs in the paper and form a

summary of all the papers. By reading the summary, we are able understand main ideas in

papers within a short time (See Figure 1-1). Another example of subset selection is sensor

placement [88, 103]. Here, the task is to monitor a specific area with a certain number of

sensors. There are many possible locations to place sensors on. Due to the limited number

of sensors, we seek for a subset of locations such that the area monitored by at least one

sensor is maximized. (See Figure 1-1).
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Figure 1-1: Applications examples for subset selection: kernel matrix approximation,

video/text summarization and sensor placement.

Typically, the selected subsets are expected to fulfill various criteria such as sparsity

or diversity. Our focus is on diversity, a criterion that plays a key role in a variety of

applications, such as gene network subsampling [19], recommender systems [189], among

many others [104, 77, 107, 2, 169, 160].

Diverse subset selection amounts to sampling from the set of all subsets of a ground set

according to a measure that places more mass on subsets with qualitatively different items.

We call such probability measures Diversity-Inducing Probability Measures (DIPMs). A

well-known example of DIPMs is called Determinantal Point Processes (DPPs). DPPs were

first introduced in physics to model the repulsive phenomenon of Fermion particles [127].

Later they were referred to as Determinantal Point Processes [29] and were introduced to

machine learning community [107]. Each DPP is associated with a kernel matrix L which

quantifies the similarities between items. A DPP captures diversity by assigning subset S

probability that is proportional to submatrix determinant (See Figure 1-2). Specifically, we

have 7r(S) oc det(Lss).

To illustrate that DPPs capture diversity, we consider sampling a subset of points on a

2-D panel where the dissimilarity between points grows with their distance. We show in
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Figure 1-2: DPP definition

Figure 1-3 subsets sampled by DPP versus uniform sampling. If we do uniform sampling

where no similarity information between points is considered, we end up with a subset that

has clusters at random places. On the other hand, the subset sampled by DPP is spread out,

and each sampled point is far from other points, i.e. the subset is diverse.

DPPs enjoy substantial interest in machine learning [104, 106, 100, 85, 132], in part due

to computational tractability of basic tasks such as computing partition functions, sampling,

and extracting marginals [94, 107]. Despite being polynomial-time, these tasks remain
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Figure 1-3: Sampled subsets from a 2D panel using DPP and Uniform distribution.
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infeasible for large datasets. DPP sampling, for example, relies on an eigendecomposition

of the DPP kernel, whose cubic complexity is a huge impediment to scalability. Cubic pre-

processing costs also impede wider use of the cardinality-constrained variant k-DPP [105].

These drawbacks have triggered work on approximate sampling methods. Much work

has been devoted to approximately sampling from a DPP by first approximating its kernel via

algorithms such as the Nystrm method [3], Random Kitchen Sinks [153, 1] or matrix ridge

approximations [187, 181], and then sample based on this approximation. These methods

lead to considerable efficiency gain, but are somewhat inappropriate for sampling because

they aim to project the DPP kernel onto a lower dimensional space while minimizing a

matrix norm, rather than minimizing an error measure sensitive to determinants. Another

approach based on the concept of coresets is proposed to directly minimize the TV distances

between the original distribution and the approximated one [112]. This method relies on

the structure of the dataset: if the dataset is nicely clustered, the approximation will be

both efficient and effective. Alternative approaches use a dual formulation [104], which

saves time in preprocessing of the kernel matrix by transforming an eigendecomposition

of a large kernel matrix to a smaller one. This is based on the assumption that a low-rank

decomposition of kernel matrix is available, which may not always be true.

Another line of work focuses on sampling with Markov chain Monte Carlo [92, 76, 47].

The idea is to maintain an active subset of the ground set, and iteratively update the

active set by adding items to or removing items from it. After running certain number of

iterations the active subset is viewed as a subset sampled from an approximation of the

target distribution. The number of updates needed to produce a good sample from MCMC

is low-order polynomial [8, 117]. However, existing Markov chains require storing and

updating the inverse of sub-matrices of kernel, which is potentially inefficient. Thus, since

its proposal, MCMC sampling from DPP has so far not been used widely in practice.

Nevertheless, DPPs still have huge potential to be applied to subset selection problems

where diverse subsets are needed. In the first part of this thesis, we explore the application

of DPPs in kernel matrix approximation. We show that with diverse subset of rows and

columns selected via DPP, we are able to achieve one of the best performances among

existing state-of-art baselines. We further consider applying such approximation to a
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downstream application, kernel ridge regression, and show empirically that using DPPs will

result in superior performance.

Besides effectiveness, we pursue efficiency in sampling procedure. In the second part

of this thesis, we address efficiency of (k-)DPP sampling with MCMC. We accelerate

existing MCMC approaches with a retrospective-style algorithmic framework and an ancient

technique called Gauss quadrature. Our Markov chain samples valid subsets as existing ones,

but is much faster when the kernel L of the (k-)DPP is sparse. In large-scale experiments

we observe over 103 times acceleration with our method.

While DPPs are one common example of DIPMs, there is a broader class of probability

measures that is diversity-inducing called Strongly Rayleigh (SR) measures. These measures

are intimately related to stable polynomials. This viewpoint is first established in [28], which

has proved key to uncovering their remarkable properties, both for modeling as well as

for fast sampling. SR measures exhibit negative association, a strong, "robust" notion

of negative dependence. They have recently emerged as valuable tools in the design of

algorithms [6], in the theory of polynomials and combinatorics [28], and in machine learning

through DPPs. Despite being important, the mathematical properties of SR measures have

largely been unexplored. Only recently in the work of [8] the authors have proved the

first poly-time mixing MCMC on a certain class of SR measures called homogeneous SR

measures, while the mixing time of MCMC for general SR measuresremains unknown.

For the third part of thesis, we study sampling methods for general SR measures and

derive a provably fast mixing Markov chain that is novel and may be of independent interest.

Our results provide the first polynomial guarantee for Markov chain sampling from a general

DPP, and more generally from an SR distribution. This result also indicates an efficient

sampling method for Dual Volume Sampling (DVS), whose poly-time sampling method has

remained open since 2013 [13]. Specifically, we prove that DVS lies in the class of SR, thus

a poly-time MCMC sampling method follows.

While most DIPMs that we have considered have no explicit constraints, real-world

applications usually come with various constraints. Take sensor placement for example.

We want to have a precise control over the number of locations sampled, so that we do not

end up sampling too many locations (See Figure 1-4). However, little has been known in
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Figure 1-4: In sensor placement problem, we want to control the size of subsets we are

sampling so as not to end up with sampling too many locations

efficient sampling methods of constrained DIPMs.

In the last part of this thesis, we study DIPMs with certain constraints. More specifically,

we consider matroid base constraints or cardinality constraints. We present theoretical

results concerning mixing times of Markov chains for constrained DIPMs, and prove that

under certain conditions, all chains mix rapidly. Note that while some of the constrained

distributions do lie in the family of SR measures, adding constraints may break the SR

property, thus a direct application of fast MCMC for SR measures is not viable, and fast

mixing chains have not been known before. We verify empirically that the dependencies of

mixing times on several function- or data-related factors are consistent with our analysis.

This thesis is organized as follows: In Chapter 1 we give a brief overview of DIPMs and

the problems on which we will focus throughout this thesis. In Chapter 2 we apply DPPs

to core machine learning applications including kernel matrix approximation and kernel

ridge regressions. We show superior performance of DPP-approximated algorithms. In

Chapter 3 we introduce efficient MCMC algorithms for (k-)DPPs accelerated by Gauss-type

quadrature. In Chapter 4 we focus on the broader class of SR and show the first poly-time

mixing MCMC algorithm. We also revisit Dual Volume Sampling (DVS) and show that

DVS lies in the class of SR. In Chapter 5 we consider constrained DIPMs and show efficient

MCMC method for these measures. We close this thesis with conclusion and open problems

in section 6.
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Chapter 2

Determinantal Point Processes for

Kernel Methods

In this chapter, we consider applying DPP to kernel methods, including Nystr6m method and

kernel ridge regression. The Nystrm method has long been popular for scaling up kernel

methods. However, its theoretical guarantees and empirical performance both critically

rely on the selection of suitable landmarks. We study landmark selection via DPPs. We

prove that landmarks selected according to a DPP offer guaranteed approximation errors for

Nystr6m. Subsequently, we analyze implications for kernel ridge regression, where we also

prove the approximation guarantees. For efficient implementation, we use Markov chain

DPP accelerated by Gauss quadrature to do the sampling, which will be explained in more

details in the next chapter. We present empirical results that support the theoretical analysis,

and demonstrate the superior performance of DPP-based landmark selection compared

against existing approaches. Materials in this chapter are based on [113].

2.1 Introduction

Matrix low-rank approximation is an important ingredient of modern machine learning

methods: many methods rely on operations such as multiplication and inversion of matri-

ces. Scaling cubically in the number of data points n, these operations quickly become a

bottleneck for large data. In such cases, low-rank approximations promise speedups with a
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tolerable loss in accuracy.

A notable example is the Nystr6m method [144, 18], which takes a positive semidefinite

matrix L E R n" as input, selects from it a small subset S of columns L.,s, and constructs

the approximation L = Ls,.. The matrix L, in its factored form, is then used in

place of L. If the number k = ISI of selected columns is small, then using L decreases

runtimes from 0(n') to 0(nk3 ), a substantial saving.

Since its introduction to the machine learning community, the Nystr6m method has been

applied to a wide spectrum of problems, including kernel ICA [15, 162], kernel and spectral

methods in computer vision [21, 66], manifold learning [178, 177], regularization [157],

and efficient approximate sampling [3]. Recent work [46, 14, 4] has shown risk bounds for

Nystr6m applied to various kernel methods.

The most important step of the Nystr6m method is the selection of the column subset

S, the so-called landmarks. This choice governs the approximation error and subsequent

performance of the approximated learning methods [46]. The most basic strategy is to sample

landmarks uniformly at random [184]. More sophisticated non-uniform selection strategies

include deterministic greedy schemes [168], incomplete Cholesky decomposition [65, 16],

sampling with probabilities proportional to diagonal values [56], to column norms [55],

based on leverage scores [79], via K-means [186], and using submatrix determinants [22].

We study landmark selection using Determinantal Point Processes (DPP), discrete

probability models that allow tractable sampling of diverse non-independent samples [126,

107]. Our work generalizes the determinantal sampling scheme of [22].1 We refer to our

scheme as DPP-Nystr6m, and analyze it from several perspectives.

A key quantity in our analysis is the error of Nystrbm approximation. Suppose c is the

target rank; then for selecting k > c landmarks, Nystr6m's error is typically measured using

the Frobenius or spectral norm, relative to the best achievable error via rank-c SVD L,; that

is, we measure

L - L.,sLts Ls,.HF I - L.,sLs, Ls,112
or

| FL - L|| W L - cJ 2

'Surprisingly, they do not make an explicit connection to DPPs
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Several authors also use additive instead of relative bounds. However, such bounds are very

sensitive to scaling, and become loose even if a single entry of the matrix is large. Thus, we

focus on the above relative error bounds.

First, we analyze this approximation error. Previous analysis [22] assumes a cardinality

of k = c; we go beyond this limitation and analyze the general case of selecting k > c

columns. Our relative error bounds rely on the properties of characteristic polynomials.

Empirically DPP-Nystr6m is seen to obtain approximations superior to other state-of-art

methods.

Second, we consider its impact on kernel methods. Specifically, we address the impact

of Nystr6m-based kernel approximations on kernel ridge regression. This task has been

noted as the main application in [14, 4]. We show risk bounds of DPP-Nystrbm that hold in

expectation. Empirically, it achieves the best performance among competing methods.

Third, we consider the efficiency of DPP-Nystr6m; specifically, its tradeoff between

error and running time. Since its proposal in [22], determinantal sampling (also realized

as k-DPP) has so far not been used widely in practice due to (valid) concerns about its

scalability. We use MCMC for DPP sampling and accelerate it with Gauss quadrature.

Empirical results indicate that the chain yields favorable results within a small number

of iterations, and the best efficiency-accuracy traedoffs compared to state-of-art methods

(Figure 2-6).

2.2 Background and Notation

Let L E R"'X be positive semidefinite (PSD); let it have the eigendecomposition L

UAUT with eigenvalues {A}_ 1 arranged decreasingly. We use Li,. for the i-th row and

L.j for the j-th column, and, likewise, Ls,. for the rows of L and L.,s for the columns of

L indexed by S C [n]. Finally, Ls,s is the submatrix of L with rows and columns indexed

by S. In this notation, L, = U.,[,]A[c,,[] UT is the best rank-c approximation to L in both

Frobenius and spectral norm. We write r(-) for the rank and (-)t for the pseudoinverse, and

denote the decomposition of L by BT B, where B c R( .

The Nystrbm Method The standard Nystrdm method selects a subset S C [n] of
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|= k landmarks, and approximates L with L.,sL s Ls,.. The actual set of landmarks

affects the approximation quality, and has hence been the subject of a substantial body of

research [46, 168, 65, 16, 56, 55, 79, 186, 22].

Besides various landmark selection methods, there exist variations to the standard

Nystr6m method, such as the ensemble Nystrim method [108] that uses a weighted combi-

nation of approximations, or the modified Nystrm method that constructs an approximation

L.,sLt sLL,.Ls,. [175]. In this chapter, we focus on the standard Nystr6m method.

2.3 DPP for the Nystro*m Method

Next, we consider sampling landmarks S C [n] from k-DPP(L), and use the approximation

Ls = L.,sLtsLs,., referred to as DPP-Nystrbm. This method was introduced in [22], but

without making the explicit connection to DPPs. Our analysis builds on this connection

and subsumes existing results which only apply to k = c (recall, c is the rank of the target

approximation).

In the remainder of this section, we show following bounds:

Theorem 1 (Relative Error). If S ~ k-DPP(L), then DPP-Nystrbm satisfies the relative

errors bounds

| L - L.,s(Ls,s)tLs,.F] k + I21 rn-(
ES JL - Le||F - +1 -c C(.31

ES [HL - L.<s(LsY~LsJJ2 ] < k+I (n - c). (2.3.2)
1 IL - Le|2 -k +1 - c

Our analysis exploits a property of characteristic polynomials observed in [89]. Coeffi-

cients of characteristic polynomials are a sum of determinants:

ek(L) = det(BsBs) = ek(A). (2.3.3)
I S1 =k

The following lemma bounds a ratio of such coefficients.
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Lemma 2 ([89]). For any k > c > 0, it holds that

1
k+1( ) <_IE____
ek(A) - k + I1 - c i

With this lemma in hand, we proceed to prove Theorem 1.

Proof (Thm. 1). We begin with the Frobenius norm error, and then show the spectral norm

result. Using the decomposition L = BT B, it holds that

ES [H|L - L.,sLt Ls,.HF = [EJ [BT B - BT Bs(BT Bs T B||F]

= Es [J BT (I - Bs(Bs Bs)t Bs)B HF] = Es [JB'(I - UsUs)B F],

where UsEsVs is the SVD of Bs. Next, we extend Us to a full basis U = [Us U.-]. Since

U is orthonormal, we have UUT = I and I - UsUST = USL(U4)T. Plugging in this identity

and applying Cauchy-Schwartz yields

E (I - UsUT)B|F] =ES [J|B T U (US )T BF]

V(b U (U I) Tbj)

= 'E~ st ~b U| = ek(L) Is

ek(L) SIs=k S s
det(BsufijB U{i})

= (k + 1 ) ek+1(L)
ek (L)

By (2.3.3) and Lemma 2 it follows that

(k + 1)ekL < +1A

kk (L - C i-c

= k c-c /n- -

-k+l-c ri cHJL - LcHJF.
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The bound on the Frobenius norm immediately implies the bound on the spectral norm:

ES [H|L - L.,s(Ls,s)1Ls,.||2] <- ES L|L - L.,sLt Ls,.||F

< kn - c||L - L||F < (n - c)||L - Lc12 Ek +I- c k +I- c

Remarks Our bounds are not directly comparable to previous bounds (e.g., [79] on

uniform and leverage score sampling) that hold with certain probability since our bounds

hold in expectation. However, in Sec. 2.5.1 we extensively experiment with DPP-Nystrbm

on various datasets and observe superior accuracies against various existing state-of-art

methods.

We also show the bounds that hold with high probability. To show high probability

bounds we employ concentration results on homogeneous strongly Rayleigh measures.

Specifically, we use the following theorem.

Theorem 3 ([150]). Let P be a k-homogeneous strongly Rayleigh probability measure on

{0, 1}" and f an -Lipschitz function on {0, 1}, then

P(f - E[f] > af) < exp{-a2 /8k}.

It is known that a k-DPP is a homogeneous strongly Rayleigh measure on {0, 1}' [28, 8],

thus Theorem 3 applies to results obtained with k-DPP. Concretely, for the bound in

Theorem 1 that holds in expectation, we have the following bound that holds with high

probability:

Corollary 4. When sampling S ~ k-DPP(L), for any 6 E (0, 1), with probability at least

1 - 6 we have

IL - L.,s(Ls,s)tLs,.|F -k + 8kEI
/n - c + Z8k log (1/X6) ,7_= 2|IL - LC||F k+1 -c Z=c+1 I

IL - L.,s(Ls,s)tLs,.|2 k + (N - c) + -/8k log(/6)A

where A 1 > A2 > ... ;> A, are the eigenvalues of L.
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Proof The Lipschitz constants of the relative errors are upper bounded by and

AI respectively. Applying Theorem 3 yields the results.

2.4 Low-rank Kernel Ridge Regression

The theoretical (Section 2.3) and empirical (Section 2.5.1) results suggest that DPP-Nystrbm

may be very suitable for scaling kernel learning methods. In this section, we analyze its

implications on kernel ridge regression. The experiments in Section 2.5 confirm our results

empirically.

Suppose we have n training samples {(X,, y,)}I 1, where yj = zi + ci are the observed

labels under zero-mean noise, with finite noise covariance. We minimize a regularized

empirical loss

min - Z (yi, f (Xi)) + |11f 12
fcF n2

over an RKHS F; equivalently, we solve the problem

min f(yi, (L)j) + a Loz,
aERn) 2

for the corresponding kernel matrix L. With the squared loss f(y, f(x)) =(y - (X))2,

the resulting estimator is

n

f(x) Zai k(x, xi), a = (L + nyI) -y, (2.4.1)

and the prediction for {x}&U 1 is given by 2 L(L + n-I)-ly C R1. Denoting the noise
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covariance by F, we obtain the risk

R{s) = Ez- z|2n

= ny 2ZT(L + nyI)- 2 z + !Tr(FL2 (L + n--I)-2 )

= bias(L) + var(L). (2.4.2)

Observe that the bias term is matrix-decreasing (in L) while the variance term is matrix-

increasing. Since the estimator (2.4.1) requires expensive matrix inversions, it is common

to replace L in (2.4.1) by an approximation L. If L is constructed via Nystrdm we have

Li -< L, and it directly follows that the variance shrinks with this substitution, while the bias

increases. Denoting the predictions from L by L, Theorem 5 completes the picture of how

using i affects the risk.

Theorem 5. If L is constructed via DPP-Nystrom and - ;> Tr( L), then

ES > I - (k + 1) ek+1(L)
IZR( ) ny ek(L)

Proof We build upon [14]. Knowing that Var(L) < Var(L) as Ii - L, it remains to bound

the bias. We write L BT B and L - BTB(BT Bs)tBT B, and bound the difference

L - L as

L - = BT(I - Bs(BT Bs)tBT)B = BT US(USF)T B

B BT UA (U )T B =F E (bTUg(US )Tb 3)2I
i'j

S/( |b UI||22 ||bT UI2)1 = E ||bS U-||1I = bI,
V2,J i

where vs E Ir (b T US- 11 2 < , E j7 T1 = Tr(L). Since, by assumption, -LTr(L) < -Y, we

have that L < 1, and

(L + nmyI)-<- (L - vsI + nyI)- 1  (1 - )-(L + nI)-1.
ny
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Finally, this matrix inequality imples that

bias(L) ( s
bias(L) nry

Taking expectation over S - k-DPP(L) yields

ES bias(L) > 1-ES VS 1 (k + 1) ek+1 (L)

bias(L) [nyj nY ek(L)

Together with the fact that var(L) > var(L), we obtain

[_(_) L bias(L) + var(L)

R(QL) bias(L) + var(L)

> 1 - (k + 1) ek+l(L) (2.4.3)
ny ek(L)

> k k 1-Z> *Ai (2.4.4)
k+1-c ZiAj

for any k > c, where the last inequality follows from Lemma 2 and - ;> ITr(L). E

Remarks. Theorem 5 quantifies how the learning results rely on the decay of the spectrum

of L. In particular, the ratio ek+1(L)/ek(L) closely relates to the effective rank of L: if Ak >

a and Ak+1 < a, this ratio becomes almost zero, resulting in near-perfect approximations

and no loss in learning. This also becomes evident in (2.4.4).

Again for the bound in Theorem 5 that holds in expectation, we have the following

bound that holds with high probability:

Corollary 6. If i is constructed via DPP-Nystr5m, then with probability at least 1 -

bias(L)
is upper-bounded by

1 + 1 ((k+1)ek+l(L) + N/8k log(1/)tr(L)).
n-y e ( L)

Proof Consider the function fs(L) = vs = Ji IIb7 (US)-L I Ej | = tr(L). Since

0 < fs(L) < tr(L), it follows that the Lipschitz constant for fs is at most tr(L). Thus
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when S ~ k-DPP and 6 E (0, 1), by applying Theorem 3 we see that the inequality

vs E [vs] + 8k log(1/)tr(L) holds with probability at least 1 - 6. Hence

bias(L) ils ]t+V(L) -
ES < I + E + klog(1/)tr(L)

bias((L) ny ny

= +-y- (k ()ek + V8k log(1/6)tr(L)

holds with probability at least 1 - 6.

There exist works considering DPP methods in this scenario [14, 4]. Although our

bounds are not directly comparable to existing ones, we do extensive experiments to com-

pare DPP-Nystr6m against other state-of-art methods in Sec. 2.5.2 and observe superior

performance of DPP-Nystr6m.

2.5 Experiments

In our experiments, we evaluate the performance of DPP-Nystr6m on both kernel approxi-

mation and kernel learning tasks, in terms of running time and accuracy.

We use 8 datasets: Abalone, Ailerons, Elevators, CompAct, CompAct(s), Bank32NH,

Bank8FM and California Housing2. We truncated each dataset to be 4,000 samples (3,000

training and 1,000 testing). Throughout our experiments we use an RBF kernel and choose

the bandwidth parameter o and regularization parameter A for each dataset by 10-fold

cross-validation. We initialize the Gibbs sampler via Kmeans++ and run for 3,000 iterations.

Results are averaged over 3 random subsets of data.

2.5.1 Kernel Approximation

We first explore DPP-Nystr6m (kDPP in the figures) for approximating kernel matrices. We

compare to uniform sampling (Un i f) and leverage score sampling (Lev) [79] as baseline

landmark selection methods. We also include AdapFull (AdapFu 11) [50] that performs

2The data is available at http://www.dcc.fc.up.pt/~ltorgo/Regression/DataSets.

html

34



-. Unif
. .AdapFull

-.. Lev
0.06 0.06 RegLev

S....kDPP

@ 0.04 - 0.04

0.02 - 0.02-

0 0
20 40 60 80 100 20 40 60 80 100

# landmarks # landmarks

Figure 2-1: Relative Frobenius/Spectral norm errors from different kernel approximation

algorithms on Ailerons dataset.

quite well in practice but scales poorly, as 0(n2 ), with the size of dataset. Although

sampling with regularized leverage score (RegLev) [4] is not originally designed for

kernel approximation, we include its results to see how regularization affects leverage score

sampling.

Figure 2-1 shows example results on the Ailerons data. DPP-Nystrom performs well,

achieving the lowest error as measured in both spectral and Frobenius norm. The only

method that is on par in terms of accuracy is AdapFull, which has a much higher running

time.

For a different view, Figure 2-2 shows the improvement in error over Un if. Relative

improvements are averaged over all data sets. Again, the performance of DPP-Nystrbm

almost always dominate those of other methods, and achieves an up to 80% reduction in

error.

2.5.2 Kernel Ridge Regression

Next, we apply DPP-Nystr6m to kernel ridge regression, comparing against uniform sam-

pling (Unif) [14] and regularized leverage score sampling (RegLev) [4] which have

theoretical guarantees for this task. Figure 2-3 illustrates an example result: non-uniform

sampling greatly improves accuracy, with kDPP improving over regularized leverage scores

35

- Spec Error , .Fro Error
n0 nJ n0 ns



Fro Imprpvement

80 - - 80 -

E E
) 70- 70-

0o 0
C0L

-9 60- 60-

-- AdapFull
S 50 -- 50 Lev

RegLev
CC_..-.. kDPP

20 40 60 80 100 20 40 60 80 100
# landmarks # landmarks

Figure 2-2: Improvement in relative Frobenius/spectral norm errors (%) over Uni f (with
corresponding landmark sizes) for kernel approximation, averaged over all datasets.

in particular for a small number of landmarks, where a single column has a larger effect.

Figure 2-4 displays the average improvement over Unif, averaged over 8 data sets.

Again the performance of kDPP dominates those of RegLev and Unif and leads to gains

in accuracy. On average kDPP consistently achieve more than 20% improvement over

Unif.

2.5.3 Mixing of the Markov Chain DPP

In the next experiment, we empirically study the mixing of the Markov chain with respect

to matrix approximation errors, the ultimate measure that is of interest in our application

of the sampler. We use k = 50 and vary n from 500 to 4,000. To exclude impacts of the

initialization, we pick the initial state So uniformly at random. We run the chain for 5,000

iterations, monitoring how the error changes with the number of iterations. The example

results in Figure 2-5 show that empirically, the error drops very quickly and afterwards

fluctuates only little, indicating a fast convergence of the approximation error. Further results

may be found in the supplementary material.

Notably, our empirical results suggest that the mixing time does not increase much even

if n increases greatly, suggesting that the MCMC sampler remains fast even for large n
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2.5.4 Time-Error Tradeoffs
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Figure 2-6: Time-Error tradeoffs with 50 landmarks on the Ailerons data truncated at 2,000

samples (1,000 training and 1,000 testing). Errors are shown on a log scale. Bottom left is

the best (low error, low running time), top right is the worst.

Iterative methods like the MCMC sampler offer tradeoffs between time and error. The

longer the Markov Chain runs, the closer the sampling distribution is to the desired DPP,

and the higher the accuracy obtained by Nystr6m. We hence explicitly show the time and

accuracy for 0 to 300 iterations of the sampler.

A similar tradeoff occurs with leverage scores. For the experiments in the other sections,

we computed the (regularized) leverage scores for Lev and RegLev exactly. This requires

a full, computationally expensive eigendecomposition. For a fast, rougher approximation,

we here compare to an approximation mentioned in [4]. Concretely, we sample p elements

with probability proportional to the diagonal entries of kernel matrices Lij, and then use

a Nystr6m-like method to construct an approximate low-rank decomposition of L, and

compute scores based on this approximation. We vary p from 50 to 500 to show the

tradeoff for approximated leverage score sampling (AppLev) and regularized leverage

score sampling (AppRegLev).

Figure 2-6 summarizes and compares the tradeoffs offered by these different methods.

The x-axis indicates time, the y-axis error, so the lower left is the preferred corner. We see

that exact leverage scores are accurate but expensive, whereas the approximate versions
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empirically lose accuracy. AdapFu 11 is accurate but needs longer time than kDPP. These

results are sharpened as n grows. Overall, DPP-Nystr6m offers the best tradeoff of accuracy

versus efficiency.

2.6 Summary

In this chapter, we explore the use of k-DPP for sampling good landmarks for the Nys-

tr6m method and its further application to kernel ridge regression. We theoretically and

empirically observe its competitive performance, for both matrix approximation and ridge

regression, compared to state-of-the-art methods. To make this accurate method scalable to

large matrices, we consider sampling via MCMC accelerated with Gauss quadrature. Our

results indicate that the iterative approach, an MCMC sampler, achieves good landmark

samples quickly. Our empirical results demonstrate that among state of the art methods, the

iterative sampler yields the best tradeoff between efficiency and accuracy.
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Chapter 3

Sampling DPP by Efficient MCMC with

Gauss Quadrature

In this chapter, we focus on Markov chain Monte Carlo sampling for (k-)DPP. We show that

the chain involves heavy computation of bilinear inverseforms (BIFs) uTA--u, where A is a

positive definite matrix and u a given vector. To accelerate the chain, we present a framework

for accelerating a spectrum of machine learning algorithms that rely on computation of

BIFs. Our framework is built on Gauss-type quadrature and can easily scale to large, sparse

matrices; it allows retrospective computation of lower and upper bounds on uT A--u, which

in turn helps accelerate several algorithms. We prove that these bounds improve iteratively,

compare their tightness to each other, and show their linear convergence. To our knowledge,

our work is the first to demonstrate these key properties of Gauss-type quadrature, which is

a classical and exceptionally well-studied topic. We illustrate empirical consequences of our

results by using quadrature to accelerate Markov chain (k-)DPP and observe tremendous

speedups in several instances. Materials in this chapter are based on [118].

3.1 Bilinear Inverse Forms (BIFs)

Symmetric positive definite matrices abound in machine learning, arising in various guises:

covariances, kernels, graph Laplacians, or otherwise. A basic computation with such

matrices is the evaluation of the bilinear form uTf(A)v, where f is a matrix function and u,
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v are given vectors. If f(A) = A- 1 , we speak of computing the bilinear inverseform (BIF)

uTA-lv. If, for instance, u=v=ei (1th canonical vector), then uTf(A)v = (A--1 )i is the ith

diagonal entry of the inverse.

In this chapter, we are specifically interested in computing BIFs due to their great value

in several machine learning contexts, including the evaluation of a Gaussian density at

a point, the Woodbury matrix inversion lemma, implementation of MCMC samplers for

Determinantal Point Processes (DPP), computation of graph centrality measures, or greedy

submodular maximization (see Sec. 3.1.3).

When A is large, it is preferable to compute u TAlv iteratively rather than first com-

puting A-'v (using Cholesky) at a cost of 0(n3) operations. One idea is to use conjugate

gradients to approximately solve Ax = v and to then obtain u TA-v = UTTx. But several

applications require precise bounds on numerical estimates to uTA-lv (e.g., in MCMC

based DPP samplers such bounds help decide whether to accept or reject a transition in each

iteration-see Sec. 3.6.1), so we need a more finessed approach.

Gauss quadrature is such an approach. Originally proposed in [71] for approximating

integrals, Gauss- and Gauss-type quadrature (i.e., Gauss-Lobatto [122] and Gauss-Radau

[152] quadrature) have since been applied to approximating bilinear forms including the BIF

uT A-lv [17]. [17] also show that Gauss and (right) Gauss-Radau quadrature yield lower

bounds, while Gauss-Lobatto and (left) Gauss-Radau yield upper bounds on this bilinear

inverse form.

Despite its long history and voluminous existing work (see e.g., [82]), our understanding

of Gauss-type quadrature for matrix problems is far from complete. For instance, it is not

known whether the bounds on BIFs iteratively improve; nor is it known how the bounds

obtained from Gauss, Gauss-Radau and Gauss-Lobatto quadrature compare with each other.

We do not even know how fast the iterates of Gauss-Radau or Gauss-Lobatto quadrature

converge to the true value of uTA-lV.

Contributions. We address all the aforementioned problems, and make the following

main contributions:

- We show that the lower and upper bounds generated by Gauss-type quadrature monoton-

ically approach the target value (Thm. 12, Thm. 14, Corr. 15). Furthermore, we show
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that for the same number of iterations Gauss-Radau quadrature yields bounds superior to

those given by Gauss or Gauss-Lobatto (Thm. 12, Thm. 14), but somewhat surprisingly

they share the same convergence rate.

- We derive linear convergence rates for Gauss-Radau and Gauss-Lobatto explicitly (Thm. 13,

Thm. 16, Corr. 17).

- We demonstrate the implications of our results for scalable Markov chain sampling

from a DPP. In this case, quadrature accelerates computations, and the bounds aid early

stopping. Notably, on large-scale sparse problems our methods lead to even several orders

of magnitude in speedups.

3.1.1 Determinantal Point Processes (DPPs)

A Determinantal Point Process DPP(L) is a distribution over all subsets of a ground set V of

cardinality n. It is determined by a positive semidefinite kernel L E R nfX". Let Ls,s be the

submatrix of L consisting of the entries Lij with i, j C S C V. Then, the probability 7r(S)

of observing S C V given by

7r(S) = det(Ls,s)/ det(L + I) (3.1.1)

Conditioning on sampling sets of fixed cardinality k, one obtains a k-DPP [105]:

7r(S IISI = k) = det(Ls,s)ek(L) -[ ISI = k ,

where ek(L) is the k-th coefficient of the characteristic polynomial

det(AI - L) = Z(1)ek(L) A "k.
k=0

DPPs arise in random matrix theory, combinatorics, machine learning, matrix approxima-

tions, and many other areas; see e.g., [126, 123, 124, 41, 29, 170, 107, 94, 31, 30, 1 18].

One may expect an exponential-time sampling algorithm for DPP since the size of the

support for DPP is 2n, but it has been shown [94] that one could sample from DPP in
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polynomial time where the sampling procedure relies on an eigendecomposition of L. The

resulting cubic time complexity, however, is still a huge impediment for applications of DPP

on real applications.

Such drawback has triggered work on approximate sampling methods. Much work has

been devoted to approximately sample from a DPP by first approximating L via algorithms

such as the NystrOm method [3], Random Kitchen Sinks [1, 153], matrix ridge approx-

imations [181, 187], or block-constant matrix approximation [112], and then sampling

based on this approximation. Anther line of work focuses on MCMC [113, 8, 117], which

offers a potentially attractive avenue different from the above approaches that all rely on

approximation techniques.

While our main focus is discrete version of DPP by default, there is also a line of work

considering sampling from continuous DPP, either via approximation to kernel function [90]

or via MCMC [74]. Readers could refer to the original paper and references therein. Further

discussion of this line of work is beyond the scope of this paper.

3.1.2 MCMC for (k-)DPP

First we show MCMC for general DPP ir, i.e., we run a Markov Chain with state space being

S C V. All our chains are ergodic. Previous work used a simple add-delete Metropolis-

Hasting chain [100]. Starting with an arbitrary set S C V, we sample a point u E V

uniformly at random. If u E S, we remove t with probability min{1, wr(S \ {u})/W(S)}; if

t S, we add it to S with probability min{1, r(S U {u})/7r(S)}. Algorithm 1 shows the

(lazy) Markov chain.

While the aforementioned chain deals with state space of subsets with any sizes, we use

another chain to deal with state space of subsets with fixed size. Such chain proves useful

when sampling from k-DPP. Such chain takes swapping steps: given a current set S C V,

it picks, uniformly at random, points v E S and u S, and swaps them with probability

min{1, 7(S U {v} \ {u})/wr(S)}. Algorithm 2 formalizes this procedure.

Both aforementioned Markov chains converge to the target distributions, which could be

easily verified by detailed balance. When sampling from (k-)DPP, if n is large and only a
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Algorithm 1 Add/delete Chain

Require: DPP distribution 7r
Initialize S C V
while not mixed do

Let b = 1 with probability j
if b = 1 then

Pick u E V uniformly at random
if u c S then

S = S\{u} with probability min{1, 7r(S \ {a})/7r(S)}
else

S = S U {} with probability min{1, 7(S U {})/7(S)}
end if

else
Do nothing

end if
end while

Algorithm 2 Exchange Chain

Require: k-DPP distribution 7r
Initialize S C V, ISI = k (i.e. 7(S) > 0)
while not mixed do

Let b = 1 with probability }
if b = 1 then

Pick v c S and u V S uniformly randomly
S = S U {u}\{v} with probability min{1, ir(S U {u} \ {v})/7(S)}

else
Do nothing

end if
end while
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few samples are needed, aforementioned MCMC are preferred and state-of-the-art. Therein

the core task is to compute transition probabilities - an expression involving BIFs - which

are compared with a random scalar threshold. Specifically, For the chain in Algorithm 1, the

transition probabilities from a current subset (state) S to S' are

min{1, 7r(S')/7(S)} = min{1, L.,, - Lss Le s Ls,,}

for S' = S U{u}; and

min{1, 7(S')/7r(S)} = min{1, Luu - Lu,s, Ls's

for S' = S\{u}. In a k-DPP, the moves are swaps with transition probabilities

min{1, 7r(S' U {u})/w(S' U {v})} =min , Luu - L,sL s'sLs',u
Lv,v - Lv,s,'Lss,Ls',v

for replacing v c S by a S (and S' = S\{v}). We illustrate this application in greater

detail in Sec. 3.6.1.

3.1.3 Other Motivating Applications

BIFs play a central role in many problems including DPP sampling. Below we recount

several notable examples: in all cases, efficient computation of BIFs is key to making the

algorithms practical.

Submodular optimization, Sensing. Algorithms for maximizing submodular functions

can equally benefit from fast BIF bounds. Given a positive definite matrix K E R" l, the

set function F(S) = log det(Ks) is submodular: for all S C T C [n] and i E [n] \ T, it

holds that F(S U {i}) - F(S) > F(T U {i}) - F(T).

A key task in applications such as sensing [103], MAP inference for DPPs [78], and

matrix column subset selection [34, 176], is to find the set S* C [n] maximizing F(S). In

sensor placement, this maximization problem arises when modeling spatial phenomena

(temperature, pollution) via Gaussian Processes, and selecting locations to maximize the
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joint entropy F1 (S) = H(Xs) = log det(Ks) + const or mutual information F2 (S) =

I(Xs; X[,]\s). [103] use a sparse covariance kernel K for the GP.

Greedy algorithms for maximizing monotone [141] or non-monotone [40] submodular

functions rely on marginal gains of the form

F1 (S U {i}) - F1(S) = log(Ki - KisK 1Ksi);

F1 (T \ {i}) - F1 (T) = - log(Ki - KiuK 1 Kui);

F2 (S U {i}) - F2 (S) log -KiSK
Ki-KiS S K'Kgi

for U = T\{i} and S = [n]\S. The algorithms compare gains to a random threshold, or

find an item with the largest gain. In both cases, fast BIF bounds offer speedups. They can

be combined with lazy [138] and stochastic greedy algorithms [139].

Network Analysis, Centrality. When analyzing relationships and information flows

between connected entities in a network, such as people, organizations, computers, smart

hardwares, etc. [159, 111, 12, 64, 61, 24], an important question is to measure popularity,

centrality, or importance of a node.

Several existing popularity measures can be expressed as the solution to a large-scale

linear system. For example, PageRank [145] is the solution to (I - (1 - a)AT)x = al/n,

and Bonacich centrality [26] is the solution to (I - aA)x = 1, where A is the adjacency

matrix. When computing local estimates, i.e., only a few entries of x, we obtain exactly

the task of computing BIFs [183, 110]. Moreover, we may only need local estimates to an

accuracy sufficient for determining which entry is larger, a setting where our quadrature

based bounds on BIFs will be useful.

Scientific Computing. In computational physics BIFs are used for estimating selected

entries of the inverse of a large sparse matrix. More generally, BIFs can help in estimating the

trace of the inverse, a computational substep in lattice Quantum Chromodynamics [54, 69],

some signal processing tasks [83], and in Gaussian Process (GP) Regression [155] e.g.,

for estimating variances. In numerical linear algebra, BIFs are used in rational approxi-

mations [165], evaluation of Green's function [67], and selective inversion of sparse ma-

trices [120, 121, 110]. A notable use is the design of preconditioners [23] and uncertainty
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quantification [20].

Benefiting from fast iterative bounds. Many of the above examples use the BIFs to

rank values, identify the largest value, or compare their values to a scalar or between one

another. In such cases, we first compute fast, crude lower and upper bounds on the BIF, and

refine iteratively, just as far as needed to determine the comparison. Fig. 3-1 in Sec. 3.3.4

illustrates the evolution of those bounds, and Sec. 3.6 explains details.

3.2 Background on Gauss Quadrature

For convenience, we begin by recalling key aspects of Gauss quadrature,' as applied to

computing uTf(A)v, for an n x n symmetric positive definite matrix A that has simple

eigenvalues, arbitrary vectors u, v, and a matrix function f.
We note that it suffices to consider uTf (A)u thanks to the polarization identity

UJf(A)v = -(u + v) T f(A)(u + v) - j(u - v) T f(A)(u - v).

Let A = QTAQ be the eigendecomposition of A where Q is orthonormal. Letting ft = Qu,

we then have

UTJf (A)u = JT f (A)ft = f (Ai)ii.

Toward computing uTf (A)u, a key conceptual step is to write the above sum as the Riemann-

Stieltjes integral

I[f] := UTf (A)u = / f(A)da(A), (3.2.1)
Amin

where Amin c (0, A 1), Amax > An, and a(A) is piecewise constant measure defined by

0, A < Al,

j1 Z>i~ An A.

Our task now reduces to approximating the integral (3.2.1), for which we invoke the powerful

'The summary in this section is derived from various sources: [72, 17, 82]. Experts can skim this section
for collecting our notation before moving onto Sec. 3.3, which contains our new results.
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idea of Gauss-type quadratures [71, 152, 122, 72]. We rewrite the integral (3.2.1) as

I[f] := Qn + Ra = 1 wif (0) + vif (i) + R[f], (3.2.2)

where Q. denotes the nth degree approximation and Rn denotes a remainder term. The

weights {w1}, {v}Ii} and nodes {0}i are chosen such that for all polynomials of

degree less than 2n + m. - 1, denoted f E 2 n+m-1, we have exact interpolation I fI = Qr.

One way to compute weights and nodes is to set f (x) = x' for i < 2n + n - 1 and then use

this exact nonlinear system. But there is an easier way to obtain weights and nodes, namely

by using polynomials orthogonal with respect to the measure a. Specifically, we construct a

sequence of orthogonal polynomials po (A), pi (A), ... such that pi(A) is a polynomial in A

of degree exactly k, and pi, pj are orthogonal, i.e., they satisfy

J 'Anax A (Ap A c A 1 i -j*

Amin 0, otherwise.

The roots of p., are distinct, real and lie in the interval of [Amin, Amax], and form the nodes

{Oi }_1 for Gauss quadrature (see, e.g., [82, Ch. 6]).

Consider the two monic polynomials whose roots serve as quadrature nodes:

(A) i=1 i=1(A - Q), pm(A) = fJ(A -

where po = 1 for consistency. We further denote p = p,,, where the sign is taken to

ensure p- ; 0 on [Amin, Amax]. Then, for m > 0, we calculate the quadrature weights as

I [ p+(A)7r(A) ^ pI(A)?r(A)
In= I vy = - M _n( )+ 0i)(O7r (0j)(A -O0)j' - (p+)'(j)Tn(Tj)(A - Tj)_

where f'(A) denotes the derivative of f with respect to A. When n = 0 the quadrature

degenerates to Gauss quadrature and we have

I [ n() (A)
7 (0j) (A - 0j)_
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Different choices of these parameters yield different quadrature rules: m = 0 gives

Gauss quadrature [71]; m 1 with ir= Amin (71 = Amax) gives left (right) Gauss-

Radau quadrature [152]; m = 2 with T1 = Amin and T2 = Amax yields Gauss-Lobatto

quadrature [122]; while for general m we obtain Gauss-Christoffel quadrature [72].

Although we have specified how to select nodes and weights for quadrature, these ideas

cannot be applied to our problem in Eq. 3.2.1 because the measure a is unknown. Indeed,

calculating the measure explicitly would require knowing the entire spectrum of A, which is

as good as explicitly computing f(A), hence untenable for us. The next section shows how

to circumvent the difficulties due to unknown a.

The key idea to circumvent our lack of knowledge of a is to recursively construct

polynomials called Lanczos polynomials. The construction ensures their orthogonality with

respect to a. Concretely, we construct Lanczos polynomials via the following three-term

recurrence:

Oipi(A) = (A - a)pji_(A) - 3i_1Pi-2(A), i = 1, 2, ... , n(
(3.2.3)

p-I(A) - 0; po(A) - 1,

while ensuring fA da(A) = 1. We can express (3.2.3) in matrix form by writing

A Pn(A) = Jn Pn(A) + fnpn(A)en,

where Pn(A) := [po(A), ... ,pn_ 1(A)]T, e, is nth canonical unit vector, and Jn is the

tridiagonal matrix

oz1 /3i

/1 a 2  /2

Jn = 32 . (3.2.4)

Cen- /3n-1

On-1 a.

This matrix is known as the Jacobi matrix, and is closed related to Gauss quadrature. The

following well-known theorem makes this relation precise.
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Theorem 7 ([158, 84]). The eigenvalues of J form the nodes {0i}} of Gauss-type quadra-

tures. The weights {wil}_ are given by the squares of the first elements of the normalized

eigenvectors of J,.

Thus, if J, has the eigendecomposition J, = P,, TP, then for Gauss quadrature Thm. 7

yields

Qn = wif(O4) efPaf(F)Pnei = eIf (J)ei. (3.2.5)

Specialization. We now specialize to our main focus, f(A) = A- 1 , for which we prove

more precise results. In this case, (3.2.5) becomes Q, = [Jn-1 ]1,1. The task now is to

compute Qn, and given A, u to obtain the Jacobi matrix J,.

Fortunately, we can efficiently calculate Ja, iteratively using the Lanczos Algorithm [109].

Suppose we have an estimate Ji, in iteration (i + 1) of Lanczos, we compute the tridiagonal

coefficients ai+i and 3 i+1 and add them to this estimate to form Ji+1 . As to Qn, assuming

we have already computed [J;-1] 1,1, letting ji = J;-e, and invoking the Sherman-Morrison

identity [163] we obtain the recursion:

+ (3.2.6)

where [ji]1 and [ji] can be recursively computed using a Cholesky-like factorization of

Ji [82, p.31].

For Gauss-Radau quadrature, we need to modify Ji so that it has a prescribed eigenvalue.

More precisely, we extend Ji to jlr for left Gauss-Radau (J7 for right Gauss-Radau) with /i

on the off-diagonal and air (a7) on the diagonal, so that Jjr (J7) has a prescribed eigenvalue

of Amin (Amax).

For Gauss-Lobatto quadrature, we extend Ji to JiO with values 1 and a' chosen to

ensure that J0 has the prescribed eigenvalues Amin and Amax. For more detailed on the

construction, see [80].

For all methods, the approximated values are calculated as [(J2)-1] 1,1, where Jj C

{Jir, Jf, J } is the modified Jacobi matrix. Here Jj is constructed at the i-th iteration of the

algorithm.
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Algorithm 3 Gauss Quadrature Lanczos (GQL)
Require: u and A the corresponding vector and matrix, Amin and Amax lower and upper

bounds for the spectrum of A
Ensure: gi, g7, g9 r and g! the Gauss, right Gauss-Radau, left Gauss-Radau and Gauss-

Lobatto quadrature computed at i-th iteration
Initialize: u_ 1 = 0, uO = u/Iull, a = uO Auo, 01 = ||(A - a1I)uoll, gi = 1ll/ai,
ci = 1, 61 = ai, 6r = ai- Amin, 6f = a 1 - Amax, U 1 = (A - a1I)uo/01, i 2
while i < n do

ai = U _1Au _1

'i- = Auj_1 - asu1_1 - Oi_13i-2

> Lanczos Iteration

A1 = ||fti||
Ui = i1//31

1J11132 2c-
gi = gi-i + - - Update gi with Sherman-Morrison formula

Ci = ciA-1 6--

,J 6L
1  

= i-1- min V1 oz -jma i r-1
6i-1 Ii

aIr Amin + , a = Amax + Solve for Jr and Jf
102rr (00 20

al = r- ),(Am)x (Amax - Amin) > Solve for Ji"
jr 3i i i2ij~ j 1 'i 2 i U jr

g. = gj + , gi = gj + _, gI = gi + )2) > Update g7, gr

and glo with Sherman-Morrison formula

ile
end while

The algorithm for computing Gauss, Gauss-Radau, and Gauss-Lobatto quadrature rules

with the help of Lanczos iteration is called Gauss Quadrature Lanczos (GQL) and is shown

in [81]. We recall its pseudocode in Alg. 3 to make our presentation self-contained (and for

our proofs in Sec. 3.3).

The error of approximating I[f] by Gauss-type quadratures can be expressed as

R f( 2 n+m) ()
(2n + n)! n

for some E [Amin, Amax] (see, e.g., [173]). Note that pm does not change sign in

[Amin, Amax]; but with different values of m and TF we obtain different (but fixed) signs

for Rn[f] using f(A) = 1/A and Amin > 0. Concretely, for Gauss quadrature m = 0 and

Rn[f] > 0; for left Gauss-Radau m = 1 and T1 = Amin, so we have Rn[f] < 0; for right

Gauss-Radau we have m = 1 and T 1 = Amax, thus Rn[f] > 0; while for Gauss-Lobatto
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we have m = 2, 71 = Amin and T2 = Amax, so that R,[f] < 0. This behavior of the errors

clearly shows the ordering relations between the target values and the approximations made

by the different quadrature rules. Lemma 8 (see e.g., [135]) makes this claim precise.

Lemma 8. Let gi, g ', g7', and g O be the approximations at the i-th iteration of Gauss, left

Gauss-Radau, right Gauss-Radau, and Gauss-Lobatto quadrature, respectively. Then, gi

and g7' provide lower bounds on uT A-lu, while glr and g40 provide upper bounds.

While Gauss-type quadratures relate to the Lanczos algorithm, Lanczos itself is closely

related to conjugate gradient (CG) [93], a well-known method for solving Ax = b for

positive definite A.

We recap this connection below. Let Xk be the estimated solution at the k-th CG iteration.

If x* denotes the true solution to Ax = b, then the error E and residual rT are defined as

Ek X k, Tk= Ask= b - AXk, (3.2.7)

At the k-th iteration, Xk is chosen such that r is orthogonal to the k-th Krylov space, i.e.,

the linear space ICk spanned by {ro, Aro ,. . , Ak-ro}. It can be shown [154] that rT is a

scaled Lanczos vector from the k-th iteration of Lanczos started with ro. Noting the relation

between Lanczos and Gauss quadrature applied to appoximate roJA-'ro, one obtains the

following theorem that relates CG with GQL.

Theorem 9 (CG and GQL; [136]). Let EC be the error as in (3.2.7), and let ||k 1A := &TAEk.

Then, it holds that

Ii~ 11 = 1ro~ 12([j7171]1,1  _ - 1]'

where Jk is the Jacobi matrix at the k-th Lanczos iteration starting with ro.

Finally, the rate at which 1Ek 1|2 shrinks has also been well-studied, as noted below.

Theorem 10 (CG rate, see e.g. [164]). Let E be the error made by CG at iteration k when

started with xO. Let r, be the condition number of A, i.e., , = A, /A,. Then, the error norm
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at iteration k satisfies

Hs~kflA < 2Q k EOflA.

Due to these explicit relations between CG and Lanczos, as well as between Lanczos

and Gauss quadrature, we readily obtain the following convergence rate for relative error of

Gauss quadrature.

Theorem 11 (Gauss quadrature rate). The i-th iterate of Gauss quadrature satisfies the

relative error bound

gn \ 
9 + K

Proof This is obtained by exploiting relations among CG, Lanczos and Gauss quadrature.

Set x0 = 0 and b = u. Then, E0 = x* and ro = u. An application of Thm. 9 and Thm. 10

thus yields the bound

-11,1= -)= '1 -- gi

< 2( |0||4 = 2( UT A-lu = 2 g'

where the last equality draws from Lemma 18. E

In other words, Thm. 11 shows that the iterates of Gauss quadrature converge linearly.

3.3 Main Theoretical Results

In this section we summarize our main theoretical results and some empirical evidence that

supports our theory, and in the next section we will show detailed proofs for these results.

The key questions that we answer are: (i) do the bounds on uT A-lu generated by GQL

improve monotonically with each iteration; (ii) how tight are these bounds; and (iii) how

fast do Gauss-Radau and Gauss-Lobatto iterations converge? Our answers not only fill gaps

in the literature on quadrature, but provide the theoretical base for building fast algorithms
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for widely used applications (see Sec. 3.1.3 and Sec. 3.6).

3.3.1 Lower Bounds

Our first result shows that both Gauss and right Gauss-Radau quadratures give iteratively

better lower bounds on uT A-lu. Moreover, with the same number of iterations, right

Gauss-Radau yields tighter bounds.

Theorem 12. Let i < n. Then, g' yields better bounds than gi but worse bounds than gi+1;

more precisely,

Yi < grr < qi+l, i < n. (3.3.1)

Combining Thm. 12 with the convergence rate of relative error for Gauss quadrature

(Thm. 11) we obtain the following convergence rate estimate for right Gauss-Radau.

Theorem 13 (Relative error right Gauss-Radau). For each i, the right Gauss-Radau iterate

grr satisfies

3.3.2 Upper Bounds

Our second result compares Gauss-Lobatto with left Gauss-Radau quadrature.

Theorem 14. Let i < n. Then, gir gives better upper bounds than giO but worse than 9q+1;

more precisely,
lo < lr<.o,

This shows that bounds given by both Gauss-Lobatto and left Gauss-Radau become

tighter with each iteration. For the same number of iterations, left Gauss-Radau provides a

tighter bound than Gauss-Lobatto.

Combining the above two theorems, we obtain the following corollary for all four

Gauss-type quadratures.
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Corollary 15 (Monotonicity). With increasing i, gi and gr' give increasingly better lower

bounds and g ' and g O give increasingly better upper bounds, that is,

gi < gi~i; grr < rr1

Ir>Ir to g

3.3.3 Convergence rates

Our next two results prove linear convergence rates for left Gauss-Radau quadrature and

Gauss-Lobatto quadrature applied to computing the BIF uTAlu.

Theorem 16 (Relative error left Gauss-Radau). For each i, the left Gauss-Radau iterate gir

satisfies
Ir<2

gn - + 2 '
where K+ := An/Amin, i < n.

Theorem 16 shows that the error again decreases linearly, and it also depends on Amin,

our estimate of the smallest eigenvalue that determines the range of integration. Using the

relations between left Gauss-Radau and Gauss-Lobatto, we readily obtain the following

corollary.

Corollary 17 (Relative error Gauss-Lobatto). For each i, the Gauss-Lobatto iterate gjo

satisfies
g2 - gn< 2+

gn -/r 5+ '

where ,+ := An/Amin and i < n.

Remarks All aforementioned results assumed that A is strictly positive definite with

simple eigenvalues. In Appendix 3.5, we show similar results for the more general case that

A is only required to be symmetric, and u lies in the space spanned by eigenvectors of A

corresponding to distinct positive eigenvalues.
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Figure 3-1: Lower and upper bounds computed by Gauss-type quadrature in each iteration

on uT A-lu with A E R00X00.

3.3.4 Empirical Evidence

We present an empirical verification of the theoretical results proved above. We generate

a random symmetric matrix A E R00X00 with density 10%, where each entry is either

zero or standard normal, and shift its diagonal entries to make its smallest eigenvalue

A, = 10-2, thus making A positive definite. We set Amin = Al = (A, - 10- ) and

Amax = A+ = (An + 10-5). We randomly sample u E R100 from a standard Gaussian

distribution. Fig. 3-1 illustrates how the lower and upper bounds given by the four quadrature

rules evolve with the number of iterations.

Fig. 3-1 (b) and (c) show the sensitivity of the rules (except Gauss quadrature) to

estimating the extremal eigenvalues. Specifically, we use Amin = 0.1A- and Amax = 10A+-

The plots in Fig. 3-1 agree with the theoretical results. First, all quadrature rules are seen

to yield iteratively tighter bounds. The bounds obtained by the Gauss-Radau quadrature are

superior to those given by Gauss and Gauss-Lobatto quadrature (also numerically verified).

Notably, the bounds given by all quadrature rules converge very fast - within 25 iterations

they yield reasonably tight bounds.

It is valuable to see how the bounds are affected if we do not have good approximations

to the extremal eigenvalues A1 and An. Since Gauss quadrature does not depend on the

approximations Amin < A, and Ama, > An, its bounds remain the same in (a),(b),(c). Left

Gauss-Radau depends on the quality of Amin, and, with a poor approximation takes more
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iterations to converge (Fig. 3-1(b)). Right Gauss-Radau depends on the quality of Amax;

thus, if we use Amax = 10A+ as our approximation, its bounds become worse (Fig. 3-1(c)).

However, its bounds are never worse than those obtained by Gauss quadrature. Finally,

Gauss-Lobato depends on both Ami and Amax, so its bounds become worse whenever we

lack good approximations to A, or An. Nevertheless, its quality is lower-bounded by left

Gauss-Radau as stated in Thm. 14.

3.4 Proofs for Main Theoretical Results

In this section we show detailed proofs for main results we mentioned in Section 3.3. We

begin by proving an exactness property of Gauss and Gauss-Radau quadrature.

Lemma 18 (Exactness). With A being symmetric positive definite with simple eigenvalues,

the iterates gn, gr, and gr[ are exact. Namely, after n iterations they satisfy

S gir = grr = uT A-lu.

Proof Observe that the Jacobi tridiagonal matrix can be computed via Lanczos iteration,

and Lanczos is essentially essentially an iterative tridiagonalization of A. At the i-th iteration

we have Ji = XKT AV, where V, E R"I are the first i Lanczos vectors (i.e., a basis for the

i-th Krylov space). Thus, Jn = VnT AV where Vn is an n x n orthonormal matrix, showing

that Jn has the same eigenvalues as A. As a result rn(A) = I (A - AS), and it follows

that the remainder

Rf[f] = _I[7r] = 0,Rn~f] (2n)! n

for some scalar E [Amin, Amax], which shows that gn is exact for uT A-lu. For left and

right Gauss-Radau quadrature, we have /, = 0, air = Ami, and a' = Amax, while all other

elements of the (n + 1)-th row or column of J' are zeros. Thus, the eigenvalues of Jn' are

A,.. . , An , Ti, and 7n(A) again equals 7 J" (A - Al). As a result, the remainder satisfies

Rn[f] I[(A - Ti)7r2 ] = 0,
(2n)!n
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from which it follows that both g" and gl are exact.

The convergence rate in Thm. 10 and the final exactness of iterations in Lemma 18

does not necessarily indicate that we are making progress at each iterations. However, by

exploiting the relations to CG we can indeed conclude that we are making progress in each

iteration in Gauss quadrature.

Theorem 19. The approximation gi generated by Gauss quadrature is monotonically non-

decreasing, i.e.,

gi < gi+1, for i < n.

Proof At each iteration ri is taken to be orthogonal to the i-th Krylov space: Ki=

span{'u, Au, ... , A'-lu}. Let Ili be the projection onto the complement space of Ci. The

residual then satisfies

||si+I 112= E[+1AEi+l = A-lri+l

= ( i+1ri)T A-lfl+iri

- r (EJ+1 A--1 li+1 )ri < riA-1 ri,

where the last inequality follows from H+ 1 A-'Hi 1 < A- 1 . Thus IIE,1l2 is monotonically

nonincreasing, whereby gn -gi > 0 is monotonically decreasing and thus gi is monotonically

nondecreasing. D

Before we proceed to Gauss-Radau, let us recall a useful theorem and its corollary.

Theorem 20 (Lanczos Polynomial [82]). Let ui be the vector generated by Alg. 3 at the i-th

iteration; let pi be the Lanczos polynomial of degree i. Then we have

det(J - AI)
tt, =p(A)uo, where ps(A) = (-1) .

Ml=1 Oi

From the expression of Lanczos polynomial we have the following corollary specifying

the sign of the polynomial at specific points.
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Corollary 21. Assume i < n. If i is odd, then pi(Amin) < 0; for even i, pi(Amin) > 0, while

pi(Amax) > 0 for any i < n.

Proof Since Ji = ITAVI is similar to A, its spectrum is bounded by Amin and Amax

from left and right. Thus, Ji - Amin is positive semi-definite, and Ji - Amax is negative

semi-definite. Taking (-1)i into consideration we will get the desired conclusions. l

We are ready to state our main result that compares (right) Gauss-Radau with Gauss

quadrature.

Theorem 22 (Thm. 12 in Section 3.3). Let i < n. Then, g7' gives better bounds than gi but

worse bounds than gi+1; more precisely,

g, < grr < gi+1, i < n. (3.4.1)

Proof We prove inequality (3.4.1) using the recurrences satisfied by gi and gg (see Alg. 3)

Upper bound: ,~r < 9i+i. The iterative quadrature algorithm uses the recursive updates

?c 
irr = gi + .

6~cri -

1  = gi (ai+i - O)

It suffices to thus compare af and ai+i. The three-term recursion for Lanczos polynomials

shows that

Oi+lpi+(Amax) = (Amax - ai+1)pi(Amax) - /ipi-i(Amax) > 0,

Oi+iP l(Amax) = (Amax - af)pi(Amax) - Oipi-i(Amax) 0,

where Pi+i is the original Lanczos polynomial, and p*+i is the modified polynomial that has

Amax as a root. Noting that pi(Amax) > 0, we see that ai+ 1 < af. Moreover, from Thm. 19

we know that the gi's are monotonically increasing, whereby 6j(ae+ji'S -02) > 0. It follows
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that

0 < o6dac+16 - 01) < 6(af6i - 02),

and from this inequality it is clear that g' < gi+ -

Lower-bound: gi < g'. Since 02c
2 > 0 and 6 (crr6 - 32) > 6j(ai+16j - 3? ) > 0, we

readily obtain

gi < gj + p =
~i~cT6. o/32)-

D

Combining Thm. 22 with the convergence rate of relative error for Gauss quadrature

(Thm. 11) immediately yields the following convergence rate for right Gauss-Radau quadra-

ture:

Theorem 23 (Relative error of right Gauss-Radau, Thm. 13 in Section 3.3). For each i, the

right Gauss-Radau g' iterates satisfy

gn - 9 + 1

This results shows that with the same number of iterations, right Gauss-Radau gives

superior approximation over Gauss quadrature, though they share the same relative error

convergence rate.

Our second main result compares Gauss-Lobatto with (left) Gauss-Radau quadrature.

Theorem 24 (Thm. 14 in Section 3.3). Let i < n. Then, gir gives better upper bounds than

g but worse than gl+1; more precisely,

i < n.

Proof We prove these inequalities using the recurrences for g!' and g'o from Alg. 3.

61

Io <+ g6 < glo



gr <_ glO: From Alg. 3 we observe that ao = Amin + . Thus we can write gr and g'" as

ir _______________Ir = gi + S( r6s - = gi +
i Am

o (/0)2 c g+
10 = gj + 6 W06 - =3o2) gj +

02 2

ino + 0? (6?16i" - 6i)

( )22
62 + (310)2(6? 

6,)

To compare these quantities, as before it is helpful to begin with the original three-term

recursion for the Lanczos polynomial, namely

0j+jpj+1(A) = (A - ai+1)pj(A) - 0jpj--(A)-

In the construction of Gauss-Lobatto, to make a new polynomial of order i + 1 that has roots

Amin and Amax, we add a-pi(A) and 92P-1 (A) to the original polynomial to ensure

{ i+1pi+i(Amin) + Ulipi(Amin) + U2Pi-1(Amin)

0jpi+1i(Amax) + c ipi(Amax) + -2Pi- 1(Amax)

= 0,

-0.

Since /i+i, Pi+1 (Amax), Pi(Amax) and pi-1 (Amax) are all greater than 0, C-1Pi(Amax)+0 2Pi-1 (Amax) <

0. To determine the sign of polynomials at Amin, consider the two cases:

* Odd i. In this case pj+i(Amin) > 0, pi(Amin) < 0, and pi-i(Amin) > 0;

. Even i. In this case pi+I(Amin) < 0, pi(Amin) > 0, and pi-I(Amin) < 0.

Thus, if S = (sgn(- 1 ), sgn(o-2 )), where the signs take values in {0, 1}, then S # (1, 1),

S (-1, 1) and S # (0, 1). Hence, U2 < 0 must hold, and thus (01,)2 - u 2 ) 2 > 32

given that 02 > 0 for i < n.

Using (01o)2 > ? with Aminc (6,) 2 > 0, an application of monotonicity of the univariate

function g(x) = bx for ab > 0 to the recurrences defining gyr and g!' yields the desired

inequality g' < g*.
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+1 gi: From recursion formulas we have

Ir /32+c2
9 gi + -2)

6i (ai Oi-
(/3 o 2) 2

to ( +12 i+1
9i= 9i+1 + 6- _ ( 2)

Establishing gi _ gj+1 thus amounts to showing that (noting the relations among gi, gr and

910

#q2 c 26i(alr6i - 1?

6( far6 - 23

1

(I 32c+1

6i+1(OZ 106+1 - (010+1)2)

(0 +) 2c2 f2

(di)2 i+1 +1i1 - i$+1

/32c2

1 c0 (ai+10 i )

12

ar6 - 02 -

1
+( i+ 1 - (O/"+i)2)

11

(e,+1 - 6+r - 216 -
a/,+, _ /

1 1
i+(a +i+ /(/3"+1)2 _- 1)

(Lemma 26)

1

- +

Amin 6 i+i

(10 +) 2
+ s

i+1

i+1 ( i+

-1> 6 i+1 

i+1

Amin 6 i+1 > 0
(0! 1) >2

where the last inequality is obviously true; hence the proof is complete. E

In summary, we have the following corollary for all the four quadrature rules:

Corollary 25 (Monotonicity of Lower and Upper Bounds, Corr. 15 in Section 3.3). As the

iteration proceeds, gi and g9 r gives increasingly better asymptotic lower bounds and g4 r and

g gives increasingly better upper bounds, namely

gi < Yi+1; , grr+ 1r > I+; 1" > 1

Proof Directly drawn from Thm. 19, Thm. 22 and Thm. 24.
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Before proceeding further to our analysis of convergence rates of left Gauss-Radau and

Gauss-Lobatto, we note two technical results that we will need.

Lemma 26. Let ai+1 and a'. be as in Alg. 3. The difference Ai+1 = ai+1 - air satisfies

i+11

Proof From the Lanczos polynomials in the definition of left Gauss-Radau quadrature we

have

Oi+jP* +I(Amin) = (Amin - alr)p(Amin) - ipi-I(Amin)

= (Amin - (ai+1 - Ajti))Pi(Amin) - Oipi-1(Amin)

= 3 i+1ipi+(Amin) + Ai+1pi(Amin) = 0.

Rearrange this equation to write Aj+ 1 = -0j+1 , which can be further rewritten as

(-1)i+1 det(J +1 - Amin j=1

(-1)idet(Ji - Amin')/ IH> i

det(Ji+1 - AminI)

det(Ji - AminI)

Remark 27. Lemma 26 has an implication beyond its utility for the subsequent proofs:

it provides a new way of calculating aoi+ given the quantities 6"+ and a; this saves

calculation in Alg. 3.

The following lemma relates 6i to Mr, which will prove useful in subsequent analysis.

Lemma 28. Let ol and 6, be computed in the i-th iteration of Alg. 3. Then, we have the

following:

f< o,(3.4.2)

6i

Amin
(3.4.3)

Proof We prove (3.4.2) by induction. Since Amin > 0, 61 = al > Amin and o1 = a - Amin

we know that 6" < 61. Assume that 61 < 6i is true for all i < k and considering the
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(k + 1)-th iteration:

+1= ak+1 - Amin -- < ak+1 - O=k+.
k pb

To prove (3.4.3), simply observe the following

ai - Amin -f_1/1

ai- f_3 1 /6i-I

(3.4.2) ai - Amin
Ka

With aforementioned lemmas we will be able to show how fast the difference between

gIr and gi decays. Note that gir gives an upper bound on the objective while gi gives a lower

bound.

Lemma 29. The difference between gIr and gi decreases linearly. More specifically we have

glr gi 2+(V 1
g 

+ 
n

where K+ = An/Amin and r, is the condition number of A, i.e., K = An/A,.

Proof We rewrite the difference g - gi as follows

Ir /3 I -c
gii - gi /322 - /3i)

i(Cfi+1i - 0-)
6- (O 36 _O2)

f3 c? 1 #?c 1
+ -2) (a r -0 +- -6, 1 -21/)j+1'

where Ai+ 1 = ei+ - ci . Next, recall that gn 2 . Since gi lower bounds g,

we have

(1- 2(f= +)7)gn < gi gn,

(1
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Thus, we can conclude that

c? 3-)i
1sa o - # -) 9i+1 - i < 2 9+n, U

Now we focus on the term (1 - Ai+1/3i+1) - Using Lemma 26 we know that A\+ 1 = 6+1-

Hence,

+ += 1 - +/i > 1 - (1 - Amin/An) = Amin/An =

Finally we have

g2 gj2Ir #f cl 1 + 9n- ,gi -i = 6i( i< 2r, g.-

Theorem 30 (Relative error of left Gauss-Radau, Thm. 16 in Section 3.3). For left Gauss-

Radau quadrature where the preassigned node is Amin, we have the following bound on

relative error:
ir' - g/ T-
g gn< 2 +

gn ~-r 5+1'

where K+ := An/Amin, i < n.

Proof Write gir = gj + (gIr - gi). Since gi < gn, using Lemma 29 to bound the second

term we obtain
glr <- 9 + +~ - 1)i

from which the claim follows upon rearrangement. M

Due to the relations between left Gauss-Radau and Gauss-Lobatto, we have the following

corollary:

Corollary 31 (Relative error of Gauss-Lobatto, Corr. 17 in Section 3.3). For Gauss-Lobatto

quadrature, we have the following bound on relative error:

o-n < 2K+ (3.4.4)
gn ( - + I)/
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where r,+ := An/Amin and i < n.

3.5 Generalization: Symmetric Matrices

In this section we consider the case where u lies in the column space of several top eigen-

vectors of A, and discuss how the aforementioned theorems vary. In particular, note that the

previous analysis assumes that A is positive definite. With our analysis in this section we

relax this assumption to the more general case where A is symmetric with simple eigenval-

ues, though we require u to lie in the space spanned by eigenvectors of A corresponding to

positive eigenvalues.

We consider the case where A is symmetric and has the eigendecomposition of A

QAQT = _ Aiqiq7 where Ai's are eigenvalues of A increasing with i and qj's are

corresponding eigenvectors. Assume that u lies in the column space spanned by top k

eigenvectors of A where all these k eigenvectors correspond to positive eigenvalues. Namely

we have u c- Span{{q}}=n-k+l} and 0 < An-k+1-

Since we only assume that A is symmetric, it is possible that A is singular and thus we

consider the value of uT Atu, where At is the pseudo-inverse of A. Due to the constraints

on u we have

AtAu = UTQAtQTU = UTQkAfQTU = UTBtu,

where B = Znk+1 Aiiqi . Namely, if u lies in the column space spanned by the top k

eigenvectors of A then it is equivalent to substitute A with B, which is the truncated version

of A at top k eigenvalues and corresponding eigenvectors.

Another key observation is that, given that a lies only in the space spanned by {q}=n-k+1,

the Krylov space starting at u becomes

Span{u, Au, A 2 u, .. .} = Span{U, Bu, B2 u, . . , Bk-l} (3.5.1)

This indicates that Lanczos iteration starting at matrix A and vector u will finish constructing

the corresponding Krylov space after the k-th iteration. Thus under this condition, Alg. 3
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will run at most k iterations and then stop. At that time, the eigenvalues of Jk are exactly

the eigenvalues of B, thus they are exactly {Ai}=n-k+l of A. Using similar proof as

in Lemma 18, we can obtain the following generalized exactness result.

Corollary 32 (Generalized Exactness). gk, gr and g are exact for UTA tku - TBtu,

namely

= = = UT At u = UT Btu.

The monotonicity and the relations between bounds given by various Gauss-type quadra-

tures will still be the same as in the original case in Sec. 3.3, but the original convergence

rate cannot apply in this case because now we probably have Amin(B) = 0, making K

undefined. This crash of convergence rate results from the crash of the convergence of the

corresponding conjugate gradient algorithm for solving Ax = u. However, by looking at

the proof of, e.g., [164], and by noting that A,(B) = ... = An-k(B) = 0, with a slight

modification of the proof we actually obtain the bound

<~~ minl max [Pi(A)12H&0flI,
A Pi Ae{jAi}j= A,

where P is a polynomial of order i. By using properties of Chebyshev polynomials and

following the original proof (e.g., [82] or [164]) we obtain the following lemma for conjugate

gradient.

Lemma 33. Let Ek be as before (for conjugate gradient). Then,

Ek HA < 2 ()k IHEOh, where K/ := An/An-k+1-
+1

Following this new convergence rate and connections between conjugate gradient,

Lanczos iterations and Gauss quadrature mentioned in Sec. 3.3, we have the following

convergence bounds.

Corollary 34 (Convergence Rate for Special Case). Under the above assumptions on A

and u, due to the connection Between Gauss quadrature, Lanczos algorithm and Conjugate
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Gradient, the relative convergence rates of gi, g,r glr and g~o are given by

9k - gi- 9k - g' -1< 2 -9 < 2 VK

9k V + 9k Vk+l
Ir <k ____l

9g-9k < 2---_ g " - 9k , 2K- (_

9k +9k

where K' = A,/A' . and 0 < A' , < An-k+1 is a lowerbound for nonzero eigenvalues of

B.

3.6 Algorithmic Results and Efficient (k-)DPP Sampling

Our theoretical results show that Gauss-Radau quadrature provides good lower and upper

bounds to BIFs. More importantly, these bounds get iteratively tighter at a linear rate, finally

becoming exact. However, in many applications motivating our work (see Sec. 3.1.3), we

do not need exact values of BIFs; bounds that are tight enough suffice for the algorithms to

proceed. As a result, all these applications benefit from our theoretical results that provide

iteratively tighter bounds. This idea translates into a retrospective framework for accelerating

methods whose progress relies on knowing an interval containing the BIF. Whenever the

algorithm takes a step (transition) that depends on a BIF (e.g., as in the next section, a state

transition in a sampler if the BIF exceeds a certain threshold), we compute rough bounds on

its value. If the bounds suffice to take the critical decision (e.g., decide the comparison), then

we stop the quadrature. If they do not suffice, we take one or more additional iterations of

quadrature to tighten the bound. Alg. 4 makes this idea explicit. We illustrate our framework

by accelerating Markov chain sampling for (k-)DPPs.

3.6.1 Retrospective Markov Chain (k-)DPP

First, we use our framework to accelerate iterative samplers for Determinantal Point Pro-

cesses. Specifically, we discuss MH sampling [100]; the variant for Gibbs sampling follows

analogously.

The key insight is that all state transitions of the Markov chain rely on a comparison
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Algorithm 4 Efficient Retrospective Framework

Require: Algorithm with transitions that depend on BLFs
while algorithm not yet done do

while no transition request for values of a BIF do
proceed with the original algorithm

end while
if exist transition request for values of a BIF then

while bounds on the BIF not tight enough to make the transition do
Retrospectively run one more iteration of left and(or) right Gauss-Radau to obtain

tighter bounds.
end while
Make the correct transition with bounds

end if
end while

between a scalar p and a quantity involving the bilinear inverse form. Given the current

set S, assume we propose to add element u to S. The probability of transitioning to state

SU {u} isq= min{1,L,--L,sLjsLs,u}. To decide whether to accept this transition,

we sample p - (0, 1) uniformly at random; if p < q then we accept the transition, otherwise

we remain at S. Hence, we need to compute q just accurately enough to decide whether

p < q. To do so, we can use the aforementioned lower and upper bounds on Lu,sL-sLs,.

Let si and ti be lower and upper bounds for this BIF in the i-th iteration of Gauss

quadrature. If p < Lu - ti, then we can safely accept the transition, if p ;> Lu, - si, then

we can safely reject the transition. Only if L,,u - ti < p < Luu - si, we cannot make a

decision yet, and therefore retrospectively perform one more iteration of Gauss quadrature

to obtain tighter upper and lower bounds si+1 and ti+1 . We continue until the bounds are

sharp enough to safely decide whether to make the transition. Note that in each iteration

we make an exact decision without approximation error, and hence the resulting algorithm

is an exact Markov chain for DPP. The algorithm is shown in Alg. 5. In each iteration, it

calls Alg. 6, which uses step-wise lazy Gauss quadrature for deciding the comparison, while

stopping as early as possible.

If we condition the DPP on observing a set of a fixed cardinality k, we obtain a k-DPP.

The MH sampler for this process is similar, but a state transition corresponds to swapping

two elements (adding u and removing v at the same time). Assume the current set is

S = S' u {v}. If we propose to delete v and add u to S', then the corresponding transition
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Algorithm 5 Gauss-DPP(L)

Require: L: DPP kernel; V = [n] the ground set
Ensure: S sampled from exact DPP(L)

Randomly Initialize S C V
while chain not mixed do

Pick y E V, p E (0, 1) uniformly randomly
if y E S then

S' = S\{y}
Compute bounds Amin, Amax on the spectrum of Ls','
if DPPJUDGE(L - ., Ls',y, Ls',s', Amin, Amax) then

S = 5'
end if

else
S' = SU {y}
Compute bounds Amin, Amax on the spectrum of LS

if not DPPJUDGE(Lyy-p, Ls,y, Ls, Amin, Amax) then
S = S'

end if
end if

end while

Algorithm 6 DPPJUDGE(t, u, A, Amin, Amax)

Require: t the target value; vector u, matrix A; lower and upper bounds Amin and Amax on the

spectrum of A
Ensure: Return true if t < uTA-lu, false otherwise

while true do
Run one Gauss-Radau iteration to get g"r and gir for uTAl'u.

if t < g" then
return true

else if t > gir then
return false

end if
i=i+1

end while
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probability is

( Lu~ L ,s, L -,s Ls,
=min 11 ./SlS, (3.6.1)

Li - Lu,s L s,Lsu(6

Again, we sample p ~ Unif(0, 1), but now we must compute two quantities, and hence

two sets of lower and upper bounds: sy, ty for Lu,s'Li, s,Ls,u in the i-th Gauss quadrature

iteration, and s', tj' for Lvs'Lj, sLs',v in the j-th Gauss quadrature iteration. Then if we

<Ltu Lu -SY
have p < LU-, we can safely accept the transition; and if p > L' we can safely

3 3

reject the transition; otherwise, we tighten the bounds via additional Gauss-Radau iterations.

Refinements. We could perform one iteration for both u and v, but it may be that one

set of bounds is already sufficiently tight, while the other is loose. A straightforward idea

would be to judge the tightness of the lower and upper bounds by their difference (gap)

ti-si, and decide accordingly which quadrature to iterate further.

But the bounds for u and v are not symmetric and contribute differently to the transition

decision. In essence, we need to judge the relation between p and LL ' ''' ', or,
Lv,v-- Lv,, Ls',s' Ls',v

equivalently, the relation between pLv,v - Lu,u and pLv,sL1' sLs,v - Lu,s'Ls,Ls',u.

Since the left hand side is "easy", the essential part is the right hand side. Assuming that in

practice the impact is larger when the gap is larger, we tighten the bounds for Lv,sLs Lsv

if p(ty - sv) > (tu - sy), and otherwise tighen the bounds for Lu,sL-1 Ls,u. Details of the

final algorithm with this refinement are shown in Alg. 7 and Alg. 8.

Algorithm 7 Gauss-k-DPP(L, k)

Require: L the kernel matrix we want to sample DPP from, k the size of subset and V [n]
the ground set

Ensure: S sampled from exact k-DPP(L) where I= k
Randomly Initialize S C V where ISI = k
while not mixed do

Pick v E S and u E V\S uniformly randomly
Pick p E (0, 1) uniformly randomly
S' = S\{v}
Get lower and upper bounds Amin, Amax of the spectrum of Ls',s'
if k-DPP-JudgeGauss(pL,, - Lu,u, p, Ls',u, Ls',,, Amin, Amax) = True then

S = S' U {}
end if

end while
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Algorithm 8 k-DPP-JudgeGauss(t, p, u, v, A, Amin, Amax)

Require: t the target value, p the scaling factor, u, v and A the corresponding vectors and
matrix, Amin and Amax lower and upper bounds for the spectrum of A

Ensure: Return True if t < p(vT A-v) - uT A-lu, False if otherwise
u_1 = 0, uo = u/Ill, i = 1, pO= 0, du oo
V_1 = 0, vO = v/flvl, iv = 1, 00v 0, d= oc
while True do

if du > pdv then
Run one more iteration of Gauss-Radau on uT A-lu to get tighter (glr)u and (g")U
dU = (glr)u - (g"r)U

else
Run one more iteration of Gauss-Radau on v T A-lv to get tighter (gIr)v and (g"T)V
dV = (glr)v - (g"T )V

end if
if t < pflv||2 (grT)v _ fUI1 2(glr)u then

Return True
else if t > plIv11 2 (glr)v _ UI1 2 (gr)u then

Return False
end if

end while

3.6.2 Empirical Evidence

We perform experiments on both synthetic and real-world datasets to test the impact of our

retrospective quadrature framework in applications. We focus on (k-)DPP sampling.

Synthetic Datasets

We generate small sparse matrices using methods similar to Sec. 3.3.4. We generate

5000 x 5000 matrices and vary the density of the matrices from 10-3 to 10-1. The running

time and speedup are shown in Fig. 3-2.

The results suggest that our framework greatly accelerates DPP sampling. The speedups

are particularly pronounced for sparse matrices. As the matrices become very sparse, the

original algorithms benefit from sparsity too, and the difference shrinks a little.
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Figure 3-2: Running times (top) and corresponding speedup (bottom) on synthetic data.

(k-)DPP is initialized with random subsets of size n/3 and corresponding running times

are averaged over 1,000 iterations of the chain. All results are averaged over 3 runs of

experiments.
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Data Dimension nnz Density(%)

Abalone 4,177 144,553 0.83
Wine 4,898 2,659,910 11.09

GR 5,242 34,209 0.12
HEP 9,877 61,821 0.0634

Epinions 75,879 518,231 0.009
Slashdot 82,168 959,454 0.014

Table 3.1: Data. For all datasets we add an 1E-3 times identity matrix to ensure positive

definiteness.

Real Datasets

We further test our framework on real-world datasets of varying sizes. We selected 6 datasets,

four of them are of small/medium sizes and two are large. The four small/medium-sized

datasets are used in [79]. The first two of small/medium-sized datasets, Abalone and Wine2

are popular datasets for regression, and we construct sparse kernel matrices with an RBF

kernel. We set the bandwidth parameter for Abalone as - = 0.15 and that for Wine as o = 1

and the cut-off parameter as 3a for both datasets, as in [79]. The other two small/medium-

sized datasets are GR (arXiv High Energy Physics collaboration graph) and HEP (arXiv

General Relativity collaboration graph), where the kernel matrices are Laplacian matrices.

The final two large datasets datasets are Epinions (Who-trusts-whom network of Epinions)

and Slashdot (Slashdot social network from Feb. 2009) 3 with large Laplacian matrices.

Dataset statistics are shown in Tab. 3.1.

The running times are shown in Tab. 3.2. The results suggest that the quadratures

significantly accelerate (k-)DPP sampling even on real data. Our algorithms are lead to

speedups up to a thousand times.

To our knowledge, these results are the first time to run (k-)DPP for information gain on

such large datasets.

2Available at http: //archive. ics.uci. edu/ml/.
3Available at https: //snap. st anford. edu/data/.
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Abalone Wine | GR

DPP 9.6E-3 lx 8.5E-2 lx 9.3E-3 Ix
5.4E-4 17.8x 5.9E-3 14.4x 4.3E-4 21.6x

k-DPP 1.4E-2 lx 0.15 lx 1.7E-2 lx
7.3E-4 19.2x 1.1E-2 13.6x 7.3E-4 23.3x

HEP Epinions Slashdot

DPP 6.5E-2 lx 1.46 1x 5.85 1x
5.9E-4 110.2x 3.7E-3 394.6x 7.1E-3 823.9x

k-DPP 0.13 lx 2.40 lx 11.83 lx
9.2E-4 141.3x 4.9E-3 489.8x 1E-2 1183x

Table 3.2: Running time and speedup for (k-)DPP. For results on each dataset (occupying

two columns), the first column shows the running time (in seconds) and the second column

shows the speedup. For each algorithm (occupying two rows), the first row shows results

from the original algorithm and the second row shows results from algorithms using our

framework.

3.7 Numerical details

Instability. As seen in Alg. 3, the quadrature algorithm is built upon Lanczos iterations.

Although in theory Lanczos iterations construct a set of orthogonal Lanczos vectors, in

practice the constructed vectors usually lose orthogonality after some iterations due to

rounding errors. One way to deal with this problem is to reorthogonalize the vectors, either

completely at each iteration or selectively [147]. Also, an equivalent Lanczos iteration

proposed in [146] which uses a different expression to improve local orthogonality. Further

discussion on numerical stability of the method lies beyond the scope of this thesis.

Preconditioning. For Gauss quadrature on u'TA-lu, the convergence rate of bounds is

dependent on the condition number of A. We can use preconditioning techniques to get a

well-conditioned submatrix and proceed with that. Concretely, observe that for non-singular

C,

uT A-lu = UTCTC-T A--C-Cu = (Cu) (CACT -l (Cu).
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Thus, if CACT is well-conditioned, we can use it with the vector Cu in Gauss quadrature.

There exists various ways to obtain good preconditioners for an SPD matrix. A simple

choice is to use C = [diag(A)]-1/ 2 . There also exists methods for efficiently constructing

sparse inverse matrix [25]. If L happens to be an SDD matrix, we can use techniques

introduced in [44] to construct an approximate sparse inverse in near linear time.

3.8 Summary

In this chapter, we present a general and powerful retrospective computational framework

for algorithms including Markov chain (k-)DPP that rely on computations of bilinear inverse

forms. The framework is based on Gauss quadrature methods, and supported by our

new theoretical results. We analyze properties of the various types of Gauss quadratures

for approximating the bilinear inverse forms and show that all bounds are monotonically

becoming tighter with the number of iterations; those given by Gauss-Radau are superior to

those obtained from other Gauss-type quadratures; and both lower and upper bounds enjoy

a linear convergence rate. We empirically verify the efficiency of our framework and are

able to obtain speedups of up to thousand times for Markov chain (k-)DPP sampling.
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Chapter 4

Sampling from Strongly Rayleigh

Measures

While DPP is an instantiation of DIPMs, there is a broader class of probability measures that

is diversity-inducing called Strongly Rayleigh (SR) measures. In this chapter, we study the

sampling methods for SR measures and derive a provably fast mixing Markov chain that is

novel and may be of independent interest. Our results provide the first polynomial guarantee

for Markov chain sampling from a general DPP, and more generally from an SR distribution.

This result also indicates an efficient sampling method for Dual Volume Sampling (DVS),

whose poly-time sampling method remains open since 2013 [13]. Specifically, we prove that

DVS is essentially an instantiation of SR, thus a poly-time MCMC sampling method follows.

We also show a poly-time exact sampling method for DVS based on matrix computations.

Materials in this chapter are based on [114, 115]

4.1 Introduction

Strong Rayleigh (SR) measures were introduced in the landmark paper of [28], who develop

a rich theory of negatively associated measures. In particular, we say that a probability
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measure -r is negatively associated if

J Fd7r Gd > JFGdr (4.1.1)

for F, G increasing functions on 2v with disjoint support. This property reflects a "repelling"

nature of -r, a property that occurs more broadly across probability, combinatorics, physics,

and other fields-see [148, 28, 180] and references therein. The negative association

property turns out to be quite subtle in general; the class of SR measures captures a strong

notion of negative association and provides a framework for analyzing such measures.

Specifically, SR measures are defined via their connection to real stable polynomials [148,

28, 180]. A multivariate polynomial f c C[z] where z E C' is called real stable if all its

coefficients are real and f(z) # 0 whenever 3m(zi) > 0 for 1 < i < n. A measure is called

an SR measure if its multivariate generating polynomial,

f,(Z) := E 7r(S) H Zi, (4.1.2)
SCv iES

is real stable. It is known (see [28, pg. 523]) that the class of SR measures is exponentially

larger than the class of determinantal measures.

4.1.1 SR Instantiations

Strongly Rayleigh measures have been underlying recent progress in approximation algo-

rithms [75, 7, 50, 113], graph sparsification [68, 171], extensions to the Kadison-Singer

problem [6], finite extensions to free probability [131], and concentration of measure re-

sults [150]. There has been many notable examples of SR measures widely studied in

machine learning and theoretical computer science and we list them as follows.

Determinantal Point Processes. A Determinantal Point Process (DPP) is a measure over

subsets given by the principal minors of a positive semidefinite matrix L C R4"'. Its

probabilities satisfy

wr(S) oc det(Ls,s), (4.1.3)
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DPPs arise in random matrix theory, combinatorics, machine learning, matrix approxima-

tions, and many other areas; see e.g., [126, 123, 124, 41, 29, 170, 107, 94, 31, 30, 118].

(Weighted) regular and balanced matroids. The uniform distribution over the bases of

certain matroids (regular matroids and balanced matroids [62, 150]) is SR, most notably,

the uniform distribution over spanning trees in a graph. Here, spanning trees are viewed as

subsets of edges, and the distribution is over subsets of edges.

Product measures / Bernoullis conditioned on their sum. Assume there is a weight

qi C [0, 1] for each element i E V. The product measure r(S) = RES qVi - qj) is

SR, as is its conditioning on sets of a specific cardinality k, i.e., r'(S) = -r(S I ISI = k) or

7r'(S) = 0 if |S I k, and r'(S) c 7(S) otherwise.

Uniform distribution on certain matroid (regular matroid and balanced matroid [62, 150])

base is SR, most notably, the uniform distribution over spanning trees in a graph. Here,

spanning trees are viewed as subsets of edges, and the distribution is over subsets of edges.

4.1.2 Sampling using MCMC

We sample from -F using MCMC, i.e., we run a Markov Chain with state space 2". All

our chains are ergodic. The mixing time of the chain indicates the number of iterations t

that we must perform (after starting from an arbitrary set So C V) before we can consider

St as a valid sample from -r. Formally, if 6s (t) is the total variation distance between the

distribution of St and 7r after t steps, then Tso(E) = min{t : 6s,(t') < E, Vt' > t} is the

mixing time to sample from a distribution c-close to 7rc in terms of total variation distance.

We say that the chain mixes fast if Ts0 is polynomial in n. The mixing time can be bounded

in terms of the eigenvalues of the transition matrix, as the following classic result shows:

Theorem 35 (Mixing Time [52]). Let Ai be the eigenvalues of the transition matrix, and

Amax = max{A 2 , An|I} < 1. Then, the mixing time starting from an initial set So C V is

bounded as

TSo (E) < (1- Amax) (log 7c (So) + log 1 ).
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Efficient sampling techniques have been studied for instances of SR distributions. A

popular method for sampling from Determinantal Point Processes uses the spectrum of

the defining kernel [94]. Generic MCMC samplers can also be derived, for example,

previous work used a simple add-delete Metropolis-Hasting chain [100]. Starting with an

arbitrary set S C V, we sample a point t E V uniformly at random. If t E S, we remove

t with probability min{1, w(S \ {t})/ir(S)}; if t S, we add it to S with probability

min{1, -r(S U {t})/7r(S)}. Algorithm 9 shows the (lazy) Markov chain.

Algorithm 9 Add/delete Markov Chain

Require: SR distribution 7
Initialize S C V
while not mixed do

Let b = 1 with probability j
if b = 1 then

Pick t E V uniformly at random
if t c S then

S = S\{t} with probability min{1, 7(S \ {t})/7(S)}
else

S = S U {t} with probability min{1, 0r(S U {t})/r(S)}
end if

else
Do nothing

end if
end while

The add-delete chain can work well in practice [100], however, it was not shown to

be always fast mixing. An elementary DPP has non-zero measure only on sets of a fixed

cardinality; for such a process (or a process close to it), the chain will stall or mix slowly.

Another special case of SR distributions are homogeneous SR measures. These measures

are nonzero only for some sets of a fixed cardinality k. Examples include Bernoulli

distributions conditioned on cardinality, uniform distributions on the bases of balanced

matroids [62], and k-DPPs. A natural MCMC sampler for these processes takes swapping

steps: given a current set S C V, it picks, uniformly at random, points s E S and t S, and

swaps them with probability min{1, wr(S U {t} \ {s})/7r(S)}. Algorithm 10 formalizes this

procedure. Building upon results in [62], [8] recently showed that the mixing time for the

swap sampler for homogeneous SR measures is polynomial in n, k, and log( E(SO)). These
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results are restricted to homogeneous SR measures, and do not hold for general SR measures

or SR with various constraints.

Algorithm 10 Exchange Markov Chain

Require: Homogeneous SR distribution 7r
Initialize S C V, r(S) > 0
while not mixed do

Let b = 1 with probability j
if b = 1 then

Pick s c S and t V S uniformly randomly
S = S U {t}\{s} with probability min{1, (S U {t} \ {s})/w(S)}

else
Do nothing

end if
end while

4.1.3 Other Related work

Recent work in machine learning addresses sampling from distributions with sub- or su-

permodular F [86, 156] and sampling by optimization [60, 128]. Apart from sampling,

other related tracts include work on variational inference for combinatorial distributions

[32, 53, 167, 185] and inference for submodular processes [95].

4.2 Sampling from General Strongly Rayleigh Measures

In this section, we consider sampling from general SR measures. We show in particular

that SR measures are amenable to efficient Markov chain sampling. Our starting point is

the observation of [28] on closure properties of SR measures; of these we use symmetric

homogenization. Given a distribution 7r on 2V = 2[n], its symmetric homogenization ish on

2[2n] is

7r(s n [n]) (S" ) if ISI = n;
Ws~h (S) : = (S01iSI(4.2.1)

0 otherwise.

If 7 is SR, SO is 7sh. We use this property below in our derivation of a fast-mixing chain.
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We use here a recent result of [8], who show a Markov chain that mixes rapidly for

homogeneous SR distributions. These distributions are over all subsets S C V of some fixed

size ISI = k, and hence do not include general DPPs. Concretely, for any k-homogeneous

SR distribution 7 : 2v - R+, a Gibbs-exchange sampler has mixing time

Tso(E) < 2k(n - k)(log r(So)< + log E-1).

This sampler uniformly samples one item in the current set, and one outside the current set,

and swaps them with an appropriate probability. Using these ideas we show how to obtain

fast mixing chains for any general SR distribution r on 2V. First, we construct its symmetric

homogenization Is, and sample from lsh using a Gibbs-exchange sampler. This chain is

fast mixing, thus we will efficiently get a sample T ~lrsh. The corresponding sample for

7 can be then obtained by computing S = T n V. Theorem 36, formally establishes the

validity of this idea.

Theorem 36. If 7 is SR, then the mixing time of a Exchange Markov Chain sampler for 7,h

is bounded as

Tso (E) < 2n (log ( I)+ log(7 (So))-' + log E . (4.2.2)

Proof Given a general SR measure -F, we construct its symmetric homogenization lgsh as in

Eq. 4.2.1. By closure property of SR we know that 7Ush is homogeneous SR. Then it follows

from [8] that the base exchange Markov chain has its mixing time bounded as

(Tsh)R(E) < 2n2(1og(7Fsh(Ro)) 1 + log E-1)

= 22 (log ( ) log(c (So))> +log 1)

where RO C [2N], IR0 = N and So = RO nV.

We construct a base exchange Markov chain on 2n variables where we maintain a

set |R| = n. In each iteration and with probability 0.5 we choose uniformly s E R and

t E [2nr]\R and switch them with certain transition probabilities. Let S = R n V, T = V\R,
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there are in total four possibilities for locations of s and t:

* With probability Isi(n-IsI), s E S and t E T, and we switch assignment of s and t

with probability min{1, h(R ) } m 1 7rc(SU{t} {})}. This is equivalent to7ish(Rt\) mi{ rc (S)

switching elements between S and T;

" With probab IsI(n-IsI) s S and t V T, and switch with probability min{1, 7c(SU{t})prbailtyIS2n2ISI ___(S)

I+}. This is equivalent to doing nothing to S;

" With probability 2, s E S and t V T, and we switch with probability min{1, ac (S\{s}) x2n 7rc (S)

}. This is equivalent to deleting elements from S;

(n- S) 2  icS~}
" With probability I- , s V S and t E T, and switch with probability min{1, c (U})

I51+ }. This is equivalent to adding elements to S.

Constructing the chain in the same manner but only maintaining S = R n [n] will result in

Algo. 11, while the mixing time stays unchanged.

El

For Theorem 36 we may choose the initial set such that So makes the first term in the

sum logarithmic in N (So = RO n V in Algorithm 11).

Algorithm 11 Markov Chain for Strongly Rayleigh Distributions

Require: SR distribution 7
Initialize R C [2n] where JR1 = n and take S = R n V, T = V\R
while not mixed do

Draw q Unif [0, 1]
Draw t E T and s E S uniformly at random
if q E [0, (n 2n2) then

S = S U {t} with probability min{1, 'iSus x } }> Add t

else if q C [(nISI)2 n-IS ) then
S = S U {t}\{s} with probability min{1, ( S } >Exchange s with t

else if q E If 2ni I 2n i ) then
S = S\{s} with probability min{1, r(S) x s1 } t> Delete s

else
Do nothing

end if
end while
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Efficient Implementation. Directly running a chain to sample n items from a (doubled)

set of size 2n adds some computational overhead. Hence, we construct an equivalent,

more space-efficient chain (Algorithm 11) on the initial ground set V = [n] that only

maintains S C V. Interestingly, this sampler is a mixture of add-delete and Gibbs-exchange

samplers. This combination makes sense intuitively, too: add-delete moves (shown in

Algorithm 14) are needed since the exchange sampler (shown in Algorithm 10) cannot

change the cardinality of S. But a pure add-delete chain can stall if the sets concentrate

around a fixed cardinality (low probability of a larger or smaller set). Exchange moves

will not suffer the same high rejection rates. The key idea underlying Algorithm 11 is that

the elements in {n + 1, ... , 2n} are indistinguishable, so it suffices to maintain merely the

cardinality of the currently selected subset instead of all its indices.

Corollary 37. The bound (4.2.2) applies to the mixing time of Algorithm 11.

Remarks. By assuming 7r is SR, we obtain a clean bound for fast mixing. Compared to

the bound in [86], our result avoids the somewhat opaque factor exp(O(F) that depends on

F. This advantage comes with a cost of an additive factor, which can be made small via

careful initialization, e.g., by choosing So up to a constant size.

In certain cases, the above chain may mix slower in practice than a pure add-delete

chain that was used in previous works [100, 86], since its probability of doing nothing is

higher. In other cases, it mixes much faster than the pure add-delete chain; we observe

both phenomena in our subsequent experiments. Contrary to a simple add-delete chain, it is

guaranteed to mix well.

4.2.1 Experiments

We empirically study how fast our sampler on strongly Rayleigh distribution converges. We

compare the chain in Algorithm 11 (Mix) against a simple add-delete chain (Add-D e let e).

We use a DPP on Ailerons data' of size 200, and the corresponding PSRF is shown in Fig. 4-

la. We observe that Mix converges slightly slower than Add-Delete since it is lazier.

However, the Add-Delete chain does not always mix fast. Fig. 4-lb illustrates a different

lhttp://www.dcc.fc.up.pt/657~ltorgo/Regression/DataSets.html
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setting, where we modify the eigenspectrum of the kernel matrix: the first 100 eigenvalues

are 500 and others 1/500. Such a kernel corresponds to almost an elementary DPP, where the

size of the observed subsets sharply concentrates around 100. Here, Add-Delete moves

very slowly. Mix, in contrast, has the ability of exchanging elements and thus converges

way faster than Add-Delete.

Potential Scale Reduction Factor Potential Scale Reduction Factor
1.3. - -Add-Delete ...3.- Add-Delete
- Mix -Mix

1.25- 1.25-

1.2- 1.2-

LL U..
f 1.15- - 1.15 -

1.05- 1.05 -

1 1
0 2 4 6 8 10 0 2 4 6 8 10

# Iter x104  # Iter x104

(a) (b)

Figure 4-1: (a) Convergence of marginal and conditional probabilities by DPP on uniform

matroid, (b,c) comparison between add-delete chain (Algorithm 9) and projection chain

(Algorithm 11) for two instances: slowly decaying spectrum and sharp step in the spectrum.

4.3 Dual Volume Sampling

From this section on we will consider an instantiation of DIPM that turns out to be SR

measures, thus fast mixing MCMC follows. In real world, a variety of applications share the

core task of selecting a subset of columns from a short, wide matrix A with n rows and m >

n columns. The criteria for selecting these columns typically aim at preserving information

about the span of A while generating a well-conditioned submatrix. Classical and recent

examples include experimental design, where we select observations or experiments [151];

preconditioning for solving linear systems and constructing low-stretch spanning trees (here

A is a version of the node-edge incidence matrix and we select edges in a graph) [13, 10];
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matrix approximation [34, 33, 91]; feature selection in k-means clustering [35, 36]; sensor

selection [99] and graph signal processing [43, 179].

The distribution we study holds promise for all of these applications. It relies on

sampling columns of A according to a probability distribution defined over its submatrices:

the probability of selecting a set S of k columns from A, with n < k < m, is

7r(S; A) oc det(AsA T), (4.3.1)

where As is the submatrix consisting of the selected columns. This distribution is reminiscent

of volume sampling, where k < n columns are selected with probability proportional to the

determinant det(A TAs) of a k x k matrix, i.e., the squared volume of the parallelepiped

spanned by the selected columns. (Volume sampling does not apply to k > n as the involved

determinants vanish.) In contrast, r(S; A) uses the determinant of an n x n matrix and

uses the volume spanned by the rows formed by the selected columns. Hence we refer to

,(S; A)-sampling as dual volume sampling (DVS).

Despite the ostensible similarity between volume sampling and DVS, and despite the

many practical implications of DVS outlined below, efficient algorithms for DVS are not

known and were raised as open questions in [13]. In the subsequent, we make the following

contributions:

e We establish that ir(S; A) is a Strongly Rayleigh measure [28], a remarkable property

that captures a specific form of negative dependence. Our proof relies on the theory

of real stable polynomials, and the ensuing result implies a provably fast-mixing,

practical MCMC sampler. Moreover, this result implies concentration properties for

dual volume sampling.

e We develop polynomial-time randomized sampling algorithms and their derandomiza-

tion for DVS. Surprisingly, our proofs require only elementary (but involved) matrix

manipulations.

In parallel with our work, [48] also proposed a polynomial time sampling algorithm that

works efficiently in practice. Our work goes on to further uncover the hitherto unknown
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"Strong Rayleigh" property of DVS, which has important consequences, including those

noted above.

4.3.1 Connections and implications.

The selection of k > n columns from a short and wide matrix has many applications. Our

algorithms for DVS hence have several implications and connections; we note a few below.

Experimental design. The theory of optimal experiment design explores several criteria

for selecting the set of columns (experiments) S. Popular choices are

S E argminsC{i...,m}J(As), with

J(As) = J|AIllF II(AsA T>-'F (A-optimal design) , (4.3.2)

J(As) = ||At12 (E-optimal design), (4.3.3)

J(As) = - log det(As AT) (D-optimal design). (4.3.4)

Here, Af denotes the Moore-Penrose pseudoinverse of A, and the minimization ranges over

all S such that As has full row rank n. A-optimal design, for instance, is statistically optimal

for linear regression [151].

Finding an optimal solution for these design problems is NP-hard; and most discrete

algorithms use local search [137]. [13, Theorem 3.1] show that dual volume sampling yields

an approximation guarantee for both A- and E-optimal design: if S is sampled from DVS

7(S; A), then

A12 < |-I 1At 11; E [|AI 12 (I + - IAtf1 . (4.3.5)
SF k - n+1 FS2- k - n+1 2

[13] provide a polynomial time sampling algorithm only for the case k = n. Our algorithms

achieve the bound (4.3.5) in expectation, and the derandomization in Section 4.5.3 achieves

the bound deterministically. [182] recently (in parallel) achieved approximation bounds for

A-optimality via a different algorithm combining convex relaxation and a greedy method.

Other methods include leverage score sampling [125] and predictive length sampling [190].

Low-stretch spanning trees and applications. Objectives 4.3.2 also arise in the con-
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struction of low-stretch spanning trees, which have important applications in graph spar-

sification, preconditioning and solving symmetric diagonally dominant (SDD) linear sys-

tems [172], among others [59]. In the node-edge incidence matrix E Rnxm of an

undirected graph G with n nodes and m edges, the column corresponding to edge (u, v) is

V/w(u, v)(eu - er). Let H = UEY be the SVD of 11 with Y E R'--xm. The stretch of a

spanning tree T in G is then given by StT(G) lY- 1 2| [13]. In those applications, we

hence search for a set of edges with low stretch.

Network controllability. The problem of sampling k > n columns in a matrix also

arises in network controllability. For example, [188] consider selecting control nodes S

(under certain constraints) over time in complex networks to control a linear time-invariant

network. After transforming the problem into a column subset selection problem from a

short and wide controllability matrix, the objective becomes essentially an E-optimal design

problem, for which the authors use greedy heuristics.

4.4 SR Property and Fast Markov Chain Sampling

Next, we investigate DVS more deeply and discover that it possesses a remarkable structural

property, namely, the Strongly Rayleigh (SR) [28] property. This property has proved

remarkably fruitful in a variety of recent contexts, including recent progress in approximation

algorithms [75], fast sampling [7, 117], graph sparsification [68, 171], extensions to the

Kadison-Singer problem [6], and certain concentration of measure results [150], among

others.

4.4.1 Strong Rayleigh Property of DVS

Theorem 38 establishes the SR property for DVS and is the main result of this section. Here

and in the following, we use the notation zs = fli- s zi.

Theorem 38. Let A E R"' and n < k K m. Then the multiaffine polynomial

p(z) := det(AsAsT) fz i =det(AsAsP)zS, (4.4.1)

|S\=k,SC[m] icS \S\=k,SC[m]
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is real stable. Consequently, 7r(S; A) is an SR measure.

The proof of Theorem 38 relies on key properties of real stable polynomials and SR mea-

sures established in [28]. Essentially, the proof demonstrates that the generating polynomial

of P(Sc; A) can be obtained by applying a few carefully chosen stability preserving opera-

tions to a polynomial that we know to be real stable. Stability, although easily destroyed, is

closed under several operations noted in the important proposition below.

Proposition 39 (Prop. 2.1 [28]). Let f : Cm -+ C be a stable polynomial. The following

properties preserve stability:

" Substitution: f (P, z 2 ,. . .,zm)for p G R;

" Differentiation: &sf (z,.... , zM) for any S C [in];

" Diagonalization: f (z, z, z3 . .., z) is stable, and hence f (z, z, ... , z); and

* Inversion: z1 - zf (z-, ... , zj).

In addition, we need the following two propositions for proving Theorem 38.

Proposition 40 (Prop. 2.4 [27]). Let B be Hermitian, z E Cm and Ai (1 < i < m) be

Hermitian semidefinite matrices. Then, the following polynomial is stable:

f(z) := det(B + ziA). (4.4.2)

Proposition 41. For n | S| < m and L := ATA, we have det(AsAS) = e(Lss).

Proof Let Y = Diag([yj]) be a diagonal matrix. Using the Cauchy-Binet identity we

have

det(AYA T) det((AY):,T) det((A T),.) = det(Aj AT)yT.de(YA) ZTjn,TC[in] ZIETjn,TC1m]

Thus, when Y = Is, the (diagonal) indicator matrix for S, we obtain AYAT = AsAs

Consequently, in the summation above only terms with T C S survive, yielding

det(AsAT) = det(AT AT) = det(LT,T) = en(Ls,s). D
ITI=n,TCS ITI=n,TCS
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We are now ready to sketch the proof of Theorem 38.

Proof (Theorem 38). Notationally, it is more convenient to prove that the "complement"

polynomial pc(Z) := EjSjk,SC[m] det(AsAs)zSc is stable; subsequently, an application of

Prop. 39-(iv) yields stability of (4.4.1). Using matrix notation W = Diag(wi, . . , Wm),

Z = Diag(zi, ... , Z.), our starting stable polynomial (this stability follows from Prop. 40)

is

h(z, w) := det(L + W + Z), w E CM , z E C,

which can be expanded as

h(z, w) = ZSC[i] det(Ws + Ls)zsc = ZSC[m] TCS Ws\ det(LT,T)) zsc

Thus, h(z, w) is real stable in 2m variables, indexed below by S and R where R := S\T.

Instead of the form above, We can sum over S, R C [m] but then have to constrain the

support to the case when S, n T = 0 and S, n R = 0. In other words, we may write (using

Iverson-brackets [1-)

h(z,w) = ( S R nft = VIA ScnT = 011 det(LT,T)zScwR. (4.4.3)
S,RC[m]

Next, we truncate polynomial (4.4.3) at degree (m - k) + (k - n) = m - n by restricting

IS, U RI = m - n. By [28, Corollary 4.18] this truncation preserves stability, whence

H(z, w) := S S n f = 01 det(Ls\R,s\R)zsc SR

S,RC[m]
\ScURj=m-n

is also stable. Using Prop. 39-(iii), setting wi ... = wm = y retains stability; thus

g(z, y) = H(z, (y, y,. .. , y)) =Sc n R = 011 det(Ls\R,s\R)zSc y\R\

m times S,RC[m]
\ScURI=m-n

E (1Sj~j~ S _det (LTT))ysII-Izs = S en(Ls,s)yISI-nzS,
Sc[m] SC[m]
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is also stable. Next, differentiating g(z, y), k - n times with respect to y and evaluating at 0

preserves stability (Prop. 39-(ii) and (i)). In doing so, only terms corresponding to IS = k

survive, resulting in

ak-n (k-n)! en(Ls,s)zSc = (k - n)! det(AsA T)zSc

9=Y \sI=k,SC[m] IS=k,SC[m]

which is just pc(z) (up to a constant); here, the last equality follows from Prop. 41. This

establishes stability of pc(z) and hence of p(z). Since p(z) is in addition multiaffine, it is

the generating polynomial of an SR measure, completing the proof. I

4.4.2 Implications: MCMC

The SR property of 7(S; A) established in Theorem 38 implies a fast mixing Markov chain

for sampling S. The states for the Markov chain are all sets of cardinality k. The chain

starts with a randomly-initialized active set S, and in each iteration we swap an element

s i" E S with an element so "t S with a specific probability determined by the probability

of the current and proposed set. The stationary distribution of this chain is the one induced

by DVS, by a simple detailed-balance argument. The chain is shown in Algorithm 12.

Algorithm 12 Markov Chain for Dual Volume Sampling
Input: A E R "n, the matrix of interest, k the target cardinality, T the number of steps
Output: S ~ ir(S; A)
Initialize S C [m] such that IS| = k and det(AsAT) > 0
for i = 1 to T do

draw b c {0, 1} uniformly
if b = 1 then

Pick si" E S and s ut E [m]\S uniformly randomly

q(s", s0 "t , 5) +-- min {1, det(Asu{sout}\{Sin}AsU{Sout}\fsin})/ det(AsAs)
S &- S U {s ut}\{sin} with probability q(si", so" t , 5)

end if
end for

The convergence of the Markov chain is measured via its mixing time: The mixing time

of the chain indicates the number of iterations t that we must perform (starting from So)

before we can consider St as an approximately valid sample from 7(S; A). Formally, if
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6s (t) is the total variation distance between the distribution of St and 7r(S; A) after t steps,

then

TSO (E) min{t : 6s, (t') < E, Vt' > t}

is the mixing time to sample from a distribution E-close to wr(S; A) in terms of total variation

distance. We say that the chain mixes fast if Tso is polynomial in the problem size.

The fast mixing result for Algorithm 12 is a corollary of Theorem 38 combined with a re-

cent result of [8] on fast-mixing Markov chains for homogeneous SR measures. Theorem 42

states this precisely.

Theorem 42 (Mixing time). The mixing time of Markov chain shown in Algorithm 12 is

given by

TSo (E) < 2k(m - k)(log P(So; A) + log E-).

Proof Since 7r(S; A) is k-homogeneous SR by Theorem 38, the chain constructed for

sampling S following that in [8] mixes in Tso(E) < 2k(m - k)(log P(So; A)- 1 + log E--)

time. E

Implementation. To implement Algorithm 12 we need to compute the transition proba-

bilities q(si", s "u, S). Let T = S\{sin} and assume r(AT) = n. By the matrix determinant

lemma we have the acceptance ratio

det(Asu{SOUt\{SsinAsu{Sout}\{sin}) _ (1 + AIsou I(ATA')Alsosq)

det(AsAs ) (1 + A T i (ATAT)-1AJSinJ)

Thus, the transition probabilities can be computed in O(n2 k) time. Moreover, one can

further accelerate this algorithm by using the quadrature techniques of [118] to compute

lower and upper bounds on this acceptance ratio to determine early acceptance or rejection

of the proposed move.

Initialization. A remaining question is initialization. Since the mixing time involves

log P(So; A)- 1 , we need to start with So such that P(So; A) is sufficiently bounded away
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from 0. We show in Appendix B.6 that by a simple greedy algorithm, we are able to initialize

S such that log 7r(S; A)- 1 > log(2k! )) = O(k log m), and the resulting running time

for Algorithm 12 is 0(k 3 n2 m), which is linear in the size of data set m and is efficient

when k is not too large.

4.4.3 Further implications and connections

Concentration. [150] shows concentration results for strong Rayleigh measures. As a

corollary of our Theorem 38 together with their results, we directly obtain tail bounds for

DVS.

Algorithms for experimental design. Widely used, classical algorithms for finding an

approximate optimal design include Fedorov's exchange algorithm [63] (a greedy local

search) and simulated annealing [140]. Both methods start with a random initial set S, and

greedily or randomly exchange a column i E S with a column j S. Apart from very

expensive running times, they are known to work well in practice [142, 182]. Yet so far

there is no theoretical analysis, or a principled way of determining when to stop the greedy

search.

Curiously, our MCMC sampler is essentially a randomized version of Fedorov's ex-

change method. The two methods can be connected by a unified, simulated annealing

view, where we define P3 (S; A) oc exp{log det(AsAT)/} with temperature parameter

4. Driving # to zero essentially recovers Fedorov's method, while our results imply fast

mixing for / = 1, together with approximation guarantees. Through this lens, simulated

annealing may be viewed as initializing Fedorov's method with the fast-mixing sampler. In

practice, we observe that letting 4 < 1 improves the approximation results, which opens

interesting questions for future work.

4.5 Polynomial-time Dual Volume Sampling

We describe in this section our method to sample from the distribution wr(S; A). Our first

method relies on the key insight that, as we show, the marginal probabilities for DVS can be
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computed in polynomial time. To demonstrate this, we begin with the partition function and

then derive marginals.

4.5.1 Marginals

The partition function has a conveniently simple closed form, which follows from the

Cauchy-Binet formula and was also derived in [13].

Lemma 43 (Partition Function [13]). For A E Rnxrn with r(A) = n and n < ISI = k < m,

we have

ZA :=mdet(AsAs) = T - n det(AA T ).
ZA = |ES|=k,SC[m] S k - n

Next, we will need the marginal probability P(T C S; A) = ZS:TCS w(S; A) that

a given set T C [in] is a subset of the random set S. In the following theorem, the set

T, = [m]\ T denotes the (set) complement of T, and Q ' denotes the orthogonal complement

of Q.

Theorem 44 (Marginals). Let T C [m], |T| < k, and E > 0. Let AT = QZVT be the

singular value decomposition of AT where Q c Rnxr(AT), and Q' c Rnx(n-(AT)). Further

define the matrices

B = (QI)TAcE R(n-r(AT))x(m-TI)

C= .. QT AT, E R(T)x m-TI).
V'0' ( AT) +,F

Let QBdiag(oT(B))QT be the eigenvalue decomposition of BT B where QB E RITIxr(B)

Moreover; let WT = [ITc;CT ] and F = ek-ITI-r(B)(W((Q%)TQ1)WT). Then the

marginal probability of T in DVS is

]-MT) [ ,'(AT)] X o (B)] x F
P(T C S; A) =ZA
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We prove Theorem 44 via a perturbation argument that connects DVS to volume sam-

pling. Specifically, observe that for E > 0 and IS| > n it holds that

Tr

det (AsAT + EI") = E"-k det(A TAs + EIk) = n-k det As As
[V%(IM)sj (Im)sj)

(4.5.1)

Carefully letting E - 0 bridges volumes with "dual" volumes. The technical remainder

of the proof further relates this equality to singular values, and exploits properties of

characteristic polynomials. A similar argument yields an alternative proof of Lemma 43.

We show the proofs in detail in Appendix B. 1 and B.2 respectively.

Complexity. The numerator of P(T C S; A) in Theorem 44 requires 0(mn 2 ) time to

compute the first term, 0(mn2) to compute the second and 0(m3 ) to compute the third.

The denominator takes O(mn 2 ) time, amounting in a total time of 0(m 3) to compute the

marginal probability.

4.5.2 Sampling

The marginal probabilities derived above directly yield a polynomial-time exact DVS

algorithm. Instead of k-sets, we sample ordered k-tuples 9 = (si, ... , sk) E k. We

denote the k-tuple variant of the DVS distribution byP ( (- A):

((s = i) 1; A) = P({ii, .. . , ik}; A) = (s= - S i = . . . , 5 yi = iji; A).

Sampling i is now straightforward. At the jth step we sample s3 via P(sj = ij si =

il, . . , s_1 = i,-1; A); these probabilities are easily obtained from the marginals in Theo-

rem 44.

Corollary 45. Let T = {ii, . . . , it-1}, and P(T C S; A) as in Theorem 44. Then,

P(T U {i} C S; A)
= i;Asi = ,.. . ,st_ = it-) = (k - t + 1) P(T C S; A)'

97



As a result, it is possible to draw an exact dual volume sample in time 0(km 4 ).

The full proof may be found in the appendix. The running time claim follows since the

sampling algorithm invokes ((mk) computations of marginal probabilities, each costing

O(m3 ) time.

Remark A potentially more efficient approximate algorithm could be derived by noting

the relations between volume sampling and DVS. Specifically, we add a small perturbation to

DVS as in Equation 4.5.1 to transform it into a volume sampling problem, and apply random

projection for more efficient volume sampling as in [49]. Please refer to Appendix B.3 for

more details.

4.5.3 Derandomization

Next, we derandomize the above sampling algorithm to deterministically select a subset that

satisfies the bound (4.3.5) for the Frobenius norm, thereby answering another question in

[13]. The key insight for derandomization is that conditional expectations can be computed

in polynomial time, given the marginals in Theorem 44:

Corollary 46. Let (i1 ,. . . , it-) c [m]'-' be such that the marginal distribution satisfies

(s 1 = i, . .. , =it 1; A) > 0. The conditional expectation can be expressed as

JE [' AI ~ 11, 1 .I . l , = it-I] -,= P'({ii, . .., it-1 C SIS - P(S; A[,,]\{ 3))
S ' P'({ii,... , it-1} SIS - 7r(S; A))

where P' are the unnormalized marginal distributions, and it can be computed in 0(nm 3)

time.

We show the full derivation in Appendix B.4.

Corollary 46 enables a greedy derandomization procedure. Starting with the empty tuple

No = 0, in the ith iteration, we greedily select j* G argmaxE (, [ I ,I s) =

N~i_1 oj] and append it to our selection: = o j. The final set is the non-ordered

version Sk of $4. Theorem 47 shows that this greedy procedure succeeds, and implies a

deterministic version of the bound (4.3.5).
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Theorem 47. The greedy derandomization selects a column set S satisfying

||A' |1 < m -- + 1 A'11; ||A'||2< '(m - n + 1) A t 1.
k-n+ - k-n-+1

In the proof, we construct a greedy algorithm. In each iteration, the algorithm computes,

for each column that has not yet been selected, the expectation conditioned on this column

being included in the current set. Then it chooses the element with the lowest conditional

expectation to actually be added to the current set. This greedy inclusion of elements will

only decrease the conditional expectation, thus retaining the bound in Theorem 47. The

detailed proof is deferred to Appendix B.5.

Complexity. Each iteration of the greedy selection requires 0(nm3 ) to compute 0(m)

conditional expectations. Thus, the total running time for k iterations is 0(knm4 ). The

approximation bound for the spectral norm is slightly worse than that in (4.3.5), but is of the

same order if k = O(n).

4.6 Experiments

We report selection performance of DVS on real regression data (CompAct, CompAct(s),

Abalone and Bank32NH 2 ) for experimental design. We use 4,000 samples from each

dataset for estimation. We compare against various baselines, including uniform sam-

pling (Un i f), leverage score sampling (Lev) [125], predictive length sampling (P L) [190],

the sampling (Smpl)/greedy (Greedy) selection methods in [182] and Fedorov's exchange

algorithm [63]. We initialize the MCMC sampler with Kmeans++ [11] for DVS and run for

10,000 iterations, which empirically yields selections that are sufficiently good. We measure

performances via (1) the prediction error ||y - X&JI, and (2) running times. Figure 4-2

shows the results for these three measures with sample sizes k varying from 60 to 200.

Further experiments (including for the interpolation /3 < 1), may be found in the appendix.

In terms of prediction error, DVS performs well and is comparable with Lev. Its strength

compared to the greedy and relaxation methods (Smpl, Greedy, Fedorov) is running

2http://www.dcc.fc.up.pt/?ltorgo/Regression/DataSets.html
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Figure 4-2: Results on the CompAct(s) dataset. Results are the median of 10 runs, except

Greedy and Fedorov. Note that Unif, Lev, PL and DVS use less than 1 second to

finish experiments.

time, leading to good time-error tradeoffs. These tradeoffs are illustrated in Figure 4-2 for

k = 120.

In other experiments (shown in Appendix B.7) we observed that in some cases, the

optimization and greedy methods (Smpl, Greedy, Fedorov) yield better results than

sampling, however with much higher running times. Hence, given time-error tradeoffs, DVS

may be an interesting alternative in situations where time is a very limited resource and

results are needed quickly.

4.7 Summary

In this chapter, we consider a broader class of DIPMs called strongly Rayleigh measures,

which include DPPs as special cases. We obtain an unconditional fast mixing guarantee for

MCMC sampling for SR measures. This is the first poly-time mixing MCMC for general

SR measures. We further study the problem of DVS via the theory of SR measures and

real-stable polynomials and prove that DVS lies in the SR family. This result has remarkable

consequences, especially because it implies a provably fast-mixing Markov chain sampler

that makes DVS much more attractive to practitioners. Empirical results on experimental

design demonstrates the superior performances of DVS over existing methods.
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Chapter 5

Constrained Sampling

While general DIPMs have supports on 2v, their variants with constrained support typically

arise in a variety of real-world settings. Constraints over the support could be imposed from

prior knowledge, resource limitations, or other pragmatic considerations. In this chapter, we

focus on DIPMs with certain constraints: 1) cardinality constraints, where one wants to have

a more precise control over the size of the subsets sampled from DIPMs; 2) matroid base

constraints, where one wants to incorporate certain structural information in the sampled

subsets. While the unconstrained instances of certain DIPMs have MCMC samplers that are

guaranteed to be fast mixing, their constrained variants has no known sampling methods.

We develop MCMC samplers for such distributions and identify sufficient conditions under

which their chains mix rapidly. Finally, we illustrate our claims by empirically verifying the

dependence of mixing times on the key factors governing our theoretical bounds. Materials

in this chapter are based on [117, 116]

5.1 Introduction

Distributions over subsets of objects arise in a variety of machine learning applications.

They occur as discrete probabilistic models [32, 167, 185, 87, 107] in computer vision,

computational biology and natural language processing. They also occur in combinatorial

bandit learning [42], as well as in recent applications to neural network compression [133]

and matrix approximations [113].
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Yet, practical use of discrete distributions can be hampered by computational challenges

due to their combinatorial nature. Consider for instance sampling, a task fundamental to

learning, optimization, and approximation. Without further restrictions, efficient sampling

can be impossible [57]. Several lines of work thus focus on identifying tractable sub-classes,

which in turn have had wide-ranging impacts on modeling and algorithms. Important

examples include the Ising model [96], matchings (and the matrix permanent) [97], spanning

trees (and graph algorithms) [37, 68, 171, 7], and Determinantal Point Processes (DPPs)

that have gained substantial attention in machine learning [107, 118, 70, 100, 8, 102].

General distributions on 2 v with constrained support typically arise upon incorporating

prior knowledge or resource constraints. We focus on resource constraints such as bounds

on cardinality and bounds on including limited items from sub-groups. Such constraints

can be phrased as a family C C 2v of subsets; we say S satisfies the constraint C iff S E C.

Then the distribution of interest is of the form

7rc(S) oc exp(OF(S)) S E Cj,(..)

where F : 2V - R is a set function that encodes relationships between items i E V, R- is

the Iverson bracket, and 3 a constant (also referred to as the inverse temperature). Most prior

work on sampling with combinatorial constraints (such as sampling the bases of a matroid),

assumes that F breaks up linearly using element-wise weights wi, i.e., F(S) = s .

In contrast, we allow generic, nonlinear functions, and obtain a mixing times governed by

structural properties of F.

An important thing to note is that, even if exp(OF(S)) itself belongs to certain class of

distributions like SR, adding a constraint may not lead to a distribution in the same class.

Take SR for example, certain constraints on an SR measure may result in an SR measure due

to closure properties of SR (see [28] for details), but counter examples exist for more general

constraints. Thus even though efficient MCMC sampling method is known for general SR,

ones for specific constrained SR measure is not known to be fast mixing.

Our focus is on sampling from 7rc in (5.1.1), where in our case 7r is a DIPM; we denote

by Z = Escv exp(BF(S)) and Zc = Esc exp(/F(S)). The simplest example of 7rc

102



is the uniform distribution over sets in C, where F(S) is constant. In general, F may be

highly nonlinear. We study MCMC sampling method for SR measures and its various

constrained version. We propose different Markov chains for different variants and show

they are essentially fast mixing. We summarize the key contributions of this chapter below.

" We propose a general technique for constructing fast mixing Markov chains by

combining already fast mixing chains on overlapping subsets of the whole state space.

Based on this technique we construct a fast mixing chain for cardinality-constrained

SR measures (Theorem 52). Such construction is not restricted to the specific class of

SR measures and is more widely applicable.

" We analyze a special case for cardinality constraints, i.e., the case of ISI <; k. We

show (in Theorem 56) mixing times of an add-delete chain for such case, which,

perhaps surprisingly, turns out to be quite different from ISI = k. This constraint can

be more practical than the strict choice ISI = k, because in many applications, the

user may have an upper bound on the budget, but may not necessarily want to expend

all k units.

" We analyze (Theorem 57) mixing times of an exchange chain when the constraint

family C is the set of bases a matroid, i.e., ISI = k or S obeys a partition constraint.

Both of these constraints have high practical relevance [105, 101, 185].

Finally, a detailed set of experiments illustrates our theoretical results.

Related work. Recent work in machine learning addresses sampling from distributions

with sub- or supermodular F [86, 156], determinantal point processes [8, 113], and sampling

by optimization [60, 128]. Many of these works (necessarily) make additional assumptions

on rc, or are approximate, or cannot handle constraints. Moreover, the constraints cannot

easily be included in F: an out-of-the-box application of the result in [86], for instance,

would lead to an unbounded constant in the mixing time.
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5.2 Sampling from SR with Cardinality Constraint

In this section, we consider SR measures with cardinality constraints, namely f < IS I u

where S is the sampled subset. MCMC on general SR measures has already proved to be

efficient due to the remarkable properties of SR. However, the SR property is brittle: A

restriction of the support like cardinality constraints on the subsets, may destroy it. Notwith-

standing, there is now a growing interest in studying the complexity of such combinatorially

constrained distributions. Recent work addresses approximations to the partition function,

marginal probabilities and mode under various constraints [78, 101, 174, 143]. None of

these works, however, considers efficient sampling via MCMC. Our work may be viewed as

a first step towards constructing efficient MCMC samplers for potentially non-SR measures

by still exploiting SR properties.

To design fast mixing Markov chain samplers for cardinality-constrained SR measures,

we develop a combination Markov chain that is efficient when the overall state space

decomposes into overlapping "easy" regions. Assuming that each region has access to

an efficient sampler, we show how to use the overlap to obtain an overall fast mixing

chain. In contrast to previous work on chain decomposition that was mainly used as a tool

for analyzing given Markov chains [98, 129], our strategy is constructive and explicitly

uses decomposition for building a sampler. More importantly, it inherits efficiency from

sub-chains.

5.2.1 Chain Combination for Easy Fast-Mixing Chain Construction

Throughout, we assume that the support of 7wc, i.e., the state space C, is covered by m

overlapping parts C2, namely C = U>l Ci. We assume that for a suitably partially-rescaled

version of the distribution 7c restricted to each of the Ci, we have a fast mixing chain Mc,

with transition probabilities Qj. Such assumption holds for certain cardinality-constrained

SR measures as shown in Sec. 5.2.2.

Our approach is motivated by chain decomposition techniques for analyzing Markov

chains [134, 98]; we construct a chain that will be easy to analyze with such techniques.

The chain decomposition analysis assumes an already existing (ergodic and time-
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reversible) Markov chain with stationary distribution 7wc and transition probabilities P(X, Y).

Given a partition of the state space into m disjoint parts C = T U ... U T, one can decom-

pose the chain into restriction chains, one on each Ti, and a projection chain across parts. Let

[m] = .. . , m}, the projection chain represents a distribution Wm1 (i) := >xE7; wc(X)

over the indices [m] of the parts. Its transition probabilities P aggregate the original ones:

P(ij) = Z[m ](i) 7rc (X)P(X, Y). (5.2.1)
XCT YET,

In addition, we have one restriction chain MT; on each part 77, whose stationary distribution

is the conditional rT (X) = 7Tc (X)/T[m] (i). Its transition probabilities are

P(XY ), X#Y
P(X,Y) = (5.2.2)

1 - Ezec \{x} P(X, Z) X =Y

These transition probabilities are not always easy to compute or even approximate. This

issue may arise for support-restricted non-uniform distributions such as constrained DPPs or

SR measures.

In contrast to analyzing an existing chain on the entire state space, our approach uses a

different, bottom-up approach, that combines chains on sub-parts of the state space.

Case of m = 2: We start with the base case of n = 2 parts, i.e., C = C 1 U C2 and

C1 n C2 = I 0. Let Di = Ci\C3-i (for i E [2]). We first make two identical copies 11 and

12 of I and let C' = i U Di be each part with the duplicated intersection. Consider two new

measures 7rc, and irc, that distribute the mass on the intersection:

7c(X) if X E Di
cX) cc p i( - p)2-ic (X) if X C I,

for i E [2] and p E (0, 1). Let Qi be the transition probabilities for a Markov chain with

stationary distribution 7c, (that we have by assumption). We create a "lazier" version of this
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chain, with transition probabilities

Pi(X, Y) :={
4Qi(X, Y),

1-Ezec1,zsx Qi(X, ),

if X, Y E C', X 7 Y,

if X,Y E CC, X Y.

Each chain Mc, again has stationary distribution 7rc'.

Next, we combine Mc, and MC, by allowing transitions between I1 and 12. The

combined chain Mcuc has transition probabilities

Ip2-igi _ 0j-1

Pi (X, Y)

1 - ZxP(X, Z)

if X E 24, Y E '1-i, X and Y are identical copies in I,

if X,Y C C1, X f Y,

if X = Y.

(5.2.4)

This chain is still lazy;

it follows that Mcuc

it does not move with probability at least 1/2. From detailed balance,

converges to the distribution

7rs(X)

p- (1 p) 2-i7c (X)

if

if

XCD, i E {1, 2}.
X E Iii

Each X c I occurs via its two duplicates in 11 and 12 with probability prc(X) and

(1 - p)7rc(X), respectively. Hence, by re-identifying both copies with X ("projecting"), we

obtain a sampler for 7c. Algorithm 13 makes the above described chain explicit.

Analysis. We must now bound the mixing time of the combined chain. For doing so,

we follow the decomposition analysis of [98]. The main idea is to bound a quantity - the

Poincari constant or log-Sobolev constant - that characterizes the mixing time, once on

each part and once for transiting between parts. The final constant and mixing time will

follow as a function of these quantities associated with the parts.

These important quantities are defined as follows. Let f : C -+ R be an arbitrary test

function; its expectation and variance with respect to 7c are E,c If = Exec 7c(X)f(X)

and VErc If] = Exec 7wc(X)(f(X) - Ic f)2, respectively. The Poincard constant A bounds
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Algorithm 13 Combined Chain for m = 2 parts

Require: Target distribution 7C( ), state decomposition C = C1 UC 2 , I = C1 nC2 , transition
probabilities Pi(., -) defined in (5.2.3), p E (0, 1)
Initialize T E C. Let b = i if S E Ci\1 for i E {1, 2}, otherwise set b = 1.
while not mixed do

Run chain with transition probabilities P for one step
if the new state is the same as last step then

if T E I then
Set b = 3 - b with probability ip2b(l - -

end if
end if

end while
Output T c C

the ratio between the variance and the Dirichletform

1(ff) = 7c(X)P(X, Y)(f (X) -f (y))2

it is the largest constant such that the Poincard inequality AVc [f ] < S,, (f, f) holds for

all functions f : C -+ R. The log-Sobolev constant replaces the variance by , (f) =

Erc[f 2 (In f2 - In(Ec [f] 2 ))]; it is the largest a such that axc (f) < Src(f, f) for all

f : C -+ R.

The decomposition technique assumes an already existing Markov chain, and a partition

of the state space into m disjoint parts C = Ti U . .. U Tm. If it is possible to bound A (or

a) for the restriction chain on each part 7? individually, and for the global projection chain,

then the following result implies a bound on the mixing time.

Theorem 48 (Mixing time [98]). Consider a finite-state time-reversible Markov chain

decomposed into a projection chain and m restriction chains on disjoint parts T? of the

state space C. Let A, a be Poincar' and log-Sobolev constants for the projection chain, and

{ Ai}iE[m], {ai }iE[m] be those for the restriction chains, respectively. Let Amin := mini Ai

and amin mini a, and define

,-:= max max P(X, Y). (5.2.5)
i [,n xeci Yec\ci
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Then the original Markov chain satisfies a Poincare and log-Sobolev inequality with con-

stants

A AAmin .r aTamin
A min - _ a -m.

3'37 +A '3' 3-y+

These constants imply upper bounds on mixing time:

TSo (E) = 0 (1 log (E7Tc (So)) TSo (E) = 0 og (E log 7rc (Xo) )

Our analysis uses this result - note that Theorem 5.2.7 uses a partition into disjoint parts.

Moreover, the critical ingredient for using Theorem 5.2.7 are bounds on the local and global

Poincard constants, which are not always easy to obtain. It turns out that, by construction,

our chain combination admits such bounds, and we obtain the following bounds for our

combination chain.

Theorem 49. Given a decomposition C= C1 UC2 where C1 nC2 # 0, define the chains Mc,

Mc, and M{1 ,2} as above. Let A and {Ai}iE{1,2} be Poincard constants, Z and {a}iE{1,2}

be log-Sobolev constants for {Mc'} and M{ 1,2} respectively. With Amin = mini Ai and

amin = mini ai, we have

A > min A max{;mi } a > min { 3{71}
3' 4 max~p, I - p} + ~ 3' max~p, I - p} +

In particular, for P(X, Y) defined as in Equation (5.2.4):

A_>(nA - p)7c( ) Amin
;> min{ 3 ' 3max{p,1-p} + 1

4p(1-p)7rc (I)

Proof By definition of MCIucl, we let

2](i) = (X) = 7c (Di) +p- 1 (l -p) 2 -irc(I)
xEc'
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and construct the projection chain Mfl,2} with transition probabilities

- . ZXEIZYe_i pEi i - p) 2 ?wc(X)P(X, Y)
P(i, 7C(D1) +pi- I p)- 2i)c

47Tc (Di) + p ( - p)2-i7C ()_ p(l -p)Tc (I)

The resulting Poincare constant is given by [8, Fact 2.1]

- P(1, 2) p (I - P)?7c (I)
7[2 ](2) - 4(c (D) -+ (1 - p)c (I))(w7c (D2) + pTC (I))

(5.2.6)

Finally, we have

y = max ax P(X, Y) = max{p, 1 - p}. (5.2.7)
iE[2] xec; 4

Together with Theorem 48, the bounds (5.2.7) and (5.2.6) imply the results. El

Theorem 49 matches intuition: if the small chain on each part of the state space is fast

mixing, the resulting At's are bounded away from 0; if the probability of intersection states,

7(I), is large, A will be bounded away from 0 and it will be easy to transit between chains.

Hence A is large and the resulting combined chain is fast mixing.

A key point in our chain combination is how the transition probabilities between smaller

chains are set. They are a constant, resulting in an easy-to-analyze projection chain. This

greatly eases the bounding procedure for the whole chain, as shall be seen in Section 5.2.2.

General Case

Next, we extend our analysis from m = 2 to arbitrarily many parts {Ci} 1 of C = UiCi. We

assume that the decomposition is such that each part C, is reachable from any other part C3,

i.e., for any i, j E [in] there exists a sequence of subsets Ci, . . . , C, such thatCi n Ci, 0,

C nCi2 #,-..., Cik n j# 0.

The construction proceeds as for m, = 2. We create a copy C' of each of the m parts

109



Ci. The C' are disjoint; they contain copies of the intersections of parts. As a result, each

state X E C is copied IC(X)I times, where C(X) = {CiIX c Ci} is the number of parts it

is contained in. We "spread" X across its copies via a distribution px over C(X).

Consider m new distributions {7TC}/ on state spaces C' with probabilities

rc'(X) Oc px(Ci),rc(X),

Again we assume that constructing m smaller chains Mc, on C' with transition probabilities

Qi is easy. We then construct Mc, with transition probabilities P as in (5.2.3).

Now we combine {Mc, } by allowing transitions between identical copies of elements

in UiC'. Specifically, we construct the following chain Musc, with transition probabilities

px(Ci)

Pi(XY )

1 - E x P(X, Z)

if X E C' and Y E Ci are identical copies, i i,

if X,Y E C/, X # Y,

if X =Y.

This lazy chain has stationary distribution

7uc (X) = px (C)c (X), X C c,.

When sampling, we again "project" and re-identify all copied samples with the original X;

thus any X E C is sampled with probability 7c.

By our construction, the projection chain has transition probabilities

7[] (i) = E xc (X)
xcC

SZpx (Ci)rc (X),
xEc,

and construct the projection chain M[m] with transition probabilities

P(ij) =
Zxec,yEc, Px(Ci)c(X)P(X, Y)

W7r](i)
, i, j E [in].
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Finally we have

= max max P(X, Y) < 1/4. (5.2.8)
iE[m] XECC

The Poincard and log-Sobolev constants are then given by the following theorem.

Theorem 50. Given decomposition C = C1 U ... U C, where Ci n (uj, Ci) $ 0, and

chains Mc and M[.] defined as above. Let A and {Ai }[m] be Poincari constants, d and

{ai}ji] be log-Sobolev constants for { Mc } and M [m] respectively. With Amin = mini Ai

and cvmin = mini a, we have

(A A~min 5 amin
A>min - }; a>min-

3'3/4+> ' 3' 3/4 + T

where -y is defined in Eq. 5.2.8.

Discussion. Our construction gives a principled way to tackle the problem of constructing

Markov chains on a large and complex state spaces in a bottom-up fashion, where we first

construct simple chains on subsets of state space and combine them together. Note that such

construction could be made recursive. Once a large chain has been constructed, we can

combine it with other large chains to form more complex chains on larger state spaces.

A Toy Example

We consider constructing a Markov chain that samples from a wrc where C = [3n]. Each

of the first n points T has probability pi/n, each of the second n points T2 has probability

P2/n and each of the last n points 7 has probability (P1 + p2 )/n, where pi + P2 = 1/2. To

construct a Markov chain to sample from this distribution, one obvious way is to decompose

C as C1 U C2 , where C1 = 71 U T3 and C2 = T2 U T3 . This is good because each small

chain is well studied - it is just a uniform distribution on { 1, ... , 2} and {n + 1, .. . , 3n}.

Meanwhile, the constructed projection chain has only 2 states, thus the Poincard constant is

computable immediately.

Note that one can also construct a Metropolis-Hastings or Gibbs-style Markov chain
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and use technique based on [98] to bound the mixing time. One straightforward way is

to decompose C = T U T2 U T3. However, the resulting projection chain would be a

3-state chain instead of two-state constructed with chain combination, the Poincard or

log-Sobolev constant of which is a bit harder to compute. Such disadvantages may become

more pronounced when the state space and distributions are less uniform, and we may wish

to decompose the state space into more parts: while using disjoint parts as in [98] results

in an Q(M 2 )-state projection chain where M is the number of overlapping components

like Ci above, the chain combination would only construct a projection with an O(M)-state

projection chain.

5.2.2 Application to Sampling from SR with Cardinality Constraints

We now apply our chain combination technique to sample from a constrained SR and prove

an unconditioned polynomial mixing time bound on constrained SR. Although we focus on

DPP in this section, analogous results hold with any SR distribution.

[117] showed a Markov chain for any DPP (SR) distribution on 2V that is essentially a

chain on an n-homogeneous SR measure on 2[, thus we obtain the following corollary:

Corollary 51. The Poincar6 constant for the chain for sampling from general SR measures,

described in Algorithm 1], is at least 2.

As we have mentioned, the constrained DPPs we are interested in are not known to

be SR. The existing bounds, e.g. in [117], are only polynomial under certain additional

conditions.

The concrete constrained DPP that we illustrate below has the following measure:

7rc(S) := Pr(S I k - I < SI < k + 1) oc det(Ls,s) k - 1 < ISI < k + 1]. (5.2.9)

Here we have C = {S I k - 1 < ISI < k + 1}. This constraint slightly generalizes the fixed

cardinality constraint ISI = k, and serves to illustrate our general technique; moreover, it

forms the basis of DPPs under interval constraints on cardinality (end of this section). For

the constrained DPP of (5.2.9) we have the following result.
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Theorem 52 (Mixing Time). For k > 1, there is a Markov chain starting with stationary

distribution given in (5.2.9) and initial state So with a mixing time of

O(n2 (logTc(SO)- +logJ-1 +log

Remarks. We highlight here the fact that the above mixing time bound holds not only

for (5.2.9), but for all SR distributions with the same constraints. Moreover, the associated

distribution 7rc may not be SR, and we are not aware of any fast mixing time bounds for

such potentially non-SR distributions in the literature. Therefore, our chain composition

technique provides means to extend existing fast mixing Markov chains to sample from

distributions for which fast mixing was previously unknown.

The proof of Theorem 52 uses a combination chain that is composed of two parts each

with an SR measure. The chains within each part, and their Poincard constants, follow from

properties of SR measures (re-weighted via rank sequences).

The proof of the theorem will make use of the following properties of SR measures.

Rank sequences will be used for combining the parts via reweighting, and for establishing

bounds.

Theorem 53. [SR under Rank Rescaling [149]] Let zrc where C C 2v be SR and {bi : 0 <

i < n} a finite sequence of nonnegative numbers such that Z2 bix2 is stable (namely, it has

only real roots). Then the measure irc(S) oc bjsjTc(S) is also SR.

Lemma 54. [Log-Concavity [28]] For any distribution WTC where C C 2 ', the sequence

{ ak = ZSeCjs=k ?7c(S)} is called the rank sequence of irc. If ?rc is SR, its rank se-

quence is log-concave, namely al ;> ak__ak+1, 1 < k < n - 1.

Now we are ready to prove our mixing time bound for the constrained DPP.

Proof. (of Thm. 52) Let 7TC the constrained DPP distribution in Eq. (5.2.9). Let C(i,i+1) =

{S I S E C, i < |SI < i + 1}, we have

C(k_1,k) U C(k,k+1) = C; C(k_1,k) n C(k,k+1) = {S S E C, SI = k}.
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To construct a chain on C via chain combination, we make two copies of states {S I S E

C, SI = k} and construct C _ y) with elements being identical copies of ones in C(i_1,).

We consider two new distributions {7rc } on state spaces C'..1 for i E {k - 1, k} with

probabilities

7rc' (S) cX 2 SI = k for S E C(i,i+i).
(i'i+1) 7c(S); otherwise

By Theorem 53 we know that for any aj, aj+1 > 0, the distribution

7rc ) (S) cx det(Ls)(aIISI = il + aj+1I[ISI = i + 1 )

is still SR, thus {rc' } are SR measures. We construct symmetric homogenizations of
(i,i+1)

{7rc' } as {7rT } where T'j {S I S C Z, i < IS n VI < i + 1}. The resulting

distributions are n-homogeneous SR. We construct two Markov chains on Vk_1 and

k,k+1) with transition probabilities Q(k-1,k) and Q(k,k+1) as in Algorithm 11. Then we

construct smaller chains MT' and MT, on Tf>1 k and T-,k+1) with transition
(k1k k,k+1) (k-,)k

probabilities as

Q(i,i+1)(X, Y), X $ Y
P(ii+1)(X, Y) = for X, Y E o+1), i {k -- 1,k}

1 - z z=x POi +1)(X, Z), X= Y

Let AI and A2 be the corresponding Poincard constants. By Corollary 51 and a simple

application of a comparison technique [51] we have Amin = min{A,, A 2} = Q(1/n2 ). We

combine {MT' } to form M U T' by allowing transitions between identical

copies of X C Z. The transition probability is then given by

J 1/8 if X and Y are identical copies, X # Y,

P(X,Y)= P(ii+)(X, Y) if X,Y E + X#Y,

1 -ZzOx P(X, Z) if X =Y.

After the chain mixes well, we output the identical copies (in Z) of the resulting state (in
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k-1,k) (k,k+1)) and then take the intersection with V. This will give us an element in C

with probability distribution 7c.

The projection chain has transition probability

P(k -1, k) ek(L)

8(ek (L) + 2ek__1(L))'

P(k, k - 1) = 8(ek(L) + 2ek+l(L))

This is a random walk on the states of {k - 1, k}. Note that this is a lazy time-reversible

chain with stationary distribution

i {k - 1, k}
W)Z (ek(L) + 2*i = k - 1 ekl(L) + 2Ti = kiek+1(L)),

where Z = 2 Z$k+ _1 ei(L). The resulting Poincard constant is give by

ek(ek-l + ek + ek+1)

4(ek + 2 ek1)(ek + 2 ek+1)

Since DPP is SR and by Lemma 54, we have

20ek(ek_1 + ek + ek+1) < 8 eklek + 4e! 2+ 8 ekek+1 + 16e2

< 8 k_1ek + 4e + 8ekek+1 + 16eklek+1 = 4(ek + 2ek_1)(ek + 2ek+1)

It follows that A > 1/20 = Q(1).

Finally we know that y = }. Aggregating these results we have that the Poincard

constants for M is

A' > min x Q(1/n 2 )Q(1), 2O 3 + = - (1/n2

Thus it follows that the mixing time of the chain on constrained DPP is bounded as

O(n 2(log7g(XO)-1 + log E-1 + log In))
| X0|
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F-

Extension to interval constraints. The aforementioned result can be extended to the case

where the constraint is an interval of sizes of the sampled subset. Specifically, consider the

following interval-constrained DPP:

Pr(X I f < JXJ < u) cx det(Lx)f < XJ < u4. (5.2.10)

By applying chain combination with a proper decomposition of the whole state space, we

have the following bound on mixing time:

Theorem 55. Assume u > f > 0, and let C = maxe 1, 3 e( . There is a Markov chain

that samples a DPP with interval constraint, with mixing time of

09(C(u - f + 1) 2 r 2 (wc (Xo)> + log E- + log ( )

The details of the proof are left to Appendix. The theorem indicates that the bound on

the mixing time depends on the spectrum of the matrix L, and the cardinality interval. Note

that by setting f = 0 and u = k, the distribution becomes a DPP with a uniform matroid

constraint. The analysis for this case in [117] requires an intractable to compute constant in

the bound on the mixing time. Our bound is also conditional, but the factor C is tractable

and thus provides a way of directly computing the bound on mixing time for any given

instance.

As before, the above result generalizes to general SR measures, by replacing the elemen-

tary symmetric polynomials ej with the rank sequence of the measure of interest.

One-sided Constraint on Cardinality We consider a special case of cardinality con-

straint where the constraint is an upperbound on the sampled subsets: C = {S : SI < k}.

We employ the lazy add-delete Markov chain in Algo. 14, where in each iteration, with

probability 0.5 we uniformly randomly sample one element from V and either add it to

or delete it from the current set, while respecting constraints. To show fast mixing, we

consider using path coupling, which essentially says that if we have a contraction of two
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(coupling) chains then we have fast mixing. We construct path coupling (S, T) -s (S', T')

on a carefully generated graph with edges E (from a proper metric). We end up with the

following theorem:

Theorem 56. Consider the chain shown in Algorithm 14. Let a = max(S,T) EEal , a2}

where a1 and a2 are functions of edges (S, T) E E and are defined as

a1 =ZIp-(T,i)--(Si)++fIS <kj (p+(S,i)-p+(Ti))+;
iET i(E[n]\S

a2 =1 - (min{p-(S,s),p-(T,t)} - E lp-(S,i) -p-(T,i)l+
i R

flSI < k](min{p+(S, t),p+(T, s)} - E jp+(S, i) - p+(T, i)|)),
ic[n]\(SUT)

where (x)+ = max(0, x). The summations over absolute differences quantify the sensitivity

of transition probabilities to adding/deleting elements in neighboring (S, T). Assuming

a < 1, we get

2n log(nE-
1 )

I - 0Z

Algorithm 14 Add-Delete Markov Chain for One-Sided Cardinality Constraint

Require: F the set function, / the inverse temperature, V the ground set, k the rank of C
Ensure: S sampled from 7rc

Initialize S E C
while not mixed do

Let b = 1 with probability 0.5
if b = 1 then

Draw s E V uniformly randomly
ifs V Sand ISU {s}j <k then

S <- S U {s} with probability p+(S, s) c (SU{s})7rc (S) +irC(SUfS})
else

S <- S\{s} with probability p-(S, s) = c(s \S})7(S) irc (S\{s})
end if

end if
end while

Remarks. If a is less than 1 and independent of n, then the mixing time is nearly linear in n.

The condition is conceptually similar to those in [156, 113]. The fast mixing requires both
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a, and a 2, specifically, the change in probability when adding or deleting single element to

neighboring subsets, to be small. Such notion is closely related to the curvature of discrete

set functions. However, a poly-time check of such condition remains open.

5.3 Sampling from DIPMs with Matroid Base Constraints

In this section we consider sampling from an explicitly-constrained distribution 7rc where C

specifies a matroid base. We consider the following special cases of matroid basesI:

" Uniform matroid: C={ S C V S =k},

* Partition matroid: Given a partition V = Uj1 Pi, we allow sets that contain exactly

one element from each Pj: C = {S C V I IS n Pil= 1 for all 1 < i < k}.

An important special case of a distribution with a uniform matroid constraint is the k-

DPP [105]. Partition matroids are used in multilabel problems [185], and also in probabilistic

diversity models [95].

Algorithm 15 Exchange Markov Chain for Matroid Bases

Require: set function F, 3, matroid C C 2v
Initialize S E C
while not mixed do

Let b = 1 with probability 0.5
if b = 1 then

Draw s E S and t C V\S (t E P(s) \ {s}) uniformly at random
if S U {t}\{s} E C then

S - S U {t}\{s} with probability ic(SU{t}\{s})irc (S)+irc (SUlt}\{S})
end if

end if
end while

The sampler is shown in Algorithm 15. At each iteration, we randomly select an item

s E S and t E V\S such that the new set S U {t}\{s} satisfies C, and swap them with

certain probability. For uniform matroids, this means t E V\S; for partition matroids,

t E P(s) \ {s} where P(s) is the part that s resides in. The fact that the chain has stationary

'Drawing even a uniform sample from the bases of an arbitrary matroid can be hard. MCMC on a uniform
distribution over matroid bases is proved to be fast mixing only very recently [9].
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distribution 'rc can be inferred via detailed balance. Similar to the analysis in [86] for

unconstrained sampling, the mixing time depends on a quantity that measures how much

F deviates from linearity: (F = maxs,Tc CF(S) + F(T) - F(S n T) - F(S U T)|. Our

proof, however, differs from that of [86]. While they use canonical paths [52], we use

multicommodity flows, which are more effective in our constrained setting.

Theorem 57. Consider the chain in Algorithm 15. For the uniform matroid, Tx0 (E) is

bounded as

TX 0 (E) _ 4 k(n - k) exp(0(2 (F))(log c (Xo) 1 + log E 1 ); (5.3.1)

For the partition matroid, the mixing time is bounded as

TX 0 (E) < 4k2 max PiI exp (#(2(F))(log wc (Xo) 1 + log E1). (5.3.2)

Observe that if Pi's form an equipartition, i.e., 1P< I = n/k for all i, then the second bound

becomes O(kn). For k = O(log n), the mixing times depend as O(npolylog(n)) = 6(n)

on n. For uniform matroids, the time is equally small if k is close to n. Finally, the time

depends on the initialization, 7rc(Xo). If F is monotone increasing, one may run a simple

greedy algorithm to ensure that 7rc(X0 ) is large. If F is monotone submodular, this ensures

that log7rc (Xo)- 1 = O(log n).

Our proof uses a multicommodity flow to upper bound the largest eigenvalue of the

transition matrix. Concretely, let R be the set of all simple paths between states in the state

graph of Markov chain, we construct a flow f : N -+ R+ that assigns a nonnegative flow

value to any simple path between any two states (sets) X, Y E C. Each edge e = (S, T) in

the graph has a capacity Q(e) = 7rc(S)P(S, T) where P(S, T) is the transition probability

from S to T. The total flow sent from X to Y must be 7rc(X)rc(Y): if Nxy is the set of

all simple paths from X to Y, then we need pePxyR f(p) 7rc (X) rc (Y). Intuitively, the

mixing time relates to the congestion in any edge, and the length of the paths. If there are

many short paths X ~-+ Y across which flow can be distributed, then mixing is fast. This

intuition is captured in a fundamental theorem:
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Theorem 58 (Multicommodity Flow [166]). Let E be the set of edges in the transition

graph, and P(X, Y) the transition probability. Define

;(f) = max Z f (p)len(p),
,EE Q(e) p9e

where len(p) the length of the path p. Then Amx < 1 - 1/( f).

With this property of multicommodity flow, we are ready to prove Thm. 57.

Proof (Theorem 57) We sketch the proof for partition matroids; the full proofs is in

Appendix C.2. For any two sets X, Y c C, we distribute the flow equally across all shortest

paths X - Y in the transition graph and bound the amount of flow through any edge e E E.

Consider two arbitrary sets X, Y E C with symmetric difference IX e Y= 2m < 2k,

i.e., m elements need to be exchanged to reach from X to Y. However, these m steps are a

valid path in the transition graph only if every set S along the way is in C. The exchange

property of matroids implies that this requirement is indeed true, so any shortest path

X - Y has length m. Moreover, there are exactly m! such paths, since we can exchange

the elements in X \ Y in any order to reach at Y. Note that once we choose s G X \ Y to

swap out, there is only one choice t E Y \ X to swap in, where t lies in the same part as

s in the partition matroid, otherwise the constraint will be violated. Since the total flow is

7c (X)?7c (Y), each path receives 7rc (X)7rc(Y)/m! flow.

Next, let e = (S, T) be any edge on some shortest path X -- Y; so S, T E C and

T = S U {j}\{i} for some i, j E V. Let 2r = IX D S1 < 2m be the length of the shortest

path X - S, i.e., r elements need to be exchanged to reach from X to S. Similarly,

m - r - 1 elements are exchanged to reach from T to Y. Since there is a path for every

permutation of those elements, the ratio of the total flow we(X, Y) that edge e receives from

pair X, Y, and Q(e), becomes

We (X, Y) 2r!(m - I - r)!kL exp(2(F)(exp(fF(os(X, Y))) + exp(OF(UT (X, Y)))),
Q (e) m!Zc

(5.3.3)

wherewedefineos(X,Y)= X Y S =(XnYnS)u(X\(YuS))u(Y\(XuS)).

To bound the total flow, we must count the pairs X, Y such that e is on their shortest path(s),
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and bound the flow they send. We do this in two steps, first summing over all (X, Y)'s that

share the upper bound (5.3.3) since they have the same difference sets Us = o-s(X, Y) and

UT =-T(X, Y), and then we sum over all possible Us and UT. For fixed Us, UT, there are
,) pairs that share those difference sets, since the only freedom we have is to assign r of

the m - 1 elements in S \ (X n Y n s) to Y, and the rest to X. Hence, for fixed Us, UT.

Appropriate summing and canceling then yields

We(X,Y) 2kL

(XY): w~(Q(e) - exp(2!(F)(exp(f3F(Us)) + exp(#F(UT))). (5.3.4)
(XY):0'S (XY)=Us, ~) z

UT(XY)=UT

Finally, we sum over all valid Us (UT is determined by Us). One can show that any valid

Us E C, and hence EZs exp(/F(Us)) < Zc, and likewise for UT. Hence, summing the

bound (5.3.4) over all possible choices of Us yields

-(f) < 4kLexp(2/XF) max len(p) < 4k2 L exp(20(F),

where we upper bound the length of any shortest path by k, since m < k. Hence

TX 0 (E) < 4k 2L exp(23(F) (log 7r (Xo)- 1 + log E- 1). E

For more restrictive constraints, there are fewer paths, and the bounds can become

larger. Appendix C.2 shows the general dependence on k (as k!). It is also interesting to

compare the bound on uniform matroid in Eq. (5.3.1) to that shown in [8] for a sub-class

of distributions that satisfy the property of being homogeneous strongly Rayleigh. If 7rc

is homogeneous strongly Rayleigh, we have TX (E) < 2k(n - k)(log 7rc (Xo)- 1 + log E-1).

In our analysis, without additional assumptions on rc, we pay a factor of 2 exp(20(F)) for

generality. This factor is one for some strongly Rayleigh distributions (e.g., if F is modular),

but not for all.

121



5.4 Experiments

We next empirically study the dependence of sampling times on key factors that govern our

theoretical bounds. In particular, we run Markov chains on chain-structured Ising models on

a partition matroid base and DPPs on a uniform matroid, and consider estimating marginal

and conditional probabilities of a single variable. To monitor the convergence of Markov

chains, we use potential scale reduction factor (PSRF) [73, 38] that runs several chains

in parallel and compares within-chain variances to between-chain variances. Typically,

PSRF is greater than 1 and will converge to 1 in the limit; if it is close to 1 we empirically

conclude that chains have mixed well. Throughout experiments we run 10 chains in parallel

for estimations, and declare "convergence" at a PSRF of 1.05.

We first focus on small synthetic examples where we can compute exact marginal and

conditional probabilities. We construct a 20-variable chain-structured Ising model as

7Tc(S) oc exp (/ ((6Z 1 wi(si C si+l)) + (1 - 6)IS S E C ,

where the si are 0-1 encodings of S, and the wi are drawn uniformly randomly from [0, 1].

The parameters (/, 6) govern bounds on the mixing time via exp(2 (F); the smaller 6,

the smaller (F- C is a partition matroid of rank 5. We estimate conditional probabilities

of one random variable conditioned on 0, 1 and 2 other variables and compare against

the ground truth. We set (13, 6) to be (1, 1), (3, 1) and (3, 0.5) and results are shown in

Fig. 5-1. All marginals and conditionals converge to their true values, but with different

speed. Comparing Fig. 5-1a against 5-lb, we observe that with fixed 6, increase in # slows

down the convergence, as expected. Comparing Fig. 5-lb against 5-1c, we observe that

with fixed /, decrease in 6 speeds up the convergence, also as expected given our theoretical

results. Appendix C.3.1 and C.3.2 illustrate the convergence of estimations under other

(/, 6) settings.

We also check convergence on larger models. We use a DPP on a uniform ma-

troid of rank 30 on the Ailerons data (http: //www. dcc . f c. up. pt/657-1torgo/

Regress ion/DataSets . html) of size 200. Here, we do not have access to the ground

truth, and hence plot the estimation mean with standard deviations among 10 chains in C-6.
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Figure 5-1: Convergence of marginal (Marg) and conditional (Cond-1 and Cond-2,

conditioned on 1 and 2 other variables) probabilities of a single variable in a 20-variable

Ising model with different (/, 6). Full lines show the means and dotted lines the standard

deviations of estimations.

We observe that the chains will eventually converge, i.e., the mean becomes stable and

variance small. We also use PSRF to approximately judge the convergence. More results

can be found in Appendix C.3.3.

Furthermore, the mixing time depends on the size n of the ground set. We use a DPP on

Ailerons and vary n from 50 to 1000. Fig. 5-2a shows the PSRF from 10 chains for each

setting. By thresholding PSRF at 1.05 in Fig. 5-2b we see a clearer dependence on n. At this

scale, the mixing time grows almost linearly with n, indicating that this chain is efficient at

least at small to medium scale.
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Figure 5-2: Empirical mixing time analysis when varying dataset sizes, (a) PSRF's for each

set of chains, (b) Approximate mixing time obtained by thresholding PSRF at 1.05.
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Figure 5-3: Convergence of marginal and conditional probabilities by DPP on uniform

matroid

5.5 Summary

We presented theoretical results on Markov chain sampling for DIPMs subject to explicit

constraints. For distributions with various explicit constraints we showed sufficient condi-

tions for fast mixing. We show empirically that the dependencies of mixing times on various

factors are consistent with our theoretical analysis.

There still exist many open problems in explicitly-constrained settings. Many bounds

that we show depend on structural quantities ((F or a) that may not always be easy to

quantify in practice. It will be valuable to develop chains on special classes of distributions

(like we did for SR) whose mixing time is independent of these factors. Moreover, we only

considered cardinality or matroid bases as constraints, while several important settings such

as knapsack constraints remain open. We defer the development of similar or better bounds,

potentially with structural factors like exp(#(F), on specialized discrete probabilistic models

as our future work.
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Chapter 6

Conclusion and Open Problems

In this thesis, we study various diversity-inducing probability measures, including DPP,

DVS, strongly Rayleigh measures and DIPMs with certain constraints. We show various

efficient methods to sample from these distributions, and further show how we can apply

them to core machine learning applications like Nystr6m method, kernel ridge regression

and experimental design.

There still exist many open problems in this area. First, many poly-time mixing time

bounds we have proved for either constrained or unconstrained DIPMs are conditional,

namely, these mixing times are poly-time when DIPMs in consideration meets certain

conditions. It would be interesting to further explore mathematical properties of certain

classes of DIPMs (like we did for SR) to see if it is possible to come up with an unconditional

mixing time bound. It will also be interesting to explore mathematical properties of other

classes of DIPMs. Very recently in [9] the authors have shown that Markov chain on

any homogeneous Strong Log-Concave (SLC) distribution is fast mixing. It is known that

generating polynomials for both uniform distribution over matroid base or homogeneous SR

is homogeneous SLC, thus the fast mixing MCMC follows in both cases. However, mixing

times of MCMC on general SLC remains unknown. Further, whether adding a matroid base

constraint or other forms of constraints on homogeneous SR/SLC will leave it in the class

of homogeneous SR/SLC still remain open. Deeper mathematical properties, like whether

homogeneous SLC is closed under operations like symmetric homogenization, is yet to be

explored. We defer the further investigation to the future work.
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Appendix A

Supplementary Experiments for

Chapter 2

A.1 Kernel Approximation

Fig. A-I shows the matrix norm relative error of various methods in kernel approximation

on the remaining 7 datasets mentioned in the main text.

A.2 Approximated Kernel Ridge Regression

Fig. A-2 shows the training and test error of various methods for kernel ridge regression on

the remaining 7 datasets.

A.3 Mixing of Markov Chain k-DPP

We first show the mixing of the Gibbs DPP-Nystr6m with 50 landmarks with different

performance measures: relative spectral norm error, training error and test error of kernel

ridge regression in Fig. A-3.

We also show corresponding results with respect to 100 and 200 landmarks in Fig. A-4

and Fig. A-5, so as to illustrate that for varying number of landmarks the chain is indeed

fast mixing and will give reasonably good result within a small number of iterations.
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Figure A-1: Relative Frobenius norm and spectral norm error achieved by different kernel

approximation algorithms on the remaining 7 data sets.

A.4 Running Time Analysis

We next show time-error trade-offs for various sampling methods on small and larger datasets

with respect to Fnorm and 2norm errors. We sample 20 landmarks from Ailerons dataset of
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Figure A-2: Training and test error achieved by different Nystr6m kernel ridge regression

algorithms on the remaining 7 regression datasets.

size 4,000 and California Housing of size 12,000. The result is shown in Figure A-6 and

Figure A-7 and similar trends as the example results in the main text could be spotted: on

small scale dataset (size 4,000) kDPP get very good time-error trade-off. It is more efficient
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Figure A-3: Performance of Markov chain DPP-Nystrbm with 50 landmarks on Ailerons.

Runs for 5,000 iterations.
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Figure A-4: Performance of Markov chain DPP-Nystrim with 100 landmarks on Ailerons.

Runs for 5,000 iterations.
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Figure A-5: Performance of Markov chain DPP-Nystrtm with 200 landmarks on Ailerons.

Runs for 5,000 iterations.
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Figure A-6: Time-Error tradeoff with 20 landmarks on Ailerons of size 4,000. Time and

Errors shown in log-scale.

than Kmeans, though the error is a bit larger. While on larger dataset (size 12,000) the

efficiency is further enhanced while the error is even lower than Kmean s. It also have lower

variances in both cases compared to AppLev and AppRegLev. Overall, on larger dataset

we obtain the best time-error trade-off with kDPP.
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Figure A-7: Time-Error tradeoff with 20 landmarks on California Housing of size 12,000.

Time and Errors shown in log-scale. We didn't include AdapFu 11, Lev and RegLev due

to their inefficiency on larger datasets.
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Appendix B

Supplementary Proofs and Experiments

for Chapter 4

B.1 Partition Function

We recall two easily verified facts about determinants that will be useful in our analysis:

det(K + uvT) = det(K)(1 + uT K--v),

a'-- det(AA T + aI) det(AT A + aIm), for

for K E GL,(R), (B.1.1)

A c R"' (n < in), and a > 0.

(B.1.2)

The first one is known as matrix determinant lemma.

The partition function of P(.; A), happens to have a pleasant closed-form formula.

Although this formula is known [13], and follows immediately by an application of the

Cauchy-Binet identity, we present an alternative proof based on the perturbation argument

for its conceptual value and subsequent use.

Theorem 59 (Partition Function [13]). Given A E R"'X" where r(A) = n and n < S =

k < m, we have

det(AsAs) =
|Sj=k,SCm]

m -n

k - ) det(AA T ).
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Proof First note that for n < ISI = k < m and any E> 0, by (B.1.2) we have

1
det(AsAs + eIn) = k-n det(As As + EIk)

Taking limits as E -+ 0 on both sides we have

1
det(AsA) imdet(AsAS + gIn) = E-s E--+Os 6-+0 k-n

det(AAs + Elk).

Let us focus on det(AT As + Ek). We construct an identity matrix Im E Rmxm, then we

have

det (AT As + Ek) = det(As As + E =s ls) = det(As As + (fEls) T Is)

= det (
-T

As

"V (Im)s

As

v/2(Im)sJ [A

Im

I)
(B.1.4)

other words, this value is proportional to the probability of sampling columns from

Iusing volume sampling. Therefore, using the definition of ek we have

|k-n
det(A TAs + Elk) =ke(AA + Im)

1
- knek(Diag ([(Of (A) +t &), (of (A) + &),

n- nz) fJ21

Now taking the limit as E -+ 0 we obtain

det(AsA ) = lim (-n) - _(af(A) +
\S|=k,SC[m] s E40 (k - n ) ri=1 (U A E) + O(E) =

In

A

FIm

(oQ(A)+ E) + O(E).

m - n)k - n
det(AA T ).

FD
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B.2 Marginal Probability

Proof. The marginal probability of a set T C [m] for dual volume sampling is

P(T C S; A) =
ZSDT, SI=k det(AsAs)

Ejs'\=k det (As As/ )

Theorem 59 shows how to compute the denominator, thus our main effort is devoted to the

nominator. We have

det(AsAs )
SDT,IS =k zRnT=0,IRI=k-ITI

det (ATURATR)

Using the E-trick we have

I:
RnT=IRI=k-\TI

det(ATURA T UR) = lir E
RnT=,IRI=k-ITI

det(ATURATUR T gIn)

=lim 1
E-n , |k-n

RriT=0, IRI ~k-ITI
det(AURATUR + Elk).

By decomposing det(ATURATuR + Elk) we have

det (ATUR ATUR + Elk)

=det(A AT AT + E IJ )| det (A AT A R+el - A T Ar T AT r+e~i - r n = e(IT R ~1T)dt(~~ R + E1IRI R A~T(ATIAT + EIITI )-AT AR).

Now we let AT = QTETVT be the singular value decomposition of AT where QT E

Rnxr(AT), ET Rr(AT)XITI and VT C RITIX ITI. Plugging the decomposition in the equation
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we obtain

ARAT(AzTAT + EIIT )- ATAR= A7RQTTEVT(VT jIZTVJ + JII)V TQTAR

= A QT ET(T + EIIT)Z-IYTQT AR

0
a22(AT)0

U2( AT +C

0 0
2  

(AT)r(AT)

a2  
(AT)r(AT)

A7QTQT AR - ARQT

1 0

I0 2U2 (AT) +E

0 0

0

0

... 2  
(AT) +Er(AT)

Thus it follows that

A TAR+EIIRI - A TAT(AT AT &I|TA R

a (AT)+E
0

= - QTQjT)AR + EAT QT ...QTAR + EIRI

= B RIBR + ECTCR + EII,

where BR is the projection of columns of AR on the orthogonal space of columns of

AT. Let Q-T E Rnx(n-r(AT)) be the complement column space of QT, then we have

BR = (Q )TAR E R(n-r(AT))xIRI. Moreover,

1/2(Ar)+E
0

0 1
'0' ( AT )+ E .I . QrTAR E Rr(AT)xiRl
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A h E R(n~r(AT))x(m-TIr ) and

0
0,2( AT )+

01
Voi(AT)+E

where T, = [m]\T. Then we have

z:RnT=,|IRl=k-IT|
det(URARTUR + EIk)

det(AT AT + EIITI)

det(A T AT + EITI)

YS
RnT=0,IRI=k-ITI

X ek--i [
det(B T BR + ECRCR - EIIRI)

BT,

X/E UT,

V/E CT,

-T\

BT,

-VfEUT,

AECTc J
where we construct an orthonormal matrix U E R(m-IIT)x(m--ITI) whose columns are basis

vectors. Since we are free to chose

I , we have
Cnr

.[BT,

VIEUT,

V/CT, .I.[BT,

XI/UTC

fECTC

any orthonormal U, we simply let it be I. Let WT =

.I
T -[BT,

V(/ WTC [-
T)

BT,

X/ EWTC

= F E R(m+n-ITI)x (m+n-ITI)

The properties of characteristic polynomials imply that

ek-ITI (FT) = 5 det((FT,)ss)
[SI=k-ITI

= det((F)s,s) det((Fc)s2 ,s2 - (FT)s2 ,s1 (FT)s 1 (FTc)s1,s2 )
s S2
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where Si = S n [r(BT,)] and S2 = [m + n - IT|]\S1 . Further we have

det((F)sI,s) det((FTr)s2,s 2 - (FT)s
2 ,s1 (FT)si 1 (FT)si,s2 ))S,1,132 F, 2SI ,S2

Ek-|T|--S1I det((BT,)s1 ( BT) 1 ) x
S1,S2

det((WT _)s2 (WTc )T2 -(B)s

Hence it follows that

lin d
RnT=0,| RI=k-IT\

=rnI 8 ITI-r(AT)
E-+O ~k

eT(iURATUR + Elk) =r 1i de(AiT + EIITI) X e-k-TI (FT)
6 k-n

r(AT)

Sf(AT)]+
i=

x

S
ISIk-ITI

det((W7T )s2 (T4 )s2 -- (W7T )s2 (BTr) 1 ((BTe)s 1 (BTc)s1< (BT )s1 (T)s 2 )

(Since r(AT) + r(BT) = n and S1| < r(BT,))

lirn E IT-r(AT)
E-+0 Ek-n

r(AT)

H (Q (Ar) + E x
L '=1i

S 6 k-|T|-r ( B) det (BT, B ) det ((WTc)s 2 (WT) - (W T )B (WTc) ) + OQE)
ISI=k-ITI

r(AT)

0I 2 (AT)]

r(BT,,)

x R
j=1

ou(BTJ I det((Wrc)s2 (WT)s2 - (WTC)s 2BT (BTCB )-'B(WT)s2)
s2

where S2 C [m + n - |T|]\[r(B )] and |S2 | = k - -- r(BT ).

Let QBTdiag(o 2(BT, ))QT be the eigenvalue decomposition of B T BTC where QBT c
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RTcI xr(BT). Further, let Q- be the complement column space of QBT,. thus we have

QT 1 )QB

BQT, )T
QB1 |ITc| In-\T|

det((WTr)s
2(W )s2 - (WTC)s2 Bi[ (BS.B2[) 1BTc (WT)s2) det(Ws 2 (In-ITI - QBC BC) (WBc)s2 )

= det((W L)s2 (Qi (Q- )T

It follows that

Zdet(WS 2( ST)2 - (WTC)S2 B TCB< TC(WS) 2)
S2

- ET

Combining all the above derivations, we obtain that

Pr(T C S|S ~ P(S; A)) = [HT oQ(i AT)] X [r(BT oj(B,)]

det(AA T )
k - m

E

B.3 Approximate Sampling via Volume Sampling

Corollary 60 (Approximate DVS via Random Projection). For any E > 0 and 62 > 0

there is an algorithm that, in time 5( + ), samples a subset from an approximate
2 2

distribution P(.; A) with 6, = maxISI~k(l + 2~ ) f -0 and

(1 + )1 5 P(S; A) (1 + 61)(1 + 62 )P(S; A);
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It may happen in practice that n < m but k is of the same order as n. In such case

we can transform the dual volume sampling to slightly distorted volume sampling based

on (B. 1.2) and then take the advantage of determinant-preserving projections to accelerate

the sampling procedure.

Concretely, instead of sampling column subset S with probability proportional to

det(AsAs), we sample with probability proportional to a distorted value det(AsAs + n)

for small E > 0. Denoting this distorted distribution as P,(S; A), we have

Pe(S; A) = -det(AT As + EIk) = 1 (o (As) + )
E E i=1

Letting omin(As) > 0 be the minimum singular value, we have

f< [(oK(As) +-)< (1+ ).
-< H=j[(o(As)) + in(As)

We further let

= max(1 + ) -1 ~
ISI=k or o(Asr

when F sufficiently small. Sampling from P, will yield (1 + 61)-approximate dual volume

sampling (in the sense of [49] and our Theorem 60). We can sample from P, via volume

A
sampling with distribution P(S; ). With the volume sampling algorithm proposed

in [49], the resulting running time would be O(km4 ).

To accelerate sampling procedure, we consider random projection techniques that pre-

serve volumes. [130] showed that Gaussian random projections indeed preserve volumes as

we need:

Theorem 61 (Random Projection [130]). For any X E R" m , 1 < k < m and 0 < 62 <

1/2, the random Gaussian projection of R' -> Rd where

2
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satisfies

det (XTXs) < det(XsXs) (1 + 52) det (X.TXs) (B.3.1)

for all S C [n] and ISI < k where X is the projected matrix.

This theorem completes what we need to prove Corollary 60.

A
Proof (Corollary 60) The idea is to project to a lower-dimensional space in a

way that the values for submatrix determinants are preserved up to a small multiplicative

A
factor. Then we perform volume sampling. We project columns of , which is in

R"+n, to vectors in R' where d = 0 k2 m) so as to achieve a (1+ 62) approximation

by Theorem 61. Let G be a d x (m + n)-dimensional i.i.d. Gaussian random matrix, then

we have

G [ GAA+FG' (B.3.2)

where GA E Rdxn and G'4 c RdX are two independent Gaussian random matrix. The

projected matrix can be computed in O(dnm) = 5(k2nmmn/62) time. After that, if we

use volume sampling algorithm proposed in [49] the resulting running time would be

O(kd 3m) = O(k7m/61). Thus the total running time would be 5(kgmn + ). D

Remarks. An interesting observation is that the resulting running time is independent of

61, which means one can set E arbitrarily small so as to make the approximation in the first

step as accurate as possible, without affecting the running time. However, in practice, a very

small E can result in numerical problems. In addition, the dimensionality reduction is only

efficient if d < m + n.
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B.4 Conditional Expectation

Proof We use Ai denote the matrix A[n\j},., namely matrix A with row j deleted. We

have

JE IAI s112.. , St 1 =i i

Aijl (s1 = i, .. .,s= ik; A 1si =i,..., St-1 it-1)
(it,-ik )E[m]k-t+1

A zt 2 sl ... = ik; A)

(it,,ik)Gmt Hk-t+1 (1 = - . St-1= it- A)

(t.ik)E[m]k- t
+l det(A i A }) T lAtik 1

E[m]k-t+, det(A ik A )

j= Z(it .. _ik)E[m]k-t det(A (A i

Z(it.ik)e[m]k- t
+ det(A i A T )

While the denominator is the (unnormalized) marginal distribution P(T C S I S

P(S; A)), the numerator is the summation of (unnormalized) marginal distribution P(T C

S I S ~ P(S; Ai)) for j ... , I n. By Theorem 44 we can compute this expectation in

O(nm.) time. D

B.5 Greedy Derandomization

Theorem 62. Algorithm 16 is a derandomization of dual volume sampling that selects a set

S of columns satisfying

JJAI 112 < m n +I|JA 112; JlAI ,2<n(m - n + 1) I|A2'
SF-k-n+1 1 S k - n+ 1
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Algorithm 16 Derandomized Dual Volume Sampling for Column Subset Selection.
Input: Matrix A E R"X'> to sample columns from, m < k < n the target size
Output: Set S such that IS| = k with the guarantee

k -2<n' + 1 11IniIIAti z F a en tu1 II

Initialize ,as empty tuple

I A12 < n(< - n + 1) IAtIl
- k-n+1

for i = 1 to k do
for j do

Compute conditional expectation Ej = E [IA 112 t, = s1
with Corollary 46.

end for
Choose j = arg min - Ej

end for
Output as a set S

Proof Observe that at each iteration t, we have

E[IlA 112 1 t S si,. ., ti_1 = Si_1]

(t = .jlti = s., ti_1 = si_1)E [At 112 ti = si, . . , ti-1 = si-1, ti =

and we choose jsuch that E [|A| |i = s, .. . , ti_ = s 1,t =i] is minimized. Since

at the beginning we have

E 2 [ ] m - n + 1+ IAt1;2
T[ F - k -n+ I

T ~ P(T; A),

it follows that the conditional expectation satisfies

E[j|A| 11. t = S1,. . ., t_1 = sii1, L < j] + IJAY|.

Hence we have

|As = E FA| t 1 = S1 ,... ,tk1 = sk1, tk = Sk] < - -lAtII1.

Further, by using standard bounds relating the operator norm to the Frobenius norm, we
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obtain

|AfAIs ||2 ||AfI| 1 2 M - n+ 1|A | 2 n(m -n + 1)||AY||1.S -S -k-n+ 11F< k - n+ 1

0

B.6 Initialization

Set E = minlsj=k o 2(As) > 0, whereby

det( As As-o) = &nkdet(As As + Elk) oc VolSmpl (S; [AT Im] T).

The rhs is a distribution induced by volume sampling. Greedily choosing columns of A one

by one gives a k! approximation to the maximum volume submatrix [45]. This results in a

set S such that

det(AsAT)s
1 1 deAAs lk

>- det(AsAT + EI) = 2 -Ik- det(As As + Ek)

1 1
> max det(AT As + Elk) = max det(AsAT + EIn)IsI =k 2nk!Ek-n 1 Sk 2nk!

> Z det(AsAs + EIn) > det(AsAT).
2n k!() ISI=k - 2k!QT) 1s=k

Thus, log P(S; A)- 1 > log(2nk!(n)) - O(k log m). Note that in practice it is hard to set E

to be exactly minlsl=k o (As), but a small approximate value suffices.

B.7 Experiments

We show full results on CompAct(s), CompAct, Abalone and Bank32NH datasets in Fig-

ure B-1, B-2, B-3 and B-4 respectively. We also run DVS-*, which is -- generalized DVS

algorithm. We observe that decreasing 3 sometimes helps but sometimes not. In Figure B-4

we observe that optimization- or greedy-based methods, while taking a huge amount of time

to run, perform better than all sampling-based methods, thus for these selection methods,
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one is not always superior than another.
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Figure B-1: Results on CompAct(s). Note that Unif, Lev, PL and DVS use less than 1
second to finish experiments.
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Figure B-2: Results on CompAct. Note that Unif, Lev, P L and DVS use less than 1 second

to finish experiments.
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Figure B-3: Results on Abalone. Note that Unif, Lev, P L and DVS use less than 1 second

to finish experiments.
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148

Prediction Error
-Unif

-Lev
.PL

-SmpI
Greddy

..... DVS-1 -

- DVS-20
-Fedorav

-5

0.9-

0.85-

0.75 -

0.7-

0.65-

0.6-
O' //

I



Appendix C

Supplementary Proofs and Experiments

for Chapter 5

C.1 Proof for One-sided Cardinality Constraint

Proof Assume we have a chain (Xt) on state space V with transition matrix P, a coupling

is a new chain (Xt, Y) on V x V such that both (Xt) and (Y), if considered marginally,

are Markov chains with the same transition matrices P. The key point of coupling is to

construct such a new chain to encourage Xt and Y to coalesce quickly. If, in the new chain,

Pr(Xt # Yt) < E for some fixed t regardless of the starting state (X0 , Yo), then T(E) < t [5].

To make the coupling construction easier, Path coupling [39] is then introduced so as to

reduce the coupling to adjacent states in an appropriately constructed state graph. The

coupling of arbitrary states follows by aggregation over a path between the two. Path

coupling is formalized in the following lemma.

Lemma 63. [39, 58] Let 6 be an integer-valued metric on V x V where 6(-, -) < D.

Let E be a subset of V x V such that for all (Xt, Yt) G V x V there exists a path

X = Z0,. .. , Zr = Y between Xt and Y where (Z', Z'+1 ) c E for i E [r - 1] and

>( 6(Z', Zi+1 ) = 6(Xt, Ye). Suppose a coupling (S, T) -* ( S', T') of the Markov chain is

defined on all pairs in E such that there exists an a < 1 such that E[6(S', T')] < a6(S, T)

for all (S, T) c E, then we have T(E) < .
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We now are ready to state our proof.

We define 6(X, Y) = -(IX E Y I +IIX I - Y 11). It is clear that 6(X, Y) > I for X # Y.

Let E = {(X, Y) : 6(X, Y) = 1} be the set of adjacent states (neighbors), and it follows

that 6(., -) is a metric satisfying conditions in Lemma 63. Also we have 6(X, Y) < k.

We consider constructing a path coupling between any two states S and T with 6(S, T) =

1, S' and T' be the two states after transition. We sample CS, CT E {0, 1}, if cs is 0 then

S' = S and the same with CT. is, iT E V are drawn uniformly randomly. We consider two

possible settings for S and T:

* If S or T is a subset of the other, we assume without of generality that S = T U {t}.

In this setting we always let is = 2 T = i. Then

- If i = t, we let cs= 1 - CT;

* If cs = 1 then 6(S', T') = 0 with probability

* If cs 0 then 6(S', T') = 0 with probability

- If i C T, we set cs = CT;

* If cs = 1 then 6(S', T') = 2 with probability

- If i E V\S, we set cs = CT;

* If cs = 1 and ISI < k then 6(S', T') = 2

P+ (TI i)) +.

p-(S, t);

P+ (T, t);

(p-(T, i) - p-(S, i))+;

with probability (p+(S, ) -

* If S and T are of the same sizes, let S = R U {s} and T = R U {t}. In this setting

we always let cs = CT = c. We consider the case of c = 1:

- If is = s, letiT= t. Then

- If is = t, let iT = s.

min Jp+ (S, t), p+ (T, s)}1;

- If is E R, let iT = is.

p-(T,iT) 1;

- If is C V\(S U T), let iT

Ip+(S, is) - p+ (TiT) I.

6(s', T') = 0 with probability min{p- (S, s), p--(T, t)};

If |SI < k, Then 6(S', T') = 0 with probability

Then 6(S', T') = 2 with probability p-(S, is) -

= is. If ISI < k, Then 6(S', T') = 2 with probability
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In all cases where we didn't specify 6(S', T'), it will be 6(S', T') = 1. In the first case of

S = T U {t} we have

(21TJ + (p-(T, i)
iET

- p(S, i))+)+

S(p-(T, i)
i eT

- P-(S, z))+ - [JSJ < k] 1 - a,
( (p+(S, i) - p+(T, i))+) =1 2N

iE[N]\S

while in the second case of |S\ = R U {s} and T = R U {t} we have

E[46(S', T')]
E[6(S, T)]

I
1 ((1 - min{p- (S, s), p-(T, t)}) + (1 - [S|

-2N

(2|RI + E2p-(S, ) - p-(T, i)|)+
i ER

(2(N -|S| - 1) + I|S\ < kj Z p+ (S,i) - p+(Ti)\))
iE[N]\(SUT)

- 1 -(min{jp-(S, s), p-(T, t)} - pS, i) - p-(T, i) I +
2N

icR

lS| < k (min{p+(S,t),p+(T,s)} - I:
iE [N]\(SUT )

Ip+(S, i) - p+(Ti))) 1 - 1 a 2

2N

Let a = max(S,T)EE{al, a2 }. If a < 1, with Lemma 63 we have

2N log(k/E)

C.2 Proof of Thm. 57

C.2.1 Proof for Uniform Matroid Base

Proof. We consider the case where C is uniform matroid base. For any two sets X, Y E C,

we distribute the flow equally across all shortest paths X --+ Y in the transition graph. Then,

for arbitrary edge e E E, we bound the number of paths (and flow) through e.

Consider two arbitrary sets X, Y C C with symmetric difference |X G YI = 2m ; 2k.
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E[(S', T')]
E[6(S, T)]

I
< -((1 -p- (S, t)) + (I - p+ (T, t)) +

= I -I (I-

iN (p+(S , i) _ p+(TI
iC [N]\S

(2(N -|IS|) + [|S| < ki

< kj min fp+ (S, t), p' (T, s)}) +



Any shortest path X ~4 Y has length m. Moreover, there are exactly (M!) 2 such paths, since

we can exchange the elements in X \ Y in any order with the elements in Y \ X in any order

to reach at Y. Since the total flow is Fc (X)w7c(Y), each path receives 7wc (X)w7c(Y)/(m!) 2

flow.

Next, let e = (S, T) be any edge on some shortest path X ~4 Y; so S, T E C and

T = S U {j}\{i} for some i, j E [N]. Let 2r = IX G SI < 2m be the length of the shortest

path X -- S, thus there are (r!) 2 ways to reach from X to S. Similarly, m - r - 1 elements

are exchanged to reach from T to Y and there are in total ((m - r - 1)!)2 ways to do so.

the total flow e receives from pair X, Y is

we (X, Y) = c (X) c (Y) (r!)2( (m - 1 - r)!)2

Since in our chain,

2Zc exp(3F(S)) exp(/F(T))
k(N - k)(exp(03F(S)) + exp(03F(T)))'

it follows that

We (X, Y)

Q(e)

2(r!)2((M - 1 - r)!) 2 k(N - k) exp(0(F(X) + F(Y)))(exp(/'F(S)) + exp(03F(T)))

(m!) 2 Zc exp ((F(S) + F(T)))

< 2(r!)2 ((Mr - 1 - r)!)2k(N - k) exp(2/(F)(exp(1F(us(X, Y))) + exp(F(or(X, Y)))),
(m!) 2 ZC

where we define as(X, Y) = X e Y D S. The inequality draws from the fact that

exp((F(X) + F(Y) + F(S)))
exp((F(S) + F(T)))

= exp(/(F(X) + F(Y) - F(T))

= exp(/(F(X) + F(Y) - F(X n Y) - F(X U Y)))

exp((F(X n Y) + F(X U Y) - F(T) - F(OT (X, Y)))) exp(F(oy (X, Y))

< exp( 2 #(F) exp(3F(Ur (X, Y)))

and likewise for exp(3(F(X)+F(Y)+F(T))). Similar trick has been used in [86].

Let Us = as(X, Y) and UT = OrT(X, Y), then for fixed Us, UT, the total flow that
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passes e is

SWe(X,Y)
(X,Y):Os (X,Y)=Us,

OT(X,Y)=UT

2 M - 2 (r!)2 ((m - - r)!)2 k(N - k)
-- r (m !)2Z

x exp(2#(F)(exp(3F(Us)) + exp(F(UT)))

_2k( N -- k )
= - exp(2(F)(exp(/F(Us)) + exp(!3F(UT))).MZc

Finally, with the definition of p(f) we sum over all images of Us and UT. Recall that

Z = Eu, exp(13 F(Us)). Since IS @ X G YJ = k we know that Us, UT EC, thus Z < Zc

and

p(f) 4k(N - k) exp(2 (F)-

Hence

TXo(E) < 4k(N - k) exp(2/(F)(logwc (Xo)- 1 + log E 1 ).

C.2.2 Proof on Partition Matroid Base

Proof Consider two arbitrary sets X, Y E C with symmetric difference IX D YI = 2m <

2k, i.e., m elements need to be exchanged to reach from X to Y. However, these m steps are

a valid path in the transition graph only if every set S along the way is in C. The exchange

property of matroids implies that this is indeed true, so any shortest path X ~- Y has length

m. Moreover, there are exactly m! such paths, since we can exchange the elements in X \ Y

in any order to reach at Y. Note that once we choose s E X \ Y to swap out, there is only

one choice t c Y \ X to swap in, where t lies in the same part as s in the partition matroid,

otherwise the constraint will be violated. Since the total flow is 7c(X)7rc(Y), each path

receives rc(X)wFc(Y)/m! flow.

Next, let e = (S, T) be any edge on some shortest path X -~- Y; so S, T E C and

T = S U {j}\{i} for some i, j c V. Let 2r = X ® S| < 2m be the length of the shortest
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path X ~s S, i.e., r elements need to be exchanged to reach from X to S. Similarly,

m - r - 1 elements are exchanged to reach from T to Y. Since there is a path for every

permutation of those elements, the total flow edge e receives from pair X, Y is

We(X, Y) = r!_______( m - 1 - r)!.
M!

Since, in our chain, (using L = maxiIPiI - 1)

Q(e) > rc (S) 7rc (T) exp(/F(S)) exp(3F(T))
S2k L -rc (S) + rc (T) 2kLZc(exp(3F(S)) + exp(F(T)))'

it follows that

we (X, Y) 2r!(m - 1 - r)!k L exp(03(F(X) + F(Y)))(exp(OF(S)) + exp(OF(T)))

Q(e) - m!Zc exp(0(F(S) + F(T)))

< 2r!(m - 1 - r)!kL exp(20(F)(exp(0F(o-s(X, Y))) + exp(3F(OrT (X, Y)))),
m!Zc

(C.2.1)

wherewedefineo-s(X,Y) =XeYeS =(XnYnS)u(X\(YuS))u(Y\(XuS)).

To bound the total flow, we must count the pairs X, Y such that e is on their shortest path(s),

and bound the flow they send. We do this in two steps, first summing over all X, Y that

share the upper bound (C.2. 1) since they have the same difference sets Us = -s(X, Y) and

UT =T(X, Y), and then we sum over all possible Us and UT. For fixed Us, UT, there are
(r"-1) pairs that share those difference sets, since the only freedom we have is to assign r of

the m - 1 elements in S \ (X n Y n s) to Y, and the rest to X. Hence, for fixed Us, UT:

we (Xz Y) 2 m - 1 r!(m - I - r)!kL

(X,Y): Os (X,Y)=Us, r=O T M!ZC
O'T (X,Y )=UT

x exp(20(F)(exp(fF(Us)) + exp(3F(UT)))

2k L
= exp(20(F)(exp(03F(Us)) + exp(03F(UT))). (C.2.2)

zc
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Finally, we sum over all valid Us (UT is determined by Us), where by "valid" we mean there

exists X, Y C C and S E C on one path from X to Y such that, Us = os(X, Y). Any such

Us can be constructed by picking k - m elements from S (including i), and by replacing

the remaining elements u E S by another member of their partition: i.e., if u E P, then it is

replaced by some other v E Pj, since both X and Y must be in C. Hence, any Us satisfies

the partition constraint, i.e., Us C C and therefore EUs exp(,3F(Us)) < Zc, and likewise

for UT. Hence, summing the bound (C.2.2) over all possible Us yields

p(f) < 4kL exp(20(F) max len(p) < 4k2L exp(20(F),

where we upper bound the length of any shortest path by k, since m < k. Hence

TXo(E) < 4k 2 L exp(23(F)(log7Tc(Xo)- 1 + log E-1). E

C.2.3 Proof for General Matroid Base

In the case where no structural assumption is made on C, the proof needs to be more carefully

handled. Because in this case, we know neither the number of legal paths between any two

states, nor the number of as(X, Y) falls out of C.

We again consider arbitrary sets X, Y E C where IX @ YJ = 2m < 2k. The total

number of shortest paths is at least (m!) due to exchange property of matroids. Since the

amount of flow from X to Y is 7re (X)w7c(Y), each path receives at most 7rc (x)w7c (y)/m! .

Next, let e = (S, T) be any edge on some shortest path X - Y; so S, T E C and

T = S U {j}\{i} for some i, j C V. Let 2r = |X @ SI < 2m be the length of the shortest

path X ^-* S, thus there are at most (r!) 2 ways to reach from X to S. Likewise there are at

most ((m - r - 1)!)2 paths to reach from T to Y. The total flow edge e receives from pair

X, Y is then upper-bounded as

We (X, Y) <rC(X)i7C(Y) (r!) 2 ((n - 1 -r)!)
m!
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It follows that

We (X, Y)

Q(e)
m- r)!) 2 k(N - k) exp(2/(F)(exp(3F(Us)) + exp(#F(UT))).

m!Zc

The total pairs of (X, Y) that passes e with the same set of images is upper-bounded by
(Mr1) 2, thus the flow that passes e with the same set of images is bounded as

E
(X,Y): Os (X,Y)=US,

6TT(X,Y)=UT

We(X, Y)

Q(e)

< 2 m-i M - 1 2 (r!)2((m - r)!)2k(N - k)
- r m!Z

x exp( 2 (F)(exp(03F(Us)) + exp(03F(UT)))

2(m - 1)!k(N - k)
S( )( exp(2f(F)(exp(fF(Us)) + exp(3F(UT))).
Zc

Thus if we sum over all Us, UT, the result is upper-bounded as

;5(f) - k(N - k) exp(20(F)-

Note that here we upper-bounded m with k and Z could be larger than Zc because it may

happen that Us C. It follows that

4k! Z
7-XO (E) < k(N - k) exp(2#(F)(log 7rc(Xo) 1

zc
+ log E-1). D

C.3 Supplementary Experiments

C.3.1 Varying 6

We run 20-variable chain-structured Ising model on partition matroid base of rank 5 with

varying 6's. The results are shown in Fig. C-I and Fig. C-2. We observe that the approximate

mixing time grows with 6.
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Figure C-1: Convergence of marginal (Marg) and conditional (Cond-1 and Cond-2,

conditioned on 1 and 2 other variables) probabilities of a single variable in a 20-variable

Ising model. We fix / = 3 and vary 6 as (a) 6 = 0.2, (b) 6 = 0.5 and (c) 6 = 0.8. Full lines

show the means and dotted lines the standard deviations of estimations.
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Figure C-2: PSRF of each set of chains in Fig. C-i with 3 = 3 and (a) 6 = 0.2; (b) 6 = 0.5

and (c) J = 0.8.

C.3.2 Varying 3

We run 20-variable chain-structured Ising model on partition matroid base of rank 5 with

varying O's. The results are shown in Fig. C-4 and Fig. C-5. We observe that the approximate

mixing time grows with /.

C.3.3 Varying Data Sizes

We run (k-)DPP that is constrained to sample subsets from 1) partition matroid base and 2)

uniform matroid with different data sizes N.
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Figure C-3: Comparisons of PSRF's for marginal estimations with different 6's. (a) PSRF's

with different J's and (b) the approximate mixing time estimated by thresholding PSRF at

1.05.
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Figure C-4: Convergence of marginal (Marg) and conditional (Cond-1 and Cond-2,

conditioned on 1 and 2 other variables) probabilities of a single variable in a 20-variable

Ising model. We fix 6 = 1 and vary # as (a) # = 0.5; (b) # = 2 and (c) 3 = 3. Full lines

show the means and dotted lines the standard deviations of estimations.

Partition Matroid Constraint

The estimations for marginal and conditional distributions are shown in Fig. C-7 and

corresponding PSRF's are shown in Fig. C-8. We observe that the estimation becomes stable

faster when N is small.
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Figure C-5: PSRF of each set of chains in Fig. C-4 with J = 1 and (a) 3 = 0.5; (b) # = 2

and (c) # = 3.
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Figure C-6: Comparisons of PSRF's for marginal estimations with different 3's. (a) PSRF's

with different /'s and (b) the approximate mixing time estimated by thresholding of 1.05 on

PSRF's.

Uniform Matroid Constraint

The estimations for marginal and conditional distributions are shown in Fig. C-9 and

corresponding PSRF's are shown in Fig. C-10. We observe the same thing as mentioned

before, that the estimation becomes stable faster when N is small.
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Figure C-7: Convergence of marginal (Marg) and conditional (Cond-1 and Cond-2,

conditioned on 1 and 2 other variables) probabilities of a single variable in a k-DPP on

partition matroid base of rank 5, with (a) N = 20; (b) N = 50 and (c) N = 100. Full lines

show the means and dotted lines the standard deviations of estimations.
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