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Abstract

The recent availability of large genomic studies, with tens of thousands of observations,
opens up the intriguing possibility to investigate and understand the effect of rare
genetic variants in biological human evolution as well as their impact in the develope-
ment of rare diseases. To do so, it is imperative to develop a statistical framework
to assess what fraction of the overall variation present in human genome is not yet
captured by available datasets.
In this thesis we introduce a novel and rigorous methodology to estimate how many
new variants are yet to be observed in the context of genomic projects using a
nonparametric Bayesian hierarchical approach, which allows to perform prediction
tasks which jointly handle multiple subpopulations at the same time. Moreover, our
method performs well on extremely small as well as very large datasets, a desirable
property given the variability in size of available datasets. As a byproduct of the
Bayesian formulation, our estimation procedure also naturally provides uncertainty
quantification of the estimates produced.
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Chapter I1L

Introduction

The recent availability of large genomic studies, with tens of thousands of observa-

tions, opens up the intriguing possibility to investigate and understand the effect

of rare genetic variants in biological human evolution as well as their impact in the

developement of rare diseases. To do so, it is imperative to develop a statistical

framework to assess what fraction of the overall variation present in human genome

is not yet captured by available datasets. In this thesis we introduce a novel and

rigorous methodology to estimate how many new variants are yet to be observed in

the context of genomic projects using a nonparametric Bayesian hierarchical approach,

which allows to perform prediction tasks which jointly handle multiple subpopulations

at the same time.

In genomics, in the context of genetic variation discovery projects [Consortium, 2010,

2015, Eichler et al., 2007, Lek et al., 2016], scientists and practitioners have access

to large datasets which contain information about larger and larger regions of the

human genome. The ultimate goal of the studies is to produce freely available and

high quality datasets, readily accessible to the scientific community, which provide

an exhaustive map of the human genome, identifying and characterizing as much

genetic information as possible present across different human populations.. This

should in turn foster the understanding of how different genetic sequences impact the

development of diseases and biological evolution [Ionita-Laza and Laird, 2010].

One way of describing each individual sequence, the statistical unit of the study or
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allele, is through a binary vector encoding, in which a given coordinate denotes the

presence or absence of variation with respect to a fixed, known underlying sequence, the

"reference" genome. It is well established that structural variation in the genome, i.e.

variation from the underlying reference genome, is a crucial factor for the understanding

of biological human evolution, as well as for the development of rare Mendelian diseases

[Bamshad et al., 2011, Li and Durbin, 2011, MacArthur et al., 2014, Stankiewicz

and Lupski, 20101. Historically, despite existing theories on the role of rare variants

[Pritchard, 20011, empirical extensive study of genetic patterns and their relation

to diseases had been limited to understanding the effect of common variants, i.e.

those variants that appear relatively frequently in the observations (typically, variants

which appear at rate greater than 5%). Indeed, until recently, available datasets were

characterized by extremely limited sample sizes due to the prohibitive cost of genome

sequencing, which made any attempt of studying rare variants hopeless. Recent

technological breakthroughs, however, have made high-throughput DNA sequencing

technologies largely available, allowing the sequencing of unprecented amounts of

individuals. The 1000 Genomes Project [1KPGI [Consortium, 2010, 2015] was the

first collective effort made by the scientific community to provide free access to a

detailed catalogue of human genetic variation, and included genomic sequences from

N = 2,504 individuals. More recently, the Exome Sequencing Project [ESP] [Fu et al.,

20131 and Exome Aggregation Consortium [ExACI [Lek et al., 2016] further scaled up

the effort, making genomic sequences from N = 60,076 individuals freely available.

A crucial problem when working with such studies, is to develop a quantitative frame-

work to reliably understand how much information about the underlying population

is provided by the datasets used. Concretely, since the eventual goal is to characterize

human genome in its entirety, we are interested in understanding how much variation

in the genome is yet to be seen, and similarly, due to the costs associated to sequencing

procedures, how many new variants would be observed if M new alleles were added to

the cohort of N existing observations. It should be also noted that in these studies, the

observations are typically subdivided into groups reflecting the different geographical

origins of the individuals sequenced. Geographical factors are well known to have
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an impact on the structure of genetic variations [Li et al., 2008, Novembre et al.,

2008], and understanding how genomic variation differs across different populations is

another key factor of interest.

Recent work has considered these and related problems: in particular, Ionita-Laza

et al. [2009] proposed a parametric method to estimate the amount of yet unseen

variants in the human genome, while, more recently, Zou et al. 12016] developed an

algorithm that relies on a linear program to learn a histogram of the frequencies of

all variants present in the human genome which can be used to estimate the same

quantity. Despite their usefulsness, these methods suffer from substantial drawbacks

and limitations. First of all, they don't provide a principled way to jointly handle data

from multiple populations, in the sense that observations from different groups need to

be either merged into a unique super-group, or considered separately. Moreover, as we

show experimentally, the method of Ionita-Laza et al. [2009] struggles in the presence

of large datasets in which the vast majority of variants are extremely rare. Modern

datasets, in which the number of observations is in the order of the thousands, and

the number of observations showing a given variant is characterized by a power-law

behavior, make the approach of Ionita-Laza et al. [2009] inadequate. Viceversa, the

method of Zou et al. [2016] can be inadequate for datasets of modest sample size, since

it requires to specify as an input an arbitrary threshold whose optimal value depends

on the sample size, and whose misspecification can drastically affect the quality of

prediction when the sample size is small. While the sizes of available datasets are

generally growing, obtaining genomic sequences from certain geographical regions or

from patients associated with certain clinical conditions remains challenging, making

the small data regime particularly relevant. Last, neither of these methods provides

any form of direct uncertainty quantification for the estimates produced, and therefore

bootstrapping is required in order to obtain uncertainty estimates.

In this thesis we develop a generic framework for the problem of estimating the variation

in genomic sequences with the goal of addressing the limitations suffered from the

existing methods. We do so by developing a hierarchical Bayesian nonparametric

method. Bayesian methods stand out for their ability to formulate hierarchical models
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which allow to share strength and statistical power across multiple datasets: we

develop a model that can handle any number of subpopulations within a dataset

jointly. Moreover, differently from the approaches of Ionita-Laza et al. [2009], Zou

et al. [20161, we show by means of extensive synthetic experiments that the procedure

we design works well both on datasets with large sample sizes, comparable to that

of the ExAC dataset [Lek et al., 2016], with a vast proportion of extremely rare

frequencies, as well as on small datasets, in which the majority of rare frequencies

is unlikely to be observed. The nonparametric assumption, which entails that an

ever growing number of features are going to be observed as new observations are

collected, provides a convenient approximation. For any realistic sample size, indeed,

it is reasonable to assume not to be nearly as close to have observed the "true" overall

number of variants in the population. Therefore, it is reasonable to assume that the

number of unique variants observed in a dataset keeps on growing with the number

of datapoints observed. Last, uncertainty quantification naturally follows from the

Bayesian formulation, in which quantities of interest are expressed in terms of posterior

predictive distributions, naturally carrying a notion of uncertainty. In practice, this

is useful as it allows to provide point estimates as well as credible intervals for the

quantities of interest.

The rest of this manuscript is organized as follows: in Chapter 2 we provide a

mathematical formulation of the problem of feature diversity and develop a suitable

hierarchical Bayesian nonparametric framework. In Chapter 3 we prove the fundamen-

tal properties of the model, and use them to derive suitable estimators for the problem

under consideration. In Chapter 4 we analyze practical aspects for the implementation

of the prediction procedure developed. We conclude with experiments in Chapter 5,

where we also investigate the critical aspects of the hierarchical method proposed,

and discuss potential directions for improvements. Proofs and more details on the

methods under investigations are deferred to the Appendix.
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Chapter 2

Modeling genomic variation with

nonparametric Bayesian methods

Genomic sequencing technologies allow to determine complete DNA sequences of an

organism's genome. Roughly speaking, DNA sequencing is achieved by determining

the order in which nuclotides and bases appear in the DNA. Recently released datasets,

such as the ones of Consortium [2015], Lek et al. [2016], have been generated using

modern high throughput sequencing technologies, which produce several reads of

each individual genome. The multiple reads are aligned and mapped back to a fixed,

underlying reference genome [Schbath et al., 2012]. Whenever the reads disagree

with the reference genome, we say that a variant is observed. Genomic variation

is quantified by an exhaustive comparison and analysis of the disalignment of an

individual's genomic sequence from the underlying reference genome. While several

different kinds of variation from the reference genome can be observed, e.g. specific

deletions, inversions, transolcations or insertions of certain parts of the sequence [Feuk

et al., 2006], we here ignore the differences between different forms of variation, and

simply consider if variation from the reference genome is observed at a given locus in

an individual's genome is observed.

Therefore, we imagine that the output of a sequencing procedure is a binary matrix

X E {0, I}NxKN. N here denotes the number of alleles, i.e. the individual samples

in the cohort under study, and KN denotes the number of active variants among the
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N observations, i.e. the number of specific variations from the underlying reference

genome observed among the N individuals sequenced.1 Notice that at each individual

location in the genome, possibly more than one variant could be observed. For

simplicity, as done in Zou et al. [2016], we ignore the fact that the same locus can

be associated with multiple variations, i.e. we ignore the fact that specific variants

are mutually exclusive. It should be noted that this approximation might have some

quantitative impact for the problem under consideration, since approximately 10% of

the variants observed happen at loci where multiple variants are observed.

The kind of data we deal with has therefore a peculiar combinatorial structure:

each observation - a row X,, of the matrix X - is a binary sequence of length KN,

where the k-th coordinate X,,k of the sequence denotes the presence or absence

of a variant at the genomic locus associated with the k-th column. This kind of

structure is closely related to the concept of feature allocation. Formally, given a

finite or countable set of N objects H = {71,..., 7rN, a feature allocation of 11

is a collection J {F1, ... , FKN} of subsets of H, i.e. satisfying Fk C H for each

k E [KN] :_ {1, - ,KN}, KN E {1,2,...}, such that each object rn belongs to

finitely many subsets, i.e. Vn, {k : 7rn E Fk}I < oc. In our example, we can think

of H as the set of all genomic sequences, with the genomic sequence of individual n

represented by the element 7r, E H. Each set Fk contains those genomic sequences

which show variation at a given position k. Therefore, each binary matrix X uniquely

defines a feature allocation.2

Remark 1 (Relatives of feature allocations: partitions and trait allocations)

Feature allocations arise as a natural extension of partitions: a partition of a set

H {7r1,... , 7rN} is a collection E = {E 1 ,... , ELN I of subsets of H, such that El g H

for every 1, UIE = H and E n E, = 0 for any 1 f 1'. Models based on partitions have

'In practice, we only have access to datasets which report aggregated quantities, such as the
column-wise sum of the matrix X. We explain how we deal with this practical issue in Chapter 5.

2Notice that, while each binary matrix X uniquely identifies a feature allocation, the converse
is not true. For example, by swapping two columns of X, one still obtains the exact same feature
allocation induced by the original matrix. A feature allocation is therefore represented by an
equivalence class with respect to a function on binary matrices which is invariant to the ordering of
the columns (see Griffiths and Ghahramani [2011], Section 4.2 for a thorough discussion of this point
and the choice of such a function).
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a long and successful history in statistics (see Hartigan [1990], Quintana and Iglesias

[2003] for an overview). Probabilistic models for partitions have been particularly

successful in the Bayesian nonparametric literature, in which, following the seminal

paper of Ferguson [1973], a huge number of models based on the Dirichlet process

and its generalization have been developed. These have successfully been applied in

a large number of applications, and their properties extensively studied (see Ghosal

and Van der Vaart [2017] for an introduction and review of nonparametric Bayesian

methods and their application in partition models, and Pitman [2006] for extensive

treatment of their theoretical properties).

Models which extend the notion of feature allocations to combinatorial structures in

which each datapoint is allowed to belong to multiple groups with arbitrary degree of

belonging have also been considered. These are usually referred to as trait allocation

models [Campbell et al., 2018]. Formally, a trait allocation T of the set I is a

collection T := {T1, ... , TzN} such that for each z E [ZN , T, is a multiset whose

distinct elements are elements of H. The cardinality c,, = JTz n {wr}I gives the degree

of belonging of the element 7,, to the multiset T. As for the case of feature allocations,

also a trait allocations must satisfy that each datapoint 7r, is assigned to finitely many

traits, i.e. Vn,I{z : 7, E Tz}1 < 00-

2.1 A probabilistic Bayesian model for genetic vari-

ation

Following the observations made in Chapter 1 and leveraging the representation of

genomic variants in terms of collections of binary vectors as described above, we now

want to introduce a Bayesian nonparametric model for feature allocations, which

requires specifying a generative model for observed data. This amounts to defining a

joint probability distribution over the (observed) data and an unknown and random

parameter governing the data generating process. In the problem under consideration,

the data is given by X= X 1 , . .., XN, where each X, is the binary vector encoding,
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representing individual's n genomic sequence. The parameter 9 governs the probability

that each entry of each binary vector is equal to one or to zero.

Mathematically, the Bayesian formulation can be broken down into two steps: first

we identify a parameter space, E, together with a prior distribution over possible

values for the parameter, p(9)for9 E B. Next, we define a likelihood model, i.e. a

probability distribution for the data, conditionally on the parameter, p(Xn 1 9). We

assume throughout that the datapoints are obtained conditionally i.i.d. given the

random parameter. This can be written as

9 ~- p(9), X, 9 ' p(X 9 ) (2.1)

Bayes' rule then allows to derive the posterior distribution of the random parameter

of interest:

_p(9)p( X|_9)
p(O|X) = ()( 0 (2.2)fep(X I 9)p(9)d(

The model we pick should match the desiderata outlined before: it should be amenable

to a hierarchical formulation and flexible enough to capture the underlying generative

structure in presence of scarce data while retaining desirable computational properties

when the data grows large.

2.1.1 Poisson point processes and completely random mea-

sures

In this section we introduce the fundamental building blocks to define a nonparametric

Bayesian model for feature allocations. The natural way to define a prior distribution

which can accomodate an evergrowing number of points in the support, is to consider a

nonparametric prior. We focus on a distinguished class of models which stand out for

their tractability and flexibility, characterized by prior distributions of a very special

nature, known in the probabilstic literature as completely random measures [CRMs].

These are a class of discrete random measures which have successfully been used as
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prior distributions in the context of Bayesian nonparametric inference [Broderick et al.,

2018, Campbell et al., In press, James, 2017, Lijoi and Priinster, 20101 and are tightly

linked to Poisson point processes.

Poisson point processes [PPPs]: PPPs are a very broad class of stochastic point

processes whose theoretical properties have been extensively studied (see Kingman

[19921 for a detailed treatment). Due to their many interpretable properties and

their overall analytical tractability, these processes have been used extensively in the

statistics and machine learning communities to model a huge variety of real world

phenomena (see, e.g., Lewis et al. 120121, Mohler et al. [2011], Papapantoleon 12008]).

Informally, a Poisson point process on some space S is a stochastic process whose

realizations are collections of points randomly distributed in S. A draw from a Poisson

process has the distinctive property that, given two disjoint subsets of the state

space, the counts of the number of points in each subset are independent Poisson

random variables. We now provide a very general measure-theoretic definition of these

processes, following Kingman [1992].

Definition 1 (Poisson process) Let S be a state space of interest endowed with a

u-algebra B such that the every set containing just the singleton {s} E S is measurable.

A Poisson Process on S is a random countable set H C S such that

(P1) Given measurable and disjoint B 1,.. . , BK G B the random variables

N(Bk) := |U n BkI, (2.3)

for k = 1, . . . , K, are independent.

(P2) For any B E B, N(B) - Pois(p(B)), where p : B -+ R+ is a measure.

We denote a draw from such a process as H ~ PP(p).

Hence, a draw H ~ PP(p) almost surely yields a collection of points H. From

Definition 1, we see that if p(S) = oc, JHj = oo with probability one, whereas if

p(S) < o, |Hj < oc almost surely. Moreover, for any B E B, if p(B) = oc, N(B) = o
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almost surely, while if p(B) < o0, N(B) < oc with probability one and specifically,

N(B) ~ Pois(p(B)) and if p(B) = 0, then N(B) = 0.

Completely Random Measures [CRMs]: Recall that a random measure is nothing

but a random-valued measure, i.e. a random set function which takes non-negative

values and satisfies the property of countable additivity. A completely random measure

E on a measurable space (4P, B), is simply a random measure such that for any finite

collection of disjoint measurable subsets {B 1, . .. , BK} C B, the random variables

E(Bk), e(B,) are independent for k # k'.

It is a trivial observation that Poisson processes can be used to produce CRMs.

Consider the following construction: let one of the axes of the state space be the

positive real line, i.e. S = R+ x T, for some space T of interest. Assume also to pair

this space with a suitable product c--algebra. It is clear that by drawing a Poisson

process on S we obtain a random countable set E = {Ok, k }k>1 c R+ x T. For each

point in S, by treating the coordinate 9
k as a random rate, and the coordinate 4

'k as

a random location, one can produce a random measure on the space T.

Kingman [1967] showed that CRMs and Poisson processes are intimately related: in

particular, a CRM can always be described as the sum of three components,

) edet(-) + Ofix(-) + eord(-) (2.4)

where

" edet(-) is a non-random measure on 4'.

* efix(*) is a discrete measure on T with support at deterministic locations

{ofix) } 1 and random and independent weights { (x) L

" Eord(-) arises from a Poisson point process on R+ x T as described in the

previous subsections, i.e. it is a random subset of random cardinality of the form

{ 0 (ord) 4 (ord) L,

For our purposes, we shall always assume that edet(-) = 0. The fixed component,

Efix(.), will play an important role in obtaining posterior representations of the random
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measure 6(.), while the ordinary component ood(.) will be the main focus of most of

our analysis.

Remark 2 (Normalized completely random measures) Whenever the mea-

sure e(.) is finite, i.e. O(T) < oc, we can always consider its normalization,

e(.)E(-) := E [0, 1]. (2.5)

E is a random probability measure on T. Notice, however, that E is not a CRM: if

A, B E L3 are disjoint and E(A) > p for some p > 0, then necessarily E(B) < 1 - p,

that is to say the random weights of disjoint subsets is not independent.

2.1.2 BNP feature allocation models

We now have all the ingredients to introduce a framework for defining nonparametric

Bayesian models for feature allocations which rely on CRM priors. From a generative

standpoint, a feature allocation can be described in terms of allocation of datapoints to

features. Specifically, we define generative models which, under suitable assumptions,

produce countable collections of features and associated rates through the prior. Then,

we "allocate" such features to datapoints through the likelihood.

Remark 3 Following Broderick et al. [20181, James [20171, we adopt a very general

framework, which can accomodate several combinatorial structures. Not only we can

allow datapoints to be associated with multiple features, as in a feature allocation

model (Section 2.2): the same machinery can be used to define partition models as

well as trait allocation models. In partition models (see Appendix A.1) we require

each datapoint to be associated to one and only one feature. Instead in trait allocation

models we allow each datapoint to simultaneously belong to different features, each with

different belonging degree, and we refer to such features as traits (see Appendix A.2).

The terms traits and features are often used interchangeably, even though it should

be noticed that the word feature is originates in the context of binary-valued feature
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allocation models, like the ones we consider here, while the word trait is typically used

for generic integer-valued trait allocation models.

In full generality, the BNP models we consider are essentially made of two parts:

1. A model for a collection of tuples of traits with their rates. This is obtained in

the prior via a CRM made only of an ordinary component. Given a feature space

T, together with a --algebra B, the prior is almost surely a discrete random

measure on IF of the form

8(-) =H kOk(). (2.6)
k

Since we have by assumption no fixed component, the prior is a Poisson process

on R+ x T with some mean measure p(d6 x do) = v(dO) x Po(do), where

v(dO) = p(O)dO is a diffuse measure over R+ and Po(do) is a diffuse probability

measure over IF, and write

8 ~ CRM(v, Po). (2.7)

The diffuseness assumption guarantees that all traits will almost surely be

different.

2. A model for the allocation of each datapoint, conditionally on E, to different

traits via a likelihood process ILPI. The n-th individual is therefore described

via a random measure on T,

Xn( -= Xnk -),k H (2.8)
k

in which the random weights Xn,k are integer-valued. We obtain this measure

by specifying a (conditional) distribution H(. 1 0) with a probability mass

function h(. 1 0) supported at Z+ := {0, 1, 2,.. . } and by drawing each "count"

22



Xn,k I E - h(-|0k).We denote this as

id
X %. LP(e). (2.9)

The fact that we allow for countably many traits in the prior is a distinctive property

and benefit of using a nonparametric approach. In many real-world applications

this property proves extremely useful, since we often don't know how many "active"

features are going to be needed for the data at hand. For example, in the variant

discovery task, we do not know beforehand how many "active" variants are going to be

observed as the sample size increases: through a BNP approach we are not required

to specify this quantity, or even just an upper bound beforehand. The model always

allows us to discover new traits as more data is observed by instantiating new ones,

making it a natural modeling framework for streaming and growing data.

Remark 4 While we are interested in the setting in which a feature represents an

observed variant in the genomic sequence, it should be noted that in most applications

the likelihood process X, is typically a latent element of a more complex generative

scheme. In these cases - in which we don't get to observe directly the likelihood

processes, rather random functions of it - the goal is typically related to inferring the

latent traits and the relevance of traits to each observation [Blei, 2012, Blei et al.,

2003, Broderick et al., 2015, Ghahramani and Griffiths, 2006, Kemp et al., 2006, Zhou

and Carin, 2015]. For example, in text analysis, we observe documents Y,, and we

model them through latent topics, the features of the model. To each document Y

we associate a latent binary vector Xn, in which the k-th component Xn,k denotes the

presence or absence of the latent topic /k in that specific document.

We now impose common assumptions on the prior 9(.) and on the likelihood processes

Xn, which are needed in order for any BNP model to be useful and realistic (see

Broderick et al. [2018], James [2017]).

(Al) The prior supports a.s. countably many traits. This assumption reflects our

desire of specifying a nonparametric model. Mathematically, this is achieved
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by imposing that the CRM is obtained via a Poisson process whose underlying

rate-component measure v is an infinite, but o-finite measure. This implies that

v satisfies

v(R+) = +oo, (2.10)

and there exists a (finite or countable) measurable partition {Ak}k 1 of R+ for

which

v(Ak) < o, Vk. (2.11)

(A2) Each datapoint is allocated to finitely many traits. This assumption reflects

the natural idea that we cannot associate an observation with infinitely many

"attributes". In the genomic variation example, each genomic sequence can show

variation only at finitely many loci of the genome. Mathematically, if we let

vx(dO) := v(dO)h(xjO), this translates into

Zu(, (R+) < o. (2.12)
x>1

2.2 Examples

With the previous definitions in place, we can readily obtain feature allocation models.

This kind of approach has found widespread application in very diverse fields (see,

for example, Chu et al. [20061, Doshi-Velez and Ghahramani 120091, Fox et al. [2009],

G6riir et al. [20061, Kemp et al. (2006], Lee et al. [20161, Miller et al. [2009, 2008],

Navarro and Griffiths [2007], and Ghahramani et al. [2007], Griffiths and Ghahramani

[20111 for a review).

Example 1 (Beta-Bernoulli process) The beta-Bernouli process, first introduced

by Hjort [19901 in the BNP literature for applications to survival analysis, is arguably

the most popular BNP feature allocation model. This is obtained through the following
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hierarchy:

1. a beta process prior, E ~ BP(a; PO), i.e. E = Zk>1 ok&. From a CRM

perspective, this is obtained through a completely random measure with an

ordinary component characterized by the mean measure

p(dO x d4) = 1[oj()a0 1 (1 - 0)a- 1 dOPo(do), (2.13)

where a > 0.

2. a Bernoulli process likelihood, i.e. Xn | E) BeP(E), where, for every n and

every k, Xn,k I Ok "d Ber(0k).

The theoretical properties of this model have been extensively studied [Broderick et al.,

2012, Kim, 1999, Paisley and Carin, 2009, Thibaux and Jordan, 2007], and several

extensions of the models have been considered. These include, but are not limited to,

models which rely on alternative definitions of the beta process prior, to account for

example for power-law type distributions of the features [Broderick et al., 2012, Teh

and Gorur, 2009], or dependent versions which can take in consideration covariates

[Gershman et al., 2015, Ren et al., 2011, Zhou et al., 2011].

Remark 5 (Indian buffet process) Once an ordering on the feature labels has

been imposed, the outcome of the process described above can be organized in a

binary random matrix X = [X 1 .. . XN ]T E {0, i}NxKN, where KN counts the number

of unique features observed across the N observations. While the beta-Bernoulli

construction expresses the binary draws n,k via a conditional distribution, it is also

possible to describe the marginal distribution of the random matrix X, i.e. uncondi-

tionally on the underlying beta process 6. The access to the marginal distribution of

this random matrix allows to describe a sequential, urn-alike, construction - known in

the literature as the Indian buffet process [IBP]. Using the well known food metaphor,

each row of the random matrix is associated to a customer, and each column of the

matrix is associated with a dish. To obtain a draw from an IBP with parameter a,
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" the first customer tries Pois(a) dishes. This gives the count of nonzero entries

in the first row of the matrix.

" subsequently, customer n tries

- dish k with probability k, where mk is the number of previous customers

who tried dish k

- Pois(a/n) new dishes

2.3 An extension to hierarchies

While the models introduced in Section 2.1 form a vast and flexible set of tools

for statistical analysis, often a more complex modeling framework is desired. For

instance, the practical problems under consideration often have an inherent hierarchical

structure. Concretely, we might have access to multiple collections of documents

- such as different scientific journals or different periodicals. Or we might wish to

analyze genetic information across multiple populations of individuals. Rather than

naively merge all of these datasets together or analyze them separately, Bayesian

hierarchical modeling is famous for allowing sharing of power across different datasets

while maintaining their idiosyncrasies.

Hierarchies are well-developed in the case of partition models, where each data point

belongs to one and only one group [Dunson, 2009, Lijoi et al., 2005, 2007, MacEachern,

2000, Teh and Jordan, 2010, Teh et al., 2005, Yau and Holmes, 20111. In this section

we introduce a general class of BNP hierarchies for feature and trait allocations models,

which include partition and feature allocation models as a special case, with the goal

of providing a general formalism for the hierarchical case, like the one developed

by Broderick et al. [20181, James [20171 for non-hierarchical BNP trait models. In

particular, we imagine that all traits are shared across each population but also that

the traits occur with different rates within each population. For example the topic

"winter sports" might appear both in a general-interest newspaper and in a sports

magazine, but it may occur more frequently in the latter than the former. Similarly,
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the same ancestral groups may be present across individuals who e.g. currently live in

different countries, with the incidence of individual groups differing across different

countries.

Assume we have D distinct sets of observations or sub-populations, where the d - th

sub-population has Nd individuals, d E [D] := {1, ... , D}. First we draw a shared

CRM base measure from the prior, 60 ~ CRM(vo, PO). Next, given 60, we draw

conditionally independent random measures Od 00 =k E d,k 36,,, where for all

d E [D], 0 d,k I O0' ndPd(- I 00 ,k, rd). Let rd be a fixed hyperparameter and Pd be a

density over R+. We then obtain a measure-valued random vector 0 1:D := [61 ... D,

in which the traits are shared but the rates differ across the components of the vector,

and denote it as E1:D 10 ~ hCRM(pd(100,k, rd)k>1,de[D]). The hyperparameters

{rd} can be used, for example, to control the variance of each sub-population from

the base measure 00 (see Remark 6). In the context of BNP models, this hierarchical

construction has been considered in the specific case of the beta process by Thibaux

and Jordan [2007] (see Example 2). Instead, some hierarchical processes like the

hierarchical Dirichlet process [Teh et al., 20051 - which are not hierarchical completely

random measures - are obtained through a different scheme, in which at higher levels

of the hierarchy the same trait can be assigned to multiple random weights (using

the food analogy, in the Chinese restaurant franchise, the same dish can appear at

multiple tables within the same restaurant). This is not allowed in our construction.

Just like in the models described in Section 2.1, to complete the construction we pair

the hCRMs with likelihoods that allocate datapoints to traits. For each d E [D], we fix

a probability mass function hd(- I Od,k, Sd), where Sd is a fixed, sub-population specific

hyperparameter with support on Z+ U {0}. We consider latent trait counts Xn,d,k I

Od,k hd(-d,k, sd) conditionally i.i.d. across n C [Nd] and conditionally independent

across d E [D]. The trait allocation can then be represented through the counting

measure Xn,d - Ek>1 Xn,d,k&opk, which we denote as Xn,d I Od ~ LP(0d, hd, sd).

The role of the sub-population specific hyperparameter sd is similar to that of the

parameter rd, and can be used to model the relationship between the base measure

Od and the likelihood processes {Xn,d}nE[Nd]-
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The counts {xn,d,k} are independent random variables conditionally on the vector of

random measures O1:D, i.e., are modeled as partially exchangeable random variables

conditionally on the vector of hCRMs. This reflects the idea that within each sub-

population, observations are homogeneous and we can treat them as exchangeable,

while across different sub-populations, the exchangeability assumption is not preserved.

For example, if we have a collection of corpora of documents from different scientific

journals, articles from the same journal would be mutually exchangeable, but articles

from different journals would not. Similarly, if we had access to genetic data from

multiple populations, individuals within the same population would be treated as

exchangeable, but individuals from different population would not.

Let lrd(Od,k) := hd(OIOd,k, Sd) be the probability that a trait 'Vk with rate 6d,k in

population d is not part of a trait allocation for some datapoint. We impose

(A3) j j (1 - 7rd(t))pd(t I s, rd)dtvo(ds)Po(d)) < oc, (2.14)

V d E [D]. This technical assumption is needed to ensure that each observation is

associated a.s. with finitely many traits, equivalently, Ek 1(x,,k,d > 0) < oc a.s. (see

Lemma 3 for a simple proof of this fact). Because the traits are typically latent within

the generative model, we complete the model by specifying a probabilty distribution

f from which each observed value Yn,d is drawn conditionally i.i.d. given the latent

counting measure Xn,d. To sum up, the hierarchical construction we consider, for

d c [D], n E [Nd], is

80 ~ CRM(vo, PO)

(1:D 8 0 ~ hCRM({pd(-I00,krd)}k,d) (2.15)

Xn,d I El:D LP(ed, hd, Sd)

Yn,d I Xn,d f (- I Xn,d)

We present here as an example a natural extension to their hierarchical counterpart of

the model previously introduced in Example 1. We omit the last layer of the hierarchy

(the observations, Y), since this is arbitrary and can always be specified without
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affecting the underlying combinatorial structure.

Example 2 (Hierarchical beta-Bernoulli process (hBB)) This model, originally

introduced in Thibaux and Jordan 12007], generalizes Example 1 to the hierarchical

case.

80 ~ BP(a, Po)

OL:D Eo ~ hCRM({Beta(dOo,k, rd(1 - 0,k)k>1,d=1,...,D) (2.16)

Xn,d ®d i 8 > BeP(Ed)

Remark 6 The choices of the hyperparameters rd, which regulate the relationship

between the shared CRM base measure E0 and the population-level base measure ed,

and of the hyperparameters Sd, which regulate the allocation process of datapoints to

traits, can play a fundamental role in the modeling of different phenomena.

For example, in the hBB of Equation (2.16), we have fixed sd 1 for all d, while the

parameters rd serve to modulate the variance of the rates of each measure ed. Indeed,

for Ed = E Od,k6,P, we see that

Od,k I 0 ~ Beta(rok, rd(1 - 0o,k)), (2.17)

Z. e.

1
E[Od,k] - 00,k, Var(Od,k) = (1 - k0,k)0,k (2.18)

rd + 1
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Chapter 3

Theoretical results

In this section we present two novel results which characterize the properties of the

hierarchical CRMs introduced in Section 2.3. In particular, in Lemma 1 we provide

the joint distribution of the counts induced by any hCRM which fits in the previous

framework. This is the crucial tool to characterize the posterior distribution of any

hCRM, as done in Lemma 2.

In what follows, assume N := N + - + ND observations are given across the

D populations. Let q1* := . . , @*4N } c ' denote the set of "active traits"

among the N observations, i.e., traits to which some data point belongs, and let

X* = f{X,,d},,d denote the associated assignments of data points to traits. These are

counting measures of the form X*, = ZX*,dk*. For n E [Nd], d E [D], k E [KN ,

let x = [x, 1 . . . X IdKN] denote the counts of the active traits and Jd,k {n E

[N] : x := X,,,d(O*) > 0} the observations in population d sharing trait * with

md,k = Id,k|. We now derive the joint distribution of the trait allocations and the

locations, which describes the distribution of unique traits appearing across multiple

populations.

Lemma 1 (Characterization of the distribution of unique features) Consider

the hierarchical CRM model of Equation (2.15). Let A { A 1 ,... , AKN} C B and let

PKN(A; 3, x*) be the probability to observe exactly KN distinct features V*,. . V*N

each 0* E Ak and inducing the index set 3 and observation counts x*.
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For any KN 1, the probability distribution PKN (- 1 x ) is absolutely continuous with

respect to p KN(-) with Radon-Nikodym derivative independent of the traits {1/4}k

given by

pKN ( ,. .KN;
3

X) -pKN X*) e-(N,...,ND)X (3.1)

KND

fj 1  7~ ji~f d(t)N-M(,k f d h ,dk t, Sd)pd (t s, rd)dtl(ds)),
k= +d=1 R+ nE~dk

with 4D(N1 ,..., ND) = R+ I - 1 fR+ f wd(t)Ndp(t I s, rd)dt] u(ds).

We now obtain the posterior distribution of the hierarchical random vector El:D-

Lemma 2 (Characterization of the posterior distribution) Consider a general

hCRM model, as defined in Equation (2.15) and let X* = {X*:N1D1KN } be the integer

value array of feature counts, in which we stack all observations from the different

populations, and = ( 1KN) be a vector of latent jumps. The posterior distribution

of the hierarchical vector Ol:D is given by

e 1 ... , eD X X * k [' ... +' [+ KN (3.2)

where

* the updated vector of hCRMs [)' ... E)' is obtained through the hierarchy

6' ~ CRM(v/, Po) 3 00,k0k
k (3.3)

ol ...e)1IoO/- hcRM(pf ) ~.d 0 ) E OdA~
k

with
D 00

d=(d1) J j d(t)dNPd(t 0, rd)dtvO(dO)
d=1

and

0d6k ~~ ~ind p'(- | , rd0 ) OC d(Od,k) dPd(O,k k rd)
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* the collection (Q*,k)d,k is made of independent jumps given the vector *, with

*,k (WI(,))Nd-md 171 h-(x , k s Q pSd)Pd(|,k I G rd)d *,k.
nEd.k

(3.4)

Remark 7 It is also possible to characterize the posterior distribution of the latent

jumps *, conditionally on the array of counts x*. This is given by

KN D

X* I x*) 0C (D 111 h(x,,k | t, sd)Pt | * rd)dodk vo(dG,k).
k=1 k d=1 1+ nEJd,k n

We can interpret the two elements in the posterior characterization of Equation (3.2)

as follows:

* The vector 0'1:D provides the contribution to the posterior from the prior,

and is a realization of an hCRM with "underweighted" shared based measure

vo(dM) = Hd d d(0)vo(dO) -where the downweighting factor is given by H-D_ 1 fd(O),

with

f j(0) := + (t)'pd(t 10, rd)dt E (0,1).

" The vector [EN 1 k1k k=1 Z ,k ] provides the contribution to the pos-

terior from the observations, conditionally on the (latent) jumps 3. Each

component of the vector is a random measure supported at the observed loca-

tions *, whose distribution depends on the counts x,, where n = 1,..., Nd,

and k > 1. For each trait 0*, datapoints n ( 3
dk - for which x, = 0 - shift

the distribution of Q,k towards 0. Viceversa, datapoints n E 3 d,k, shift the

distribution of Qk away from 0.

We now provide examples of the distributions derived in Lemma 1 and Lemma 2 for

the model introduced before.

Example 3 (Hierarchical 3beta-Bernoulli (h3BB)) Consider the three-parameters

generalization of the hierarchical beta process introduced in Example 2. This is to say,
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replace the common base measure of Equation (2.16) with Go ~ CRM(vo, PO), where

v0 is the measure over [0,1] given by

vo(dO) = a F( + C) 9-(1+0)(1 - O)c+-1 l0,1(6)dO (3.5)
F(1 - U-)F(c + a)

for a > 0, o- E (0, 1) and c > - o-. Let (a)b := IF(a + b)/F(a) denote the ascending

factorial of a of order b. From Lemma 1,

PKN (rd( - Nd vo(dO)

Nd1D*{jo d= (rd) Nd /(3.6)
H4 f (rdt)md,(rd(l - t))Nd-mdk v0(dt)-
k= 1 J (r1d v oddNt

Equation (3.6) provides a generalization of the exchangeable feature probability function

(EFPF) of the beta-Bernoulli process /Broderick et al., 20131 to the hierarchical,

partially exchangeable setting. We can apply Lemma 2 to the h3BB case considered

before. The updated rate measure of E' is given by

D

v (dO) = (rd(1 - )Nd vo(dO)-
d__ (rd)Nd

The rates are conditionally independent with distribution

f id

dk I' Beta(rdOO,k, Nd + rd(l - o,).

Moreover, each jump Qd,k I Ok ~ Beta(md,k + CO,krd, Nd mdk +F r d( - o ,)), and

the distribution of Ck is given by

G*,k I x*) Cx (rdk)Mdk(rd(1 - Gk))Nd-Mdk0,k (I+o)(1 - O,k c+--
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3.1 Estimation of diversity in single-population fea-

ture models

We now make use of results and machinery from the previous sections to derive

estimators to quantify genomic variation in the case of a single population. Later, we

extend the results to the hierarchical setting.

As described before, we assume to observe a binary matrix X*= [x*,k]nk E {0, 1}NxKN

of genomic sequences, where for every n C [NJ, k E [KN], Xn,k 1 if individual n shows

variation at locus k. Hence, KN denotes the number of distinct features appearing

among the first N observations. We denote with IF* =f -,... , KN C 'IJ the set of

observed features up to step N, that is the set of locations in T for which there exists

at least one index n that assigns positive mass Xnk = 1 for that trait. We can think

each row X* as a binary counting measure on the feature space IF of genomic loci,

KN

X* = E( xakink
k=1

We model X* as a draw from the generative model of Example 1, where we replace

the prior process E with its 3-parameters generalization introduced in Equation (3.5).

In the following theorems, let X* := X*,..., Xv denote the observed samples, and

for anyM;>1, letX':=X+, - -. , X'+ denote M additional samples, observed

after the N initial ones. Moreover, let ZN,k En=1 xn,k-

Theorem 1 (Number of old features in an additional sample) For every k E

[KN], let 0 be the integer valued random variable which counts the number of

additional samples which display feature /* when M additional samples X' are provided

after the N initial ones X*, i.e.,

M

O(M)I X* =d X~rk (3.7)NO E X*A x'N+m,k) 0
m=1

where the x'N+m,k are conditional independent random variables which appear in the

posterior representation of eaxh X+m-
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For any M, N E Z+, k E [KN], l E Z+ U {0},

P(O(M) = l1 X*) =M (ZN,k- o) 1(N -ZN,k + C + U)M- (3.8)
Nk~k (N +c)M

Another quantity of interest in several applications is the number of features which

have not yet been observed in the sample.

Theorem 2 (Number of new features in an additional sample) Let U(M) de-

note the random variable counting the number of yet unseen features which will be

observed if M additional samples X' are provided after the N inital ones X*, i.e.

UT(M) nEIm E k > 0 1(ZN,k - 0).(39)
k>1 \m=1/

For any M, N E Z+, it holds

UI) I X* ~" Pois a M(C + O-)N+m-1 (-0
U E (C + 1)N+m-1

Corollary 1 (Number of features appearing with a given frequency) We could

also be interested in investigating how many features with a given frequency are going

to appear in an additional sample, i.e. for some r E Z+, we might be interested in the

random variable U defined as

U (M -'~~ = IL x TI(ZN,k = 0). (311
k>1 \m=1/

Using the previous result, for any M, N E Z+,r < M, it holds

cPois ( M) (1- a)r(C + -)N+M-r
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3.2 Estimation of diversity for the multiple popula-

tions case

Assume to observe D collections of samples, each containing Nd observations for

d E [D], drawn from the generative model of Example 3. This is to say the data is

X* ={X*, ... , X*}, where for every d E [D], X*= {X1,..., X7~d} is a collection

of binary counting measures on the feature space IF, of the form Xd, = Ek Xnd,k64,

as described before. We let N = [N1 . . . ND] be the vector of cardinalities of the

D populations, and ZN,k Ed n= X1,dk, ZNd,d,k = X dk. Moreover, we let

N := N1 + - - + ND be the total number of observations, and KN denote the number of

distinct features which appear among all the D populations in the first N observations.

We let I* be the set of all observed atoms in kI across the D populations. We will

denote with MAd E Z+ the number of new samples observed in each population d E [D],

and let M = [M1 ... MD], M = M + - - + MD.

Theorem 3 (Number of old features across multiple populations) Let 4' E

AP be an observed feature among the first N samples observed across the D populations.

Assume to have observed Nd samples from population d of which exactly Zd,Nd,k <; Nd

displayed feature 0*. Now, assume additional Aid samples are further observed from

the same population. Let O(I) be the integer valued random variable which countsd,Nd k

the number of samples among the Md additional ones which display feature 44, i.e.

OdQd, k XN* X3',Nd+m,k, (3.13)
m=1

For any Aid, Nd E Z+, k E KN, 1 C 2+ U {O},

P (o ,k - 11 XN*) (3.14)

MAd! (zd,Nd,k + rdO)1(Nd - Zd,Nd,k + rd(1 - a, c -)
(Md - )! ][o,1 (Nd + rd)M(

Theorem 4 (Number of new features across multiple populations) Let U(M)
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be the integer valued random variable which counts how many features not yet seen

in any of the D populations are going to be observed if Md additional samples are

observed for each d G [D], i.e.

D Md
U(M) - 1 (, mk> (ZN,k = 0). (3.15)N Md Ndm )

k>1 (d=l m=1

The posterior predictive distribution of UT') is given by a Poisson distribution with

parameter

(M) 1  D B(rdO,Nd+M+rd(1 -0))
I N B (d, Nd + rd(I -60))

d=1 (3.16)
D B(rdO,Nd+rd(1 -0))

B(rd6, rd(l - 0)) 1 l3BPka,,C).
Corollary 2 (Number of features shared by two populations) Another inter-

esting quantity to study is the number of features which are not observed in the initial N

samples, but are shared across multiple populations when new samples are introduced.

Let 2 c [D] be a collections of indices. Let s(m be the integer valued random variable

which counts how many features have not been observed among the first N samples,

but are observed and shared across (all) populations whose index is in 3, i.e.

/1Mr

N, = i,Ni+m,k > 0 1E~ )-(-7
k>1 (iE m=1

The posterior predictive distribution of S is given by a Poisson distribution with

parameter

(fB(rdO , N. + MI + ri( - 6))

S iE3 B(rO r i(1 -0))0)(

D [~ rd , N + d ( ))0))] 3BP (d O; , a', c) .(3.18)

11B(rdO, rd(1 - 0))

38



Chapter 4

Optimization

The estimators derived in Chapter 3 are all expressed in terms of posterior predictive

distributions. As a direct consequence of the generative process chosen, they are all

Poisson distributions whose parameters depends on the underlying parameters of the

beta processe - a, -, c. Notably, none of these posterior predictive distributions depend

directly on sample information, but only on the hyperparameters of the process.

In order to make practical use of the estimators described above, we therefore need an

effective way of esimating these hyperparameters. A reasonable quantity to look for,

is a likelihood criterion associated with the observations X* under the true generative

model.

4.1 Optimization in the single population case

In the single population case, where we have access to X* E {O, I}NxKN - e.g. under

the generative model outlined in Example 1 or in the case in which the prior is a CRM

whose rates follow Equation (3.5) - the likelihood of the assignments is given by the

exchangeable feature probability function [EFPF].

Definition 2 (EFPF of the 3BB) Let X* E {0, l}NxKN be a draw from Exam-

ple 1, where we replaced the beta process prior with its three parameter generalization

of Equation (3.5).
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Let ZN,k E= 1 nk for k = 1,..., KN. Then the EFPF takes the form

I1 a KN

E X)= iN(( )N) x (4.1)
'KN (C + )N-1 )

x exp a ( )m1(C + -)ZNk 7

n +C)1 k=

where (x), := F(x + s)/J'(x) = x(x + 1) ... (x + s - 1) is the rising factorial.

The EFPF, or any monotonic transformation of it - such as its logarithm - can

therefore be used as an objective function to find values of a, a, c. One option is

to employ a fully Bayesian approach, i.e. specify priors p,(a), p,(-), pc(c) for the

hyperparameters, and consider meaningful posterior values which arise from some

inference scheme (e.g., MCMC) on these parameters, such as posterior means or

posterior medians. Another approach is to use an emprical Bayes approach, and

directly maximize the parameters from the data, i.e. find

{ , o-*, c*} = arg max log(fa,C,(X*)). (4.2)
aER+,aE[0,1),rcE(-a,oo)

We pursue the latter and notice that it is possible to compute in closed form the

partial derivatives of log( 0 ,,,,c) with respect of all the three parameters. These are

given by

a KN N +alog(EaCc,,(X*)) = -- E (9+I~- (4.3)
a a n= (c + 1)n_(

a log(f,c,,(X*)) -KN (0(0)(c + N) - V)0 )(c + 1) + V(0)(c + a))
(9c

N

a (or + c)n_ 1 x (4'(0)(a + c + n-i) (4.4)
(1 + c)'_1

+ 0(0)(c + n) - V)( 0)(a + c) - 0(0)(c + 1)),
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alog(c(X*)) = =-a z (u+ c)"- 1 (.( 0)(a- + c + m - 1) - +()(u + c))
n=- (1+-i c)._ 1

+ S K (4 (m - a) + @(0)(c + o + N - ZN,k) (4.5)
k=1

- (1 - a) - 00) a)),

where 0(0)(x) := A ln(Fl(x)) is the digamma function. We can use these derivatives in

a descent method to optimize Equation (4.1) and produce the estimators obtained in

Chapter 3.

4.2 Optimization in the multiple population case

In the multiple population setting, the observations are given by collections of binary

matrices. Under the generative model described in Example 3, Equation (3.6) is the

counterpart of the EFPF defined in Equation (4.1). In principle a similar strategy to

the one described in Section 4.1 could be pursued in order to maximize the parameters

of the hierarchical process. In practice, the hierarchical EFPF (Equation (4.1)) is a

complicated expression, expensive to evaluate even for a moderate value of distinct

features KN, since for each k E [KN] an integral needs to be analytically computed.

Morever, for the application under consideration, even for modest sample sizes, the

number of distinct features is typically in the order of the hundreds of thousands or in

the millions.

We notice that we can simplify the expression by considering ordered D-tuples

m [mi,. .. , mDj E Z. Indeed, if two features ki, k2 E [KN] are such that

mrd,k = md,k 2 for all d E D, their contribution in the product of Equation (3.6) is the

same. We can therefore re write the hierarchical EFPF as

PK__ d)Nd aV~PKN (3 1 x*) exp {- 11 (1 - Dj (rd (I- ))Nd)v dO

D d=1n(Mk) (4.6)
H (rcl)md(rd(1 - m))Nk-M) vo (d

m (9R d=1 (rd)Nd
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where 921 is the collection of ordered cardinalities mk [mI,k ... mD,k] E ZD such

that there exists at least one feature k E [KN] observed exactly md,k times in all

populations, i.e. for all d E [D]. n(mk) counts how many features are observed exactly

md,k times in each population d = 1, . . . , D.

Despite this simplification, even the simple evalutation of Equation (4.6) for data like

the ExAC of Lek et al. [2016], in which when the number of observations N is in

the order of the hundreds the number of distinct variants KN is in the order of the

millions, is very computationally intensive.

4.3 Description of competing methods

We here provide a brief review of the alternative existing methods for genomic variety

estimation that we consider in the experiments of Chapter 5. Neither of these methods

is directly applicable to the hierarchical case, hence we will only describe estimators

for the single population formulation of the problem.

4.3.1 Beta-Bernoulli product model [Ionita-Laza et al., 2009]

Ionita-Laza et al. [2009] considers the same problem of genomic variation described in

Chapter 1. As usual, we are given data X* E {0, 1 }NxKN. The authors model the

binary matrix X* via a parametric beta-Bernoulli model. They assume that there

exists a fixed, unknown number K, < oc of possible variants. For each k E [Kw],

they assume that the k-th feature is displayed by any observation with probability

Ck E [0, 1] distributed according to a beta distribution with parameters a, b, i.e.

0 = [1 ... 0K , with Ok Beta(a, b) Vk, (4.7)

and, conditionally on 6,

X =,.. * , with 4,,, ' Ber(0k). (4.8)
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Under this model, the number of counts ZN,k IOk n= 1 kn~kBinom(N, Ok). Letting

f(N) K= 1 1 (ZN,k= x), the log likelihood is given by

N

ai,b PMX*) ZN,n 109(A\n,N) (49)
n=1

where

(;)B(n + a, N - n + b)
An,N N N n')Bn+ N n+b (4.10)

E,=1 (N)B(r' + a,N- n'+ b)

Letting M = tN be the number of additional samples to be observed, we can compute

the expected number of new variants to be observed in additional M samples after N

samples have been observed as

K,, IN 0) N

AN(M) =E 1 (fXn,k > ) 1 (xk = (4
1k=1 n'=1 n=1 .(4.1 1)

_11 N+ b-1 ~I B(a, (t +1)N +b)
a N [ 1  B(a,N+b)

where E :E[fl] is the expected number of features which appear exactly one

time in a sample of size N. To use the estimator AN(M), lonita-Laza et al. [20091

substitute m1 with its empirical counterpart flN), the number of features which have

been observed once in the sample X*. Then, similarly to our approach, they find a, b

via maximization the of the log-likelihood of the model,

a*,b* =arg max lbPM(X*) (4.12)
a>O,b>O

Remark 8 (Rare features) Notice that the estimator Equation (4.11) crucially

relies on the empirical frequency of features observed once among the first N draws,

f(N) For example, if a dataset had (N) 0, AN(M) = 0 for every M > 0.
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4.3.2 Linear program to estimate the frequencies of frequen-

cies [Zou et al., 2016]

Zou et al. [20161 formalize the problem of feature variety estimation as that of recovering

the distribution of frequencies of all the genetic variation in the population, including

those features which have not yet been observed.

They assume that each possible variant in a sample is independent of the other

variants, and that the k-th variant appears with a given probability Pk conditionally

i.i.d. across the N individuals - i.e. the pk are the parameters of independent Bernoulli

random variables. Therefore the binary matrix X* E {0, 1}NxKN of genetic variation,

is modeled by a collection of independent Bernoulli random variables, which are

also identically distributed along each column, and the sum Sk En=i Xn,~

Binom(N, Pk). From the frequencies Si, .. . , SKN of the KN variants observed in N

samples, it is possible to compute the fingerprint of the sample, F = [.F .... TN],

where Fi := #{k E [KN Sk = i}. Given the fingerprint F, the goal is to recover the

population's histogram, which is a map quantifying, for every x E [0, 1], the number

of variants k such that Pk = x. Formally,

hp : (0, 1] -+ N U {0} (4.13)

In particular, because the empirical frequencies associated to more common variants

should be well approximated by their empirical counterpart, they only consider

the problem of estimating the histogram from the truncated fingerprint (') =

{.F : < ,}. In their analysis, the authors set , = 0.01. They further set a

discretization factor 6, and then set up a linear program in which the goal is to

correctly estimate the popoulation histogram associated to the frequencies in the set

S = N' N ' i 1OOON,. ,'x}, which determines how many frequencies are

going to be estimated in (0, K]. Formally, they solve the optimization

min 1 F, - 1 h(s)Binom(N, s, i) (4.14)
h(s),sES 1+ i,

i: N< sES
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subject to

~ax) KN -
h(s) ;> 0, 1:h(s) < K(mi) s -h(s) + Ti = (4.15)

sES sES i:i/N>K

where K(") is an upper bound on the total number of variants, and Binom(N, s, i)

is the probability that a Binomial draw with bias s and N rounds is equal to i.

Given the estimated histogram h, one can obtain an estimate of the number of unique

variants at any sample size Al using

V(h, M) = 3 (s)(1 - (1 - s)M). (4.16)

s:th(s) >0

Follwoing Zou et al. [20161, we refer to this estimator as the "unseenEST" estimator.
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Chapter 5

Experiments

In order to test the estimators derived in Chapter 3, we consider both synthetic data

and real data, with the goal of understanding how the predictive performances of the

estimators change across different data generating regimes.

First, we consider the estimators for the single-level case. In particular, we focus on

the task of estimating the number of distinct features observed if an additional sample

of size M is provided in addition to the Ntrain samples already gathered - i.e. we

compare the estimator provided in Theorem 2 to Equation (4.11) and Equation (4.16).

To maximize Equation (4.16), we used the code released by the authors, which is freely

available'. While Zou et al. 120161 consider learning only the population histogram for

frequencies which are below a fixed threshold of , = 1%, we noticed that choosing

different thresholds sometimes provided dramatic improvements in the prediction

quality. For all the experiments, we therefore fixed three different thresholding levels,

K E {1%, 5%, 10%} and ran different optimizations, one for each value of r,. Fixing

this threshold at the correct level could represent a practical challenge in real world

applications. Specifically, Zou et al. [2016] do not provide any insight on how to

specify K in different data analysis problems. The only generic and intuitive guideline

one can follow in fixing the threshold r, is that for larger samples a smaller , should

be used, and viceversa for smaller samples a larger K is preferable. Especially when

the sample size is relatively small with respect to the size of the support, however,

'The code is available at https: //github. com/jameszou/unseenest.

47



smaller values of , can affect quite substantially the quality of the prediction (see

Figure 5-3). It should also be emphasized that in our experiments we have access to

the true counts whose growth we want to predict, but in any realistic scenario these

counts would be unknown, making the choice of the optimal threshold and even just a

fair comparison of different values of r, hard. Moreover, we modified the discretization

factor J from the default value 1.05 to 1.01, which allows to learn a "finer" histogram,

with more frequencies and better predictive performance, at the cost of an increase in

computation time.

The major issues associated to the optimizations of the BNP and the beta-Bernoulli

product model estimators are related to numerical stability. Specifically, both opti-

mization problems require computing gamma and beta functions of very large inputs,

which require careful implementation to avoid overflows and underflows. To solve both

optimization problems, after making sure that the implemented likelihood functions

did not incur in numerical stability issues, we combined a grid search over the parame-

ter space with first order descent methods, using the best results from the grid search

as initializations. While we were able to obtain reliable values for the maximization of

the BNP estimator, we noticed that when the sample size Ntrain is in the order of the

hundreds, the beta-Bernoulli product model seems to provide less reliable results. In

particular, for datasets in which the distribution of the frequencies of the variants has

a power-law behavior, the beta-Bernoulli model and related estimator seems to be

inadequate.

5.1 Synthetic datasets

We start by considering in Section 5.1.1 datasets drawn from the three parameters

Indian buffet process - the "true" data generating process under which the estimators

are derived. This serves as a baseline, to check that, in the best case scenario, in

which the data generating process matches the assumptions under which the BNP

estimator is derived, we are able to obtain a good predictive performance.
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5.1.1 Draws from the 3-IBP

To generate draws from the 3-IBP, we consider the generative scheme proposed in Teh

and Gorur [2009]. This is the extension of the IBP scheme described in Remark 5 to

the power law-case 2.

Given parameters a E R+, a E [0,1), c > -a, we describe how to generate a random

matrix with N rows from a 3-IBP(a, c, a) using the well known food analogy. Each

row of the random matrix is associated to a "customer" which enters in an Indian

restaurant that has a buffet serving infinitely many dishes. Each column of the random

matrix is associated to a distinct dish. Then, to obtain a random matrix with N rows,

" the first customer tries L, - Pois(a) dishes. That is to say, the first row of the

matrix has L1 entries equal to 1, followed by infinitely many zeros.

* subsequently, for n = 2, ... , N, customer n tries

- dish k with probability Z-l ", where Znl,k is the number of previous

customers who tried dish k. That is to say, for any column k for which a

previous row has at least one non-zero entry, the entry (n, k) will be equal

to 1 with probability Zn-_j-"

- L, - Pois ( a new dishes. That is to say, the n-th row of the

matrix instantiates Ln new columns at which it displays value 1.

As already discussed in Teh and Gorur [2009], the mass parameter a controls the

total number of columns of the matrix generated by the random process. Indeed, we

expect KN = j a/n unique features, or, equivalenlty, columns to be displayed.

The concentration parameter c controls how many rows will tend to display each

feature, while a determines the power-law behavior, and in particular if a = 0 no

power-law behavior is observed.

2 One should notice that an equivalent way to obtain draws from the 3-IBP, would be to first obtain
a draw 0 =Zk 

0
0,P, from a 3-Beta process prior, and then, conditionally on 0, draw independent

Bernoulli process X1, ... , XN, in which X,= Ek>1 Xn,k
6ok, and Xnki| - Ber(Ok). In practice, this

"conditional" representation, requires truncation 6f the CRM E to a finite approximation, in which
only finitely many atoms K are considered.
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Figure 5-1: An example of a draw from a 3-IBP with parameters a = 10, c = 1,
- = 0.5 for N = 300 draws. On the left, the binary matrix originating from the

draw (zeros are purple, ones are yellow). In the center, the number of "active dishes"
KN (y-axis) as a function of the number of customers N (x-axis). On the right, the

histogram of the counts Z300,k, for all the active dishes.

We generated synthetic data from different configurations of the hyperparaieters and

different sample sizes. In particular, we picked the mass parameter a E {1, 10, 100>

the concentration parameter c E {1, 5, 10} and the tail parameter u E {0.25, 0.50, 0.75}.

For each of these configurations, we generated binary matrices with N = 3000 rows.

Then, we retained the first Ntrain E {150, 300, 600} rows of these matrices, i.e. the 5%(,

10% and 20% of the total observations respctively, and used them as training sets.

For each of these datasets, we compared the performance of the different methods

described in Chapter 4.

Under this favorable scenario, in which the data generating process is exactly the one

under which the BNP estimator is derived, we observe that our method outperforms

the alternative ones for all the configurations of the hyperparameters. We notice that

the prediciton quality remains extremely high, even when the number of additional

samples Al is considerably larger than N.

Comparison to the Bernoulli-product model estimator

We compare the BNP estimator of Theorem 2 to the estimator of Equation (4.11)

derived from the Bernoulli product model. Conceptually, the main difference between

the two models lies in the prior specification for the variants' probabilities: while the

BNP model relies on a nonparametric prior, which can fit power law behavior, the

Bernoulli-product model assumes a parametric beta prior, which can't accomodate a
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Figure 5-2: Comparison of the BNP estimator (blue) with the Bernoulli-product
model estimator (grey). In the plots, we generate data from the 3-IBP and fix the
mass parameter a = 1 and the concentration parameter c = 5, while we vary the
tail parameter a (Left: o = 0.25, Center: o = 0.5, Right: a = 0.75). As the power
law parameter increases, the predictive performance of the Bernoulli product model
decreases.

power-law type distribution for the variants' frequencies. In our synthetic experiments,

we find that as we increase the tail parameter o, which governs the strength of the

power-law behavior of the variants' probabilities, the performance of the estimator

derived from the Bernoulli product model progressively worsens (see Figure 5-2).

Comparison to the UnseenEST estimator

As already mentioned, an undesirable feature of the unseenEST estimator is that it

requires to specify a threshold K, which determines the fraction of variants' frequencies

that are going to be learnt by the algorithm. We find in experiments that a correct

tuning of this hyperparameter of the unseenEST estimator can be crucial for its

predictive performance (see Figure 5-3). It is, however, unclear what is a principled

way of picking the "right" or "best" threshold K.

Another desirable property we observe of the IBP estimator, is its "sample efficiency".

Under this data generating regime, the IBP estimator needs comparatively less samples

in order to get accurate predictions, while the UnseenEST estimator need many samples

to obtain accurate prediction (see Figure 5-5).
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Figure 5-3: Comparing the BNP estimator (blue line) to the unseenEST (uEST)
estimator of Zou et al. [20161. The data is drawn from a 3-IBP with a = 100, o = 0.5,
c = 1 with N = 3000 observations. 10 training sets of Ntra, = 150 (vertical dotted gray
line) datapoints were used to estimate the population histograms and the parameters
of the 3-IBP. The uncertainties are provided by averaging over the 10 runs, and
plotting one standard deviation. In this case, different thresholds . dramatically
change the quality of the performance. Here, we show the performance of unseenEST
when , = 1% (red line), 5% (yellow line) and 10% (green line). It should also be
noted that, while in this case the quality of the estimator seems to improve as we
increase the threshold level, we observed instances in which the opposite phenomenon
is true (see Figure 5-4).

5.2 Real datasets

To test our method on real world data, we consider the ExAC dataset [Lek et al.,

20161, which contains genetic information from N = 60,076 individuals recorded at

Kmax = 1,195,872 genomic loci. A relevant feature of this dataset, is that observations

have been labeled according to one of seven categories or subpopulations, according to

the geographical origin of the individual sampled: African/African American [AFR,

Latino [AMR], East Asian [EAS], Finnish [FIN], Non-Finnish European [NFE], South

Asian [SAS] and Other [OTH]. This feature makes it particularly interesting for the

hierarchical setting.
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Figure 5-4: Comparing the BNP estimator (blue line) to the unseenEST (uEST)
estimator of Zou et al. [20161. The data is drawn from a 3-IBP with a = 10, a = 0.5,
c = 1 with N = 3000 observations. 10 training sets of Na = 300 (vertical dotted gray
line) datapoints were used to estimate the population histograms and the parameters
of the 3-IBP. The uncertainties are provided by averaging over the 10 runs, and
plotting one standard deviation.
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Because of privacy reasons, the released dataset only provides aggregate statistics of

the original genomic sequences. In particular, for each subpopulation d E [D] and for

each locus k E [Kmax], we have access to the aggregate number Ld,k of times a given

position has been succesfully read by the sequencing procedure, and the aggregate

number Sd,k of times in which variation from the underlying reference genome has

been observed in population d at position k, so that Ld,k ;> Sdk for all d, k. This

allows us compute an empirical probability Pd,k := Qd-k E [0, 1] of observing variationLd,k

at position k in subpopulation d. We generate a binary matrix X(d) E {0, }NdXKmax,

in which each row is a vector of Km.a independent Bernoulli random variables, and

each entry X i ~ Ber(pd,k).

Interestingly, different subpopulations have very different properties, both in terms of

sample size (e.g., the smallest subpopulation - FIN - has only N = 4327 observations,

while the largest - NFE - has N = 33370 observations) and in terms of variation (e.g.,
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Figure 5-5: Comparing the BNP estimator (blue line) to the unseenEST (uEST)
estimator of Zou et al. [2016] (red line) and the Bernoulli product model estimator of
Ionita-Laza et al. [2009] (grey). The data is drawn from a 3-IBP with a = 100, a = 0.25,
c = 5 with N = 3000 observations. 10 training sets of Nrain = 150, 300, 600 (left,
center, right respectively, vertical dotted gray line) datapoints were used to estimate
the population histograms and the parameters of the 3-IBP. The uncertainties are
provided by averaging over the 10 runs, and plotting one standard deviation.We picked
. = 0.05, which provided the best estimates. We see that the BNP estimator needs

comparatively less samples to obtain precise estimates of the number of new features
observed. In this case, Ntrga = 150 suffice to accurately predict up to N = 3000
number of samples. Viceversa, the unseenEST algorithm requires many more samples
to obtain reliable estimates.

in the FIN subpopulation, variation is observed only in 5.5 % of the loci, while in the

NFE subpopulation more than 51% of the loci show variation).

With the notable exception of the FIN dataset, both estimators provided similar

results. Overall, the BNP provides very narrow posterior uncertainty estimates. This

follows directly from the form of the predictive distribution of Theorem 2, which is

a Poisson distribution - which implies that the variance of the estimator is of the

same order of the mean. Since the number of distinct features is of the order of the

hundreds of thousands for our application, one standard deviation will roughly be

of the order of the hundreds. As already observed in the synthetic experiments, we

noticed that specifying a correct value of K and J for the unseenEST estimator plays

a crucial role (see Figure 5-7).
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Figure 5-6: For the six main subpopulations present in the ExAC dataset, we report
the results of the BNP estimator (blue line), the Bernoulli product model estimator
(grey line), as well as the UnseenEST estimator (green line, where we have fixed
r = 10% and 6 = 1.01, which we found to perform best among all the hyperparameters
tried). Both estimators were trained on 10 subsamples of the same size (vertical
grey line). For both estimators, we plot the expected value of the number of distinct
features as a function of the sample size, as well as one empirical standard deviation,
obtained from the 10 different optimizations.
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Figure 5-7: For the EAS dataset, we show the results of the BNP estimator (blue
line) as well as unseenEST, trained with K = 0.01 (left), K = 0.05 (center) and K = 0.1
(right). As already observed in the synthetic data experiments, different values of r
can dramatically affect the quality of the prediction.

5.3 Hierarchical estimators: computational issues and

future work

The estimators derived in Section 3.2, as already discussed in Section 4.2, require the

estimation of the three parameters a, c, 0- of the underlying beta-process prior, as well
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as the parameters rd, for d = 1, .. . , D which govern the dispersion of the frequencies

in each sub-population from the underlying common base measure (see Remark 6).

In the genetic datasets under consideration, using an empirical Bayes approach, i.e.

a direct maximization of the hierarchical EFPF of Equation (3.6) in the same way

as in the single population case is unfeasible. This is due to the fact that the simple

evaluation of Equation (3.6) requires - in the naive case - to compute one integral for

each feature. In all the datasets under consideration, the numbers of distinct features

KN is in the order of the millions for N in the order of the thousands. Even by using

the simplified version Equation (4.6), evaluating the likelihood is too expensive. The

study of alternative approaches to efficiently estimate the parameters needed for the

hierarchial estimators of Section 3.2 will be part of future study and analysis.
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Appendix A

Other models

A.1 Partition models

Within the framework described in Section 2.1, partition models are an extremely

popular class of models characterized by likelihood processes X, which allocate each

point to one and only one trait. Because of this reason, partition models have

found widespread application for the unsupervised problem of clustering. In these

applications the likelihood processes X, are typically assumed to be latent within

the generative model, and the goal is to learn posterior distributions over clusterings

(see, for example, Antoniak [1974], Escobar and West [1995], Gelfand et al. [2005] and

Gershman and Blei [2012], Hjort et al. [2010] for a review). This class of models has

also been successfully employed for prediction tasks related to rare species discovery

[Arbel et al., 2017, Cesari et al., 2014, Favaro et al., 2009, 2012a,b, 2016], in which,

instead, we assume to have direct access to the likelihood processes and the goal is to

learn prediction properties from the model.

First introduced by Ferguson [1973], the Dirichlet-multinomial process is an extremely

popular partition model, whose theoretical properties have been extensively studied

[Escobar and West, 1995, Ishwaran and Zarepour, 2002, Pitman, 2006, Sethuraman,

19941 and that has been widely and succesfully applied in several applied contexts.

Example 4 (Dirichlet-multinomial process) The Dirichlet-multinomial process
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is obtained by

1. a Dirichlet process prior,

E ~ DP(a, Po) aZOk6,k. (A.1)
k>1

From a CRM perspective, this is obtained by considering the normalized version

(NCRM) of an ordinary-component-only CRM on R+ x T with base measure

p(dO x do) = aO-e-"dOPo(d),

where a > 0 is the concentration parameter and PO is a probability distribution

on T, often referred to as the base measure of the process.

2. Datapoints are allocated to a single trait through a multinomial likelihood process,

XnIE % MUlti(E)), (A.2)

that is to say, Xn = 6 Pk with probability 0 k, Vk > 1.

Inspired by the Dirichlet-multinomial process, several others partition models have

been developed; see Lijoi and Priinster [2010] for a review.

A.2 Trait allocation models

A further generalization of the previous models can be obtained by considering a

combinatorial structure in which each datapoint can belong to multiple traits, and

to each trait with a different degree of belonging. The resulting "weighted" feature

allocation is often referred to as trait allocation. Campbell et al. [20181 provides a

theoretical treatment of this class of models, which have been applied to a several

applications (see, for example, Broderick et al. [20151, Gupta et al. [2012], Titsias

[2008], Zhou [2015, 20181).
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Example 5 (Gamma-Poisson process) The gamma-Poisson process, considered

e.g. in Titsias [2008] is obtained thorugh

1. A gamma process prior,

E)~ FP (a, c, Po) = k 6Iok , (A.3)
k>1

where, as in the Dirichlet process case, E is an ordinary-component-only CRM

on the space [0, 1] x T, p(d0 x do) = a0-le-'dOPo(d), where a > 0 is the

concentration parameter and PO is a probability distribution on T

2. Datapoints are allocated to traits through a Poisson likelihood process Xn I E

PoP(8)

XnIE) pop(E), (A.4)

where, for every n, Xn,kIOk j Pois(Ok).

Example 6 (Hierarchical Dirichlet-multinomial process (hDM))

Go ~ DP(a, Po)

OiDG O~ hCRM({Beta(rdOo,k, rd(l - 00,k)}k1,d=1,...,D) (A.5)

Xn,d Od A* MUlti(8d)

Example 7 (Hierarchical gamma-Poisson process (hGP) )

80 ~ FP(a, c, Po)

L:D8o ~ hCRM({Gam(a6O,k, cd)}k1,d=1,...,D) (A.6)

Xn, ,d PoP(sdad)
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Partition model Feature allocation

4

3

2

0

K
t

Figure A-1: Graphic representations of the three classes of models described above.
In each subplot, each row n represents an individual, and each column k a trait. The

colour of each entry (n, k) denotes the allocation value of trait k for individual n. In

a partition model (left), there is exactly on non-zero column k for each individual

n, with value 1. In a feature allocation (center), for each individual n there can be

multiple traits with value 1. In a trait allocation model (right), we further allow for
arbitrary integer values for the trait counts.

We can also apply the reults of Chapter 3 to the hGP. Let m.-,d1 x,1 n.k Then,

- e p { j i D i C d
Cd + Nd

v(dO)}

(A7)KN 1 D Oad(a).kCdo - /0(d6)
ki n 

f l x * (Nd + Cd) ad -mdk

The updated rate measure of EY is given by

D Cd a\d
v '(dO) = fl avod)

d= 1 \SN + Cd) voi(uu

The rates are conditionally independent with distribution od,kI R' " Gam(adO, Cd +

sdNd). Moreover, each jump d,k - Gam (m.,d,k + adk0,k, sdNd + Cd).
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Appendix B

Proofs

Lemma 3 Assume

I+ 1+(1 - 7rd(t))pd(tjs,rd)dtvo(ds)P(dO) < 00,

k
k>1

I(X,,d,k > 0) < 00

almost surely, Vn E [Nd], Vd C [D].

Proof: To show the thesis, we can equivalently show that

E a (Xndk > 0) < 00.
k>1

We have
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E z 1(xn,d,k > 0)]
.k>1 .I

= E [E [z 1(xn,d,k

= E [ P(xn,d,k >

=1E [Z (I - 7Fd(Od,k
k>1

= E (1 - rda~
k>1=E [E (1 - 7rd

=k (1 -

> 0) Edl

0 1IEd)]

6d,k)) 80

(s)) pd(S l0 0,k, rd)dOk]

(1 - lrd(s))pd(slt, rd)dsvo(dt)Po(dO)

< 00,

where the last step follows from the assumption of Equation (B.1).

B.1 Proof of Lemma 1

To determine the joint distribution eq. (3.1), we consider infinitesimally small balls

centered around traits {'* }k with radius e > 0 so that they are all mutually disjoint,

B(O* , e) nB(O' ,,e) = 0 for all k = k' E [KN]. Let J** := F n (UKN1 B (*, e))C and

define the following events:

El := {X.,d(B(O*/, c)) = Xf,d,k,Vn E Bd,k, d C [D], k E [KN]}, (B.4)

E2 := {Xn,d(B(0*, e)) = 0, Vn V Bdd, d E [D], k E [KN]}, (B.5)

E3 : {Xn,d(1!**) = 0, Vn V B3dk, d E [D], k E [KNI}. (B.6)

Letting E := E, 0 2n E3, it is clear that
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and

P(E) = E [P 1 (flP W(Xn,d(B(*, 6)) = Xn,, led)
d=1 k=1 n E Bd~k

(B.7)(I P(Xn,d(B( *,
ng 3k,d

D N(. o
E)) = OIEs) x Q f P(X,,d(T**) = 0|E).

d=1 n=1

From the hCRM construction, Odl(o = Ek Od,k , where the atoms {'k}k are almost

surely disjoint if the base measure PO of 9 0 is diffuse. Hence, for k E [KN],

P(Xn,d(B(V)*) =Xn,d,k IE)

= IP(xn~dl = xf,d,k)6*, (B(0*, c)) + 0 P0 (B($*{, E

=>1 (Xadl I, sd) 6, (B c)) + 0 Po(B( )
1>1 \k'=1

and similarly

P(Xn,d(B(O*, )) = 010d)

(B.9)7rd(Od,l) 6,P (B(0*, c)) + 0
1>1

Consider now the probability generating function of the measure Xn,d(k**) condition-

ally on the measure Od. This is

Gx, d( jPIg (t) =E [t*n^d(*** )d]

= J E[exp{xn,dAP,(IP*-) log(t)}|Ed]
1>1

= J (6, (IP**)E[txndTlOd] + 1 - 6,, (q**))
1>1

= f> ( d(Odk)
+ E3 txhd(xIOd,1, Sd) + 1 - ot("

x>1
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and so

P(Xn,d(qI**) = 018d) = Gxd(q)1ed(0) = 1 (1 - (1 - lrd(Od,k))k (**))*. (B.10)
k>1

Adding together eq. (B.8), eq. (B.9) and eq. (B.10), using the fact that the atoms

{l} are a.s. disjoint,

P(E) = E 1i (1 - 7rd(Od,k)) d-d(Od mk 7 hd(n,d,k Od,lAP,(B(V*,c))
d=1 k=1 ( 1 nE Bd,k

D ~KN

11 T d(Od,l) Ob *F + o Po (B ( .
d=1 1>1 . k=1

Now, conditioning on the measure 6 0, using conditional independence of the compo-

nents of the hCRM

P(E) = E [E [d11 rd(Od,l)Nd-mnd,k Od,(1)Z6V51 (B (*,
d=1 k=1 ( 1 nE Bd~k

D ~ ~ KN

111H (wrd(Od,l)6,('I*))Nd] go + o (Po(B(V*,)))
d=1 1>1 . k=1

D KN

= E 1 _ E l Fd(d, d N - h d (Insd,k (Od,I ) 6 ))( B( * ,, I)) )d
d=1 k=1 1 n d ,k

D PdKN

E (rd(Od,l36,P, ('* )Nd E80 +0 Po ( P(B(O*k E)
d=1 1>1 . .k=l

D KN

= E ( ( ( 7rd r N-e, hd (xnd,kIs ) g,( B(V)*,,E )) Pd ( srd ,00,kjd s
d=1 k=1 1>1 fR+ n ELBd~k

D ~KN

R+(7rd (S) (W)Nd Pd (SI Td, 00,I) ds + 0 rl Po (B (O* e)
d=1 1>1 I k=1
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Next, using the fact that the balls {B(O*/, E)}Ki are disjoint, and the increments of

the CRM are independent,

KN D

P( E) = fl E fl 1 7r ( s)Nd-Mdr k f hd(X*| g(B ~ k 6) ) Pd( sr, 6,
k=1 d=1 l;>1 R+ nNdmdk B(VdI tBds) o)d4

x E 11 f ({lg (S)j, ('d*)) Nd Pd (S) rd, t,d)ds
11>1 d=1 R+
KN

+0 (f Po(B(*, ))).
(k=1l

KN

=H fB *,/ R
k=1 k ([e R

D

7d r(S) Nd-mda *{,d,k E))p) s1r(, t)ds vo(dt)PO(dV))
d=1 R+ nEBd,k

X E l exp log nt (7rna(o 6, ( *))Ng Pd tS d, i)ds
t>1 d=1 +

KN

+ 0 fl Po(B(O* k)
(k=1

Evaluating the Laplace functional of 80, and using the fact that Po is non-atomic, we

get
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KN

I(E) =_
k=1 B(k,)xR

D

rlf d(,s)Nd-Md,k (
d=1 + nEBd,k

vo(dt)Po(do) x exp - j
KN

+ o rl Po (B ( *,b)
(k=1

vo(dt)
D

I1- H J r (S) NdPd (S I d, t) ds
d=1 R+

= e-<I(N,...,ND)

KN P

k=1 B(ke x R+ d=1 +

d -(S)ddk Lii hd(Xn,d,kIS)
nEBd.k

pd(s|rd, t)ds) vo(dt)Po(d@) + o (B.11)

Now, using Lebesgue differentiation theorem, the density with respect to the KN fold

product POOKN is given by

X*) PK, (B(0*, c),I..., B (O*N
,VKN4 K Po(

=lim IP(E)
CIO ]J~ Po(B(O*,e)

(B.12)

(B.13)

for POOKN almost every point 0b in the product space jKN

Lemma 4 Let 8 1 ,. .. , OD be a vector of random measures on T, and let fi, ... , fD

T -+ R+ be measurable.

Denote 8d(fd) := E Od,kf(4k). Then if Le : (fh, ... ,fD) : E[e- d=1fd(ed)] is the

joint Laplace functional of E1:D for fl:D, it holds

eSfd(4 ) Pd(s Pd, t)ds) vo(dt)Po(dV)}. -
JxR+

D

d=1 R+
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fjPo(B(O*,k) .



Proof: Let 81, . .. ., ~ hCRM((pd(.Ird,Ook)k,), e0 ~ CRM(vo, Po).

DD

LeD,...,ED (f, .J.,fD) =E f IE [eed(fd) 10] =IE [ H'Ir E [exp {--Odkfd (O)]
.d=1 .d.=1 k>1

= E~ 111711 e-(1Pd (sIrd,60,k)ds
k>1 d=1 + I

= E exp log e -Sd(Ok )pd(slrd, 00,k)ds ,

and using the Laplace functional evaluation of 60 yields the thesis.

B.2 Proof of Lemma 2

To show the equivalence in distribution of eq. (3.2) we prove that the posterior Laplace

functional of the right handside coincides with the one of the left handside. Fix D

measurable functions fi, . . . , fD :IP -- R+. We would like to evaluate

(B.13)

Now, consider the product space space (R+ x J)KN and endow it with its Borel

sigma algebra, and let PKN(.; B, x*) be the joint density on this space with respect

to the KN-fold product measure (Leb(R+) x J0 )®KN. The previous equation is thus

equivalent to computing the limit

IE [exp E-- _1 (E),(f')} IPKUKN =1B(O*, c) x B( *, E)};B, x*)
Le:DIx*, (fi:D) = lim d } k=1  0

E O P UN K=1{B(*, e) x B(*, e)}; B, x*)
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Using the results from Lemma 1, neglecting superior order terms, we obtain

E4: DjX*,40( U:D)

Im e -(N:D;f1:D) H4k=I ) Hd= R+ e-Sfd(b*)Idk(sjt)ds vo(dt)Po(d4)

emb(N,...,ND) KN ff )kEk d= R Idk(slt)ds v(dt)Po(dV) '

(B.14)

where

Id,k(S t) = W(S)Nd-md 17 h(dx >Id, Sd)pd(S t, rd),
nEBd,k

and

D

E(N:D, fl:D) = R+ ( -( esfd(O lrd(S)NdPd(slt, rd)ds vo(dt)Po(d4).
JR+XWd=1 R+

The ratios of the exponentials in eq. (B.14) yields

exp {- ['--(N1,..., ND, fl, -.-. , fD) - ,D(N1,., ND)I

D lf ()7d (S) d Pd(S It, rd)d s
= exp Lx+ 1 - ][I f -+ 7(S) NdPdsNS t, rd)ds

xIV d=1 R+ fR+ A )adS|,T $

(d L S N(Pd(S It, rd)ds vo(dt) Po(do)
d=1 R+

which is the Laplace functional of a vector of hCRM (see Lemma 4).

The ratio of integrals in Equation (B.14) is the Laplace transform of the vector of

jumps (Qk)d,k, hence the thesis follows.
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B.3 Proofs of Chapter 3

B.3.1 Proof of Theorem 1

The crucial tool is the probability generating function [PGF] to obtain the posterior

predictive distribution of O(Q'k?. Let t E R, then

G0( (t) :E[t =1 N+m,k] = E E[t+mk](B.15)

M

E [H (tP(x+m ) N' mk = e)) (B.16)

= E (t + (I - M)( - Ok)) (B. 17)
.m=1

E[(t + (I - t) (1 - 00)) I. (B. 18)

Now, using the fact that for any discrete random variable Z it holds

d' 1
P(Z = 1) = t!Gz(t)lt=o, (B.19)

it follows that

P(O X) = d (t)lj- (B.20)

The l-th derivative of the PGF is given by

tGM1(t) = tIE[(t + (1 - t)(1 - Ok))Mv"] (B.21)

M(M - 1) ... (M - 1 + 1)E[Ol(t + (1 - t)(1 - Ok))M-1 (B.22)

(M- l)!E[01(t + (1 - t)(1 - O))]. (B.23)
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Now, plugging the value t = 0 in the previous expression we obtain

P(Q(M) = llX*)_~ NI~) E [0(1 - 0k)-]

M B(l ZNk - a, M - 1 + N - ZN,k + C + a-)
1l) B(ZN,k - a, N - ZN,k + C + U)

(B.24)

(B.25)

where we are using the posterior characterization of the Beta-Bernoulli process given

in Example 3, i.e. the fact that the jumps Ok ~ Beta(ZN,k - a, N - ZN,k + C + 9)-

B.3.2 Proof of Theorem 2

Again, we consider the PGF of the random variable, U/ . For any t E R,

(B.26)

(B.27)

(B.28)

Gogo(" =X E]u I = E - M=1 )n I>)X*,

=E fl E (t' =FA'1 N+m.k~o 16/

Ik>1
I MfD6

=, E XPzN+m,k >00 N+m,k
k;>1 (M=1 ) I(m=1

and since the sum x'N+1,k +* * XN+M,k 0 only if x'+m,k = 0 for all m E [M], we

get

P(X'N+m,k Ole)

(I - 0) (1 - ( )) E exp { log(t +
I k>1

exp -(1 -) (1 - (1 - s)M )p(s)(1 - s)Nds }

(B.29)

(B.30)

(B.31)

(B.32)
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where we used the Laplace functional of 9'%. Now we can rewrite

MI-1

I- 1 s)"

m=O

and letting p'(s) =( - s)Np(s) we get

= exp

= exp

M-1

-(1 - E)

t)EF(1M=1

= exp

= exp -(1 -
M-1

t)a z
m=O

Now, taking the derivative

dtGUf)(t) =dt' N

(c + 7)N+m -
(C + 1)N+m ) L

M-1

(1 - t)a
m=O

(C + U)N+m

(C + 1)N+m

and evaluating this as t = 0 we get

(c + O)N+m-1

(c + 1)N+m-1
exp -ae (C + i)N+m-1

E- (C + 1)N+m-1m=1)

(B .39)

which is a Poisson random variable with parameter a EM (C+aiN+mn

M1(C+1)N+mn1

B.3.3 Proof of Corollary 1

Using the same strategy as the previous proof, we can write the PGF of U(M) forNr

t E JR as
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G U )

(B.33)

(1 - s)"sp'(s)ds}

F(1 + c)

-- 9) r(C + 0-) e

(B.34)

ds}

(B.35)

(B.36)

(B.37)
(c + U)N+m

(c + 1)N+m

(B.38)

(UN)= lIX*)
M

Th aL
m!

1( -SN+c+or+m-1

- 1 -t) ( -(1 -s)m)p'N(s)ds



GU(M>(t) =E NX*

M

=~~ ~~ E t-1P X'N+m,k
.k;>1 (m=1

= ne 0) + -]

(B.40)

(B.41)

Since conditionally on B0, 4 '+1,k + +Mk Binom(N, 6'), we have

XN+m,k = vI 0) (Or( M-r, (B.42)

=E H ((t - 1) r

= E exp {log

= exp -a(1 - t)

= exp - a(1 - t)

(O 1)(1 - I)M-r +

(t - 1) (

1)1

(6 /)(1 - o )M-r +

) (1~ - O)M-p'N(O)dO}

(M)
T rJ

F(1 + c)
F(1 - u)F(c + a) J Q-or-1 (1J[0,1]

(B.43)

(B.44)1)

(B.45)

- o)N+c+c-+M-r-ldO

(B.46)

= exp -a(1 - t) ( )
T r

(1 - u)r 1 (c + U)N+M-r

(C + 1)N+M-1
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G (M(t)
UN,r

(B.47)

M

p E
(M=1



B.3.4 Proof of Theorem 3

- E[trm1 XdNd+m [tX,Nd+mk |Eo]1

E [E [E[t'dNd+mkI d]1o11

=E [E [f

~EEH
. m=1

=E [E [ m
. M=1

(tP(X'N+m - IId) W(XN+mk - 0 led)) eo]]

(t + (I - t)(1

= E [E [(t + (1 - t)(l - Od,k))" 1e0]

Now, the l-th derivative of the PGF is given by

dt' dNdk M
d

-t IE[(t + (1 - t)(1 - Od,k))A1I

MAd(MAd - 1) ... (Md - 1 + 1)E[,4Ok(t + (1 - 0(1 - Od,k))"d-1] (B.54)

(n )E [E [O,k(t + (1 - t)(I - Od,k))d-eollO]] . (B.55)

Plugging the value t = 0 in the previous expression we obtain

[- E [O,k(l - Od,k)d-'|1e 0]]

( Md) (Zd,Nd,k + TdO)1(N - ZN

( L ] (zA + 

(B.56)

d,d,k + Td(l - 0))Md-1
V3 BP (dO; , a, c),

(B.57)

where we are using the posterior characterization of the Beta-Bernoulli process given

in Example 3, i.e. the fact that the jumps 9 k - Beta(zN,k - o, N - ZN,k + C + C)-
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G (Md) (
Od. Nd. k

- Od,k)) 1e0 1

(B.48)

(B.49)

(B.50)

(B.51)

(B.52)

(B.53)

Td)M,

(Md)

:=E t Od7Nd kJX*

I N]

P(O XA/Md



B.3.5 Proof of Proposition 4

We consider the PGF of UT, for t E R,

Gu>~)(t) = E [tU X*

=E [ t I( d =1>),Nd+m,k I , - - E D ]

D Ad
= Et + (1 - t) H fj P(-"6,Nd+m,k

k>1 . d=1 m=1
Oid)6491, ... I 

E D I

(B.58)

(B.59)

(B.60)
I

D

E t + (1 - t) 1(1 -Od,k) ] (B.61)
.k21 .d=1..

. D

= E [i [ + (1- t)J7JE [(1 - ddk)MA'o]]] (B.62)
k>1 . d=1

(B.63)

where we have used the fact that the random flips x"' are conditionally independent

Bernoulli random variables. Now, since 0dkI00,~ Beta(rdOo,k, Nd + rd(l - 00,k)),

E [(1 - Od,k)'d| ] -
F(Nd + rd)

F(rdOo,k)F(Nd + rd(l - 00,k))
x

Xf (I - )MAd QrdOok-1( - O)Nd+rd(1-0.k)-1d6

(Nd + rd(1 - 00,k))Mld

(Nd + rd) Md

Now combining this with the Laplace functional of the Beta process,

G U (t) = E exp log t

= exp{

+ (1- t) (Nd + rd(l -- 0,k))M

d=1 (Nd I )Md

- (Nd + rd(1 - O))M d

1 (Nd + rd)Md

(Nd + rd(l - O))Md(Nd + rd(I -)M v3BP (dO; o, a, c)l
(Nd rd)Md

Following the same steps as in the previous proof, the results follows.
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(B.65)

(B.66)

(B.67)

(B.68)

(B.69)

-0(0 -- t) J,
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