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ABSTRACT

Let G be a connected unimodular Lie group, and T
a nositive definite distribution on G. Then the first
main result of this thesis is that T may be written as
a finite sum of invariant derivatives applied to bounded
functions. For G connected, semi-simple and with finite
center, and K a maximal compact subgroup, we use this
theorem to show that the domain of definition of positive
definite distributions can be extended to include
Harish-Chandra's Ll-type Schwartz space Cla).

Restricting these distributions to the space Il(G)
of K-biinvariant elements in C1(G) we are able to use
the recent harmonic analysis results of Trombi and
Varadarajan to prove a spherical Bochner theorem for
positive definite distributions on G. This uses and
extends certain partial spherical Bochner theorems
derived by Godement.

Since Il(G) is only one member in a series of
Schwartz type spaces IP(G), 0 < p < 2, where

1
1°(c) « P (G) when p < p', our final result

characterizes which Ip(G) spaces a given positive
definite distribution can be extended to by examining
the support of its spherical Bochner measure. This
theorem includes the Spherical Bochner theorem for
tempered distributions originally proved by Muta.
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Introduction

Suppose T 1is a positive definite distribution on
R™. Then Schwartz [14] proves the following sequence

of facts about T:

(1) T 1is a "bounded" distribution,
(2) T 1is a tempered distribution, and
(3) there is a unique tempered measure on ﬁln

such that T[¢] = [...J ¢(x)du(x) for all test functions ¢,
‘&l’l
where ¢ 1is the fourier transform of ¢ (the Bochner

theorem).

We generalize the above situation in the following
way. Suppose G 1is a connected, unimecdular Lie group.
In Chapter I we prove that any positive definite distribution
T on G may be written as a finite sum of invariant
derivatives applied to bounded functions. This is

essentially (1) for our more general situation.

To obtain (2) is more difficult since the notion of

a "rapidly decreasing function" on an arbitrary Lie group



is not well defined. Hence from this point on we
restrict ourselves to the case where G 1is connected
semi-simple and has a finite center, for then Schwartz
spaces do exist. The complication is the existence of

more than one Schwartz space - for each 0 < p < 2
!
there is a space CP(G) =LP(G), where CP@)e CP ()

when p < p', and where €r2(G) roughly "corresponds"

to the usual euclidean Schwartz space AX(IRfU. These
spaces, and their K-biinvariant subspaces I°(G), are
described in detail in Chapter III, and from these
descriptions it becomes clear that each positive definite
distribution on G extends to a continuous linear

functional on e-l(G). This generalizes (2).

In the W™ case proving (3) from (2) involves two
main facts: (a) the fourier transform f > £ gives
an isomorphism of ,Z (R™) onto itself, and (b) any
positive continuous linear functional on /3 (Win) must
be a tempered measure on Rn. For suppose that T 1is
positive definite on R ™. It is not hard to show that
the continuous functional ‘II\‘ defined on ,8 (R™ by

6[?] = T[f] for all f € ,&(ﬁ{n) is positive, and



hence (b) gives the desired result. The first problem
which arises in trying to carry this argument over to

the semi-simple Lie group case lies in (a), for although
it is possible to define a Fourier transform on e Py,
it is as yet unknown what the image space is, and whether
the mapping is injective. The only known result in this

area at the moment 1is {20], where positive results for
C;E(G), ¢ of real rank one, are obtained.

Strong results of the form of (a) have, however,

been obtained recently by Trombi and Varadarajan [17],

for the spaces Ip(G), 0 < p <2, these results
generalizing earlier theorems for p =1 and 2 obtained
by Harish-Chandra and Helgason. Trombi and Varadarajan
define spaces Z(Eﬁa), e > 0, consisting of functions
defined on certain sets 318 of spherical functions

such that the spherical Fourier transform is a topological
isomorphism of IP(G) onto Z(3F°) for 0 <p <2 and

e = (2/p) - 1. Thus, considering the restrictions to

Il(G) of positive definite distributions, we find that
(a) holds true. Of course for a general positive definite

distribution T this procedure can only be hoped to yield



an integral formulation for T[¢] where ¢ 1is
K-biinvariant. It does, however, yield the full
formulation when T is K-biinvariant. The Z(FF)
spaces are fully described, and a certain amount of

geometry is performed on them, in Chapter Iv.

We have not tried to show (b) for the Z( F%)
spaces, and indeed there is reason to believe that all
positive continuous linear functionals on ZY.}E), e > 0,
are not measures (see the discussion at the end of
Chapter VI). In place of this we use the partial
Bochner theorem of Godement [7(b)] which, for T a
positive definite distribution on G, gives the existence

of a unique measure u supported in 311 such that

TLo*y] = J o¢ypdu
}l

for all K-biinvariant test functions ¢ and V.

There is no property of "temperedness'" given in this
theorem, and the heart of proving an analogue of (3) is
in defining a notion of a measure on EFl being of

"polynomial growth", and then showing that the above u
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is such an object. The Godement-Bochner theorems are
proved in Chapter II with somewhat different proofs
than the originals and Chapter V applies them as
indicated above to arrive at the following

generalization of (3):

The Spherical Bochner Theorem. Suppose T 1is a

positive definite distribution on G. Then there exists
a unique W-invariant positive regular Borel measure u
of polynomial growth on 1’, the set of positive

definite spherical functions, such that
~ 1
T(¢] = J;°¢du, o € I7(G).

This correspondence is bijective when restricted to
K-biinvariant distributions, in which case the above

formula holds for all ¢ € Cll(G)-

In Chapter VI we prove a result relating the
highest 1°(c) space that a positive definite
distribution T can be extended to with the support

of its spherical Bochner measure Uu. The result is
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that T € (Ip(G))' (the continuous dual of Ip(G))

if and only if supp u = F% where € = (2/p) - 1.
While this seems to be a very natural theorem in light
of the Trombi-Varadarajan result, the details are
surprisingly complicated. It should be noted that for
p = 2 this result was obtained by Muta [13] in much

the same way as the euclidean Bochner theorem is proved.

For the convenience of the reader we have included
a rather lengthy section on notation and preliminaries,
this being essentially an elaboration of the same

section in [10(e)].
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Notation and Preliminaries

§1, General Notation. The standard notation Z, R

and C shall be used for the ring of integers, the field
of real numbers and the field of complex numbers,
respectively; & ¥ 1is the set of nonnegative integers,
R* the set of nonnegative real numbers. If S is a
set, T a subset and f a function on S, the

restriction of f to T 1is denoted flT.

If S 1is a topological space, then (R (T) denotes
the closure of T in S, Int T the interior of T, and
bdry T the boundary of T. The space of continuous
functions from S to &€ is denoted by C(8), CC(S)
the set of those of compact support. The support of any
f € CC(S) is denoted by supp f. Let ® be a homeomorphism
of S onto itself, and let f : S » S, T : C(S) = € and

A : C(S) - C(S), We put

#2(s) = £(o~L(s)) s & S
-1
e = mr® £ & C(s)
o o=l ¢
AYf = (Af ) £ € C(S)

and say that f is invariant under ¢ 1if f<p = £,
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and similarly for T and A. If Y is another homeo=-

morphism of S onto itself, then % = (£)°%,

o¥ _ (p¥)® ang A% = (a¥)?.. similar notation will be

T
used for spaces other than C(S) when the terms are

definable (as in §5).

If S 1is a locally compact hausdorff space, we
say that f € C(S) "vanishes at infinity" if, for each
€ > 0, there exists a compact set C such that
|f(s)| < € for all s ¢ C. The space of all continuous
functions on S which vanish at infinity is denoted by
Co(S). Following Halmos [8] we call the o-ring generated
by the compact subsets of S the Borel sets of S, and
any measure defined on these sets, and finite on compacts,
a Borel measure. A Borel measure u 1s called "regular"
if inf {u(U) : E € U, U open Borel set}

= sup {u(C) : C € E, C compact}

for all Borel sets E. Then the regular Borel measures
correspond in a one-to-one fashion with the positive
linear functionals on C_(S) [8, Theorem E, p. 2u81.
Finally, for E a topological vector space, let E' be

its continuous dual.
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Convex sets, Let C be a convex subset of a real or

complex linear space E. Then a point x € C is an
"extreme" point of C if given any y and z in C
and 0 < a <1 such that x = ay + (l-a)z, then

x =y = 2z, Then the following version of the
Krein-=Milman Theorem holds true: Let C be a compact,
convex subset of a locally convex topological vector
space (real or complex). Then C equals the convex

hull of its extreme points [4, p. 44017,

§3. Representations, Let G be a locally compact

group which is countable at infinity, and E a locally
convex, complete, Hausdorff topological vector space
over € . Then a (continuous) representation m of G
on E 1is a homomorphism of G into Aut E such that
(g,v) » m(g)v of G x E+ E 1is continuous. Note that
for E barreled the continuity condition is equivalent
to having g + m(g)v of G + E continuous for each
fixed v € E [18(a), p. 219]. A representation
1ifts to a homomorphism of the algebra of Radon measures
on G with compact support into the continuous
endomorphisms of E by w(u)v = é m(g)vdu(g) (Bochner

integral), i.e., for each T € E' (the topological dual
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of E) we have T[n(u)v]l = f T[w(g)vldu(g) [18(a), p. 22117,
G

A representation ® of G on a Hilbert space )2
is said to be unitary if w(g) is a unitary operator
for each g € G, Such a representation is called
ipreducible if there are no proper closed subspaces
of E which are invariant under all the operators
{r(g) | g € G}. It is easily seen that a unitary
representation is irreducible if and only if any
projection operator commuting with all the operators

f{r(g) | ¢ € G} 1is either zero or the identity.

Finally, for K a closed subgroup of G, we define
a unitary representation ® of G on M to be of
class 1 if it is irreducible and there exists a vector
e # 0 such that m(k)e = e for all k € K (i.e., e 1is

a K-fixed vector).

§4, Positive Definite Functions, Let G Dbe an

arbitrary group with identity e, not necessarily topologidal.
A complex-valued function f on G 1is said to be
positive-definite (written f >> 0) 1if the inequality

m m -1

(1) pX pX a, f(x

g1 ka1 0K W 20
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holds for all subsets {x;,...,x } of elements of G
and all sequences {al,...,am} 6f complex numbers.

For such functions the following properties hold:
[12(b), Theorem 32.4 p. 255 and Theorem 32.9 p. 259]

(2) £(e) * 0
(3) |£(x)| < f£(e) X € G

(4) £(x™1) = X7 x € G

(5) T >0

(6) a,f; + ayfy >> 0 for a;, a, >0
(7) £1£5, >> 0

Let G be a unimodular locally compact group with
Haar measure dx. Then for g, h € Ll(G) and f a locally

integrable function on G we define

(8) g¥*h(y) = é g (x)h(x~Ly)dx v & G
(9) g*(x) = g(x'I) x &€ G
(10) £Le] = é £(x)¢(x)dx ¢ € C,(a)

We now say that a locally integrable function f is

integrally positive definite if
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(11) f[¢*¢*] >0 for all ¢ € Cc(G)'

If f is essentially bounded then (11) holds true for

211 ¢ € LY(G) and thus by [12(b), Theorem 32.36, p. 275]
we have that f 1is integrally positive definite and
essentially bounded.if and only if f =g a.e. (almost
everywhere) for some continuous g >> 0. Moreover, the
continuity condition on g may be dropped in view of
[12(b), Theorem 32,12, p. 260], It is important to

note that if f 1is continuous, then (11) implies (1),

so that these two notions of positive definiteness are

equivalent in the continuous case.

Now each positive definite f Z 0 gives rise to
a unitary representation of G as follows: Let V
denote the set of all complex linear combinations of
lert transiates fU(*)  (x € G) of f. We define a
scalar product on V by the formula

L{xy) L(yy) -1
(12) (f a,f , & B, F Y= I a,B. f(X77Y,)e
J k J7k 73 Yk
J Jk

Now if F € V such that (F,F) = 0, then (F,G) = 0

for all G V. Hence for each x € G we have
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F(x) = (F,fL(X)) =0 so that (F,F) = 0 <=> F = 0,
Hence V 1is a pre-hilbert space, and we let }# be
the completion., Each x € G gives rise to an

L(x) of V; this endomorphism

endomorphism, F + F
preserves the innep product ( , ) and extends
uniquely to a unitary operator r(x) of »

Moreover T 1is a unitary representation of G on N,

and if e0 € )+ corresponds to f € V we have

f(x) = (eo,n(x)eo), for all x € G, Clearly the complex

linear combinations of w(x)eo‘ (x € G) are dense

in )4 [10(a), Theorem X.4.4 p. 414],

§5. Manifolds. Let M be a C* manifold satisfying

the second countability axiom. The space £ (M) denotes
the space of all ¢” funections on M, topologized by
means of uniform convergence on compacts of functions
along with their derivatives. Let 0 (M) be the space
of all ¢® functions of compact support on M, and for
each compact subset H of M, ¥, (M) the subspace of
©(M) of functions with support in H. Then each

Dy (M) is given the topology induced by &(M), and
O(M) 1is given the inductive 1limit topology of the
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'QH(M) spaces., All the above spaces are locally
convex, complete, Hausdorff, topological vector spaces;
in particular, & (M) and 13H(M) are Frechet spaces,
For each m > 0 we also define NM™(M) as the space
of m-times continuously differentiable functions of
compact support on M, topologized in a manner similar
to QMWM).

Q' (M) denotes the dual space of (M), called
the space of distributions on M. g'(M) denotes the
dual space of &E(M), and can be identified with the

distributions on M of compact support,

Let Tt be a diffeomorphism of M onto itself,
and take f € €M), T € Q'(M) and D a differential
operator on M, Then ' e g, T € Q'(M) and D'

is another differential operator on M (see §1),

Suppose M has dimension m and w 1s an m-form

on M of maximal rank, that is, wp(xl,...,xm) £ 0
if Xl,...,Xm are arbitrary linearly independent tangent

vectors at an arbitrary point p & M, Let D be a
differential operator on M. Then there exists a unique

differential operator tD on M, called the adjoint of D,
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such fthat

(1) / (Df)gw = / £(°Dglu
M N

whenever f and g are two c” functions on M, at
]

least one of which has compact support [10(a), p. 45017,

Let M be a pseudo=-Riemannian manifold with
Riemannian measure dx and Laplace-Beltrami operator A.

Then & 1is symmetric with respect to dx, that is,
(2) ; (Af)(x)g(x)dx = f £(x)(Ag)(x)dx
M M

whenever f and g are two c” functions on M, at
least one of which has compact support [10(a), Prop. X.2.1,

p. 387]. For a relationship between (1) and (2) see
§7 (5).

If V 1is a vector space over R , ,8 (V) denotes
the space of rapidly decreasing functions on V with
the usual topology [14, p. 233]. Notice that if ¢ > 0
in ,3 (V), then there exists a sequence {¢n} in ,& (V)
such that [@il + ¢ in /& (V). This is a consequence of

the proof of [14, Theorem XVIII, p. 276] when noting
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that ,& (V) 1is a Frechet space.

§6, Lie Groups. If A 1is a group and a € A, L(a)

denotes the left translation g + ag and R(a) denotes

the right translation g + ga'l on A, If B 1is a

subgroup of A then A/B denotes the set of left

cosets aB, a € A. Lie groups will be denoted by

Latin capital letters and their Lie algebras by corresponding
lower case German letters, If G 1s a Lle group and 3 its
Lie algebra the adjoint representation of G 1s denoted

by Ad (or AdG) and the adjoint representation of q by

ad (or ads ). The identity of G 1s denoted by e.

Let G be a connected semi-simple Lie group with
finite center, a the Lie algebra of G, and < , >
the Killing form of § . Let & be a Cartan involution
of 3. This is an involutive automorphism such that the
form (X,¥) + - <X,0Y> 1is strictly positive definite
on q x Q. Let q = R + p be the decomposition
of Q into eigenspaces of 8 (a Cartan decomposition)
and K the analytic subgroup of G with Lie algebra R .
Notice that any maximal compact subgroup Kl of G 1is

associated with some Cartan decomposition of a

[10(a), p. 218].
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*
Let Ot < @ be a maximal abelian subspace, OU

* *
its dual, Ot the complexification of o, L.e. the
space of R -linear maps of OU 1into C . Let
A = exp OU and log the inverse of the map

exp : OU + A, For Aeot* put
q,=xeg | [H,X] = A(H)X, for all H €O },

If A # 0 and 91 # {0} then A 1is called a (restricted)

root and m, = dim (9)«) is called its multiplicity.

Let Q¢ denote the complexification of q . If

#*
A, w € Ot let H, € Ol¢ be determined by

A(H) = <H,,H> for H € OU and put <A,u> = <H,,H >,

Since < , > 1is positive definite on P we put

1/2 for

Al = <>‘,)\>1/2 for X € O'L* and |X| = <X,X>
XepP . Let ot' be the open subset of OU where all
restricted roots are ¥ 0., The components of &X' are
called Weyl chambers, Fix a Weyl chamber 0\+ and call

a (restricted) root o positive if it is positive on cr_*'.
Let I denote the set of restricted roots and tt the

setsof positive roots. A root a € Z+ is called simple
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if it is not a sum of two positive roots. Let p denote
half the sum of the positive roots with multiplicity,

= = T:@'—
i.e. ?aéz*mum Let % aioa“'“ g

and let N and N denote the corresponding analytic
subgroups of G. Let M denote the centralizer of A
in X, M' the normalizer of A in K, W the (finite)
factor group M'/M, the Weyl group. The group W acts
as a group of linear transformations of O and also

on oL:-_ by (sA)(H) = \(s~tH) for HeOL, L€ ctt-,

and s € W. Let w denote the order of W, AY = exp o’

then we have the decompositions

(1) ¢ = K (aY)K (cartan decomposition),

(2) G = KAN (Iwasawa decompesition).

Here (1) means that each g € G can be written

g = k,A(g)k, where ki, k, € K and A(g) € e ahy;
here A(g) 4is actually unique, In (2) each g € G can
be uniquely written g = k(g)exp H(g)n(g), k(g) € K,
H(g) € O, n(g) € N,

* £+ +
Let m € M' satisfy Ad(m )& = - & , and let

* *
S denote the coset m M in W. Then since as€ ¢
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whenever o« € I and s € W, it is easily seen that

£ _+
s (') = = t¥  and nence

(3) ps - P

The number £ which equals dim OC 1is called the

real rank of G and the rank of the symmetric space G/K.,

§7. Convolutions and Normalization of Measures.

with G as in §6 it is convenient to make some conventions
concerning the normalization of certain invariant measures.
Let & - dim & . The Killing form induces Euclidean
measures on A, OUL and O'C*; multiplying these by the

-%/2

factor (2m) we obtain invariant measures da, dE

and dA, and the inversion formula for the Fourier transform

(1) FOO = f f(a)e-ir(log 2l4, \ e at*

A

holds without any multiplicative constant,

(2) £(a) el (log 2)gy red(a.

=/
m*

We normalized the Haar measure dk on the compact group
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K such that the total measure is one. The Haar measures

of the nilpotent groups N, N are normalized such that
(3) 6(dn) = dn, é e'2°(H(“))dH =1

The Haar measure dg on G can be normalized such

that

(4) [ £(g)dg = [ f [ £(kan)e2P(1°8 @grgadn £ € V(G).
G KxAxN
on G/K there exists G-invariant measure dx (up

to a constant factor) such that

(5) [ f(g)dg = [J (S f(xk)dk)dx £ € c,(G)
G G/K K

when dx 1s suitably normalized, But on G/K we have

a unique Ge-invariant Riemannian structure induced by

<, > [10(a), Chap. V, §5]; thus the Riemannian measure

induced on G/K (being G-invariant) is proportional

to dx.

If S 1s a locally compact space with a measure u

and g > 1, then LP(S) denotes the eet of measurable
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functions f such that Iflp is. uy-integrable. Moreover
we let Ch(G), L9(¢) and I,(G) be the subspaces of
K-biinvariant functions in C_(6), L'(G) and ‘@ (G)
respectively, These subspaces are all commutative

under convolution,

For f 1locally integrable on G we define

(6) f (g) = f [ f(k,gk,)dk,dk e}
B) = fwk 18K/ &
(7) tV(g) = (g™ ) g€ G.

We easlly see that for f, ge Ll(G)
(8) (rV2g") = (g*r)"

§8, Differential operators. If A is a Lie group D(A)

denotes the algebra of all left invariant differential
operators on A, If B & A is a closed subgroup, D(A/B)
denotes the algebra of A-invariant differential operators

on A/B.

The notation being as in §6 let DO(G) denote the
set of D € D(G) which are invariant under all right
translations from K. There is a homomorphism wu of

DO(G) onto D(G/K) such that
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(u(D)f)e m = D(fe w) for DE Dy(G), f € £ (a/K),

1 denoting the natural mapping of G onto G/K., Let
w be the Casimir operator on G [10(a), p. 451]. Then
p(w) 1is the Laplace-Beltrami operator on G/K when

using the Riemannian structure on G/K induced by < , >.

Let Xl,...,Xn be any basis of § . Then

e e

(x,ee.x," | ey 2 01 1is a basis of D(G) when each X,

is considered as a left invariant vector field on G.

§9, Spherical Functions, The notation being as in §6

jet a non-zero function ¢ € c(G) be a (zonal) spherical

function if it satisfies any one of the following equivalent

conditions:

(1) é ¢ (xky)dk = ¢(x)¢(y) X,y € G
(2) ¢ 1s K-biinvariant, ¢(e) = 1 and
£ = (f f(g)e(g"H)dge  f ecy (@
(3) ¢ 1is K-biinvariant and L : £ =+ é f(g)e(g)de

is a homomorphism of c?(() onto C.
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(4) ¢ is K-viinvariant, C , ¢(e) =1 and
D = (Do(e))é D € Dy(G).

Notice that (1) and (4) are equivalent by [10(a), Prop. X.3.2,
p. 3991, (3) and (4) are equivalent by [10(a), Lemma X.4.2,

p. 40914 and (1) implies (2) implies (3) using §7 4y,

Let F1 be the set of all bounded spherical
functions and 4 the subset of all positive definite
spherical functions. Then giving ® the Godement
topology, that is, the weak* topology as a subset of
1L7(G), makes ® into a locally compact Hausdorff space
[(7(b), p. Tl. Now suppose ¢ >> 0 with the assoclated
unitary representation T on H' , and ey € H such

that ¢(x) = (eo,ﬂ(g)eo) for all g € G. Then

¢ € P <=> n 1is class one with ey & K-fixed vector

[10(a), Theorem X.4.5, P. 414},

For any measurable funetion £ on G we define is

spherical Fouriler transform f by
(5) riel =/ £(g)o(g™1)de

for all spherical functions ¢ for which this integral
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makes sense, In particular, 1f f € L}(G), then ; is
defined on I, hence on ¥ , and (using obviously
abusive notation) we have Ee CO(P) [(7(b), p. 71.
Moreover, the following properties are quickly verified
for f, g € Ll(G):

L)

(6) M =7 on 3!

Py K l A :
(7) f*[¢]= f[¢*] for ¢€& F~; hence f*=rf on ¥

A A

feg on 31 if £ 1is right K-invariant

(8) (f*g)
or if g 1is left K-invariant,

Hence f €& Ll(G) and right K-invariant implies
* A A
(9) (e*e™) = |£]° on ¥,

There exists a basic parametrization and formula
for the spherical functions given by Harish-Chandra:

the spherical functions are precisely the functions
(10) ¢,(g) = / exp (ir-p)(H(gk))dk, g € G
K

*
where X € Ol 1s arbltrapy; moreover, ¢A = ¢u if
and only if A = sy for some s & W, Hence ¥ and
*
3-1 can be viewed as subsets of W\Q®¢, or by an obvious

*
abuse of notation, as subsets of Olg. Certaln properties

are;
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(11) ¢_l(g'1) = ¢, (g) A€ Ot: , £ €G
(12)  o_ (&) = ¥3(&) \€OLe , g€G

(13) 1€ ® implies ) and X are We¥l gPolip conjugate

(14) If w 1is the Casimir operator on G, then

*
wd’x = - (<A’)‘> + <p,p>)¢x A€ O-Lc

(15) Helgason-Johnson Theorem: Let Cp be the convex

#* %
hull of {sp | s€ W in o . Then F'=ar +1icC,.

Remarks: (11) is [9(a), Lemma 45, p. 29473 (12) follows
by easy computation; (13) follows from (11), (12) and
§4(L4); (14) is [9(a), Cor. 2, D. 2711; and (15) is

[11, Theorem 2.1, p. 587].

In addition to the Godement topology ¥ also nas
a topology induced by the Euclidean topology of Gr:}
That these are the same 18 proved as follows: since both
topologies are hausdorff locally compact, then in each
case the weak topology generated by the appropriate CO(1P)
space equals the given topology. Hence we have only to
show that CO(‘F‘) is the same space in both ¥ -topologies.

But this will follow when we show that
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(16) R=¢|re 1,(6)}

satisfies the conditions of Stone's theorem on '1°'using
either ¥ -topology. For the Godement topology the
assertion is easily seen as true since R contains

all conjugates from (7). For the Euclidean topolagy

we need only demonstrate that for each f € IC(G) we
have ; is continuous and vanishing at infinity. The
continuity is easily verified using the compactness

of the support of f. Now let w be the Casimlr operator

on G, Then

(w8) (8, = / (u£)(g)$_y(g)dg from (5) and (11)
G

J (wf)(xK)¢_A(xK)dx from §7 (5)
G/K

J f(xK)(w¢_k)(xK)dx from §5 (2) and §8
G/K

- (<A,A> + <p,p>)§(¢k) from (14),

But wf € Ic(G) gives (wf) is a bounded functdan
on ¥ . Hence the above equation implies that f wvanishes
at infinity on “® in the Euclidean induced topology.

Hence the two topologies on ¥ are the same.

From (11) we may write
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(A7) £ = S £(g)é_,()de.
G
Then for f €& Ic(G) we have

(18) 1(g) = Fe () | c[Pan gec,

Ly
“*
*
where |c(>‘)|'2 = ¢(A)e(=A) for A €& OL and

(19) c(A) = é exp (-(ii+p)(H(W)))dA e or .

We now define two functions which will be very

important later on,

(20) E(g) = é exp (-p(H(gk )))dk, g &€ G

(21) o(g) = |X| where g =kexp X, k€K, X& @,
Notice that Z= = ¢A for X = 0, Certain propertlies are:
(22) = and @ are K-biinvariant.

(23) o(xy) < o(x) + a(y) , x,y € G,

(24) 1 < =(a)exp (p(log a)) < c(l+c(a))d for some d > 0,

+
¢c >0 and for all a e QR(A).

(25) There exists r > 0 such that

! 2(g)2(1+a(g)) Tdg < = .
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(26) On any compact C &€ G there exists ¢ > 0 such that
E(y,xy,) £ ¢E(x) for all y;, ¥, € C, x & G.
(27) On any compact C € G there exists d;, d, > 0 such

that dl(l+o(xy)) <1+ oa(x) < d2(1+o(xy)) yeC, x €G,

Remarks: (22) for o 1is [18(b), p. 661; (23) is
[9(d), Lemma 10, p., 15]1; (24) is [18(b), p. 154]; (25) is
[9(d), Lemma 11, p. 16]1; (26) is [9¢c), Lemma 32, p. 108];

and (27) is [18(b), Cor, 8.1.2.2, p. 671,

§10., Distributions on Lie Groups. Suppose G 1s a

separable Lie group. Then the topologies on ¥ (G)

and £L(G) can be deseribed by means of the left (or

right) invariant differential operators on G (5, Prop. 2,
p. 593]. Moreover, both ®(G) and & (e) are reflexive
topological spaces [5, Prop. 3, p. 593]. Let f,g € £(G),
one of which has compact support, and let D (resp. E) be

a left (resp. right) invariant differential operator on G.

Then
(1) D(f*g) = r#(Dg) and E(f¥*g) = (Ef)*g

both follow from the mean falue and dominated convergence
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theorems, It follows that if ¢n + ¢ and wn + Y

in ©(G), then ¢ *y_ > ¢¥y in BVG),

Since P(G) and &E(G) are reflexive, then the
strong duals “PQ'(G) and £'(G) are both barreled
(16, Prop. 36.4, p. 373]. Furthermore, if dx 1is a
left haar measure on G, then a function f, loeally
summable with respect to dx, can be identiflied with

the distribution Tf € Q'(G) by

(2) Telo] = J ¢(x)f(x)dx ¢ € QN(G).
G

Suppose T, S € AQ'(G), one of which has compact support.

We may define the convolution T¥S € Q'(G) by
(3) T#S[¢] = T[xg(S[y][¢(XY)])

[18(a), p. 489]. Convolution is associative but not

necessarily commutative, and clearly
(4) support (S*T) ¢ (support S)e(support T).

For convenience assume G to be unimodular., Then

if T e ') (resp. &£'(G)) and f € ©(G) (resp. &£(G)),
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then f*T and T*f are C_ functions (as in (2))

given by

T¢a[¢] = FPo*a]
(6)
a*T(¢] = T[G*¢], a,6 € QQ(G), T € ¥0'(G).

For each differential operator D on G we let

tD be the adjoint with respect to Haar measure on G.

Then given T € NR'(G) we define DT € Q'(G) by
(7) DT[¢] = TL*Ds]1, ¢ € 1O (a).

In particular, tX = «X for X either a left or right
invariant vector field., If 6 € '(G) 1s defined by

6[¢] = ¢(e) for ¢ € Q(G), and if X (resp. ¥) 1is a

left (resp. right) invariant vector field on G, we have

XT = T®(X6) and YT = (YS§)*T, Associlativity then gives
X(T*S) = T#(XS) and Y(T#S) = (YT)*s for S, T € Q'(G),
one of which has compact support, Hence D a left invariant
differential operator, and E a right invariant differential
operator, imply

D(T#s) = T*(DS)
(8)

E(T®s) = (ET)%*S, T and S as above.
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v
Given T € M'(G) we also define T € ©Q'(G) by

TCS] o€ D),

(9) Tl6]

Let G be a connected, semisimple Lie group with
finite center, and K a maximal compact subgroup. Then
L(k;)R(k,)
we say T 1s Kebiinvariant if T = T for all
kl, k2 € K, If T and S are both K-biinvariant then
T#S = S*T, with the same proof as in [10(a), THeorem X.4.1,
p. 408]., Moreover,

L(kqy)R(k,) L(ky) R(ky)

(10) (T#®S) = T %S

so that T#S is K-biinvariant if and only if T 1s
left K-invariant and S 1is right K-invariant., Also,

T Ke~biinvariant gives

(11) 10671 = T(61 ¢ € Q).
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Chapter I.

Positive Definite Distributions

Let G be a connected unimodular Lie group. Then

a distribution T 1is said to be positive definite (written

T >> 0) if and only if

(1) TE¢*¢*J > 0, ¢ € Q).

In this chapter we will show that such distributions can
be written as sums of left and right invariant differential
operators applied to bounded functions (Theorem 1.6). We

start by proving some rather general results on '

and &'.

Lemma 1.1. Suppose T € ©'(G) and S € £'(G). Then

the mappings

upt D > & by ¢ - o*T
vg N + 0 by ¢ ~» ¢*§

v
Wi : N - E. by ¢ > T*¥¢ are all continuous.

v
Proof: First consider wug : D + & by ¢ > ¢*¥T. It
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suffices to show that ¢ - ¢*¥ is continuous from 13H
into e. for each compact set H in G. Hence for

each right invariant differential operator E and each
compact set C in G we have to show that there exists

a continuous semi-norm p on 13}{ and M > 0 such that

() sup |E(¢*T)(x)| < Mp(e), o€ Q.
x C

But we have E(¢*¥)(x) = (E¢)*¥(x) = %[y][E¢(xy-l)] =

-1
T[y][E¢(xy)]=T[(E¢)L(x ). Now if se 4, and

-1
x € C we have (Ecb)L(X )é 0 1+ But T restricted
€ H

to P -1 is continuous, and hence there exists M > 0
c H

and Dj’ jJ=1,...,m, left invariant differential

operators such that

|TCw1| < M sup Dyl , ve Q _;
yeG J C

j=1l,...,m

H

-1
Now applying this formula for ¢ = (Ecj))L(X ) gives
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v -1
sup |E(¢*T)(x)| = sup IT[(E¢)L(X )]|
x €C x € C
L(x™1)
< sup |[M sup ID, ((E¢) )| |
x € C y€G J
J=1l,...,m
=Msup lD.Ed)(y)l, ¢€nH
y € G J

j=l,...,m

which is the desired form of (2). Hence ugp 1is proved
continuous.

v
Now consider Vg 0N+ 0 by ¢ - ¢*¥S. Agailn
we may restrict ourselves to 13H2+ 0. By what we have

proved above, ¢ > ¢¥S 1is continuous from ‘OH to € .
But sug>(¢*§) € (supp ¢)(supp §). Hence Vg 1s
continuous into 33 .

Finally consider Weo 0~ 8, by ¢ -+ %*¢. The
proof here is precisely the same as for Unp except for
reversing the roles of left and right invariant

differential operators. G

Lemma 1.2. Suppose T € N'(G) and S & £'(G). Then

the mappings
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u: &'~ 1N' by S » ST
V' > ' by T > T#S
Wi og' > by 8> TS

are all continuous in the strong topologies of L' and '

Proof. If tu denotes the transpose of a mapping u,

then in the notation of Lemma 1.1 we have that

£
VS and W = th. Hence the result

U = tuT , Vv
follows from Prop. 1.1 and [16, Cor. to Prop. 19.5, D. 1991,

i.e., the transpose of a continuous linear map 1is

continuous in the strong dual topology. a

Prop. 1.3. Suppose T e ©'(G) and S;, S, € &'(@G).
Then the mapping of &' x &' + Q' sgiven dy

(Sl,S2) > Sl*T*S2 is hypocontinuous in the strong dual
topologies.

Proof Separate continuity is a consequence of Lemma 1.2

when we write Sl*T*S2 = (Sl*T)*S2. Hence, from

(16, Theorem 41.2, p. 42471 this mapping is hypo-

continuous since gL' 1s barreled (Notation §10). ©Q



41.

Prop. 1.4. For any relatively compact, open coordinate
neighborhood w of e 1n G and any m € Z:+ there
exists a differential operator D, a function f € N (w)
and a function § € ®(w) such that Df - G =4 in

the sense of distributions.

proof. On R ™ Schwartz shows that with

32 3°
oL+
3% 2 3% 2
Xl n

A = then given any open neighborhood

W of zero and any m > 0, then there exists k > 0,

P e "W and Z€©) such that &F - 2 = §

in the sense of distributions, where 60[¢] = ¢(0) for
a1l ¢€ O (R™) [14, Eq. II.3.19, p. 47 and

Eq. VI.6.22, p. 191]. Pick wj to be an open, relatively

compact, canonical coordinate neighborhood about e in G,

with coordinates ¢o(g) = (xl(g),...,xn(g)), and pick w;

to be an open neighborhood about e such that
Q&(wl) < wy- Then take Wg, W, contained in W™ by

Wy = ¢O(m0) and W, = ¢O(wl). Then Haar measure on

wy can be expressed as G(xl,...,xn)dxl/\...f\dxn

for G a strictly positive C°° function on WO

[10(a), p. 364].
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Let W = wl and pick F and Z as above. Then

define fe)Om(wl) and Séb(wl) by

(F/G)(¢O(8)) R g€ uy

f(g)

0 otherwise

(2/6)(6o(8)) » & €ug

5(%)

0 otherwise

We may regard Ak as a differential operator on X)(wo)
k. - .k -1

by &S = AT(fe ¢ )6 bps f e ®(wy). But by the

definitions of w, and w,; there exists v € 0 (wg)

such that Ylw = 1. Hence considering Y itself as a
1

]

differential operator on ¥ (G) gives that 1%y is

also a differential operator on (). Now let
_t,,k . . s k

D = “(A"-y), that is, let D be the adjoint of A ey

with respect to Haar measure (Notation, §5(1), §10).

Then for any ¢ € ®Q(G) we have
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(D - §)007 = £La%(ve)] - § (4]

If(e)a¥(ve) (g)dg - J §(g)e()ds
U)O u)O

food BEO8N((ve) e ogh (R)ax = S Z(x)6 (67" (x))dx
W
0 0

where dx = dxl...dxn

(AkF - Z)[(yd)e ¢al] since Ak is symmetric

5oL (Y0) o 6757

§L¢]

Thus Df -5 = § in the sense of distributions. O

Lemma 1.5. Suppose ¥ ef@c), fe 13rn0u) for w

an open subset of G, D a left invariant differential

operator, and E a right invariant differential operator.

Then
(a) WDf = 2 Djf‘j for D’ left invariant, £, € 9" (w)
J
(b) VEf = Z EJgj for EJ:ﬁight invariant, g5 € 131n(w).
J

These sums are finite and are in the sense of distributions.
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Proof. We prove only (a) as the proof for (b) is

identical. Take {Xl,...,Xn} as a basis of a and let

Xi be the left invariant vector field generated by Xi'

Then without loss of generality we may take D to be

~

of the form X. ...X. . We induct on k (i.e., the
T ‘k

order of D):

1. Let D = X. Then for ¢ e ¥J(G) we have

oXelo] = X£lwol = £L-X(v6)]
- P (K)o - (Xe)p] = wE[-Xe] - (Xy)£lo]
= (X(uf) - (X)£)[6]
Notice we have used ti = -i for a unimodular Lie group.

Hence wif = i(wf) - (iw)f. But yf and (iw)f are both

in ®™w), so that case k = 1 is done.

5. Assume formula (a) is true for all left invariant

differential operators of degree < k - 1 and for all

-~ ~

m -
ve @G) and f e Q (w). Then let D xil...xik.



yDf = PX, (Xi WX, )

~ ~ -~ -~

X, (pX. ...X, £) = (X, ¥)X, ...X, f
11 12 lk 11 12 lk

as shown in case k =1

~

X, (Z D{fj) -z D%gj by the induction assumption.
1] J

This is, however, the desired form. a

Theorem 1.6. Suppose T € ©'(G), T >> 0. Then T can

be expressed as a finite sum
(3) T=2% D,E.f,

where, for each J, f& e 1L7(a), DY is a left invariant
differential operator, and EY is a right invariant

differential operator.

*
Proof. For each o € (G) we have that o*¥T*¥a is a
s} * * *

c® function such that ofT¥*a [¢*¢ ] = T[(4*)*(3%¢) 1 > 0
for each ¢ € ) (G). Hence (Notation §5(11)) gives that

*
a*¥T#¥y >> 0, and in particular that
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() Ia*T*a*(g)l < a*T*a*(e) = T[%*a] for all g € G, ae®Q(G).

Moreover, from

% % ¥ % x ¥
(5) La*T*B = (a+B )¥T*(a+B ) - (a-B )¥T*(a-B8 )

* ¥ ¥ * £ F
+ i(a-(iB) )*T#(a-(iB) ) -i(a+(iB) YET¥* (a+(1B) )

we see that o*T*g € L7(G) for all o, B € Q(G).
Let B = {¢ € ()| [[o]], < 1} where

|1¢||l = [ |¢(x)]dx and for each ¢ € B define
G

T¢ : 13’<13 - € by

(6) T¢[(a,8)1 = a*T*B[¢].

From (Notation §10(6)) we see that each T¢ is a separately
continuous bilinear mapping. Thus, if 0 8 is the
algebraic tensor product of ¥ with itself, equipped with
the inductive topology [18(a), p. 483], we see that each

T¢ defines a continuous mapping (also called T¢) from
Ve - € vy T¢[a 8 E] = Tq)[(a,B)]

(18(a), Thm. A.2.2.4, p. 483]. Therefore each T¢
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extends to a continuous linear mapping g Q) 5‘6 - C,
where X 8 1) is the completion of ¥ 8 YN

[16, Thm. 5.2, p. 41]1. But #(G) & 0(G) = (G x G)
[18(a), p. 485] so that we have {T¢ | ¢ € B} as a

collection of distributions on G x G.

We claim that {T, | ¢ € B} is actually a bounded

¢

set of distributions on G x G. To see this first note

that for each fixed pair (a,8) € 0 xN, {T¢fa 8 8] | ¢ € B}

is a bounded set of numbers in € since |[[a*T#g[[_ < =

and ||¢||l < 1. Now take ¥ arbitrary in (G x G).

Since M (G x G) is the inductive limit of the collection

of spaces 15H{G) 8 t)H(G), H compact in G

[18(a), Thm. A.2.2.5, p. 4B4], then ¥ € ¥,(G) 8 8 4(6)
for some particular H. But 0 H(G) is Frechet which
implies that the inductive and projective topologies on
pH(G) 8 DH(G) are the same [18(a), p. 483]; hence

we can apply [16, Th. 45.1, p. 459] to prove that ¥

is the sum of an absolutely convergent series

L A
k=0

a, ® B, where {x,} 1is a sequence of complex

k7k k

A | <1 and {a .} and {8 }
n k

numbers such that Kk

o~ 8

k=1
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are sequences converging to zero in 13H(G). Thus

|T¢[W]I = [T¢[k£o no, 8 8,.1] < kEO A, [T¢(ak 8 8.
Applying (4) and (5) shows that 1lim |T (ak 8 Bk)l =0
k =+ o d)

uniformly for ¢ € B, so that {T¢[W] | ¢ €« B} 1is a

bounded set in € . Thus (14, Th. IX(b), p. 72] sgives
that {T¢ | ¢ € B} is a bounded set of distributions

(see Remark following this proof).

Let w be an open, relatively compact, coordinate
neighborhood of e in G. Then since {T¢ | ¢ € B} 1is
bounded, there exists a differential operator D on
G x G, and a collection {f¢ | ¢ € B} of continuous

uniformly bounded functions on G x G such that

T = Df ¢ € B

|
? oxw )
(14, Thm. XXII, p. 86]. Thus we have

(7) o*T*R( 6] = f¢[tD(a 8 8)] a,8 €N(w), ¢ € B.

Let m be the order of D on w x w, and take
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a,B €& Q™(w) and {oaj}, {Bj} < N (w) such that

o, > @ and Bj > B8 in O ™(w). Since

tD(aj 8 8,) > ®D(a ® 8) in LY(G x G), then (6) allows

us to conclude that

1. there exists M < = such that Iaj*T*Bj[¢]| <M
for all ¢ B and Jj = 1,2,...3; and
2. lim a.*T*Bj[¢] exists for each ¢ € B. From
.j -+ ©
the first statement it is easy to conclude that

||aj*T*Bj||m <M for all Jj, from which a routine
calculation shows that the second statement holds for
all ¢ € Ll(G). We are thus able to define a linear
operator F : Ll(G) > € by

Flo] = 1im o *T*8.[6], ¢ € Ll(g). But

j > o
[Flo1] < M||¢|[1, so that F must be some bounded
function f € L7(G). It is clear that this f depends

only on o and B, and not on the choice of {aj} and

{Bj}' We have therefore established the following:

Given T >> 0 and w any open, relatively compact
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coordinate neighborhood of e in G, then there exists
an integer m such that given any «a,B € Q" (w) there

exists a function f € L7(G) with the property that

(8) 1im o *¥T*8,[¢] = £le], e Lt (a)

J'-roo

for any sequences, {aj}, {Bj} e (vw) where o, > a

3
<

and Bj > 8 in & ™(w).

We will now proceed to show that this function £
is actually the distribution o¥T¥g. By Prop. 1.3 we

have that the mapping (Sl,SZ)-+ Sl*T*S2 of

£'@) x £'(G) » N'(G) 1is hypocontinuous. But thus,

since a5 > @ and Sj - g in &'(G), then

aj*T*Bj > o¥T#¥g in & '(G). Hence this along with (8),

gives a¥T*g = f.

With w and m as above, take D, [ and § as in
Prop. 1.4, so that Df-§= 3. Since supp f € w we may
multiply Df by any function Y & ¥) (G) such that
Ylw = 1 without changing its properties; hence we expand

D to be either of the two finite sums
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D = § ¢ij and D = i wkEk .

where ¢, v, € ¥ (G) and D, (resp. E, ) 1s a left

invariant (resp. right invariant) differential operator

for all Jj, k. We then have

= §¥T*§

-3
|

(Df - G )¥T*(Df - G )

Now apply Lemma 1.5 to all the wkEkf and ¢ijf terms.

Combining the summations we obtain T = (Z Ekgk)*T*(Z Djfj)
k J

for g, fjeQm(w) and DY (resp. Ek) a left

invariant (resp. right invariant) differential operator
for all j, k. Hence

T = I DjEk(gk*T*fj)
Jsk

from (Notation §10(8)), where each gk*T*fj is a bounded

function from what we previously showed. =
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Remark. While [14, Thm. IX(b), p. 72] 1is stated only
for distributions on ﬂirh our use of it on N'(G x G)
is justified for the following reason: the theorem in
question can be viewed as a corollary to (19, Thm. V.6,
p. 123], which states that sequential convergence in
D'(Q) 1is the same in both the weak* and the strong
topologies, where is any open set in ﬁLn. The
proof of this theorem, upon examination, does carry

over exactly to the separable manifold case.

It should be noted that motivation for Theorem 1.6
came from [14, Thm. XVII, p. 275] while the outline of
its proof is from [14, Thm. XXV, p. 201]. Its usefulness
comes from allowing us to extend the domain of definition
of a positive definite distribution from ¥ (G) ¢to
certain subspaces of Ll(G). In ﬂirh for example,
Sehwartz uses this to show that all positive definite
distributions are tempered. For G a connected,
semi simple Lie Group with finite center, we will

exhibit a similar result in Chapter V.
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Chapter II.

The Godement-Bochner Theorems

et G be a connected, semi-simple Lie group with

finite center, and K a maximal compact subgroup of G.

Then define

(f : 6> € | £ is continuous, XK-biinvariant, f >> 0, fle)< 1}

®

P = {re 130 | £ is (zonal) sphericall.

. *
Both 1°O and 39 are given the weak topology as subsets

of L7(G). Also define

M = {positive regular Borel measures u on P

such that u(#) < 1}

and give qn the vague topology, that 1s, the
*
weak topology as a subset of (CO(‘P))'. For u €M

define }u : ¢ » € vy Ju(x) = ‘Ja"(b(x-l)du(d)) and
let F (M) = {3u | ueM}. All other symbols are

from (Notation §9).
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*
Lemma 2.1. 13() is a weak -compact, convex subset of

L7(G).

Proof. Convexity is trivial. To show «OC) is

%
weak compact we have only to show 150 is norm-bounded

%
and weak closed [19, p. 137]. Norm-boundedness is

trivial since f € «DO implies |[[f[|_ < f(e) < 1.

Hence consider a net {fa} ¢ g such that fa > £y in
* 00

the weak topology of L (G). Then Hf‘olloo < » since

fo € Lm(G)) and fo is integrally positive definite
since each fa is. Hence we may pick fo to be a
continuous positive definite function bounded by 1 from
the discussion following (Notation §4(11)). We have

only to show that fo is K-biinvariant. But for each

o € L1(G) we have folel = lim £ el = lim fa[¢9]
a o

= fo[¢7] = fg[¢]. Thus £, = fg since both are

continuous, proving that £, is K-biinvariant. g

*
Lemma 2.2 F (M) is a weak compact, convex subset

of L7(G), and P e FM) « B,
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Proof. We first note that u - Spu is continuous from

0o o© *
M to L (G) when L (G) is given the weak topology.

For suppose {u_} + u, vaguely in M, and f€ Li(q).
a 0

Then f & C,(P) so that we have lim }u (f)
[0 ol

= lim [ £(e)au (o) = [ £(8)dug(e) = F, (1),
o ¥ ® 0

proving the desired continuity.

Now by (Notation §4(4), (5)), for each ¢ € £ we
0

can define u, € M_ by u¢($) = 1 and u¢(¢)

otherwise, and we find that JF , = ¢. Hence e F M.
¢

To show 3%hq)c 130 consider u any measure in m .
Then u 1is the vague limit of a net of finite, convex
combinations with sum < 1 of measures u¢, ¢ € 1°

(generalization of Riemann sums). Hence the continuity

of ww F  shows that all the F. neW , are

*®
weak 1limits of functions in 100, so that Lemma 2.1

gives JF (M) ¢ ’@0.

It is clear that JF (M) 1s convex. To show it is

*
weak compact we note that it 1is the continuous image

of M, a vaguely closed subset of the unit ball in
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(CO( ®))', which is therefore vaguely compact

(19, p. 137]. 9

Lemma 2.3. The extreme points of 890 are contained

in 'XJ v {0}.

Remark. It can be proved by the methods of (2, Thm. A, p.

that the extreme points of 130 actually equal @ v {0}.

We never need this fact, however.

Proof. For each ¢ € tOO’ & 2 0, let w be the unitary
representation of G on }4—¢ which is associated to ¢
(Notation §4) and let ey € hL¢ be such that

¢(g) = (eo,w(g)eo) for all g € G, where ( , ) 1is

the inner product of )4¢. Note that ¢ K-biinvariant
implies that g is a K-fixed vector. We will now

show that if ¢ is extremal, then m 1is irreducible.
This will complete the proof since then ¢ must be

spherical (Notation §9).

Suppose ¢ is extremal, and let A be any
projection operator commuting with all m(g). Then
is irreducible if and only if A = zero or the

identity operator I. Now ¢(g) = (ey,m(&)ey)
= (Aeo,n(g)eo) + (eO—AeO,n(g)eO) = (Aeo,ﬂ(g)AeO)

+ (eO-AeO,n(g)(eO-Aeo)) where we have applied the

851
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|
(@]

*
facts that A = A, A = A and (eo—AeO,ﬂ(g)Aeo) =

But both Ae, and e -he, are vectors of norm < 1
which are invariant under w(k) for all k € K. Hence

the functions ¢1(g) = (Aeo,ﬂ(g)AeO) and

¢2(g) = (eO-AeO,ﬂ(g)(eo—Aeo)) both 1lie in 100, and

¢ = ¢1 + ¢2. But ¢ extremal implies ¢1 = A¢ for

some 0 < A <1, so that (Aeo,ﬂ(g)eo) = k(eo,ﬂ(g)eo)
for all g € G. Then using the facts that w 1is unitary
and m(xy) = n(x)n(y) sives us (A-AI)m(x)e, L m(ye,

for all x, y € G. But (I ajﬂ(xj)eo | o e €., xj € G}
J
is dense in ﬁ4¢, and hence A = AI on #$¢. Therefore

A =0 or 1 since A2 = A, proving that m 1is

irreducible. ©

Prop. 2.4, Suppose u 1is a finite, complex-valued

regular Borel measure on 1° . Then uy = 0 if and only

ir F = o.

u
Proof. From (Notation §9(16)) we see that
R=1{t| e I,(G)} 1is dense in Co(®). But for any

u as specified, wu[f] = E}u[f] =0 for all f €I (G).




58.

Hence :}u = 0 implies u = 0, and the converse is

obvious. =

Theorem 2.5 (Godement-Bochner) jpb and M are in a

one-to-one correspondence given by f = }u’ or alternately,

e[yl = ulp] for all ¥ & L1(G).

Proof. The first three lemmas show that the Krein-Milman
theorem applied to “F c 3(01() c ‘po gives JFM) = ‘PO.
That this correspondence is one-to-one follows directly

from Prop. 2.4. =

Remark. Theorem 2.5 was first proved for G = ﬁ{n by
Bochner [1, Thm. 19, p. 326], and was later extended to
the above form by Godement [7(b), P. 7]. Godement's
theorem actually deals with positive definite measures,
and its proof relies on a certain amount of operator
theory. We now derive this theorem (in its form for

distributions) directly from Theorem 2.5.

The proofs up to this point are generalizations of
those given by Cartan and Godement for the abellan
group case [2], some of which trace further back to

Gelfand and Raikov.
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Theorem 2.6. (Godement) Let T € R'(G), T >> 0. Then

there exists a unique positive regular Borel measure U

on 19 such that

(1) ¢ e L), ¢e 1)

* I\’:
(ii) Tlo¥*y ] = jp(bwdu, o,0 & IC(G).
%
Proof. ¢ € IC(G) implies ¢ ¥*T¥¢ >> 0 (from proof of
Theorem 1.6) and is K-biinvariant, even if T 1is not

K-biinvariant itself (Notation §10(10)). Hence Theorem 2.5

—% —
gives that ¢ ¥*T¥¢ = EFU for some finite, positive,

¢

regular Borel measure u¢. Now take any other U € IC(G)

and £ € LY(G). Then

Treregyrray™ ] (Notation §10(6))

%k,
(1) ¥ *¢ *T*o*y[r]

u¢[(w*f*w*)A] (Theorem 2.5)

(Notation §9(7)(8))

s E(lalzdu¢)
10

Since IC(G) is commutative under convolution, then

~

(1) gives that /[ %(I&IZdu¢> = s f(|$|2duw)
¥ *
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= |¢l2du for

for all f € LY(G), and thus lezdu v

¢

all ¢,V € IC(G) by Prop. 2.4 and its proof.

For each pair ¢,y € IC(G) define a measure

d by L4d = d -d + - )
Mg DY By = Ay - dug ) F TNy T Aoy

*
Then using the breakdown of ¢¥y similar to (Ch. I, (5))

we obtain

(2) |p|2du = ¢¢dup for all o & I_(G).

b,V

We claim this is enough to show the existence of a positive

regular Borel measure u on 19 such that du¢ v = ¢ypdu.
3

The argument is a strict generalization of a similar one
used by Cartan and Godement in the abelian group case

[2, pp. 91-2]. We define

B :=1e:4 - €| ¢ is continuous and bounded, and there
exists on ¥ a finite, € -valued, regular Borel

measure v® such that du, = |p|2dv¢ for all o € I (G)}

In particular, (2) shows that ¢b € }H for all ¢,y € IC(G).

We now establish certain properties of jﬁ :
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(a) ¢€ lj => vQ is unique. For take we an
approximation of the identity on G such that

||¢E||1 =1 for each € > 0. Then with ¢_ = wg#

we have |¢€(x)| <1 forall >0 and x € G,

and 1¢€|2 > 1 pointwise. Hence |¢€|2dv¢ > av®
N o .
vaguely. But |¢€| dv. = @du¢ so that dv  is
£

unique.

(b) If ¢ 518 such that ¢ > 0, then v<I> > 0. This

*
follows from (a) by taking ¢€*¢E in place of ¢€,

i.e., we make ¢€ >> 0. For then we have

@du¢ - d\)(p vaguely, where du¢ > 0.
€ €

(¢) If & = $$ for ¢,V € Ic(G)’ then v® = My This

is clear from (2) and (a).

(e+¥) _ o, ¥

(@) If o,y €M, then o+v € Y and v

(e) If o & }j and A : ¥ -+ € is continuous and bounded,
then A¢ € 23 and vA® = AvQ. Both (d) and (e)

follow from (a).

We now claim that Cc(«a)f- M . For take any V € CC(P).



62.

Then there exists & e,Zj such that & is bounded away
from zero on the support of ¥ by the following argument:
for each € > 0 let ¢_ be as in (a), and define

U, cP vy Y =10 eP | |1-u3€[¢11 < 1/2}. Then

since we goes pointwise to 1 on xb we have that

{l{e}e>o covers & . Moreover, by definition of the

topology on & , each L(e is open. Now let

m
C = supp ¥, so that CG V] 2,{8 for some eJ., J=l,...
j=1 %

Then since 10 is Hausdorff locally compact, applying
(15, Thm. A, p. 164] and [3, Thm. 6.2(3), p. 238] gives

the existence of continuous bounded functions aj, j=1,...

on '&o such that supp aj <= us » 1> O‘J‘ > 0, and
m
(fa.)| o = 1. Define @ = I a,y_ . Then (d) and (e)
3e j=1 I

show that ¢ € Y. \Moreover, for ¢ € & we have

m
z

I~ s

@y (0) (=0, (81 < I a (e)]1-¢_ ()]

[1-9(e)| = |
1 J Jj=1 J

J

L
J
on supp ¥. It is then clear that VY = A¢ for some A

< aj(¢) = %. Thus ¢ 1is bounded away from zero

W ~8

1

continuous and bounded on ¥, so that (e) implies VY E)d .
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Hence C,(®) e} as claimed.

We now define a function from Cc(‘P) to € by

Yo/ dvé, which is linear from (d) and positive

®

from (b). Thus there exists a unique positive regular

¥

Borel measure u on ¥ such that .I%dv =é;‘¥du by

the Riesz Theorem. Now for each & G)B and A € Cc(ﬂ°)

Ad

we have [ Adv® = s av®® = J Aedu and hence av? = edu
¥ ¥ ¥

for all ¢ 9,23. In particular du¢ " = ¢ypduy for all
3

* —% —_
b,y € IC(G), and hence T[¢*y ] = ¢ *¥T*y(e) = j‘;odufb,lb

= jéglll\:du, proving (i) and (ii).

We now have only to show that u 1s unique. Suppose

v is any other regular Borel measure satisfying (i) and (ii).

Then for any o € IC(G) we have 'é poypdv = T[(O*¢)*w*]

AN

= é pépdu and thus by Prop. 2.4 and its proof we have

—

that ¢ydv = ¢évdu for all ¢,y € IC(G). Hence take any

¥ € C¢(1°)' Then as done above, there exist, for each

j =1,...,m, functions wj € IC(G) and a. continuous
m N
bounded on 1°, such that, with ¢é = I ajijlz’ we have

J=1
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¥ = A¢ for some A continuous bounded on 19 . Therefore
m ~ 2 m ~ 2
Ydu = AC £ a.|v,|")du = AC I o,|¥.|“dv = ¥dv. Hence
= J J = J J
Jj=1 j=1
p=v, Q@

Remark. Theorem 2.6 was proved by Godement for measures,
the proof just given being similar to the original
[7(b)] except that Theorem 2.5 is used to replace

certain facts from Hilbert space operator theory.

Notice that we have not used the results of
Chapter I for the above proofs. The Chapter I results,
combined with the properties of the Ip(G) and 7(36)
spaces to be defined in the next two chapters, will allow
us to characterize the measures in Theorem 2.6, and also

to refine the result into the usual Bochner Theorem form.



65.

Chapter IIT.

the CP() and I°(G) Spaces

Let G be a connected, semi-simple Lie group with
finite center, and K a maximal compact subgroup.
Recalling the functions E and o (Notation §9(20)(21))
we define the following K-biinvariant "Schwartz-like"
spaces: for each 0 < p < 2 let IP(G) be the set of
infinitely differentiable, K-biinvariant functions f
such that for all m € Z" and all left invariant
differential operators D we have

(1) sup (1+c)m5'2/p[Df| < o,
G

Topologized in the obvious manner makes each I°(G) 1into

a Frechet space.

Let Q= R+ P be a Cartan decomposition for (G,K),

and let the function ¢ : P ~ . be determined by the

formula [ f(x)dx = éf((exp X)K)S8(X)dX, where dX 1is
G/K

the Euclidean measure on E , normalized so that ¢6(0) = 1.

Using the notation g = k exp X for k € K, X € e
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then for each m € Z" we define §,(8) = §(X)(1+]x|™).
We claim that the definition of each Ip(G) space is

unaltered by replacing (1) with

(2) sup lsl/prl < »,
G m

For we have that each Gm is K-biinvariant and

m

S(H) = T (M)a for HeEOU [10(c) 33-41
+ G.(H) s PDP. 3' )
o€l
-2p(H) remains bounded on 0K+

implying that &(H)e

Our claim then follows easily from (Notation §9(24)).

Notation. [18(b), p. 104] For X € Q we define

f(x3X) = é% f(x exp tx)‘t=0 for all x € G. Then in the

usual way this extends to a representation of the universal
enveloping algebra k{(9q) on the algebra of all left
invariant differential operators on G. This we also

write as f(x;D), D € W((g). On the other hand,

defining f(X3;x) = é% f(exp tX-x)|t=O, we have that

L 4
this extends to a representation of L{(a‘) on the algebra

of all right invariant differential operators on G
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Chapter III.

The cp(G) and Ip(G) Spaces

Let G be a connected, semi-simple Lie group with
finite center, and K a maximal compact subgroup.
Recalling the functions £ and o (Notation §9(20)(21))
we define the following K-biinvariant "Schwartz-like"
spaces: for each 0 < p < 2 let Ip(G) be the set of
infinitely differentiable, K-biinvariant functilons f
such that for all m € Z' and all left invariant
differential operators D we have

(1) sup (1+o)ms'2/p|Df| < o,
G

Topologized in the obvious manner makes each Ip(G) into

a Frechet space.

Let 9 = R+ p be a Cartan decomposition for (G,K),

and let the function § : P ~ R be determined by the

formula J f(x)dx = Sff((exp X)K)&§(X)dX, where dX 1is
G/K e

the Euclidean measure on P , normalized so that &(0) = 1.

Using the notation g = k exp X for k € K, X € e
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then for each m € Z% uwe define Gm(g) = G(X)(l+lX|m)-
We claim that the definition of each Ip(G) space is

unaltered by replacing (1) with

(2) SUp ISl/prl < o,
g m

For we have that each Sm is K-biinvariant and

m
. a
sy = 1 (sinh olH)y T pon peor [10(c), pp. 33-41,
a€st o(H)
implying that G(H)e-ZQ(H) remains bounded on Ol+.

Our claim then follows easily from (Notation §9(24)).

Notation. [18(b), p. 104] For X € Q we define

|a

f(x3X) = f(x exp tX)|t=O for all x € G. Then in the

(o))

t
usual way this extends to a representation of the universal
enveloping algebra L4l(ﬂ) on the algebra of all left
invariant differential operators on G. This we also

write as f(x3;D), D € W((g). On the other hand,

- d

defining f(X;3;x) = I f(exp tX°x)|t=O, we have that

e
this extends to a representation of KI(§) on the algebra

of all right invariant differential operators on G
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Lo 4
(W(g) 1is the reverse algebra of W (9); i.e., they
are the same linear spaces but multiplication is reversed:

(Dl'D2)Q = (D2.D1)H ). hence we have

~ ~

f(Xl...Xk;x;Yl...Yz) = Xk...X1 l...Yzf‘(x), where the Xj

~

are right invariant, the Yj left invariant differential

operators.

Let L(g)x = gx, R(g)x = xg—l. We can then extend
Ad(g) to H(g) by Ad(g)DEDR(g) where ).((ﬁ) here
is identified with the left invariant differential
operators. The same extension 1is obtained by definint
Ad( N - pl(&)

g) on (q) by Ad(g)D =D , where H(g)
is identified with the right invariant differential

operators as above. We use the notation Ad(g)D = gD.

Now straightforward calculations show that for

r ec’@) and D,]S € K (q) we have
(3) £(D;x,xX,3D) = f(xilﬁ;x;x2D), and
(4)  £(D3x3D) = £(x;(x~1D)D).

Using this we prove the following lemma.
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Lemma 3.1. (Harish-Chandra) Given D,D € \-((ﬁ) there

exists a finite number of Dy € N(gq) (123 < p)

such that if f € ¢®(c¢), K-biinvariant, then

i ™MT

If(x;Dj)I and [f£(D;x;D)| <

| £(D,;x) |
j J

N ™mT

|£(D;x3D)| <

J 1

1

for all X G.

Proof. Fix a basis {Xl,...,Xn} of ﬂ and for each

+
m€ Z let N m( g) be the finite dimensional subspace

of M (Q) spanned by {X.l oKy | k < n}. Now pick
1 k

m such that D,D El(m(a) and choose a basis B for

)-(m(a) with the following properties:

(a) Each D & B has the form Dy = D\.‘ DmD“ where
DieH(E), Do € W (OT) and D, €)X (1n); and
(b) For each Dy € B we have mje Z+ (1 <j <p)

such that for all a € @(A+) we have

aDy, = exp (I mj)\j(log a))D,, where the {kj} are a
J

fundamental positive root system. Notice that (b) is

possible Dby taking a basis of 41 comprised of root
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vectors: i.e., M = 0‘50 Ba’ and X Gaa implies

aX = Ad(exp (log a))X = exp (ad(log a))X = exp (a(log a))X

= exp (I m,A.(log a))X where o = I m,A,.
j 979 j JJ

a (k)Db,

We now have kD = % ab(k)Db and kD = b

z
B B

where ab and ab are continuous functions on K for

each b € B. Hence, letting M, = sup max {Ia (k)l,la (k) |}
k€K beB

and x = kjak, , we obtain |£(D;x3D)| = |£(k]'Dsa3k,D)]

-1- 2 iy
< sup |f(kl D;a;k2D)| <My I If(Db;a;Db)I.

kl,k2GK BxB
Now write Db = DE. olD,\ Since f 1is K-biinvariant
we may assume I)E = 1, for otherwise f(Db;x;Db) = 0.

Then we have f(D 3x3D) = f(a;(a” D )D, ) = f(a;Dm.(a'lDﬂ)Db)

f(a;ﬁat(ﬁ exp (—m A (log a))D )Db)
J

? exp (—mjkj(log a))f(a;DatD“Db). Thus we have

|£(Dg3a3D,) | < | £(2;Dg DDy )| since

|exp (-mjxj(log a))|.3 1 for all a € A+.
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Now let {Dj}§=l be a basis of the subspace of

\..((a) spanned by {k(Dg DﬂDb) | ke K, D& B, D, € B}.

N ™Mo

cj(k D. ,D )D for

then k(Dcl Db) = b Db

J=1

e . K xB x B~+TR , where each ¢, is continuous with
respect to k when Db and Db are held constant.

~ le.| < @ and we obtain

Thus M, = sup
2 J
Jsk Db’ b
[f(a; D b)| If(x;k (D b)[ |f(x;§ Cij)l
<M, § | £(x3D4)]

Putting everything together we have |£(D;x3D) |

2 = 2 -z
<M I |f£(D ;a;D )| < M5 I [f(a;Dg QD ) |
<M oup 0323071 = o Sl P w b
P p
< cMgM, 2 If(x;Dj)I where c¢ = the number of elements
J=1

in B. Hence the first half of Lemma 3.1 is proved, and

the second follows in an identical manner. a

Remark. The proof of Lemma 3.1 is merely a rewriting of

[18(b), Lemma 2, P-. 164] for the simpler, K-biinvariant
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case.
Now for each 0 <p < 2 let CP(G) be the set of
infinitely differentiable functions f such that for all

meZ"  and al1 D,D GH(Q) we have

(5) sup (1+0(x))™=(x)"2/P|£(D3x;D)| < =
x€G

Topologized in the obvious manner makes each Cp(G)

into a Frechet space. Since [EZ| <1 it is clear that

Py

p
C o) el

shows that if f € CP(G) then Df € LP(G) for any left

(G) whenever Py < Py and (Notation §9 (25))

or right invariant differential operator D.

Prop. 3.2. IP(G) = {fe& @P(a) | f is K-biinvariant}l,
and the topology on I°(@) is the relative topology as

a subset of Cp(G).

Proof. From Lemma 3.1 it is clear that if f € P (a),
then (1) is true for D a right invariant differential
operator. Hence this proposition follows trivially from

the definition of C P(g). 9@
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Remark. For p = 2, Ip(G) is the space I(G) from
[9(b), §12, p. 5851, CP(e) 1is the space (C (G) from

[9(da), 89, p. 19], and Prop. 3.2 is contained in

[9(da), §20, p. 46].

A trivial but useful result of Prop. 3.2 is

that

*
6) " e IP(G) 1if and only if £ € IP(a),

* -
where f (x) = f(x 1).

Prop. 3.3. Suppose f € °(G) for all p > Py

(or p > po) for some fixed p, > 0. Then there exists
a sequence {¢j} c IC(G) such that ¢j > £ in IP(G)
for all p > py- In particular, IC(G) is dense in all

the Ip(G) spaces.

Proof. As noted in [10(b), p. 571] there exists a

sequence {wj} in IC(G) and Uj open sets in G,

increasing up to G, such that (a) wle 1, and

J
(b) for each left invariant differential operator D

on G we have Ilijllm < ¢(D), where c(D) 1is a
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constant depending only on D. The proof that ¢j = fwj
satisfies the desired conditions for all p > Py

(or p > po) is then the same as the p = 2 case which

is given in [10(b), p. 571]. ©

Prop. 3.4. Suppose S 1is a continuous linear functional
on IP(G). Then the restriction of S to IC(G)
extends uniquely, and in a one-to-one fashion, to a

K-biinvariant distribution T on G.

Proof. For each ¢ € ¥(G) define T[¢] = S[¢§], where
6% is defined as in (Notation §7(6)). In order to
show that T €& ¥'(G) we have only to show that if

{¢a} is a net in YO (G) converging to zero, then

{¢Z} converges to zero in 1°(G). To do so take D

any left invariant differential operator, and note that
m
we may write D = I

aJ.DJ where aj € C°(G) and the
J

1
DY are right invariant. We may also assume without
loss of generality that the supports of all the ¢a's

are contained in some compact set C. We then have
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sup (1+0)"272/P D] < sup (1+0(2))"z72/P(g) (D" ) (g) |
G g€G o}

keK
m .
< C I sup |DJ¢a(gk)|
j=1 g¢G
k€K
where we set ¢ = sup I(l+0(g))m5—2/p(g)a-(g)|
geC J
Jg=1l,...,m

Hence {¢Z} converges to zero in Ip(G), proving that
T € Q'(G). The uniqueness of T 1is obvious from
(Notation §10(11)), and the one-to-one nature of this

correspondence is a consequence of Prop. 3.3. =)

Remark. Prop. 3.4 allows us to consider (1P(G))' as

a subset of K-biinvariant elements in 43 '(G). This is

not, however, an onto mapping. What we will now proceed

to prove is that (1°(@))' 1is in a one-to-one correspondence

with the K-biinvariant elements of (CP(a))'.

We define two maps L and R from G 1into
Aut C7(G) by L(g)f = fL(g) and R(g)f = fR(g). We

then have
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Prop. 3.5. For each 0 < p < 2 we have

(a) both L and R are differentiable representations

of G on cp(G)s
(b) c,p(G) is a convolution algebra.

Proof. For p =2, (a) is [18(b), Prop. 8.3.7.8, p. 158]
and (b) is [18(b), Prop. 8.3.7.14, p. 164]. Both these
proofs carry over to the general 0 < p < 2 case for the
following reasons: for (a) the only property of =

used in the proof is (Notation §9(26)), which is clearly
also true for 52/p. The proof of (b) starts by showing
(Notation §10(1)) is =<vue for arbitrary f and g € C12(G).
This obviously proves it for the P(¢) case since
e @ e C 2(G) for all 0 < p < 2. For the rest of
2/p

the proof we need only substitute = wherever =

appears, and note that 52f € Ll(G) implies

Eu/pf € Ll(G) for any function f since £ -is

bounded. a

Theorem 3.6. For each 0 < p < 2 we have

(a) T € (CP(G))' implies that the restriction T

of T to TIP(a) 1is in (I®(@))'; and
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(b) S € (1P(g))' implies there exists a unique

K-biinvariant T € (Cp((}))' such that S = T.

Remark. Thus (1P(G))' may be considered as the
space of K-biinvariant elements of (@P())', which

form a subspace of the K-biinvariant distributions by

Prop. 3.A4.

Proof. We obtain (a) directly from Prop. 3.2. In order
to prove (b) we first show that £ v~ r% defines a

continuous endomorphism of C P to e Pa).

By Prop. 3.5 (a) and (Notation §3) we see, for each

radon measure U4 On G with compact support, that

fv LfE =17/ L(x)fdu(x) (Bochner integral) and
G
£ R(u)f = [ R(x)fdu(x) are continuous endomorphisms

3
of Cp(G). Moreover, for each T & (GP(G))' we have

T(L(u)f) = [ T(L(x)f)du(x) and T(R(u)f) = é T(R(x)f)du(x).
G

Now if dk indicates the Haar measure on K such that

fdk = 1, and for each x € G 1f Sy e (CP())" is
K

defined by sx[¢] = ¢(x), then we find f” = R(dk)L(dk)f,

which proves our claim.
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Now take S € (IP(G))', and define T[f] = S[fY¥]

for all f € CP(G). Then since f = £% is continuous
from e,p(G) into CP(G) (hence also into 1°(6))
we see that T € (@P(G))', and T = S.

Suppose T, € (€ P(G))' 1is K-biinvariant. Then
for any f € CP(G) we have Tl[fVJ = T,[R(dk)L(dk)f]

= éxé TIER(kl)L(k2)f]dkldk2 = Tl[f]. Thus the T

defined above must be unique. W
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Chapter IV.

The Z(F%) Spaces

In this chapter we define the Z(3°%) spaces, which
turn out to be images under the fourier transform of the
Ip(G) spaces. We also construct certain special

elements in Z( 3ﬁ) which will be needed in the last

two chapters.

*
Let Cp be the closed, convex hull in OT of

the finite set {sp | s € W}, and for each € > 0 let
c * * . .
3 = 0Ot +ist in o'(c . This notation is consistent

with out previous definition of F 1 in (Notation §9)
*
because of (Notation §9(15)). Then define Z( 30) = ,8 (ov )

and for each € > 0 define
7(3%) = (¢ : Int 3%+ € such that
(1) @ 1is holomorphic on Int F°

(2) For each holomorphic differential operator D

with polynomial coefficients we have  sup De| < =}
Int § €
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For all € > 0 we let f(&s) pe the subspace of

W-invariant elements in Z(3-€).

Since Cp is W-invariant, then (Notation §6(3))

€

shows that =C_ = Cp, and hence -3€ = F for each

p

e > 0. An important property for us will be

(3) e FEe v FE

O<e'<e
which is [17, Lemma 3.2.2, P- 275].

We have that each Z( 3-8) is an algebra, and when
topologized in the obvious manner, becomes a Frechet space

where multiplication 1s jointly continuous [17, §3.4, p- 2787.

It is clear that —Z—(ﬁ"e) is a closed subalgebra of Z(?e).
Another useful fact 1is that for each D as in (2), and

each f € Z(3-E), Df extends to a continuous function

on all of ?8 [17, §3.4, p. 2787]. We will now construct

certain special elements in Z( 3'6).

Prop. 4.1. For each € > 0 there exists a non-constant
: %
W-invariant holomorphic polynomial on otc which is

. €
uniformly bounded away from zero on 3"- . Moreover,



g8o.

for P any such polynomial and & € 2(3-8), then

ye Z(F5) for V¥ = &/P.

#
be any basis of OU . Then if

Proof. Let el,...,sZ
* L
A& Olg let A= I Ace., A, € € , » = g+in where
j=p 437
* '3
E,n € O , and for each ¢ > 0 let PC(A) =c+ I A,
Jj=1
e then have P (M) = c + I £.2 -1 n. > +2iE &,
c J J J J
But as a function on F & we have that |[Z njzl is
uniformly bounded by some finite constant, say o
Taking c¢ = 2c, we obtain IPC(A)l > l2co + Z £j2 -z
J J
- €
>2cy - ¢y = ¢y 0 for all A &€ F . Then
P(A) = I PC(AS) satisfies the desired conditions

seW

: e . :
since F is W-invariant.

Suppose ¢ € 7 ( 3-€). Then Y = &/P on Int 38
is clearly well-defined, holomorphic and W-invariant.
We have then only to show that for each holomorphic
differential operator D with polynomial coefficients

we have sup |D¥| < =. We proceed by induction on
Int 3:€
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the order of D.

(a) Suppose order D = 0. Then D = Q for some

*
holomorphic polynomial Q on O'LC. Then

sup | DY | _<_% sup |Q®| where |P| > c on 38.
Int F° Int 3°

But this last quantity is finite since ¢ € -2—(36).

(b) Suppose that sup |D¥| < ®» for all D of
Int FE

order < k - 1 and for all VY = ¢/P where b€ Z(%FF)

and P 1is as above.

(c) Take D of order k. Using the coordinate
system given above we may assume without loss of generality

that D = E 9 where E 1is a differential operator as

9y
__3_ o) (_al.)q;
Bkl Bll
in (b). Hence DY = E B + E —
P
3 aP . = €
But both —— & and (=—)® are in Z(F ), and both
akl BAl

2
P and P° satisfy the conditions of (b). Hence the

induction assumption proves that sup |D¥| < ». ©

Int 3‘6
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Remark. While Prop. 4.1 will be sufficient in its present
form for completing the Spherical Bochner Theorem, a more

refined version, which we now derive, will be needed in

the last chapfter.

%
Lemma 4.2. For each o € CR(: there exists a W-invarilant

3
holomorphic polynomial Pa on Cuc such that degree Pa

is uniformly bounded in a, and

¥
(1) Pa(a) =0 for all o & Qg
*

(ii) P n > Pa uniformly on compacts as o > o in X e
o

*
(iii) Given U a compact set in &g and ¢ > 0
such that 3-€r\ U = 4§, then there exists a ¢ > 0 such
that [P _(A)| > ¢ for all « €U and X e FE.
*
Proof. We let L Dbe any hyperplane in QU which 1lies

%
on a face of Cp, and take a basis el,...,e2 of OX

such that El.é L and 62,...,62 span a hyperplane

parallel to L. This is possible since zero is an interior

¥
point of the convex set Cp. Then coordinating OR by

m= 12z njsj gives that L 1is the solution set to the
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equation ny = 1. Also notice that the set of solutions

to n, = -1 must also lie on a face of Gp since
Cp = -Cp. Hence Cp lies between the hyperplanes
determined by n 2 1.

1

* 1
Since Olc= U 3€ and Int 3—€= U 38 s
!
>0 €' <eg

*
we have that each o € CRC must lie on the boundary of
some unique E}E, e > 0. Hence, let e(a) be defined as

that particular €. Notice that a= e(a) 1is continuous.

*
Now parametrize ORC by the SRR from above

b A = ZA.e., A. = E., + n. and o = Zo.e, = B, + 1ivy.
Y 3850 2y T8 TNy a5€50 Oy T Bj Y

*
for all A,a €& czc. Then let Qa be the holomorphic

polynomial in A given by
_ 2 2

*
Suppose U 1is a compact set in Ozc and € > 0

such that 3ﬁ:A U=¢g. Then o €& U implies e(a) > €

. € _ e! . € .
(since F~" = N F~ ) and taking A € F arbitrary
g<e!

2

we obtain [Q (V)] = [e(a)?+(5,-8,)%-n *+21 (&=, ), |

> s(a)g—nl2. But A & 3€ implies n & eCp, which in



84,

e. Hence, letting c¢ = 1n

£ e(a)2-52
a U

turn gives [n,|

I A

we have IQa(A)I >C for all a €U and A € FE&, where

¢ >0 since U 1is compact. Therefore Q_ satisfies (1ii),
and it also follows trivially from the definition of Qa

that it satisfies (ii), at least pointwise, since

o+ e(a) and ar B, are continuous. The uniform
convergence on compacts then comes because degree Qa = 2

%
for all o € O‘(c.

#
Let {Ll,...,Ls} be all the hyperplanes of OU

which lie on faces of Cp. Then for each Lj we have

a set of polynomials {Pi} as defined above. Then for

* .
each a € Olg We let R = PJ. Then (ii) and (iii)

W= n

5=1

still hold for Ra’ but we also claim (i) nolds from
the following: by definition of e(a) we have

a € bdry 3;e(a). Thus, with o = B+iy we have that Y

lies on at least one face e(a)Lj of e(a)Cp. Hence,
in the coordinate system associated with Lj we have

Y, T e(a), and if Pg is the polynomial associated with

J - 2 . 2 -
Lj we have Pa(a) e(a)” + (Bl+1Yl Bl) 0. Hence
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Ra(a) = 0.
Finally, since 3—8 is W-invariant we have that
Pa = I RZ satisfies all the desired conditions. .

s W

*
Prop. 4.3. Suppose {P | o € ¢} as in Lemma 4.2, and
fix both € > 0 and ¢ € Z(F°). Then if v = /P,
€ ¥ €
on F for each o€ OCUg - F , we have that

* -
ar ¥ 1is continuous from Otg - 3‘-€ into Z(3°%).

Proof. First note that V¥ € Z(3%) for all a ¢ F°©

*
from Prop. 4.1. Let o > a in Ol¢ - F°. We have
only to show that, if D 1is a holomorphic differential

#
operator on Otc with polynomial coefficients,

sup !D(‘Pa-\l’ 0 | + 0. We first notice that
Int 3¢ o

?a-?an = ((Pan-Pa)/PaPan)® which is of the form

(Qn/Rn)® where Qn and Rn are W-invariant holomorphic

#
polynomials on QX ¢ such that (a) IRnl > c> 0 on 36
for all n, (b) Qn and Rn converge uniformly on

compact sets, Qn-> 0 and Rn+ R, where R 1is some
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%
W-invariant holomorphic polynomial on Olg, and (¢) the
degrees of Qn and Rn are uniformly bounded in n by
some N < =, We thus set Y, = (Qn/Rn)® and will show

sup IDWnl + 0 by inducting on the order of D.
Int F°

(i) Suppose order D = 0. Then D = P for some

#
holomorphic polynomial P on Ol¢, and we have

sup DY | < % sup IQnP¢|. But we may express
Int F€ Int 3¢
I
Q (A) as 5 e where I = (i,,...,1,)
n |I|in T 1? L A
i i

. . 1 h 2

Il = i, LI A Y and A~ = Al ...kl for Al,...,Az

%
some complex coordinate system on OU.. Moreover, we
c ’

have that for each fixed I, c? +0 as n+ «., Thus we
obtain [D¥ (X) | < % IQn()\)P()\)cb()\) 15%( ‘ ZI sup |c? | [xI D P(Aye(a) |
Ti<N n

for A € FF, where sup |cr11| < ©» for each I since
n

c§-+ 0 as n=+ «, Now take any ¢ > 0. Since
o € Z(FE) we have that there exists a compact set

c € %% such that (I sup |cr£|\x1l) PO | < (5)8
I n
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for all A& FF - C. But on C we have Q, > 0

uniformly so that we can take ng such that

sup [Q | < (%)6 sup [P¢| for all n> n,. Hence
C

Ip¥_(A)| < & for all n> n; and X € Int F°, and
therefore DY + 0 uniformly on Int 3% when D is

of order =zero.

(ii) Suppose D‘Pn+ 0 uniformly on Int 3€ for

all D of order less than k and for all Wn of the

specified form.
(iii) Take D of order k. Using some complex
*
coordinate system Al,...,kz on Otc we may assume

without loss of generality that D = E 5%— where E 1is
1

a differential operator as in (ii). We then find

] n 3Rn
(axl)Q ‘Qn(axl)Q Q. 56
sup |DWn| < sup E|——/] *E|———=—/ +E ﬁﬂ §X_) |
Int 3¢ Int 36 n Rn n 1

But each of these terms satisfies the induction hypothesis. a

Remark. We now prove two very technical results, the first
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to be used in the Spherical Bochner Theorem proof, the
other to be used in the last chapter.
Prop. 4.4. Suppose { SJ};=1 is a sequence of functions
in CC(G) such that Uj supp j'j is relatively compact
and é Isj(g)ldg is uniformly bounded in j. Then

i
for D any constant coefficient holomorphic differential

* ~ ©
operator on Olg¢ » {Qsj}j=l is a uniformly bounded set

of functions on E}e for each € > 0.
. = ). T D¢.
Proof Let C Ql(y supp 5 J) hen 5J(A)

= é~5j(g)Dx(¢-A(g))dg since C 1s compact. Hence

~ *
pg; (M) | < ey Zl‘lg D, (¢_,(g))| for all A& X g and

;€L +, where c; = sup i) lSj(g)Idg. We thus have
J G

only to show that sup ‘DA(¢-A(g))| is uniformly bounded
g€C

on EFe for each ¢ > 0.

*
Take €q1,--:5€ to be some basis of OU , and if

*
A€ Olg let A = Ijhse; where A; € € and

C,
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Aj = gj + lnj' Now let Hl""’Hz be a dual basis

of O , so that Ei(HJ) = aij' We then write

H(g) = z§=l cj(g)Hj with each cj a continuous function

I ™M=

from G to R . Hence A(H(g)) =

A.c.(g) so that
3 J

1 J

Dke—iA(H(g)) = PD(_ic(g))e-iA(H(g)) for P, some

polynomial in f-variables and c(g) = (c;(g),...,c, (g)).

I3 e-(iA+D)H(Sk)dk|
¥

Thus  [D, (¢_,(&))| = [D,

sup lPD(-ic(gk))e'(in)H(gk)l
keK

In

= sup IPD(-ic(gk))e(n-p)H(gk)|
k€K
where A = € + in. Consider g€ C and r€& F & ror
some fixed € > 0. Then gk € CK which is compact in G,

and hence sup [PD(—ic(gk))I is uniformly bounded for
k€K

g €C. But now A € FE if and only if A = £ + in where

*
n € eCp. Hence {n-p | » € F°} 1is compact in O

which gives that {(n-p)H(gk) | A€ F°, g€ C, k & K}

is bounded in ﬁ{ . Hence we have proved that |DX(¢_A(g))|
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is uniformly bounded for A & F° and g € C, which

proves the lemma from the first paragraph.

*
Prop. 4.5. Suppose for each o € Olg we have a
*
W-invariant holomorphic polynomial Pa on Qlg with

degree < N < = for all a such that
. *
(1) P (a) =0 for all o« € Rg

(ii) P n Pa uniformly on compact sets as
a

n . *
o -+ o 1in Cﬂt.

* *
Then the function F : Qlg * g > R defined by

|Pa(x)|/llx-a[[ if A #a

F(a,A) =
0 if A= aqa

is jointly continuous.

*
Remark. The norm [|+|| on Of¢ is defined by
*
[l + 1n[1% = [g]® + [n|® for &, n eor, where ||

is as in (Notation §6).
%
as an orthonormal basis of OX

Proof. Pick 81""’82

with respect to | | and let A = ZAjej. Then
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P (X)) = z aI(a)(k-a)I (notation as in proof of
¢ 0<|T|<N

%
Prop. 4.3.) where ar : g > C is continuous for
each I. Hence continuity of F at (a,Xx) # (0,0) 1is
clear, and to conclude the proof we need only show that

F(a,X) - 0 as fa,r) » (0,0).

Since el,...,ez was picked orthonormal with respect

to ||+|| we have that I(A-a)Il < llk—alllI[. Hence
we obtain [F(a,M)] < (I [ag(@) ]l G=a) /[ [x-a]]
0<[I{< N
|T]-1 s
< z IaI(a)l [|A=a] ] . But from this it is

T 0<|I|<N

clear that F(a,A) + 0 as (a,r) + (0,0). H©

Remark. We now state the main theorem concerning the

Z(3%) spaces.

Theorem 4.6. Let 0 <p <2 and € = (2/p) - 1. Then

the spherical transform map fw~ f 1s a linear topological
isomorphism of 1°(G¢) onto 7(3-8) which preserves the

algebraic structure.

Remark. For p = 2 the theorem is a combination of the

results of Harish-Chandra [9(d), p. 48] and
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Helgason [10(b), p. 572 and p. 576]; for p =1 and

G either of real rank one or complex, the theorem is

due to Helgason [10(c), Thm. 2.1, p. 28]; in the full
generality the theorem is due to Trombi and Varadarajan
(17, Thm. 3.10.1, p. 298]. Notice that proving

surjectivity is the non-trivial part of the theorem.
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Chapter V.

The Spherical Bochner Theorem

Given G and K as in the previous three chapters,

we shall now refine Theorem 2.6, putting it into the
standard Bochner theorem form for distributions. The

main tools for this procedure will be Theorem 1.6 and

Theorem 4.6.

Theorem 5.1. Suppose T 1is a positive definite distribution

on G. Then T restricted to IC(G) extends uniquely

to an element in (Il(G))', which we also label T.

Proof. By Theorem 1.6 we have that T = L DJEij for

J
DY  left invariant differential operators, EY right
invariant differential operators, and ;jé L”(G). Hence

s[r] = fj[tEj ®pd £] is in (I¥(G))' by Prop. 3.2,
J

and it is the unique extension of TII (g) since IC(G)
c

is dense in Il(G). a

Lemma 5.2. Suppose T is a positive definite distribution

on G with spherical Bochner measure u. Further
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suppose ¥ & Il(G) and ¢ € IC(G) such that $ 3 Ll(u).

Then

T[o*y] = J  opdu.
©

. ) c .
Proof. Pick {wn}n=1 Ic(G) such that ¢  ~ p in

Il(G). Then Theorem 2.6 gives that
To*y 1 = [ ov du,
n f n

and since ¢*wn +~ ¢o¥p in Il(G), then Theorem 5.1

gives that T[¢*¢n] > T[¢¥yp]. Hence we are left with

showing [ $$ duy -~ [ gidu as n > ®.
v ¢ °
Note that the Helgason-Johnson theorem (Notation §9(15))
tells us that ¥ e F l, and hence f?c;t;du is weil
defined since @ is extendable to all of .3]' as a

~ ~

continuous function. Now Theorem 4.6 gives that wn > P
in Z(}Jﬁ, hence in particular, {wn}:=l is uniformly

bounded on 3 l. Thus dominated convergence gives

S ¢\Bndu > [ ¢13du- Q
(3 o



95.

Definition A positive measure u on 4 is said to

be of polynomial growth if there exists a holomorphic

%
polynomial Q on OZC such that S %]— < o,
®

Lemma 5.3. Suppose T 1is a positive definite distribution
with spherical Bochner measure u. Then py 1is of

polynomial growth.

Proof. By Theorem 5.1 we have T € (Il(G))' . Hence

Theorem 4.6 gives that T € (Z( 3-1))', where

T{y] = T[y] for all vy €& Il(G). Now take €;,«-:5€

* *
to be any basis of Ot , and for A € Olg set

A = Z}‘jaj where }‘j e L. For each m, t & Z"' define

the continuous semi-norm ot on 2(31) by

m
M
of(e) = sup 1+ AP e 0]
A€ Int F dA
[M| <m

(s3]

]
where M = (ml.,,,.ml), M| = my+...4mg, — = (T)

Q
>
}_J

2 2

*
and || + in|]° = |g|® + [n|® for all €, n € OT .

~

Since T 1is continuous on 2(3-1), there exist

n>0 and m, t €Z" such that |T[¢]| <1 for all
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o € 2'(31) satisfying O':I(CD) < n. Thus Lemma 5.2 gives

(1) |5 ovdu] <1
»

for all ¢ € I_(G), V€ 11(¢) such that ¢ € Li(u)
and o;(¢w) < n.

Let P(A) be as in Prop. 4.1 for e = 1, and take

Q(\) = (P(X)P(X))t, with t from the previous paragraph.
Then Q(A) also satisfies Prop. 4.1, and from

(Notation §9(13)) we see that Q(A) = |P()\)|2t for
K-

Take dj to be an approximation of 1 in V@G,

*
where [[6j||l=l for all j. Then on Q¢ we see

~

that Gj + 1 pointwise since ¢X(e) =1 for all

~

*
A € R, and on P we see that |cSJ.| < 1 since

¢, ] <1 for all A€ . Defining ¢

*
we see that for X € g,

~ A N
¢j(k) GJ(A)GJ(X) (Notation §9(6)(8))

= Qj(x)gj(i) (Notation §9(7)(11)(12))
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*
Hence ¢. - 1 pointwise on azc , and by (Notation §9(14))

we have ¢. = lcS.I2 <1 on¥

3 Hence $j € Ll(u)

since 6§, € Lz(u) by Theorem 2.6.

~

define Wj = ¢./Q.

3 Then Prop. 4.1

For each

‘Pjé 7(3-1), and hence there exists a

gives that

~

such that Tj = wj by Theorem 4.6.

unique wj € 1)

We now claim that for m and t as specified above

uniformly bounded with respect

£, " ©
{om(¢jwj)}j=l

we have
to j. For let 55 = ¢J.*¢J. so that 5 /Q
on 31. Then
£, 0N 2.6, al A
cm(¢.w.) = sup (L + IS l—_ﬁ ( S./Q)(A)l
Jd A€ Int F3 da J
M| < m
M
and we can expand out each ———{ S /Q) term into the
dk
N A
form z CN _QN %-J%i 5 Hence
N+R=M dAa

c;(;j@j) < C I (sup

(] a] 152 ( L)1) ( sup
~ "|N+R|<m A€ Int 3% dx o Q

AeIntsl

<5J>|>
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2., a1
Now first consider ( sup ([ A7 —=x(5) ). We
A€ Int 31 ar'

claim this is bounded (obviously independently of Jj)
N

from the following: LN(%) is a rational function on J

da
with the order of the denominator minus order of the
numerator being > order Q > 2t. Hence, since Q@ 1is
strictly bounded away from zero on 3‘1 we must have

N
that (1+]|A] |2)t|—gﬁ(%)| is a bounded function on F T.
di

~ ~

Hence, to show 0;(¢jwj) uniformly bounded in j

R .
we have only to show sup l_gﬁ(SJ)| is uniformly

A€ IntJFE: da

pounded in j for each R. By Prop. 4.4 we have only

(s}

to show that {jj};=l is such that U suppisj is
j=1

relatively compact and that || Sjlll is uniformly
bounded in j. Both of these follow trivially from

* *
Sj = GS*(GJ),*GZ*(aj),’ where Gj is an approximation

of 1 in ¥(G) such that ||aj||l=1.

Hence there exists ¢ > 0 such that ci(c¢jwj) <7

for all

Q-

+ . ~ A
for all j € Z", which proves |/f ¢jwjdu[ <
¥



99.

J % Al by (1). Therefore

for a1l j€ Z*

Q-

¢§/Qdul <

But on ® we have that Q is strictly positive and

bounded away from zero, 0 < ¢j <1 and ¢j + 1 point-
wise. Thus applying monotone convergence to

d

=

< 1 < o, or that u 1is of
- c

J inf gi/Qdu gives [J
P k2J o

o

polynomial growth. O

Theorem 5.4. The Spherical Bochner Theorem

Suppose T € '(G), T >> 0. Then there exists a
unique W-invariant positive regular Borel measure u
of polynomial growth on 39 such that

(2) (4] sdu, ¢ € I1(G).

=/
¥
The correspondence is bijective when restricted to the
K-biinvariant distributions. This set also corresponds
bijectively to the set of positive definite K-bilinvariant

C} distributions, the mapping given by (2) for all
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o€ CLa).

Proof. Suppose we are given u a positive regular
Borel measure of polynomial growth on 1° . We then
claim that 7(31)4 Li(u). For take ©¢ € _2-(31).
Since P e F ! by the Helgason-Johnson theorem, then
® is defined on the support of u. Moreover, there
exists some holomorphic polynomial P on Otz such

that [ du . ©», and thus /[ |¢| u < sup |Pe| [ du . ®,
f |P| ® 31 ® |p|

proving the claim.

~

Hence the linear functional T on 2(31) given

by T[@e] = %@du is well-defined. Suppose CDn + ¢ in

—_ 1 ~ ~
7 ( ). Then |T[¢] - T[® 1| < sup [P(¢ - ¢ ) —
3 | noo- 31 S 3

which converges to zero, proving T & (zZ( ‘3-1))'.

We can then define T € (Il(G))' by T[y] = %[;]
for all Y € Il(G). But by Prop. 3.4 there exists a
unique K-biinvariant extension of T in <€'(G) given
by T[¢] = T[qﬁ] for all ¢ € & (G). Hence
Tlo] = /[ gdu and we have only to show T >> 0. Take
any ¢ :‘\Q(G) and consider (¢*'¢*)A"(}\) = ¢_}\[¢*¢*] > 0
for all A € 4% since ¢_, >> 0. Hence Tlo*¢ ] >0

ror all ¢ € R G).



101.

Conversely, suppose T € ®Q'(G), T >> 0. Then
by Theorem 2.6 there exists a unique (W-invariant)
positive regular Borel measure u on ¥ such that
T(o*p] = ‘prcmdu for all ¢, ¢ € IC(G). But by Lemma 5.3
the measure u 1is of polynomial growth on 1P s, and
our above proof shows that we can define TO € N'(G)
by TO[¢] E‘é édu. But clearly {¢¥*y | ¢, ¢y € IC(G)}
is dense in Ic(G)’ so that T and TO must agree on
IC(G), and hence also on Il(G). If T 1is K-biinvariant,
then they must agree on all of 4 (G), proving the first

asserted bijection.

The second bijection arises from the first by

applying Theorems 3.6(b) and 5.1. @

Remark. The proof of Lemma 5.3 is based on the proof

for the euclidean case in [14, Thm. VII, p. 242].
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Chapter VI

A Characterizing Theorem

Using the spherical Bochner theorem and the Trombi-
Varadarajan theorem we can deduce which (1P(G))' space
a given positive definite distribution lies in by
examining the support of its spherical Bochner measure.
The relationship turns out to be T € (1°(@))' if and
only if supp u © FEZ where 1 <p <2 and € = % - 1.
This is a very natural occurrence in light of the
Trombi-Varadarajan theorem, but while the underlying
idea of the proof is straightforward, the details are
surprisingly complicated. The desired result will be a
consequence of the first lemma after some rather unpleasant

*
measure theory and geometry on Otc.
Lemma 6.1. Suppose T € £'(G), T >> 0 such that

P
T € (I O(g))' for some pg 21, let u be the spherical

Bochner measure of T, and let e to be any point in (&

€
outside of E; O, where €g = 2. 1. Then for each

Po
non-zero integer m there exists a compact neighborhocd
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U of «a R >0 and M < o such that

O’

J ———QBLA%— < M for all o € U,
m —

QR (B;(a)) A Int 3
where BR(a) is the open ball of radius R about o,
and e(a) is defined by o € bdry 36(0‘)
Proof. Let ¢ € IC(G) be such that Ig(ao)l > 0 and

let V be a compact neighborhood of o such that

€ ~
(1) vaF 0=, and (i1) |¢(a)|> c> 0 for all

o & V. Taking {P_} . a collection of holomorphic
o
o€ mc

polynomials as constructed in Lemma 4,2, for each
* €
a6 Olg- F O define

~

(1) Y sq:/PI;‘ on Int FE()

Then Prop. 4.3 gives that ‘i’aé Z(3%) for all e < e(a),

and

€
(2) o "Pa is continuous from V into Z(F O).
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The Trombi-Varadarajan Theorem now gives the
existence of functions wa which are in Ip(G) for

all p > p(a), where p(a) = 2/(e(a)-1), and are such

that ¢ =9  on Int 38(0‘). Thus from (2) we have
(3) ar ¢ is continuous from V into I 0(G),

and by assumption on T,

#
(4) o T[wa*wa] is continuous from V into €

o]

For each o € V take ({y, }

N n=1’c IC(G) such that

wa,n > v, in I°(G) for all p > pla) (Prop. 3.3).

Then Theorem 5.4 gives that

* ~
12qu

(5)  Thu, %y 1= lv,

a,n oa,n /
s ’ p

But the right hand side of (5) is greater than or equal

to [ lwa nlzdu for each € < e(a), and these latter
Pn3Fe
~ 2 .
quantities tend toward [ 4, 1%du as n=~> = since

£n3E
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the measure Vv _(E) = wE n %), € < e(a) defines a

continuous linear functional on 7(3€) (see the proof

of Theorem 5.4). Hence (5) gives

A el%l‘?du, aeV, €< ela),
Pn 3F

and then monotone convergence implies

* A~ 2
(6) TV, *¥,] 2 ff 3e(a)|w°’|
A Int

du, a €V,
Now pick R >0 and U a compact neighborhood of

ag such that CQA( V BR(a)) e V. Then by Prop. 4.5
a€U

there exists M, < = such that |PQ(K)| < M0||1‘0||

for all a € U and \ € CR(BR(G)). Hence from (6) we

have
Ty *vil > 1612/12,1%™ au
Int F e(a)
> o) 23T ] 2™ ai(1),

& (B (a)) N Int F e(a)
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*
Taking M = (Mgm/cz)(sup T[wa*wa]), which is finite
aeU

from (4), proves the Lemma., U

Remark., We actually wish to conclude in the situation

0 1in a neighborhood of the point

of Lemma 6.1 that u
€
0 outside of EF 0. To do so

a5 and hence that u

3_5(0.)

we have to carefully examine the sets Br(a) N Int

for all o € U and r small. There are two problems

to be dealt with: (1) the sets Br(a) a Int a.s(a)
are "irregular" in shape, and (2) a ¢ Br(a) A Int 3,s(a).
These are circumvented by means of the following proposition.
*
Prop. 6.2. For each non-zero o € Otg and r 2 0 define
*
a, e Qg by a, = (1 - (r/2||e||))a. Then for each

*
compact set U 1in Q¢ disjoint from zero there exists

0 < ¢ <1 such=that

B, (a) € B,(a) n Int ge(e)

for all o € U and r_<__R0=inf||a||.
o€U
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Proof. an, is simply translation of a by a distance
of r/2 towards the origin, and hence @, is trivially

in B (a) for r > 0., Also, since o, 1s a convex

combination of a and zero for r < R,, with «

e(a) and zero an

a boundary point of the convex set F
interior point, then a, is also clearly an interior
point. Hence, for each such a and r < Ro there
exists a constant c¢(r,a) such that

Bcr(ar) c Br(a) n Int EFE(Q). The non-trivial part

of the proposition is that C can be faken independently

of both a and r for a €U and r < RO.

Let S(r,a) = sup {s | Bg(a,) ¢ B (a) NInt 38“)}.

Then S(r,a) > 0 for each a e U and 0 <r < R; from
the above. We thus have only to show the existence of
0 <c¢c <1 such that ¢ < S(r,a)/r for all o € U

and 0 < r < RO.

(1) First we claim that S(r,a)/r is non-decreasing
~ for each fixed @ as r goes down to zero, For suppose

0 < ry < r, Then
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S'(rl,a)/r1 = sup {s/r; | B (a, ) B (a) N Int F e(a)y
]

s 1 1

# .
We now alter the coordinate system on OT¢ by shifting

€
a to zero. Then Int F (@)  pecomes some open convex

"set C with zero on the boundary, and we have

S(ry,a)/ry = s:p {s/r; | Bs(arl-a) < Brl(O) nCl.

But now (arl-a) = rl/r(ar-a) and B_(ta) = tBs/t(a)

so that

S(ry,a)/ry = s:p {s/ry | (rl/r)Brs/ri(“r'“) c (ry/r)B_(0) N C}

= sup {s/r | B

u (ar-a) c Br(O) o) (r/rl)C}

rs/r1

= sup {s/r | B_(a_=a) « B_(0) n (r/ )C}
S l s''r @ r r/’ry

But since (r/rl) >1 and C is an open convex set

with zero on the boundary we get that C < (r/rl)c, hence

S(ry,a)/ry 2 sup {s/r | B (a,-a) < B,(0) A cl
s

= S(r,a)/r.
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This of course proves (i).

(ii) Our second claim is that a= S(r,a)/r is

continuous from U ¢to ﬁl for each fixed 0 < r < RO.

For suppose ||a=B|| < & Ffor & > 0. Then take any s

e(a)

such that Bs(ar) (4 Br(a) A Int F First note that

3e(a) for § small. But

B_g(o,) € B(B) A Int
|lo-8 || < 6 = [lo =B, || < 6§ when r < R, by simple

verification, and hence

(7) B, (B) € B (8) AInt F

for & small. Now define

A = sup {d(A, Int F c(B)) | A € Int 3-€(a)}
A

+ sup {d(A, Int 3€(a)) | » € Int F E(B)}
A

where d(A,E) 1is the distance of X from the set E
given by inf {|[|x-x"|] | A* € E}. (Notice that one of
the two terms defining A always has to be zero.)

Then from (7) we find that
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B._,s_,(6,) € B_(8) A Int F (&)

for small & and A, and since everything we did was

symmetric with respect to o and B, we find that
[S(r,a) - S(r,B) | < 28 + A

for |la-B || <8, & small. Our desired continuity
will then be established once we show A+ Q0 as & -+ 0

for o fixed.

Without loss of genz2rality suppose e(a) > e(B).

1r e Int F % we nave d(r, Int 3 ()

=inf ([P=A [ 2 € Ine FEB)Y <ane (ffn-n' || | n' € €(8) Int c,)
At n'

where A = € + in, n € e€(a) Int Cp. But Cp is norm

*
bounded in OU, say by M,. Hence | [n=-(e(B)/e(a))n ||

lE(g);E(Bllmz , and since (e(B8)/e(a))n € e(B) Int Cp

|§(a)-s(8)

s IM2 - 0 as &+ 0 since

we find that 4 <

ar e(a) 1is continuous. Hence (ii) is proved.
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(iii) Now (i) and (ii) prove the proposition,

since if 0 < r < R, and a € U we find that

S(r,a)/r > S(Ro,a)/Ro from (i)

> inf S(Ro,a)/R0 > 0 from (ii). Q@
T o0eU

Lemma 6.3. Suppose T, W, Dy, €, and a, as in Lemma 6.1,

¥
and let A be lebesgue measure on Otc . Then there exists

a compact neighborhood U1 of o and Rl > 0 such that
n(B, (a)) < A(Bp(a))r for all r <R, and o € U;.

#
Proof. Let & = dim 6 and apply Lemma 6.1 with

m= 2 + 1. Then there exists a compact neighborhood U

of @y R>0 and M < « such that

J
B () Int F <) [r-a |72 7

Hence

28+2

(8) u(B,(a) A Int 7)) < wr?*2 4 e U, r < R.

But from Prop. 6.2 we find, with

dud) < M for all a € U and all r < R.
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a, = (1 - (r/2||a||))a for all o € U and 0 < r small,

that there exists 0 < ¢ < 1 such that

(9) Bcr(ar) < Br(a) n Int 3;e(a), a €« U, 0 <r small.

Hence (8) and (9) combined yield

20+2,_ 22+2
U(Br(a(r/c))) < (mM/cC )r , o €U, 0 < r small.

Since A(Br(a)) is proportional to r22, then there exists

M, > 0 such that “(Br(a(r/c))) < MOA(Br(a(r/c)))P2’ or

0

(10) “(Br(a(r/c))) < A(Br(a(r/c)))r, @« €U, 0 < r small.

To show (10) implies the lemma we have only to show
that there exists a compact subneighborhood U1 of e

and some sufficiently small Rl such that for each

a € Ul and r < R1 we can find a 8 € U for which

o = B(r/c)' To do so simply define
u; = CX(BR2(a0)) for some R2 > 0 such that
B2R (ao) < U. Then for each a & U1 and r > 0 the

2
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equation a = B(r/c) uniquely determines B to be

(L + (r/2¢||al|))a by simple verification. But again,

simple verification yields that we have only to restrict
r so that r < 2cR2 to have B € U, Hence the desired

Ry equals 2¢R,, °©

Remark. Our theorem will now result from the above
lemma.and the following general covering theorem, a
variant of material found in Federer [6, Thms, 2.8.4 and

2.8.7].

Prop, 6.4, Suppose C 1is a compact set in R7, A
lebesgue measure on Win, and u a Borel measure on rRD
with the property that for every € > 0 there exists

ro > 0 such that u(Br(x)) < cA(Br(x)) for all x € C

and all r [ re. Then u = 0 on C,

Proof, If S = Br(x) then define S = B3r(x) and for

each € > 0 define AXS = {B,(x) | x e C and r < r_/3l,

We claim that ‘Xe has a disjoint subfamily .)38 with
the property that for each T e /8e there exists S ¢ jje
such that T n S ¥ g and T < S. To prove this let
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Q. = { H | ¥ is a dtsjoint subfamily of Afe such that
fér each T e X € either
(1) for all Sex, T nsS =g, or

(11) for some SeXx, T nS#¥¢g and T ¢ s}

Notice that (1) implies Q. 1is non-empty since

{g} € Q_. Now partially order 2. by inclusion --
then every chain in Qe has an upper bound which is
also in .. Hence Zorn's lemma gives the existence
of a maximal subfamily ,23 in Qe, and to show ‘Ay

€ €

is the collection desired we have only to show that each
T ¢ d_ satisfies (11) relative to J_, not (1),

Hence we must show f( = 4 where
K= AT e AXE | TS =g for all Se )55}.

Suppose K ¥ 4. Then there exists W & X such

that 2A(W) > sup A(T) since this supremum must be finite,
T TeK

But we then claim that Zﬂe u{w} e @a_, For take any
T 6,35. Then if (i1) holds for T relative to jye

it also clearly holds for T relative to ,255 v {W}.
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Thus suppose (i) holds for T relative to A&e, iges,
Te 4 . Then 2A(W) > A(T) by definition of W, which

then implies
(11) 2 radius (W) > radius (T).

There are only two cases to consider here: T N W empty
or non-empty., If T NW 1is empty, then (i) holds for
T relative to 258 u {W}, If T AW is non-empty,
then T < ﬁ from (11) and hence (ii) holds for T
relative to )58 v {W}., We have thus verified that

)ﬂs u {w} e Q. which 1s a contradiction to the
maximality of Xﬁe. Hence K = ¢ and our claim is

proved,

We use the subfamily 255 to show that u = 0 on

C. Let C, = {x ¢ R" | da(x,C) < r. where € = 1},

A

We then see that C < U 7 « U 8 < ¢, for
e

T e Age S e

€ <1 where without loss of generality we assume

r_<r. when € < 1, Hence z A(S) < A(C,) < =,
S e, :

and therefore XHE is countable since A(S) > 0 for all
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S é-)ﬁe. Thus for each € > 0 we have u(¢) <u( U 8)

< £ w8 <t eAd) =3  AS) < 3%eAlCy).

s e, se};e se/ﬁe

But therefore u(C) = 0 since A(Cy) < =. O

Theorem 6.5. Suppose T 1s a positive definite

distribution with spherical Bochner measure u. Then

T € (IP(G))' 1f and only if supp w c.gpe, where

l<p<2 and € = 2/p = 1. In such a case

T(6] = {oadu for all ¢ < IP(G).

Proof. Suppose sSupp U g,j}e for some 0 <€ < 1.

~

Then we easily see that the linear functional T on

¥( F©) defined by T[¢] = J;o¢du is continuous (same
procedure as in the proof of Theorem 5.4 for the

e = 1 case). Hence we can extend T ¢to 1P(G) by

T(¢] = T(¢] = .goctdu.

Now suppose T e (IP(G))' for some 1 <p £ 2.
Then by Lemma 6.3 and Prop. 6.4 we have that

supp M < A=
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Remark. When considered for p = 2 Theorem 6,5
becomes simply the Bochner theorem for tempered

(i.e., distributions which lie in (C2G))T)
K-biinvariant positive definite distributions, which
was first proved by Muta [13] in much the same fashion
as the euclidean Bochner theorem is proved in Schwartz
(14, Thm. XVII, p., 275]. It is of interest to note
that Muta's definition of a tempered K-biinvariant
posttive distribution differs from ours, while the
spherical Bochner theorem indirectly proves them equal,
Muta defines a tempered K-biinvariant distribution T

to be positive definite if T[¢*¢*] 0 for all

Iv

b e IC(G), which is on the surface a less restpictive
definition than ours. We can prove the equivalence
directly in the following manner: suppose T 1is
positive definite in Muta's sense, and take ¢ < ©(G).
Then (¢*¢*)A(A) 20 for all X €# since ¢_, >>0

for all A € #© , But by (Notation §5) we see that therer

exists a sequence {<l’n}:=1 < J ( cz*j = Z( 3—0) such that

* *
'|°n|2 + (6% ) 1in J(or ). Noting Schwartz's construction

we see that these °n may be taken as W-invariant, and
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thus Ibnl2 + (¢*¢'YA in Z(3%). But Theorem 4.6

A

gives ¢ e I2(G) such that ¢_ = ¢

n n? and hence

% .
¢n*¢n + (¢p%¢ )4 in IE(G). Therefore
* '
T(¢,*¢,] > T[¢% 1 in € , but it is easy to see
#
that T[¢*y ] > 0 for all y € IZ(G). Hence T 1is
positive definite in our sense,

It 1s by no means obvious that this equivalence
of derinitions holds for nori-tempered K-biinvariant
positive definite distributions, This would seem to
depend on the truth of the following conjecture: given

¥ «Z(F%), ¥>0 on # 7 FE, then there exists a

sequence ¢ in Z( #%) such that, with

¥ (A) = on(k)(’nﬂ') for each A € 7%, we have

¥ =+ ¥ in Z(F®)., This seems like a very unobvious

statement except for the case € = 0,

Corollary 6.6. Consider T e ©'(G), T >> O,

K-biinvariant., Then if the spherical Bochner measure u
&
is supported in OU v C where C 1s a compact subset

*
of Oz, then T =S + f, where S 4is a tempered
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K-biinvariant positive definite distribution and f is

a continuous K-biinvariant positive definite function.

In particular, this is always true in the real rank

one case.

Proof. Let ul(E)

* * *
w(E Aot ) and p,(E) = w(E n (0= & ))

*
for all Borel sets E in Olg. Then by Theorem 6.5 we

have that My gives rise to a tempered K-biinvariant

positive definite distribution S.

Now by Lemma 5.3

we have that u, must be finite since it is supported

in the compact set C. Hence My

continuous K-biinvariant function

Clearly T = S + f.

Suppose that G 1is real rank one. Then '

* *
contained in O VvV (ior ) since

gives rise to a

f by Theorem 2.5.

A

and A are

W-conjugate for all A et®, and W = {sl’sz}’

Sap

*
theorem gives that 4 < OU U iCp

desired form. O

b

which is the

is

where 51>‘ = >\,

*
A ==X for all A€ OU . Then the Helgason-Johnson
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