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Abstract

Humans are remarkable in their ability to rapidly learn complex tasks from little
experience. Recent successes in Al have produced algorithms that can perform com-
plex tasks well in environments whose simple dynamics are known in advance, as well
as models that can learn to perform expertly in unknown environments after a great
amount of experience. Despite this, no current AI models are able to learn sufficiently
rich and general representations so as to support rapid, human-level learning on new,
complex, tasks.

This thesis examines some of the epistemic practices, representations, and algo-
rithms that we believe underlie humans' ability to quickly learn about their world
and to deploy that understanding to achieve their aims. In particular, the thesis
examines humans' ability to effectively query their environment for information that
helps distinguish between competing hypotheses (Chapter 2); children's ability to use
higher-level amodal features of data to match causes and effects (Chapter 3); and
adult human rapid-learning abilities in artificial video-game environments (Chapter
4). The thesis culminates by presenting and testing a model, inspired by human
inductive biases and epistemic practices, that learns to perform complex video-game
tasks at human levels with human-level amounts of experience (Chapter 5). The
model is an instantiation of a more general approach, Theory-Based Reinforcement
Learning, which we believe can underlie the development of human-level agents that
may eventually learn and act adaptively in the real world.

Thesis Supervisor: Joshua B. Tenenbaum
Title: Professor of Computational Cognitive Science
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Chapter 1

Introduction

Humans are remarkable in their ability to rapidly learn complex tasks from little ex-

perience. Recent successes in Al have produced algorithms that can perform complex

tasks well in environments whose simple dynamics are known in advance (Silver et al.,

2016; Brown and Sandholm, 2018), as well as models that can learn to perform ex-

pertly in unknown environments after a great amount of experience (Guo et al., 2014;

Mnih et al., 2015; Van Hasselt et al., 2016; Schaul et al., 2015; Stadie et al., 2015;

Mnih et al., 2016; He et al., 2016; Hessel et al., 2017). Despite this, no current Al

models are able to learn sufficiently rich and general representations so as to support

rapid, human-level learning on new, complex, tasks.

This thesis examines some of the epistemic practices, representations, and algo-

rithms that we believe underlie humans' ability to quickly learn about their world

and to deploy that understanding to achieve their aims. In particular, it examines

humans' ability to effectively query their environment for information that helps dis-

tinguish between competing hypotheses; children's ability to use higher-level amodal

features of data to match cause and effects; and adult human rapid-learning abilities

in artificial video-game environments. The thesis culminates by presenting and test-

ing a model, inspired by human-like inductive biases and epistemic practices, that

learns to perform complex video-game tasks at human-level performance and with

human-level amounts of experience. The model is an instantiation of a more general

approach, Theory-Based Reinforcement Learning, which we believe can underlie the
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development of human-level agents that may eventually learn and act adaptively in

the real world.

Many decades of research in cognitive science have shown that humans have early-

arising "start-up" software - rich representations about objects and physics (Spelke,

1990; Baillargeon, 2004; Baillargeon et al., 2009; Rips and Hespos, 2015) and about

agents (Johnson et al., 1998; Tremoulet and Feldman, 2000; Csibra et al., 2003;

Schlottmann et al., 2006; Spelke and Kinzler, 2007; Csibra, 2008; Kiley Hamlin et al.,

2013), and that humans have the capacity to rapidly acquire new concepts (Carey,

1978; Landau et al., 1988; Markman, 1989; Bloom, 2000; Xu and Tenenbaum, 2007;

Lake et al., 2015) and build intuitive theories (Murphy and Medin, 1985; Carey, 1985;

Gopnik and Meltzoff, 1997) - abstract, coherent, causal, ontologically-committed

frameworks which they can use to explain (Lombrozo, 2009; Williams and Lombrozo,

2010), predict Rips (1975); Murphy and Ross (1994), and imagine (Ward, 1994; Jern

and Kemp, 2013).

In addition to being born with the right inductive biases, humans, and in partic-

ular, children, learn rapidly because they employ powerful epistemic practices (see

Gopnik and Wellman (2012); Schulz (2012); Tenenbaum et al. (2011) for reviews).

Children rationally infer causal relationships from statistical evidence (e.g., Gopnik

et al. (2004)), selectively explore when evidence is confounded or surprising (Schulz

and Bonawitz, 2007; Bonawitz et al., 2012), evaluate the relationship between sam-

ples and populations (Denison and Xu, 2010; Gweon et al., 2010; Xu and Denison,

2009), infer the existence of unobserved variables to explain anomalous data (Schulz

et al., 2008), isolate candidate causes in order to distinguish between competing hy-

potheses (Cook et al., 2011; van Schijndel et al., 2015), and effectively search through

hypothesis spaces for information (Nelson et al., 2014). Adults, of course, can also

effectively intervene on causal systems to learn their structure (Lagnado and Sloman,

2004; Sloman and Lagnado, 2005; Waldmann et al., 2006) and can use use optimal

information-gain strategies when doing so and when asking questions, more gener-

ally (Nelson, 2005; Steyvers et al., 2003; Rothe et al., 2017). As humans explore the

world and its affordances, they must ask questions that have scope, in that they rule
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out large numbers of hypotheses at once, and they must also minimize query reliable

sources in order to obtain useful information. Chapter 2 addresses whether humans

continue to follow information-gain imperatives in when confronted with confronted

with large and noisy information spaces.

Chapter 3 addresses the question of internal search. When humans do seek

data, they do so in order to address a hypothesis space that is already limited to

"reasonable" hypotheses; that is, the hypothesis space of all possible answers has

already been constrained by an internal search. We suspect that human learners

do this by using certain types of abstract heuristics, and here we examine whether

children - our best learners - can use such heuristics to select between different

hypotheses in the absence of informative evidence.

Abstract heuristics may be especially important in the setting of causal learning.

One may have the goal of identifying a causal mechanism responsible for something

that blinks on and off. Given a choice between a mechanism like a doorbell or a

mechanism like a pulley, one might favor the former; given an effect whose outcome

space is discrete, a candidate cause with discrete outcomes may seem preferable to

one that has continuous outcomes. Of course, nothing guarantees that this inference

is correct, but in the absence of other information, it is a reasonable strategy for

narrowing down the hypothesis space. An initial test of this general idea showed

that four- and five-year-olds were sensitive to abstract properties relating the form of

candidate causes and effects. In a series of experiments, children successfully mapped

discrete causes to discrete effects and continuous causes to continuous effects (Magid

et al., 2015).

If priors about causal processes enable learners to select good hypotheses in the

absence of covariation data or content-specific prior knowledge, what form should

these priors take? If they are to be effective across a variety of problems, these priors

cannot be about lower-level cognitive features such as color, height, pitch, etc., since

causal relations do not often preserve these. That is, color changes are not usually

caused by other colors; pitch changes are not caused by other pitch changes; and

so on. More importantly, the space of possible mappings between specific low-level
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features is too large for an approach reliant on specific priors about such mappings

to be efficient. However, certain higher-level amodal features such as extent, rate,

arity, distributional properties, and dynamics, are invariant to the lower-level features,

allowing for more relevant and more efficient comparisons. We propose that children

are sensitive to these higher-level features and can use them to match effects with

their causes. Our experiments show that children are indeed sensitive to at least two

of these: distributional properties and dynamics.

Chapters 4 and 5 broaden the scope of our inquiries to the problem of learning to

behave adaptively in unknown environments. Recently there has been great interest

in the idea of building artificial agents that learn to play video games, as these serve as

readily available microcosms for the development of algorithms that may eventually

learn to function in the real world.

This line of research has been hugely successful: reinforcement learning algorithms

using deep neural networks have surpassed human-level performance on games from

the classic Atari 2600 platform (Guo et al., 2014; Mnih et al., 2015; Van Hasselt

et al., 2016; Schaul et al., 2015; Stadie et al., 2015; Mnih et al., 2016; He et al., 2016;

Hessel et al., 2017). The original Deep Q-learning Network (Mnih et al., 2015) used

a a deep convolutional neural net trained through stochastic gradient descent to ap-

proximate the environment's optimal action-value function, Q(s, a), and variants of

this algorithm have achieved increasing asymptotic performance as well as increas-

ing data efficiency by varying each of several relevant components: the Double DQN

(Van Hasselt et al., 2016) addresses an overestimation bias caused by DQN's loss

function, and Prioritized Experience Replay (Schaul et al., 2015) samples transitions

for replay as a function of their last-encountered TD error, thereby more frequently

sampling transitions from which there is more to learn (but also sampling more from

stochastic transitions where there may no longer be anything to learn). The A3C

algorithm (Mnih et al., 2016) executes multiple agents in parallel, thereby decorre-

lating their experience, and estimates both a value function, V(s) and a policy, ir(s).

These and other methods turn out to be largely complementary; Rainbow (Hessel

et al., 2017) combines them to produce state-of-the-art performance on the Atari
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benchmark, eventually reaching 210% of human performance across the 57 bench-

mark games. However, even a cursory examination of the behavior of these artificial

agents reveals that they learn incredibly slowly (Guo et al., 2014; Mnih et al., 2015;

Van Hasselt et al., 2016; Schaul et al., 2015; Stadie et al., 2015; Mnih et al., 2016; He

et al., 2016; Hessel et al., 2017; Kansky et al., 2017) and that they generalize poorly

to trivial variations of a given environment (see the experiments reported by Kansky

et al. (2017)).

Our experiments show that humans are able to learn these tasks in a matter of

minutes, suggesting that humans and leading Al algorithms employ different represen-

tations and learning mechanisms. In addition to bringing early-arising representations

to bear on Atari tasks, humans come equipped with rich prior knowledge about the

world - for example, knowledge about keys, doors, ice, birds, and so on. While such

knowledge could give humans an edge over Al algorithms, we believe that it plays

a minimal role in humans' ability to rapidly master these tasks. In Chapter 4 we

conduct a systematic analysis of human performance on these tasks and show data

suggesting that it is not semantic knowledge but rather abstract theory-like knowledge

that enables rapid learning.

In Chapter 5 we present a novel approach, Theory-Based Reinforcement learning,

that enables rapid learning in novel environments through the use of human-like

"intuitive theories". We instantiate the approach in our Exploring, Modeling, Planning

agent (EMPA). This agent uses priors about objects as spatiotemporally contiguous

entities whose properties can be learned from experience; an imperative to explore

these objects and to observe available evidence to rapidly build theory-like models of

the game worlds it encounters; and an ability to use these models to simulate possible

future worlds and generate effective plans. We compare our model's performance to

human performance on a set of 90 challenging video games and show that our model

is able to learn on human timescales and far outperforms a representative deep-RL

model (DDQN).
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Chapter 2

Information Selection in Noisy

Environments with Large Action

Spaces

2.1 Introduction

As scientists, we often encounter (or conduct) experimental work that is stunning in

its breadth but disappointing in its rigor, or work that is categorically decisive but

disappointingly narrow in scope. As child or adult intuitive scientists searching for

information, we often deal with these two dimensions - scope and rigor - as well;

we can make general queries that drastically narrow the hypothesis space of answers

or make narrower ones, and we can seek information from reliable sources that are

more likely to give us correct answers, or from sources that are less so. Our success,

whether as professional or intuitive scientists, hinges on our ability to balance these

two dimensions in order to produce queries whose answers will be informative.

Early work on information search seemed to show that people fail to make rational

decisions when it comes to information acquisition; in the Wason (1968) selection

task, only 4% of subjects made the normative selection in a task with a fairly small

(12) action set. However, as Oaksford and Chater (1994) pointed out, the selection
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made most often by participants in the original Wason task was normative when

environmental statistics were taken into account. Specifically, participants' decisions

were best explained as maximizing expected information gain, in the service of helping

them to decide between competing hypotheses.

More recent work on information search has shown that children have strong

intuitions about questions' usefulness and search adaptively (Nelson et al., 2014)

and that adults can value information over explicit reward when the two are put in

opposition (Markant and Gureckis, 2012).

Our interest is in whether these trends persist when people are confronted with

large, noisy information spaces. The real world is just that - large and noisy -

and so humans' ability to learn successful intuitive theories hinges on their ability

to confront size and to deal with noisy information. As we explore the world and

its affordances, we must select queries that have scope, in that they rule out large

numbers of hypotheses at once. And, inasmuch as we can help it, we should minimize

noise by querying reliable sources.

In the real world, these are often in opposition. So, we ask: how do people trade

off scope and reliability when exploring large, noisy information spaces?

2.2 An Information-search Task

To answer the question of how people trade off scope and reliability when searching for

information in noisy environments, we designed a novel information-search task. Our

goal was for it to be as simple as possible, while having as many features approaching

natural exploration as possible. Thus we paired a very simple game - identifying a

hidden number on a number line - with a relatively complex search procedure. In

playing the game, participants make queries that vary in the abstract features of scope

and reliability. Additionally, at each point in the game, participants are faced with a

very large number of potential specific queries to choose from. Our task is similar to

the Markant and Gureckis (2012) task in that it involves exploring a geometric space

to test particular hypotheses, but we wanted to make explicit the abstract features of
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questions, rather than have these be implicit as a function of the hypotheses at hand.

Participants play by asking 'questions' about the hidden number's location, using

'scanners' that turn blue if the number is under the scanned region and red if the

number is not. In each trial, a participant is given four scanners (Figure 2-1). In some

conditions, the scanners vary in size. Larger scanners can cover larger regions of the

number line, ruling out (or in) a larger set of hypotheses than a smaller scanner. Thus,

in the context of this study, the 'scope' is directly related to the length of the scanner.

However, the scanners are not deterministic; they also vary in their reliability, which

is the probability of providing an accurate signal about the presence of the hidden

number (false positives and false negatives are equally likely).

Figure 2-1: A screenshot of the task. The four green rectangles are the scanners. The
player has scanned three times and received one positive and two negative answers,
as shown by the blue and red scanner outlines on the number line.

To efficiently find the hidden number, participants have to select scanners that pro-

vide a good trade-off between length and reliability, and then place them in informa-

tive regions on the number line. The optimal trade-off between these factors (length,

reliability, location) can be captured by expected information gain, as described in

the next section. Actions that are optimal in the sense of expected information gain

minimize uncertainty about the location of the hidden number.
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2.3 Model

Let I denote the number line (in our case, integers ranging from 0 to 100), and let

h E I denote a hypothesis about the hidden number. On each trial, participants

choose an action a (placing a particular scanner over a portion of the number line)

and observe a binary outcome d (1 if the number was detected by the scanner, 0 if the

number was not detected). There are almost 500 possible actions, since each of the

four scanners can be placed anywhere as long as some part overlaps with the number

line. The posterior distribution over h is updated on each trial according to Bayes'

rule:

P(hld, a, D) oc P(dlh, a)P(hID), (2.1)

where D denotes the history of actions and outcomes prior to the current trial.

Intuitively, participants should choose actions that maximally reduce their uncer-

tainty about the location of the hidden number; this corresponds to taking actions

that maximally reduce posterior uncertainty, which can be quantified by the entropy:

H[P(hld, a, D)] =- P(hld, a, D) log P(hld, a, D) (2.2)
h

Minimizing posterior entropy is equivalent to maximizing information gain (the re-

duction of entropy after taking action a and observing d):

IG(a, d) = H[P(hD)] - H[P(hld, a, D)]. (2.3)

Because the outcome d is not available at the time of choosing a, the best that a

participant can do is maximize expected information gain:

EIG(a) = 1:P(dja, D)IG(a, d), (2.4)
d

where the posterior predictive distribution is given by P (d Ia, D) Zh P (d I a, h) P(h Ia, D).
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Let a denote a scanner's error probability and 'a denote the range covered by the

scanner. The game generates signals according to:

True positive: Pr(d= 1 {I nI} 0) 1 - a.

True negative: Pr(d 0 , {In n I} 0) 1 - a.

False positive: Pr(d 1 I{I f ni}= 0) a.

False negative: Pr(d 0 1 {I n I} z 0) a.

Roughly speaking, conditioned on a scanner choice, participants should bisect the

interval that has the highest posterior probability of containing the scanner. This

corresponds to the split-half heuristic discussed by Navarro and Perfors (2011) and

Nelson et al. (2013). However, because in this game signals are stochastic, there

may not be a single contiguous interval of highest posterior probability, and thus no

reasonable interval on which to precisely perform the split-half heuristic. Nevertheless,

actions can still be ranked according to EIG.

To help hone our own intuitions about the task and about participants' actions,

we created a display (Figure 2-2) that in this case shows a vignette of four sequential

actions from one particular user's trial. The normative posterior distribution over

the location of the hidden number (in grey at the bottom) is displayed for each

trial, along with the scaled expected information gain' of each of the 500 available

actions (the colored arcs; each dot represents the center of the range at which the

scanner could be placed); these are the evaluations of the normative model. The same

recommendations are shown as posterior-predictive entropies in the insert (the red

dot in the insert shows the posterior-predictive entropy of the action actually chosen

by the participant), along with the participant's action at that point (the flat green or

red bar at the bottom), and the result of that action (in this display, green indicates

'yes' and red indicates 'no').

'Scaled expected information gain is obtained by dividing the expected information gain of each
action by the highest expected information gain available at that decision point.
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Figure 2-2: Analysis of one participant's four sequential actions in the information-

search game. All the scanners were of reliability=0.87 and varied only in length. A:

The participant uses the length=50 scanner and receives a response of 'yes'. The arcs

correspond to the scaled information gain of each candidate action; note that the

participant selects one of the highest-rated actions. This fact is also indicated in the

insert, which shows the posterior-predictive entropies of all candidate actions (lower is

better); the red dot indicates the posterior-predictive entropy of the action chosen by

the participant. B: The participant employs the 'split-half' heuristic to test half the

remaining space. Note that all of the highest-ranked model recommendations involve

testing exactly half of the highest-posterior-probability region. C: The participant
continues to use 'split-half'. D: The participant re-tests the entire region of highest

posterior probability. This is highly rated, but not as much as it would be had they
tested half the remaining space.
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2.4 Experiment 1

2.4.1 Method

Participants. 26 participants completed the experiment for pay on Amazon Me-

chanical Turk.

Materials. We used a base set of scanner reliabilities in the set, {0.51, 0.62, 0.75, 0.871,

and of lengths in the set, {0.0625, 0.125, 0.25, 0.5}.2 From these we created scanners

as follows for the following conditions:

Reliabilities: One scanner in each of the four reliabilities above; all are of length

0.25.

Lengths: One scanner in each of the lengths above; all are of reliability 0.87.

Crossed: We wanted to see whether people could choose well when reliability and

length were put in opposition, so we crossed them to create the following [length,

reliability] pairings:

[0.5, 0.51], [0.25, 0.62], [0.125,0.75], [0.0625, 0.87].

Each participant performed 6 trials: 4 'crossed' trials, 1 'reliabilities' trial, 1

'lengths' trial; the order of these was randomized.

Procedure. Each participant read a short sequence of sequential, interactive, in-

structions. They were told that with each round of the game a number would be

hidden at a random location on the number line, told that they could use scanners

to find the number, introduced to the scanners, shown that scanners glowed blue to

indicate that the number was in that region and red to indicate that it was not, and

given experience with the fact that the scanners could produce both false positives

and false negatives. Finally, participants were told that once they thought they knew

where the hidden number was located, they should use a provided set of crosshairs

to indicate its location.

2 The indicated length is as a proportion of the number line.
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Following the end of the 'instructions' session, participants played six rounds of

the game. Each game (trial) presented them with four scanners whose lengths and

reliabilities were determined by the condition of the trial. As they played each round,

the history of their queries was visible to them as the red or blue glow left by each

scanner remained in its place after the scanner was removed; this was to ensure that

memory load did not differentially affect participants' decisions. After a scanner was

used, it returned to its original position. Using multiple scanners simultaneously was

not allowed by the interface. Participants were allowed to make as many queries as

they wanted as they went through a trial; trials ended only when participants indi-

cated their believed location of the hidden number by using the provided crosshairs.

Our main interest was to see how participants would confront a trade-off between

and reliability. Before examining this, however, we tested each separately as proof of

concept.

2.4.2 Results

Lengths condition

First we tested whether participants were sensitive to the fact that different queries

had more or less coverage of the hypothesis space. We gave them four scanners which

varied only in their lengths; the scanners all had reliabilities of 0.87, and lengths of

[0.5,0.25,0.125,0.0625]. For each decision point reached by a participant (that is,

before each scanning action), we calculated the expected information gain afforded

by centering each available scanner at the center of the region actually queried by the

participant. We then ranked those scanners according to this expected information

gain. Participants picked the best scanner most often - 45% of the time - showing

that they were sensitive to the imperative to cover as much ground of the hypoth-

esis space as possible. A repeated-measures one-way ANOVA showed that choice

proportions differed significantly across scanners [F(3, 25) = 16.55, p < 0.0001]. A

post-hoc t-test showed that the difference between the first and second scanner ranks

was significant [t(25) = 5.80,p < 0.00011.
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Reliability condition

Next we tested whether participants were sensitive to the imperative to reduce noise;

that is - did participants make reliable queries when they were given a chance to do

so?

Participants were given four scanners which varied only in reliability; the provided

reliabilities were [0.87, 0.75, 0.62, 0.51], and all scanners were of length 0.25.

Across all subjects and all trials of this condition, participants were strikingly

sensitive to reliability, as they selected the best scanner 89% of the time. A repeated-

measures one-way ANOVA showed that choice proportions differed significantly across

scanners [F(3, 25) = 52.88,p < 0.00011. A post-hoc t-test showed that the difference

between the first and second scanner ranks was significant [t(25) = 8.88, p < 0.00011.

Crossed condition

When confronted with a choice of questions that might either greatly reduce the size

of the hypothesis space or provide reliable answers, how did participants choose?

We constructed a condition in which these two dimensions were in direct opposi-

tion: we offered an array of scanners such that the more coverage of the hypothesis

space a scanner provided, the less reliable it would be. We used four scanners whose

[lengths, reliabilities] were [0.0625,0.87], [0.125, 0.75], [0.25, 0.62], [0.5, 0.51]. Partici-

pants were clearly sensitive to length/reliability tradeoffs, as they selected the best

scanner 57% of the time. A repeated-measures one-way ANOVA showed that choice

proportions differed significantly across scanners [F(3, 25) = 56.91,p < 0.00011. A

post-hoc t-test showed that the difference between the first and second scanner ranks

was significant [t(25) = 5.82,p < 0.0001].

While we found these results encouraging, we were concerned that the particular

length/reliability trade-offs we provided were such that one dimension might have

contributed significantly more to expected information gain than the other. If this

were the case, participants might have made what looked like normative decisions

driven by both length and reliability, even though in reality they were driven only by
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length (or by reliability).

To examine this possibility, we ran a second experiment in which we provided

participants with a large array of scanners of different [length, reliability] pairings.

Length and reliability would trade off in terms of their relative contributions to a

scanner's expected information gain, and therefore good performance in this condition

would indicate an actual sensitivity to both dimensions.

2.5 Experiment 2

2.5.1 Method

Participants. 26 participants completed the experiment for pay on Amazon Me-

chanical Turk.

Materials. The same base set of lengths and reliabilities described in Experiment

1 was used to construct a new 'mixed' condition: We selected 8 of the 16 possi-

ble pairings of the 4 lengths and 4 reliabilities so as to cover a reasonable range

of possibilities for available scanners. Specifically, participants were provided with

scanners whose lengths and reliabilities were semi-randomly paired using the origi-

nal [0.5, 0.25, 0.125, 0.0625] lengths and [0.87, 0.75, 0.62, 0.511 reliabilities. They then

played the game in the same way as in Experiment 1.

We also ran a 'deterministic' condition in which scanners varied in length but were

all of reliability = 1, randomly interleaved with the 'mixed' conditions. The results

were similar to those reported in Experiments 1 and 2, and are left out for the sake

of brevity.

Participants performed 6 trials (4 'mixed', 2 'deterministic'); the order of these

was randomized for each subject.

Procedure. The procedure was identical to Experiment 1, except that in the instruc-

tion phase, participants were additionally provided an opportunity to use a scanner

of each reliability as many times as they wanted, on a number line in which the tar-

get number was not hidden, in order to become fully familiar with the scanners they
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would later use. The intent was to have participants learn about the reliabilities, so

for this familiarization stage, all scanners were of equal length.

2.5.2 Results

Scanner choice: length + reliability

First we examine whether participants are able to select questions with the best

abstract features - that is, do they select questions whose length and reliability

combine to provide the highest expected information gain?

As in Experiment 1, we computed the expected information gain for each of the

four scanners, conditioned on the placement actually chosen by each participant; we

then ranked the scanners according to this EIG and examined where each participant's

scanner choice fell in these rankings. A repeated-measures one-way ANOVA showed

that choice proportions differed significantly across scanners [F(3, 25) = 61.66, p <

0.0001]. A post-hoc t-test showed that the difference between the first and second

scanner ranks was significant [t(25) = 7.94,p < 0.0001].

Figure 2-3blueA shows the distribution over all scanner choices for the 'mixed'

condition, together with the predictions of a softmax version of the EIG model, to

be explained later. Participants frequently chose the best scanner, roughly 60% of

the time across a wide range of length/reliability trade-offs, which suggests that they

are sensitive to the expected information gain of both the scope and reliability of

queries rather than to either of these factors alone. Across the 8 sub-conditions that

comprised the 'mixed' condition, the probability that participants chose the best

scanner also correlated with the EIG model's choice probabilities (Figure 2-3blueB,

p = 0.606).

Joint choices of scanner and placement

Having determined that participants correctly weigh the trade-off between the ab-

stract features of scope and reliability to select the best-available scanners, we can

examine how well they select the specific queries they make.
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Figure 2-3: A: The 'mixed' condition reveals that participants are able to select the

best scanner across a wide variety of reliability/length trade-offs. B: The proportion

of times participants chose the most informative scanner (x axis) versus predictions

of the EIG model (y axis), for each of the 8 sub-conditions in the 'mixed' condition.

Given a choice of scanner, how sensitive are participants to the expected informa-

tion gain of where they place the scanner along the number line? For each decision,

we ranked the expected information gain of each possible placement of the scanner

chosen by participants. Participants chose a placement in the top 10th percentile 38%

of the time, and in the top 20% almost 60% of the time. A repeated-measures one-way

ANOVA showed that choice proportions differed significantly across percentile bins

[F(9, 25) = 55.43, p < 0.00011. A post-hoc t-test showed that the difference between

the first and second bins was significant [t(25) = 7.11, p < 0.00011.

We can also ask about the overall quality of the queries made, over all possible

choices of query scope, reliability, and location. Participants are highly sensitive

to expected information gain in this space, selecting queries in the top 10% of the

available set more than 50% of the time (Figure 2-4). A repeated-measures one-way

ANOVA showed that choice proportions differed significantly across percentile bins

[F(9, 25) = 71.4, p < 0.0001]. A post-hoc t-test showed that the difference between

the first and second bins was significant [t(25) = 7.24,p < 0.00011. They are also

decreasingly likely to select an action in each of the subsequent percentiles, with a

profile very well fit by the EIG model (p = 0.994).
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Figure 2-4: In their overall query choices (combining scanner scope, reliability, and
location), participants are highly sensitive to expected information gain; note also the
tight fit of the EIG model (p = 0.994).

2.5.3 Model comparisons

The above results suggest that participants are sensitive to expected information gain

(EIG), rather than making selections on the basis of reliability or length alone. To

test this claim more rigorously, we fit five alternative models in addition to EIG,

which make decisions according to the following criteria: length, reliability, length +

reliability, EIG-length, EIG-reliability. Each model computes a 'value' of an action,

V(a), as a linear function of the stated parameters: V(a) =- E/ 3fj, where f, is

some feature of the current trial/action (i.e., EIG, length, or reliability) and /i is

a coefficient fit to each participant by maximum likelihood (when all features share

the same coefficient, 3 is often referred to as the inverse temperature). This value is

then transformed to a choice probability according to the softmax function, P(a) oc

exp{V(a)}.

The reliability, length, and reliability+length models test the hypothesis that par-

ticipants are sensitive to these features of scanners without using them to compute

expected information gain. The EIG-reliability and EIG-length models test the hy-

pothesis that participants are sensitive to expected information gain but insensitive to

one or another feature of queries. Specifically, in the EIG-reliability model, decisions
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are made according to the expected information gain that arises from considering the

reliabilities of the scanners, but ignoring their lengths.3 The EIG-length model, on the

other hand, takes the correct scanner lengths into account but assumes a reliability of

1.0 for each scanner. The original EIG model tests the hypothesis that participants

are sensitive to expected information gain with no qualifications.

For each model, we computed the (participant-specific) Bayesian Information Cri-

terion approximation to the marginal likelihood, and then submitted the models to

the Bayesian model selection algorithm of Stephan et al. (2009), which estimates

the group-level exceedance probability for each model (the probability that a given

model is more likely than all other models considered). The exceedance probabili-

ties for the models are as follows: EIG: 0.9982, EIG-reliability: 0.0000, EIG-length:

0.0004, reliability: 0.0068, reliability+length: 0.0000, length: 0.0000.
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Figure 2-5: Log likelihoods assigned by each model to participants' joint choices of
scanner type and placement.

How do the models predict participants' actions, in general? We computed the

average log likelihood for participants' joint choices of scanner (length and reliability)

and placement (the specific location on the number line queried) under each model

(Figure 2-5) and find that the full EIG model, sensitive to all three factors, performs

3There is no way to ignore length in these calculations while still computing EIG, so to to model
ignorance in this case we set the length of each scanner equal to the average length of the available
scanners.
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best. The EIG-length and EIG-reliability models do not fare well, as they operate

on incorrect assumptions (that all scanners were deterministic, or that all scanners

were of the same average length, respectively) which distort the EIG calculation. The

reliability and reliability + length models do fairly well here, but looking at scanner

placements conditioned on scanner choices, they predict no better than chance; this is

the main reason they fare worse than the full EIG model in predicting overall actions

choice.

2.6 Discussion

The ability to search efficiently for information in large and noisy environments is

critical for real-world learning and discovery. Constructing scientific theories or their

intuitive analogues hinges on being able to successfully test competing hypotheses,

which often requires balancing the epistemic virtues of scope - to deal with the

world's enormity - and reliability - to deal with the world's noise. In this paper

we have shown that adults can appropriately balance these trade-offs, effectively

conducting the most informative tests when conducting information search with large

action spaces. This result is consistent with previous work on information search (cf.

Nelson et al. (2013)), but more closely resembles natural exploration because of the

large action spaces used and the fact that participants had to confront the scope-

reliability trade-off.

In our attempt to understand how humans deal with this trade-off, we compared

several alternative computational models. Three were sensitive to the abstractions of

scope and reliability without any regard for the way in which these factored into a

query's expected information gain; three others calculated expected information gain

and used scope and reliability either explicitly or implicitly. We found that human

actions were best explained by a model that selects actions according to their expected

information gain, using both scope and reliability along with the precise location of

a proposed test in the EIG calculation.

While this study was designed to capture abstract features of information search
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in many natural environments, one might be concerned that our results are specific to

visuospatial or physical domains in which the target exists at some location and par-

ticipants might be able to deploy geometric intuitions about how to search for objects

that may not hold for more abstract forms of information search. To some extent our

study is less prone to this objection than other recent work using spatially organized

tasks Markant and Gureckis (2012), because of the added complexity introduced by

varying reliability which does not have an immediate spatial component. Future work

should extend both the modeling and experimental paradigms to entirely nonspatial

domains, where scope and location have more abstract interpretations.

One salient feature of our computational model is that it evaluates actions only

on their one-step information gain; it is 'myopic', in Al terms. Perhaps human infor-

mation search can effectively look further ahead than one step, considering EIG over

the many possible outcomes of multiple choices. It is also possible that myopic EIG

describes human search best. Future work should investigate these possibilities.
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Chapter 3

Hypothesis-space Constraints in

Causal Learning

3.1 Introduction

The last fifteen years have produced a spate of research highlighting the kinds of

epistemic practices that allow children to effectively navigate their complex world.

Children have been shown to rationally infer causal relationships from statistical evi-

dence (e.g., Gopnik et al. (2004)), to selectively explore when evidence is confounded

or surprising (Bonawitz et al., 2012), to constrain their generalizations depending on

how evidence is sampled (Gweon et al., 2010; Denison and Xu, 2010; Xu and Deni-

son, 2009), to infer the existence of unobserved variables to explain anomalous data

(Schulz et al., 2008), and to isolate candidate causes in order to distinguish between

competing hypotheses (Cook et al., 2011). Older children (ages 8-9) have also been

shown to effectively confront hypothesis spaces as they search for information (Nelson

et al., 2013). These practices combine to enable the formation of intuitive theories

- abstract, coherent, causal, ontologically-committed frameworks that guide predic-

tion, explanation, and action (Gopnik and Meltzoff, 1997; Carey, 1985; Murphy and

Medin, 1985).

Powerful as these practices may be, the reality is that for even a simple problem

- for example, what causes day and night? - the space of hypotheses is infinite.
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The fact that children are able to prodigiously map causes and effects all around them

suggests the existence of methods for constraining hypothesis spaces before engaging

in (often costly) hypothesis-testing.

Schulz (2012) suggests that learners have information about the gaps between

each candidate hypothesis and the data they seek to explain; these 'gaps' can be used

to identify promising hypotheses. Problems contain information about the abstract

properties of their solution - solutions to navigation problems are likely to involve

2-dimensional maps, explanations are likely to generate causal chains or trees, and so

on. A progenitor of this idea can be found in the work of Langley et al. (1987), who

framed the process of scientific discovery as one of means-ends problem-solving, and

who focus on heuristics (inspired by research on human problem-solving) for reaching

a goal situation without exploring all possible alternative intermediate states. An

initial test of this general idea, by Magid et al. (2015), asked if children were sensitive

to such information. In a series of experiments, children were shown two causes -

one discrete (two-setting) button and one continuous slider on the same controller

box - and two effects - one discrete and one continuous. Across a variety of

conditions children successfully mapped the discrete cause to the discrete effect, and

the continuous cause to the continuous effect.

Here we suggest that certain priors about causal processes may enable children

and adults to prioritize certain regions of the hypothesis space when seeking to build

good theories. But what form should these priors take? If they are to be effective

across a variety of problems, lower-level cognitive features such as color, height, pitch,

malleability, won't do, since causal relations do not often preserve these. That is,

color changes are not usually caused by other colors; pitch changes are not caused by

other pitch changes. However, certain higher-level amodal features such as extent,

rate, arity', distributional properties, and dynamics, are invariant to the lower-level

features, allowing for perhaps more relevant comparisons. We propose that children

are sensitive to these higher-level features and can use them to match effects with

their causes. In this paper we focus on two: distributional properties and dynamics.

'The number of states that a variable can take.
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3.2 Distributional Properties

As long as objects in two (or more) sets can be grouped into types, the relative

proportions of those types across sets can be evaluated. This holds regardless of

the features that serve to establish object identity, making such operations widely

applicable. Even young infants have been shown to understand proportion, as they

map proportion to probability of outcomes and can use proportion to guide their

actions (Xu and Garcia, 2008; Xu and Denison, 2009; Denison and Xu, 2010). Here

we ask whether young children believe that causal processes preserve proportion and

if they can use this information to select between candidate causal hypotheses that

cannot be distinguished by other means (e.g., covariation data, surface features, or

domain-specific prior knowledge).

3.2.1 Methods

Participants

Sixteen preschoolers (mean2 : 5 years, 1 month; range: 4 years, 3 months - 5 years,

7 months.) were recruited from a local children's museum.

Materials

We used Paint Tool SAI to create four flowers, two for each stimulus set. Within

each stimulus set, the flowers differed in shape but matched in color (yellow for one

stimulus set; blue for the other). For each stimulus set, there was a warm-up picture

displaying only the two kinds of flowers and two test pictures: one test picture had

16 flowers of each kind (1:1 proportions); the other flower had 28 flowers of one kind

and 4 of the other (7:1 proportions). We also used four different kinds of seeds, two

for each stimulus set. Within each stimulus set, the seeds were near-identical to each

other in size and texture, but different in color both from each other and the flowers

2 A1 children were 4 or 5 years old. Due to a data storage error, the ages of 8 of the children were
only recorded accurately to the year; these children have been excluded from the estimated mean
and range.
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(black and red seeds paired with yellow flowers in the first stimulus set, and brown

and orange seeds paired with blue flowers in the second). The seeds were combined

either in 1:1 or 7:1 proportions and were presented in containers, each containing

approximately 100 seeds. See Figure 3-1.

0s
*

Figure 3-1: Schematic of seeds and actual flower fields used. Left: 1:1. right: 7:1.

Procedure

Children were tested individually in a private room off the museum floor. The exper-

imenter started the experiment by placing the warm-up picture of two flowers on the

table in front of the child. He pointed to the two flowers and said, "Look, we have

two flowers. This is a daisy and this is a lily. Now, you know how flowers are grown,

right? With seeds! You put seeds into the ground and you water them and give them

sun, and then flowers bloom! But seeds and flowers are funny, because flowers end up

not looking at all like the seeds they came from; the seeds change in all kinds of ways:

they change in color, and size, and shape." Two seeds were placed on the table in

front of the children, and introduced as the seeds that were used to make the flowers.
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Children were told, "These are the seeds we used to make the flowers. And just like

we just talked about, they look totally different from the flowers, so we can't tell

which seeds made which flowers just by looking at them." Then children were then

told, "Now, we actually have whole fields of flowers, but before I show you the fields,

let me tell you about how they were made." The two capfuls were brought out and

placed on the table, next to each other (left-right randomized). "We had these two

capfuls. And what we did was we took a bunch of seeds from this capful and threw

them on one field, and we took a bunch of seeds from this capful and threw them

onto the other field." The experimenter made a grabbing and throwing motion from

each capful to the floor using alternating hands to illustrate. The experimenter then

said, "Now I'll show you what the two fields ended up looking like," and brought out

the two pictures of the fields of flowers (one with the 1:1 proportions and the other

with the 7:1 proportions), placing them one above the other on the table (top-bottom

randomized). He pointed to each field in turn and said, "Which capful do you think

was used to make this field?".

After the child pointed to match each field with a capful, the experimenter removed

all the stimuli and then repeated the procedure for a second trial with the second

stimulus set, transitioning by saying, "Now, let me show you some more flowers."

Presentation order of the fields and of the capfuls within stimulus set was randomized

across and within participants, as was stimulus-set order.

3.2.2 Results

There is no strict sense in which we can say that the children responded 'correctly'

or 'incorrectly' given that there is no fact of the matter here. However, we can say

whether children, as predicted, used the abstract property of proportionality to select

one hypothesis over the other. Children were counted as having succeeded on a trial

if they matched both capfuls in the trial to the correct fields. (The two questions

one for each field - within a trial were treated as non-independent because in

introducing the capfuls, the experimenter had said that one capful was used for one

field and one for the other. Thus the most conservative measure was to require a
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correct response to both questions). The probability of succeeding on both trials by

chance is .25. Ten out of sixteen children responded at ceiling, answering correctly on

both trials. The probability of success is .625; bootstrap-estimated 95% confidence

interval: [.354, .848]. p < .01 by two-tailed binomial test. Figure 3-2 shows the

number of children who were correct on 0, 1, or both trials.
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Figure 3-2: Experiment 1 results (N=16): Mean trials correct 1.62. Probability

of full success (2/2 trials) is .625; 95% confidence interval: [.354, .848] (chance: .25).

p < .01 by two-tailed binomial test.

Thus, children showed a clear preference for the proportion-preserving causal pro-

cess, supporting our hypothesis.

3.3 Dynamic Properties

Experiment 1 suggests that children are sensitive to proportionality in mapping causes

to effects. However, if children have a general ability to identify plausible hypotheses

using abstract amodal features, they should be sensitive to other kinds of relation-

ships, as well. In Experiment 2, we look at children's sensitivity to dynamic properties.

Specifically, we expect that, given data that saliently vary over time on some dimen-

sion, children will infer the latent structure of the variation and expect the cause of

the data to possess similar latent structure. Children could be sensitive to a variety
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of dynamics. As a first pass, we investigate two: monotonicity and periodicity.

3.3.1 Methods

Participants

Thirty-two preschoolers (mean: 4 years, 9 months; range: 4 years, 0 months - 5

years, 9 months.) were recruited from the local children's museum.

Materials

We used sixteen 2"x2" pieces of white cardboard to make two sets of eight cards. For

one set, four cards had a large red dot in the middle and four had a yellow one; for the

other set, the dots on each of eight cards varied continuously from red through orange

to yellow. These were presented in groups of eight, and represented the lights in two

special rooms (See Figure 3-3). We also created four separate two-minute videos (two

per stimulus set) using Adobe Flash and displayed them on the experimenter's laptop

computer. Each video had ten identical 'alien bugs' moving around randomly. In two

of these videos, the bugs changed in their speed over the course of the video. In the

other two, the bugs grew spots on their back; the number of these spots changed

throughout the course of the video. Each of these two features could change in two

ways - either periodically or monotonically. We generated videos manifesting each of

the four possible feature x dynamics combinations and split them into two stimulus

sets as follows:

Stimulus Set 1 In video 1, the bugs' speed was governed by a periodic function - the

bugs accelerated to a noticeably high speed (4 inches/second) over the course of 5

seconds, then decelerated to their original speed (.5 inches/second) over the course of

5 seconds, then re-accelerated to the high speed, and so on. This oscillation persisted

throughout the two-minute video. In video 2, the bugs maintained a constant speed

(.5 inches/second), but they grew black spots on their backs; the number of these

spots increased from 0-20 over the course of the two-minute movie.
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Stimulus Set 2 In video 1, the periodically-governed bugs moved at constant speed

but varied in their number of spots, which oscillated between 0-10 spots (each half-

period lasted 5 seconds, so that the fewest and most spots appeared matched the

time-points at which the bugs were going slowest and fastest in stimulus set 1). In

video 2, The monotonically-varying bugs changed in speed, starting out slowly and

rising constantly throughout the video. See Figure 3-4 for a schematic depiction of

these videos.

Figure 3-3: 'Lights' used for experiment 2. Top: periodic. Bottom: monotonic.

Procedure

Children were told that they would be shown some alien bugs, but that before seeing

the bugs, they would learn about the rooms the bugs were in. These rooms were

described as identical except that they differed in their 'special lights'. The exper-

imenter said, "The lights in the first room start out looking like this. . . then after a

while they look like this. . . then after a while they look like this. . . ", placing a light

on the table each time he said 'this'. The lights were placed one by one on the table,

left-to-right facing the child. Once the eight lights from the first set were placed, the

experimenter said, "In the other room, the lights start out looking like this... then

after a while they look like this.. ." and placed the lights for that room in the same

manner as for the first. For one of the rooms the experimenter used the red and yellow

(periodic) lights in alternation; for the other the experimenter used the continuously-

varying red-to-yellow (monotonic) lights. Room type (periodic or monotonic) was

randomized, as was whether the first light in each room was red or yellow. The lan-

44



O.5s

5.Os

19.0s

115.Os

41r

0

Figure 3-4: Periodic (green) and monotonic (purple) bugs from stimulus set 2. The

green bugs move at constant speed but increase and decrease in number of spots; the

purple bugs increase speed monotonically, as indicated by the increasing length of the

vectors.

guage used to describe both sets of lights was identical. The first four lights in each

set were placed on the table approximately every 3 seconds; to keep the description

conversational, each of the last four lights was placed approximately every 1 second.

This also ensured that there was no way to map the rate of presentation of the cards

to the rate of change of either speed or spots in either display.

Following this, the children were invited to look at the bugs. In the first stimulus

set, for the periodic bugs, the children were invited to attend to their speed: as the

video played, the researcher pointed out when the bugs sped up ("See, now they're

getting faster") and when they slowed down (". . . and now they're getting slower").

For the monotonic bugs, the video was played twice. The first time, the experimenter

45



allowed the children to observe the changing number of spots on their own. After

there were approximately 15 spots on each bug, the experimenter restarted the movie,

and this time counted the number of spots on the bugs as these increased in number,

summarizing the change after there were 6 spots ("They're getting more and more

spots.").

For the second stimulus set, the procedure was identical, except that the lan-

guage was modified appropriately to describe the different changes in the bugs. The

experimenter pointed out when the spots on the periodic bugs were increasing or de-

creasing in number ("Now they're getting more/fewer spots"), and on the monotonic

bugs, pointed out the increasing speed ("Now they're going faster... and now the're

going faster... and now they're going even faster...", etc.).

Each child only saw one stimulus set - that is, one set of periodic bugs and one

set of monotonic bugs. Stimulus-set assignment was counterbalanced.

After the children were familiarized with the stimuli, they were shown the first

bugs they had seen, asked to remember how they changed, and then were told the

following: "So, we know that these guys are in one of these two rooms that we talked

about before. They can see the lights in the room but we can't. And what's causing

the speed to change is the lights of the room they're in. They could be in this room

or in this room. Do you know what room they're in?" Children were asked to point

to the room they thought the bugs were in. After this, they were shown the other

bugs and the above description and question were repeated verbatim, changing only

'speed' to 'spots' (or vice-versa if the first-seen bugs had varied in spots). It was

emphasized that each of the bugs could be in each of the two rooms.

3.3.2 Results

Due to the fact that each group of bugs was independently described as being poten-

tially in each room, the two questions are independent; the probability of answering

both questions correctly by chance is .25. Children were sensitive to the fact that

bugs could have been in the same room, as evidenced by the fact that six children

placed both types of bugs in the same room. Nineteen out of thirty-two children were
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at ceiling, answering correctly on both trials. The probability of success is: .594;

bootstrap-estimated 95% confidence interval: [.406, .763]. p < .001 by two-tailed bi-

nomial test. Figure 3-5 shows the number of children who were correct on 0, 1, or

2 trials. Performance across the two stimulus sets was comparable: 10/16 children

were at ceiling for the first and 9/16 children were at ceiling for the second.
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Figure 3-5: Experiment 1 results (N=32): Mean trials correct 1.375. Probability

of full success (2/2 trials): .594, 95% confidence interval: [.406,.763] (chance: .25).
p < .001 by two-tailed binomial test.

3.4 Discussion

In two experiments, we investigated whether children use higher-level features of data

to match causes to effects. In Experiment 1, these features were static and distribu-

tional: children showed a preference for a causal process that preserved distributional

identity, matching 1:1 seeds to 1:1 flowers and 7:1 seeds to 7:1 flowers irrespective of

surface properties of the seeds and flowers (size, color, texture, etc.). In Experiment

2, the higher-level features were dynamic: children showed a preference for a causal

process that preserved dynamic form - periodic or monotonic - irrespective of the

lower-level features in which these dynamics were manifested; periodically-varying

lights were seen as the cause of the spots on bugs or the speed of the bugs, depending
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on which one varied periodically, and monotonically-varying lights were seen as the

cause of the monotonically-varying feature of bugs. In both experiments, children

received no information about how causes and effects covaried; inferences were made

based only on abstract properties of the stimuli.

The idea of using high-level features to match percepts has been presented previ-

ously, in the literature on cross-modal matching (see, e.g., Lewkowicz and Turkewitz

(1980); Spence (2011)). Cross-modal matching is often presented as a partial solution

to the binding problem and the focus is on mappings between stimuli belonging to

different perceptual modalities (i.e., the sight and feel of a stimulus). We believe that

it is possible that the inferences children drew here and those shown in studies on

cross-modal matching may rely on the same representational machinery; specifically,

we believe that both rely on the use of particularly powerful higher-level features of

the stimuli. However, the mechanisms we suggest are applicable to a far wider array

of problems than mere cross-modal matching. The higher-level features we have ex-

amined, namely distributional properties and dynamics, are calculable both within

and across modes; in our case we have examined their application within a perceptual

modality and have found them to apply both to naturalistic stimuli such as seeds and

flowers and to arbitrary stimuli, such as randomly-moving animated alien bugs. In

principle, the same kinds of inferences could be used for problems entirely abstract

in nature (e.g., using the dynamics of the interest rate to map it onto changes in the

Gross Domestic Product).

Research on analogy Gentner and Markman (1997); Gentner (1977); Gick and

Holyoak (1980) has shown that children and adults are able to bring distinct mental

representations into structural alignment and to use the relations that obtain within

one domain to reason about the other. We believe that analogical reasoning is an

elegant example of the more general ability to use high-level features to constrain

hypothesis spaces. Note that here, however, we did not set up a situation where

children could go from a known problem and solution to a new problem and a new

solution by setting up a relational mapping between arguments (e.g., Christie and

Gentner (2010)). Rather, children had to infer the representation that might connect
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the form of the effect to the form of the candidate causes and use this representation

to guide their responses. We emphasize this not to minimize the importance of

analogical reasoning, but because the general ability to represent these abstract high-

level predicates may allow learners to narrow the hypothesis space even when problems

do not present as analogies.

We have shown that children are sensitive to high-level features like proportionality

and periodic or monotonic dynamics, and can use these to infer causal relationships.

A variety of empirical questions remain: Do children use these features not just to

select hypotheses but also to generate them? When such features conflict with lower-

level features, such as color, texture, or size, how do children resolve the conflict?

Perhaps most interestingly, how do children learn these high-level predicates, and

which predicates are available to them at different times throughout development?

Given the prevalence of phenomena in the world for which distributional properties

and dynamics are coherent and relevant, it may not be surprising that four- and five-

year-olds can use these; what about younger children and what about other kinds

of properties (e.g,. extent, other kinds of dynamics, richer distributional informa-

tion, or combinations of these)? Much remains to be understood about how children

identify abstract features, and about what other kinds of high-level features they can

recognize; much also remains to be understood about how we might computationally

characterize the ability to represent, learn, and use these higher-level features. We

hope to see future work address these questions.
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Chapter 4

Human Learning in Atari

4.1 Introduction

In this chapter we broaden the scope of our inquiries to the problem of learning to

behave adaptively in unknown environments. Video games offer a range of tasks that

differ widely in their visual representation, dynamics, and goals; this makes games

perfect microcosms for the development of algorithms that may eventually learn to

function in the real world. Recent research on this front has been hugely successful:

Deep reinforcement learning algorithms using deep neural networks have surpassed

human-level performance on games from the classic Atari 2600 platform (Guo et al.,

2014; Mnih et al., 2015; Van Hasselt et al., 2016; Schaul et al., 2015; Stadie et al.,

2015; Mnih et al., 2016; He et al., 2016; Hessel et al., 2017). However, even a cursory

examination of the behavior of these artificial agents reveals that they learn incredibly

slowly (Guo et al., 2014; Mnih et al., 2015; Van Hasselt et al., 2016; Schaul et al., 2015;

Stadie et al., 2015; Mnih et al., 2016; He et al., 2016; Hessel et al., 2017; Kansky et al.,

2017) and that they generalize poorly to trivial variations of a given environment (see

the experiments reported by Kansky et al. (2017)).

Our experiments in this chapter show that humans are able to learn these tasks

in a matter of minutes, suggesting that humans and leading Al algorithms employ

different representations and learning mechanisms. In addition to bringing early-

arising representations to bear on Atari tasks, humans come equipped with rich prior
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knowledge about the world - for example, knowledge about keys, doors, ice, birds,

and so on. While such knowledge could give humans an edge over AI algorithms,

we believe that it plays a minimal role in humans' ability to rapidly master these

tasks. Here we conduct a systematic analysis of human performance on these tasks,

experimentally manipulating (1) prior knowledge about specific objects, (2) prior

knowledge about the game environment and rules, and (3) observational learning

experience.

4.2 Gameplay

4.2.1 Methods

We selected twelve Atari 2600 games that spanned the range of DQN performance rel-

ative to human performance, as reported in Mnih et al. (2015). Of these, the asymp-

totic DQN outperformed humans in five games (Beamrider, Breakout, Kangaroo,

Qbert, and Stargunner), and underperformed humans in seven (Amidar, Asteroids,

Frostbite, Montezuma, Riverraid, Seaquest, and Venture).'

Participants found through Amazon Mechanical Turk were assigned to a single

game that they had not previously played, and were told that they should play for a

minimum of 15 minutes. All participants were paid $2.00 and were promised bonus

pay of up to $2.00 extra depending on their cumulative score performance. Prior to

playing the game, participants were told only that they could use the arrow keys and

the spacebar, and that, beyond that, they should try to figure out how the game

worked in order to play well. Participant numbers are as follows: (Amidar: 19, As-

teroids: 20, Beamrider: 19, Breakout: 25, Frostbite: 71, Kangaroo: 18, Montezuma:

32, Qbert: 24, Riverraid: 24, Seaquest: 18, Stargunner: 19, Venture: 18).

'Human performance' refers to the human game tester employed by DeepMind and used as the
human benchmark in the original DQN paper. After the tester trained on each game for two hours,
their scores over the 20 subsequent game episodes that lasted over 5 minutes were averaged and
reported.
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Figure 4-1: Human learning curves for twelve Atari games. Black horizontal line:

random play. Green horizontal line: 'expert' play. Red horizontal dashed line: DDQN

after 46 hours of game-play experience. Red dotted line: DDQN after 920 hours.

4.2.2 Learning Curves

Figure 4-1 shows learning curves for the four games. Each points represents a (human,

time, score) tuple; the score reported at each point is the highest score obtained by

that particular subject after that amount of cumulative gameplay experience. For

comparison, we have also plotted random performance (black horizontal), human
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'expert' play 2 (green horizontal line), and performance of the more recent Double

Deep Q-Network (DDQN) Van Hasselt et al. (2016) after 10 and 200 million frames

of game-play experience (46 and 920 hours, respectively), in red (bottom to top)3 .

We highlight a few qualitative observations: human performance is above random

performance within the first minute of play; in half of the games, humans reach

'expert' performance within the allotted 15 minutes; in all of the games, humans

exceed DDQN's 46-hour score within just a few minutes; in Asteroids, Frostbite,

Montezuma, and Venture, humans exceed even DDQN's asymptotic performance.

Of course, these time comparisons are unfair - after all, in addition to having

potential cognitive advantages, humans come to these tasks with a working visual

system, while DDQN has to learn a visual system from scratch. With this in mind,

we can also look at DDQN's rate of improvement and compare it to human rates

of improvement at score-matched points - including points at which DDQN is doing

relatively well. Figure 4-2 shows such a comparison for three games. Note that the

rate of improvement is measured in log units. Humans still learn dramatically faster

than DDQN.

4.3 Experimental Manipulations

The game of Frostbite is a game worth analyzing closely, as humans exhibit particu-

larly impressive performance relative to DQN, DDQN, and the more recent "Learning

to Play in a Day" algorithm He et al. (2016) (Figure 4-3). In what follows we present

several experimental manipulations. Our hope is that by understanding the repre-

sentations that facilitate human performance in this game (and eventually in other

games), we can help pave the way toward designing more human-like Al agents.

2This refers to the averaged scores of the DeepMind games tester
3Data taken from Schaul (2015). The model significantly outperforms the original DQN, as well

as several subsequent variants.
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Figure 4-3: Performance on the game of Frostbite shows the striking degree to which
humans outperform existing Al models in learning how to play video games.

4.3.1 Obscuring Object Identity

One specific hypothesis as to why humans rapidly learn to perform well at Frostbite

is that they come equipped with strong priors about the objects they encounter.

Parsing the game screen into platforms, igloos, birds, and fish must clearly make
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Figure 4-4: Screenshot of a blurred version of Frostbite. The light blue items are

birds; the green items are fish.

the task easier for humans, as humans know things about the properties of each of

these objects: platforms provide support; igloos provide shelter; fish and birds can

be eaten. To test whether such knowledge is in fact a benefit to humans, we created

a blurred version of the game, in which objects could be only be identified as generic

objects - that is, we masked the semantic identity of the objects.4 Figure 4-4 shows

an example game screen. We present data from this condition after describing the

other experimental manipulations.

4.3.2 Reading the Instruction Manual

If people's rapid learning is due to the formation of a model-like representation, then

anything that would enable them to learn this representation should result in an

increase in early performance. To test this hypothesis, we provided participants with

the opportunity to read the game's original instruction manual prior to playing. The

intent was to provide players with a short description of critical aspects of gameplay,

which was mostly informative about objects and their roles in the game, as well as the

goal of the game. Subjects read the manual, answered a short questionnaire intended

to check that they understood the rules, and then played for 15 minutes.

4 This resulted in blurred birds, fish, crabs, and clams, but clearly-identifiable water, ice floes,
and igloos.
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FROSTBITE BASICS

The object of the game Is to help Frostbite Bailey build
Igloos by jumping on floating blocks of ice. Be careful to
avoid these deadly hazards: killer clams, snow geese,
Alaskan king crab, grizzly polar bears and the rapidly
dropping temperature.

To move Frostbite Bailey up, down, left or right, use the
arrow keys. To reverse the direction of the ice floe you are
standing on, press the spacebar. But remember, each time
you do, your igloo will lose a block, unless It is completely
built.

You begin the game with one active Frostbite Bailey and
three on reserve. With each increase of 5,000 points, a
bonus Frostbite is added to your reserves (up to a
maximum of nine).

Frostbite gets lost each time he falls into the Arctic Sea,
gets chased away by a Polar Grizzly or gets caught outside
when the temperature drops to zero.

The game ends when your reserves have been exhausted
and Frostbite is 'retired from the construction business.

IGLOO CONSTRUCTION

Building codes. Each time Frostbite Bailey jumps onto a
white ice floe, a "block" is added to the Igloo. Once jumped
upon, the white Ice turns blue. It can still be jumped on, but
won't add points to your score or blocks to your Igloo.
When all four rows are blue, they will turn white again. The
igloo Is complete when a door appears. Frostbite may then
jump into it.

score

empo'oture-

Alaskan
King Crob

Reserve Froatbites

Plor Grly

1gl00

killer Clams
- Ic Blocks

sish

-Snow Goo

Work hazards. Avoid contact with Alaskan King Crabs,
snow geese, and killer clams, as they will push Frostbite
Bailey into the fatal Arctic Sea. The Polar Grizzlies come
out of hibernation at level 4 and, upon contact, will chase
Frostbite right off-screen.

No Overtime Allowed. Frostbite always starts working
when it's 45 degrees outside. You'll notice this steadily
falling temperature at the upper left corner of the screen.
Frostbite must build and enter the igloo before the
temperature drops to 0 degrees, or else he'll turn Into blue
Icel

SPECIAL FEATURES OF FROSTBITE

Fresh Fish swim by regularly. They are Frostbite Bailey's
only food and, as such, are also additives to your score.
Catch' em if you can.

Figure 4-5: Screenshot of the original Atari 2600 instructions to Frostbite, displayed

to participants.
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4.3.3 Learning from Observation

Humans' ability to form a theory-like representation of the game should also be aided

by observing others play. We randomly selected an episode in the 75-85th percentiles

of episodes from the first round of experiments, and had all participants in this

condition watch a video of that episode prior to playing. The episode corresponded

to the 79th percentile of all Frostbite episodes, and lasted 1 minute, 26 seconds.

4.3.4 Results

Figure 4-6 shows means and 95% CIs of first-episode scores for normal, 'blur', 'instruc-

tions', and 'observation' conditions (participant Ns are 71, 63, 72, 72, respectively).

The difference in first-episode performance between normal and blurred conditions is

not significant (p=0.663. Mean, CIs: Normal: 356, [167, 545]. Blur: 417, [216, 618]).

This is unsurprising: a bird, a priori, could be useful (it can be hunted and eaten) or

it could be harmful (it can attack you). In the actual game the interaction between

the agent and the bird is, in fact, quite implausible a priori - real-life birds are much

lighter than humans and are generally not capable of pushing them, and yet, in the

game they do so. While priors about object identity and the resulting behaviors of

objects may be minimally useful to a novice player, most of the important properties

of objects in these games come from their role in the particular game. 5 It is after

observing objects' movements and interactions that humans rapidly form theories of

the game dynamics.

As we expected, reading the instruction manual and observing competent play-

ers provided participants with a significant first-episode advantage over normal play

(Instructions vs. Normal: p=.0001. Observation vs. Normal: p=.002. Mean, CIs:

Normal: 356, [167, 5451. Instructions: 1848, [1144, 2552]. Observation: 1144, [683,

16051). Had players only learned from observation, one might posit that they simply

copied a successful policy. However, the fact that the instruction manual was helpful

suggests that this is not the case, and hints at the possibility that humans used this

5Additional experiments conducted after ours (see Dubey et al. (2018)) recapitulate these findings.
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Figure 4-6: First-episode mean scores and 95% confidence intervals for normal,
'blurred', 'instructions', and 'observation' conditions. If semantics contributed sig-
nificantly to human performance, blurring would have produced a decrement in first-
episode performance; instead, this intervention makes no significant difference. By
contrast, reading the instructions and observing another player each allow humans to
capture approximately 1000 points in their first episode - this corresponds to human

performance after about 5 minutes of play under normal conditions.

59



information to build a model of the game dynamics, which they then used to play

successfully.

4.4 Discussion

The real power of human intuitive theories is that they enable humans to explain the

world, generalize from few examples, think counterfactually, and generate effective

plans. The experiments above show that humans are capable of learning complex

Atari tasks from just a few minutes of gameplay, and that their behavior is aided by

information that would be helpful in theory-building. In the next section we propose

an algorithm that incorporates exploration, theory-building, and planning to produce

human-level performance on a suite of visually-simple, Atari-inspired, video games.
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Chapter 5

Theory-Based Reinforcement

Learning in Games

5.1 Introduction

Humans are remarkable in their ability to rapidly learn complex tasks from little

experience.1 Recent successes in Al have produced algorithms that can perform

complex tasks well in environments whose simple dynamics are known in advance

(Silver et al., 2016; Brown and Sandholm, 2018), as well as models that can learn to

perform expertly in unknown environments after a great amount of experience (Guo

et al., 2014; Mnih et al., 2015; Van Hasselt et al., 2016; Schaul et al., 2015; Stadie

et al., 2015; Mnih et al., 2016; He et al., 2016; Hessel et al., 2017). Despite this, no

current AI models are able to learn sufficiently rich and general representations so as

to support rapid, human-level learning on new, complex, tasks.

Games, and in particular, video games, serve as readily available microcosms

through which to study and develop such algorithms. The model-free deep reinforce-

ment learning algorithms mentioned above have surpassed human performance on

games from the classic Atari 2600 platform, but even a cursory examination of their

ISome of the introductory material in this section was presented in Chapters 1 and 4, but we
reprise it here in the interest of giving the reader a clear stand-alone sense of the modeling goals
and experimental setting of this chapter.
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behavior reveals that they learn incredibly slowly (Guo et al., 2014; Mnih et al., 2015;

Van Hasselt et al., 2016; Schaul et al., 2015; Stadie et al., 2015; Mnih et al., 2016; He

et al., 2016; Hessel et al., 2017; Kansky et al., 2017) and that they generalize poorly

to trivial variations of a given environment (see the experiments reported by Kansky

et al. (2017)). Humans, on the other hand, learn these behaviors nearly instantly

(Figure 5-5).

We propose a novel approach, Theory-Based Reinforcement Learning, that enables

rapid learning in novel environments through the use of human-like "intuitive theories"

- rich causal models that support explanation, prediction, and action (Murphy and

Medin, 1985; Carey, 1985; Gopnik and Meltzoff, 1997). The approach learns proba-

bilistic generative models that carve the world into a natural ontology of of objects,

physics, agents, and goals, inspired by early-arising human representations (Spelke,

1990; Baillargeon, 2004; Spelke and Kinzler, 2007; Csibra, 2008). These theories are

expressed as abstract descriptions of game rules, and are connected to a simulator

that supports prediction and planning.

We instantiate the approach concretely in our Exploring, Modeling, Planning

agent (EMPA). Our agent models the world by constructing theories that best explain

the observations under a Bayesian criterion. The process of acquiring data is itself

driven by curiosity about the correct explanation of the dynamics of a particular

game - the agent actively builds a theory by looking to bring about observations

that are informative about its hypothesis space. Goals, whether they are curiosity- or

performance-oriented, are achieved through the use of a planning algorithm that takes

advantage of the interpretability of the theory to automatically generate game-specific

heuristics that enable efficient search.

5.2 Related Work

The original Deep Q-learning Network (Mnih et al., 2015) used a deep convolutional

neural net trained through stochastic gradient descent to approximate the environ-

ment's optimal action-value function, Q(s, a), and variants of this algorithm have
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achieved increasing asymptotic performance as well as increasing data efficiency by

varying each of several relevant components: the Double DQN (Van Hasselt et al.,

2016) addresses an overestimation bias caused by DQN's loss function, and Prioritized

Experience Replay (Schaul et al., 2015) samples transitions for replay as a function of

their last-encountered TD error, thereby more frequently sampling transitions from

which there is more to learn (but also sampling more from stochastic transitions

where there may no longer be anything to learn). The A3C algorithm (Mnih et al.,

2016) executes multiple agents in parallel, thereby decorrelating their experience, and

estimates both a value function, V(s) and a policy, 7r(s). These and other methods

turn out to be largely complementary; Rainbow (Hessel et al., 2017) combines them

to produce state-of-the-art performance on the Atari benchmark, eventually reaching

210% of human performance across the 57 benchmark games.

Our approach tries to learn explicit, object-oriented, relational dynamics mod-

els of the environment; in this sense it shares common threads with many existing

model-based algorithms. LIVE (Shen and Simon, 1989) learned rules that explained

domains such as Towers of Hanoi and a simplified Mendelian pea-breeding prediction

task. EXPO (Gil, 1994) refined an initial partial domain model and used a planner

to select actions in a robot planning domain and a complex process planning domain.

However, neither algorithm was able to handle nondeterministic environments. More

recently, Guestrin et al. (2003) presented Relational MDPs, which used a state-space

that represented objects as instances of distinct classes. This class-oriented represen-

tation enabled them to achieve strong generalization of learned value functions across

environments. Diuk et al. (2008) introduced the idea of Object-Oriented Markov

Decision Processes, where transitions over object attributes were learned from expe-

rience. Their algorithm learned with low sample complexity because of the object-

and attribute-oriented representation, and performed adaptively in their "Taxi" do-

main as well as in the first screen of the video game, Pitfall.

Pasula et al. (2004) learned STRIPS-like operators for planning in three planning

domains, including a simplified "slippery gripper" physics domain. Given a user-

defined representation language, their algorithm was able to learn precondition-effect
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rules that compactly described the domain. Pasula et al. (2007) learned richer prob-

abilistic representations that enabled them to plan effectively in the complex, noisy

environment of a simulated blocks world. More recently, Xia et al. (2018) used de-

ictic references to learn sparse transition models using feed-forward neural networks.

Their algorithm was able to learn probabilistic state transition models for a simu-

lated blocks domain with just a thousand training examples and was robust to the

complexity induced by increasing numbers of objects in the domain.

Scholz et al. (2014) presented Physics-Based Reinforcement Learning, which per-

formed adaptively in two simulated physics domains after learning correct parameter-

izations of a physics engine with just a few steps of experience. More recently, Kansky

et al. (2017) presented Schema Networks, which learn causal generative models over

object attributes. After an initial training period on the Atari game of Breakout,

these networks were able to generalize quickly to new, small, variants of the game.

In contrast with the above approaches, our goal is to build a model that explains

how humans learn so many tasks, so quickly. In order to do this, we build an agent

that has rich prior knowledge about the possible worlds it might encounter. This

prior knowledge corresponds to knowledge that adult humans have, and that young

children and infants have in some form, as well. Combined with the right experience

in a given environment, this knowledge allows for the sample-efficient construction

of human-like intuitive theories that explain each environment's dynamics. A full

understanding of each environment involves observing transitions that are unlikely

to be generated by chance; EMPA explores its environment specifically in order to

generate such transitions. Finally, learned dynamics are exploited by use of a planning

algorithm that uses the explicit nature of the learned theories to generate game-

specific heuristics that enable efficient search.

5.3 Explore, Model, Plan: Overview

EMPA learns simple latent descriptions of game dynamics, independently learning

about entities, relations between entities, and goals. A complete theory of a game
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Figure 5-1: Schematic representation of the EMPA architecture. EMPA takes as

input a symbolic description of its environment, specified in terms of objects and their

locations as well as interactions that occur between objects. Bayesian inference scores

theories on their ability to explain observed state sequences. Theory-based curiosity
generates exploratory goals. The planner decomposes exploratory and win-related

goals into subgoals and goal gradients, and uses this hierarchical decomposition to

effectively find high-value actions for EMPA to take in the game environment.

supports the evolution of simulated future states conditioned on a real or hypothesized

game state. Explore uses .curiosity about the correct theory to generate epistemic

goals. Model uses a theory-based representation and scores theories on the fidelity

of their corresponding simulations with respect to observed states. Plan decomposes

goals into reachable subgoals and generates a goal gradient that enables the agent to

solve games with extremely sparse rewards. The agent interacts with the environment

in a continuous cycle of exploring, modeling, planning, and acting; see Figure 5-1 for

a schematic of the EMPA architecture and Figure 5-2 for an illustration of the step-

by-step contributions of the EMPA components.

The theories learned by EMPA are object-oriented, relational, and compositional,
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Figure 5-2: A: Early-stage game screen showing contributions of the EMPA archi-

tecture. Explore (white): agent's epistemic goals. Model (pink): an early hypothesis

about predicted paths of objects. Plan (yellow): The planner finds high-value trajec-

tories according to the agent's current theory and its epistemic goals. B: A mid-stage

game screen. The agent has learned that cars are dangerous, but is still curious about

logs, water, and the flag. The planner produces paths that reach mid-range epistemic

goals involving contact with plank and water objects. C: A late-stage game screen,

at which point the agent has interacted with all objects except for the flag object. In

yellow is the planner's suggested path. Upon interacting with the object the agent

will win the level and learn a termination condition for the game. D: The theory of

a game is invariant to permutations in object positions, and therefore automatically

generalizes to new levels. Here the planner generates a path (orange) toward the

known goal on a new level, using the same theory from the previous level. The agent

is also automatically curious about the newly-occurring object in the game, and the

planner suggests a path to that (yellow), as well.
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and are specified in terms of object properties, agents, physics, events, and goals.

This ontology is a deliberate embodiment of the kinds of priors that are critical to

babies' abilities to rapidly learn about their world (Spelke, 1990; Baillargeon, 2004;

Spelke and Kinzler, 2007; Csibra, 2008).

EMPA's theories are represented explicitly using the Video Game Description

Language (VGDL) (Schaul, 2013). VGDL is a light-weight language for describing

video games, accompanied by software that permits parsing and instant playing of a

given game. It contains a description of the appearance and basic properties of the

different objects in the game, which manifest as causal constraints on their dynamic

properties: whether they move by default and in what directions, how quickly they

move, what their goals are, and so forth. Relational rules specify the outcomes

of contact events between objects; these rules encompass natural concepts such as

pushing, destroying, picking up, and so forth. Finally, game goals specify the win/loss

conditions for a particular game.

Together with a description of an initial state, these rules specify the transition

dynamics of a given game world. EMPA's hypothesis space corresponds to a restricted

but vast space of possible VGDL descriptions: for a game with 10 unique classes, there

are over 103 possible VGDL descriptions. The posterior probability of a theory is

P(O I SO:T, ao:T_1) OC P(so:T 1 0, ao:T_1) p(O). The likelihood function, p(so:T I 0, aoT_1),

can be decomposed as

T

P(so:T |0, ao:T_1) - p(so) J1p(stG S, stJp(StS I Os, St11 at-)p(st I -, st-, at-,)

where each of the terms corresponds to a factorization of the state into goals, objects,

and interaction events, respectively. Our agent maintains a resource-bounded approx-

imation to the Bayesian posterior for these theories; see Chapter 5.4.2 for details.

EMPA's theory-based curiosity incentivizes it to observe game states that are

informative about its hypothesis space. In particular, the object-oriented, relational

nature of the hypothesis space means that EMPA wants to observe agent-object and

object-object interactions (see epistemic goals in Figure 5-2). A crucial feature of this
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curiosity is that it is not myopic; EMPA often generates long-ranging plans whose sole

purpose is to generate informative interactions. This enables EMPA to solve games

that are challenging or impossible for traditional exploration methods.

EMPA uses its simulator, parameterized by the highest-posterior theory, to imag-

ine future states conditioned on current actions. Our planning algorithm ameliorates

the exponential explosion of the state space by using Iterative Width (Geffner and

Lipovetzky, 2012; Lipovetzky and Geffner, 2017). States that fail to fulfill the IW no-

tion of 'novelty' are pruned from the search tree. Sparse rewards are often a problem

for Al agents, but EMPA is able to circumvent this problem by generating intrinsic

rewards on imagined states from the theory. These rewards involve goals (hypoth-

esized or known in-game win conditions as well as epistemic goals supplied by the

curiosity module), subgoals that come from the decomposition of hypothesized game

goals, and 'goal gradients' that help the planner more quickly find goals and subgoals:

V(s, 0) = RG(S, 0) +RSG(s, 0)+RGG(8, 0). Best-first search on the pruned space using

this intrinsic reward function allows the agent to efficiently generate effective plans.

5.4 Model

5.4.1 Representation

The theories learned by EMPA are object-oriented, relational, and compositional, and

are specified in terms of object properties, agents, physics, events, and goals. These

theories are represented using the Video Game Description Language VGDL, (Schaul,

2013). VGDL is a light-weight language for describing video games, accompanied by

software (PyGame (Shinners, 2011)) that permits parsing and instant playing of a

given game. The main aspects of these descriptions carve the world into an ontology

akin to that of the human "start-up" software:

Objects (SpriteSet): A description of the appearance and basic properties of

the different object classes in the game. These properties all manifest as causal

constraints on the dynamic properties of the objects: whether they move by default,
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how often they do, whether they have agent-like goals and ways of reaching them, and

so forth. We call these properties the dynamic type of each object. At every time-

step, VGDL uses the dynamic type to calculate proposed positions for each object.

If the proposed positions are empty, the objects move into those positions. If they

do not, VGDL handles the resulting collisions by looking at the rules specified in the

InteractionSet.

Relations (InteractionSet): A list of rules that specify how pairs of objects

interact to produce events. These events encompass natural concepts such as pushing,

destroying, picking up, and so on. All state changes beyond the movement patterns

specified in the SpriteSet are caused by these events. In turn, events are caused only

by collisions between objects.

Goals (TerminationSet): A specification of the win/loss conditions for a game.

We restrict our scope to games whose terminations involve statements regarding the

counts of particular objects appearing on the screen (e.g., WIN IF count (BLUE) ==O).

Each VGDL description specifies an initial state, a transition function that speci-

fies how the state evolves between successive time-steps (conditioned on the player's

actions), and a reward function. The state at any time can be described by the ob-

ject instances, their class, their location, the set of items 'carried' by the Avatar, as

well as the events occurring between pairs of objects that are participating in col-

lisions at any given time-step. It is useful to decompose this state s into sI, which

refers to the pairs of objects that are participating in events as well as the nature

of those events, ss, which refers to the remaining objects, and SG, which refers to

the Win/Loss/Continue status of the environment. For the purposes of learning, we

assume that the state-space is fully observed.

Our concrete task is to learn a distribution over VGDL descriptions, 01:N, that

explain a sequence of frames of game-play. For clarity, we decompose a theory Oi into

the three components corresponding to the SpriteSet (0s), the InteractionSet (0j),

and the terminationSet (OG)-

The SpriteSet, 0 s consists of dynamic type definitions for each unique class in the

game. For a given class ci, its definition is a parameter vector Os, which consists of
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an assignment of values to parameters needed to fully describe a VGDL sprite. The

vgdlType corresponds to a high-level constraint on the behavior of the object, for

example, whether it is an agent with goals, a random agent, a projectile, and so on.

The remaining parameters specify details of the object's behavior, such as its speed or

orientation. The positions of sprites are updated at each step using simple programs

that describe their behavior. For example:

" nextPos(Missile, speed=2, orientation=Right, pos=(x,y)) = (x+2, y)

" nextPos(Random, speed=1, pos=(x,y)) = random.choice([(x,y), (x+1,y),

(x-1,y), (x,y+1), (x,y-1)]

These programs imply a distribution over next positions for any given param-

eterization; we use this distribution to calculate per-object likelihoods in Equation

5.4.

The InteractionSet, 01 consists of rules, rl:M, corresponding to lines in the VGDL

InteractionSet. A rule, ri, is a tuple (cj, Ck, q,,p) that prescribes a corresponding

event, ei = C(ri) = (cj, ck, #), such that predicate # is applied to an object of class

cj when that object collides with an object of class Ck and preconditions p have been

met. In accord with the intuitive concept of "no action at a distance", all events

are triggered only by contact between objects. The relationship between rules and

events is many-to-one, as many preconditions may be met for a particular event. For

convenience, we introduce the notation pair(-) to invoke the class pair implicated in

a rule or event. Because a rule and its corresponding event share the same class pair,

pair(ei) = pair(ri), which is the ordered pair in the tuples. The predicates # E 4D are

observable state transformations on objects, such as push, destroy, pickUp, and so

on. Preconditions in VGDL are restricted to statements of the form f(agentState) <

N or f(agentState) > N , and are meant to capture common contingencies such as,

"The Avatar cannot go through doors unless it holds the corresponding key." We use

7r(ri) to refer to the precondition of rule ri. When a rule's precondition is met, we

write that 7r(ri) = True.
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If an event e occurs between a given class pair (cj, ck), all the other rules in

the theory that correspond to that class pair are expected to occur, provided their

preconditions ir(ri) are met. We call these expected events implications. Formally,

the implications v(e, 0) of an event are: v(e, 0) = {e(ri) I (pair(ri) = pair(e)) A (rip =

True)}. Abusing notation, we will write that v(e, 0) = True 4--> vj = True,Vvj E

v(e, 0).

Finally, we use r(e, 0) = True to denote that an event e is explained by a theory,

0. An event is explained in a theory if there is a rule in the theory that can account

for the event. Formally, I(e, 0) = True --= ]ri E 01 I (e(ri) = e) A (rip = True).

The TerminationSet, OG, consists of termination rules gl:L each of which specifies

a function that maps states to {Win, Lose, Continue}. The VGDL termination rules

posit that the episode ends in a win or a loss if some condition is met, but otherwise

continues. The conditions in the termination rules are statements that the number

of objects of some class must equal some number (usually zero). We use -y(s U sS)

to refer to the state prescribed by rule gi at state (sI, sS). If the condition is met,

yj(si U ss) c {Win, Lose}. Otherwise -yiy(sI U sS) = Continue.

5.4.2 Bayesian Learning

The posterior probability of a theory is p(O I so:T, ao:T_1) OC P(so:T I 0, ao:T_1)p().

For simplicity, we use a uniform prior over theories.

When an object is not involved in a collision, its movement patterns result only

from its type and previous state. By contrast, when an object is involved in a collision,

its subsequent state is a function only of the interaction rules that govern the classes

of the objects involved in the collision. This enables us to decompose the likelihood

function into two components corresponding to s, (the colliding objects and the events

occurring between them) and ss (the freely moving objects).2 Once the state of all

objects for a time-step has been resolved, the termination conditions can be evaluated,

resulting in whether the the environment is in Win, Loss, or Continue status. This

2 Technically, the fact that two objects are participating in an interaction may be useful for
inferring their type, but the simpler decomposition works just as well in practice.
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enables us to additionally factorize out the SG component of the state when we write

the likelihood function, below.

The likelihood function can be decomposed as

T

P(SO:T 10, ao:T-1) = psO) p(StG I StI St)P(StS I Os, St-11 at-)p(stI 01, St-1, at-)
t= 1

(5.1)

where

L

p(StG StS I StI) 171 [StG 7 (StS, StI)], (5.2)
1=0

p(st, 11, st_1, at_,)= 1 (r(e, 0) = True) A (v(ei, 0) = True), Vei E St, (5.3)
0 otherwise

and

K

p(sts I Os, st-1, at_1) = p(ok I Os, ot-1, at_,) (5.4)
k=0

for the objects o1:K in the game that are not involved in collisions. The per-object

likelihoods are a function of the particular object parameterizations specified by the

theory.

The above allows us to maintain a factorized posterior that corresponds to the

three things we aim to learn: the dynamic type for each class, the interaction rules

that resolve collisions, and the termination rules that explain the win/loss criteria

for a game. For the dynamic types we maintain an independent posterior over each

parameterization, which we enumerate and update. For the interaction rules, we rep-

resent only the maximum a posteriori hypothesis, which is easy to update because the

interactions are deterministic. That is, when we observe an interaction we assume its

corresponding rule is in the MAP hypothesis. When we see a violation of a learned
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rule, we assume the violation is explained by some conditional rule instead, so we pro-

pose the minimal conditional rule that would explain that. The conditional rules we

propose are limited to existential and universal quantifiers over aspects of the agent's

state. For the termination rules we maintain a superset of possible explanations,

which the planner tries to simultaneously satisfy.

The current verison of EMPA is boostrapped with knowledge of the avatar type

(for instance, whether it is a Shooter or a MovingAvatar), as well as the nature of

the projectile the avatar emits, if there is one. Learning these directly would merely

expand the size of the hypothesis space for the dynamic types, but would not require

any additional inferential mechanisms.

5.5 Theory-Based Exploration

EMPA explores its environment in a way that enables it to quickly reduce uncertainty

about its hypothesis space. The parameterizations of the game's objects, correspond-

ing to Os in the theory, can be learned by mere observation, as moving objects reveal

their type dynamic type simply by moving in their characteristic patterns. The inter-

action rules 01, on the other hand, can only be learned by observing contact events

between objects. Some of these occur naturally - a ball may collide with a box and

push it, or a predator might capture its prey and eat it. However, many other events,

and in fact, most events critical to winning a game, do not happen naturally. The

agent has to discover that it can pick up the key in Zelda; it has to learn that boxes

can be pushed into holes in Sokoban; and so on.

An optimal exploration policy with the ability to take advantage of a simulator

would search agent trajectories and select ones that, over some given horizon, maxi-

mized expected information gain (EIG) with respect to the agent's distribution over

theories. Given that: 1) EMPA uses a uniform prior over interactions; 2) interactions

in VGDL are deterministic, and 3) there is no dependency structure between inter-

action rules in VGDL, contact events between classes rapidly collapse uncertainty

about pairwise interactions to precisely the interactions that have been observed. As
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Figure 5-3: Screenshots from Zelda, Frogs, and Bait. Learning how to win these

(and many other) games requires reaching objects that are difficult to reach using a
naive exploration policy. In order to achieve the first win, the agent must pick up
the key and then reach the door while avoiding spiders (Zelda, left); reach the goal
flag by first crossing a dangerous road filled with cars and then crossing a river by
stepping on moving logs (Frogs, middle); solve a complex puzzle by pushing boxes
into holes to clear space in order to reach the key (Bait, right). EMPA is able to learn
about all of these win-related objects rapidly precisely because it specifies reaching
them as goals, rather than waiting to reach them by chance in order to realize that
the objects are, in fact, important to winning the games.

a result, EIG with respect to interaction rules is maximized whenever new pairwise

contact events are observed. This leads us to adopt a simple heuristic that is func-

tionally equivalent to calculating EIG at each step: we simply specify the observation

of contact events between pairs of objects as first-class goals to be achieved by the

planner, and allow the planner to find plans that satisfy these goals without any need

for explicit EIG calculations.

The consequences of having theory-based curiosity are vast, as there are many

games in which the winning event is extremely unlikely to be brought about by

chance, or by any naive exploration policy. Because EMPA's curiosity is based on

its explicit theories, it is able to generate long-range plans whose purpose is to bring

about specific, informative, events which it can use to quickly master games. (See

Figure 5-3 for an illustration).
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5.6 Planning

5.6.1 Overview

The EMPA planner takes as input a theory, 0 and state, s, and searches action

sequences using the algorithm detailed in Algorithm 1. Once a plan is found, it is

executed by the agent until the plan ends. If, during execution of the plan, the

world state differs sufficiently from EMPA's predicted state, the planner is re-run.

We explain re-planning in Section 5.6.5

In order to plan efficiently in games with sparse rewards, EMPA generates intrin-

sic rewards that operate at three distinct levels: goals, subgoals, and goal gradients.

Goals correspond to known and hypothesized termination conditions, as well as to

contact goals specified by the curiosity module. Subgoals are decompositions of the

known and hypothesized termination goals: since all termination goals specify condi-

tions of the form, IcjJ = N, subgoals constitute any change in the right direction, of

the number of instances of a class. Finally, goal gradients allow the agent to prefer

level configurations that are closer to achieving a subgoal, by taking into account

the pairwise distance between objects of classes that are relevant to goals. The full

intrinsic reward function is a sum of goal reward, subgoal reward and goal gradient

reward: V(s, 0) = RG(S, ) + RSG(, 0) + RGG (S, 0) - We explain intrinsic rewards

further in Section 5.6.3

5.6.2 Planning modes

The planner operates in three modes: 'long-term', 'short-term', and 'survive'. 'Long-

term' mode returns the first plan that leads to a known or hypothesized win state, as

well as any plan that satisfies the goals of the curiosity module. The default 'short-

term' mode returns any plan that fulfills the above criteria, as well as any plan that

fulfills any subgoal. That is, if the number of objects of a class moves closer to the

count specified by any termination condition, a subgoal has been reached and 'short-

term' mode returns a plan. 'Survive' mode simply returns short plans that do not
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result in Loss states; this mode is often run when the other two modes have failed

to return a satisfactory plan. Table B-1 shows EMPA's policy for determining which

mode to plan in, and Table B-2 shows the parameter settings that constitute each

planning mode.

5.6.3 Intrinsic Rewards

The full intrinsic reward function is a sum of goal reward, subgoal reward and goal

gradient reward: V(s, 9) = RG(S, 0)+RSG(S, 0) RGG(s, 0). All planner modes return

a plan if a goal state is reached and stop searching states that stem from loss states,

so Rg(s, 0) is effectively Inf for Win states, -Inf for Loss states, and 0 otherwise.

By contrast, subgoal rewards only cause the 'short-term' planner to return a plan,

but they drive all planners' intrinsic rewards. Taking advantage of the fact that all

termination goals specify conditions of the form IcjJ = N, states are penalized pro-

portional to their distance from object-count goals. Specifically, the subgoal reward

for a state s is
z Ngr - c(g )

RSG(S, 0) = P1 2EOT COO)P (~ 1 )1[gi=Win]

where Ng,, is the class count specified by gj and Ic(gi) is the actual class count in the

state, of the class specified in gi. pi calibrates the relative value of subgoal reward to

goal gradient reward, p2; We use Pi = 100P2.

The numeric subgoal reward operates at the abstract level of object counts.

Changes in this quantity are too sparse to guide search on their own, so the planner

uses 'goal gradients' to score states at a lower level of abstraction by maximizing

RGG(S, 9) = p2 >~ dmin (c'(gi), c(gi)) (_)1[ge=Wif]

giEOT

where c'(gi) refers to the class (if one exists) that can destroy items of class c(gi),

and dmin(Cj, Ck) refers to the distance between the most proximal instances of classes

cj and ck. This biases the agent to seek proximity between objects that need to be

destroyed and the objects that can destroy those objects, and vice-versa for objects
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that need to be preserved.

The specifies of the above intrinsic rewards (which particular objects to approach,

avoid, ignore, and so on) are generated by the planner within each game by analyzing

EMPA's highest-posterior theory. For example, if the highest-posterior theory has

c| 0 as a Win condition for some class, cj, the planner finds all classes c that the

theory believes can destroy cj and generates goal gradients as specified above. We

view the ability to generate such abstract heuristics that work for any game in the

hypothesis space as a strength of our approach: just as a strong domain theory allows

EMPA to make rapid inductive leaps about the agent's environment, a strong domain

theory for planning, specified at the same level of abstraction of objects, relations,

and goals, allows the planner to efficiently find high-value action sequences across a

wide variety of games.

5.6.4 State Pruning

The planner ameliorates the exponential explosion of the state space by using Iterative

Width (Geffner and Lipovetzky, 2012; Lipovetzky and Geffner, 2017), which prunes

states that are not sufficiently different from states previously encountered in the

course of search. This is achieved by defining atoms, logical propositions that can

evaluate to True or False. We indicate the presence of each object in the state

with the atom, (object, True), and we use (object, False) for a known object

that is no longer in the game state. We encode the location of each object with the

atom, (object, posx, posy). For the agent avatar, whose transition probabilities are

additionally affected by its orientation, we use a (object, posx, posy, orientation)

tuple. The algorithm maintains a table of all atoms that have been made true at

some point in the search originating from a particular actual game state. During

search, IW(1) prunes any state that fails to make some atom true for the first time

in the search; IW(2) prunes any state that fails to make some pair of atoms true for

the first time; and so on. For small k, IW prunes aggressively and quickly searches

all states it can represent. By contrast, for large k, IW is able to make fine-grained

distinctions between states (e.g., it being the first time in the search tree that all
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three of (objectl,2, 2) AND (object2, Null, Null) AND (object3, 1, 4) have each

had that particular value), but as a result many more states that may be functionally

equivalent are treated as distinct, often making search hopelessly slow.

In games with many moving objects, IW (k) can experience sufficient novelty

over a great many states without the agent needing to make a move; this leads

to very inefficient search. To incentivize the agent to move, we additionally use a

penalty on repeated agent positions, a-count(agent, posx, posy, orientation) 2 ,

with a E {-1, -10}. To further ameliorate IW's sensitivity to moving objects, we do

not generate atoms for the locations of objects hypothesized to be random or whose

presence in the game is predicted to last fewer than 5 seconds.

5.6.5 Re-planning

In all planning modes, the planner takes as input an (st, 0) pair and returns a list of

high-value actions, at:N, together with their corresponding predicted states from the

simulator, st+1:N+1- When the agent takes an action at, the true environment returns

st+1 ~ Pat (St+1, st). After each action, agent compares the true st+1 to the predicted

gt+i. If the agent is in sufficient danger or if its own position is not as predicted, the

planner is run again; otherwise, the agent continues execution of the action sequence.

Danger is determined by the theory and the state: being next to an object that kills

the agent is not dangerous if the object is thought to be inert, but it is if the object

is thought to move randomly. The last row of Table B-1 shows the specific conditions

that trigger re-planning.

5.7 Towards Learning Theories Without Fully Ob-

servable Events

As described in Section 5.4.1 of this chapter, EMPA learns from a factorized state

representation that consists of sI, the pairs of objects that are participating in events

as well as the nature of those events, ss, which refers to the remaining objects and their
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positions, and SG, which refers to the Win/Loss/Continue status of the environment.

Below we outline an approach that is able to learn theories without receiving event

labels as part of s1 ; that is, we outline an approach that is able to learn theories

simply from object positions and the Win/Loss/Continue status of the environment.

This approach would modify the "Model" component of EMPA and would leave the

agent otherwise untouched.

5.7.1 Main Loop

The main loop of our algorithm performs a theory-induction step after each action,

by comparing the state predicted by each theory in the hypothesis set to the ac-

tual observed state, proposing modifications, and filtering the new hypothesis space

according to a pre-specified threshold r. See Algorithm 2 for details.

Given that our proposals aim to make local, greedy, modifications to the theory,

it is possible that updates to a theory that reduce its prediction error at time t might

increase its error at some previous time-step, t - k. Proposals are therefore always

evaluated on a replay of previously-encountered transitions.

The main loop runs by evaluating and expanding on a constantly-changing set

of hypotheses. We initialize this set to be a single hypothesis: that all objects are

solid and stationary. This has implications for the effective nature of our prior over

theories; a discussion of this is beyond the scope of this synopsis.

5.7.2 Likelihood Function and Distance Metric

We define a distance metric do, over states such that

p(st+i I st, at, Oi) oc 1 - do, (st+1, si

where st+1 is the true resulting state and oi~ To,(st, at).

We first match each object ot+1 to its nearest match, ofip so that we can evaluate
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do,= do,(ot+1,o41)
oEObjects

We then define:

do, (ot+l, ot+1)= - 0(+)=Poof)
E otherwise

to reflect the assumption that the correct theory will correctly predict the correct

subsequent state for all deterministic transitions. For sprite types that our Oi hypoth-

esizes to be stochastic such as the the RandomNPC and the Chaser, we instead use a

likelihood function derived from the VGDL update function for the type. That is,

instead of getting a single prediction for oi, we obtain a distribution over next po-

sitions from the program itself and use that as the likelihood. This is only feasible in

a small set of cases and so does not constitute the bulk of our likelihood evaluations.

5.7.3 Error Signal and Theory Proposal

When we observe a game state st that is not well-explained by Oj, we propose mod-

ifications to 0i that may help to explain the observation. We denote the proposal

function by

g(() .

where ( ),...,m) is a set of modified theories that aim to better match the

observations. Since we are incrementally building a tree of theories, and since theories

are expensive to evaluate, we want to maintain a space of theories that is as small

as possible while ensuring that we do not fail to propose good theories. To this end,

instead of making random modifications to an inadequate theory we use an error

signal to guide our proposal function.
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5.7.4 Error Signal

After observing the true state evolution st+1 ~ p(st+1 I st, at, 0*), we compare it to

our predicted state sti ~ p(st I st, at, Qi) for each theory. In addition to computing

a distance between predicted and observed states, we can analyze the nature of the

difference to provide a diagnosis of the possible causes of the prediction error. For

example, we can return simple diagnoses that are easily calculated from the predicted

and actual states, such as:

" unexpectedDisappearance(ci)

" unexpectedAppearance(c 2 )

" unexpectedPosition(c 3)

In these examples, c 1, c2 , c 3 are termed the target classes. We can also calculate

other information that will be helpful in diagnosing the error. For example, given

that by design in VGDL, all effects are applied only when there is contact between

objects, we can easily calculate the set of objects that may have made contact with

the target class at the time of the prediction error. By calculating possible neighbors

of a target sprite in the previous time step, we can generate a list of possible culprit

classes. Here there is a tradeoff - a liberal calculation of the possible culprits will

result in a larger set of proposed child theories; a less liberal calculation will result in

fewer proposed child theories, but may result in missing the correct culprit class. For a

particular state transition and theory, our error signal function returns a set of tuples

(diagnosis, interactionPair, targetClass, culpritClasses). The proposal function takes

a theory and one such tuple and returns a set of child theories that contain possible

fixes to the error. There are two components to this function, corresponding to the

two components of the VGDL theory that we are ultimately trying to learn: the the

sprite types of the objects, and the interaction set.
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5.7.5 Factorized Proposals

Sprite type proposals We remind the reader that in VGDL, sprite types (object

properties) govern the motion properties of each object. As a result, only diagnoses

that involve unexpected object positions can be explained by different sprite-type

hypotheses. When we receive such a diagnosis, we simply enumerate all possible

parameterizations of sprite hypotheses. That is, we generate the cross-product of all

the possible values of all the features a sprite type can have: F = {fi} x {f2} x ... x

{ fN}, where each row fi of F is a particular feature combination, i.e., a particular

parameterized sprite type. Example features and values are:

" Type: (Immovable, Missile, Random)

" Speed: [0, 0.1, - - - ,5]

" Orientation: [up, down, left, right]

" Cooldown: [0, 1, - - - , 10]

This set of hypotheses is generated in the same way every time we want to gen-

erate possibilities for a particular class. Given these hypotheses, we are immedi-

ately in a position to evaluate them. We have implemented a likelihood function

p(pos(o)t+1 I pos(o)t, f), where pos(o)t,pos(o)t+1 are the locations of a particular

sprite token, o, at successive time steps. This function takes into account the position-

updating functionality of VGDL. For example, for a particular object we might have

f - (Type=Missile, Speed=1.7, Orientation=left, Cooldown=0). For this particular

object, the likelihood function yields

p(xt+i, yt+1 I Xt, Yt, f) = 1- (t+1,t+1)=(t-1.7,yt),

I otherwise

In general, likelihood functions over positions for objects are very sparse, so the

end result is that while we might initialize 20, 000 feature combinations for a particu-

lar object, only 20 or so features explain the observed transition with non-negligible
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probability. With these surviving hypotheses, we can generate irows(Fsurviving) chil-

dren of Oi, where the feature set denoted by each row is taken to be the sprite type

for the target class. All other aspects of 9, are left unchanged.

Interaction rule proposals In addition to generating all sprite-type variants for

0, for a particular target class, we also generate all InteractionSet variants. This is

achieved in the procedure detailed in Algorithm 3.

The function predicates (6) maps a given diagnosis, 6, to a list of predicates that

can potentially fix the error. For example:

" predicates(unexpectedPosition) - [push, stepBack, reverseDirection

" predicates(newObjectAppeared) [ cloneSprite, transf ormTo]

The most straightforward thing to do would be to map each diagnosis to all predicates

(or to not use diagnoses at all), but given the combinatorial nature of this theory-

generation process, it is in practice very helpful to keep this number small. The

mapping we use has been specified by us, but it is possible for an agent to learn it

from experience, over long time-scales, i.e., by optimizing the diagnoses-to-predicate

sets mapping with respect to the number of proposed theories it takes to learn a

high-fidelity simulator for a particular game.

5.8 Human-Level Theory-Based Reinforcement Learn-

ing

In addition to developing EMPA, we directly compared humans, EMPA, and other

computational models on a set of 90 challenging video games, many of which require

nontrivial exploration and long-range planning. Our core set of games consists of

10 original games and 17 games based on ones from the General Video-Game Al

(GVGAI) competition (Perez-Liebana et al., 2016). For each of these 27 core games,

we generated 1-4 variant games that roughly matched their originals in difficulty

and subjective 'interestingness' (see Figures A-1 and A-2). The full set of 90 games
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Figure 5-4: 'Normal' and 'no-color' versions of the GVGAI game, "Frogs". All human

participants and DDQN played 'no-color' versions; EMPA received a state description

containing object positions and interactions occurring between objects.

is described in Appendix D, and can be played on a Google Chrome browser at

vgdl.herokuapp.com/games.

300 human participants were recruited through Amazon Mechanical Turk and

paid $3.50 plus a bonus of up to $1.00 depending on their cumulative performance

across all the games they played. Prior to playing the games, they were told only that

they could use the arrow keys and the spacebar, and that, beyond that, they should

try to figure out how each the game worked in order to play well. Each participant

played 6 games in random order; 20 participants played each game. No participant

played more than one version of a game. 3

In order to test learning as it occurs independently of semantic content conveyed

by object appearance, we displayed all games in 'color-only' mode, where objects differ

from one another only in their color. Additionally, color assignments were randomized

across subjects to ensure that no color-related semantic associations were conveyed to

subjects. See Figure 5-4 for screenshots of "Frogs" in 'normal' and 'color-only' mode.

Humans were compared to a leading Deep-Reinforcement-Learning agent (DDQN)

Van Hasselt et al. (2016), EMPA, and various lesioned versions of EMPA, designed to

highlight the relative contributions of its modules. The DDQN implementation was

borrowed from https://github.com/dxyang and was run with the hyperparameters

3That is, if a participant played "Frogs", they played no "Frogs" variants.
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listed in Table B-3. EMPA received the game state as described in Chapter 5.4.1.

5.8.1 Results

As in Atari, people can learn to play these games and generalize across levels in just

a few minutes (several hundred agent steps; see Figure 5-5), whereas DDQN often

takes orders of magnitude more experience. Figure A-3 shows performance of humans,

EMPA, and DDQN across all 90 games over the first 10, 000 steps, and Figure A-4

shows performance over the first 1 million steps.

The goals and dynamics in these games vary considerably: in Avoidgeorge (top

left), the player has to give candy to annoyed citizens while an enemy chases citizens

in order to annoy them, and wins as long as 500 game steps pass without all citizens

becoming annoyed. Here DDQN wins one level by chance but fails to learn a good

policy quickly. EMPA takes unnecessary actions in the game and therefore wins more

slowly than people, but still learns the game within a few thousand steps. In Bait

(top right), the player has to push boxes into holes in the ground in order to reach

a key that unlocks the exit door. EMPA performs as well as a median human does,

solving all five levels in fewer than 1, 000 steps, while DDQN fails to solve a single

level of the game even in 1, 000, 000 steps. In "Butterflies", the player has to chase

all the butterflies before the butterflies reach all the cocoons. DDQN takes 200, 000

steps before winning the game, despite the simplicity of the goal and policy; EMPA

performs as well as the best humans.

To more concisely evaluate the performance of these learning agents, we propose

a performance metric,

performance -levels completed levels completed
levels in game steps to completion

This notion incorporates two natural notions of concern - the degree to which the

task was completed, and the efficiency with which it was completed. Figure 5-6 shows

the distribution of human-normalized performance scores across all games, for EMPA

and DDQN. EMPA and humans are most often within an order of magnitude of one
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Figure 5-5: Screenshots and
(blue), and DDQN (grey).

It

learning curves for six games, for humans (green), EMPA
Humans and EMPA are able to learn new games in a

matter of minutes (corresponding to a few hundred steps).
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Figure 5-6: Distribution of EMPA and DDQN learning performance relative to
humans across 90 games.

another, whereas DDQN falls orders of magnitude below humans on most games.

Figure 5-7 shows model scores on this metric for all 90 games.

5.8.2 Role of theory-based curiosity

To examine the role of EMPA's theory-based curiosity we compared EMPA to a

lesioned variant of EMPA that does not generate epistemic goals. This version still

performs inference over VGDL theories, and employs the full planner to achieve goals.

However, the goals provided to the planner are only win-related. As a result, the

model only learns from object motion and events that occur independently of the

agent, or agent-caused events that occur by chance as the agent moves through the

game according to a standard c-greedy exploration policy.

One difficulty raised by this lesion arises from the nature of goals that are gener-
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ated and passed to the EMPA planner: EMPA only hypothesizes win conditions for

classes it has learned are able to disappear in the game. In the absence of having

witnessed such events, such goals do not exist and the planner is not given win- or

curiosity-related goals. As a result, the planner is not able to return a win state.

Given the metacontroller policy, this results in switching to long-term planning and

then rapidly increasing the maximum allowable nodes searched by the planner, lead-

ing to a scenario where the planner spends a great many cycles only to return no plan.

To ameliorate this problem, we ran an c-gredy 'DS' variant that delays switching to

long-term planning, and that re-sets the maximum number of nodes allowed under

long-term planning to the initial value after any level forfeit.

For both 'vanilla' e-greedy and DS-e-greedy, we annealed the C linearly from 1 to

0.05 over the course of 1, 000 and 2, 000 steps. Figure 5-8 shows the distribution of

performance scores (computed in log space) across all games for DDQN, EMPA, and

the four variants. Figure 5-9 shows means and 95% CIs for these scores. Figure 5-10

shows results for the 31 games for which all variants completed at least one level.

Taken together, these results suggest that a nontrivial part of EMPA's success can be

attributed to its ability to solve the significant exploration challenges posed by these

games.

5.8.3 Role of planning heuristics

To examine the role of EMPA's planning module, we compared EMPA to lesioned

variants that did not use 1) subgoals, 2) goal gradients, 3) IW, 4) subgoals or goal

gradients, 5) subgoals, goal gradients, or IW.

Figure 5-11 shows results pooled results across the 90 games (means and 95% CIs

computed in log space). Individual lesions perform at worst two orders of magnitude

worse than EMPA and humans, but the combined lesions decrease the model's per-

formance by three orders of magnitude, suggesting that EMPA benefits greatly from

its intrinsic rewards and node pruning.

The contributions of the goal-related and planning heuristics do not only occur

at the behavioral level; they also occur at the planning level. That is, not only do
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Figure 5-8: Distribution of performance scores for DDQN, EMPA, and four variant
exploration lesions of EMPA. Certain games pose significant exploration problems
that neither DDQN nor the lesioned variants can solve.
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Figure 5-9: Means and 95% CIs (computed in log space) of performance scores across

all 90 games.
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Figure 5-10: Means and 95% CIs (computed in log space) of performance scores

across the 31 games for which all variants were able to solve at least one level. For
games without significant exploration challenges, e-greedy exploration contributes

only slightly to a decrement in EMPA's performance. DDQN continues to significantly
underperform humans and EMPA.
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Figure 5-11: The combination of EMPA's intrinsic reward structure and node-pruning

allows it to perform up to 1000 times better than a lesioned variant that lacks these

components.

the final plans become worse; but the process of planning becomes less efficient. To

examine this effect, we examine the planner efficiency of each model, mj, which we

define as

planner efficiency =
min(planner-nodes-per-step(mj E M))

planner-nodes-per-step(mj)
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Figure 5-12 shows results for each lesion pooled across the 90 games.

Figur 5-12:* ft.-- --ft

Figure 5-12: The combination of EMPA's intrinsic reward structure and node-

pruning allow it to plan roughly twice as efficiently than a lesioned variant that lacks

these components. Note that this metric only considers planner nodes per step taken,
and not the quality of the actions.

5.9 Discussion

Our Exploring, Modeling, Planning algorithm (EMPA) is able to learn to play a

range of video games with just a few minutes of experience, as humans do. It ac-

complishes this by using human-inspired inductive biases, specified at the level of

objects, relations and goals. These inductive biases are coupled with an imperative

to explore in a theory-oriented way, and adaptive behavior more generally is made

possible by means of a planner that can generate subgoals and goal gradients from

the hypothesized theory and use these to effectively guide search.

We believe that model-learning, curiosity, and planning are the main drivers of

human performance on video-game tasks. To make it easier to focus on these, we

bootstrapped EMPA with the full game state - including the ability to perceive

events when they occur - rather than making it operate directly on pixel input.

While it is trivial to pick out objects in VGDL, the use of events to learn theories

simplifies the learning problem considerably, as they help to distinguish between

theories that can produce otherwise-identical states. More importantly, video-game
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domains outside of VGDL do not provide the agent with labeled events as they

occur. While it is relatively straightforward to perform object detection in video-

game domains, event detection may pose a more challenging problem. Chapter 5.7

outlined an approach that can learn theories directly from object locations, without

the need to use events at all. Work is underway to produce a version of EMPA that

combines a simple perception front-end with this approach in order to operate directly

on pixels.

We designed EMPA using human-inspired inductive biases about objects, rela-

tions, and goals. But in fact the types of objects, relations, and goals that EMPA is

able to consider perfectly match the types of objects, relations, and goals that can be

composed to generate the environments EMPA was tested in; VGDL was both the

representation used for EMPA's hypothesis space and the one we used to generate the

set of 90 games. The learning problem is still substantial; as noted in Chapter 5.3,

for a game with just 10 unique classes, there are over 103 7 possible game descriptions.

Still, the a priori significant overlap between the algorithm's hypothesis space and

the distribution from which the environments were implicitly drawn raises the ques-

tion of whether a theory-driven approach could learn to operate in environments that

were produced using a different "world engine". Stated more clearly, what remains to

be done before EMPA can play games of roughly equivalent difficulty to VGDL (for

example, Atari games) that are generated using a different "world engine" than the

one it has?

We believe that, in fact, not very much is missing. There are various real-world

notions that can be incorporated into EMPA's representation language to make it

significantly more capable. These include: more realistic and more flexible physics;

the ability to define sets of objects with coordinated properties; slightly more sophisti-

cated agent models; action-at-a-distance (such as when a light switch turns on a light

that is not visibly connected to the switch); and more generally, a decoupled notion

of cause and effect. An updated representation language, coupled with a stronger

game engine to support simulation worlds with these properties, is well underway.
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Chapter 6

Conclusion

This thesis examined some of the epistemic practices, representations, and algorithms

that we believe underlie humans' ability to quickly learn about their world and to

deploy that understanding to achieve their aims. In particular, it examined humans'

ability to effectively query their environment for information that helps distinguish

between competing hypotheses; children's ability to use higher-level amodal features

of data to match cause and effects; and adult human rapid-learning abilities in arti-

ficial video-game environments. The thesis culminated by presenting and testing our

Exploring, Modeling, Planning agent (EMPA) that learns to perform complex video-

game tasks at human-level performance and with human-level amounts of experience.

The model is an instantiation of a more general approach, Theory-Based Reinforce-

ment Learning, which we believe can underlie the development of human-level agents

that may eventually learn and act adaptively in the real world.

There are many frontiers on which we plan to continue this work. On the very

near term, we aim to leverage two components of EMPA's ability to learn models of

its environment. As mentioned in Chapter 4, humans benefit greatly from observing

a few minutes of other players' gameplay; EMPA can likely do the same. More inter-

estingly, humans can use what they have learned about a game to achieve completely

novel goals that were not part of the original environment; EMPA can likely do this,

as well, and we would like to showcase both of these abilities.

We would also like to examine the degree to which our human-level EMPA al-
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gorithm is also human-like. That is, can EMPA pass a Turing test? Can humans

distinguish between videos of EMPA gameplay and human gameplay? To what degree

do its trajectories through novel environments resemble those of human learners? Do

the planning problems that challenge EMPA also challenge humans, and vice-versa?

We hope to use the insights from the above to reveal more about the representations

and algorithms that humans use when engaged with these tasks, and to use what we

learn from human experiments to develop more capable Theory-Based RL agents.

Concretely, we are planning several projects that will help advance the project of

building agents that can operate in increasingly complex worlds. As mentioned in 5.9,

a core ongoing project is to develop a richer space of theories that would be capable

of representing games that were generated using different "world engines". The richer

hypothesis space would in turn necessitate the use of more sophisticated inference

procedures, and would raise a natural question of whether the current heuristic ap-

proximation to optimal theory-based curiosity would continue to be effective in these

richer environments. It would also necessitate the development of more powerful plan-

ning algorithms, with a more flexible intrinsic reward structure. A promising avenue

in this direction may be for EMPA to learn planning heuristics through imagined

play, using a combination of bottom-up deep-learning methods and program synthe-

sis techniques. We also plan to combine EMPA with Deep Reinforcement Learning

methods in order to learn a fast, reactive policy that can be deployed in games that

do not require long-range planning, where the EMPA planner is used to generate

training data for the policy.

Perhaps the most ambitious extension of this work concerns the very nature of

the approach. Theory-Based Reinforcement Learning is not intended as a model

of how intelligence evolves from scratch, as Deep Reinforcement Learning researchers

often set as their target. Rather it is a reflection of the end-result of human evolution:

flexible but powerful inductive biases that can be deployed to learn new tasks quickly,

even in environments very different from our experience at the level of pixels or raw

observations. In the short term, we plan to develop hybrid approaches that combine

theory-based inductive biases to quickly learn components of new tasks, with slower
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but more flexible program-synthesis techniques that can learn new primitives, in

order to capture learning both on fast and slower timescales. In the long term, we

would like to develop program-synthesis approaches powerful enough to learn the

entire representation language that is capable of supporting theory-based, human-

level learning.
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Appendix A

Figures
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Appendix B

Tables

Conditions

Found plan

Did not find plan
AND

(count(repeated-deaths)=2) OR (no-new-
objects(55) AND (no-moving-types() OR no-

scorechangeo))

Did not find plan
AND NOT

(count(repeated-deaths)==2) OR (no-new-
objects(55) AND (no-moving-typesO OR no-

scorechangeo)

Found plan

Did not find plan
AND

long-range-plan-failures>2

Did not find plan
AND

long-range-plan-failures<2

Always

Agent not where expected
OR

(dangerous-object not where expected) AND
(distance(dangerous-object, Agent)<3)

Behavior

Execute plan

Switch to long-range

Switch to survive

Execute plan

max-nodes = Tmax-nodes
long-range-plan-failures = 0

restart(level)

long-range-plan-failures += 1
Take 5 random steps

Execute plan
Switch to short-range

Re-plan

Figure B-1: Planning-mode selection policy. "repeated-deaths" examines the state

history and returns true if the same events occurred during successive lost episodes.

"no-new-objects(N)" returns TRUE if no new object has emerged on the screen for N

game-steps. "no-scorechange" returns TRUE if the score has not changed in the last

game step.
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Starting maxnodes

Annealing factor (T)

Return plan on reaching
subgoal

Short-term

- {200, 500, 1000}

TRUE

Figure B-2: Parameters that constitute EMPA's distinct planning modes.
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Parameter

Annealing schedule for

Experience-replay max(steps)

Batch size

Image input recrop size

Value

0.00025

0.999

100

Linearly from I to .1 over 200 steps

50,000

32

64x64x3

Figure B-3: DDQN hyperparameters.
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Appendix C

Algorithms

Algorithm 1
1: function PLAN(so, maxNodes, plannerMode)
2: numNodes, frontier, nodes = 0, [so],s0]
3: while numNodes < maxNodes do
4: s = argmax([v(s) for s in frontier])
5: frontier.remove(s)
6: for a E actions do
7: s' ~ ,p(s' I s, a, 0)
8: numNodes + = 1
9: if novel(s', IW) then

10: frontier.add(s')
11: end if
12: if winCriterion(s', plannerMode) then
13: return actions(s'.sequence), s'.sequence
14: end if
15: end for
16: s argmax([v(s) for s in nodes])
17: return actions(s'.sequence), s'.sequence
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Algorithm 2
1: function RUNEPISODE(si, a:-1)
2: for t = 1 : T - 1 do
3: for 0, E hypothesisSet do
4: likelihood, error = errorSignal(Oi, (st, st-i, at-i))
5: Onewl : Onewm = proposals(Oi, error)

6: hypothesisSet.extend(Onewl : Onewm)
7: end for
8: hypothesisSet = filter(hypothesisSet, T)
9: end for
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Algorithm 3
1: function EXPAND(O, 6, targetClass, culpritClasses) 6: A diagnosis

2: proposals = []
3: for pair C targetClass x culpritClasses do
4: for 7r C predicates(6) do
5: Onew = copy(O)
6: new- = > Replace all predicates that involve pair with 7F
7: proposals.append(new)
8: end for
9: end for
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Appendix D

Game Descriptions

Antagonist The player has to eat all the hot dogs before the antagonists eat the

burger. The player can win by playing keepaway with the burger while trying to

reach the hot dogs, but in the last level there are too many hot dogs to eat and only

one burger - the only way to win is to push the burger through a forcefield that the

antagonists cannot get to.

Antagonist 1 The player can no longer play keepaway with the burger, but can

push boxes into the antagonists' path to block them.

Antagonist 2 The hot dogs are harder to get to. To make things a bit easier,

the player can put frosting on the burgers, which makes the antagonists not recognize

their food. There's a smarter antagonist that isn't hungry but takes the frosting off

the burgers, making them recognizable again. The player has to balance frosting

burgers and eating hotdogs in order to win.

Aliens (GVGAI) This is the VGDL version of the classic "Space Invaders". The

player moves a spaceship left and right and can shoot surface-to-air missiles. Alien

bombers move side-to-side and rain bombs at the agent, who can hide under a base.

The base slowly gets destroyed, so the player must often dodge bombs while shooting

all the aliens.

Aliens - Variant 1 The bombs shot by the aliens move randomly.

Aliens - Variant 2 The way to win now is to destroy the protective base.

Aliens - Variant 3 The player's surface-to-air missiles move three times as
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slowly, making aiming more challenging.

Aliens - Variant 4 Aliens move three times as fast, shoot bombs six times as

often, and the player's base no longer destroys incoming bombs. To compensate, the

player can now shoot surface-to-air missiles continuously.

Avoidgeorge (GVGAI) Evil George chases citizens. If he touches them, they

become annoyed, and if there are no calm citizens in the game, the player loses. To

avoid this, the player can feed the annoyed citizens candy, which makes them calm

down. If George touches the player, the player dies. Keeping citizens calm for 500

game steps results in a win.

Avoidgeorge - Variant 1 The player can now use the candy to make annoyed

citizens disappear, and if all annoyed citizens disappear, the player wins.

Avoidgeorge - Variant 2 The player can still make annoyed citizens disappear,

and if all annoyed citizens disappear, the player wins. George moves faster, but the

player can now throw the candy.

Avoidgeorge - Variant 3 Same as Variant 2, but the player begins the game

stuck in a room and needs to tunnel out of it before doing anything else.

Avoidgeorge - Variant 4 Same as Variant 3, but George moves even faster,

and the candy no longer makes citizens disappear.

Bait (GVGAI) A puzzle game. The player has to pick up a key to go through

a door to win. Falling into water results in death, but pushing boxes into water

vaporizes the water and clears the path.

Bait - Variant 1 Same as the original, but there are a few laser cannons lying

around that vaporize any water in the laser's path.

Bait - Variant 2 The levels are a little easier in this variant, but the player

has to make the key by pushing metal into a mold. Only then can one go to the door

to win.

Bees and Birds The player has to get the goal while avoiding swarming bees.

In level 2, the goal is surrounded by an electric fence, but the player can release a

bear that can eat through the fence. In level 3, the player can either go through a

dangerous swarm of bees or take a longer path that involves releasing a bear that eats

114



the fence. In level 4, the player can get to the goal simply by going around the fence.

Releasing the bears will actually cause the bees to be released, making winning more

challenging.

Bees and Birds - Variant 1 The player has to get the goal while avoiding

swarming bees. In all subsequent levels, there are lots of swarming bees, so the best

stategy is to release a mockingbird that will eat the bees, clearing the path to the

goal.

Boulderdash (GVGAI) This is the VGDL version of the classic "Dig Dug". The

player has to pick up 9 diamonds and then exit the level. Boulders in the game are

supported by dirt, and if a boulder falls on the player, the player dies. The player

has to avoid two types of subterranean enemies to avoid dying.

Boulderdash - Variant 1 Same as the original, except that one of the subter-

ranean enemies converts dirt to diamonds instead of being trapped by it.

Boulderdash - Variant 2 Same as the original, except the player only has to

pick up three diamonds to win.

Butterflies The player has to get all the butterflies before the butterflies activate

all the cocoons. The butterflies move randomly, and if they touch a cocoon, the

cocoon turns into a butterfly.

Butterflies - Variant 1 Same as the original, but butterflies are faster.

Butterflies - Variant 2 There are more cocoons, meaning there will soon be

many more butterflies. The player can destroy cocoons, but still dies if all cocoons

are gone.

Chase (GVGAI) The player has to chase all the goats, which run away. Touching

a goat turns it into a carcass. If a scared goat touches a carcass, the carcass turns

into a zombie goat which chases and can kill the player.

Chase - Variant 1 Same as the original, except that there are a few gates that

release goats sporadically.

Chase - Variant 2 Touching a goat kills it, rather than turning it into a carcass.

The game now contains a wolfgate, which if the player shoots, releases a wolf that

quickly chases and kills the player.
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Chase - Variant 3 In addition to the goats, there are sheep that rapidly pace

in a predetermined path. If these touch a carcass, they turn into zombies.

Closing Gates The player has to get to the exit before large sliding gates close.

Closing Gates - Variant 1 The gates close more quickly. The only way for

the player to escape is to shoot a bullet onto the gates' path; this blocks the gates

and lets the player squeeze through.

Corridor The player has to get to the exit at the end of a long corridor while

avoiding boulders of different speeds that roll toward the player.

Corridor - Variant 1 The player can now shoot bullets at the boulders. De-

pending on the speed of a boulder, the bullet will either slow it down or speed it up

(in fact, the speed of any boulder can be toggled in a cycle by hitting it with more

bullets).

Explore/Exploit The board is full of colorful gems, and the player wins by

picking up all gems of any given color. Different board configurations incentivize

exploring new ways of winning versus exploiting known ways.

Explore/Exploit - Variant 1 Same as the original game, except evil gnomes

chase the player as the player collects the gems.

Explore/Exploit - Variant 2 There are no evil gnomes, but now the gems

are being carried by gnomes that flee the player.

Explore/Exploit - Variant 3 Same as the original, except one of the gems

the player encounters early on is poisonous.

Helper The player has to help minions get to their food. Sometimes the food is

blocked by a fence the player can destroy, and sometimes the minions are boxed-in

by a fence that the player can push food through.

Helper - Variant 1 The player wins by eating all the food, but can only eat

it after taking it to the minions for processing.

Helper - Variant 2 The player's goal is once again to feed minions. In this

variant the player can shoot a path through red fences to free minions. In the last

level, the player has manually clear one path, then shoot through some fences, and

then push food through a third fence in order to feed the minion.
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Frogs (GVGAI) This is the classic "Frogger". The player has to cross a road while

avoiding dangerous trucks and then step carefully on moving logs to cross a river, to

get to an exit. The level layouts of this game are slightly modified from the original

GVGAI layouts, in order to make the game playable in the original version of VGDL

this project was built on.

Frogs - Variant 1 The trucks move differently now; they move at different

speeds, and when they hit the edge of the screen they rapidly turn around and drive

in the other direction.

Frogs - Variant 2 Now there aren't any logs to help the player cross the water,

but the player can throw mud at the water to build bridges.

Frogs - Variant 3 Back to the original layout, but things are made much

simpler by the presence of a teleporter.

Jaws (GVGAI) The player dies if touched by a chasing shark. Cannons on the

side of the screen shoot cannonballs at the player. The player can shoot bullets at the

cannonballs, to convert them into a new kind of metal. Picking this metal up gives

points. The player wins by surviving for 500 game steps.

Jaws - Variant 1 Now there is a fence that prevents the player from getting

too close to the cannons.

Jaws - Variant 2 Each piece of metal grants 5 health points; having any health

points protects the player from the shark; the shark takes away one health point each

time there's contact. The shark can be destroyed if the player has 15 health points.

The player wins after destryoing the shark or surviving for 500 game steps.

Lemmings (GVGAI) In this classic game, the player has to help a group of

lemmings get to their own exit. To do so, the player must shovel a tunnel, and incur

a loss of points with every shovel action.

Lemmings - Variant 1 Now the player gets points for shoveling, rather than

losing points.

Lemmings - Variant 2 The player can release a mole, which loves to shovel

and will clear all the dirt. But if the mole happens to touch the player, the player

dies.
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Lemmings - Variant 3 The mole is still there and will shovel dirt when re-

leased. But if the mole touches a lemming, the mole turns into a snake that chases

and kills the player.

Missile Command (GVGAI) Spaceships want to destroy the player's bases. The

player defends the bases by shooting short-range lasers, and wins upon destroying all

the spaceships, or loses after all the bases are destroyed.

Missile Command - Variant 1 The bases don't stay in place; they float

around randomly.

Missile Command - Variant 2 The player can now shoot long-range lasers.

However, these lasers bounce off the edges of the game and kill the player upon

contact.

Missile Command - Variant 3 A newer, faster spaceship, tries to destroy the

player's base, and the player is only equipped with a short-range laser.

Missile Command - Variant 4 There are more fast spaceships, making it

very difficult to destroy all of them before they get to the bases. However, the player

can shoot the short-range laser at the ozone layer, which transforms into a shield that

the enemies cannot pass through.

MyAliens (GVGAI) The player can only move sideways. Fast-moving bombs

drop from the top. One type of bomb kills the player; the other gives points. Surviving

the onslaught for 500 game steps results in a win.

MyAliens - Variant 1 The player can now collect the safe bombs, and can go

to an exit once five of those have been collected.

MyAliens - Variant 1 The player can now move in all directions, but bombs

come from all directions, too. The player wins by either picking up five safe bombs

and getting to the exit, or by surviving for 500 game steps.

Plaqueattack (GVGAI) 40 Burgers and hotdogs emerge from their bases and at-

tack cavities; if they get all the cavities the player dies. The player wins by destroying

all the hotdogs and burgers with a laser.

Plaqueattack - Variant 1 The burgers and hotdogs move faster, but there are

only 24 of them. The player has to destroy them while avoiding a roving drill.
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Plaqueattack - Variant 2 There is no drill, but now there are bouncing pro-

jectiles that kill the player on contact.

Plaqueattack - Variant 3 Now the player has to face 40 burgers/hotdogs

again, as well as the bouncing projectiles, but can win by destroying all the gold

fillings, instead.

Portals (GVGAI) The player wins by picking up the green gem. Certain rooms,

including the room with the gem, are accessible only by going to portals that teleport

the player to their portal-exits. Most portals have multiple portal-exits, and the

player's final location is randomly chosen from those. While figuring this out, the

player has to avoid bouncing missiles, roving space-monsters, and inert traps.

Portals - Variant 1 Same dynamics as above, but with a new portal type and

more complicated level layouts.

Portals - Variant 2 Uses the complex layouts as in Variant 1. The player now

has to contend with roving monsters that can pass through walls.

Preconditions The player wins by picking up a diamond. Getting the differently-

colored fake diamond does nothing. Usually the diamond is surrounded by poison,

which the player can pass through only after drinking an antidote. In the last level the

player has to drink an antidote to pass through the poison that blocks two antidotes,

in order to pass through the double-poison in order to get to the triple antidote, in

order to get through the triple poison that guards the goal.

Preconditions - Variant 1 The player can also pick up a more powerful anti-

dote that allows passage through two poisons. Different level layouts encourage using

either the single or double antidote.

Preconditions - Variant 2 Same rules as the original, except only one antidote

can be ingested at a time, forcing the player to shuttle back and forth.

Push Boulders The goal is to get to the exit. Touching orange or yellow fire

results in a loss. Green boulders can be pushed by the player; these destroys orange

fire and push yellow fire. Light blue clouds can be destroyed by the player but

otherwise have no effect on the game. The game often involves solving maze-like

challenges and necessitates using boulders to clear dangerous obstacles.
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Push Boulders - Variant 1 Purple boulders destroy yellow fire (but they

don't destroy or push orange fire). The mazes are more difficult and involve multiple

uses of boulders to clear fire.

Push Boulders - Variant 2 Now the purple boulders are too heavy to move,

but one-time-use-only cannons shoot cannon balls that destroy any boulders or fire

in their path. The player has to fire up the right cannons to clear paths. Light yellow

clouds do nothing.

Relational The goal is to make all the blue gems disappear, which happens when

they are pushed into a vat of yellow potion. In the second level, there is no yellow

potion, but touching the green potion converts it to yellow. In the third level there is

no green or yellow potion, but pushing an orange box into a purple converts the two

into yellow potion. In the fourth level, a pink box can be converted into an orange

one that can be pushed into purple to make the yellow potion.

Relational - Variant 1 Same relational rules as above, but the blue gem is

now carried by a gnome that chases the player. While nothing happens if the gnome

touches the player, the player has to move around in such a way as to get the gnome

to run into yellow gems.

Relational - Variant 1 Now the gnome is fleeing the player. While nothing

happens if the player touches the gnome, the player has to move around in such a

way as to get the gnome to run into yellow gems.

Sokoban (GVGAI) In this classic puzzle game, the player wins by pushing boxes

into holes.

Sokoban - Variant 1 The player can make use of portals, which teleport either

the player or boxes to a particular portal-exit location on the game screen.

Sokoban - Variant 2 This variant does not have portals. Instead, there is dirt

lying around that can fill holes. Filling certain holes makes the levels unwinnable.

Surprise The player has to pick up all of the red apples. Touching a cage releases

a randomly-moving Tasmanian devil. If the Tasmanian devil touches a green gem, the

Tasmanian devil gets cloned and the gem disappears. The player can pass through

gems and Tasmanian devils
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Surprise - Variant 1 The player can no longer pass through the Tasmanian

devils; releasing the devils makes winning much more challenging.

Surprise - Variant 2 The goal is to destroy all the gems, which can only be

done by releasing the Tasmanian devil.

Survive Zombies (GVGAI) The player has to survive for 500 game steps while

avoiding zombies that emerge from fiery gates. The fiery gates are dangerous, too.

Fortunately, bees come out of flowers, and when bees touch zombies, the two col-

lide and turn into honey. Eating honey gives the player temporary immunity from

zombies.

Survive Zombies - Variant 1 The way to win is to collect all the honey.

Survive Zombies - Variant 2 The way to win is now to kill all the zombies,

by first eating some honey for immunity.

Watergame (GVGAI) A puzzle game. The player has to reach an exit, which is

usually surrounded by water that drowns the player. Pushing dirt onto water clears

the water.

Watergame - Variant 1 Red boulders can be pushed onto the dirt, thereby

destroying it. Destroying some dirt is necessary in order to clear space, but destroying

the wrong pieces of dirt makes levels unwinnable.

Watergame - Variant 2 More dirt can be made by mixing light-green and

yellow potions.

Zelda (GVGAI) The player has to pick up a key and get to a door, while using

a sword to destroy randomly-moving monsters.

Zelda - Variant 1 The player has to pick up three keys before getting to the

door.

Zelda - Variant 2 The player only needs one key, now, but both the key and

the door move randomly throughout the level.

Zelda - Variant 3 Now the key and door are carried by elves that flee the

player.
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