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Abstract

Almost six million households in the United States alone use heating oil as their main
fuel, the vast majority of these in the Northeastern US. In this thesis, we examine
some problems faced by a planner who is contracted to resupply customers with
heating oil through the winter season, and use robust and adaptive optimization and
machine learning to develop models that allow the planner to address these problems
under uncertainty at a realistic scale.

In the first part of the thesis (Chapter 2), we consider the problem of resupply-
ing customers spread over a geographical area. Due to the presence of uncertainty
in demand, the planner has to choose an appropriate fleet size, decide on the most
cost-effective routes and schedules, and on how much to resupply each customer. We
develop novel scalable and adaptive algorithms to address this problem, demonstrat-
ing the potential for significant cost savings in simulations while being able to address
problem sizes in the thousands.

In the second part of the thesis (Chapter 3), we consider the problem of executing
the purchase of a commodity. In addition to price uncertainty on the daily commodity
market, we model two kinds of discounts offered by commodity sellers vying for the
planner's business. We develop a tractable model to formulate a purchasing strategy
for a desired quantity, and use recently-developed machine learning techniques to find
optimal decision trees that the planner can apply to different problem parameters
to yield readily interpretable purchasing strategies, without having to re-solve the
optimization models. We demonstrate experimentally that these strategies perform
almost as well as those given by the actual optimization models.

Finally, in the third part of the thesis (Chapter 4), we demonstrate the possibility
of solving the previous two problems as an integrated whole, allowing the planner to
simultaneously optimize the routing, scheduling, and purchasing aspects of heating
oil delivery. Although the integrated problem size may be too large to solve directly
with realistic problem sizes, we use Lagrangean decomposition methods to make the
problem tractable, and show experimentally that this allows us to get high-quality
solutions that reduce the combined cost of the two subproblems.
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Chapter 1

Introduction

Decision makers have access to more data now than ever before. From increasingly

complex prediction models for everything from weather patterns to consumer behav-

ior, to the vast arrays of cheap sensors driving the Internet of Things, there is a real

need for models that scale well with the size of the real-world problems that they aim

to solve.

At the same time, the increase in the power of computational hardware has added

to the theoretical improvements in mixed-integer optimization solvers over the last

few decades, giving planners a chance to solve models that were once far too large

to even consider. This has allowed a paradigm shift in operations research from

formulating models that have less dependence on a priori assumptions, towards data-

driven models that combine the computational and data advantages of our time to

create models with ever-greater predictive powers.

The framework of robust optimization, in particular, has proven to be a fruit-

ful approach to the problem of modeling the uncertainty that is inherent in most of

these domains. Contrasted to the traditional approach of stochastic optimization that

considers uncertainty under some posited probability distribution, robust optimiza-

tion considers a set-based deterministic model of the uncertainty, and determines the

worst-case solution over all actualizations in that set.

Over many domains, models formulated by the robust optimization methodology

have been able to yield high-quality solutions that offer an attractive tradeoff be-
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tween a small increase in average cost and protection from the worst-case uncertainty.

Practitioners have often been able to solve robust optimization models quickly with

modern computational power, and these models scale well with the original prob-

lems. Robust optimization integrates well with linear optimization, mixed-integer

optimization, and often does well with even more powerful models such as semidefi-

nite optimization and convex optimization.

In this thesis, we apply the methodology of robust optimization to some of the

central problems that might be faced by a planner in the heating oil industry.

Heating oil is a liquid petroleum distillate that is used as a fuel oil for furnaces or

boilers in buildings. Known in the US as "No. 2 heating oil", it is most commonly

used among residences in the Northeastern US. Almost 6 million households in the

US rely on heating oil as their main space heating fuel [75], 84% of these in the

Northeast. In 2016, for example, this corresponded to 3.1 billion gallons of heating

oil sold to Northeast residential consumers [76].

A planner in the heating oil industry has to grapple with several forms of uncer-

tainty, all of which will cut heavily into the bottom line if not properly addressed.

Most important amongst these is the demand uncertainty, which varies between con-

sumers not only at an individual level, but also in a highly correlated way through

the seasonality of temperature, since the main purpose of heating oil is space heating.

It is affected by trends in the weather throughout the heating season (October to

March), and also by daily temperature variations.

In addition, the price of heating oil is volatile, exhibiting fluctuations that depend

heavily on the price of crude oil in a complex way [100, 88]. Spatial price varia-

tions depending on local market structures and socio-economic factors have also been

observed [147].

In this thesis, these two sources of uncertainty are the main drivers behind the

planner's need to protect their operations against the worst-case actualizations. We

next summarize the three chapters of this thesis in the context of protecting the pur-

chasing and resupplying operations of a heating oil practitioner against uncertainty.

Our contributions and a detailed literature review are introduced separately in each

18



of the three chapters.

1.1 Scalable Robust and Adaptive Inventory Rout-

ing

In the first part of this thesis, we consider the problem of inventory routing where a

planner is contracted to resupply customers with a commodity for which they have

uncertain demand over time. We consider a model of temperature-dependent demand

uncertainty that is particularly relevant for heating oil consumption over winter.

To maintain the customers' inventory, the planner has to determine routes and

schedules to visit the customers, and the quantities that should be refueled. Making

high-quality decisions is valuable because it allows the planner to maintain a smaller

fleet of vehicles, an important factor in reducing operational cost. The planner is

interested both in reducing the frequency of stockouts and minimizing the cost of

operations.

Using robust optimization, a deterministic set-based approach to modeling uncer-

tainty, we formulate the problem with demand uncertainty. Although the uncertainty

set we obtain is non-convex, we present an algorithm that lets us maintain tractability

by finding explicitly the worst-case actualization over the uncertainty set. We show

that our model scales well with the problem size and yields high-quality solutions

that reduce, in simulations over a variety of data sets, both the total operational cost

and the stockouts experienced. We show that this corresponds also to a potential

reduction in fleet size.

Finally, we demonstrate the use of a cutting-plane algorithm to generalize our

results to adaptive optimization, leading to the possibility of real-time updates in the

routing and scheduling decisions made by the planner. Our models are able to solve

problems of sizes in the thousands, over a realistic time horizon of an entire winter

season (150 days).
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1.2 Robust Purchase Execution

In the second part of this thesis, we consider the problem of a planner who is required

to purchase some quantity of a commodity. The planner has to decide not only when

to execute the purchase over time, but also has a choice of sellers to choose between.

Because of competition, these sellers might offer the commodity at a price somewhat

lower than the daily spot price.

Using the robust optimization methodology, we model the fluctuations of the

spot price of the commodity as an ellipsoidal uncertainty set, and also present a novel

formulation of the sellers that incorporates discounts that they can offer to incentivize

the planner to make larger and more frequent purchases.

We show that our model can be solved tractably for realistic problem sizes. We

also show that the model remains tractable when extended to multiple purchases over

the time period, and also for more general convex uncertainty sets. We also motivate

the qualitative forms of the solutions for various parameters as being optima for

simplified versions of the problem.

Finally, we use a modern machine learning approach to generate useful insights

from our model, and address the need for online solutions. We show that the planner

can generate optimal decision trees to investigate various qualitative features of the

optimal solutions, without having to re-solve the model for a new set of parameters or

data. We demonstrate in simulations that our decision trees can attain high accuracy

in predicting the presence of these qualitative features, and also in predicting the cost

of the model.

We finally demonstrate the use of a suite of decision trees to generate high-quality

strategies for the robust purchase execution problem, and show that these strategies

are competitive with those obtained from solving the optimization model directly.
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1.3 Integration of Robust Purchase Execution and

Robust Inventory Routing

In the third part of this thesis, we consider integrating the inventory routing problem

in Chapter 2 and the commodity purchasing problem in Chapter 3. This is one

example of a problem where the individual subproblems may be tractable for realistic

problem sizes, but combining them causes the problem to become too large to solve

exactly.

Using Lagrangean decomposition, a generalization of Lagrangean relaxation that

creates copies of the variables that appear in both subproblems and relaxes the con-

straint enforcing their equality, we decompose the problem such that all the con-

straints in the original problem are preserved in one of the subproblems. We show

experimentally that this allows us to find high-quality solutions to the integrated

problem.

We are able to demonstrate in simulations that integrating the two previous prob-

lems leads to around 10% decrease in mean cost when the subproblems are small, and

yields a smaller improvement for large subproblem sizes. We also observe a signifi-

cant decrease in worst-case cost and cost variability over the solutions obtained from

solving the subproblems separately.
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Chapter 2

Scalable Robust and Adaptive

Inventory Routing

2.1 Introduction

We consider the rich problem of inventory routing where a supplier has a contract with

individual customers to monitor their inventory of a commodity that diminishes over

time, and to resupply that commodity to maintain customer stocks above a certain

threshold. Some sizeable industries concerned with inventory routing problems of

this type are those supplying commodities such as soft drinks in vending machines,

portable water in offices, or heating oil in residential areas. In many of these inventory

routing applications, the presence of uncertainty in the customers' demand for the

commodity (and other uncertainties in data, e.g. temperature in heating oil usage

models) is a critical issue that must be addressed in order to provide solutions that

are of practical value in the real world. In this chapter, we provide novel scalable

and adaptive algorithms to address the inventory routing problem using a robust and

adaptive optimization framework.

Given a network of customers spread over a geographic area, the supplier needs

to make the following key operational decisions:

. Fleet size: ahead of the operational period, the supplier needs to decide the
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number of vehicles to be maintained and the crew size required. A larger crew

size and more vehicles increase the cost of operation, whereas a reduction in

these may impact the quality of service negatively, and require a larger emer-

gency fleet to handle stockouts.

" Routes and Schedules: the supplier needs to determine which routes to utilize

to visit customers, and when to schedule these routes, while minimizing their

cost of operation (thus maximizing their profits).

" Refuelling quantities: when a customer is visited, the supplier needs to de-

termine how much of the commodity to resupply. Attempting to resupply all

customers to their full capacity might not be feasible for the vehicles' capacity,

or it might limit the number of customers that a vehicle can resupply.

Having defined our key operational decisions, we now consider the key objectives

that a supplier is concerned with, namely: (i) reducing the frequency of stock-

outs and (ii) minimizing the cost of operations. Reducing the frequency of

stockouts is important, as, besides the obvious damage to brand image that results

from customers' stocks being depleted, it is also highly undesirable for suppliers be-

cause they have to designate vehicles to make unplanned emergency replenishments

of these customers, often at very short notice.

Regarding operational cost, much of the inventory routing literature (e.g. [104])

has focused on minimizing the routing cost while maintaining a desired level of service.

However, an important reason that many approaches to this problem do not scale

well is that they attempt to solve for the optimal routes. As this requires solving

the Travelling Salesman Problem as a subproblem, it becomes difficult to use these

approaches to solve problems of the sizes required in real-world applications.

In practice, vehicles in the fleet will be traveling or servicing customers for similar

lengths of time, and so it is thus natural to seek solutions with reduced fleet sizes that

are robust to uncertainties in the rate of customers' demand for the commodity, while

minimizing the routing costs only as a second-order objective. This allows the planner

both to reduce expensive stockout resupplies, and the capital, maintenance and labor
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cost of the vehicle fleet, which is usually particularly high in the peak season and has

a greater cost savings potential than fuel cost (e.g. [99]). It is therefore sufficient

for our purposes to use a fast heuristic for the routing component, which ensures

feasibility for the routing for a given vehicle fleet size.

Current exact approaches in the literature [138, 3] solve only up to around a

hundred customers and do not scale to problem sizes that arise in real life, while

heuristic solutions usually decompose the problem into a series of problems with

shorter time horizons because of concerns about tractability and uncertain data (e.g.

[71, 131]. Our main application throughout the chapter is to companies that provide

heating oil in residential areas. For example, a typical company of this nature in

New England might have a customer base spanning north central Massachusetts and

southern New Hampshire with around 10,000 customers. Our key contribution is a

robust and adaptive mixed integer optimization (MIO) formulation that scales to large

problem sizes, augmented with a demand uncertainty set that varies with temperature

and heuristic route generation. Using data sets generated from real temperature data,

we demonstrate both the effectiveness and scalability of our approach.

The rate of demand of the commodity has typically been considered in the lit-

erature (e.g. [56], or the survey of [87]) to be either (dynamically) deterministic or

stochastic. A deterministic rate of demand, as with many optimization problems,

leads to more tractable but less realistic models. A stochastic rate of demand, how-

ever, is less tractable for large instances and often leads to heuristic solutions which are

sensitive to the assumptions made about the probability distribution of the demand.

In contrast, a robust optimization approach combines the tractability of deterministic

models with the realism of stochastic approaches by modeling uncertainty in a de-

terministic manner, and leads to solutions that are less sensitive to the probabilistic

assumptions made about the underlying demand.

Our contributions in this section can be summarized as follows:

1) Robustness. We present a robust formulation of the uncertainty set for demand

that captures, for the case of resupplying heating oil, the dependence of demand on

temperature as well as individual customers' rates of consumption. This results in a
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novel non-convex uncertainty set which we are able to tractably optimize over, thus

generating the critical worst-case demand scenarios.

2) Adaptability. For the case where customer demand can be recorded remotely,

we present an approach that allows us to adapt our operational decisions according

to observed demand. We demonstrate computationally that the adaptive solutions

outperform both the deterministic and robust formulations.

3) Scalability. By combining:

a) novel ways to generate the critical worst-case demand scenarios,

b) automated neighborhood route selection,

c) route generation heuristics,

d) generating constraints on the fly for the adaptive formulation,

we are able to solve problems with ~6000 customers over a time horizon of 150 days,

within two hours for both the robust and adaptive formulations.

4) Quality of solutions.

a) We demonstrate that the robust solutions of our model materially decrease stock-

outs and are relatively insensitive to estimation noise in demand and temperature,

achieving across a variety of data sets of sizes ranging from 51 to 5915, an average

reduction in stockouts of over 94% from a deterministic model.

b) We show that both the robust and adaptive formulations can be used to reduce

vehicle fleet size, while still outperforming the deterministic solution.

c) We demonstrate that the robust and adaptive solutions lead to a decrease in total

operational cost for the supplier, when combining routing cost with vehicle fleet cost

and the cost of resupplying customers who experience stockouts.

The remainder of this chapter is structured as follows: in Section 2.2, we sur-

vey some of the related literature and discuss why current approaches do not scale

well. In Section 2.3, we introduce deterministic, robust and adaptive models for the

capacitated inventory routing problem. We define our uncertainty set, and provide

an algorithm that maximizes affine functions of demand over the uncertainty set. In

Section 2.4, we discuss our techniques for route generation and some heuristics to

further improve our routes. We detail our experiments and computational results in
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Section 2.5. We finally conclude with overall discussion and some future directions in

Section 2.6.

2.2 Related Work

Vehicle routing problems (VRPs) arise naturally from many problem contexts, and

as such have been extensively studied in many flavors. Beginning with "The Truck

Dispatching Problem", proposed by [65], the difficulty of these problems and their

relevance to many industries have generated much research over the past few decades.

One of the best-studied formulations of vehicle routing problems is the capacitated

vehicle routing problem (CVRP), which in its most basic form describes the prob-

lem of determining a minimum-cost set of routes by which a fleet of delivery vehicles

with limited capacity delivers quantities of a product or commodity to customers at

various locations. When the costs of potential routes and the customer demands are

assumed to be fixed and known, this is a deterministic problem. Early approaches

for getting exact solutions of the CVRP were for decades dominated by branch-and-

bound algorithms (e.g. [57, 58, 112]); in addition, branch-and-cut algorithms were

later developed with many different families of cuts [113, 14, 134, 118, 16], often build-

ing on research on the Travelling Salesman Problem. More recently, another popular

approach is to solve the problem using column generation alongside cut generation

(e.g. [85, 15, 129]). We refer the reader to [61, 90, 111, 18, 143] for detailed literature

surveys about the CVRP and related vehicle routing problems.

However, the solutions to deterministic VRPs can be sensitive to errors or uncer-

tainties in the parameters of the problem, becoming suboptimal or even infeasible for

real-world actualizations. This has typically been addressed by taking the uncertain

parameters as random variables, and utilizing stochastic programming to formulate

the model. Assuming a known probability distribution for the uncertain parameters,

probabilistic guarantees can then be made (e.g. a chance-constrained VRP). (More

generally, the field of stochastic programming is described in much greater detail in

[50] and [137], just to give two examples.) However, stochastic VRPs are much harder
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to solve than their deterministic counterparts [73]. Developing exact algorithms that

solve these problems to optimality has been challenging for problems of any realistic

size, and much work has been done on heuristics (see [142] for a detailed survey), and

recently, metaheuristics [143, 9] that work well on VRPs.

Often, in addition to finding suitable routes, the planner has to manage levels

of inventory between a number of customers or retailers, i.e. solve an inventory

routing problem (IRP) [81]. An important version of the IRP that we address is

that of Vendor-Managed Inventory (VMI). A business practice that was popularized

in the 1980s by Walmart and Procter & Gamble, in VMI models the suppliers are

responsible for monitoring the inventory levels of their customers, and deciding on

replenishment schedules and quantities accordingly. This can result in benefits such

as lower inventory required [148], cost reductions [135], and a smaller bullwhip effect

in supply chains [68].

One key difference here is that in the problem we address, the planner does not

have real-time telemetry measurements of the customer's inventory, which induces

uncertainty in the modeling of the demand, not just in the future consumption of the

customers, but also in the time period that has elapsed since the last replenishment.

We note that in VMI, it is usually assumed that the planner has access to these

real-time measurements, which can make the model more responsive to changing

conditions, at the cost of some tractability.

Due to the increased difficulty of simultaneously solving for schedules and quan-

tities, the problem is in practice simplified in a variety of ways. For example, the

quantities could be decided by a deterministic order-up-to-level policy [28, 7] where

the customer is always replenished to maximum capacity. Alternatively, sample-

based methods can be used to extend methods for deterministic demand to work

with stochastic demand [103].

An approach commonly used in practice is to model the resupplying problem as

a series of one-day problems, where forecasting models based on the historical con-

sumption of the customers and temperature data indicate which customers are likely

to need replenishment within the next day. The planner then optimizes a capacitated
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routing problem to determine routes that will cover these customers, along with cus-

tomers who will need replenishment in the following days. [131] introduces a tabu

search metaheuristic and two large neighborhood search metaheuristics for this prob-

lem, while [72] and [71] developed a two-stage approach for propane delivery where

the customers are first assigned to specific days, and then routes are constructed daily.

A different approach to modeling IRPs with stochastic demands has been to han-

dle the demands' dependence on uncertain temperatures by using Markov decision

process models, (e.g. [73, 109, 2], among many more). These approaches tend to have

higher computational times, making them less useful for more complex problems of re-

alistic sizes. For more comprehensive reviews of the general inventory routing problem

(IRP) and various solution approaches, we refer the reader to [80, 54, 109, 61, 29, 59],

and a recent comparison of different IRP formulations [8].

A problem with a similar flavor is that of IRPs with transportation procurement,

where the planner outsources the deliveries to the customers. In contexts where this

is possible, it can lead to more flexibility as the planner does not have a fixed fleet

size constraint, and requires optimization of the purchase of transport capacity in

each time period, rather than routing each vehicle. We direct interested readers to

the recent works of [26, 27] for these.

A paradigm that has proven useful in approaching problems modeling optimiza-

tion under uncertainty is Robust Optimization (RO) (for instance [47, 21, 67, 31]).

This approach leads to solutions that are guaranteed to satisfy the constraints for

all uncertain parameters in a chosen uncertainty set, and often leads to tractable

models requiring weaker assumptions on the uncertain parameters than stochastic

formulations. RO formulations have been found in practice to yield solutions that are

competitive with the optimal deterministic solution, and perform significantly better

in worst-case scenarios. They also tend to be less affected by errors in parameter

estimation or structural assumptions [91, 48].

While demand uncertainty has long been considered in its stochastic form [30,

49, 87], recent works have proven the usefulness of RO in formulating certain vari-

eties of VRPs [126]. For instance, [140] consider a formulation of the single-stage
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Robust Capacitated VRP (RCVRP) under demand uncertainty that can be solved

deterministically, using the budget-of-uncertainty approach first developed in [47],

and [93] consider the RCVRP with more general demand uncertainty that can be

reformulated to yield numerical solutions.

[138] and [3] have previously addressed the inventory routing problem within a RO

framework. [138] report solving instances with a branch-and-cut algorithm, solving

a Travelling Salesman problem as a subproblem exactly, for up to 30 customers and

a time horizon of seven periods. [3] uses a heuristic approach to generate routes,

proposing a nonlinear MIO problem, and reports solving for cyclic distribution routes

for 50 customers. In contrast, our methods allow us to solve problems with the

number of customers two orders of magnitude larger than both of these, over a time

horizon which is an order of magnitude larger than [138], by solving a deterministic

MIO to generate robust solutions, and using a cutting-plane algorithm to generate

adaptive solutions.

Finally, we consider the problem of formulating an adaptive multistage robust op-

timization model. While the fully adaptive robust optimization problem is intractable

via a dynamic programming approach, affinely-adaptive robust optimization solutions

have been found to perform almost as well, while retaining the tractability of single-

stage robust optimization problems [22, 40]. This approach has recently been applied

to the unit commitment problem in power generation [44, 117]. Finite adaptability is

a different approach that works well for some multistage robust optimization models

[32, 37], but we chose affine adaptability due to its stronger scalability characteristics.

2.3 Problem Formulation

2.3.1 Context

To view the problem we address in a concrete context, consider the following inventory

routing problem over a finite horizon: A company has customers who consume a

homogeneous commodity over time, and a fleet of vehicles that is used to resupply
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them. We would like to generate a feasible schedule of routes for the vehicles that

satisfies capacity constraints for users and vehicles, and leads to a low likelihood of

stockouts for the customers.

A key insight that helps us achieve this is the observation that in practice, cus-

tomers are often located in small neighborhoods, and that most of the variable cost

(i.e., travelling distance) of the routing problem is derived from travel between de-

pots and these small neighborhoods of customers. Within these neighborhoods, then,

routes can be optimized sufficiently for industrial purposes by local search algorithms

such as 2-opt [64]. Therefore, our approach is to think of routes not as a list of cus-

tomers, but as a neighborhood which a vehicle might travel between in a given time

period. Upon selecting a route for a vehicle, a feasible schedule is then one which

assigns customers to that vehicle that are on that route, i.e., in the associated selected

neighborhood. Correspondingly, we assign costs to routes based on travel between

the depot and the customers in the selected neighborhood, bearing in mind that the

costs are to be taken as accurate only to the first order. The realized cost will depend

on the customers we assign to the vehicle servicing a route.

This has a few key advantages. Firstly, it leverages the current knowledge of

the company in the form of extant routes and neighborhoods, driver experience and

other geographic and network information. In other words, it allows us to warm start

our model with a set of routes that are already known to be feasible, and gradually

introduce routes to improve the solution quality of our model as needed. Furthermore,

it significantly reduces the solution space of feasible routes, which helps the model

to scale to large problem sizes more easily. By varying the sizes and coverage of the

set of routes that we optimize over, we can exercise control over the tradeoff between

scalability and solution quality, as needed.

Naturally, this observation does not hold true for all problem domains. Where

the routing cost is dominated by the cost of individual links of the route, e.g. in

a problem where a driver has to visit all customers on a small route, then more

sophisticated vehicle routing algorithms will be necessary. Often, though, heuristic

algorithms are sufficient for route optimization at a local level, and indeed planners
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in many industries will be best served to use commercially available routing software

within small neighborhoods.

For the vehicle routing problem under consideration, our decision-making has to

take into account two sources of uncertainty in the demand for the commodity. The

more important of these is the uncertainty associated with changes in temperature,

which is correlated across all the customers. To a smaller extent, there is also an

uncertainty in demand specific to each customer, which we assume is uncorrelated

across customers. Using the well-established RO methodology, we define appropriate

uncertainty sets (see (2.12) below) that capture these phenomena. In Section 2.3.4,

we discuss ways to initialize the parameters of this uncertainty set from observations

or simulations of the uncertain data.

2.3.2 Nominal Formulation

We begin by defining the nominal formulation of the inventory routing problem - in

other words, we solve the problem for the case where demand is fixed rather than

uncertain. Consider N customers who need to be resupplied over a time horizon T,

who we index as customers i E [N] = {1,... , N}. The customers are to be resupplied

with a fleet of M vehicles, each of capacity S. In a single time period, the vehicles

can be assigned to a tour 0 E [0], each which has associated cost co. Each customer

i has a maximum capacity of Qj, and we suppose that customer i begins the season

with Z of the commodity remaining. For the nominal formulation, we assume that

demand d is known for all customers and time periods.

We consider the following decision variables:

* gi,, the amount of fuel that customer i will be resupplied via route 0 at time t,

* u, the total amount of fuel that customer i will be supplied at time t,

* Binary variable vt which is 1 if and only if tour 0 is selected at time t.
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Then, the nominal formulation is:

T 8

min CevO (2.1)
u,v,g t=1 0=1

t t

s.t. 0O<Z + u'r- Ed*, ViEL[N], Vt E[T], (2.2)

t t-1

Zj+ u7-5 d-r Qi, ViE [N], Vte [T], (2.3)
r=1 -r=1

5v M, Vt C [T], (2.4)
0=1e

U _< gio, Vi E [N], Vt E [T], (2.5)
0=1

N

gi,o < Svz, VO E [6], Vt E [T], (2.6)
i=1

gO = 0, Vi E [N], VO : i 0, Vt E [T], (2.7)

g > 0, Vi E [N], VO E [0], Vt E [T],

Ui ;>7 Vi e [N],7 Vt E [T],

VO c {0, 1}, VO E [E], Vt E [T].

Eq. (2.1) expresses the cost minimization objective. Eq. (2.2) guarantees that

each customer is resupplied so that their supply of the commodity is never depleted,

while Eq. (2.3) enforces customer capacity constraints. Eq. (2.4) respects the fleet

size. Eq. (2.5) ensures that the amount of fuel assigned to refuel a customer is also

assigned to some route in the same time period. Eq. (2.6) both allows us to assign

fuel to a route only if the route is actually selected, and if so, also enforces vehicle

capacity limits. Eq. (2.7) ensures that assignments are only made for customers that

are on a given route.
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2.3.3 Robust Formulation

Now we move to the robust formulation of the inventory routing problem. Here,

rather than assume we know what the demand d is, we assume rather that it lies

within an uncertainty set U which we have constructed beforehand. We discuss the

construction of U in more detail in the next subsection. We also assume that the

amounts of fuel that customers start with, Zi, take values in the interval [Z, Zi].

As before, we consider the same variables g"0 , ut and v'. Then the robust formu-

lation is the same as before, except that now constraints (2.2) and (2.3) become:

t t
<Zi + u7 - d7, Vi E [N], Vt E [T], Vd E U, VZiE[ZiZi], (2.8)

T= T1

t t-1

Z 2 Z -E d < Qi, Vi E [N], Vt E [T], Vd E U, VZi E [Zi, Zi], (2.9)
7-1 T=1

with the same interpretations.

2.3.4 Constructing U

We describe here one method of constructing U based on insights from the Central

Limit Theorem [19], particularly applicable to the scenario of supplying heating oil

to residences during winter. To do this, we assume that for any given customer,

expected demand is constant above a certain temperature and increases linearly as

the temperature decreases below that point. Specifically, for customer i, we assume

that there exists a breakpoint i above which expected demand is B9, and that if the

temperature decreases below Ti, the expected demand increases with a slope (against

temperature) of B1. We operate with the supposition that Ti, B9 and B' have been

estimated for each customer from historical data.

We now assume that for each time period t, the temperature rt is subject to i.i.d.

variation, and thus construct a CLT-style uncertainty set U, for the temperature,
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T

EZ(Tt-'Jf) i-crT +u cT}
UT = r : l < F, I t - 3a, t < -rt + 3, Vt E [T]. (2.10)

Here -r and o- are the mean and standard deviation of the temperatures respectively,

and F, is a robust parameter that we are free to select, which we discuss below. We

refer to the value V\ 7 ToT7, as the budget of variation in temperature, i.e., the net

amount our temperatures are allowed to vary from their means.

We next consider the additional noise in the demand. For simplicity, we assume

the demand is subject to additional zero-mean noise that has the same distribution

for each time period, but is i.i.d. across customers, and thus construct a CLT-style

uncertainty set U, for the noise in demand,

N

E i

U e N=1 < r., -3- < ci < 3o, Vi E [N], (2.11)

where a-, is the standard deviation of the demand noise.

This gives us our uncertainty set for demand, U, which, as described above, con-

sists of all demand vectors for which the corresponding temperature and demand

noise simultaneously lie within the uncertainty sets U, and Ub, respectively.

U = {d : d = BC + B1 max((, i - T) + Ci, ' C , cC U, (2.12)

where B9, B' and and Ti are all parameters estimated from data.

Selecting robust parameters The uncertainty sets U, and b, involve the param-

eters r, and IF, that represent the planner's desired balance between optimality and

35



robustness. We next outline our approach for selecting these parameters. Assuming

that temperatures Tt are independent for each time period t, with mean -rt and vari-

ance o from an otherwise unknown distribution, we select F, such that U, contains

the realized temperature with probability 99% for large T. Specifically, from the

Central Limit Theorem,

T

lim P ( (Tt - -r ; -1(0.99) Orv7T) = 0.99, (2.13)

where <D is the cdf of the standard normal distribution, and so we select F,

(D- 1(0.99). A similar approach is used for selecting FE. For other possible approaches

to selecting the robust parameters, see [23, 48, 21, 38].

For a given planning horizon T and N customers, let the demands d E RNxT lie

in the uncertainty set U given in (2.12), which is non-convex, necessitating a novel

approach to generate critical worst-case scenarios.

Note that the only robust constraint in our formulation is constraint (2.8), which

requires us to protect against the maximum and minimum values of _d' over U

for each customer i in [N] and each day t in [T]. We next give algorithm OPT-TEMP

that allows us to optimize over U an affine combination of convex non-increasing

functions of temperature. Note that demand without customer-specific noise is a

convex non-increasing function of temperature in our model. In addition, as each

robust constraint only involves one customer, the worst-case Ec can always be taken

to be 3 E for maxima, and -3E for minima. Given a customer i and day t, we can

use these to construct a demand vector di E RT that maximizes the sum E_ dI.

This enables us to solve the robust formulation as a deterministic problem, vastly

improving computational performance. For notational convenience, we refer to the

natural projection of U onto the set of demand vectors for customer i as Us.

Summary of algorithm: To maximize the sum zt_ 1 atdt(Tt) for T U, as

defined by Eq. 2.10, where dt(-rt), for each t, is a convex non-increasing function of

r, we let the set of days with non-negative affine coefficients, i.e., at > 0, be T1 , and

those with negative affine coefficients, i.e., at < 0, be T2. In algorithm OPT-TEMP,
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we consider two cases: (i) IT1 ;> IT2 1 and (ii) ITI < IT2I. For the first case, we set

all temperatures to be at their upper bounds, i.e., Tt = rt + 3u,. We then greedily

choose the days in T and for each such t decrease its corresponding temperature as

far as possible. In the second case, we set all the temperatures to be at their lower

bounds, i.e., Tt = - - 3u,. We then optimize the restricted objective function over

the days T2 using standard convex optimization techniques. In both cases, we ensure

that the temperatures selected respect the bound '_i rt - f < INVToi, where

I, is a robust parameter. To prove optimality, we show that there exists an optimal

solution with at most one temperature not attaining one of its bounds, and that our

algorithm finds such a solution.

Formally, we present in Algorithm 1 an algorithm OPT-TEMP for maximizing an

affine combination of convex non-increasing functions over U,. The algorithm finds,

for convex non-increasing functions dt(T) and coefficients at, a temperature vector

yielding maxru~ Z atd(Tt). In our presentation of the algorithm we use a sorting

function SORT(R), which sorts the set of days R in descending order of the difference

in the objective function when the temperature is changed from - + 3U, to r - 30r,

i.e., SORT(R) = {ti, t2 , .- ,tIRI} such that A(t,) > A(ty) whenever x < y, where:

A(t) = at(dt(-t - 3o-) - dt(-t + 3o,)).

D(q, k, F) calculates the increase in objective value that we could get, for fixed k

and F, of allowing q to be the single time period that does not achieve either of its

temperature bounds. Figure 2-1 explains the logic of the algorithm graphically.

Theorem 1. The temperature vector r* C RT output by the Algorithm 1 maximizes

T-_ atdt(Tt) over U,.

Proof. We first show that -r* is feasible. For the case where IT1 < IT2 , the tem-

peratures are guaranteed to be feasible by definition of the optimization subproblem

that we solve (Note that as we only optimize for T2, this is a convex optimization

problem and so tractable). To show feasibility for the case where ITi ;> T21, we
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inu

split coefficients of a into non-negative T, and negative T2

if IT11 /T 2

set all Tt to upper bounds

set as many it, t E T, as
possible to lower bounds

if IT21 > T11I

set Tt, t (E T, to lower bounds

choose the only Tt that might be
at neither upper nor lower bound

1

output

Figure 2-1: The logic of Algorithm 1.
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Algorithm 1: OPT-TEMP

Input: F > 0, -, i- E RT, a E RT, dt: R -+ R Vt c [T]
Output: T E arg maxsu j atdt(Tt)
T1 ={tET:at>0}, T2 =T\T1,k=l=m =1;

if IT ;> IT2 1 then
t = -t + 3- Vt E [T], F = 3Tu;

{tit 2 , ... , tiri = SORT(TI);
while F > 6- - I o-a and k < ITi do

(Ttk, F) +- (Ttk - 6-, F - 6-);
k <- k + 1;

end

if F > -- T o- and k < IT1| then
q* = arg maxqETi D(q, k, F);
if(q* < k - 1) then

(Ttk , Ttq* F) <- (Ttk - 6-, Ftq* + 6o- - F - FVT -, -FVTur);
else (Tt.q* F) <- (Ttq* - F - FVIO-, -FV/To-);

end

end

else T = argmaxrcu/ E_ at dt (r) for U' =U {T : Tt - 3 T Vt E T1};

where SoRT is the sorting function defined earlier, and
aqdq(-q + 3o- - F) - aqdq(jk + 3cr) if q > k,

where D(q, k, F) = aqdq(rq + 3o- - F) + ak+1dk+1l(k+1 - 3o-)
-adq(;q - 3o-) - ak+ldk+1(k+1 + 3-) if q < k.

39



consider the bookkeeping variable F, which tracks the value of t)( - h). Before

we update a temperature, we check that F will not exceed the CLT-type bounds

-Fv' 7 o < F < Fx/'7 , and limit the magnitude of our updates accordingly. Simi-

larly, the temperatures are initialized at their upper bounds and never decreased by

more than 6-, the width of the feasible interval for a single temperature. Also, note

that we are assured of the existence of a feasible solution (e.g. setting the tempera-

tures to their mean values). Thus, r* is feasible.

Next we prove that -r* is optimal. Suppose we had a feasible temperature vector

where for some r E T1, 7, > -r - 3o, and for some s E T2, T, < i + 3o-. Then we

could decrease Tr and increase T, by some small E, while not decreasing the objective

function. This means that we can limit ourself to optimal solutions where either the

temperatures in T all attain their lower bounds - - 3a-, or the temperatures in T2

all attain their upper bounds -S + 3 o7,. (We will show that the smaller set attains its

bounds.)

Case (i) ITIl < IT2 1: We show that in this case, there exists at least one optimal tem-

perature vector T* such that rt* = - - 3a for all days in T1. (Note that

such an optimal temperature vector is easy to find: for days in T1 , all the

temperatures are at their lower bounds, and temperatures for days in T2 can

be found using linear optimization). Consider any optimal temperature vec-

tor TOPt that maximizes ZT atdt(Tt) such that all the temperatures in T2 at-

tain their upper bounds, i.e., ropt = -r + 3a for t E T2 (if not, as argued

above, all the temperatures in T must be at their lower bounds, thus prov-

ing our claim). Let FoPt = E _1(ot"pt - -rt) = EtETl (Tt"p - it) + 3aIT2 1. Note

that FoPt < F< -o since ToPt is feasible. Now, consider a temperature vec-

tor T' such that wr = -t - 3o for t Ti and rt = rt + 3a for t c T2. Let

F' = ZET 1 (< - -) + ZET2 (Tt - -r) = 3(IT2I - IT11) > 0. Also, note that

F' < FoPt < F v'-. Thus, T' is feasible and its function value is no worse than

ToPt. Hence, we have proved that there exists an optimal temperature vector

which attains the lower bounds for temperatures in T1 .
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In this case, optimality follows from the definition of the optimization subprob-

lem that we solve, restricted to T2.

Case (ii) JT1 > T21: Similar to the previous case, we can assume that the temperatures

in T2 all attain their upper bounds, i.e., for all t E T2, we have rt = ft + 3a.

We next show that there exists such an optimal solution where at most one

temperature rt for a t E T is neither at -r - 3a nor t + 3o-.

Suppose we had some feasible solution with r, S E T1, Tr, r 3J, T8 z I 3a-.

We want to adjust these temperatures so that one attains its bound, without

decreasing the objective function. Let a = min(Tr, - (r - 3or), 7r + 3r -T.)

b = min(r + 3-, - - S - 3o-)). By the convexity of dr and d., we use

Jensen's inequality to get:

b a
dr(Tr - a) + dr(Tr + b) > dr(Tr), (2.14)

a+ b a+ b

d(d, - b) + bd(T, + a) > d8 (T,). (2.15)
a + b a + b

Adding these inequalities implies that either dr(Tr - a) + d,(T, + a) or dr(r, +

b) + d,(T, - b) must be at least dr(T) + d,(TF), and so we can adjust Tr and T,

as desired. We thus can limit ourselves to considering temperature vectors with

at most one temperature not attaining either of its 3-sigma bounds.

Finally, suppose we knew that Tt was the temperature not attaining its bounds.

Then, a simple greedy algorithm for the temperature values at lower and upper

bounds would give the optimal temperature vector.

In our algorithm, we iterate over all the choices for the day with the temperature

not attaining its bounds, and select the one with the best objective value. The

remaining temperatures are set to their upper or lower bounds, sorted so that

they have the same output a greedy algorithm would have. Therefore, we obtain

a temperature vector that maximizes the objective function over both sets of

days, T and T2 .
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We can now explicitly find the minima and maxima over U for the sums of demand

seen in the robust constraints. For the maximum demand, we construct a worst-case

temperature vector for Er.1 d' using the above algorithm. As mentioned above, the

robust constraints each involve just a single customer and so 6i can be taken to be

For the minimum demand, the algorithm requires us to solve a convex optimization

subproblem. In fact, for each s E [T] and i E [NI, we can compute the minimum

value of Z> d by solving the following linear optimization:

min d (2.16)
t=1

T

s.t. - r/ O-7 < ( - Tt) < 0,dO-r, (2.17)
t=1

Tt - 3a- T 7 h-r- + 3u-, Vt G [TI, (2.18)

dit > Bi + B'xt - 3a-, Vi E [N], Vt C [T], (2.19)

Xt > Ti - Tt, Vt E [T], (2.20)

x > 0, di > o. (2.21)

Similar to before, ei can be taken to be - 3u-. This allows us to replace our robust

constraints with 2NT deterministic constraints, in each case picking the appropriate

endpoint of the interval [Zi, Z 2] to robustify against (i.e. Z for lower bounds and Zi

for upper bounds).

In practice, we observed that as the robust constraints for time t do not involve

customer demands for time periods beyond that, it improved the performance of our

algorithm to project U onto the first t time periods and find the worst-case vector

corresponding to 1r77 t/T. This weakens the theoretical probabilistic guarantees that

we can make, because the Central Limit Theorem might not apply in small cases.

However, in our experiments this adaptation did not result in a significant increase in

stockouts, but it did produce a significant decrease in the cost (and conservativeness)
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of the models. Note that the protection against stockouts is weakest against the

earlier time periods at the very start of the heating season, when a customer is less

likely to stockout anyway.

2.3.5 Affine Adaptive Robust Formulation

As technology develops, it is becoming increasingly feasible for companies to install

sensors in customers' buildings. This might allow them, for instance, to track the

daily consumption of their customers, improving the solution quality of their plan-

ning models. While it may be impractical to alter the fleet and crew schedule on

short notice, we adapt our formulation so that the quantity of fuel resupplied will

now be partially responsive to the actual demand observed. Without this new in-

formation from sensors, a company is limited to observations made during scheduled

deliveries, i.e., the aggregated demand between refuelling decisions, which is much

less informative.

We now define an affine adaptive robust formulation that applies to the scenario

where we have additional real-time information about customers' demands. Instead

of having the model decide on exact amounts to refuel each customer daily, we set

the quantities refuelled to be affine functions of the demand in the previous days, and

solve for the coefficients of these affine functions.

To make the formulation adaptive, we substitute each ui with an affine function

of previous days' demands: u! = bi' + t 1 bj't d* (remember that consumption for a

day occurs after any refuelling on that day), where the various bi't are now variables

we are solving for. Similarly, we substitute each gt, with g ,o = a + Z=at d ,
j,twhere aj,9 are variables.
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This leads to the following formulation:

T E
min cOvt (2.22)

a,b,v,g t=1 0=1
t -- t

S.t. 0 Zi + (b' + E b ' d) - d , Vi E [N], Vt E [T], Vd E U,
r=1 j=1 r=1

(2.23)
t 7-1 t-1

Zi + (bo~r + Eb Vd ) - d Qj, Vi E [N], Vt E [T], Vd EU,
i-=1 j=1 i=1

(2.24)

v M, Vt E [T], (2.25)
0=1

t-1 E t-1

bi' t + E b 'tdj < Z(a ~ + 1 a dj), Vi E [N], Vt E [T], Vd E U, (2.26)
j=1 0=1 j=1

N t-1

(a + Eai d ) < Svt, VO C Eel, Vt E [T], (2.27)
i=1 j=1

a = 0, Vi E[N], VO : i 6, Vt E [T], Vj E{0, .. ,t -1}, (2.28)

aj~ > 0, ViE [N], VO G [E)], Vt E [T], Vj (E f{0, . .. ,It -II}

b > 0, Vi E [N], Vt E [T], Vj E {0, ... ,t

E {0, 1}, VO E [E], Vt C [T].

Note that all the constraints in the adaptive robust formulation have the same inter-

pretation as their counterparts in the robust formulation, although fuel supplied is

now adaptive in that it is an affine function of demand. Furthermore, the starting

quantities, Zi, are no longer taken to be uncertain, as we would expect real-time mea-

surements of demand to also yield exact information about the customers' remaining

fuel.

The number of variables in the adaptive formulation is an order of magnitude

greater than the nominal or robust case. Thus it is impractical to solve it using a

deterministic linear MIP, as we did for the nominal formulation. In addition, the
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constraints (2.23), (2.26) and (2.27) involve products of our decision variables and

the uncertain demand. This means that to separate over these constraints one would

need to solve a quadratic optimization problem over a non-convex set.

We instead use a cutting-plane algorithm that exploits the structure of the uncer-

tainty set U, to tractably solve the adaptive formulation. Given a candidate solution,

we can, for each of the constraints (2.23) or (2.26), use OPT-TEMP to give us the

worst-case demand corresponding to that particular constraint and candidate solu-

tion, i.e., if the constraint is violated, we can find a demand vector in U that shows the

violation, giving us a feasible cutting plane. Specifically, as noise for each customer

is constant across time periods, the noise ci for a worst-case demand vector for that

constraint-candidate pair is given by a greedy algorithm sorting on its coefficient,

N~ ao't >t- aji. If d* is such a demand vector that causes a violation, we can add

new deterministic constraints that check the violated constraints against d*. We then

reoptimize the model, each time enforcing a check against all the previously-violated

constraints with their associated demand vectors, and generate a new candidate so-

lution. We repeat the process until the candidate solution we have does not violate

any of the constraints.

2.4 Route Generation

Route generation is a widely studied problem, especially given its importance in var-

ious vehicle and inventory routing problems (for example, see [110, 84, 90]), applied

to a plethora of real-world applications such as routing for bakery companies [127],

blood product distribution [102], grocery industry [136], ship-routing [96]. The liter-

ature is ripe with a number of exact [17, 110, 112] and heuristic [101, 145, 116, 136]

approaches for route generation. Since tractability is a major concern with exact ap-

proaches, we employ heuristic methods to generate a feasible set of routes. We would

however like to emphasize that exploring route generation techniques is not the main

focus of this work.

In this work, we consider routes to be not just feasible tours, but potential neigh-
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borhoods of customers, where a schedule will specify which subset of customers is

actually served on a given trip. Our formulation operates under the approximation

that there is a fixed cost to 'visit' a neighborhood, irrespective of how many houses

are actually resupplied with the commodity. This is a reasonable approximation in

our problem context since the cost of routing is a secord order cost, compared to

the cost of customer stockouts (affecting customer satisfaction and reputation of the

firm) and the cost of maintaining a fleet of vehicles.

We generate an initial set of feasible neighborhoods for our datasets in two ways:

(i.) using a user-operated GUI where the supplier can manually select neighborhoods

that are typically served together, (ii.) using an automated sweep of the customer

locations. The first approach is preferred when the supplier would like to utilize prior

knowledge and accumulated expertise about different neighborhoods. Our second

approach is an automated sweep of the geographic area under consideration. Our

algorithm creates a cover of the entire space with 'neighborhoods' or boxes so that

the number of customers in each box lies in an interval. This interval is selected so

that a vehicle is able to resupply about half the customers in the neighborhood to

maximum capacity. Experimentally, these sweeps generate a good first set of feasible

routes that make the problem scalable.

We further improve the quality of the routes using a set-cover formulation inspired

by the work of [53] augmented with well-studied tabu-search heuristics for improving

routes (for e.g. in [60, 86]). We consider a set of possible schedules for the customers,

covered using feasible routes such that on any day at most M vehicles are used.

However, we deviate from [53] by assuming that the cost, co, of a route 0 is given by

the Euclidean distance of the tour suggested by the 2-opt (TSP) heuristic from the

depot that a customer is served from (which is usually good enough in practice). We

construct the following input from a pre-computed solution of the nominal problem.

" T, the total number of days in the planning horizon,

" M, the maximum number of vehicles in the fleet,

" N, the number of customers,
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* Si, the set of valid schedules that a customer i could be visited at. In order to

construct this set, we consider the service schedule suggested by the nominal

solution, and shift it by allowing each customer to be visited up to three days

before or after the scheduled delivery.

Q, the set of feasible routes. We initialize Q with the set of routes obtained by

either neighborhood selection or automatic sweep. We will now describe how

we use the following formulation to improve the quality of the set of routes.

We next select routes, using the following set-covering-like formulation. Let a' be

a constant equal to 1 if customer i is on route 6, and 0, otherwise, for all i E [N], 6 E Q.

Let b be equal to 1 if service schedule p is feasible for customer i, i.e., p E Si and b

is 0, otherwise. We use two sets of binary variables: x4 and y . Here x4 is 1 if and

only if route 0 is selected on day t and 0, otherwise. Finally, y is 1 if and only if

schedule p is selected for customer i and 0, otherwise. We now formulate an binary

linear program as follows:

min X cO (2.29)
OEQ tE[T]

s.t. 1:yp = 1, i E [N], (2.30)
pESi

Zia' - Z yb ;> 0, i E [N], t E [T], (2.31)
OEQ pESt

Z ;M, Vt E [T], (2.32)

E{0, 1}, rEQ, tE[T], (2.33)

y E {0, 1}, p E Si, i E [N]. (2.34)

The objective function aims at minimizing the cost of the routes selected. Con-

straints (2.30) guarantee that exactly one feasible service schedule is selected for a

customer. Constraints (2.31) guarantee that if the selected service schedule for cus-

tomer i requires service on day t, then there must be a route selected on day t with

customer i on the route. Constraints (2.32) ensure that at most M vehicles are used
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on any day, thereby respecting the fleet size.

We relax the above integer optimization problem and do column generation on

the resulting optimization relaxation. We generate a set of candidate routes using

the following heuristic operations on all the existing routes:

* Insert a customer into an existing neighbouring route,

" Swap two customers from neighboring routes,

" Remove customers from an existing route,

" Construct new routes for each day t by considering customers i such that their

dual variables pi,t take large values.

For each candidate route 0 for each day t, we compute its reduced cost as follows:

co = co - EjO pi,t - pM where pi,t is the optimal dual variable corresponding to

constaints (2.31) and pm is the dual variable corresponding to the constraint (2.32).

We add the route that has the most negative reduced cost out of our set of candidate

solutions, until a set with the required number of routes covering each customer is

generated.

2.5 Computational Experiments

To test the scalability of our problem formulations and the quality of our solutions,

we generated a number of datasets based on real-world problems. We imported

customer locations from a few instances in the TSPLIB, the standard test bed of

the Traveling Salesman Problem, with the size of these instances (i.e. the number

of customers) ranging from 51 to 5915 (data instances eil5l, rat99, kroB200,

rat575, pcb1173, d2103, r15915). For simplicity, we assumed a homogenous fleet

of vehicles (in particular, with identical maximum capacity), operating from a single

depot located at the centroid of the users.

We assumed all the customers to have homogenous heating oil tanks with identical

maximum capacity. For each customer, we generated a base temperature above which
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their expected demand was near-zero and constant, and below which it increased

linearly as temperature decreased. We randomly generated family sizes for each

customer ranging from 2 to 4, and scaled the mean demand accordingly, adding noise

in both the temperature and for each user's demand as described in Section 2.3.3. To

tune our uncertainty parameters for temperatures, we used actual data for Boston for

the months of November 2013 to March 2014, representing a full season of heating

oil consumption [149].

We further generated estimated initial amounts for each customer, and subjected

these to further zero-mean uncertainty proportional to the difference of these amounts

to the full customer capacity, encapsulating the principle that a customer with higher

usage or a customer who was serviced a longer time ago should have more uncertainty

in their starting amounts. To be precise, if the estimated initial amount for a customer

was 4 st, the noisy initial amount was

zi = Zi + (Q - zi) x Ui, Ui , U(-1/2, 1/2).

(These are all decisions consonant with the size of actual companies (e.g. as described

in [70] for propane delivery), and in practice companies already use estimates based

on similar parameters.)

Family sizes and uncertain initial amounts were randomized separately to get

training and testing datasets. We used the training set to tune our robust parameters

Fr and F,, and set these parameters correspondingly in the testing set to test the

performance of our approach in terms of running time and effectiveness. We assumed

in our experiments that a centralized depot serves all the customers, although the

formulation generalizes easily to applications with multiple depots, each with their

own fleet of vehicles. We give exact details of the parameters in Appendix A.

For our computational experiments, we let the nominal, robust and adaptive for-

mulations solve for two hours each, using the nominal solution as a warm start (though

infeasible) to the robust model, and the robust solution as a warm start to the adap-

tive model.
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While the adaptive model we presented in Section 2.3.5 schedules a customer

with refuelling quantities that are affine in all of that customer's observed demand,

we improved the tractability of our implementation of the adaptive model by relaxing

the number of terms of the adaptability. Specifically, we limited the refuelling quantity

for a customer for time period t to be a base amount bo", plus a term linear in that

customer's demand during time period t - 1 (i.e., d- 1 ), a term linear in the total

demand of the customer during time periods t - 3 and t - 2 (i.e., dt- 3 + d- 2 ), and a

term linear in the total demand of the customer during time periods t -7 to t -4 (i.e.,

di-7 + -- -+ d- 4 ). We also solved for non-adaptive quantities across different vehicles,

i.e. for g, 0 . We used the robust solution as a warm start to the base amount, and

initialized the other affine coefficients as zero. Note that this is, by design, already

a feasible solution to the adaptive model, ensuring that the adaptive model always

gave feasible output.

Each dataset (both training and testing) contained fifty generated scenarios for

any computational experiment. All our instances were solved with Gurobi 6.0.0 on a

Intel Xeon E5687W (3.1 GHz) processor with 16 cores and 128 GB of RAM.

To investigate the quality of the solutions resulting from our models, we ask the

questions of a) whether our robust and adaptive models lead to fewer stockouts, b)

what effect this has on service cost, and whether this suggests a possible reduction of

the vehicular fleet size.

2.5.1 Stockouts

We first investigate whether our robust and adaptive inventory routing models lead

to a reduction in stockouts. As mentioned above, the three formulations were solved

sequentially (nominal-robust-adaptive) on problems of a fixed vehicle fleet size and a

decision horizon of 151 days. Figures 2-2, 2-3 and 2-4 show the average percentage

of customers who experienced stockouts for the nominal, robust and adaptive formu-

lations respectively. The standard variation in the (temperature and demand) noise

was scaled appropriately for each dataset so that the models were trained on a base

value of 5.
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Figure 2-2: Average stockout percentages for the nominal solutions for data sets of
different sizes.
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Figure 2-3: Average stockout percentages for the robust solutions for data sets of
different sizes.
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Figure 2-4: Average stockout percentages for the adaptive solutions for data sets of
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We observe that across data sets, while the nominal formulation had between

160%-225% of customers stocking out (some customers experienced stockouts multiple

times), the robust formulation decreased this to below 9% of all customers, and in

most cases half of that or even less. Stockouts decreased further by 0.5%-1% of all

customers from the robust to the adaptive formulation for all the data sets, i.e. a

decrease of over 5% in stockouts from the robust formulation. We also notice that the

robust and adaptive formulations were less sensitive than the nominal formulation to

increasing variance in the noise (i.e., errors in tuning the robust parameters).

We explore how the reduction in stockouts was distributed across the fifty scenarios

for each data point in the above experiment. Figure 2-5 shows the standard box plot

for the reduction in robust model stockouts as a fraction of nominal model stockouts,

for the uncertainty regime of the base level of variance in the noise. We observe that

every scenario generated had at least 94% relative reduction in stockouts from the

nominal to robust models, with an average of over 96% relative reduction for each

dataset.

Finally, we ran experiments to determine whether we had chosen sufficiently many

routes or neighborhoods to cover each customer. We found that as long as customers

were included in 2-3 neighborhoods, any additional coverage was superfluous and did

not result in further cost reductions. This comports with our view of a route as a

superset of the true route that the vehicle actually takes, because it is unlikely that

it improves our situation for a customer to be assigned to a vehicle that is not going

to resupply other customers in their immediate neighborhood.

2.5.2 Service Cost

We next consider the effect on the cost of servicing the customers with the different

formulations. As before, we solve problems of a fixed vehicle fleet size. To get the

combined cost of the problem, we consider costs from two sources, namely: 1) the

variable cost from the routes, which is the objective function of the optimization

model, and 2) the cost of refuelling a customer who experiences a stockout. Because

these stockouts occur randomly throughout the course of a time period, and must be

54



100 -

99 --
0 .. .........

98 -

t97 -

96-
01

95 ---

N=51 N=99 N=200 N=575 N=1173 N=2103 N=5915
Datasets

Figure 2-5: Interquartile and extreme values for the reduction in robust model stock-
outs as a fraction of nominal model stockouts.

addressed urgently, the planner must send an emergency refuelling vehicle out each

time a customer stocks out. We assume that due to the reduced efficiency of the

smaller emergency refuelling vehicle, its cost per unit distance is twice that of the

usual refuelling vehicle fleet.

Table 2.1 compares the combined cost for the respective models, along with the

percentage gap compared to the best lower bound the solver could find within the

time limits we set. CN, 0 R and CA are the combined costs of the nominal, robust

and adaptive models respectively, while GN, GR and GA are the respective provable

duality gaps output by the Gurobi solver.

In all cases, the robust model had a combined cost no higher than 86% of the

nominal model's. With larger data sets of over a hundred customers, the cost savings

were 44% or more of the combined cost of the nominal model. The adaptive model

had a combined cost that was a further 0.2%-0.3% lower than that of the robust

model, i.e. an additional 0.1%-0.3% decrease to the combined cost of the nominal
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model beyond the improvements from going to the robust model.

To ensure that the solver gaps were not indicative of any major problems,, we

allowed the two smallest nominal models to run for several hours. At that point,

the optimality gaps were below 5%, with no further change to the solutions. This

suggests that any further improvement in these two cases, at least, would accrue to

the robust and adaptive models. Similarly, no improvements were made to the larger

cases after several more hours of running time, though in these cases the optimality

gaps did not decrease sufficiently to draw the same conclusion.

Customers CN GN CR GR CA GA CR/CN CA/CN
51 16032 26.9 13791 37.2 13768 56.6 0.860 0.859
99 83527 45.7 66894 65.1 66684 66.5 0.801 0.798
200 5.295e6 77.3 2.966e6 74.3 2.959e6 75.5 0.560 0.559
575 1.001e6 1.61 459040 16.4 457547 18.9 0.459 0.457
1173 1.474e7 36.2 8.003e6 46.1 7.986e6 47.9 0.543 0.542
2103 3.190e7 31.8 1.373e7 38.0 1.370e7 39.7 0.431 0.429
5915 3.946e8 35.6 1.676e8 43.1 1.670e8 44.7 0.425 0.423

Table 2.1: Costs and solver gaps for data sets of different sizes.

2.5.3 Fleet Reduction

Finally, whereas in the previous subsections, the vehicle fleet size was constant for

each data set, here we investigate the tradeoffs of reducing the vehicle fleet size. We

focus on a single data set with N = 575, for which our previous experiments used a

fleet of 11 vehicles.

To allow the models to output a solution even with an infeasibly small fleet size,

we introduce slack variables into our model that allow the demand constraints to be

relaxed for a steep penalty (we took this to be 107 times the amount of violation).

Taking the combined cost introduced in Section 2.5.2, we now further add to this the

fixed cost of a vehicle fleet of a given size, taken to be 10,000 per vehicle. Table 2.2

compares the new combined cost for the best solutions for vehicle fleets of different

sizes. CN, CR and CA are the combined costs of the nominal, robust and adaptive

models respectively, while SN, SR and SA are the average number of customers who
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stock out.

Vehicles CN SN CR SR CA SA
11 959490 852.9 529377 15.12 527747 12.38
10 1013552 932.54 519377 15.12 517747 12.38
9 1003552 932.54 509377 15.12 507747 12.38
8 993552 932.54 499377 15.12 497747 12.38
7 983552 932.54 556791 110.00 548587 95.04
6 991370 976.52 546791 110.00 538587 95.04
5 981370 976.52 1493560 1888.88 1493049 1860.24
4 1458104 1823.82 1483560 1888.88 1482509 1885.62
3 2157939 3233.10 2040526 2998.22 2038394 2994.58

Table 2.2: Stockout percentages for N = 575 with different fleet sizes.

We observe that the robust and adaptive solutions allow us to decrease the fleet

size to 8 without increasing stockouts, and so decrease the combined cost. Decreasing

the fleet size below 8 leads to an increase in combined cost for the robust and adaptive

models, as demand is shifted from scheduled refuellings to emergency refuellings.

On the other hand, with the nominal model, removing even one vehicle leads to an

increased combined cost, as the savings from the smaller fleet size are lost to increased

refuelling costs from the increased numbers of customers who stock out.

With five vehicles or fewer, the robust and adaptive solutions are unable to find

high-quality solutions; because our penalty is applied to the total unmet demand,

these models minimize this by spreading the shortfall out over a large number of

customers, suggesting that increasing the fleet size is crucial to reduce the emergency

refuellings - in the worst case, we are experiencing over five times the number of

stockouts as we have customers. At this point, our fleet sizes are highly infeasible for

the models, and a significant part of the "cost" is from the penalty from the slack

variables.

However, with at least six vehicles, we get not only a significant cost decrease,

but we also observe that the adaptive solution has 81-86% of the number of stockouts

that the robust solution has.
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2.6 Discussion

We have presented robust and adaptive formulations for the finite horizon inventory

routing problem that are tractable for ~6000 customers. For an uncertainty set where

customers' demands demonstrate limited dependence, where the usual methods of

robust optimization are insufficient, we have constructed an algorithm that allows

us to find worst-case scenarios deterministically (robust formulation) or relative to a

candidate solution (adaptive formulation). We have shown a significant decrease in

stockouts (over 94% in all test cases) for our models, translating to a 14% decrease

in cost for the supplier. In addition, we have shown that our models, with slack

variables, are capable of providing further cost savings through a reduction in the

vehicle fleet size.

While our work here has been in the context of a heating oil problem, it is ap-

plicable more broadly to other problems where the customer demand satisfied by

a Vendor-Managed Inventory paradigm can be modeled by a tractable uncertainty

set. Such problems might include beverages in vending machines, or more recently,

bike-sharing in cities, where demand is dependent on temperature.

We would also like to explore possible improvements in the provable lower bounds

on our solutions, for example along the lines of [33]. Other improvements include more

sophisticated ways of modelling emergency refuelling routing decisions, and smarter

ways of managing fuel quantities dynamically.
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Chapter 3

Robust Purchase Execution

3.1 Introduction

We consider the problem of a planner who has to meet the demand of customers who

have an uncertain rate of consumption of some commodity. The planner has to devise

a strategy to meet this demand while minimizing cost, which involves decisions not

only on when to make the purchases, but also from which source to purchase from.

The planner has a choice of suppliers from whom to purchase this commodity,

but is constrained both by limited storage capacity and by limited bandwidth to

transport the commodity from suppliers to storage, and from storage to customers.

The planner thus has to devise a strategy to minimize cost that is feasible for these

constraints, and meets the customers' demand.

As the planner faces fluctuating prices, which might incorporate seasonal trends,

exogeneous price shocks, or just random variation, there is uncertainty in the prices

that will be available to him/her over the course of the time horizon, and the chosen

strategy should also model the uncertainty in the underlying purchase price of the

commodity.

These changes might depend not only on an exogeneous price, but also on the

quantities that the planner wishes to purchase in each time period. This implies that

when executing the purchase of a large quantity of some commodity, a planner who

wants to minimize the total cost must consider the effects that the way the purchase
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is structured and carried out have on the price. For instance, a supplier might be

willing to offer discounts on a larger order, or to a customer who has purchased

greater quantities of the commodity in recent periods. This adds an additional layer

of opportunity for planners to optimize their purchases, but also requires them to

take into account the additional uncertainty in how the actual price paid differs from

the market price, which is itself already an uncertain quantity.

There are several time horizons from which this problem may be approached,

ranging from initial planning decisions for an entire planning season to tactical and

near-real-time purchasing decisions. In this chapter, we focus on a tactical buying

problem, where the planner has a single deterministic forecast of demand and wants

to spread the purchases of the commodity across the time horizon to minimize worst-

case cost.

To contextualize the above discussion throughout this chapter, the main applica-

tion that will be considered is in the domain of heating oil. Take, for example, a typical

company that provides heating oil in residential areas. A company of this nature in

New England might have a customer base spanning north central Massachusetts and

southern New Hampshire, with around 10,000 customers. The total demand of these

customers can be estimated over various time scales, ranging from the next few days

to the entire winter season (November to March), with correspondingly increasing

uncertainty.

For simplicity, in most of our discussion we will assume that the planner in this

company is trying to purchase a total quantity of heating oil over some time horizon

- a month, maybe, and is only concerned that at the end of the time horizon, this

quantity is acquired. In Section 3.4.1, we discuss the generalized case where the

planner has demand constraints that have to be satisfied periodically.

Additionally, the planner has a few regular suppliers from which heating oil can

be purchased. In each time period, the suppliers are willing to offer a discount below

that day's commodity market price, in order to incentivize larger business from the

heating oil company. The magnitude of this discount depends both on the size of

the order being made, and on the previous purchasing history of the company. The
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planner has thus to consider not only when to make a purchase, but which supplier

to make it from.

Finally, the planner would still like to be able to apply the insights from the

optimization models formulated here, in the event where there is a change in some of

the parameters. For example, suppose that the planner wants to increase the total

quantity purchased, or to decrease the worst-case risk. Would this lead to purchases

being made at different times, or from different suppliers? How much would the

impact on the total cost be?

Instead of re-solving the optimization models, we use a modern machine learning

approach, and so generate useful insights, allowing the planner to make intelligent

predictions about the optimal solution and objective value, and qualitative features

of the solution. In particular, we use recent work in optimal decision tree methods to

predict features of the model and solution.

Our contributions in this work can be summarized as follows:

1) Robustness. We present a robust model of the purchase execution problem that

captures the dependence of cost both on the underlying market price, which we as-

sume to experience fluctuations captured in an ellipsoidal uncertainty set, and daily

discounts offered by the sellers that the planner has to choose between.

2) Quality of solutions. We show that the solutions of our model lead to substan-

tially decreased worst-case cost and cost variance, with the tradeoff of a very small

increase in average cost.

3) Learning. We use optimal decision tree methods to gain insight on the optimal

solutions for our model. We show that after generating these decision trees, they

can be used on new parameters to yield a high-quality purchasing strategy without

having to solve the full optimization model again. In our computational experiments,

the decision tree strategy always gave a worst-case cost within 2% of that from the

optimization model, and on average had a worst-case cost within 0.2%.

The remainder of this chapter is structured as follows: in Section 3.2, we survey

the related literature and discuss why a robust formulation is needed. In Section 3.3,

we formulate a single-seller version of our problem and extend our discussion to the
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multi-seller problem in Section 3.4. We present our computational experiments and

analysis in Section 3.5. In Section 3.6, we use regression trees to learn and predict

useful features of the solutions to our model, and in Section 3.7, we show that these

decision trees can be used to generate high-quality solutions directly. We finally

conclude in Section 3.8 with overall discussion and some future research directions.

3.2 Related Work

3.2.1 Purchase Execution

The problem of how best to execute a purchase under price uncertainty has been

investigated over the last sixty years. In the area of raw material or commodity pur-

chases, [78] first studied a procurement problem with probabilistic prices, assuming

known forecasts for demand and price. [106] proposed a dynamic programming model

that yields decision pricebreaks, and quantities to purchase if the price falls below the

pricebreaks. While the original model assumed a known and stationary price distri-

bution function, it could be extended to non-stationary distributions, with the caveat

that it requires the independence of the price density functions in successive time pe-

riods, and thus is better used as a heuristic for planning, when the density functions

are outputs of a forecasting model where that assumption applies. [89] later showed

the optimality of the price-dependent basestock policy for deterministic demands, but

non-stationary price probability distibutions. [107] explicated the inadequacy of clas-

sical inventory models in this area of purchasing raw materials, and since then more

work has been done on expanding the models with stochastic prices, e.g. [11, 98].

The interested reader is directed to [108] for more recent summaries of the work in

this area, and [10] for the additional consideration of financial instruments.

A related problem, from the field of finance, is that of executing a trading strategy,

whether for a single risky asset or a portfolio. The rapid growth of institutional

investors such as banks, hedge funds, and mutual funds over the past decades has

increased the importance to planners of modeling the market response to the way their
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intended strategy is carried out. [130], for instance, observes that "implementation

shortfall" - the performance loss due to execution costs - was largely responsible for

the surprising phenomenon of the paper portfolio based on the Value Line rankings

outperforming the market by almost 20% per year from 1965 to 1986, while in reality

the Value Line fund was only able to outperform the market by 2.5% a year. Trying

to minimize execution costs has led to much fruitful research on the price impact of

portfolio executions, which describes the effect that making a sale or purchase can

have on the underlying price, not just at the time of the transaction, but also for

future orders of the strategy.

One approach to handling risk that is common to both problems is the mean-

variance approach, where a linear combination of the average utility and its variance is

used to account for the planner's risk preferences. In the portfolio execution problem,

this utility would be the (minimized) execution cost of selling the portfolio, with the

additional constraint that the planner should have completely exited their position

by the end of the time horizon.

Strategies to address this problem can be either static [4] or dynamic [45, 39],

and more recent work has shown both that the efficacy of these strategies can be

sensitive to estimation errors in the impact matrices and other parameters [119], but

that regularized robust optimization can be a promising approach to reduce the effect

of these estimation errors on the optimal strategy [120].

One important difference between our problem and the portfolio execution prob-

lem, as commonly formulated, is that the linear price impact term here does not result

from the market price dynamics, but rather the individual sellers rewarding frequent

customers. This has the effect of rewarding a large purchase, rather than penalizing

it. In other words, while the typical portfolio execution strategy experiences a neg-

ative temporary price impact, here we have a positive temporary price impact that

encourages larger purchases.

In addition, much of the prior research considers purchases that are sufficiently

large that they affect the market price, such as those made by large financial institu-

tions holding diverse portfolios. In contrast, we do not consider this to be a realistic
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assumption for our problem domain, and so assume that the underlying exchange

price is not affected over time by the purchases of the planner. Nevertheless, past

purchases do have an impact on the future price that the planner actually pays. The

mechanism by which the quantity of commodity purchased affects the per-unit price,

in our model, is through the discounts offered by the seller(s).

The previous literature in commodity purchasing has historically dealt with the

uncertainty in the underlying market price by treating it as a stochastic variable or

Markov process, or in some cases discretizing the uncertainty through sample-based

worst-case modeling. A more recent paradigm that has been shown to be useful

in formulating optimization models to make decisions under uncertainty is Robust

Optimization (RO) (for instance [47, 21, 67, 31]). This set-based approach leads to

solutions that are guaranteed to yield feasible solutions for all uncertain parameters

in a carefully chosen uncertainty set, and often leads to tractable models which re-

quire weaker assumptions about the uncertain parameters to be made than when

using stochastic formulations. In practice, RO formulations have been found to yield

worst-case solutions that are competitive with the optimal deterministic solution,

and perform significantly better in worst-case scenarios than solutions found without

considering uncertainty. They also tend to be less susceptible to errors in parameter

estimation or structural misspecifications [91, 48].

Although robust optimization has been applied in many cases to the portfolio

execution problem with much success (E.g., [31, 79, 91, 114, 122]), there are some

important structural differences between that problem and the purchase execution

problem we consider, as we have mentioned above, and there do not appear to have

been any attempts to apply robust optimization to the purchase execution problem

in the current literature.

3.2.2 Machine Learning

Decision trees are currently one of the most frequently used predictive modeling ap-

proaches in solving classification problems. Given various attributes of the training

data, a tree-like structure can be built, where each node represents a recursive parti-
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tioning of the feature space, and each of the leaves (the smallest partitions) is assigned

a label, or classifier. The tree can then be used predictively on future data points,

classifying them according to the decisions implied by following the tree from its root

node.

The main advantage of decision trees over other predictive models in classification

problems is their interpretability. In many areas such as healthcare, the split-and-label

structure allows decision trees to be easily communicated graphically to non-experts,

and more closely mirrors the actual decision-making process that humans use [105].

It has long been known that finding the optimal decision tree for training data, i.e.,

the tree that takes the absolute best decision at each split, is a NP-hard problem [115].

Although there have been several methods developed to construct optimal univariate

decision trees, none of them have been able to solve for certifiably optimal decision

trees in a reasonable length of time. These methods include linear optimization

[24], continuous optimization [25], dynamic programming [62, 128], genetic algorithms

[139], and more recently, stochastic gradient descent on an upper bound for the tree's

empirical loss [124].

Another family of efficient enumeration approaches that have been proposed are

T2 [13], T3 [141], and T3C [144], which create optimal non-binary decision trees up

to a depth of 3. However, these trees lack the interpretability of binary decision

trees, and their performances do not significantly improve on those of other heuristic

approaches [141, 144].

Because of these practical limitations, the leading approach to constructing deci-

sion trees has been to determine the splits by utilizing a top-down approach. Clas-

sification and regression trees (CART) [52] begin at the root node, and determine

a partition there (typically by minimizing an impurity measure), after which the

procedure is repeated recursively at both child nodes. Other popular decision tree

methods like ID3 [132] and subsequently C4.5 [133] also operate by similar recursive

splits. However, as each split is made without consideration as to its impact on the

future nodes in the tree, these greedy approaches can lead to trees that do not per-

form well in classifying out-of-sample points because they do not capture well the
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true underlying characteristics of the dataset.

In addition, top-down approaches face the problem of strong splits being hidden

behind weaker splits. A tree that is too complex risks being overfitted to the training

data, and so complexity has to be penalized in some way when generating a decision

tree. If the penalties on complexity are too high while growing the tree, the first

weaker split might not be selected and so the best tree might not be discovered. One

approach to resolve this problem is pruning, where the decision tree is trained in two

phases. First, it is allowed to grow as deep as computational resources allow, before

the complexity penalty is applied to reduce, or prune, the branches of the decision

tree. Other heuristics that have been proposed are lookahead heuristics (e.g., IDX

[125], LSID3 and ID3-k [77]) that optimize the split at each node based on slightly

deeper trees rooted at that node. However, it is unclear whether these methods

actually lead to trees that avoid the "pathology of decision tree induction" [121] and

are more generalizable.

More recently, the belief that the optimal decision trees cannot be tractably found

has been re-examined. Even though it has long been recognized that natural MIO

formulations exist for many statistical problems [12], it was hitherto thought that

these were intractable for even -small or medium-sized instances of these problems.

However, led by improvements in mixed-integer optimization (MIO) in the last few

decades [51, 123], both in MIO solvers such as Gurobi [97] and CPLEX [63], and in

the computational power available to practitioners, the performance improvement in

solving MIO problems has been estimated at a speedup factor of approximately 800

billion, leading to remarkable success when applying the modern optimization lens to

many of these statistical problems [46, 41, 43, 42]. Following this approach, [34] intro-

duced optimal classification trees, a novel MIO formulation which yields the optimal

decision trees for axes-aligned splits. This formulation is tractable over real-world

datasets of sizes in the thousands, and demonstrates significant improvement over

CART and other heuristics on benchmark examples. Finally, work has been done

to expand the MIO methodology from classification problems to other prescriptive

problems, in particular optimal regression trees [35], where instead of a single clas-
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sification label for each leaf, the model generates a prediction, or even a regression

model.

3.3 Single-seller Model

We first consider a heavily simplified model where there is only one seller. This allows

us to exclude any effects of competition, and develop intuition about how our model

behaves across time. By analyzing the uncertain price component separately from

the discount components, we will show the role of the robust parameter in balancing

two qualitatively different solutions.

Consider a planner who wishes to execute a purchase of S units over a fixed and

discretized time interval [1, T]. The planner only has a single supplier to purchase

from, and so the only decisions that have to be made are the quantities to be purchased

in each time period, St. We assume that we can construct an uncertainty set capturing

the fluctuations in the market price. To be precise, in time period t, the price P =

Pt-1 + ct, and we have some set U for which we assume that c G U. We discuss the

construction of U in greater detail in Section 3.3.1. Po is the (known) market price

of the last time period before the model is solved.

We assume that over the feasible region, the planner's purchase is not large enough

to observably impact the market price of the commodity in general. However, the

seller might wish to incentivize a regular customer by offering them discount pricing.

When formulating our model, this discount should be specific to the seller, and depend

both on the size of a given purchase, and on the size of the total quantity purchased

up to that point. This captures two kinds of behavior that a seller might wish to

incentivize, namely larger purchases and repeat purchases, respectively.

To make the model sensible, we set an upper bound on the quantity that can

be purchased in a single time period, such that over the feasible region, these dis-

counts can be represented as being linear in the quantities they depend on. For the

moment, we assume that the coefficients of these discounts are fixed and known to

the planner; later on we will consider the effects of errors in our estimates of these
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discounts. To better understand the qualititative properties of our model, we will not

consider capacity constraints here, but we note that adding such constraints would

not significantly decrease the tractability of the model.

With these assumptions, the actual price per unit the seller is offered at time

period t, Qt, is given by Pt -tSt - wt Sk, where the discount coefficients Ot, wt are
k=1

positive. The full single-seller model with price uncertainty is then given by:

T

min max Z QtSt (3.1)
Qt,St CGU t=

T

s.t. ZSt=S, (3.2)
t=1

t-1

Qt = Pt - OtSt - Wt Sk, (3.3)
k=1

Pt = Pt-I + Et, (3.4)

0 < St < S. (3.5)

3.3.1 Constructing U

Following the well-established methodology of robust optimization, we formulate our

uncertainty set to represent all the instances of uncertainty that our model should

take into account. Depending on the assumptions made about the data, uncertainty

sets can be derived in many ways, e.g., from probabilistic laws [19], or statistical

hypothesis tests [38].

To better illustrate our approach, here we consider a simple uncertainty set, where

the additive price uncertainty across time periods is bounded by a spherical uncer-

tainty set, and the robust parameter r allows us to control the conservativeness of

the model as per the planner's risk preferences. The resulting uncertainty set is:

T

t=1
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In Section 3.3.2, we discuss solving models with more sophisticated uncertainty

sets. Our approach remains computationally tractable for convex uncertainty sets in

general.

3.3.2 Solving the Single-seller Model

To solve this model, we can explicitly calculate the worst-case uncertainty for a can-

didate solution. We can use (3.4) repeatedly to rewrite (3.3) as:

t-1 t
Qt =P0 - tSt - WtZSk + Z~k.

k=1 k=1

The component of the objective function (3.1) that is affected by price uncertainty
T t

is then E CS. Switching our indices, we conclude that the worst-case values of
t=1 k=1

ct are given by the solution to the following optimization problem:

T T

max ZZSket.
t=1 k=t

(3.6)

It is easier to see that this is correct by observing that a change in Ct will affect exactly

the prices of that time period and beyond, i.e., only the coefficients Sk for k > t.

But for our uncertainty set, this is just the point on the r-radius sphere centered

at the origin that also lies on the ray of the objective vector in (3.6), and so the

worst-case uncertainty is given in closed form for all t as:

(3.7)*r _t Sk

t E 1 ( =1 Sk) 2

The single-seller problem with only price uncertainty, (3.1), then becomes equiv-

alent to
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T t-1 t

min E Po -tSt - S + E* St, (3.8)
St t=1 (k=1 k=1k

s.t. E* r ETt Sk (3.9)

t 1 (k=lSk 2

T

St = 5, (3.10)
t=1

0 < St , (3.11)

which, although not being convex, does have a smooth objective function and con-

straints, and is thus in a form that we can use modern nonlinear optimization solvers

to find solutions for in a reasonable period of time. We implemented the model in

JuMP [74] and solved it with the solvers Ipopt [146] and MUMPS [5, 6]. In Section

3.5, we will provide empirical evidence about the computational tractability of this

solution for realistic sizes.

To address the problem of the solver only finding local optima, we tested our

model with 100 different warm starts, each time drawing them uniformly from the

space of all St satisfying the equality constraint, and took the output with the lowest

cost.

In general, as long as the uncertainty set is convex, we can show that there are

known ways to take the robust counterpart to the inner problem, rewriting it as

a minimization problem which remains tractable. To do this for a general convex

uncertainty set, Uc,,, we rewrite (3.1) instead as:

T t-1 T t

min ( Po-6tSt-wtfSk St+ ax E kSt),
St (t=1 k=1 Eont=1 (k=1

T

s.t. E St=S,
t=1

0 < St 5,
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and observe that the inner problem is a robust linear optimization problem in St with

a convex uncertainty set, for which it is known [20, 92] that the robust counterpart

can be tractably reformulated using Fenchel duality. As before, the reformulated

problem is now amenable to solving by modern nonlinear optimization solvers.

3.3.3 Analytic Solutions for Nominal and Non-discounted

Cases

We derive here two analytic solutions to simplifications of the problem, both of which

have simple descriptions. These descriptions are significant because in our computa-

tional experiments, we found that using them as warm starts led to solutions that were

very close to optimal, and additionally had the benefit of being highly interpretable.

The first is a local optimal solution for the case where the robust parameter r is

zero, assuming that the discounts are sufficiently small and constant over time.

Theorem 2. Assume that for all t, Ot = 0, wt = w, and P - wS - (20 - w) 0.

Assume that S > 91T. Let r = 0. Then a local optimal solution to (3.1) is St = S/T

for all t. In fact, this is the only possible local optimum for which St E (0, 5) for all

t.

Proof. The assumption that S > S/T is necessary, or the problem is clearly infeasi-

ble as the planner cannot purchase enough to satisfy Constraint (3.2). On the other

hand, 5> S/T implies immediately that St = S/T for all t is a primal feasible solu-

tion. Note also that our bounds on St and capacity constraint satisfy the regularity

conditions of linearity constraint qualification for the Karush-Kuhn-Tucker (KKT)

conditions.
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Using the reformulation in (3.8), the nominal problem is:

T

min PO - Ost -
St=

T

s.t. S =
t=1

0 < St < S.

We take the Lagrangean of this problem,

L(SA) = -O~t--
- st -w Sk)

k=1

St+A A

W(Sk) St,
k=1

T

=st)
t=1/

T

where A is the KKT multiplier for the equality constraint, and a and /3 are the

multipliers for the lower and upper bounds respectively. Then

OL
st = P- 20St - wZ( Sk - A - at + t.

k7 t

For any optimal (S*, A*), the equality constraint must hold by primal feasibility, and

so by stationarity we have:

DL
(S*, A*)ast

= Po - 20St* - w(9 - St*) - A - at + /t = 0.

If we have St E (0, S) for all t, then by complementary slackness, any local opti-

mum must have at = /t = 0 for all t. But then by symmetry over t, all St must be

identical, and it follows immmediately from the equality constraint that St = /T

for all t.

This implies that if we have A = P - wS - (20 - w)i > 0, we also have dual

feasibility and our solution is in fact a local optimum by the KKT conditions; it also

shows that if this assumption does not hold, then in fact we cannot have any local

optima in the interior of our bounds for St. El

For the various parameter settings that were tested in 3.5.1 and 3.5.2, we found
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that using this local optimum for the nominal problem as our warm start always

yielded an objective value within a fraction of a percent of the best solution from 100

uniformly generated warm starts, and prevented the model from stopping at solutions

that fluctuated greatly over time.

The other solution that we derive is the solution for the robust problem where

there are no discounts, i.e., 0 and w are always zero.

Theorem 3. Assume that for all t, Ot = 0, and wt = 0. Assume that S > S/T. Then

there exists an optimal solution to (3.1) where for some t, Sk = S for all k < t, and

Sk = 0 for all k > t.

Proof. We consider the problem of minimizing only the worst-case component given

in (3.6):

T T

min max E SkEt (3.12)
St CCU t=1 k=t

T

s.t. [ St = 5, (3.13)
t=1

0 < St < S. (3.14)

Observe that (3.12) is the dot product of the vector (ei,... , Et) and the vector

(S 1 + --- + ST, S2 + -- - + ST, ... , ST).

Now consider some candidate S* with some t, < t 2 , St*1 < S and St*2 > 0. Then

for any c > 0, we can do no worse by increasing St* and decreasing S2 by some

feasibly small 6, because each element of (S1+ --- , 2 ST + S2,... , ST) is either

decreased or unchanged. In particular, the worst-case value of the objective does not

increase, and so we can progressively transform any candidate solution to the desired

form in this way. E
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3.4 Multi-seller Model

We now formulate the model where the planner has to choose which suppliers to

purchase from, and the quantities to purchase. To do this, we suppose that the

planner has to choose not only the quantity to purchase in any given time period, but

also which seller to make their purchase from, chosen from a (small) fixed set. We

can then represent the quantities purchased in time period t by Sjt, where j indicates

the choice of seller.

Extending the notation in the natural way, our formulation for the multi-seller

model with price uncertainty is given by:

T J

min max E 1 i (3.15)
QjtSjt EtEUd t=1 j=1

T J

s.t. E Si = 9, (3.16)
t=1 j=1

t-1

Qt = P - 03 St - wtE Sk, (3.17)
k=1

Pt = Pt_1 e, (3.18)

0 < S3 t 5, (3.19)

which we will reformulate in a similar way to the single-seller case to solve tractably.

As before, we use (3.18) repeatedly to rewrite (3.17) as:

t-1 t

jt~P0 - jtS-Wjt Sjk+ Ek,

k=1 k=1

whence the only component of (3.15) that is affected by price uncertainty is
T t J

E I I: EkSit, and, switching indices, the worst-case values of Et are given by the
t=1 k=1 j=1

solution to the following optimization problem:

T T J

max Z Sjkt. (3.20)
t=1 k=t j=1
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For our uncertainty set, this is the point on the r-radius sphere centered at the

origin that also lies on the ray of the objective vector in (3.20), and so the worst-case

uncertainty is given in closed form for all t as:

k 
r E- 1 S=k (3.21)

DI (k=7l zJ=1 Sjk)

The multi-seller problem with only price uncertainty, (3.15), then becomes equiv-

alent to

T t-1 t

min Aj~ - 0 ~ - WJtZSJk +ZE CJ Sit,
_t = k=1 k=1 /

t z=12'-k

El1 k=l i=1 Sjk2

T J

t=1 j=1

0 < Sjt < 1

which again we can formulate and solve with JuMP and Ipopt. As before, tractable

reformulations can be found with Fenchel duality for more general convex uncertainty

sets.

Following the same approach as in the single-seller case, we can again obtain a local

optimal solution for the nominal problem where the quantity purchased is constant

over time. We can also obtain the same interpretation for the global optimal solution

to the robust problem where 0 and w are always zero, which is to purchase the total

quantity as quickly as possible.

3.4.1 Extending the Model to Multiple Periods

Up to now, we have presented the formulations for spreading out the purchase of a

single quantity of the commodity. While this allows us to analyze the solutions of the
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models more clearly, it bears noting that lower execution cost is not the only reason

that a planner might wish to spread out the purchase over time.

For example, a planner might not actually be able to execute the purchase at once

because of capacity constraints, such as would occur if the model was being used to

plan for demand over a longer period of time. Alternatively, the planner might not

require the full quantity at once, and might wish to model this flexibility. We show

briefly how to adapt the formulations to handle these kinds of constraints without

significant impact on the models' tractability.

For the single-seller case, for instance, suppose that instead of requiring that a total

quantity of S be purchased by the end of time T, the planner requires the cumulative

quantity purchased up to each time period t to be within the interval (_, ). To

model these constraints, we replace the constraint (3.2) with:

t

k=1

which only adds 2T - 1 constraints to the model. Note that this is a strict general-

ization of our previous formulation, as the total quantity can be modeled by setting

DT = DT = S in the final pair of constraints.

Similarly, for the multi-seller case, suppose that the planner requires the cumu-

lative quantity purchased up to each time period t, summed over all sellers, to be

within the interval (2t, 7Dt). To model these constraints, we replace the constraint

(3.16) with:
t J

1t < Z Sk < Dt, t = 1, ... ,T,
k=1 j=1

which again adds 2T - 1 constraints to the model.

3.5 Computational Experiments

In this section, we investigate the performance of our formulation in a few different

cases. We are particularly interested in the tradeoff of protecting against uncertainty,
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in terms of the impact on the average cost, worst-case cost, and cost variance. We

would also like to understand how the models scale with instances of increasing size,

both in the number of sellers, and the length of the problem horizon.

To simulate exposing our models to reality, we tested them against scenarios with

similarly constructed uncertainty sets, but with the true uncertainty parameter r,

ranging up to ten times the maximum value of the uncertainty parameter we chose,

rm, = 2-, i.e., with time-independent normally-distributed noise up to ten times

the magnitude of what we chose to protect against in our model. We generated 100

scenarios for each of these uncertainty parameters. We solved all our optimization

models on a 256GB RAM, Intel E5-2660 v4 2.0 GHz CPU computer. Our models

were written in JuMP [74], using Ipopt [146] for our nonlinear optimization solver,

and we took the best solution found from 100 uniformly-drawn warm starts.

3.5.1 Single-seller Case

We first present computational results for the single-seller case with price uncertainty

only. We first examine how the time taken to solve the model scales with T, the

length of the time horizon. We let T vary from 1 to 50, set S 10T/3, S = 10,

Po = 5, and Ot = 0.001 and wt = 0.0002 for all t.

The time taken by the solver to reach an optimal solution is shown in Figure 3-1.

We observe that the model remains tractable, solving in under a minute for T = 50,

and for shorter time horizons, it reaches an optimal solution in just a few seconds.

We next consider the actual cost and cost variance for different parameter settings,

listed in Appendix B.

In the case where the robust parameter was correctly specified (i.e., it matched

the actual level of the noise), we observed a small increase in average cost, no more

than 1.8% on average for any of the other parameter settings. In general, we found

that even for the other cases where the robust parameter has been misspecified,

robustifying the problem did not significantly increase the average cost that was

actually observed.

On the other hand, Figure 3-2 shows that the variance of the true observed cost
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over the 100 scenarios drops rapidly as we introduce robustness to the model, then

levels off. Similarly, Figure 3-3 shows that adding minimal protection (r = 1) to

the model reduces the worst-case cost to about half of that which was observed in

the nominal case, regardless of the true magnitude of the noise. However, in our

simulations, after the variance of the observed costs levels off, we see that increasing

the robust parameter further leads to over-conservative solutions, and performance

suffers without adding extra protection for the planner.

We note in particular that using St = as a warm start caused us to attain

solutions that looked like either of the analytic solutions that we derived in Section

3.3.3. We observed that the actual solutions tended to shift sharply between the two

analytic solutions as the robust parameter increased. As we described previously, one

of these solutions is the optimal nominal solution, where the planner purchases an

equal amount of the commodity in each time period. Introducing increasing uncer-

tainty to the model induces the optimal solution to move closer to a recommendation

that the planner buy as much as of the commodity as possible every time period,

until the total demand has been met.

We interpret this transition as the onset of the effect of price uncertainty on

the model. The abrupt transition between these two states occurs when the model

decides that avoiding the uncertainty of potentially higher prices at the end of the

time horizon is no longer worth spreading out the purchases to maximize the discounts

from the seller.

In our simulations, we observed that the solution we obtained from using this

warm start was always less than 1% suboptimal compared to the actual best solution

from randomizing the warm starts. This suggests that we can find good solutions

that have simple and interpretable descriptions.

3.5.2 Three-seller Case

We increase the number of sellers from one to three. Again, we begin by examining

the tractability of the model, shown by how the solution time scales with T, the

length of the time horizon. We let T vary from 1 to 50, set S = 1OT/3, S = 10,
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Po = 5, and 0
3t = (0.001, 0.0095, 0.009) and wjt = (0.0002, 0.00021, 0.00023) for all

t. The time taken by the solver to reach an optimal solution is shown in Figure 3-4.

We observe that the model, while naturally slower than the single-seller case, remains

reasonably tractable, solving in under a minute for T = 20, and just over 10 minutes

for T = 50.

700

E

0
*.0

E
F-

600 -

500 -

400

200

100-

0 5 10 15 20 25 30 35

Length of decision horizon

Figure 3-4: Solving time for different time horizons, three sellers.

In the single-seller case, we observed a qualitative shift in the solutions, driven by

the dominating factor in the cost uncertainty. A similar, though more complex, shift

is seen in the multiple-seller case. We illustrate this phenomenon with three cases,

identical in all parameters except for the robust parameter r.

We consider three sellers, i.e., J = 3. As before, we set T = 30, and suppose that

the discount parameters are constant and known for each run. For our multi-seller

experiments, we required the planner to buy 100J units in total, but still no more than

10 units in a single time period. We now consider varying values of Ojt and wit, where

81

F

40 45 50



we are particularly interested in the situation where no seller dominates another, i.e.,

has a higher 0 jt and wj than the other. To this end, we set 0 = (0.001, 0.0095, 0.009)

and w = (0.0002, 0.00021, 0.00023).

We first use Sjt = 9 as a warm start, and again show that we can get interpretable

solutions that have less than 1% suboptimality from the best solution found with

randomized starting points.

Case 1: r = 0 :

The optimal solution is to purchase 0.37 units from the first seller, 1.21 from the

second, and 8.4 from the third seller in each time period. This is a locally optimal

nominal solution.

Case 2: r = 0.05:

In this case, the optimal solution is to purchase 10 units from the third seller in each

time period. The robust parameter is still small enough that price uncertainty still

does not dominate the cost, so the purchase is still spread out over the entire time

horizon. However, introducing even a small amount of uncertainty is enough to move

the purchased quantities away from the first two sellers, which have higher worst-case

costs, and completely to the third seller. In general, the differences in quantities

purchased between sellers are magnified in the presence of uncertainty, similar to how

we saw that the quantities purchased are pushed to their extreme values across time

in Section 3.3.3.

Case 3: r = 2:

As with the single-seller case, we now see the effect of price uncertainty dominating

the solution when our robust parameter is set high enough. The model is now mainly

concerned with the cumulative effects of price drift over time, and the optimal solution

is now to complete the purchase as quickly as possible, i.e., purchasing 10 units from

all three sellers for the first 10 periods. The worst-case cost savings of doing this now

dominate any cost increase from purchasing from all three sellers evenly.

In general, for any set of parameters, we observed that either the optimal pur-

chasing quantities were constant over time, or tended to be clumped into consecutive

time periods, although these were not necessarily at the very start or the end of the

82



decision horizon. As before, this shift occurred abruptly as the robust parameter r

increased, although at different levels of r that depended unpredictably on the other

parameters. For our problem, the level of discounts was comparatively low, and so

the redistribution across sellers was much more sensitive to the initial change in the

robust parameter, compared to the clumping across time.

We next evaluate the quality of the solutions found by presenting computational

results solved over a range of 3150 different parameter configurations, which are listed

in Appendix C.

To evaluate the models' performance, we test the solutions against three different

levels of noise, each time exposing each model to 100 instances of randomly generated

demand at that noise level.

Robust parameter Mean cost Maximum cost SD of actual costs
0 1446.0 1682.7 123.5

0.5 1452.2 1679.8 123.8
1 1452.2 1676.1 123.7

1.5 1452.2 1680.0 123.8
2 1452.3 1680.3 123.8

2.5 1452.2 1679.0 123.8
3 1452.2 1679.7 123.7

Table 3.1: Performance of optimization model strategy for up = 0.01.

Robust parameter Mean cost Maximum cost SD of actual costs
0 1446.0 2012.1 154.6

0.5 1452.4 1928.6 137.5
1 1452.4 1890.8 136.1

1.5 1452.1 1881.3 139.3
2 1452.4 1882.5 139.8

2.5 1452.2 1903.0 137.2
3 1452.3 1873.6 137.0

Table 3.2: Performance of optimization model strategy for up = 0.1.

As before, we are looking at the effect of robustifying the model, in terms of the

mean cost, the worst-case (maximum) cost, and the variance. For our evaluation, we

give the performance of the model for seven different settings of the robust param-

eter, but each time averaging over a range of values for all the other experimental
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0 1446.0 2417.4 223.5
0.5 1452.6 2245.1 172.5

1 1452.5 2156.5 168.3
1.5 1452.0 2104.9 178.0
2 1452.5 2121.1 179.9

2.5 1452.1 2184.0 171.3
3 1452.3 2089.6 171.4

Table 3.3: Performance of optimization model strategy for up = 0.2.

parameters, which were assumed to be accurately chosen when exposing the solu-

tions to noise. The robust parameter being set to zero corresponds to the nominal

formulation.

For all the cases, we observe that the robust model only has a mean cost that is

higher by a fraction of a percent than the nominal solution. However, the worst-case

cost observed improves significantly as we increase the protection against uncertainty

to r = 0.5 and r = 1, and the variance in the actual observed cost over our 100

instances also decreases significantly.

The first case, Table 3.1, represents the scenario where the true noise is much more

attenuated than our model was protecting against. In this case, the improvement to

the actual worst-case cost over that for the nominal solution is minimal, but the

increase in average cost is also very small. Although robustifying the model is not as

necessary here, we do not lose much by doing so.

The second and third cases represent the respective scenarios where the true noise

is close to what we have estimated (Table 3.2), or higher than what we have estimated

(Table 3.3). In these cases, we observe that the maximum cost decreases by slightly

under 10% in both cases as we increase the robustness of the model, but with only a

miniscule increase in the average cost. We also observe a significant decrease in the

standard deviation of the costs - a reduction of over 10% for up = 0.1 and of over

25% for up = 0.2. This shows that for these cases, the tradeoff is very much in favor

of robustifying the problem. We gain a lot of protection against the price uncertainty,

and only pay a small price to do so.
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3.6 Decision Trees for Insights from the Optimal

Solution

In the previous section, we saw that although the robust optimization model can

potentially reduce cost variance with a very small increase in mean cost, the model

does not yet solve quickly enough, at least with multiple sellers, that it can be used

to solve the online purchasing execution problem. In other words, a seller would not

be able to use it with real-time data by directly solving the model.

We use a modern machine learning approach to address this shortcoming in two

different ways. We also observed in the previous section that generally we can find

three qualitatively different interpretable solutions, corresponding to various parame-

ter settings for the model, that are close to the best solution we can find with random

starts. Although it is not known where the theoretical boundaries that divide the

regions of the parameter space are, in Section 3.3.3 we were able to motivate them in

terms of the dominant contributor to the uncertainty in the worst-case cost.

This suggests that a decision tree approach might be able to generate high-quality

predictors that take as input data attributes and model parameters, and output some

useful predictions about the model. In this section, we use the Optimal Decision

Tree methods from [34] and [36] to explore some of these analytical properties of the

different types of solutions that our model outputs. In Section 3.7, we show that the

trees we construct here can be used to generate high-quality solutions for the purchase

execution problem on the fly.

Besides being able to generate solutions in milliseconds, the decision tree approach

has the additional benefit of being highly interpretable. This mirrors real decision-

making and allows a practitioner to communicate the insights and output more easily

to non-experts. The Optimal Decision Tree approach, in particular, avoids the dif-

ficulties of the "pathology of decision tree induction" [121] that arise from greedy

approaches to constructing decision trees.

We begin by constructing a decision tree that predicts the objective function of

the model. A planner might use this decision tree in several ways - for instance,
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to examine the impact of a different set of parameters on the purchase cost, or to

have some idea how stable the current parameters are (before considering a move to

another branch).

To do this, we build an Optimal Regression Tree. Following [36], we use a mixed-

integer optimization approach to formulate the structure of the decision tree as MIO

constraints. To decide on the minimum bucket size and depth, we used a grid search

on a validation data set to tune the tree model. Figure 3-5 is the beginning of the

decision tree that we generated for predicting cost (the full tree is given over Figures

3-5 to 3-13).

For all of our models and parameters, we were able to find the optimal decision

trees for our training data within about 5 minutes each. To test our decision trees,

we randomly split 3150 cases of generated data into 50% training set, 25% validation

set, and 25% test set. The parameters we used are given in Appendix D. We used the

validation set to tune parameters for the bucket size and depth of the tree, resulting

in a minimum bucket size of 5 and depth of 5.

The first decision tree had an R-squared value of 0.9958 on the test data, implying

that once the decision tree has been generated, the planner can accurately predict the

cost of executing a purchase with new parameters, even for large problems, without

having to re-solve the optimization models.

We also built Optimal Regression Trees for predicting two features of the inter-

pretable solutions that we saw previously. These were the clustering observed in

the increased proportion purchased from a supplier, and in the increased proportion

purchased in a few time periods of the decision horizon.

Two representative examples are given here. Figure 3-14 is the beginning of a

decision tree that predicts the optimal proportion of the total quantity to purchase

in the first 10 days, i.e., 1/3 of the time horizon (the full tree is given over Figures

3-14 to 3-19. Figure 3-20 is the beginning of a decision tree that predicts the optimal

proportion of the total quantity to purchase from the first supplier (the full tree is

given over Figures 3-20 to 3-27). We can use these decision trees to understand the

form of the optimal solution for a new set of parameters, without having to solve the
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Figure 3-5: Beginning of Optimal Tree for predicting cost.
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Figure 3-9: Branch of Optimal Tree for predicting cost.
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Figure 3-14: Beginning of Optimal Tree for predicting optimal proportion to purchase
in first 10 days.
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Figure 3-15: Branch of Optimal Tree for predicting optimal proportion to purchase
in first 10 days.

optimization model again from scratch.

Trees with both these forms also had a R-squared value of over 0.99 on the test

data, suggesting that as before, the planner would get very accurate results on a

previously unseen set of parameters.

From just these three examples of our decision trees, we can glean some interesting

and useful insights, to give a sense of how they could potentially be useful to a planner:

1. The decision trees confirm our observation that the solutions of the model have

an abrupt transition between the nominal and robust solutions that we derived

in Section 3.3.3. From Figure 3-14 and Figure 3-20, we can see that for r < 0.25

(low values of the robust parameter), the decision trees predict that about a
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Figure 3-27: Branch of Optimal Tree for predicting optimal proportion to purchase
from Seller 1.
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third of the total quantity should be purchased in the first 10 days, suggesting

that the optimal solution here is close to the nominal solution, i.e., purchasing

a constant quantity over time.

2. Figure 3-20 additionally shows how the quantity purchased from Seller 1 varies

with the magnitude of the discount; for 01 < 0.0015, we purchase entirely from

the other two sellers, while for 01 > 0.0015, we purchase almost entirely from

Seller 1. The large differences between predictions for some of the neighboring

branches (e.g., Figure 3-21 and Figure 3-22) suggest that this is an important

predictor to consider, as changing the discounts may lead to an abrupt change

in the optimal solution.

3. Knowing the form of the solutions, we can use these decision trees to make high-

quality guesses for a new set of parameters, without having to re-solve the model

from scratch. For example, suppose we want to find the nominal solution for

r < 0.25. Figure 3-14 suggests that we should predict a solution that is roughly

constant in each time period, and Figure 3-20 (and corresponding decision trees

for Seller 2 and Seller 3, if necessary) help us choose the proportion to purchase

from each seller. We can also use Figure 3-5 to predict the cost at our new set

of parameters.

4. The early splitting on the discount parameters in Figure 3-20 indicate that

although r is important for determining the qualitative form of the solution, the

discounts are an important predictive factor for the proportion to be purchased

from each seller. They are, however, much less important for predicting the

distribution across time, or the final cost.

5. We note that many of the final splits in Figure 3-14 and Figure 3-20 are on S

at 290 or 310 units, but all of these only lead to small differences in the final

prediction. As we know that the maximum quantity we can purchase from a

single seller is capped at 300 units, this suggests that in these branches, we are

starting to "overflow" from Seller 1. In a real scenario, a planner observing this
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phenomenon might be able to decrease the cost further by raising the upper

purchase bound, at least for that seller.

3.7 Decision Trees for Online Solving

We now demonstrate one way that a suite of decision trees, of the same forms as the

previous section, can be used to generate solutions for the robust purchase execution

problem. If these solutions are of sufficiently comparable quality to those obtained

from solving the optimization model directly, it would allow a supplier to use real-

time data on decision trees that have been previously trained on different parameter

settings, and make decisions without having to re-solve the optimization model on

the fly.

To do this, we constructed, from our training data, a decision tree for each seller

of the same form as Figure 3-20. We also constructed, for each time period, a decision

tree of the same form as Figure 3-14. This gives us, for each seller j and time period

t, a prediction pj of the proportion of the total quantity purchased from seller j and

a prediction qt of the proportion of the total quantity purchased in time period t. We

take the combined prediction pjqt, and scale it to sum to the total quantity that needs

to be purchased, i.e., our strategy is to purchase S"ee - p 5q S from seller j in

time period t.

Given how we have constructed this strategy from the output proportions of the

decision trees, we expect this strategy to be a good approximation of the interpretable

solutions to the optimization model that we previously observed. Because we found

that for our problem, one of these interpretable solutions always performed well, we

also expect decision trees constructed in this manner to perform similarly (on the

order of 1% suboptimality).

To evaluate this strategy over our test data, we found the theoretical worst-case

actualization given by Equation 3.21, and divided that cost by the corresponding

worst-case objective value for the actual solution to the optimization model, for the

same parameter settings. As mentioned previously, we had 3150 different parameter
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settings in total, reported in Appendix D, which were split into 50% training set, 25%

validation set, and 25% test set.

Over all the test data, the average of this ratio was 1.0017, and the largest value

of the ratio for any set of parameters was 1.0197. This result is close to the subop-

timality that we reported for the interpretable solutions in Section 3.4, as we would

hope, and suggests that using the suite of decision trees that we constructed yields

a purchasing strategy that is highly competitive with the strategy obtained by using

the optimization model, with the benefit of requiring much less computational time.

Of course, this presupposes that we have previously solved the optimization models

for many parameter settings in order to generate data for the decision trees.

Finally, we perform the same tests for the decision tree strategy for different levels

of noise as we did with the optimization model. At each level of the robust parameter,

we expose the strategies generated for each of the 3150 parameter configurations

in Appendix C to 100 instances of randomly generated demand at three different

noise levels. This will show us if the decision tree strategies continue to perform

competitively with the optimization model strategies when we estimate the noise

level incorrectly.

Robust parameter Mean cost Maximum cost SD of actual costs
0 1446.5 1681.5 123.0

0.5 1452.9 1679.5 124.1
1 1453.0 1676.3 123.8

1.5 1453.0 1680.3 124.0
2 1453.0 1680.5 124.0

2.5 1452.4 1679.1 123.7
3 1452.4 1679.8 123.7

Table 3.4: Performance of decision tree strategy for up = 0.01.

As before, we are looking at the effect of robustifying the model, in terms of

the mean cost, the worst-case (maximum) cost, and the variance, where we report

the performance of the decision tree strategy for seven different settings of the robust

parameter, but each time averaging over a range of values for all the other experimen-

tal parameters. The robust parameter being set to zero corresponds to the nominal
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0 1446.5 2008.7 154.1
0.5 1453.0 1924.8 137.7

1 1453.1 1887.0 136.3
1.5 1452.8 1883.4 139.6
2 1453.2 1882.2 139.9

2.5 1452.3 1884.8 137.2
3 1452.5 1876.6 137.0

Table 3.5: Performance of decision tree strategy for up = 0.1.

Robust parameter Mean cost Maximum cost SD of actual costs
0 1446.4 2412.3 223.0

0.5 1453.2 2237.2 172.4
1 1453.3 2148.9 168.7

1.5 1452.7 2109.1 178.4
2 1453.3 2119.2 179.6

2.5 1452.2 2156.2 171.3
3 1452.5 2095.5 171.4

Table 3.6: Performance of decision tree strategy for up = 0.2.

formulation.

The first case, Table 3.4, represents the scenario where the true noise is much

more attenuated than our model was protecting against, while the second and third

cases represent the respective scenarios where the true noise is close to what we have

estimated (Table 3.5), or higher than what we have estimated (Table 3.6).

Compared to the earlier results in Tables 3.1-3.3 from the robust optimization

model, the decision tree strategy has almost the same mean cost - a fraction of a

percent higher, and is also close to the worst-case cost and variance observed. The

decision tree strategy even has a lower worst-case cost and variance for the last case

where the true noise is higher than our estimate, though the results are not conclusive

enough for us to generalize from this with certainty.

However, we can conclude that at least for the range of parameters tested, the

suite of decision trees yields a strategy that performs competitively with the robust

optimization model, and it continues to perform similarly well even when the magni-

tude of the noise in the price has been mis-estimated.
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3.8 Discussion

We have shown that our robust optimization model generates high-quality solutions

that are much less affected by uncertainty. For our model, we have been able to

significantly decrease the cost variance and worst-case cost, with only a small accom-

panying tradeoff in average cost. We were able to do this with tractable formulations

that can be solved in reasonable times for problems of similar scale to those seen in

real life.

We have also shown that we can use Optimal Regression Trees to predict with high

accuracy some of the analytical properties of the solutions to our robust model, which

enables planners to glean actionable rules underlying the optimal purchasing strategy.

Over a given space of parameters, we were able to gain insights that suggested general

rules underlying the effect of various parameter settings on when and how the planner

should purchase the commodity. We were additionally able to use the decision trees

to generate purchasing strategies without having to solve the optimization model, and

showed that these purchasing strategies performed almost as well as the strategies

that were actually given by the optimization model.

One interesting direction for future work would be to use the trees that we gener-

ated here to solve the initial problem more quickly, and to consider more sophisticated

rules with the Optimal Trees. It would also be of interest to be able to relate the

solutions corresponding to different parameter settings, as this would allow us to use

the robust model presented here as a component of a larger operational formulation,

of which purchasing is only one of the actions that must be planned.
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Chapter 4

Integration of Robust Purchase

Execution and Robust Inventory

Routing

4.1 Introduction

We consider the problem of a planner who wishes to integrate two operational parts

of a business, namely the purchasing of raw commodities with uncertain prices, and

the fulfilment of uncertain customer demand over a fixed horizon. We suppose here

that the planner is responsible for resupplying the customers to maintain their stocks

of a single commodity, and has to decide on feasible schedules to achieve this.

While the planner would like to reduce the cost of resupplying each customer, their

task is complicated by the high cost of stockouts and the presence of uncertainty in

the demand of each customer. There is also a fixed cost involved in maintaining each

vehicle, and a variable cost depending on the routes that are selected.

The planner also has to decide on a purchasing strategy that decides between a

number of sources, to be carried over the same temporal horizon. Here, we consider

a planner whose objective is to minimize the worst-case cost, but has to consider

both the uncertainty in the quantity of the commodity that will be required by the
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customers, and the uncertainty in the price of the commodity at which the planner

executes the purchase.

With the improvements in mixed-integer optimization solvers over the last few

decades, coupled with continuing speedups in computer hardware, models of increas-

ing size that were once intractable are now solved daily. But at real-world scales,

practitioners still need to formulate their models carefully, and apply appropriate so-

lution techniques and heuristics to maintain the tractability of the problems. In our

work here, we consider one such scenario, where the planner has access to models for

subproblems that might be individually tractable for the appropriate problem size

and time limit, but where solving the combined problem would be difficult.

In approaching integrated problems, we ought not to ignore that companies might

already have ways to solve the individual problems. Our approach allows the reuse

of these methods, and is straightforward to improve when there are changes made to

the formulations of the underlying subproblems, or to the algorithms used to solve

them.

As with the previous chapters, we will consider the specific case of a planner in the

heating oil industry. Over the course of a winter, say, the planner would like to have

a plan for purchasing heating oil to meet customers' demand, and to have a schedule

for refueling the customers with a given fleet of vehicles. While the planner could just

solve the two subproblems separately using the work of the previous chapters, here

we ask if there is any improvement from being able to generate solutions for both

problems simultaneously.

Our contributions in this chapter are summarized as follows: We formulate the

integrated problem of robust inventory routing and robust purchase execution. Using

the models and solution techniques developed in previous chapters, we are able to

use Lagrangean decomposition to tractably obtain high-quality bounds on the optimal

solution of the integrated problem, and show experimentally that this lets the planner

decrease both the cost and cost variance of the decisions. The decrease in mean cost

over solving the problems separately is about 10% for smaller problem sizes.

The remainder of this chapter is structured as follows: in Section 4.2, we survey
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some of the related literature. In Section 4.3, we formulate the integrated problem,

and in Section 4.4 we explain how to use Lagrangean decomposition to get high-quality

solutions to the integrated problem. We detail our experiments and computational

results in Section 4.5. We finally conclude with overall discussion in Section 4.6.

4.2 Related Work

4.2.1 Vendor-Managed Inventory Routing (VMI)

Because our problem does not consider real-time updating of the customers' demand,

this problem context differs from the field of VMI. However, we note that robust opti-

mization has not yet been used in the literature as a framework for VMI formulations.

In fact, much of the VMI literature only discusses deterministic demand ([681, [69],

[150], [151]). [1] and [66] use a constant rate of demand, and finally [55] models a

problem that can be solved for Poisson demand.

4.2.2 Lagrangean Decomposition

Mixed-integer optimization models are often comprised of "easy" constraints and

"hard" constraints, which make the problem computationally intractable. One well-

studied approach to solving such problems is Lagrangean relaxation, wherein the

"hard" constraints are replaced with penalty terms in the objective function. Typ-

ically, the relaxed optimization problem is now tractable, yielding a bound to the

original problem which can be used for branch-and-bound algorithms or to aid other

heuristics. (See, for example, [82], and some applications are given in [83].)

Lagrangean decomposition is a generalization of Lagrangean relaxation which is

particularly useful where no such division into "easy" and "hard" can be obviously

made, or when the original model comprises two or more sets of structured constraints.

In this approach, identical copies of the variables that appear in both these constraint

sets are made, and the condition that they should be identical is dualized. This

decomposes the model into separate problems for each constraint set, and these can
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be solved individually to reduce computational intractability, yielding bounds that

are often substantially better than those derived from other Lagrangrean relaxations

[94].

4.2.3 Robust Inventory Routing

In Chapter 2, we considered the problem of robust inventory routing. In particular,

the relevant literature was summarized and discussed in Section 2.2, and in Sections

2.3.2 and 2.3.3, we developed the models and solution algorithms that will be used

for the relevant subproblem in this chapter.

4.2.4 Purchase Execution under Uncertainty

In Chapter 3, we considered the problem of robust purchase execution. In particular,

the relevant literature was summarized and discussed in Section 3.2, and in Section

3.4, we developed the models and solution techniques that will be used for the relevant

subproblem in this chapter.

4.3 Formulation of Integrated Problem

We assume that as discussed in 3.3.1, we can construct an uncertainty set U, capturing

the fluctuations in the market price. We also use the temperature-dependent model

of uncertainty Ud that was previously defined in (2.12).

We aim to minimize the worst-case cost of purchasing sufficient quantities of the

commodity and distributing it to customers, protecting against stockouts for the

prices and demand in their respective uncertainty sets. When calculating our con-

straints, this is the order of daily operations: first we consider purchasing quantities,

then we consider resupplying customers, and finally we consider the depletion of the

customers' demand. Our formulation for the robust integrated purchasing execution
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and inventory routing problem is:

min max
Qjt,Sgjt)uIv,g -EtEUe

T J T E

E E QtSt + : covO
t=1 j=1 t=1 0=1

J t N t-1

s.t. 0 < Co + _ Sk-Z U, Vt E [T],
j=1 k=1 i=1 k=1

J t N t-I

CO+ E Sik - E E UC< Cdepot, Vt E [T],
i=1 k=1 i=1 k=1

t-1

Qt = Pt -ojtSjt -wjtZ Sk, Vj c [J], Vt E [T],
k=1

Pt = Pt-i + Et, Vt E [T],

0 < Sjt < S, Vj E [J], Vt C [T],
t t

0 ZZ+ U-Z d, ViE [N], VtE[T], VdE ,
r=1 r=1

t t-1

Z+Zu -Z d Qi, Vi E [N], Vt E [T], Vd E d,
7-1 T2=1

Zv M, Vt E [T],
0=1

U E gZo, Vi E [N], Vt C [T],
0=1

t , Svz, VO E Ee], Vt E [T],

git=0, VicE [N], VO:i ,VtE [T],

gt > 0, Vi E [N], VO E [E], Vt E [T],

u;>0 Vi E [N], Vt E [T],

OE {0, 1}, VO G E], Vt E [T].

(4.1)

(4.2)

(4.3)

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)

(4.10)

(4.11)

(4.12)

(4.1) expresses the worst-case cost minimization objective. (4.2) and (4.3) enforce

capacity constraints on the depot after purchases and deliveries each time period.

(4.4) and (4.5) express the price dynamics of fuel. (4.6) restricts the quantity of fuel

we can purchase from a single seller in any time period. (4.7) guarantees that each
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customer is resupplied so that their supply of the commodity is never depleted, and

(4.8) enforces their capacity constraints. (4.9) respects the fleet size. (4.10) ensures

that the amount of fuel assigned to refuel a customer is also assigned to some route in

the same time period. (4.11) both allows us to assign fuel to a route only if the route

is actually selected, and if so, also enforces vehicle capacity limits. (4.12) ensures that

assignments are only made for customers that are on a given route.

4.4 Lagrangean Decomposition

We observe that Problem 4.1 comprises the two components of purchasing and rout-

ing/scheduling, where the only variables that the two subproblems have in common

are the quantities being delivered, uz. This suggests Lagrangean decomposition as an

approach to attain stronger bounds than the conventional Lagrangean relaxation.

We first explain the process of Lagrangean decomposition for the more general

formulation where two robust optimization subproblems are linked only through a

subset of variables, which for simplicity we assume do not appear in the cost functions

(as is true for our problem).

Suppose, then, that we have to solve for variables v, w, x to minimize the cost

function c1 (v) + c 2 (w). We have uncertain parameters 6 E U1 and c E U2, and for any

particular instance of uncertainty, the feasiblility constraints for the two subproblems

are given by (v, x) E C1(6) and (w, x) E C2(c) respectively.

Then we can write the general problem as:

min c1 (v) + c2 (w) (4.13)
V ,W,X

s.t. (V, x) EE feuU C1(6), (4.14)

(w x) E nEu2 C2(c). (4.15)
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We can make "copies" of x to get the equivalent problem:

min c1(v) + c2 (w)
v,w ,x,y

s.t. (v, x) E n6E C1( 6 ),

(w,y) ce u2 2(c)

x - y = 0.

We associate the dual variables

grangean dual problem:

A with the constraints (4.19), and take the La-

max min c1(v) - A'x + c2 (w) + A'y (4.20)
Sv,w,x,y

s.t. (v, x) E A6cu1C1( 6 ), (4.21)

(w, y) E fleu2C2(E). (4.22)

Note that the inner minimization problem can be separated into the subproblems:

min
v,X

c1(v) - A'x (4.23)

(4.24)s.t. (v,x) E f6leu1 C1 (6),

min
w,y

c2 (w) + A'y (4.25)

(4.26)s.t. (w,y) E neu2 C2(E).

Since the purchase execution subproblem is only affected by the daily total quan-

tity resupplied to customers, and not the quantities resupplied to each individual

customer, we create auxiliary variables Xt to represent these in the purchase execu-

tion subproblem. Then to translate Problem 4.1 into this notation, we make "copies"

of the variables xt, and call them yt in the inventory routing subproblem, adding the
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(4.17)

(4.18)

(4.19)
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appropriate auxiliary constraints. Then the equivalent subproblems for the separated

inner minimization problem over A are:

T T

min max
Qat,Sjt,x EtElUE

EE Qjtst - EAtxt
t=1 j=1 t=1

J t t

s.t. 0 < CO+( E Sik - x , Xk Vt E [T],
j=1 k=1

J t t-1

CO + Z Z Sik -Z xk Cpot , Vt E [T],
j=1 k=1 k=1

t-1

Qjt = Pt - O.tSft - wtZSkt, V3 E [J],
k=1

Pt = Pt-_ + Et, Vt E [T],

0 Sjt < S, Vj E [J], Vt E [T],

Xt > 0, Vt E [T],

108

(4.27)

(4.28)

(4.29)

(4.30)

(4.31)

(4.32)

Vt E [T],

k=1



and

T 9 T

min Z covO + ZAtyt (4.33)
u,v,g,yUV9 t=1 0=1 t=

t t

s.t. 0 Zi UZ - d, Vi E [N], Vt E [T], Vd E U, (4.34)

Z' + Ur - Edr < Qi, Vi Cz [N], Vt E [T], Vd E U, (4.35)
r=1 =1

t < -M

v , EM Vt E [T], (4.36)
0=1

u , E S, Vi C [N], Vt E [T], (4.37)
0=1

N

S <~e Svt, VO E [Eel, Vt E [T], (4.38)

N

U4=Yt, Vt E [T, (4.39)
i=1

gt' > 0, Vi E [N], VO C [E], Vt C [T],

U>0 Vi C [N], Vt E [T],

VO E0, 1}, VO E [0], Vt E [T],

which we recognize as being analogs to the problems that we solved earlier, namely,

Problem 2.1 (robust inventory routing formulation) and Problem 3.15 (robust multi-

seller multi-period purchase formulation), but with the dual variables now considered

in the cost.

We present a result, found in [94], which leads to a primal interpretation of La-

grangean decomposition, namely, as optimizing the primal objective function over the

intersection of the convex hulls of the decomposed constraint sets.
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Consider the following problem:

max fx
X

where f, b, d, A, C are vectors and matrices of appropriate dimensionality, and the

feasible set X imposes other constraints and integer requirements on the problem.

Let Y be any set containing X.

The Lagrangean dual from using Lagrangean decomposition is:

max

VD = min s~t

(f - U)X

Cx < di

x G

+ maxy Ly

SA. Ay < bJ

y EY.

Consider the problem of optimizing (4.41) over the convex hulls of the polyhedral

constraint sets:

VQ = max
X

fx

s.t. x EConv(Ax<b,xcEY,)

x E Conv(Cx d, x c X.)

(4.45)

(4.46)

(4.47)

Then we have:

Theorem 4. (Corollary 3.4 in [94])

VQ = VD-

We also have optimality conditions for when the subproblems do eventually yield

solutions for which the copied variables are identical, for multipliers that are optimal
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Cx < d,

x E X,

(4.41)

(4.42)

(4.43)

(4.44)



for the Lagrangean decomposition dual:

Theorem 5. (Lemma 4.1 in [94j) If A, are optimal solutions to the Lagrangean

decomposition dual (4.20), v,x are optimal solutions to (4.23), w, y are optimal

solutions to (4.25), and x = y, then v, w, x are optimal solutions to (4.13).

Proof. If x = y, then the weak optimality conditions are satisfied since we have

feasibility and complementary slackness. l

4.4.1 Subgradient Algorithm

While the uncertainty in the routing subproblem affects the actual feasibility of the

solutions, in that we might observe stockouts if customers are not resupplied with

sufficient heating oil, the uncertainty in the price of heating oil only affects the opti-

mality of the solution for the purchase execution subproblem. This is an important

observation because it means that any stage, if the current iteration is feasible for the

robust inventory routing problem, it must be feasible for the integrated problem.

We now present the algorithm which we used to solve the integrated problem.

For our specific choices of step size and stopping conditions, we follow closely the

application in [95]. k counts the iterations, and 7rk is the parameter by which the

algorithm reduces the step size pk. We set lrmin to 0.001 and kmax to 1000. UB1 and

UB 2 are optimal values to the subproblems, which give us an upper bound for the

problem, while LB k and LB k are the optimal values which yield lower bounds at the

kth iteration.

4.5 Computational Experiments

We test both the scalability of our approach to the combined formulation, and the

resulting reduction in costs. To examine this tradeoff, we imported customer locations

from a few instances in the TSPLIB, the standard Traveling Salesman Problem test

bed, with sizes of these instances ranging from 51 to 5915. These were the same
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Algorithm 2: INT-LD
Input: 7rmin, kmax, all parameters in (4.27) and (4.33).
Output: UB, LB, x, y, A
k = 0;
A= 0 Vt E [T];
Solve (4.33) to get y0 and UB1;
Solve (4.27) with x = yO to get UB 2 ;
UB <- UB1 + UB 2 ;
while k < kma and Wk > Wmin do

Solve (4.33) to get yk and LBk;
Solve (4.27) to get xk and LB2;
LBk +- LB, + LB2;
if k > 1 and LBk < LBk-1 then

Ik -- 7k-1/2;

end

Ik lk(UB - LBk)/ Zt(yk -- k)2.
At- At + k (y -- xfk Vt E [TI;

end

instances that we used in Section 2.5, and the parameters set are described in detail

there and in Appendix A.

As we did previously in Section 2.5.2, we assume here that if a customer expe-

riences stockouts, the planner must send out an emergency refuelling vehicle which

costs twice as much as the usual fleet per unit distance.

To avoid end-of-horizon effects, we only considered the cost of demand and pur-

chasing over the first 140 days. For the purchasing subproblem, we increased the

tractability of the model by grouping demand into periods of a week, which gave us

exactly 20 periods. We assumed that the planner started with a quantity of 1ON

units of heating oil, with a total capacity of 30N units, and that demand for each

week had to be purchased by the start of that week. We used the approach described

in 3.4.1 to formulate these capacity and demand constraints over the time horizon,

and the robust parameter r was set to 1.

We solved the model for three suppliers, assuming that the planner could purchase

at most 7N units per time period from each seller. This was set so that no single seller

would be able to satisfy all the demand, but that the problem did not require all three
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sellers to be used. We set 0 = (0.001, 0.0095, 0.009) and w = (0.0002, 0.00021, 0.00023)

for problem sizes up to 200, but reduced them to a tenth of that for the larger problems

to keep prices positive for the increased purchase quantities. We used a starting price

of 5 dollars per unit.

We first report the scalability of the algorithm. We let the subgradient algorithm

run for two hours for each problem size. In Lagrangean decomposition, the subprob-

lems can be solved in parallel, and so the computational time is dominated by the

subproblem which takes the longest time to solve, as the non-optimization steps of

the algorithm run in comparatively negligible time. For our problem context, the

purchase execution subproblem could be solved in much shorter time (typically less

than 10 seconds for T = 20) than the inventory routing subproblem. In addition, the

purchase execution subproblem does not become more computationally intractable

as the number of customers increases, because it only relies on meeting aggregated

demand.

On the other hand, the robust vehicle routing problem rapidly becomes too expen-

sive to iterate over many times. To find just the fifth incumbent solution with Gurobi,

for instance, takes only 147 seconds with N = 51, but 1.45 hours for N = 575, and

over 4 hours for N = 5915. For problems with more than a hundred customers, then,

the algorithm only ran for 2-5 iterations. In comparison, [95] report that a similarly-

parameterized subgradient method on a graph problem terminated in the order of

50 iterations. We might thus expect that faster heuristics for the inventory routing

problem might allow a planner to make a tradeoff between letting the algorithm run

for more iterations, and a less accurate estimate of the routing cost.

Figures 4-1, 4-2 and 4-3 show the reduction in the mean, the maximum and

the standard deviation of the observed cost over 100 instances, of which further

experimental details and parameter settings are given in Appendix E.

For the problems with smaller sizes, integrating the problems gives more improve-

ment, with 9.3% to 12.5% decreases in mean cost. We also see similarly significant

decreases in worst-case costs and the variance of the observed costs. Given much

more computational time and iterations, it might be expected that the larger prob-
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Figure 4-1: Percentage reduction in mean cost over naive purchasing strategy.
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lems would be able to achieve better results, but we were still able to get small

improvements in all three metrics for the larger problems even when only one or two

iterations were possible.

4.6 Discussion

In this chapter, we showed that there are potential benefits from combining the two

problems that we had considered previously. Although the combined problem is sig-

nificantly less tractable than each of the subproblems, we were able to use Lagrangean

decomposition to get high-quality feasible solutions in a reasonable time.

For problems of smaller sizes, we were able to decrease the mean cost by around

10%. While the larger problems exhibited much less of an improvement, this was

mainly due to the scheduling subproblems being expensive computationally and we

were still able to get small cost decreases from the integration. We also observed a

decrease in the worst-case costs and cost variability for all problem sizes.

A future direction of interest would be to investigate using the previous solutions

more effectively to solve the iterated subproblems during the Lagrangean decompo-

sition. By reducing the time required to solve even larger problems, we ought to be

able to achieve improvements that are comparable to the smaller problems.

117



118



Chapter 5

Conclusions and Future Directions

In this thesis, we have seen the potential significant benefits of applying modern

optimization techniques to integrate the two difficult problems of purchasing and

inventory routing in the heating oil industry. We used the robust optimization frame-

work to model uncertainty in temperature, customer demand, and market prices, and

developed novel techniques to address the resulting uncertainty sets tractably.

In the problem domain we have considered, the iterations for subgradient ascent

in the integrated model are dominated by the inventory routing subproblem, because

that scales computationally with the number of customers, which is much larger than

the typical time horizon of the problem. The robust purchase subproblem does not

face this issue, because there we can consider the combined demand instead.

This suggests that one fruitful approach to improving this work, particularly for

larger problems, might be to develop looser heuristics for the inventory routing prob-

lem of Chapter 2. Although in isolation we would expect this to produce less optimal

results for the subproblem, it may well increase the number of iterations that can

be performed in a reasonable time. While the computational results of Section 2.5.1

suggest that this would not improve the results for the routing problem directly, it

might be possible to bring the improvements seen in Section 4.5 for larger problems

more in line with what we were able to attain for smaller problems.

Another possible direction to extend this work is to extend Chapters 3 and 4 to

incorporate adaptive optimization techniques. This would allow the work to be used
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more generally for VMI problems, and allow planners to react more quickly to actual

weather and market conditions as they develop over time.

Finally, we were able to use the decision tree methods in [36] to obtain high-quality

strategies for the online robust purchase execution problem. This is an exciting

result that could be more generally applicable to other optimization models, and we

would be interested to understand more deeply what are the features of optimization

problems that could render them amenable to a similar treatment.
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Appendix A

Inventory Routing Simulation Data

Let the number of customers in the data set be N and let each customer have a

capacity of Q = 20. We consider the length of the planning horizon, T, to be 151

time units. However, to account for end-of-horizon effects, in our experiments we

solve the model for T = 151, but only calculate costs for the first 141 time units. We

assume a homogenous fleet of vehicles, each with capacity S = 200.

1. Estimated initial amounts: We generate the estimated initial level of oil for each

customer i C N using the following formula:

ziest = Q x (1 - min(0.9, jXjJ/3)),

where Xi are i.i.d. standard normal random variables sampled once for each

customer. We generate z " once for each customer for all the training scenarios,

and once for each customer for all the testing scenarios.

2. Realized initial amounts: Once the estimated initial amounts are fixed, we gen-

erate actual customer levels at the start of the horizon, called zi. These are

generated with randomness proportional to the estimated amount already con-

sumed. More precisely, for each scenario, we generate the initial customer level

using:
est =stzi = Z + (Q -zi tX Uj
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where Uj are i.i.d. uniform random variables distributed as Uj ~ U(-1/2, 1/2).

We finally clip the zi within the interval [0.5, Q].

3. Estimated Temperature: We set the base temperature, Tbase, to 70 F. Estimated

temperature for day t E [T] is computed as:

Test = Tbase - 5 - t * 0.2.

4. Realized Temperature: We consider different scenarios with the noise in tem-

perature, 6t, varying in the set {0.02, 0.04,0.06,... , 1.0}. For each value for 6t,

we create instances with temperature generated using the following relation:

T = Tte"' + max(-3 * 6t, min(3 * 6t, t * Xt)).

5. Fleet Size: For datasets with less than 1000 customers, we assume a fleet with

approximately /N/2 vehicles. Otherwise, we assume approximately 3D/ST

vehicles, where D is the total mean demand across all the customers over the

entire planning period, S is the vehicle capacity and T is the planning period.

For data sets of size 51, 99, 200, 575, 1173, 2103 and 5915, this means a fleet

size of 3, 4, 7, 11, 24, 42 and 117 vehicles respectively. These numbers were

chosen based on the total average demand and vehicle capacity.

6. Routes: We start with an automatically set of generated routes such that for

datasets with 51, 99 and 200 customers we have 4 routes covering each customer

and for the larger datasets, where clusters are more stable, we have only 1

route covering each customer. The characteristics of the routes used in our

experiments are included in Table A.1, showing the number of routes (Num

Routes), Minimum cost of the routes (Min cost), Maximum cost of the routes

(Max cost), Average cost of the routes (Avg cost), number of routes covering

each customer (Per cust), Minimum route size (Min size), Maximum route

size (Max size) and Average route size (Avg size).
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Size Routes Min cost Max cost Avg cost Per cust Min size Max size Avg size
51 15 113.36 234.08 153.57 4 10 20 13.60
99 27 198.1877 521.12 297.89 4 11 23 14.67

200 55 2454.26 10200.68 5216.82 4 11 24 14.54
575 18 406.06 903.31 709.18 1 27 36 31.94
1173 36 212.18 628.14 392.40 1 12 37 32.58
2103 58 196.80 764.52 422.35 1 8 46 36.25
5915 174 3585.99 40454.50 17088.69 1 16 42 33.99

Table A.1: Characteristics and coverage of the routes used in the experiments for
various datasets.
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Appendix B

Parameter settings for purchase

execution experiments (1 seller)

These are the sets of parameters which were tested in the experiments described in

Section 3.5.1.

" Upper bound for each supplier in each time period: 10 units

* Time horizon: 30 periods

" Total amount: {260,280, 300, 320,340} (units)

" Starting price: {4.8, 4.9, 5.0, 5.1, 5.2}(dollars)

" Starting quantity: 10 units

* 0: {0.001, 0.002, 0.005}

* w: {0.0002, 0.00021, 0.00023}

" Robust parameter r: {0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0}
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Appendix C

Parameter settings for purchase

execution experiments (3 sellers)

These are the sets of parameters which were tested in the experiments described in

Section 3.5.2.

" Upper bound for each supplier in each time period: 10 units

" Time horizon: 30 periods

" Total amount: {260, 280, 300, 320, 340} (units)

* Starting price: {4.8, 4.9, 5.0, 5.1, 5.2} (dollars)

" Starting quantity: 10 units

" 0: {0.001, 0.002, 0.005} x (1, 0.95, 0.9) U {0.001, 0.002, 0.005} x (1, 0.9, 0.95)

* w: (0.0002, 0.00021,0.00023)

" Robust parameter r: {0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0}
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Appendix D

Parameter settings used to

generate optimal decision trees

These are the sets of parameters which were tested in the experiments described in

Section 3.6.

" Upper bound for each supplier in each time period: 10 units

" Time horizon: 30 periods

* Total amount: {260, 280, 300, 320, 340} (units)

" Starting price: {4.8, 4.9, 5.0, 5.1, 5.2} (dollars)

* Starting quantity: 10 units

" 0: {0.001, 0.002, 0.005} x (1, 0.95, 0.9) U {0.001, 0.002, 0.005} x (1, 0.9, 0.95)

" W: {0.0001, 0.0016, 0.0002} x (1, 1.05, 1.1)

" Robust parameter r: {0, 0.5,1.0,1.5, 2.0, 2.5, 3.0}

" Warm starts: St =
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Appendix E

Robust Integrated Inventory

Routing and Purchase Execution

Simulation Data

For the demand subproblem, we used the datasets and problem parameters that were

described in Appendix A.

We let Algorithm 2 run for two hours for each problem size. Most of this time

was taken up with solving the routing subproblem, particularly for the larger sizes,

as each iteration requires both subproblems to be solved once.

Table E.1 shows the mean cost, maximum cost and standard deviation of the

actual costs, where in each case we tested the solutions against 100 simulated instances

with standard deviation of noise up = 0.2, a fairly noisy scenario.

As a baseline, which we call Naive, we compare it to the model where at each

period, we purchase exactly the quantity required for the demand that a single run

of the routing subalgorithm outputs, and split the purchase equally between each of

the three sellers.
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51 Naive 54072 75263 4865
51 Model 49078 63863 4407
99 Naive 137649 182008 9543
99 Model 120445 151168 8075

200 Naive 3.027e6 3.111e6 19634
200 Model 2.954e6 3.028e6 17643
575 Naive 954089 1.198e6 55688
575 Model 922169 1.095e6 50417
1173 Naive 8.850e6 9.345e6 112511
1173 Model 8.769e6 9.186e6 99720
2103 Naive 1.486e7 1.575e7 201827
2103 Model 1.469e7 1.544e7 179786
5915 Naive 1.678e8 1.703e8 568135
5915 Model 1.672e8 1.696e8 542026

Table E.1: Costs for data sets of different sizes.
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