
-4

Topics in Non-Convex Optimization and Learning

by

Hongyi Zhang

B.S., Peking University (2013)

Submitted to the Department of Brain and Cognitive Sciences
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2019

Massachusetts Institute of Technology 2019. All rights reserved.

Signature redacted-
Author......................................

Department of Brain and Cognitive Sciences
January 18, 2019

Certified by Signature redacted.....
Suvrit Sra

Assistant Professor of EECS
Thesis Supervisor

Signature redacted
Accepted b

Matthew A. Wilson
Sherman Fairchild ofessor of Neuroscience and Picower Scholar

Director of Graduate Education for Brain and Cognitive Sciences
MASSACHUSUETTSINSITUTE

OF TECHNOLOGY

LAY iE09
LIBRARIES

2

Topics in Non-Convex Optimization and Learning

by

Hongyi Zhang

Submitted to the Department of Brain and Cognitive Sciences
on January 18, 2019, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

Non-convex optimization and learning play an important role in data science and
machine learning, yet so far they still elude our understanding in many aspects. In
this thesis, I study two important aspects of non-convex optimization and learning:
Riemannian optimization and deep neural networks.

In the first part, I develop iteration complexity analysis for Riemannian opti-
mization, i.e., optimization problems defined on Riemannian manifolds. Through
bounding the distortion introduced by the metric curvature, iteration complexity
of Riemannian (stochastic) gradient descent methods is derived. I also show that
some fast first-order methods in Euclidean space, such as Nesterov's accelerated
gradient descent (AGD) and stochastic variance reduced gradient (SVRG), have
Riemannian counterparts that are also fast under certain conditions.

In the second part, I challenge two common practices in deep learning, namely
empirical risk minimization (ERM) and normalization. Specifically, I show (1) training
on convex combinations of samples improves model robustness and generaliza-
tion, and (2) a good initialization is sufficient for training deep residual networks
without normalization. The method in (1), called mixup, is motivated by a data-
dependent Lipschitzness regularization of the network. The method in (2), called
Zerolnit, makes the network update scale invariant to its depth at initialization.

Thesis Supervisor: Suvrit Sra
Title: Assistant Professor of EECS

3

4

Acknowledgments

While the intellectual pursuit of a doctoral degree is a long journey, I am extremely

lucky to have many people in companion. For those people who have generously

offered their guidance, support, or simply shared their stories, thoughts and time

with me, I would like to express my sincerest gratitude.

First and foremost, I would like to thank my doctoral advisor Professor Suvrit

Sra, for supporting me in many different ways, such as astonishing me with his

broad knowledge of mathematics literature, patiently helping me to polish slides

and presentations, and reaching out for my career development. For the wisdom

and kindness you pass on to me, it will take me many years to come to pass them

on to others.

I would also like to thank my thesis committee members - Professor Tomaso

Poggio, Professor Alexander Rakhlin and Professor Constantinos Daskalakis - for

their helpful feedback on the content of this thesis. And special thanks go to my

brilliant collaborators - Professor Suvrit Sra, Sashank J. Reddi, Moustapha Cisse,

Yann N. Dauphin, David Lopez-Paz and Tengyu Ma. The work in this thesis would

not be anything close to its current shape without their contribution of ideas and

efforts.

During my graduate school life at MIT, a lot of people have shared their kind-

ness with me. While the list of names would be too long to recall exhaustively, I

would like to especially mention some. Professor Joshua B. Tenenbaum and Pro-

fessor Joseph J. Lim provided their selfless help and suggestions in my most con-

fused time. Much of joy and wisdom are shared by my roommates Peiguang Hu,

Haizheng Zhang and Tianli Zhou, my office mates Xia Miao, Quan Li, Jingzhao

Zhang, as well as Youzhi Liang, Chengtao Li, Hongzhou Lin and Zhen Yang.

Finally, the research work in this thesis would not be possible without fund-

ings from the Singleton Fellowship and Leventhal Fellowship of the Department

of Brain and Cognitive Sciences at MIT, as well as the NSF grant: IIS-1409802 and

the DARPA-Lagrange grant.

5

Contents

1 Introduction 11

1.1 Scope of This Work . 12

1.2 Background . 13

1.3 Main Results . 27

2 Iteration Complexity of Riemannian (Sub)gradient Methods 29

2.1 Introduction . 30

2.2 Background . 34

2.3 Convergence Rates of First-order Methods 37

2.4 Experiments . 48

2.5 Discussion . 50

2.6 Proofs . 52

3 Iteration Complexity of Riemannian SVRG Methods 56

3.1 Introduction . 57

3.2 Preliminaries . 61

3.3 Riemannian SVRG . 63

3.4 Applications . 68

3.5 Discussion . 71

3.6 Proofs . 72

6

4 Towards Riemannian Accelerated Gradient Method

4.1 Introduction

4.2 Background

4.3 Proposed algorithm: RAGD

4.4 Analysis of a new estimate sequence

4.5 Local fast rate with a constant step scheme . .

4.6 Discussion ..

4.7 Proofs ..

5 mixup: Beyond Empirical Risk Minimization

5.1 Introduction .

5.2 From Empirical Risk Minimization to Mixup .

5.3 Experiments .

5.4 Related Work

5.5 Discussion .

81

82

.. 85

. 87

. 8 9

. 9 2

. 96

. 97

108

. 109

. 111

. 114

. 125

. 127

6 Zerolnit: Training Deep Residual Networks without Normalization 129

6.1 Introduction . 130

6.2 Problem: ResNet with Standard Initializations Lead to Exploding

G radients . 131

6.3 Zerolnit: Update a Residual Network 6(rq) per SGD Step 135

6.4 Experiments . 139

6.5 Related Work . 142

6.6 Conclusion . 144

6.7 Appendix . 145

7 Conclusions 154

7.1 A Zoomed-Out Summary . 154

7.2 Open Problems . 157

A Mathematical definitions 159

7

List of Figures

2-1 Illustration of a manifold . 35

2-2 Comparing gradient descent and stochastic gradient methods in ma-

trix Karcher mean problems . 51

3-1 Illustration of manifold operations . 61

3-2 Computing the leading eigenvector . 69

3-3 Riemannian mean of PSD matrices . 71

4-1 Illustration of the geometric quantities in Algorithm 3 88

4-2 A schematic illustration of the geometric quantities in Theorem 4.2 . 93

5-1 Illustration of Mixup . 113

5-2 Mixup leads to more robust model behaviors in-between the train-

ing data. 114

5-3 Test errors for ERM and Mixup on the CIFAR experiments. 117

5-4 Classification errors of ERM and Mixup on the Google commands

dataset. 118

5-5 Effect of Mixup on stabilizing GAN training 123

6-1 "Denormalizing" a ResNet basic block 132

6-2 Examples of p.h. sets in a ResNet without normalization 135

6-3 Depth of residual networks versus test accuracy for various meth-

ods on CIFAR-10 . 140

8

6-4 Training accuracy of ResNet-110 on CIFAR-10 dataset with different

configurations 151.

6-5 Training and test errors on ImageNet using ResNet-50 without ad-

ditional regularization . 152

6-6 Test error of ResNet-50 on ImageNet with mixup 152

9

List of Tables

2.1 Summary of results for Chapter2 . 33

5.1 Validation errors for ERM and Mixup on the development set of

Im ageN et-2012. 115

5.2 Results on the corrupted label experiments for the best models. . . . 119

5.3 Classification errors of ERM and Mixup models when tested on ad-

versarial exam ples. 121

5.4 ERM and Mixup classification errors on the UCI datasets. 121

5.5 Results of the ablation studies on the CIFAR-10 dataset 124

6.1 Results on CIFAR-10 with ResNet-110 141

6.2 ImageNet test results using the ResNet architecture 141

6.3 Comparing Zerolnit vs. LayerNorm for machine translation tasks . . 142

6.4 Additional results on CIFAR-10, SVHN datasets. 151

10

Introduction

Mathematical models are central to human endeavor to better observe, under-
stand and change the world, with applications across physical sciences, engineer-

ing, and social sciences. Importantly, as we try to tackle increasingly more com-
plex problems, we have to rely less on hand-crafted solutions, and instead note
down desired model characteristics as design specifications. This leads to a typical
problem-solving pipeline: in the modeling phase, a model family with its search

space, as well as the design specifications is described; in the optimization phase,

an "optimal" model is found within the search space which best satisfies the de-
sign specifications. For example, if we want to optimize the shape of an airplane

for maximal lift and minimal resistance, we build a model that precisely simulates

the aerodynamics, then vary the shape parameters to improve the metric for lift
and resistance. Similarly, if we want to build a mobile app that can recognize cats

11

and dogs in photos, we choose a model space (e.g., a neural network) and specify

the desired model via a set of input-output pairs (i.e., image-label pairs); we then

search for a model that best fits our specifications. At a coarse scale, the problems

I study in this thesis all fall into this broad realm. In particular, they share an im-

portant feature with the latter example - the model design specifications are given

as input-output pairs, known as the training set in machine learning. Now I will

motivate and describe the scope of this work in more detail.

1.1 Scope of This Work

Many problems in machine learning and statistics share the common goal of find-

ing a predictor (a.k.a. hypothesis) f* in some hypothesis space W - { f: X -+ Y}

that achieves the smallest cost possible for a specific loss function V : Y x Y -- R>o

on the data distribution PD, i.e.,

f* E arg min E(,,yy),i[V(fW,y) 01(
f el-I

Since pD is generally unknown, we resort to estimate the best predictor using

training data. A unifying formulation is the (penalized) risk minimization frame-

work:

f C arg min E(xy)~Au[V(f (x), y)] + AQ(f), (1.2)
f ER

where f is our estimate and (x, y) E X x Y is the input-output pair used for train-

ing, which is drawn from some distribution [A supposedly relevant to pD- We

denote S = {(X,, y,) }_1 as the raw training set, consisting of independently and

identically distributed (i.i.d.) data sampled from PD-1 We also denote i's as the

empirical data distribution, and A : ps -+ [A as the (stochastic) transformations

applied to [ts to generate IpA. The processed training data is sampled from PA and

then fed into the training algorithm. Q : 71 -- R+ is called the regularizer which

assigns some non-negative cost to each f. The constant A trades off the effect of

data-fitting and regularization.

'This is the standard assumption in the supervised learning setting. Studying data augmentation
in a weaker setting, for example in transfer learning, is beyond the scope of this thesis.

12

In most cases, f is parametrized by w E W where W is called the parameter space,

and Problem (1.2) is transformed into an optimization problem over its parameters

fv C argrmin E (XY)>,[L (w; x, y)] + Ag(w). (1.3)

Problem (1.3) is the starting point for our study in this thesis. We are interested in

solving the optimization problem (i.e., efficiently finding the arg min solution), and

understanding the learning problem (i.e., studying the statistical properties of our

solution on the data distribution MD)-

In some settings, Equation (1.3) is well studied. For example, when IN is a con-

vex set in a vector space, and both L and g are convex w.r.t. w, the optimization

problem reduces to stochastic/finite-sum convex optimization and is well-studied;

if PA =ps, then the learning problem is called (penalized) empirical risk minimization

and is the focus of statistical learning theory. However, in general, these assump-

tions may not be met. For example, the parameters may need to satisfy nonlinear

constraints that correspond to a manifold, making it hard to develop and analyze

the optimization algorithms. Moreover, in practice PA is often different from ps,

invalidating a key assumption of statistical learning theory.

In this thesis, I study three settings where the above assumptions break down:

(i) the optimization problem (1.3) where W is a Riemannian manifold, hence-

forth called Riemannian optimization;

(ii) the optimization problem (1.3) where L is the composition of a loss function

with a neural network with additive skip connections, henceforth called deep

residual networks;

(iii) the learning problem (1.3) where a nontrivial training data distribution A is

used, henceforth called data augmentation.

1.2 Background

The goal of this section is to expose an interested reader to the relevant background

that leads to my thesis work. In particular, I will introduce the concepts of Rie-

13

mannian manifold and Riemannian optimization, touching on a few important

data science problems that can be naturally cast as optimization on Riemannian

manifolds. Then I will move to some recent developments in optimizing and reg-

ularizing neural networks. General related work will be summarized while more

specific references will be discussed in later chapters. Readers familiar with the

general background should feel confident to skip this section if they wish to.

1.2.1 Riemannian Geometry

An Intuitive Example. Human are small creatures compared with their habitat,

the Planet Earth. We experience the physical space as a three dimensional Eu-

clidean space and the earth ground as a two dimensional surface within. The earth

ground poses interesting challenges to human investigation - at the scale of our

body (100 - 101 meters), it often looks flat; at the scale of a hill (101 - 10' meters), it

often presents interesting curvatures; at the scale of a sea (106 - 107 meters), as hu-

man come to realize, it starts to reveal its beautiful spherical shape. Comparing the

earth ground at different scales with a flat surface, a curious explorer can find both

important similarities and astonishing differences, when it comes to basic geomet-

ric concepts such as lines, angles, distances and triangles. The earth surface, with

an intuitive definition of distance and angle, is an example of Riemannian manifold.

With an intuitive mathematical object in mind, we now state the formal defini-

tions, adapted from [Jost, 2011, Ktihnel, 20151.

Definition 1.1 (manifold). A manifold _M of dimension d is a connected paracom-

pact Hausdorff space for which every point has a neighborhood U that is homeo-

morphic to an open subset S of Rd. Such a homeomorphism x : U - S is called a

(coordinate) chart. An atlas is a family {U,, x,} of charts for which the U0 constitute

an open covering of M.

Definition 1.2 (tangent space). Let p E U c M. Define the equivalent class {(x, v):

x : U - M' is a chart, v E Tx(p)M'}, then one can show (x, v) ~ (y, w) <--> w =

d(y o x- 1)v. The space of equivalence classes is called the tangent space to M at the

14

point p, and is denoted by TpM. Let r : TM -+ M with r(w) = p for w E TM

be the projection onto the "base point", the triple (TM, 7r, M) is called the tangent

bundle of M and TM is called the total space of the tangent bundle.

With the tangent space structure defined on differentiable manifolds, we now

move on to define lengths and angles using the tangent vectors. For this purpose,

we introduce the notion of Riemannian manifolds.

Definition 1.3 (Riemannian metric). A Riemannian metric on a differentiable man-

ifold M is given by a scalar product on each tangent space TpM which depends

smoothly (i.e., C) on the base point p. A Riemannian manifold is a differentiable

manifold, equipped with a Riemannian metric.

In local coordinates x = (X 1, . .. , xd), a Riemannian metric is represented by a

positive definite, symmetric matrix (gij(X))iJ=1,...,d, where the coefficients depend

smoothly on x. The inner product of two tangent vectors v, w E TpM with co-

ordinate representations (v 1 . . , Vd) and (w,... Wd) is (V, W) A go(X(p)) ViW. In

particular, (a,) = gi, and length of v is given by v (v, v)-. When p is

parametrized by t c R, we also write -O(t) I (Xi(p(t))).

By the Picard-Lindelbf Theorem on the local existenece and uniqueness of an

ODE solution, we have the following theorem:

Theorem 1.1. Let M be a Riemannian manifold, p c M, v c TOM. Then there exist

c > 0 and precisely one geodesic c : [0, c] - M with c(0) = p, (O) = v. In addition, c

depends smoothly on p and v.

We remark that by reparametrizing time, i.e., using cV(t) = c,\() for A > 0, t E

[0, e], one can show there exists Eo > 0 such that for any w c TpM with flwf < Eo,

c, is defined at least on [0, 1].

The angle between two geodesics emanating from p c M is defined as the angle

between their respective velocity vectors in the tangent space TM. A geodesic

triangle is defined by its three vertices (distinct points in a manifold) and the three

geodesics connecting them.

15

The next concept is important for both theoretical analysis and numerical im-

plementation:

Definition 1.4 (exponential map). The exponential map of a Riemannian manifold

M at p c M is defined by Exp, : V1 -- M,v - c,(1) where V p {v C TM:

cV is defined on [0, 1]1}.

It can be shown that the exponential map is a diffeomorphism. In particular,

dExp,(0) =_idITm is the identity map in the tangent space.

Definition 1.5 (parallel transport). Let y : [0, 1] - M be a continuous differentiable

curve on a Riemannian manifold, and Yo E TY(o)M a tangent vector. There exists

a unique vector field Y along -y such that Y is parallel (along -y). Y is called the

parallel transport (or parallel displacement) of Y along 'y.

In this work, we always consider parallel transport along geodesics. Let p =

-y(a), q = y(b) and X c TpM, we denote the parallel transport of X along -y to q

as FqX. It can be shown that parallel transport preserves the inner product, i.e.,

(X, y), = (Fqj FqY~q.

Let f be a smooth scalar function on a Riemannian manifold M. We use X(f) to

denote the scalar field generated by computing the derivative of f in the direction

of X. The covariant derivative of f is nothing but the differential df = Df = Vf

with Vf(X) = Vxf = X(f). We further define:

Definition 1.6 (Riemannian gradient). The gradient of f with respect to a met-

ric g, written as gradgf or simply gradf, is the vector determined by the relation

g(gradf, X) A Vf(X) for all X.

Definition 1.7 (Riemannian Hessian). The second covariant derivative (also called

Hessian) of f is given by V 2f = VVf. In particular, (V 2f)(X, Y) A (VxVf)(Y) A

Vx(Vf(Y)) - Vf(VxY) = VxVyf - (VxY)(f).

Now we introduce what is perhaps the most intriguing concept in Riemannian

geometry - curvature. In later chapters, we will see that the existence of metric

16

curvature often poses a significant difficulty for analyzing Riemannian optimiza-

tion algorithms. We have

Definition 1.8 (Lie bracket). Let X, Y be differentiable vector fields on M, and let

f : M -> R be a differentiable function. The Lie bracket of X, Y is defined as the

vector field [X, Y] such that [X, Y](f) A X(Y(f)) - Y(X(f)).

Intuitively, the Lie bracket measures the degree of non-commutativity of the

derivatives, characterized by the change of Y in the direction of X. It can be

shown that the Lie bracket is related to the covariant derivative defined previously:

[XY] =VxY -VYX.

Definition 1.9 (curvature tensor). The curvature tensor is a (1, 3)-tensor defined as

R(X, Y)Z L VxVyZ - VyVxZ - V xy]Z.

The following concept, called sectional curvature, is critical for our analysis of

Riemannian optimization algorithms.

Definition 1.10 (sectional curvature). Define the standard curvature tensor

R1 (X, Y)Z A (Y, Z)X - (X, Z)Y

where (-,-) denotes a Riemannian metric. Let

K,1(X, y) (R1(X, Y)Y, X) = (X, X)(YjY) - (X,Y)2

r'(X, Y) (R(X, Y)Y, X),I

and o- c TM be a two-dimensional subspace spanned by X, Y. Then the quantity

K (X, Y)
i 1(X, Y)

is called the sectional curvature of the Riemannian manifold w.r.t. the plane 0-.

Intuitively, the sectional curvature of a plane o- at a point p E M is the Gauss

curvature at the point p E AV where K is a two-dimensional submanifold of M

induced by the restriction of Exp, : TpM -+ M to the plane -. For interested read-

ers, [Ollivier, 2011] provides further geometric intuition of curvature and related

concepts in Riemannian geometry.

17

1.2.2 Riemannian Optimization

An Intuitive Example. Suppose the owner of a telegraph company would like

to build a station to connect to cities across the continent. For simplicity, consider

only four cities - Boston, Seattle, San Francisco and Miami. The goal is to find

the best location for the station such that the sum of the distances to the four cities

(hence the cost of cables) is minimized. We can formulate this problem as (approxi-

mately) finding a point on a Riemannian manifold (a two-dimensional sphere) that

minimizes a loss function (the sum of four geodesic distances), i.e.,

4

min d(p,qi)

The problem appears simple, especially since it would become a convex optimiza-

tion problem if the feasible domain were a convex set and the distance in use were

Euclidean; however, one cannot readily apply the convex optimization toolkit, due

to the nonlinear constraint and non-Euclidean distance function. Such problems

indicate challenges in analyzing Riemannian optimization, which will be probed

in details in later chapters. For now, we need to introduce a few more definitions.

As Riemannian gradients live in tangent spaces of a Riemannian manifold, we

need a sensible way to map a gradient vector in the tangent space to a new iterate

(point) on the manifold. The exponential map defined earlier serves exactly this

purpose. In practice, however, a more general concept is often used to construct

optimization algorithms.

Definition 1.11 (retraction). A retraction on a manifold M is a smooth mapping R

from the tangent bundle TM onto M. Let Rx denote the restriction of R to TxM.

A retraction has the following properties:

(i) Rx(Ox) = x, where O, denotes the zero element of TxM.

(ii) With the canonical identification ToxTxM ~ TxM, Rx satisfies DRx(Ox)

idTxm, where idTrM denotes the identity mapping on TIM.

Intuitively, a retraction is a first-order approximation to the exponential map.

Next we define function classes on Riemannian manifolds that generalize their

18

vector space counterparts.

Definition 1.12 (geodesically convex). A subset X c M is called a geodesically

convex set if given any two points in X, there is a minimizing geodesic contained

within X that joins the two points. A function f : X -+ R is called a geodesically

convex function if for any geodesic y [0, 1] - X and Vt c [0, 1], it holds that

f y(t)) (1 - t)f(Y(0)) + tf(YM(1)).

Note that this definition does not assume f is differentiable. In fact, it can be

shown that, within a set X where the exponential map is bijective, an equivalent

definition is that there exists g., E TIM, such that f (y) > f (x) + (gm, Exp- 1(y)) for

all y E X. (See, e.g, the proof of Proposition 1.4 in [Greene and Shiohama, 1981].)

Following the convention in vector space, we call gx a subgradient of f at x.

Definition 1.13 (geodesically Lipschitz). A function f :M D X -+ R is called

geodesically L()-Lipschitz if for any two points x, y C X, If(x) - f(y)I < L(o)d(x, y).

The definition of smoothness requires comparing Riemannian gradients from

different tangent spaces using parallel transport.

Definition 1.14 (geodesically smooth). A differentiable function f :M D X - R

is called geodesically L(l)-smooth, if its gradient is geodesically L(l)-Lipschitz, that

is, IIgradf(x) - Fxgradf(y)Il L(1)d(x, y) for any x, y c X.

Example 1.1 (noncompact Stiefel manifold, R" nP [Absil et al., 2009b]). Let R" P(p <

n) denote the set of all n x p matrices whose columns are linearly independent.

Note that its complement, {X C R" xp : det (XTX) = 0} is a closed set. Therefore,

R~xP with the chart p : R* -+ R" X vec(X) is an open submanifold of R" <,

called the noncompact Stiefel manifold of full-rank n x p matrices.

When p = 1, the noncompact Stiefel manifold reduces to the Euclidean space R"

with the origin removed. When p = n, the noncompact Stiefel manifold becomes

the general linear group GL,.

19

Example 1.2 (real projective space, RPn 1 [Absil et al., 2009b]). The real projective

space Rpn- is the set of all directions in Rn, i.e., the set of all straight lines passing

through the origin of Rn. Let R" - Rn - {0} denote the Euclidean space R' with

the origin removed (that is also a noncompact Stiefel manifold R2 p with p = 1.

The real projective space can be identified with the quotient Rn/ ~, where the

equivalence relation is defined by x ~ y < St E R : y xt, so we write

RPn-1 ~ R/ ~

Historical Notes. Optimization on Riemannian manifolds was first studied in

[Edelman et al., 1998, Ferreira and Oliveira, 1998, 2002, Gabay, 1982, Smith, 1994,

Udriste, 1994]. Matrix manifolds are the most studied manifolds for geometric op-

timization due to their ubiquitous presence in engineering and statistics-see [Ab-

sil et al., 2009b] for a detailed introduction. Several standard nonlinear optimiza-

tion methods have been generalized to manifold optimization, including Newton's

[Absil et al., 2004, 2009a, 2014, Smith, 1994], trust-region [Absil and Gallivan, 2009,

Absil et al., 2007, Baker et al., 2008, Huang et al., 2014], line search algorithms [Ab-

sil and Gallivan, 2009], gradient-descent [Samir et al., 2012], subgradient method

[Borckmans et al., 2013] and preconditioning [Boumal and Absil, 2015]. Among

applications of Riemannian optimization, low-rank manifolds have enjoyed great

recent interest. Absil and Oseledets [2014] surveys different retraction methods on

low-rank manifolds. Others have focused on PSD manifolds [Sra, 2012, Sra and

Hosseini, 2013], in particular for solving geodesically convex problems [Hosseini

and Sra, 2015b, Sra and Hosseini, 2015]. Bonnabel [2013] is the first to show asymp-

totic convergence of stochastic gradient methods on Riemannian manifolds.

Our work on first-order methods in geodesically convex optimization [Zhang

and Sra, 2016] (Chapter 2) is the first general non-asymptotic convergence results

for Riemannian optimization in the literature. In parallel with our work on Rie-

mannian variance reduced incremental gradient method [Zhang et al., 2016] (Chap-

ter 3), Kasai et al. [2016] studied the same idea, albeit restricted to Grassmann

manifold. Liu et al. [2017] studied how to acceleate Riemannian gradient descent

20

given oracles to a nonlinear equation solver, however constructing such oracles

is as difficult as solving the original optimization problem, even in the Euclidean

case. Instead, the algorithm we construct (Chapter 4) is a computationally tractable

generalization of the famous Nesterov's accelerated gradient method, which can

provably accelerate Riemannian gradient descent around the minimizer within a

radius depending on the manifold curvatures.

The other line of work [Boumal et al., 2016a] attempts to circumvent the diffi-

culty of analyzing curved space by making assumptions about the pullback of the

objective function in the tangent space. Sufficient descent and other established

proof techniques in the vector space can thus be transferred for use in the analysis.

The drawback of this approach is that little can be said about the properties (e.g.

smoothness constant) of the pullback function, as they, also, are inevitably tied to

the manifold curvatures. Therefore, work in this direction typically resorts to line

search methods to ensure the sufficient descent condition. Finally, other recent

work [Bento et al., 2017, Hu et al., 2018, Jiang et al., 2017, Zhang and Zhang, 2018]

also follow one of the two proof approaches, but studies general retraction, vector

transport, proximal gradient, or quasi-Newton methods.

1.2.3 Regularization in Deep Learning

Regularization has been a very powerful tool in statistical machine learning. Clas-

sical statistical models, such as least squares or Gaussian mixture models, typically

introduce regularizers in the optimization objective to ensure the obtained solution

has certain desired properties, especially when the system is underdetermined

such that the optimal solution to the original problem is not unique [Friedman

et al., 2001]. Among these models, two notable examples are compressive sensing

[Candes and Wakin, 2008] and support vector machines (SVM) [Boser et al., 1992].

These algorithms are able to generate good solutions despite that their original

problems are prone to overfitting. They have made significant theoretical and

practical impacts.

21

However, it gradually becomes obvious that the set of regularizers developed

for classical models is rather restricted. As increasingly large models try to absorb

the information from increasingly large datasets and satiate the ever-increasing

computing power, practitioners of deep learning have discovered many new tech-

niques to regularize their colossal neural networks. These techniques fit into four

categories, namely regularizers, noise, loss functions and data augmentation. We now

examine them one by one.

1.2.3.1 Regularizer

Similar to other machine learning models, commonly used regularizers in deep

learning include L2 weight penalty (corresponding to Gaussian prior in maximum

a posteriori (MAP) estimation), L, weight penalty (also known as the least abso-

lute shrinkage and selection operator (Lasso), corresponding to Laplace prior in

MAP estimation), and Grouped Lasso which combines inter-group sparsity (i.e.,

Laplace) prior and intra-group small norm (i.e., Gaussian) prior [Goodfellow et al.,

2016]. Many other regularizers have been proposed, including penalty for deviat-

ing from weight orthogonality [Cisse et al., 2017], hinge loss for promoting large

margin solutions [Elsayed et al., 2018], etc.

1.2.3.2 Loss function

Regularization may also come from properly defining a new objective function

that encodes the desired property of the learned representation. For example, the

standard multi-class classification problem features the cross entropy as the loss

function, which is susceptible to overfitting. In label smoothing [Pereyra et al.,

2017], the target labels are smoothed out so that weights in the network are not

pushed towards infinity. In adversarial training [Madry et al., 2017], a network is

trained not on the raw inputs, but on the most vulnerable points in their neigh-

borhood to enhance model robustness. Loss functions that operate on latent rep-

resentation rather than final outputs, such as the Siamese loss [Chopra et al., 2005]

22

and the triplet loss [Schroff et al., 2015], provide additional supervision to the rep-

resentation learning process, and prove to work well even under great intra-class

variability.

1.2.3.3 Noise

It is hypothesized and empirically supported that certain level of noise in the pa-

rameter gradients helps to improve model generalization, presumably because

such noise prevents the model parameters from getting stuck in a sharp local mini-

mum, and thereby must finally reaching a flat minimum at equilibrium. While the

notion of flat minimum is still a half-baked concept, it does capture some intuitive

explanation about generalization.

Some of the most successful regularization techniques for deep learning seem

to benefit from certain noise structures in the parameter updates. For example, it

is found that training with stochastic gradient descent (SGD) using large step size

for an extended amount of time is often important for best test performance; some

methods introduce noise to the hidden layer activations, including dropout, drop-

connect, stochastic depth, dropblock, as well as various activation normalization

methods, including batch normalization, layer normalization, group normaliza-

tion, etc.; other methods perturb the backpropagation process to introduce struc-

tural noise in the gradients, such as Shake-Shake and ShakeDrop regularization.

The mixup method I propose in Chapter 5 can also be seen as adding structural

noise in the training process, albeit at the input and target levels instead. While

noise can be injected in different places, it is important to note that they all take

effects by perturbing the direction and scale of the parameter updates.

1.2.3.4 Data augmentation

In the machine learning context, data augmentation refers to the practice of supple-

menting the learning algorithm with synthesized training data, typically by modi-

fying the raw training data via label-preserving transforms. There is no established

23

rule for designing data augmentation methods, however it is widely believed that

the augmented data should appear to human as plausible samples from the data

distribution PD. Data augmentation lies at the heart of all successful applications of

deep learning, ranging from image classification [Krizhevsky et al., 2012] to speech

recognition [Amodei et al., 2016, Graves et al., 2013]. In all cases, substantial do-

main knowledge is leveraged to design suitable data transformations leading to

improved generalization. In image classification, for example, one routinely uses

rotation, translation, cropping, resizing, flipping [Lecun et al., 2001, Simonyan and

Zisserman, 2015], and random erasing [Zhong et al., 2017] to enforce visually plau-

sible invariances in the model through the training data. Similarly, in speech recog-

nition, noise injection is a prevalent practice to improve the robustness and accu-

racy of the trained models [Amodei et al., 2016].

1.2.4 Optimization in Deep Learning

Optimization in the classical literature mostly focuses on developing efficient op-

timization algorithms (i.e., optimizers) and their convergence analysis under vari-

ous (yet typically very general) assumptions. However, as neural network models

become the predominant objective functions in machine learning, the relevance of

some classical results is challenged. In particular, some of the most successful neu-

ral networks are non-smooth, non-convex functions with combinatorially many

stationary points and local minimums, which seems hopeless to solve according

to classical theory. On the other hand, additional structures in the network func-

tion, such as layerwise composition and skip connection, call for a new theory of

optimization that is aware of these architectural assumptions.

Despite having relatively little theoretical understanding, significant empirical

progress has been made during the last decade on training neural networks. These

results can be roughly categorized into optimizers, initializations, normalizations and

architectures.

24

1.2.4.1 Optimizers

A deep neural network is almost always trained by a minibatch stochastic opti-

mization algorithm. The most popular optimizer choices are first-order methods,

including SGD with momentum, and adaptive gradient methods such as Adagrad

[Duchi et al., 2011], RMSprop [Tieleman and Hinton, 2012] and Adam [Kingma

and Ba, 2014]. Recently, it is reported that layerwise normalized gradient methods

help training in settings of poor initialization or extremely large minibatches. In-

spired by the theory of quasi-Newton methods for optimizing non-convex smooth

functions, quasi-Newton style algorithms for training neural networks have also

been explored, among which the Kronecker-factorized approximate curvature (K-

FAG) algorithm [Martens and Grosse, 2015] is a particular promising variant that

balances between adapting to function curvature and efficient computation.

1.2.4.2 Initializations

Only a decade ago, multi-layer neural networks were still believed to be very hard

to train beyond a few layers. The blame commonly fell on a problem called explod-

ing and vanishing gradients, which made training hard to proceed from the very

beginning. The first practitioners of deep learning exploited unsupervised pre-

training to initialize the network weights and found that it helped the supervised

training (a.k.a. fine-tuning) phase [Hinton et al., 2006]. Later however, it was real-

ized that the costly pre-training phase was unnecessary, and could be replaced by

a proper random initialization. Perhaps the two most influential neural network

weight initialization techniques are Xavier (a.k.a. Glorot) initialization [Glorot and

Bengio, 2010] and Kaiming (a.k.a. He or MSR-A) initialization [He et al., 2015].

Both initialization methods are designed to approximately preserve the output (or

gradient) variance of a feed-forward network across layers - Xavier initialization

works for nonlinearities such as sigmoid and tanh, whereas Kaiming initialization

is specifically tailored for ReLU activations. With either pre-training or proper ini-

tialization, networks up to 30 layers were able to set the new state-of-the-art in

25

computer vision [He et al., 2015, Krizhevsky et al., 2012, Simonyan and Zisserman,

2015].

1.2.4.3 Normalizations

Normalization is another set of techniques that greatly helps training. The earliest

practice dates back to divisive normalization such as in [Lyu and Simoncelli, 2008,

Pinto et al., 2008], however arguably the most influential and successful technique

is batch normalization [Ioffe and Szegedy, 2015]. With batch normalization layers,

loffe and Szegedy [2015] reported being able to train deep (10+ layers) networks

with much larger learning rate, less careful initialization, and observed faster con-

vergence than training vanilla networks. Other normalization techniques, includ-

ing weight normalization [Salimans and Kingma, 2016], layer normalization [Ba

et al., 2016], instance normalization [Ulyanov et al., 2016], group normalization

[Wu and He, 2018] etc. have also been found useful in applications ranging from

neural style transfer, object detection to machine translation. Further discussion

about the history of normalization methods can be found in Section 6.7.4.

1.2.4.4 Architectures

Finally, perhaps the most important component for the successful training of a

deep neural network is its model architecture. It has long been known that in-

troducing gating mechanisms into the recurrent neural network structure helps to

solve the exploding and vanishing gradient problems [Hochreiter and Schmidhu-

ber, 1997]. Srivastava et al. [2015] applied similar ideas for training convolutional

neural networks and observed that it greatly improves the training of deeper net-

works - their 900 layer highway networks reportedly can be trained at ease. He et al.

[2016a] and their follow-up work [He et al., 2016b] got rid of the gating mecha-

nisms by introducing additive identity connections across layers, and using (batch)

normalization techniques to control the scale of the activations. Their proposed

network architecture, residual networks, is by far the most influential model in com-

26

puter vision at this point. Another notable innovation is the densely connected net-

works [Huang et al., 2017], which replaces the additive identity connections with an

averaging operation. Importantly, as we will argue, this change greatly alleviates

the exploding gradient problem without normalization.

1.3 Main Results

This work contributes to the study of nonconvex optimization and learning from

two perspectives - (1) theoretical analysis of first-order optimization with Rie-

mannian manifold constraints, and (2) practical techniques for improving the gen-

eralization and optimization of nonconvex models, specifically deep neural net-

works. As a brief preview, I list some of the key results developed in later chapters:

1.3.1 Riemannian optimization

" I develop the first iteration complexity analysis for general first-order geodesi-

cally convex optimization problems. Our analyses cover Riemannian gradient,

subgradient, stochastic gradient and proximal gradient methods under various

settings. (Chapter 2)

" I develop the first variance reduced incremental gradient method and its itera-

tion complexity analysis for Riemannian optimization, which enjoys faster con-

vergence than both Riemannian gradient descent and stochastic gradient meth-

ods, and is well-suited for data science applications. (Chapter 3)

" I develop the first tractable Riemannian optimization algorithm that locally en-

joys Nesterov-style acceleration, i.e., requires fewer number of iterations to con-

verge than Riemannian gradient descent. (Chapter 4)

1.3.2 Deep neural networks

o I develop mixup, a simple yet effective replacement to the empirical risk mini-

mization objective, for classification on high-dimensional inputs with the cross-

27

entropy loss function. mixup can be seen as a data augmentation method or

data-dependent regularization. Training with the mixup objective improves the

generalization and robustness of deep neural networks on various tasks, with

virtually no overhead. (Chapter 5)

I develop Zerolnit, a simple yet effective replacement to the normalization mod-

ules in deep residual networks, by properly rescaling the standard initialization.

Training residual networks with Zerolnit is stable with the default learning rate

schedule, and as fast as training with normalization. With proper regulariza-

tion, our method matches state-of-the-art performance on benchmark datasets in

image classification and machine translation, with no normalization and fewer

parameters. (Chapter 6)

In the final chapter, I will zoom out to fit my work into the global picture of

nonconvex optimization and learning for data science and artificial intelligence

applications. I will also discuss unsolved challenges and exciting new possibilities

for the field to move forward. (Chapter 7)

28

Iteration Complexity of Riemannian

(Sub)gradient Methods

Geodesic convexity generalizes the notion of (vector space) convexity to nonlin-

ear metric spaces. But unlike convex optimization, geodesically convex (g-convex)

optimization is much less developed. In this chapter, we contribute to the under-
standing of g-convex optimization by developing iteration complexity analysis for
several first-order algorithms on Hadamard manifolds. Specifically, we prove up-
per bounds for the global complexity of deterministic and stochastic (sub)gradient

methods for optimizing smooth and nonsmooth g-convex functions, both with and
without strong g-convexity. Our analysis also reveals how the manifold geometry,

especially sectional curvature, impacts convergence rates.

29

2.1 Introduction

Convex optimization is fundamental to numerous areas including machine learn-

ing. Convexity often helps guarantee polynomial runtimes and enables robust,

more stable numerical methods. But almost invariably, the use of convexity in

machine learning is limited to vector spaces, even though convexity per se is not

limited to vector spaces. Most notably, it generalizes to geodesically convex metric

spaces [Bridson and Haefliger, 1999, Burago et al., 2001, Gromov, 1978], through

which it offers a much richer setting for developing mathematical models amenable

to global optimization.

Our specific focus in this chapter is on contributing to the understanding of

geodesically convex (g-convex) optimization, besides the broader goal of increas-

ing awareness about g-convexity (see Definition 2.1). In particular, we study first-

order algorithms for smooth and nonsmooth g-convex optimization, for which we

prove iteration complexity upper bounds. Except for a fundamental lemma that

applies to general g-convex metric spaces, we limit our discussion to Hadamard

manifolds (Riemannian manifolds with global nonpositive curvature), as they of-

fer the most convenient grounds for generalization' while also being relevant to

numerous applications (see e.g., Section 2.1.1).

Specifically, we study optimization problems of the form

min f(x) such that x E X C M, (2.1)

where f : M - R U {oc} is a proper g-convex function, X is a geodesically convex

set and M is a Hadamard manifold [Bishop and O'Neill, 1969, Gromov, 1978]. We

solve equation 2.1 via first-order methods under a variety of settings analogous

to the Euclidean case: nonsmooth, Lipschitz-smooth, and strongly g-convex. We

present results for both deterministic and stochastic (where f(x) = E[F(x,)]) g-

1Hadamard manifolds have unique geodesics between any two points. This key property en-
sures that the exponential map is a global diffeomorphism. Unique geodesics also make it possi-
ble to generalize notions such as convex sets and convex functions. (Compact manifolds such as
spheres, do not admit globally geodesically convex functions other than the constant function; local
g-convexity is possible, but that is a separate topic).

30

convex optimization.

Although Riemannian geometry provides tools that enable generalization of

Euclidean algorithms [Absil et al., 2009b, Udriste, 1994], to obtain iteration com-

plexity bounds we must overcome some fundamental geometric hurdles. We in-

troduce key results that overcome some of these hurdles, and pave the way to

analyzing first-order g-convex optimization algorithms.

2.1.1 Related work and motivating examples

We recollect below a few items of related work and some examples relevant to ma-

chine learning, where g-convexity and more generally Riemannian optimization

play an important role.

Standard references on Riemannian optimization are [Absil et al., 2009b, Udriste,

1994], but these primarily consider problems on manifolds without necessarily as-

suming g-convexity. Consequently, their analysis is limited to asymptotic conver-

gence (except for [Theorem 4.2, Udriste, 1994] that proves linear convergence for

functions with positive-definite and bounded Riemannian Hessians). The recent

monograph [Bacak, 2014] is devoted to g-convexity and g-convex optimization on

geodesic metric spaces, though without any attention to global complexity anal-

ysis. Bacik [2014] also details a noteworthy application: averaging trees in the

geodesic metric space of phylogenetic trees [Billera et al., 2001].

At a more familiar level, implicitly the topic of "geometric programming" [Boyd

et al., 2007] may be viewed as a special case of g-convex optimization [Sra and

Hosseini, 2015]. For instance, computing stationary states of Markov chains (e.g.,

while computing PageRank) may be viewed as g-convex optimization problems by

placing suitable geometry on the positive orthant; this idea has a fascinating exten-

sion to nonlinear iterations on convex cones (in Banach spaces) endowed with the

structure of a geodesic metric space [Lemmens and Nussbaum, 2012].

Perhaps the most important example of such metric spaces is the set of positive

definite matrices viewed as a Riemannian or Finsler manifold; a careful study of

31

this setup was undertaken by Sra and Hosseini [2015]. They also highlighted ap-

plications to maximum likelihood estimation for certain non-Gaussian (heavy- or

light-tailed) distributions, resulting in various g-convex and nonconvex likelihood

problems; see also [Wiesel, 2012, Zhang et al., 2013]. However, none of these three

works presents a global convergence rate analysis for their algorithms.

There exist several nonconvex problems where Riemannian optimization has

proved quite useful, e.g., low-rank matrix and tensor factorization [Ishteva et al.,

2011, Mishra et al., 2013, Vandereycken, 2013]; dictionary learning [Harandi et al.,

2012, Sun et al., 2015]; optimization under orthogonality constraints [Edelman

et al., 1998, Liu et al., 2015, Moakher, 2002, Shen et al., 20091; and Gaussian mixture

models [Hosseini and Sra, 2015a], for which g-convexity helps accelerate mani-

fold optimization to substantially outperform the Expectation Maximization (EM)

algorithm.

2.1.2 Contributions

We summarize the main contributions of this chapter below.

- We develop a new inequality (Lemma 2.1) useful for analyzing the behavior

of optimization algorithms for functions in Alexandrov space with curvature

bounded below, which can be applied to (not necessarily g-convex) optimization

problems on Riemannian manifolds and beyond.

- For g-convex optimization problems on Hadamard manifolds (Riemannian man-

ifolds with global nonpositive sectional curvature), we prove iteration complex-

ity upper bounds for several existing algorithms (Table 2.1). For the special case

of smooth geodesically strongly convex optimization, a prior linear convergence

result that uses line-search is known [Udriste, 1994]; our results do not require

line search. Moreover, as far as we are aware, ours are the first global complexity

results for general g-convex optimization.

2Here for simplicity only the dependencies on c and t are shown, while other factors are consid-
ered constant and thus omitted. Please refer to the theorems for complete results.

3 "Yes": result holds for proper averaging of the iterates; "No": result holds for the last iterate.

32

g-convex, projected D Yes 2.1
Lipschitz subgradient Lf VcYts 02.

g-convex, projected D c\bounded stochastic D 0 Yes 2.2
subgradient subgradient G t

g-strongly projected 2 (C)
convex, 0 - Yes 2.3
Lipschitz subgradient p(s + 1) Y

g-strongly projected
convex, tocastic 2 Yes 2.4
bounded subgradient [(s + 1)
subgradient

g-convex, projected 1 No 2.5
smooth gradient L9 0 c+tN

g-convex, projected
smooth stochastic 0 + Y
bounded grasen L9 +Dc c-t Yes 2.6
variance

g-strongly
convex,
smooth

projected
gradient

}19) t)1

Lg
- min { No 2.7

Table 2.1: Summary of results. This table summarizes the non-asymptotic convergence
rates we have proved for various geodesically convex optimization algorithms. s: iterate
index; t: total number of iterates; D: diameter of domain; Lf: Lipschitz constant of f; c: a

constant dependent on D and on the sectional curvature lower bound r; G: upper bound

of gradient norms; [t: strong convexity constant of f; Lg: Lipschitz constant of the gradient;

o-: square root variance of the gradient.

33

Stepsize Rate2 Averaging3 TheoremfAlgorithm

2.2 Background

Before we describe the algorithms and analyze their properties, we would like to

introduce some concepts in metric geometry and Riemannian geometry that gener-

alize concepts in Euclidean space. For a more detailed treatise of the background,

please refer to Section 1.2.1 or a standard text [e.g. Jost, 2011].

2.2.1 Metric Geometry

For generalization of nonlinear optimization methods to metric space, we now

recall some basic concepts in metric geometry, which cover vector spaces and Rie-

mannian manifolds as special cases. A metric space is a pair (X, d) of set X and

distance function d that satisfies positivity, symmetry, and the triangle inequal-

ity [Burago et al., 2001]. A continuous mapping from the interval [0, 1] to X is

called a path. The length of a path y : [0, 1] - X is defined as length(y) :=

sup K d(y(ti_ 1), -y(ti)), where the supremum is taken over the set of all parti-

tions 0 = to < ... < tn =1 of the interval [0, 1], with an arbitrary n E N. A metric

space is a length space if for any x, y e X and c > 0 there exists a path y : [0, 1] -- X

joining x and y such that length(-) < d(x, y) + e. A path y : [0, 1] - X is called

a geodesic if it is parametrized by the arc length. If every two points x, y C X are

connected by a geodesic, we say (X, d) is a geodesic space. If the geodesic connecting

every x, y c X is unique, the space is called uniquely geodesic [Bacalk, 2014].

The properties of geodesic triangles will be central to our analysis of optimization

algorithms. A geodesic triangle Apqr with vertices p, q, r e X consists of three

geodesics pq, Tr-, Y. Given Lpqr c X, a comparison triangle Apqf in k-plane is a

corresponding triangle with the same side lengths in two-dimensional space of

constant Gaussian curvature k. A length space with curvature bound is called

an Alexandrov space. The notion of angle is defined in the following sense. Let

y : [0, 11 - X and il : [0, 1] - X be two geodesics in (X, d) with -yo = qo, we define

the angle between -y and q as a(-, 7) := lim sup,,tso Z i'4ot where YJis';iont is the

Please refer to the theorems for complete results.

34

angle at i'o of the corresponding triangle Aj- 8j-oi. We use Toponogov's theorem to

relate the angles and lengths of any geodesic triangle in a geodesic space to those

of a comparison triangle in a space of constant curvature [Burago et al., 2001, 1992].

2.2.2 Riemannian Geometry

TXM

Ex ,(v)
MM

Figure 2-1: Illustration of a manifold. Also shown are tangent space, geodesic and expo-
nential map.

An n-dimensional manifold is a topological space where each point has a neigh-

borhood that is homeomorphic to the n-dimensional Euclidean space. At any point

x on a manifold, tangent vectors are defined as the tangents of parametrized curves

passing through x. The tangent space TxM of a manifold M at x is defined as

the set of all tangent vectors at the point x. An exponential map at x C M is

a mapping from the tangent space TxM to M with the requirement that a vector

v C TxM is mapped to the point y := Expx(v) E M such that there exists a geodesic

-Y : [0, 1] -+ M satisfying -}(0) = x, 7(1) = y and -y'(0) = v.

As tangent vectors at two different points x, y E M lie in different tangent

spaces, we cannot compare them directly. To meaningfully compare vectors in dif-

ferent tangent spaces, one needs to define a way to move a tangent vector along

the geodesics, while "preserving" its length and orientation. We thus need to use

an inner product structure on tangent spaces, which is called a Riemannian metric.

A Riemannian manifold (M, g) is a real smooth manifold equipped with an inner

product gx on the tangent space TxM of every point x, such that if u, v are two vec-

tor fields on M then x '-+ (u, v)x := gx(u, v) is a smooth function. On a Riemannian

manifold, the notion of parallel transport (parallel displacement) provides a sensible

35

way to transport a vector along a geodesic. Intuitively, a tangent vector v E TxM

at x of a geodesic y is still a tangent vector F(y)yv of 7 after being transported to

a point y along -. Furthermore, parallel transport preserves inner products, i.e.

(u, v)X = (IF () , F(Y) v) .

The curvature of a Riemannian manifold is characterized by its Riemannian

metric tensor at each point. For worst-case analysis, it is sufficient to consider the

trigonometry of geodesic triangles. Sectional curvature is the Gauss curvature of a

two dimensional submanifold formed as the image of a two dimensional subspace

of a tangent space after exponential mapping. A two dimensional submanifold

with positive, zero or negative sectional curvature is locally isometric to a two

dimensional sphere, a Euclidean plane, or a hyperbolic plane with the same Gauss

curvature.

2.2.3 Function Classes on a Riemannian Manifold

We first define some key terms. X c M is called a geodesically convex set if

for any x, y E X the minimal distance geodesic 'y connecting x, y lies within X.

Throughout the paper, we assume that the function f is defined on a Riemannian

manifold M, f assumes at least a global minimum point within X, and x* E X is

a minimizer of f, unless stated otherwise.

Definition 2.1 (Geodesic convexity). A function f : M - R is said to be geodesi-

cally convex if for any x, y e M, a geodesic y such that 7(0) - x and -(1) = y, and

t E [0, 1], it holds that

f (y(t)) < (1 - t)f(x) + tf (y).

It can be shown that an equivalent definition for geodesic convexity is that for

any x, y c M, there exists a tangent vector g G TxM such that

(y) ;> f (x) + (g2, Exp -I(y))X,

and g is called a subgradient of f at x, or the gradient if f is differentiable, and (-, .)x

denotes the inner product in the tangent space of x induced by the Riemannian

36

metric. In the rest of the paper we will omit the index of tangent space when it is

clear from the context.

Definition 2.2 (Strong convexity). A function f : M - R is said to be geodesically

p-strongly convex if for any x, y E M,

f(y) > f(x) + (g, Exp 1(y))X + d2(x, y).X 2

or, equivalently, for any geodesic -y such that y(O) = x, y(l) = y and t E [0, 1],

f(y(t)) < (1 - t)f(x) + tf(y) - pt(1 - t)d2 (X, y).

Definition 2.3 (Lipschitzness). A function f : M -+ R is said to be geodesically

Lf-Lipschitz if for any x, y c M,

if(x) - f(y)| I Lfd(x, y).

Definition 2.4 (Smoothness). A differentiable function f :M - R is said to be

geodesically Lg-smooth if its gradient is Lg-Lipschitz, i.e. for any x, y E A,

j\gx - Fg1|| < Lgd(x, y)

where F1 is the parallel transport from y to x.

Observe that compared to the Euclidean setup, the above definition requires a

parallel transport operation to "transport" g, to gx. It can be proved that if f is

Lg-smooth, then for any x, y c M,

L
f(y) < f(x) + (gX, Exp 1(y))x + - d2 (x,y).

2.3 Convergence Rates of First-order Methods

In this section, we analyze the global complexity of deterministic and stochastic

gradient methods for optimizing various classes of g-convex functions on Hadamard

manifolds. We assume access to a projection oracle Px that maps a point x C M to

Px(x) c X C M such that

d(x, Px(x)) < d(x, y), Vy E X\ {Px (x)},

37

where X is a geodesically convex set and maxyesX d(y, z) < D. General projected

subgradient / gradient algorithms on Riemannian manifolds take the form

Xs+1 = 'P (Exp,(-qsgs)), (2.2)

where s is the iterate index, g, is a subgradient of the objective function, and ris is a

step-size. For brevity, we will use the word 'gradient' to refer to both subgradient

and gradient, deterministic or stochastic; the meaning should be apparent from the

context.

While it is easy to translate first-order optimization algorithms from Euclidean

space to Riemannian manifolds, and similarly to prove asymptotic convergence

rates (since locally Riemannian manifolds resemble Euclidean space), it is much

harder to carry out non-asymptotic analysis, at least due to the following two diffi-

culties:

" Non-Euclidean trigonometry is difficult to use. Trigonometric geometry in

nonlinear spaces is fundamentally different from Euclidean space. In partic-

ular, for analyzing optimization algorithms, the law of cosines in Euclidean

space

a2 = b2 + c 2 - 2bc cos(A), (2.3)

where a, b, c are the sides of a Euclidean triangle with A the angle between

sides b and c, is an essential tool for bounding the squared distance between

the iterates and the minimizer(s). Indeed, consider the Euclidean update

X8+1 = xs - qgs. Applying (2.3) to the triangle AxxxS+1 , with a = xx,+,

b = xsxs+1, c = xx, and A == Z-xxsx+, we get the frequently used formula

2 = + - xl2 X2 - 2r7 (g,, x, - x) + n]llgs11

However, this nice equality does not exist for nonlinear spaces.

" Linearization does not work. Another key technique used in bounding

squared distances is inspired by the proximal algorithms. Here, gradient-like

updates are seen as proximal steps for minimizing a series of linearizations of

the objective function. Specifically, let 0 (x; x,) = f (xs) + (gs, x - xs) be the lin-

38

earization of the convex function f, and let g, E Of (x,). Then, xs+1 = xs -qsg,

is the unique solution to the following minimization problem

mi 1r2mmt {~(X; X') + 2,sIX -XSH2}

Since '(x; x,) is convex, we thus have (see e.g. Tseng [2009]) the recursively

useful bound

4'(Xs~1 ; XS) + I flx8+i - X 112 < b(X; Xs) + I IX8 - Xf11 2 _-I -1fgs 112
2TIS 217s 2

But in nonlinear space there is no trivial analogy of a linear function. For

example, for any given y C M and gy c TY M, the function

(X; y) = f(y) + (gy, Expy (W)),

is geodesically both star-concave and star-convex in y, but neither convex nor

concave in general. Thus a nonlinear analogue of the above result does not

hold.

We address the first difficulty by developing an easy-to-use trigonometric dis-

tance bound for Alexandrov space with curvature bounded below. When special-

ized to Hadamard manifolds, our result reduces to the analysis in [Bonnabel, 2013],

which in turn relies on [Cordero-Erausquin et al., 2001, Lemma 3.12]. However,

unlike [Cordero-Erausquin et al., 2001], our proof assumes no manifold structure

on the geodesic space of interest, and is fundamentally different in its techniques.

2.3.1 Trigonometric Distance Bound

As noted above, a main hurdle in analyzing non-asymptotic convergence of first-

order methods in geodesic spaces is that the Euclidean law of cosines does not

hold any more. For general nonlinear spaces, there are no corresponding analyt-

ical expressions. Even for the (hyperbolic) space of constant negative curvature

-1, perhaps the simplest and most studied nonlinear space, the law of cosines is

replaced by the hyperbolic law of cosines:

cosh a = cosh b cosh c - sinh b sinh c cos(A), (2.4)

39

which does not align well with the standard techniques of convergence rate anal-

ysis. With the goal of developing analysis for nonlinear space optimization al-

gorithms, our first contribution is the following trigonometric distance bound for

Alexandrov space with curvature bounded below. Owing to its fundamental na-

ture, we believe that this lemma may be of broader interest too.

Lemma 2.1. If a, b, c are the sides (i.e., side lengths) of a geodesic triangle in an Alexandrov

space with curvature lower bounded by ri, and A is the angle between sides b and c, then

a2 < b2 + c2 - 2bccos(A). (2.5)
tanh(Nc)

Proof sketch. The complete proof contains technical details that digress from the

main focus of the main text, so we leave them in the end of this chapter. Below we

sketch the main steps.

Our first observation is that by the famous Toponogov's theorem [Burago et al.,

2001, 1992], we can upper bound the side lengths of a geodesic triangle in an

Alexandrov space with curvature bounded below by the side lengths of a com-

parison triangle in the hyperbolic plane, which satisfies (cf. equation 2.4):

cosh(V ,j<a) = cosh(V JIb) cosh(,Kjc) - sinh(v Ihlb) sinh(,<ic) cos(A). (2.6)

Second, we observe that it suffices to study , = -1, which corresponds to equa-

tion 2.4, since Eqn. (2.6) can be seen as Eqn. equation 2.4 with side lengths a

VI, ja', b = Nrb', c = V jrc' (see Lemma 2.2).

Finally, we observe that in equation 2.4, - cosh (a) = cosh(a). Letting g(b, c, A)

cosh(rhs(b, c, A)), where rhs(b, c, A) is the right hand side of equation 2.5, we then

see that it is sufficient to prove the following:

1. cosh(a) and g(b, c, A) are equal at b = 0.

2. the first partial derivatives of cosh(a) and g(b, c, A) w.r.t. b agree at b = 0.

3. ag(b, c, A) > g(b, c, A) for b, c > 0 (Lemma 2.3).

These three steps, if true, lead to the proof of cosh(a) < g(b, c, A) for b, c > 0, thus

proving a special case of Lemma 2.1 for space with constant sectional curvature -1

40

as shown in Lemma 2.4, 2.5. Combing this special case with our first two observa-

tions concludes the proof of the lemma. l

Remark 2.1. Inequality (2.5) provides an upper bound on the side lengths of a

geodesic triangle in an Alexandrov space with curvature bounded below. Some

examples of such spaces are Riemannian manifolds, including hyperbolic space,

Euclidean space, sphere, orthogonal groups, and compact sets on a PSD manifold.

However, our derivation does not rely on any manifold structure, thus it also ap-

plies to certain cones and convex hypersurfaces [Burago et al., 2001].

We now recall a lemma showing that metric projection in Hadamard manifold

is nonexpansive.

Lemma 2.2 (Bac ak [2014]). Let (M, g) be a Hadamard manifold. Let X c X be a closed

convex set. Then the mapping Px(x) := {y c X : d(x, y) = infaex d(x, z)} is single-

valued and nonexpansive, that is, we have for every x, y c M

d(Px(x), Px(y)) < d(x, y).

In the sequel, we use the notation ((K, c) / for the curvature depen-
tanh(V t1c)

dent quantity from inequality equation 2.5. From Lemma 2.1 and Lemma 2.2 it is

straightforward to prove the following corollary, which characterizes an important

relation between two consecutive updates of an iterative optimization algorithm

on Riemannian manfiold with curvature bounded below.

Corollary 2.1. For any Riemannian manifold M where the sectional curvature is lower

bounded by K and any point x, x, c X, the update x,+1 = Px(Expx,(-,qg,)) satisfies

(--gs, Exp;-1 (x)) < (d2(xs, x) - d2(xs+1, x)) + ((, d(xs, x))s 2 (2.7)

Proof. Denote Es1 ExpX,(-/gs). Note that for the geodesic triangle Axs,+1 x,

we have d(xs, .;s+1) =T1,8fgsJ, while d(x8,;zs+1)d(x,, x) cos(kz 8 +uxX) = (-,qg8 , Exp- (x))

Now let a = i,+1x, b = zs+1 xs, c = -x, A = LZL+ xsx, apply Lemma 2.1 and sim-

plify to obtain

(g, Exp (x)) 2 2(xxs+, X)) + ((K, d(xs, x))is 2
(d -d(qsi~) 2

41

whereas by Lemma 2.2 we have d2 (:s +1, x) > d2 (x,+i, x), which then implies (2.7).

D

It is instructive to compare equation 2.7 with its Euclidean counterpart (for

which actually (= 1):

(-gs, x - xS) - ; (flx, - x11 - 11'+1 - x11) + !gs 1.

Note that as long as the diameter of the domain and the sectional curvature remain

bounded, (is bounded, and we get a meaningful bound in a form similar to the

law of cosines in Euclidean space.

Corollary 2.1 furnishes the missing tool for analyzing non-asymptotic conver-

gence rates of manifold optimization algorithms. We now move to the analysis of

several such first-order algorithms.

2.3.2 Convergence Rate Analysis

Nonsmooth convex optimization. The following two theorems show that both

deterministic and stochastic subgradient methods achieve a curvature-dependent

0(1/vt) rate of convergence for g-convex on Hadamard manifolds.

Theorem 2.1. Let f be g-convex and Lf-Lipschitz, the diameter of domain be bounded

by D, and the sectional curvature lower-bounded by r, < 0. Then, the projected sub-

gradient method with a constant stepsize 7m = 71 ,D and T =X,'s+i

Expa (8 Exp,7'(x,+ 1)) satisfies

f (Tt) - f(x*) < DLf
t

Proof Since f is g-convex, it satisfies f (x,) - f(x*) (-g,, Expj (x*)), which com-

bined with Corollary 2.1 and the Lf-Lipschitz condition yields the upper bound

1 (((-, D)L 2 (.
f (XS) - f (X*) < - (d2(X, X*) - d2(Xs+ix*)) + 2 (2.8)

-271 2
Summing over s from 1 to t and dividing by t, we obtain

1 2 2(Q, D)Lf ry
-3f (x,) - f (x*) < (d2(x, J*) -d2(xt+1, x*)) + 2 (2.9)

t S=1 - 2tT1

42

Plugging in d(xi, x*) < D and rj D we further obtain
Lf C~(DD)t

f (X) - f(x*) < DLj C(D)

S=1

It remains to show that f(Tt) < 1 1 f(x,), which can be proved by an easy

induction. E

We note that Theorem 2.1 and our following results are all generalizations of

known results in Euclidean space. Indeed, setting curvature t = 0 we can recover

the Euclidean convergence rates (in some cases up to a difference in small constant

factors). However, for Hadamard manifolds K < 0 and the theorem implies that

the algorithms may converge more slowly. Also worth noting is that we must be

careful in how we obtain the "average" iterate Tt on the manifold.

Theorem 2.2. If f is g-convex, the diameter of the domain is bounded by D, the sectional

curvature of the manifold is lower bounded by K < 0, and the stochastic subgradient oracle

satisfies E[(x)] = g(x) G Of (x), E[1l 8 l2] < G2 , then the projected stochastic subgradient

method with stepsize -= - G D)t, and T x, , +1 Exp. (41 Exp1 (x,+1))

satisfies the upper bound

E[f (Tt) - f(x*)] < DG ' D)

Proof. The proof structure is very similar, except that for each equation we take

expectation with respect to the sequence {x.} . Since f is g-convex, we have

E[f(xs) - f(x*)] < (-E[.J, Exp-1 (x*)),

which combined with Corollary 2.1 and E[lg <2 G2 yields

I ((K, D)G2,qE[f (xs) - f (x*)] < -E [d2(,, x*) - d2(x,+1, x*)] + 2 (2.10)

Now arguing as in Theorem 2.1 the proof follows. E

Strongly convex nonsmooth functions. The following two theorems show that

both subgradient method and stochastic subgradient method achieve a curvature

43

dependent O(1/t) rate of convergence for g-strongly convex functions on Hadamard

manifolds.

Theorem 2.3. If f is geodesically p-strongly convex and Lf-Lipschitz, and the sectional

curvature of the manifold is lower bounded by K < 0, then the projected subgradient

method with is = 2+l) satisfies

2((,l D) L2
f (T) - f (x*) < , f

P(t+1)

where T, = x1, and Ts+1 = Exp, (& Exp-'(x,+1))

Proof. Since f is geodesically ft-strongly convex, we have

f(XS) - f(x*) < (-gs, Exp- (x*)) - d2(XS, X*),

which combined with Corollary 2.1 and Lf-Lipschitz condition yields

f (XS) - f (x*)
(1

= (8 - 1) d2 (xs,x*)
4

2X*) 4 2(Xs+, X*) + ((7
21], 2

p(s + 1) 2 ((K, D)L 2

4 dpX+ -(s + 1)f

(2.11)

(2.12)

Multiply (2.12) by s and sum over s from 1 to t; then divide the result by t*t) to

obtain
0 t

) sf (x,) -t(t + I1)=
2((K, D)L2

f (x*) <_ YI .)
(2.13)

The final step is to show f (Tt) < 2 J sf (xs), which again follows by an easy

induction. D

Theorem 2.4. If f is geodesically p-strongly convex, the sectional curvature of the man-

ifold is lower bounded by K < 0, and the stochastic subgradient oracle satisfies E[(x)]

g(x) E Of (x), E [11s8 | 2] < G2, then the projected subgradient method with ils = 2

satisfies

E [f (T) - f (x*)] < ()
p(t + 1)

where -I = x1, and Ts+1 = ExpT (+ 1 Exp+T(xs+1))

Proof. The proof structure is very similar to the previous theorem, except that now

44

2

we take expectations over the sequence {x,}>. We leave the details to the ap-

pendix for brevity. E

Theorems 2.3 and 2.4 are generalizations of their Euclidean counterparts [Lacoste-

Julien et al., 2012], and follow the same proof structures. Our upper bounds de-

pend linearly on ((, D), which implies that with K < 0 the algorithms may con-

verge more slowly. However, note that for strongly convex problems, the dis-

tances from iterates to the minimizer are shrinking, thus the inequality (2.11) (or

its stochastic version) may be too pessimistic, and better dependency on K may be

obtained with a more refined analysis. We leave this as an open problem for the

future.

Smooth convex optimization. The following two theorems show that gradient

descent algorithm achieves a curvature dependent O(1/t) rate of convergence,

whereas stochastic gradient achieves a curvature dependent O(1/t + f/t) rate

for smooth g-convex functions on Hadamard manifolds.

Theorem 2.5. Iff :M 4 -R is g-convex with an Lg-Lipschitz gradient, the diameter of

domain is bounded by D, and the sectional curvature of the manifold is bounded below by

K, then projected gradient descent with qs = = - satisfies for t > 1 the upper bound

((K, D)LgD2

f(Xt) - f(x*) < 2(((K, D) + t - 2)

Proof. For simplicity we denote A, = f(xs) - f(x*). First observe that with 7 =g

the algorithm is a descent method. Indeed, we have

As+, - A8 (gs, Exp'(xs+1)) + Lg d2(Xs+1 ,Xs) =--2 (2.14)XS2 2g

On the other hand, by the convexity of f and Corollary 2.1 we obtain

AS < (-gs, Expx' (*)) 2 (d 2(di*) -- d x2(XS+1,*)) + ' 2L, . (2.15)

Multiplying (2.14) by ((K, D) and adding to (2.15), we get

L
((K, D)As+1 - (((K, D) - 1)A 8 < L (d 2 (Xs, X*) - d2 (Xs+i, x*)) . (2.16)

45

Now summing over s from 1 to t - 1, a brief manipulation shows that

t-1

((, D)At + Z As (((,, D) - 1)A 1 + LgD. (2.17)
s=~2

Since for s < t we proved At As, and by assumption A1 < LD 2, for t > 1 we get

< ((K, D)LgD 2

- 2(((I, D) + t - 2)'

yielding the desired bound.

Theorem 2.6. If f :M 4 R is g-convex with Lg-Lipschitz gradient, the diameter of

domain is bounded by D, the sectional curvature of the manifold is bounded below by K,

and the stochastic gradient oracle satisfies E[(x)] = g(x) = Vf (x), E[|lVf (x) - i 8 || 2] <

02 , then the projected stochastic gradient algorithm with q, - = 1 where a =

D 1 satisfies for t > 1
01 (t, D)t

,((, D)LgD 2 + 2Duf((K, D)t
E[f(t) - f (x*)] 2(((r, D) + t - 2)

whereT2 = X2, Ts+I = ExpyS (!Exp-I(xs+1))for 2 < s < t-2, t = Exp 1 - 2 Exp (Xt))

Proof. As before we write As = f(xs) - f(x*). First we observe that

As+,- As (gs, Exp- 1 (xs+1)) + L gd2(X,+1 , X) (2.18)
X8Lg2

(i, Exp,-(x+ 1) + (gs - s, Exp-'(xs+1)) + -gd 2(X,+1, X') (2.19)

< (Is, Exp-(x,+1)) + 2g - 12 + Lg + d2(Xs+, IXs) (2.20)

Taking expectation, and letting - Lr= ' we obtain

E[As+1 - As] < 2 (2.21)
2 2(Lg+')

On the other hand, using convexity of f and Corollary 2.1 we get

As < (-g., Exp I (X*)) < L + E [d2(Xs X*) - d2(X,+ , 7*)] + (LD)E[s 2]
A8 \Y, XxX) 2 2 (Lg +)

(2.22)

Multiply (2.21) by ((r, D) and add to (2.22), we get

L__+__ a((, D)o.2
E[((r,, D)A,+1 - (((r, D) - 1)AS] - 2E [d2 (xs, X*) - d2 (X8 +1 , x*)] + 2

46

Summing over s from 1 to t - 1 and simplifying, we obtain

t-1 L D2 1 ID 2 2
E[((K, D),At+ As] < E[(((, D)-1)A1]+ g 2+ 2 a+ ((, D)to7.

s=2

Now set a -.
1 D' and note that A, < LgD2 ; thus, for t > 1 we get

E [((K, D)A, + Z AS] (D)L<D2 + D ((, D)t.

Finally, due to g-convexity of f it is easy to verify by induction that

E[f (Tt) - f(x*)] E[((', D)A + 2 2

((, D) + t -- 2

Smooth and strongly convex functions. Next we prove that gradient descent

achieves a curvature dependent linear rate of convergence for geodesically strongly

convex and smooth functions on Hadamard manifolds.

Theorem 2.7. If f : M -+ R is geodesically p-strongly convex with Lg-Lipschitz gradi-

ent, and the sectional curvature of the manifold is bounded below by i, then the projected

gradient descent algorithm with r1 = q LI satisfiesfor > 1

(1 - E)t- 2 LD2

f(Xt) - f(x*) 2

Proof. As before we use A, = f(x,) - f(x*). Observe that with r - we have

descent:

As+1 - As (g<, Exp 1 (xs+1)) + -gd 2 (X8 +i, X8)(gs 7 XS2 2 L9
(2.24)

On the other hand, by the strong convexity of f and Corollary 2.1 we obtain the

bounds

As < (-gsExpxl (x*)) - d2(Xt, X*)2

S 2 d 2 (X, X*) - g 2 (Xs+1, X*) +
((K, D) |gs| 2

2 L9

(2.25)

(2.26)

Multiply (2.24) by ((/, D) and add to (2.25) to obtain

((K, D)A,+1 - (((, D) - 1)As < 2Xd2 X*) _ ig d2(X 8+I, x*)

47

(2.23)

(2.27)

Let E = min{(1D) ' multiply (2.27) by (1 - c)(81) and sum over s from I to

t - 1, we get

((K, D)(1 - E)- t 2 At < (((K, D) - 1)A1 + d [td2(XI X*). (2.28) 2

Observe that since A 1 L9D2 , it follows that At < (1,_)t 2 LgD 2 , as desired. E2 '2 ,a eie. E

It must be emphasized that the proofs of Theorems 2.5, 2.6, and 2.7 contain

some additional difficulties beyond their Euclidean counterparts. In particular, the

term A, does not cancel nicely due to the presence of the curvature term ((V, D),

which necessitates use of a different Lyapunov function to ensure convergence.

Consequently, the stochastic gradient algorithm in Theorem 2.6 requires some un-

usual looking averaging scheme. In Theorem 2.7, since the distance between iter-

ates and the minimizer is shrinking, better dependency on i may also be possible

if one replaces ((K, D) by a tighter constant.

Proximal gradient optimization. In this subsection, we assume the objective func-

tion f is geodesically strongly convex but nonsmooth, yet is the sum of a geodesi-

cally smooth and strongly convex function f,, and a geodesically convex and non-

smooth function fc. We show that if in addition to the gradient oracle of f,, we

have access to a proximal oracle of f, that solves

- arg mn fc) + -d2(m, <) (2.29)

then the minimization of f enjoys linear convergence.

2.4 Experiments

To empirically validate our results, we compare the performance of a stochastic

gradient algorithm with a full gradient descent algorithm on the matrix Karcher

mean problem. Averaging PSD matrices have applications in averaging data of

anisotropic symmetric positive-definite tensors, such as in diffusion tensor imag-

ing [Fletcher and Joshi, 2007, Pennec et al., 2006] and elasticity theory [Cowin

48

and Yang, 1997]. The computation and properties of various notions of geometric

means have been studied by many (e.g. Bini and lannazzo [2013], Moakher [2005],

Sra and Hosseini [2015]). Specifically, the Karcher mean of a set of N symmetric

positive definite matrices {Ai }N is defined as the PSD matrix that minimizes the

sum of squared distance induced by the Riemannian metric:

d(X, Y) 1 log(X-1/ 2 YX- 1/ 2) JIF

The loss function
N

f (X; { Ajj}) = log(X-1/2 AjX-1/2)112

is known to be nonconvex in Euclidean space but geometrically 2N-strongly con-

vex, enabling the use of geometrically convex optimization algorithms. The full

gradient update step is

/2exp 3 log(XI/2A XI/2) X1/ 2

For stochastic gradient update, we set

X += X1/2exp -sN log(XI/2A-' X1/2) X1/ 2

where each index i(s) is drawn uniformly at random from {1, ... , N}. The step-

sizes r1 for gradient descent and stochastic gradient method have to be chosen

according to the smoothness constant or the strongly-convex constant of the loss

function. Unfortunately, unlike the Euclidean square loss, there is no cheap way to

compute the smoothness constant exactly. In [Bini and lannazzo, 2013] the authors

proposed an adaptive procedure to estimate the optimal step-size. Empirically,

however, we observe that an L9 estimate of 5N always guarantees convergence.

We compare the performance of three algorithms that can be applied to this prob-

lem:

* Gradient descent (GD) with I= set according to the estimate of the

smoothness constant (Theorem 2.7).

" Stochastic gradient method for smooth functions (SGD-sm) T, =- / with

49

a = ('where the parameters are set according to the estimates of the

smoothness constant, domain diameter and gradient variance (Theorem 2.6).

* Stochastic subgradient method for strongly convex functions (SGD-st) with

U7s =N(s+1) set according to the 2N-strong convexity of the loss function (The-

orem 2.4).

Our data are 100 x 100 random PSD matrices generated using the Matrix Mean

Toolbox [Bini and lannazzo, 2013]. All matrices are explicitly normalized so that

their norms all equal 1. We compare the algorithms on four datasets with N c

{ 102, 103} matrices to average and the condition number Q of each matrix being

either 102 or 108. For all experiments we initialize X using the arithmetic mean

of the dataset. Figure 2-2 shows f(X) - f(X*) as a function of number of passes

through the dataset. We observe that the full gradient algorithm with fixed step-

size achieves linear convergence, whereas the stochastic gradient algorithms have

a sublinear convergence rate, but is much faster during the initial steps.

2.5 Discussion

In this chapter, we make contributions to the understanding of geodesically convex

optimization on Hadamard manifolds. Our contributions are twofold: first, we

develop a user-friendly trigonometric distance bound for Alexandrov space with

curvature bounded below, which includes several commonly known Riemannian

manifolds as special cases; second, we prove iteration complexity upper bounds

for several first-order algorithms on Hadamard manifolds, which are the first such

analyses up to the best of our knowledge. We believe that our analysis is a small

step, yet in the right direction, towards understanding and realizing the power of

optimization in nonlinear spaces.

50

N=1 00,Q=1 e8

9 GD
SSGD-sm

-- - SGD-st

10100
#passes

N=1 000,0=1 e2

1
#passes

10

10 5

104

10 3

102

10 1

0
2 10

ic10

10o 5

10 4

2 13

10

10 1
101

2 1001c

100
#passes

N=1000,Q=1e8

-2 100
#passes

Figure 2-2: Comparing gradient descent and stochastic gradient methods in matrix
Karcher mean problems. Shown are loglog plots of three algorithms on different datasets.
GD: gradient descent (Theorem 2.7); SGD-sm: stochastic gradient method for smooth func-
tions (Theorem 2.6); SGD-st: stochastic (sub)gradient method for strongly convex func-
tions (Theorem 2.4). We varied two parameters: size of the dataset n E {102,103} and
conditional number Q E {102, 108}. Data generating process, initialization and step-size
are described in the main text. It is validated from the figures that GD converges at a linear
rate, SGD-sm converges asymptotically at the 0(1/fl) rate, and SGD-st converges at the
0(1/t) rate.

51

104

103

102

101

100 ..

10-2

3D
sGD-sm
GD-st

p

10

15

10

10

101

100
10 -2

2

210

0 GD
SSGD-sm

-V SGD-st

9 GD
A SGD-sm

--V- SGD-st

N=1 00,Q=1 e2
10 5

S

-2

2.5.1 Future Directions

Many questions are not yet answered. We summarize some important ones in the

following:

" A long-time question is whether the famous Nesterov's accelerated gradi-

ent descent algorithms have nonlinear space counterparts. The analysis of

Nesterov's algorithms typically relies on a proximal gradient projection in-

terpretation. In nonlinear space, we have not been able to find an analogy

to such a projection. Further study is needed to see if similar analysis can

be developed, or a different approach is required, or Nesterov's algorithms

have no nonlinear space counterparts.

" Another interesting direction is variance reduced stochastic gradient meth-

ods for geodesically convex functions. For smooth and convex optimization

in Euclidean space, these methods have recently drawn great interests and

enjoyed remarkable empirical success. We hypothesize that similar algo-

rithms can achieve faster convergence over naive incremental gradient meth-

ods on Hadamard manifolds.

" Finally, since in applications it is often favorable to replace exponential map-

ping with computationally cheap retractions, it is important to understand

the effect of this approximation on convergence rate. Analyzing this effect is

of both theoretical and practical interests.

2.6 Proofs

2.6.1 Proof of Lemma 2.1

Lemma 2.3. Let

g(b, c) = cosli b2 + c2 - 2bc cos(A)
tani(c)

52

then
02

-g(b, c) > g(b, c), b,c > 0

Proof. If c = 0, g(b, c) = cosh(b) = 2g(b, c). Now we focus on the case when c > 0.

If c > 0, Let u =F(1 + x)b2 + c2 - 2bc cos(A) where x = x(c). We have

U2 =(1+ x)b2 - 2bc cos(A)C 2 > C2 (X+ sin2 A) 2 > 0
1+ X i

_2__1 sinh(a)b2 g(b, c)= + - c2 (X + sin 2 A) cosh(u) + c2 (X + sin2 A) s3

Since g(b, c) = cosh(u) > 0, it suffices to prove

ag (b, c) c 2 1 C2 tanh(u)
gbTc) 1 - - (x + sin2 A) 2+ - (x + sin2 A) 3 > 0g (b, c) X U2 X Us

so it suffices to prove

v3 2
hi(u) = -(x + sin2 A)

u - tanh(a) x

Solving for h' (u) = 0, we get u = 0. Since lim o hi (u) = 0 and h, (u) > 0, Vu > 0,

hi(u) is monotonically increasing on u > 0. Thus hi(u) > hi(umin),Vu > 0. Note

that -(x -+ sin2 A) = xU2in, thus it suffices to prove

hi (Umin) = """ > (m+i~un

umin - tanh(umin) X

or equivalently
tanh(Umin) > 1

Uain 1 + x

Now fix c and notice that tanh(U1 ") as a function of sin2 A is monotonically decreas-
Umin

2A weeu2 2 =C2ing. Therefore its minimum is obtained at sin2 A 1, where a m a c i.e.

U* =-c. So it only remains to show

tanh(u) _ tanh(c) 1
> , Vc > 0

or equivalently
c

I + X > ,ahc)VC > 01-- tanh(c)~V>

which is true by our definition of g. E

Lemma 2.4. Suppose h(x) is twice differentiable on [r, +oo) with three further assump-

53

tions:

1. h (r) < 0,

2. h'(r) < 0,

3. h"(x) < h(x), VX E [r, +oc),

then h(x) < 0, Vx E [r, +oo)

Proof. It suffices to prove h'(x) < 0, Vx c [r, +0o). We prove this claim by contra-

diction.

Suppose the claim doesn't hold, then there exist some t > s > r so that h'(x) 0

for any x in [r, s], h'(s) = 0 and h'(x) > 0 is monotonically increasing in (s, t]. It

follows that for any x c [s, t] we have

h"(x) < h(x) < j h'(u)du < j h'(u)du < (x - s)h'(x) < (t - s)h'(x)

Thus by Grbnwall's inequality,

h'(t) < hl(s)e(t-) 2 = 0

which leads to a contradiction with our assumption h'(t) > 0. E

Lemma 2.5. If a, b, c are the sides of a (geodesic) triangle in a hyperbolic space of constant

curvature -1, and A is the angle between b and c, then

a t)b 2 -c2 -2bccos(A)tanh(c)

Proof. For a fixed but arbitrary c > 0, define hc(x) f(x, c) - g(x, c). By Lemma

2.3 it is easy to verify that hc(x) satisfies the assumptions of Lemma 2.4. Apply

Lemma 2.4 to hc with r = 0 to show he < 0 in [0, +oc). Therefore f(b, c) < g(b, c)

for any b, c > 0. Finally use the fact that cosh(x) is monotonically increasing on

[0, +00).

Corollary 2.2. If a, b, c are the sides of a (geodesic) triangle in a hyperbolic space of con-

stant curvature rK, and A is the angle between b and c, then

a2 < t c b2 + c 2 - 2bc cos A)
tanh(V/ir~jc)

54

Proof. For hyperbolic space of constant curvature r < 0, the law of cosines is

cosh(N/ Ka) = cosh(V/IfKb) cosh(/}K~c) - sinh(v/KI-b) sinih(V/IKic) cos A

which corresponds to the law of cosines of a geodesic triangle in hyperbolic space

of curvature -1 with side lengths V/Kj1a, t/Inb, V/[E~c. Applying Lemma 2.5 we

thus get

and the corollary

| ta <IKnb 2 + |KIC2 - 2|Klbccos(A)
~ tanh(/ di e c)

follows directly.

2.6.2 Proof of Theorem 2.4

Theorem 2.4. If f is geodesically p-strongly convex, the sectional curvature of the

manifold is lower bounded by , < 0, and the stochastic subgradient oracle satisfies

E[(x)] = g(x) c Of (x), E[IIs|1 2] < G 2 , then the projected subgradient method with

=(IS 2) satisfies

where TI = x1, and

E[f (T) - f(*)] <
LJ' / - t (t + 1)

Xs+1 = Exp,8 (2 Exp'(x s+1)).

Proof. Since f is geodesically p-strongly convex, we have

E[f(x,) - f(x*)] (-E[E], Expl (x*)) - 2]

which combined with Corollary 2.1 and E [lS If2] < G2 yields

Elf (XS) - f (x*)] -< 1,q 2E

- -- I)E [d(2 (X
4

[d2(Xzx*)] -- E [d2 (Xs,+,x*)] +

_)]+ 1) E [d2(X+, X*)]4

((K, D)G 2 S

+ ((r, D)G 2
p(s + 1)

(2.30)

Multiply (2.30) by s and sum over s from 1 to t, then divide the result by '(t l) we

get

sf (XS) - f (X*)j
2((/, D)G 2

p(t + 1)

The final step is to show f (Tt) < 2 E_1 sf(x,) by induction.

55

Dl

E 2
t(t + 1) S=

(2.31)

Dl

3
Iteration Complexity of Riemannian

SVRG Methods

We study optimization of finite sums of geodesically smooth functions on Rieman-

nian manifolds. Although variance reduction techniques for optimizing finite-

sums have witnessed tremendous attention in the recent years, existing work is

limited to vector space problems. We introduce Riemannian SVRG (RsVRG), a new

variance reduced Riemannian optimization method. We analyze RSVRGfor both

geodesically convex and nonconvex (smooth) functions. Our analysis reveals that

RSVRGinherits advantages of the usual SVRG method, but with factors depending

on curvature of the manifold that influence its convergence. To our knowledge,

RSVRGis the first provablyfast stochastic Riemannian method. Moreover, our paper

presents the first non-asymptotic complexity analysis (novel even for the batch set-

56

W -

ting) for nonconvex Riemannian optimization. Our results have several implica-

tions; for instance, they offer a Riemannian perspective on variance reduced PCA,

which promises a short, transparent convergence analysis.

3.1 Introduction

We study the following rich class of (possibly nonconvex) finite-sum optimization

problems:

min f(x) Ef(x), (3.1)
xEXcM4 n

where (M, g) is a Riemannian manifold with the Riemannian metric g, and X C M

is a geodesically convex set. We assume that each fi : M -+ R is geodesically

L-smooth (see 3.2). Problem equation 3.1 generalizes the fundamental machine

learning problem of empirical risk minimization, which is usually cast in vector

spaces, to a Riemannian setting. It also includes as special cases important prob-

lems such as principal component analysis (PCA), independent component anal-

ysis (ICA), dictionary learning, mixture modeling, among others (see e.g., the re-

lated work section).

The Euclidean version of equation 3.1 where M = Rd and g is the Euclidean

inner-product has been the subject of intense algorithmic development in machine

learning and optimization, starting with the classical work of Robbins and Monro

[1951] to the recent spate of work on variance reduction [Defazio et al., 2014, John-

son and Zhang, 2013, Konecny and Richtdrik, 2013, Reddi et al., 2016, Schmidt

et al., 2013]. However, when (M, g) is a nonlinear Riemannian manifold, much

less is known beyond [Bonnabel, 2013, Zhang and Sra, 2016].

When solving problems with manifold constraints, one common approach is

to alternate between optimizing in the ambient Euclidean space and "projecting"

onto the manifold. For example, two well-known methods to compute the lead-

ing eigenvector of symmetric matrices, power iteration and Oja's algorithm [Oja,

1992], are in essence projected gradient and projected stochastic gradient algo-

rithms. For certain manifolds (e.g., positive definite matrices), projections can be

57

quite expensive to compute.

An effective alternative is to use Riemannian optimization', which directly op-

erates on the manifold in question. This mode of operation allows Riemannian

optimization to view the constrained optimization problem equation 3.1 as an un-

constrained problem on a manifold, and thus, to be "projection-free." More im-

portant is its conceptual value: viewing a problem through the Riemannian lens,

one can discover insights into problem geometry, which can translate into better

optimization algorithms.

Although the Riemannian approach is appealing, our knowledge of it is fairly

limited. In particular, there is little analysis about its global complexity (a.k.a. non-

asymptotic convergence rate), in part due to the difficulty posed by the nonlinear

metric. Only very recently Zhang and Sra [20161 developed the first global com-

plexity analysis of batch and stochastic gradient methods for geodesically convex

functions. However, the batch and stochastic gradient methods in Zhang and Sra

[2016] suffer from problems similar to their vector space counterparts. For solv-

ing finite sum problems with n components, the full-gradient method requires n

derivatives at each step; the stochastic method requires only one derivative but at

the expense of slower O(1/2) convergence to an c-accurate solution.

These issues have motivated much of the recent progress on faster stochastic

optimization in vector spaces by using variance reduction Defazio et al. [2014],

Johnson and Zhang [2013], Schmidt et al. [2013] techniques. However, all ensu-

ing methods critically rely on properties of vector spaces, whereby, adapting them

to work in the context of Riemannian manifolds poses major challenges. Given

the richness of Riemannian optimization (it includes vector space optimization as

a special case) and its growing number of applications, developing fast stochastic

Riemannian optimization is important. It will help us apply Riemannian optimiza-

tion to large-scale problems, while offering a new set of algorithmic tools for the

practitioner's repertoire.

'Riemannian optimization is optimization on a known manifold structure. Note the distinction
from manifold learning, which attempts to learn a manifold structure from data. We briefly review
some Riemannian optimization applications in the related work.

58

Contributions. We summarize the key contributions of this chapter below.

" We introduce Riemannian SVRG (RSVRG), a variance reduced Riemannian stochas-

tic gradient method based on SVRG Johnson and Zhang [2013]. We analyze

RSVRGfor geodesically strongly convex functions through a novel theoretical

analysis that accounts for the nonlinear (curved) geometry of the manifold to

yield linear convergence rates.

" Building on recent advances in variance reduction for nonconvex optimization

[Allen-Zhu and Hazan, 2016, Reddi et al., 2016], we generalize the convergence

analysis of RSVRGto (geodesically) nonconvex functions and also to gradient

dominated functions (see Section 3.2 for the definition). Our analysis provides

the first stochastic Riemannian method that is provably superior to both batch

and stochastic (Riemannian) gradient methods for nonconvex finite-sum prob-

lems.

" Using a Riemannian formulation and applying our result for (geodesically) gradient-

dominated functions, we provide new insights, and a short transparent analysis

explaining fast convergence of variance reduced PCA for computing the leading

eigenvector of a symmetric matrix.

This chapter describes the first stochastic gradient method with global linear con-

vergence rates for geodesically strongly convex functions, as well as the first non-

asymptotic convergence rates for geodesically nonconvex optimization (even in

the batch case). Our analysis reveals how manifold geometry, in particular curva-

ture, impacts convergence rates. We illustrate the benefits of RSVRGby showing an

application to computing leading eigenvectors of a symmetric matrix and to the

task of computing the Riemannian centroid of covariance matrices, a problem that

has received great attention in the literature [Bhatia, 2007, Jeuris et al., 2012, Zhang

and Sra, 2016].

Related Work. Variance reduction techniques, such as control variates, are widely

used in Monte Carlo simulations Rubinstein and Kroese [2011]. In linear spaces,

59

variance reduced methods for solving finite-sum problems have recently witnessed

a huge surge of interest [e.g. Bach and Moulines, 2013, Defazio et al., 2014, Gong

and Ye, 2014, Johnson and Zhang, 2013, Konecny and Richtarik, 2013, Schmidt

et al., 2013, Xiao and Zhang, 20141. They have been shown to accelerate stochas-

tic optimization for strongly convex objectives, convex objectives, nonconvex fi

(t E [n]), and even when both f and fi (i E [n]) are nonconvex [Allen-Zhu and

Hazan, 2016, Reddi et al., 2016]. Reddi et al. [2016] further proved global linear

convergence for gradient dominated nonconvex problems. Our analysis is in-

spired by Johnson and Zhang [2013], Reddi et al. [2016], but applies to the sub-

stantially more general Riemannian optimization setting.

References of Riemannian optimization can be found in Absil et al. [2009b],

Udriste [1994], where analysis is limited to asymptotic convergence (except [Udriste,

1994, Theorem 4.2] which proved linear rate convergence for first-order line search

method with bounded and positive definite hessian). Stochastic Riemannian op-

timization has been previously considered in Bonnabel [2013], Liu et al. [2004],

though with only asymptotic convergence analysis, and without any rates. Many

applications of Riemannian optimization are known, including matrix factoriza-

tion on fixed-rank manifold Tan et al. [2014], Vandereycken [2013], dictionary learn-

ing Cherian and Sra [2015], Sun et al. [2015], optimization under orthogonality con-

straints Edelman et al. [1998], Moakher [2002], covariance estimation Wiesel [2012],

learning elliptical distributions Sra and Hosseini [2013], Zhang et al. [2013], and

Gaussian mixture models Hosseini and Sra [2015a]. Notably, some nonconvex Eu-

clidean problems are geodesically convex, for which Riemannian optimization can

provide similar guarantees to convex optimization. Zhang and Sra [2016] provide

the first global complexity analysis for first-order Riemannian algorithms, but their

analysis is restricted to geodesically convex problems with full or stochastic gra-

dients. In contrast, we propose RSVRG, a variance reduced Riemannian stochastic

gradient algorithm, and analyze its global complexity for both geodesically convex

and nonconvex problems.

In parallel with our work, Kasai et al. [2016] also proposed and analyzed RSVRG

60

specifically for the Grassmann manifold. Their complexity analysis is restricted

to local convergence to strict local minima, which essentially corresponds to our

analysis of (locally) geodesically strongly convex functions.

3.2 Preliminaries

Before formally discussing Riemannian optimization, let us recall some founda-

tional concepts of Riemannian geometry. For a thorough review one can refer to

any classic text, e.g.,[Petersen, 2006].

A Riemannian manifold (M, g) is a real smooth manifold M equipped with a

Riemannain metric g. The metric g induces an inner product structure in each

tangent space TM associated with every x E M. We denote the inner prod-

uct of u, v E TxM as (u, v) 4 gx(u, v); and the norm of u E TxM is defined as

||uH /gx(u, u). The angle between u, v is defined as arccos . A geodesic

is a constant speed curve -y : [0, 1] -+ M that is locally distance minimizing. An

exponential map Expx : TxM -+ M maps v in TxM to y on M, such that there

is a geodesic -y with -y(O) = x, 7(1) = y and y(O) 4 'y(0) = v. If between

any two points in X c M there is a unique geodesic, the exponential map has

an inverse ExpX 1 X -+ TM and the geodesic is the unique shortest path with

Exp-1 (y)II = IIExp- 1 (x) IIthe geodesic distance between x, y E X.

Parallel transport FY : TxM A- TyM maps a vector v E TxM to r'yv E TYM,

while preserving norm, and roughly speaking, "direction," analogous to transla-

tion in R d. A tangent vector of a geodesic -y remains tangent if parallel transported

along -y. Parallel transport preserves inner products.

X y

Figure 3-1: Illustration of manifold operations. (Left) A vector v in TxM is mapped to
Expx(v); (right) A vector v in TxM is parallel transported to TyM as Iyv.

61

The geometry of a Riemannian manifold is determined by its Riemannian met-

ric tensor through various characterization of curvatures. Let u, v E TzM be lin-

early independent, so that they span a two dimensional subspace of TIM. Under

the exponential map, this subspace is mapped to a two dimensional submanifold

of U c M. The sectional curvature r (x, U) is defined as the Gauss curvature of U

at x. As we will mainly analyze manifold trigonometry, for worst-case analysis, it

is sufficient to consider sectional curvature.

Function Classes. We now define some key terms. A set X is called geodesically

convex if for any x, y E X, there is a geodesic -y with -y(O) = x, -y(l) = y and y(t) C X

for t E [0, 1]. Throughout the paper, we assume that the function f in (3.1) is

defined on a geodesically convex set X on a Riemannian manifold M.

We call a function f : X - R geodesically convex (g-convex) if for any x, y C X

and any geodesic -y such that -y(O) = x, -y(1) = y and -y(t) c X for t C [0, 1], it holds

that

f(My(t)) < (1 - t)f(x) + tf(y).

It can be shown that if the inverse exponential map is well-defined, an equivalent

definition is that for any x, y c X, f(y) > f(x) + (gx, Exp 1(y)), where gx is a

subgradient of f at x (or the gradient if f is differentiable). A function f : X -4 R

is called geodesically p-strongly convex (p-strongly g-convex) if for any x, y c X and

subgradient gx, it holds that

f(y) > f (x) + (g , Exp-1(y)) + gj Exp--(y)| 2

We call a vector field g : X -+ Rd geodesically L-Lipschitz (L-g-Lipschitz) if for any

x, y E X,

|1g(x) - Ig(y)II < LjjExp-'(y)l,

where Fx is the parallel transport from y to x. We call a differentiable function

f : X -+ R geodesically L-smooth (L-g-smooth) if its gradient is L-g-Lipschitz, in

which case we have

f(y) f () + (g, Exp- 1 (y)) + L I Exp-(y) 12_

62

We say f : X -+ R is T-gradient dominated if x* is a global minimizer of f and for

every x c X

f (x) - f(X*) < T|Vf(X)11 2 . (3.2)

We recall the following trigonometric distance bound that is essential for our

analysis:

Lemma 3.1 (Bonnabel [2013], Zhang and Sra [2016]). If a, b, c are the side lengths of

a geodesic triangle in a Riemannian manifold with sectional curvature lower bounded by

1 rmin, and A is the angle between sides b and c (defined through inverse exponential map

and inner product in tangent space), then

a2 < V hminc b 2 + c2 - 2bc cos(A). (3.3)
tanh(|KmjjInc)

An Incremental First-order Oracle (IFO) Agarwal and Bottou [2015] in (3.1) takes

an i E [n] and a point x E X, and returns a pair (fi(x), Vfi(x)) E R x TM. We

measure non-asymptotic complexity in terms of IFO calls.

3.3 Riemannian SVRG

In this section we introduce RsVRGformally. We make the following standing as-

sumptions: (a) f attains its optimum at x* c X; (b) X is compact, and the diameter

of X is bounded by D, that is, maxx,,,x d(x, y) < D; (c) the sectional curvature in

X is upper bounded by /max, and within X the exponential map is invertible; and

(d) the sectional curvature in X is lower bounded by Kmi,. We define the following

key geometric constant that capture the impact of manifold curvature:

(= tanh(V rm~D), min4

1, if lmin ;> 0,

We note that most (if not all) practical manifold optimization problems can satisfy

these assumptions.

Our proposed RSVRGalgorithm is shown in Algorithm 1. Compared with the

Euclidean SVRG, it differs in two key aspects: the variance reduction step uses

63

parallel transport to combine gradients from different tangent spaces; and the ex-

ponential map is used (instead of the update x'+1 - IV +1

Algorithm 1: RSVRG(x 0, m, r, S)
Parameters: update frequency m, learning rate q, number of epochs S

1 initialize 20 - 0;
2 for s = 0,1,..., S - 1 do
3 +1 _ sx0 ;
4 gS+1 Z Vfi(g8);
5 fort 0,1,...,m -1 do
6 Randomly pick it E 1, ... ,n;

7 +(s+) i+ (Vfi(i3) gs+l);

8 s+1 = Exp s+1 (vs+

9 end
10 Set . s+l x+1.

11 end
12 Option I: output xa = :S.

13 Option II: output xa chosen uniformly randomly from {{'+1 1M%-l1} .

3.3.1 Convergence analysis for strongly g-convex functions

In this section, we analyze global complexity of RSVRGfor solving (3.1), where

each fi (i c [n]) is g-smooth and f is strongly g-convex. In this case, we show

that RSVRGhas linear convergence rate. This is in contrast with the O(1/t) rate of

Riemannian stochastic gradient algorithm for strongly g-convex functions Zhang

and Sra [2016].

Theorem 3.1. Assume in (3.1) each fi is L-g-smooth, and f is P-strongly g-convex, then

if we run Algorithm 1 with Option I and parameters that satisfy

3___L2_ + (1 + 4(,2 - 2,p)m (/p - 5(0qL 2)

1- 2(L2 p-20UL 2

then with S outer loops, the Riemannian SVRG algorithm produces an iterate xa that

satisfies

Ed2 (Xa, X*) < asd2 (x0 X*).

The proof of Theorem 3.1 is in the appendix, and takes a different route com-

pared with the original SVRG proof Johnson and Zhang [2013]. Specifically, due

64

to the nonlinear Riemannian metric, we are not able to bound the squared norm of

the variance reduced gradient by f(x) - f(x*). Instead, we bound this quantity by

the squared distances to the minimizer, and show linear convergence of the iter-

ates. A bound on E[f(x) - f(x*)] is then implied by L-g-smoothness, albeit with a

stronger dependence on the condition number. Theorem 3.1 leads to the following

more digestible corollary on the global complexity of the algorithm:

Corollary 3.1. With assumptions as in Theorem 3.1 and properly chosen parameters, after

o ((n + ,f2) log(!)) IFO calls, the output xa satisfies

E[f(Xa) - f(x*)] < .

We give a proof with specific parameter choices in the appendix. Observe the

dependence on (in our result: for 'mii < 0, we have (> 1, which implies that

negative space curvature adversarially affects convergence rate; while for Kmin ;> 0,

we have (= 1, which implies that for nonnegatively curved manifolds, the impact

of curvature is not explicit. In the rest of our analysis we will see a similar effect of

sectional curvature; this phenomenon seems innate to manifold optimization (also

see Zhang and Sra [2016]).

In the analysis we do not assume each fi to be g-convex, which resulted in a

worse dependence on the condition number. We note that a similar result was

obtained in linear space Garber and Hazan [2015]. However, we will see in the

next section that by generalizing the analysis for gradient dominated functions in

Reddi et al. [2016], we are able to greatly improve this dependence.

3.3.2 Convergence analysis for geodesically nonconvex functions

In this section, we analyze global complexity of RSVRGfor solving (3.1), where each

fi is only required to be L-g-smooth, and neither fi nor f need be g-convex. We

measure convergence to a stationary point using flVf (x)11 2 following Ghadimi and

Lan [2013]. Note, however, that here Vf(x) c TM and IVf(x)II is defined via

the inner product in TM. We first note that Riemannian-SGD on nonconvex L-

65

g-smooth problems attains 0(1/ 2) convergence as SGD Ghadimi and Lan [2013]

holds; we relegate the details to the appendix.

Recently, two groups independently proved that variance reduction also ben-

efits stochastic gradient methods for nonconvex smooth finite-sum optimization

problems, with different analysis Allen-Zhu and Hazan [2016], Reddi et al. [2016].

Our analysis for nonconvex RSVRGis inspired by Reddi et al. [2016]. Our main

result for this section is Theorem 3.2.

Theorem 3.2. Assume in (3.1) each fi is L-g-smooth, the sectional curvature in X is

lower bounded by rmin, and we run Algorithm 1 with Option II. Then there exist universal

constants po G (0,1), v > 0 such that if we set 7] = po/(Ln"a1(2) (0 < a1 < 1 and

0 < a2 < 2), m = [n 3 1/ 2 /(3po(1 - 22)] and T = mS, we have

IE~~j~f(Xa)121 < LneTI('1C2[f(x)-f(x*)]

where x* is an optimal solution to equation 3.1.

The key challenge in proving Theorem 3.2 in the Riemannian setting is to in-

corporate the impact of using a nonlinear metric. Similar to the g-convex case,

the nonlienar metric impacts the convergence, notably through the constant (that

depends on a lower-bound on sectional curvature.

Reddi et al. [2016] suggested setting a1 = 2/3, in which case we obtain the

following corollary.

Corollary 3.2. With assumptions and parameters in Theorem 3.2, choosing a1 = 2/3, the

IFO complexity for achieving an c-accurate solution is:

IFO calls f 0 (n + (n 2/ 3 (1-a2/)) , if a2 < 1/2,

0 (n(2a2-1 + (n 2/ 3 (02/C)) , if a 2 > 1/2.

Setting a2 = 1/2 in Corollary 3.2 immediately leads to Corollary 3.3:

Corollary 3.3. With assumptions in Theorem 3.2 and a1 = 2/3, a2 = 1/2, the IFO

complexity for achieving an c-accurate solution is 0 (n + (n2 / 3(1/ 2 /)).

66

Algorithm 2: GD-SVRG(x0 , m, r, S, K)

Parameters: update frequency m, learning rate q, number of epochs S, K, x0

1 for k=0,...,K -l do
2 1 Xk+1 = RSVRG(Xkm, q, S) with Option II;
3 end

Output: XK

The same reasoning allows us to also capture the class of gradient dominated

functions (3.2), for which Reddi et al. [2016] proved that SVRG converges linearly

to a global optimum. We have the following corresponding theorem for RSVRG:

Theorem 3.3. Suppose that in addition to the assumptions in Theorem 3.2, f is T-gradient

dominated. Then there exist universal constants [to G (0, 1),v > 0 such that if we run Al-

gorithm 2 with j = po/(Ln2/ 3(1 /2), m = Ln/(3po)J, S = (6 + ")Lr(1/2[uo/ (n 1/3)],

we have

E[|Vf(xK)f1 2] 2f2Vf(x 0) 12

E[f(xK) -f(X*j<-K (XO) _ f(X*)1

We summarize the implication of Theorem 3.3 as follows (note the dependence

on curvature):

Corollary 3.4. With Algorithm 2 and the parameters in Theorem 3.3, the IFO complex-

ity to compute an E-accurate solution for a gradient dominated function f is O((n +

LT(1/ 2 n 2/ 3) log(1/E)).

A typical example of gradient dominated function is a strongly g-convex func-

tion (see appendix). Specifically, we have the following corollary, which prove

linear convergence rate of RSVRGwith the same assumptions as in Theorem 3.1,

improving the dependence on the condition number.

Corollary 3.5. With Algorithm 2 and the parameters in Theorem 3.3, the IFO complex-

ity to compute an c-accurate solution for a p-strongly g-convex function f is O((n +

P 1 L(1/ 2n 2 /3) log(I/C)).

67

3.4 Applications

3.4.1 Computing the leading eigenvector

In this section, we apply our analysis of RSVRGfor gradient dominated functions

(Theorem 3.3) to fast eigenvector computation, a fundamental problem that is still

being actively researched in the big-data setting Garber and Hazan [2015], Jin et al.

[2015], Shamir [2015]. For the problem of computing the leading eigenvector, i.e.,

min -x T (Z ziz z) x-T Ax = (x), (3.5)
XT X=1 \ Z=1 /

existing analyses for state-of-the-art algorithms typically result in 0(1/62) depen-

dence on the eigengap 6 of A, as opposed to the conjectured 0(1/6) dependence

Shamir [2015], as well as the 0(1/6) dependence of power iteration. Here we give

new support for the 0(1/6) conjecture. Note that Problem (3.5) seen as one in

Rd is nonconvex, with negative semidefinite Hessian everywhere, and has non-

linear constraints. However, we show that on the hypersphere d-1 Problem (3.5)

is unconstrained, and has gradient dominated objective. In particular we have the

following result:

Theorem 3.4. Suppose A has eigenvalues Al > A2 > > Ad and 6 = A - A 2, and x0 is

drawn uniformly randomly on the hypersphere. Then with probability 1 - p, xO falls in a

Riemannian ball of a global optimum of the objective function, within which the objective

function is O(--)-gradient dominated.

We provide the proof of Theorem 3.4 in appendix. Theorem 3.4 gives new in-

sights for why the conjecture might be true - once it is shown that with a constant

stepsize and with high probability (both independent of 6) the iterates remain in

such a Riemannian ball, applying Corollary 3.4 one can immediately prove the

0(1/6) dependence conjecture. We leave this analysis as future work.

Next we show that variance reduced PCA (VR-PCA) Shamir [2015] is closely

related to RSVRG. We implement Riemannian SVRG for PCA, and use the code

for VR-PCA in Shamir [2015]. Analytic forms for exponential map and parallel

68

transport on hypersphere can be found in [Absil et al., 2009b, Example 5.4.1; Ex-

ample 8.1.1]. We conduct well-controlled experiments comparing the performance

of two algorithms. Specifically, to investigate the dependence of convergence on 6,

for each 6 = 10- 3 /k where k = 1, . .. , 25, we generate a d x n matrix Z = (zi, ... , z,)

where d = 103, n = 10' using the method Z = UDVT where U, V are orthonormal

matrices and D is a diagonal matrix, as described in Shamir [2015]. Note that A

has the same eigenvalues as D2 . All the data matrices share the same U, V and

only differ in 6 (thus also in D). We also fix the same random initialization xO and

random seed. We run both algorithms on each matrix for 50 epochs. For every

five epochs, we estimate the number of epochs required to double its accuracy 2.

This number can serve as an indicator of the global complexity of the algorithm.

We plot this number for different epochs against 1/6, shown in Figure 3-2. Note

that the performance of RSVRG and VR-PCA with the same stepsize is very simi-

lar, which implies a close connection of the two. Indeed, the update x used in

Shamir [2015] and others is a well-known approximation to the exponential map

Expx(v) with small stepsize (a.k.a. retraction). Also note the complexity of both

algorithms seems to have an asymptotically linear dependence on 1/6.

10-2 6=le-3 100 RSVRG 100 VR-PCA

- RSVRG
110-4 --- -VR-PCA 1 51-5UU) a)

-3 50 21-25 50 21-25
-31-35 .- 31-35

C. 1 -41-45 - 41-45

0-0 0
0 2 4 6 0 1 2 3 0 1 2 3

#IFO calls x1 0 5 1/1 x10 1/6 X104

Figure 3-2: Computing the leading eigenvector. Left: RSVRG and VR-PCA are indistin-
guishable in terms of IFO complexity. Middle and right: Complexity appears to depend on
1/6. x-axis shows the inverse of eigengap 6, y-axis shows the estimated number of epochs
required to double the accuracy. Lines represent different epoch index. All variables are
controlled except for 6.

2Accuracy is measured by ,(x"f(x*) i.e. the relative error between the objective value andIf(x*)I
the optimum. We measure how much the error has been reduced after each five epochs, which is a
multiplicative factor c < 1 on the error at the start of each five epochs. Then we use log(2)/ log(1/c) *
5 as the estimate, assuming c stays constant.

69

3.4.2 Computing the Riemannian centroid

In this subsection we validate that RSVRG converges linearly for averaging PSD

matrices under the Riemannian metric. The problem for finding the Riemannian

centroid of a set of PSD matrices {Ai}?_ 1 is

X* = arg min {f (X; {Ai} 1) A S1 log(X-1/2AiX-1/2)112
X>-O i=F

where X is also a PSD matrix. This is a geodesically strongly convex problem, yet

nonconvex in Euclidean space. It has been studied both in matrix computation and

in various applications Bhatia [2007], Jeuris et al. [2012]. We use the same experi-

ment setting as described in Zhang and Sra [2016] 3, and compare RsVRG against

Riemannian full gradient (RGD) and stochastic gradient (RSGD) algorithms (Fig-

ure 3-3). Other methods for this problem include the relaxed Richardson itera-

tion algorithm Bini and lannazzo [2013], the approximated joint diagonalization

algorithm Congedo et al. [2015], and Riemannian Newton and quasi-Newton type

methods, notably the limited-memory Riemannian BFGS Yuan et al. [2016]. How-

ever, none of these methods were shown to greatly outperform RGD, especially in

data science applications where n is large and extremely small optimization error

is not required.

Note that the objective is sum of squared Riemannian distances in a nonposi-

tively curved space, thus is (2n)-strongly g-convex and (2n()-g-smooth. Accord-

ing to the proof of Corollary 3.1 (see appendix) the optimal stepsize for RsvRG is

O(1/(('n)). For all the experiments, we initialize all the algorithms using the arith-

metic mean of the matrices. We set - I J, and choose m = n in Algorithm 1

for RSVRG, and use suggested parameters from Zhang and Sra [2016] for other al-

gorithms. The results suggest RSVRGhas clear advantage in the large scale setting.

3We generate 100 x 100 random PSD matrices using the Matrix Mean Toolbox Bini and Iannazzo
[20131 with normalization so that the norm of each matrix equals 1.

70

N=100,Q=1e2 1 N=100,O=1e8 1 N=1000,Q=1e2 1 N=1000,Q=1e8

10 0 0 0

10 100 10 10
R7 1 0 U0GO RG0 CURD ~ -G G

RSG GD RSGD - RSGD
- RSVRG - RSVRG - RSVRG - RSVRG

0 1000 2000 0 1000 2000 0 5000 10000 0 5000 10000
#WFO calls #iFO calls #lFO calls #lFO calls

Figure 3-3: Riemannian mean of PSD matrices. N: number of matrices, Q: conditional
number of each matrix. x-axis shows the actual number of IFO calls, y-axis show f(X) -
f(X*) in log scale. Lines show the performance of different algorithms in colors. Note that
RSVRG achieves linear convergence and is especially advantageous for large dataset.

3.5 Discussion

We introduce Riemannian SVRG, the first variance reduced stochastic gradient al-

gorithm for Riemannian optimization. In addition, we analyze its global complex-

ity for optimizing geodesically strongly convex, convex, and nonconvex functions,

explicitly showing their dependence on sectional curvature. Our experiments val-

idate our analysis that Riemannian SVRG is much faster than full gradient and

stochastic gradient methods for solving finite-sum optimization problems on Rie-

mannian manifolds.

Our analysis of computing the leading eigenvector as a Riemannian optimiza-

tion problem is also worth noting: a nonconvex problem with nonpositive Hessian

and nonlinear constraints in the ambient space turns out to be gradient dominated

on the manifold. We believe this shows the promise of theoretical study of Rie-

mannian optimization, and geometric optimization in general, and we hope it en-

courages other researchers in the community to join this endeavor.

Our work also has limitations - most practical Riemannian optimization al-

gorithms use retraction and vector transport to efficiently approximate the expo-

nential map and parallel transport, which we do not analyze in this work. A sys-

tematic study of retraction and vector transport is an important topic for future

research. For other applications of Riemannian optimization such as low-rank ma-

trix completion Vandereycken [2013], covariance matrix estimation Wiesel [2012]

and subspace tracking Edelman et al. [1998], we believe it would also be promising

to apply fast incremental gradient algorithms in the large scale setting.

71

3.6 Proofs

3.6.1 Proofs for Section 3.3.1

Theorem 3.1. Assume in (3.1) each fi is L-g-smooth, and f is p-strongly g-convex,

then if we run Algorithm 1 with Option I and parameters that satisfy

30rL2
0z= - 2L2 +

[p- 2 TL2

(1 4(72 - 2I")m(p - 5rI0L2)
p[-2(r7L2

then with S outer loops, the Riemannian SVRG algorithm produces an iterate xa

that satisfies

Ed 2 (Xa, X*) < osd2 (X, x*).

Proof. We start by bounding the squared norm of the variance reduced gradient.

Since v+ 1 V +1) _ 1 () - gS+l), conditioned on xs+1 and taking

expectation with respect to It, we obtain:

E||I-)I 112 E Vf (xs+1) - L (Vf(-s)
2

g9S +1l)

s+1 s+1 2

E (Vfi, (xs 1') - F f(i) + F t (Vf (zF) - F-2Vf (x*))V\it(L I ;'

s+1 2
< 2E Vf(S+1) - v f)

=2E I Vfi,(X8+1)

< 2L2 Expj 1 Q(
2 2 x t

< 2L 2 (Exp- 1 (

s+1 2

+ 2E Fi (vf (I) - F *Vf (x*))

_ t 3) + 2 IE Vf (s) - FilVf (*)1 2

S) - 2L2 Exp.,(x *) 2

x*) + Exp J (x*) + 2L2 IlExp,-l(x*) 12

2
< 4L 2 Expt-ix*

x tX;1(* +6L2 Exp1 (x *) 2

We use Ila + bl1 2 21 a 2 + 2 b 12 twice, in the first and fourth inequalities. The

second equality is due to Vf(x*) = 0. The second inequality is due to the L-g-

smoothness assumption. The third inequality is due to triangle inequality.

72

Notice that Ev'+1 + Vf(W1) and xsj = Expxs+1 (- qvs+1), we thus have

Ed2 (Xzj,x*) < d2 (+ 1, x*) + 2i7(Exp- 1 (x*), Evt) + (Tj 2E1 Vt1 2

xt

d2 (X* 1,x*) + 27(Exp- 1 (x*), Vf (+ 1))
It

+h (2 L 2 (4d2 (Xs+1 , X*) + 6d2 (51, x*))

* (1 + 4 (2 L2 - qp) d2 (Xs+ 1 , x*) + 6(;I 2 L 2 d2 (:e, x*)

+ 2q (f(x*) - f (xs+l))

(1+ 4 (2 L 2 - 2iy) d2 (s+ 1 , x*) + 6(7 2 L 2 d2(.s I1)

The first inequality uses the trigonometric distance lemma, the second one uses

previously obtained bound for Elvt 11 2, the third and fourth use the P-strong g-

convexity of f(x).

We now denote ut A Ed2 (x+,x *), q 1 + 40 2 L2 - 2rIp A 66j 2L 2/(1 - q).

Hence by taking expectation with all the history, and noting:F = s+, we have

ut+1 < qut+p(1-q)uo, i.e. ut+1-puo < q(ut-puo). Therefore, um-puO q'(UO--pUo),

hence we get

Um < (p + qm (_ p)) uO,

where p+ qm(_) = 23L 2 + (+22 2) a. It follows directly from

the algorithm that after S outer loops, Ed2 (Xa, X*) = Ed2 (9 s, X*) < aS d2 (XO I*). E]

Corollary 3.1. With assumptions as in Theorem 3.1 and properly chosen parame-

ters, after 0 ((n + {i) log(')) IFO calls, the output xa satisfies

E[f(xa) - f(x*)] < c.

Proof. Assume we choose = [t/(17(L2) and m > 10(L2/ft 2 , it follows that q

1 - 30yp 2 /(289(L 2) < I _ 2 /(10(L 2),p = 1/5 and therefore

UM + 4(1 - 2/(10(L2))1(L242 U I + u < ,

where the second inequality is due to (1 - x)l/x < 1/e for x E (0, 1). Applying

Theorem 3.1 with a = 1/2, we have Ed2 (Xa, X*) < 2-sd2(xo, x*). Note that by us-

ing the L-g-smooth assumption, we also get E[f(xa) - f(x*)] < E ['Ld2 (Xa, x*)] <

2-s-lLd2 (xo, *). It thus suffices to run log2 (Ld2 (x0 , x*)/c) - 1 outer loops to guar-

73

antee E[f(Xa) - f(x*)] < E.

For the s-th outer loop, we need n IFO calls to evaluate the full gradient at C,

and 2m IFO calls when calculating each variance reduced gradient. Hence the total

number of IFO calls to reach c accuracy is O ((n + C)log() .

3.6.2 Proofs for Section 3.3.2

Theorem 3.5. Assuming the inverse exponential map is well-defined on X, f : X -+ R is

a geodesically L-smoothfunction, stochastic first-order oracle Vf (x) satisfies E[Vf(x')] =

Vf (xt), |Vf(x)11 2 < 0
2 , then the SGD algorithm x'+1 = Expx (-4V f(x t)) with r =

C1V"T_ 2(C(xo)-f (x*))
c/ Tc= satisfies

min E[lVf (xt) 2] < Tx)
_~<- T

Proof.

L
E[f (xt +1)] < E[f (xt) + (Vf (x), Exp-1(x t+1)) + LExp-(x t +11 2]

< E[f (xt)] - nE[HVf (xt)fl2] + Lrj 2 E[HlVf(x t)12]2
Lr12

E[f (xt)] - r/E[lVf (xt)12] + L 2
2

After rearrangement, we obtain

1
< -E[f (X t) f(Xt1)] + Lr 2

2

Summing up the above equation from t = 0 to T - 1 and using r_ c/ vT where

c= 2(f (x0) --f (x*))
C =Lo 2

we obtain
T-1

minE[I Vf(x)1l 2] Z E[Ilf(x)112] <

t=O
IE[f (x)

1
< q(f (xO)-f (x*))

] + L 2

2
+2

2(f(x) - f(x*))L
- x:T

D

74

El

E[JIVf (x))112]

Lemma 3.2. Assume in (3.1) each fi is L-g-smooth, the sectional curvature in X is lower

bounded by , and we run Algorithm 1 with Option II. For ct, ct+1 , 3,,q > 0, suppose

we have

Ct ct+1 (1 + * + 2(L 2,q2) + L 3
2

2

and

(= - ct+127 - Lq2 - 2ct+1(,q2 > 0,
/3

then the iterate xs+1 satisfies the bound:

Rs+1 _ Rs+1
E [IlVf(Xzs+1)l 2] t t+1

where R+ 1 : E[f (xs+1) + ctIIExp.,(+ 1 2] for 0 < s < S - 1.

Proof. Since f is L-smooth we have

L
E[f (x'4i)] < E[f (x+l) + (Vf (xs+1), Exp- 1 (x')) + -IlExp- 1 (xsi1)112]

f E[f (xf+() _ +)1 2 + 1 +1 2] (3.6)

Consider now the Lyapunov function

Rs+1 := E[f (xs+1) + ct lExp, (x'+1) 2]

For bounding it we will require the following:

E[IlExp-'(xZ'Q$) |2] < E[||Exp-8 (xs+1) 2 + jl Exp 1 (xs$l) 12

- 2(Exp- 1 (xs+'), Exp-1(z)]

= E[lExp- 1i(4+1)
2 + (2723+1 2

+ 2r(Vf (x'+'), Exp-(z
xt

<E[IlExp-'(xs+1) 2 + (72 Vs+ 1 21

+ 2r/E |1Vf (Xs+112 + ExpJ (xs+1)1 21 (3.7)

where the first inequality is due to Lemma 2.1, the second due to 2(a, b) < a I2 +

/31 b I2. Plugging Equation (3.6) and Equation (3.7) into Rs4j, we obtain the follow-

75

ing bound:

(+1) - g|HVf(x ts 1)f 2 + L v + 2

+ ct+ 1 E[IlExp 1 (+1) ,2+(r/ 2Hv+1 2]

+ 2ct+1 ',E IVf (os+1

E [f(4+1) - (
)1 2 + -HExp-s (x'+1)2 (

Ct+ 7)

+ (Ct+1+ ct+1 '/) E [IlExpA (,+ 1 12]

It remains to bound E [Iv V+1 2]. Denoting As+1 +fwi (x1+') -

have E[AS+1] =

S)1F; Vfit~),w
(1

Vf (xt) - ,j, Vf (is), and thus

E[IlVs+11 2] = E ts1)11~z" 2

- E IAs+ - E[As+1]+ Vf(Xs+l 2]

2E[lAs+l - E[zAs+l1 12] + 2E[IlVf(x-+') 1 2

2E[lAs+ 1 2] + 2E[IlVf(s+')1 2]

2L2 E[IlExp- (x'+1)12] + 2E[H Vf (x+') 12] (3.9)

where the first inequality is due to Ila + b11 2 < 211al 2 + 211bH1 2 , the second due to

Ell - E 112 = EF 1|12 - flE Il 2 < EJ J2 for any random vector in any tangent

space, the third due to L-g-smooth assumption. Substituting Equation (3.9) into

Equation (3.8) we get

- (7 Ct+ 1 T)

/3
L2 - 2ct+12)

+ (ct+1 (1 + /32 + 2 L2 2) + L3 2) E [HlExp1(xsi+') 2

RS+1- (t+i-

Rearranging terms completes the proof.

L'rf - 2ct+12) E

Theorem 3.6. With assumptions as in Lemma 3.2, let c, = 0, 1 > 0, 3 > 0, and ct =

ct+1 (1 + OTI + 2(L 2,q2) + L3'T2 such that 6(t) > Ofor 0 < t < m - 1. Define the quantity

76

R,"i4 E[f

(3.8)

(3.10)

ED

+(2
+2)+(r E [|| S+12

Rs+1 < E f (Xs+1) IlVf (X8+112

[IIVf (X S+1 12]

6n := mint 6(t), and let T = mS. Then for the output xa from Option II we have

E[IlVf (Xa)12) - (X*)
T on

Proof. Using Lemma 3.2 and telescoping the sum, we obtain

m-1 Rs+1 _ Rs+1
S+1)12] < 0 m

t=O

Since cm = 0 and x+1 = , s we thus have

Tn-1 + EV (z"-r) - fhIe+I13
E[IVf(x+ 1 12 < (3.11)

t=O 6

Now sum over all epochs to obtain

IS-1 m--1+ ('-0)-f(
I Z E[Vf(xts+1) 2 f(20 - fx*) (3.12)

Note the definition Of Xa implies that the left hand side of (3.12) is exactly E[I Vf(Xa) 12].

Theorem 3.2. Assume in (3.1) each fi is L-g-smooth, the sectional curvature in X

is lower bounded by Kmin, and we run Algorithm 1 with Option II. Then there

exist universal constants yo E (0, 1), v > 0 such that if we set Tq po/(LnalQ2)

(0 < a1 < 1 and 0 < a 2 < 2), n = [n3 a/ 2 /(3o(1- 202) and T =mS, we have

EflVf (Xa)1,21 < Lna1(a2 [f(XO) - f(x*)
Tv

where x* is an optimal solution to the problem in (1).

Proof. Let 1 = L(a2/nal/ 2 . From the recurrence relation ct = ct+1 (1 + 37) + 2(L2
77

2)+

L 3 r 2 and cm = 0 we have

P 2L (1 + O)mn - I
C0 =n 2 a1(2 a2 0

where

/,0+a2 212 (/0(12a2 3O(1-2a2

0 = q + 2(I2 L =+ 2 1 E +3ca1/2 ' 3 /2)
Notice that 0 < 1/m so that (1 + 0)" < C. We can thus bound co by

co -(-- i)

77

and in turn bound 6, by

=m6i, r --

> (- _

ct+1r l 2L - 2ct+12

-7
2L - 2co(q2

[o(C -- 1) po0
(2-a2 71"(a2

2po(e - 1)
n 3ai/2(C2

Lnai(a2

where the last inequality holds for small enough po, as (, n > 1. For example,

it holds for po = 1/10, v = 1/20. Substituting the above bound in Theorem 3.6

Dlconcludes the proof.

Corollary 3.2. With assumptions and parameters in Theorem 3.2, choosing a, =

2/3, the IFO complexity for achieving an -accurate solution is:

IFO calls -
0 (n + (n 2 /

3
(1-02/E)) ,

on n(2a2-1 + (n 2 / 3 (Q2/6))

if a2 < 1/2,

if a2 > 1/2.

Proof. Note that to reach an E-accurate solution, O(na (12/(me)) 0 (1+n-1/ 3 (1-a2 /C)

epochs are required. On the other hand, one epoch takes 0 (n(1 + (202-1)) IFO

calls. Thus the total amount of IFO calls is 0 (n(i + (22-1)(1 + n-1/ 3 (-a2/C)).

Simplify to get the stated result. ED

Theorem 3.3. Suppose that in addition to the assumptions in Theorem 3.2, f is T-

gradient dominated. Then there exist universal constants po E (0, 1), v > 0 such

that if we run Algorithm 2 with q = po/(Ln 2 / 3 (1/ 2), mn = Ln/(3to)], S = F(6 +
18to)LT(1/2 Io/(n1/3)-, we have

E[I1fVf(xK)1 2 -K 117f(Xo)1 2,

E[f(xK) -f(X*)1 < 2K O _ *

Proof. Apply Theorem 3.2. Observe that for each run of Algorithm 1 with Option

II we now have T = mS > 2LTr 2 /3 (1/2 /v, which implies

1 1--E[f (Xk+l) - f (X*)] < E[Vf (Xk+l)1 2] < E[f (X')
T 2T

1
- f (x*)] < -E[IfVf (xk) 12

2

The theorem follows by recursive application of the above inequality.

78

D

Corollary 3.4. With Algorithm 2 and the parameters in Theorem 3.3, the IFO com-

plexity to compute an -accurate solution for gradient dominated function f is

O((n + LT(1/ 2 n2 / 3) log(I/C)).

Proof. We need O((n + m)S) = O(n + LT(1/ 2 n2/3) IFO calls in a run of Algorithm

1 to double the accuracy, thus in Algorithm 2, K O(log(1/c)) runs are needed to

reach c-accuracy. D

Corollary 3.5. With Algorithm 2 and the parameters in Theorem 3.3, the IFO com-

plexity to compute an c-accurate solution for a p-strongly g-convex function f is

O((n + p- 1L(1 / 2n 2/3) log(I/e)).

Proof. Assume x* is the minimizer of f and f is p-strongly g-convex, then we have

f (x*) = min f (y)
y

> min f(x) + (Vf (x), Exp- 1(y)) + YExp-1(y) 12

1 1
f(x) - |IVf(X)l 2 + mI -|IVf(x) + pExp;-1(y) 12

2 p Y 2 p
1

Sf (x) - IIVf (X)11 2
2p

where we get the first inequality by strong g-convexity, the second equality by

completing the squares, and the second inequality by choosing y = Expx (-lvf(x) .

Thus f(x) is (1/(2p))-gradient dominated, and choosing T = 1/(2p) in Corollary

3.4 concludes the proof. D

3.6.3 Proof for Section 3.4.1

Theorem 3.4. Suppose A has eigenvalues A, > A2 - > Ad and 6 = A - A2, and

X0 is drawn uniformly randomly on the hypersphere. Then with probability 1 - p,

XO falls in a Riemannian ball of a global optimum of the objective function, within

which the objective function is O(d)-gradient dominated.

Proof. We write x in the basis of A's eigenvectors {vi}_ 1 with corresponding eigen-

values A1 > A2 - > Ad, i.e. x -- _ aivi. Thus Ax a A-v- and

79

f(x) =- E_ a'A. The Riemannian gradient of f(x) is PxVf(x) = -2(1 -

xxT)Ax = -2(Ax + f(x)x) = -2 Ed_ ai (A - Ed ajA)vi (see [Absil et al., 2009b,

Example 3.6.1]). Now consider a Riemannian ball on the hypersphere defined by

BE {: x E Sd, a, > E}, note that the center of B, is the first eigenvector. We

apply a case by case argument with respect to f(x) - f(x*). If f(x) - f(x*) > , we

can lower bound the gradient by

pVf(x) 12 = - Ed_ 2 E aa - 2 = 2 a _ (f(x) -(X*))2

>a 6(f(x) - f(X*)) > 1626(f(x) - f(X*))

The last equality follows from the fact that f(x*) = -A 1 and f(x) =- Z_ 1 a2 A,.

On the other hand, if f(x) - f(x*) < , for i = 2, ... , d, since -Ai - f(*) > 6, we

have -Ai - f (x) > !(-Ai - f(x*)) > 6/2. We can, again, lower bound the gradient

by

|PXVf(x)1 2 = 4 a - z a 2 4 a 2(A - aEd)

> E a2 (A, - Ai) 2 6Ed a 2 (A, - A) = 6(f(x) - f(*))

Combining the two cases, we have that within B, the objective function (3.5) is

max{ ' }-gradient dominated. Finally, observe that if x0 is chosen uniformly at

random on Sd-1, then with probability at least 1 - p, a2 Q(=:), i.e. there exists

some constant c > 0 such that } < Dd

80

Towards Riemannian Accelerated

Gradient Method

We propose a Riemannian version of Nesterov's Accelerated Gradient algorithm
(RAGD), and show that for geodesically smooth and strongly convex problems,
within a neighborhood of the minimizer whose radius depends on the condition
number as well as the sectional curvature of the manifold, RAGD converges to the
minimizer with acceleration. Unlike the algorithm in [Liu et al., 2017] that requires
the exact solution to a nonlinear equation which in turn may be intractable, our al-
gorithm is constructive and computationally tractable'. Our proof exploits a new
estimate sequence and a novel bound on the nonlinear metric distortion, both ideas

1 as long as Riemannian gradient, exponential map and its inverse are computationally tractable,
which is the case for many matrix manifolds [Absil et al., 2009b].

81

may be of independent interest.

4.1 Introduction

Convex optimization theory has been a fruitful area of research for decades, with

classic work such as the ellipsoid algorithm [Khachiyan, 1980] and the interior

point methods [Karmarkar, 1984]. However, with the rise of machine learning and

data science, growing problem sizes have shifted the community's focus to first-

order methods such as gradient descent and stochastic gradient descent. Over

the years, impressive theoretical progress has also been made here, helping elu-

cidate problem characteristics and bringing insights that drive the discovery of

provably faster algorithms, notably Nesterov's accelerated gradient descent [Nes-

terov, 1983] and variance reduced incremental gradient methods [e.g., Defazio

et al., 2014, Johnson and Zhang, 2013, Schmidt et al., 2013].

Outside convex optimization, however, despite some recent progress on non-

convex optimization our theoretical understanding remains limited. Nonethe-

less, nonconvexity pervades machine learning applications and motivates iden-

tification and study of specialized structure that enables sharper theoretical anal-

ysis, e.g., optimality bounds, global complexity, or faster algorithms. Some ex-

amples include, problems with low-rank structure [Boumal et al., 2016b, Ge et al.,

2017, Kawaguchi, 2016, Sun et al., 2017]; local convergence rates [Agarwal et al.,

2016, Carmon et al., 2016, Ghadimi and Lan, 2013, Reddi et al., 2016]; growth con-

ditions that enable fast convergence [Attouch et al., 2013, Polyak, 1963, Shamir,

2015, Zhang et al., 2016]; and nonlinear constraints based on Riemannian man-

ifolds [Boumal et al., 2016a, Mishra and Sepulchre, 2016, Zhang and Sra, 2016,

Zhang et al., 2016], or more general metric spaces [Ambrosio et al., 2014, Bacalk,

2014].

In this chapter, we focus on nonconvexity from a Riemannian viewpoint and

consider gradient based optimization. In particular, we are motivated by Nes-

terov's accelerated gradient method [Nesterov, 1983], a landmark result in the the-

82

ory of first-order optimization. By introducing an ingenious "estimate sequence"

technique, Nesterov [1983] devised a first-order algorithm that provably outper-

forms gradient descent, and is optimal (in a first-order oracle model) up to con-

stant factors. This result bridges the gap between the lower and upper complexity

bounds in smooth first-order convex optimization [Nemirovsky and Yudin, 1983,

Nesterov, 2004].

Following this seminal work, other researchers also developed different analy-

ses to explain the phenomenon of acceleration. However, both the original proof

of Nesterov and all other existing analyses rely heavily on the linear structure of

vector spaces. Therefore, our central question is:

Is linear space structure necessary to achieve acceleration?

Given that the iteration complexity theory of gradient descent generalizes to Rie-

mannian manifolds [Zhang and Sra, 2016], it is tempting to hypothesize that a

Riemannian generalization of accelerated gradient methods also works. However,

the nonlinear nature of Riemannian geometry poses significant obstructions to ei-

ther verify or refute such a hypothesis. The aim of this chapter is to study existence

of accelerated gradient methods on Riemannian manifolds, while identifying and

tackling key obstructions and obtaining new tools for global analysis of optimiza-

tion on Riemannian manifolds as a byproduct.

It is important to note that in a recent work [Liu et al., 2017], the authors claimed

to have developed Nesterov-style methods on Riemannian manifolds and ana-

lyzed their convergence rates. Unfortunately, this is not the case, since their al-

gorithm requires the exact solution to a nonlinear equation [Liu et al., 2017, (4) and

(5)] on the manifold at every iteration. In fact, solving this nonlinear equation itself

can be as difficult as solving the original optimization problem.

4.1.1 Related work

The first accelerated gradient method in vector space along with the concept of

estimate sequence is proposed by Nesterov [1983]; [Nesterov, 2004, Chapter 2.2.1]

83

contains an expository introduction. In recent years, there has been a surging in-

terest to either develop new analysis for Nesterov's algorithm or invent new ac-

celerated gradient methods. In particular, Flammarion and Bach [2015], Su et al.

[2014], Wibisono et al. [2016] take a dynamical system viewpoint, modeling the

continuous time limit of Nesterov's algorithm as a second-order ordinary differ-

ential equation. Allen-Zhu and Orecchia [2014] reinterpret Nesterov's algorithm

as the linear coupling of a gradient step and a mirror descent step, which also

leads to accelerated gradient methods for smoothness defined with non-Euclidean

norms. Arjevani et al. [2015] reinvent Nesterov's algorithm by considering optimal

methods for optimizing polynomials. Bubeck et al. [2015] develop an alternative

accelerated method with a geometric explanation. Lessard et al. [2016] use theory

from robust control to derive convergence rates for Nesterov's algorithm.

The design and analysis of Riemannian optimization algorithms as well as

some historical perspectives were covered in details in [Absil et al., 2009b], al-

though the analysis only focused on local convergence. The first global conver-

gence result was derived in [Udriste, 1994] under the assumption that the Rie-

mannian Hessian is positive definite. Zhang and Sra [2016] established the glob-

ally convergence rate of Riemannian gradient descent algorithm for optimizing

geodesically convex functions on Riemannian manifolds. Other nonlocal analy-

ses of Riemannian optimization algorithms include stochastic gradient algorithm

[Zhang and Sra, 2016], fast incremental algorithm [Kasai et al., 2016, Zhang et al.,

2016], proximal point algorithm [Ferreira and Oliveira, 2002] and trust-region al-

gorithm [Boumal et al., 2016a]. Absil et al. [2009b, Chapter 2] also surveyed some

important applications of Riemannian optimization.

4.1.2 Summary of results

In this chapter, we make the following contributions:

1. We propose the first computationally tractable accelerated gradient algorithm

that, within a radius from the minimizer that depends on the condition num-

84

ber and sectional curvature bounds, is provably faster than gradient descent

methods on Riemannian manifolds with bounded sectional curvatures. (Al-

gorithm 4, Theorem 4.3)

2. We analyze the convergence of this algorithm using a new estimate sequence,

which relaxes Nesterov's original assumption and also generalizes to Rie-

mannian optimization. (Lemma 4.3)

3. We develop a novel bound related to the bi-Lipschitz property of exponen-

tial maps on Riemannian manifolds. This fundamental geometric result is

essential for our convergence analysis, but should also have other interesting

applications. (Theorem 4.2)

4.2 Background

We briefly review concepts in Riemannian geometry that are related to our analy-

sis; for a thorough introduction one standard text is [e.g. Jost, 2011]. A Riemannian

manifold (M, g) is a real smooth manifold M equipped with a Riemannain metric

g. The metric g induces an inner product structure on each tangent space TM

associated with every x c M. We denote the inner product of u, v C TxM as

(u, v) x(u, v); and the norm of u E TxM is defined as j|u|j| A gzx(u, u); we omit

the index x for brevity wherever it is obvious from the context. The angle between

u, v is defined as arecos ('u . A geodesic is a constant speed curve y : [0, 1] - Mlull llVII~

that is locally distance minimizing. An exponential map Expx : TxM -+ M maps

v in TxM to y on M, such that there is a geodesic y with y(0) = X,1(1) = y
and ' (0) A d'y(0) = v. If between any two points in X C M there is a unique

geodesic, the exponential map has an inverse ExpX 1 X - TxM and the geodesic

is the unique shortest path with ||ExpX-1(y) Expy-1(x) the geodesic distance

between x, y c X. Parallel transport is the Riemannian analogy of vector transla-

tion, induced by the Riemannian metric.

Let u, v c TxM be linearly independent, so that they span a two dimensional

85

subspace of TM. Under the exponential map, this subspace is mapped to a two

dimensional submanifold of U c M. The sectional curvature K(x, U) is defined as

the Gauss curvature of U at x, and is a critical concept in the comparison theorems

involving geodesic triangles [Burago et al., 2001].

The notion of geodesically convex sets, geodesically (strongly) convex func-

tions and geodesically smooth functions are defined as straightforward general-

izations of the corresponding vector space objects to Riemannian manifolds. In

particular,

" A set X is called geodesically convex if for any x, y E X, there is a geodesic y

with y(0) = x, -(1) = y and -y(t) E X for t e [0, 1].

" We call a function f : X -+ R geodesically convex (g-convex) if for any x, y C X

and any geodesic y such that y(0) = x, -y(l) = y and -y(t) c X for all t E [0, 1],

it holds that

f y(t)) < (1 - t)f(x) + tf(y).

It can be shown that if the inverse exponential map is well-defined, an equiv-

alent definition is that for any x, y c X, f(y) > f (x) + (gm, Exp- (y)), where gx

is the gradient of f at x (in this work we assume f is differentiable). A func-

tion f : X - R is called geodesically ft-strongly convex (ft-strongly g-convex) if

for any x, y c X and gradient gx, it holds that

f (y) > f (x) + (gx, Exp 1 (y)) + L|Exp-1 (y)fl.

" We call a vector field g : X -a Rd geodesically L-Lipschitz (L-g-Lipschitz) if for

any x, y c X,

||g(x) - Fxg(y)|| < L||Expj (y)||,

where Fx is the parallel transport from y to x. We call a differentiable function

f : X - R geodesically L-smooth (L-g-smooth) if its gradient is L-g-Lipschitz,

in which case we have

f(y) f(x) + (g , Exp7 (y)) + 4IExp 1 (y)1 2.

Throughout our analysis, for simplicity, we make the following standing assump-

86

tions:

Assumption 4.1. X c M is a geodesically convex set where the exponential map Exp

and its inverse Exp 1 are well defined.

Assumption 4.2. The sectional curvature in X is bounded, i.e. I (x, .)I < K, Vx X.

Assumption 4.3. f is geodesically L-smooth, p-strongly convex, and assumes its mini-

mum inside X.

Assumption 4.4. All the iterates remain in X.

With these assumptions, the problem being solved can be stated formally as

minxEXCM f(x).

4.3 Proposed algorithm: RAGD

Algorithm 3: Riemannian-Nesterov(xo, yo, {hk }Tij, {A T-1)
Parameters: initial point xo c X, -yo > 0, step sizes {hk ,-}, shrinkage

parameters {/k > 0}
1 initialize vo x0

2 for k = 0,1,...,T- -- do
3 Compute ak E (0, 1) from the equation a' = hk- ((1 - ak)-k - ak/I)
4 Set 1 -- (1-- a) k+ ap

6 Choose Yk Exp k k Exp;1 (vk)

7 Compute f(Yk) and Vf(yk)
9 Set Xk+1= ExpYk (-hkVf(yk))

11 Set Vk+1= ExP (1-ak) k Exp- 1(vk) - k Vf(Yk)

12 Set -yk+ = , ik+1

13 end
14 Output: XT

Our proposed optimization procedure is shown in Algorithm 3. We assume the

algorithm is granted access to oracles that can efficiently compute the exponential

map and its inverse, as well as the Riemannian gradient of function f. In com-

parison with Nesterov's accelerated gradient method in vector space [Nesterov,

2004, p.76], we note two important differences: first, instead of linearly combining

87

(Yk)

Figure 4-1: Illustration of the geometric quantities in Algorithm 3. Left: iterates and min-
imizer x* with Yk's tangent space shown schematically. Right: the inverse exponential
maps of relevant iterates in Yks tangent space. Note that yA is on the geodesic from Xk to
Vk (Algorithm 3, Line 6); Exp- 1 (Xk+1) is in the opposite direction of gradf (Yk) (Algorithm
3, Line 9); also note how Exp 1 (Vk+1) is constructed (Algorithm 3, Line 11).

vectors, the update for iterates is computed via exponential maps; second, we in-

troduce a paired sequence of parameters {(Yk,;Yk)}I-01, for reasons that will become

clear when we analyze the convergence of the algorithm.

Algorithm 3 provides a general scheme for Nesterov-style algorithms on Rie-

mannian manifolds, leaving the choice of many parameters to users' preference.

To further simplify the parameter choice as well as the analysis, we note that the

following specific choice of parameters

_ /#2+ 4(1+/)ph/-70 = 7 =- ,
V/'2 + -4(1+#O)ph + 0

hk = h Vk > 0, #k_ 0 > 0,Vk > 0,

which leads to Algorithm 4, a constant step instantiation of the general scheme.

We leave the proof of this claim as a lemma in the Appendix.

Algorithm 4: Constant Step Riemannian-Nesterov(xo, h, 3)

Parameters: initial point xO E X, step size h < I, shrinkage parameter / > 0
1 initialize vo = O

2 _e __=_/_2+(_+)__ -___ _ ,32
+4(1+I3)h-I3 - = +2 seta +2 + 4(1)h+

3 for k = 0,1,...,T- -1 do

Choose Yk = Exp,, (j- Exp- (vk)4

5

6

Set Xk+1 = Expy, (-hVf(yk))

Set Vk+1 = Expyk (1--a)YExp-(v) - -Vf(Yk))

7 end
8 Output: XT

88

I

Exp,- (vk)
Exp+'(Vk 1)

T M Exp- (xkY~k A k(

yk1 k+1 I

0*

We move forward to analyzing the convergence properties of these two algo-

rithms in the following two sections. In Section 4.4, we first provide a novel gen-

eralization of Nesterov's estimate sequence to Riemannian manifolds, then show

that if a specific tangent space distance comparison inequality (4.8) always holds,

then Algorithm 3 converges similarly as its vector space counterpart. In Section

4.5, we establish sufficient conditions for this tangent space distance comparison

inequality to hold, specifically for Algorithm 4, and show that under these condi-

tions Algorithm 4 converges in 0 (log(1/e)) iterations, a faster rate than the

o (log(1/e)) complexity of Riemannian gradient descent.

4.4 Analysis of a new estimate sequence

First introduced in [Nesterov, 1983], estimate sequences are central tools in estab-

lishing the acceleration of Nesterov's method. We first note a weaker notion of

estimate sequences for functions whose domain is not necessarily a vector space.

Definition 4.1. A pair of sequences {1k(x) : X R I0 } and {Ak} o is called a

(weak) estimate sequence of a function f(x) X - R, if Ak -+ 0 and for all k > 0

we have:

4)k (X) <(1 - Ak)f (X*) AkTO0(X) (4.1)

This definition relaxes the original definition proposed by Nesterov [2004, def.

2.2.1], in that the latter requires 4k(x) < (1-Ak)f(x))+Ak(O(x) to hold for allx E X,

whereas our definition only assumes it holds at the minimizer x*. We note that

similar observations have been made, e.g., in [Carmon et al., 2017]. This relaxation

is essential for sparing us from fiddling with the global geometry of Riemannian

manifolds.

However, there is one major obstacle in the analysis - Nesterov's construction

of quadratic function sequence critically relies on the linear metric and does not

generalize to nonlinear space. An example is given in Figure 4-2, where we illus-

trate the distortion of distance (hence quadratic functions) in tangent spaces. The

89

key novelty in our construction is inequality (4.4) which allows a broader family of

estimate sequences, as well as inequality (4.8) which handles nonlinear metric dis-

tortion and fulfills inequality (4.4). Before delving into the analysis of our specific

construction, we recall how to construct estimate sequences and note their use in

the following two lemmas.

Lemma 4.1. Let us assume that:

1. f is geodesically L-smooth and p-strongly geodesically convex on domain X.

2. 4 0 (x) is an arbitrary function on X.

3. { Ykl}o is an arbitrary sequence in X.

4. {akk0 : ak G (0, 1), ' Ok - O-

5. Ao = 1.

Then

rules:

the pair of sequences {4k(X)}k'go, {Ak I o which satisfy the following recursive

Ak+1 = (1

Tk+1(W)= (1

- ak)Ak (4.2)

- Vk) (k (X) + ck [f(Yk) + Vf(yk), Exp-~ 1 (x)) + (4Exp-31()

(4.3)

(4.4)iak+() em ek+(n*),

is a (weak) estimate sequence.

The proof is similar to [Nesterov, 2004,

pendix 4.7.2.

Lemma 4.2. If for a (weak) estimate sequence

find a sequence of iterates {Xk }, such that

f (Xk))k --

then f(Xk) - f(X*) < Ak (4)(*) - f (X*)) -

Lemma 2.2.2] which we include in Ap-

{(Dk(X) : X - R}O% and {Ak}kco we can

min1@k(X),
0X

0.

90

Proof. By Definition 4.1 we have f(xk) < I* < 4 k(X*) < (1 - Ak)f(x*) + Ak4k(X).

Hence f(xk) - f(x*) Ak(IO(X*) - f(x*)) -+ 0.

Lemma 4.2 immediately suggest the use of (weak) estimate sequences in es-

tablishing the convergence and analyzing the convergence rate of certain iterative

algorithms. The following lemma shows that a weak estimate sequence exists for

Algorithm 3. Later in Lemma 4.5, we prove that the sequence {xk} in Algorithm 3

satisfies the requirements in Lemma 4.2 for our estimate sequence.

Lemma 4.3. Let 1 o(x) = V + 10||jExp-J(x)fl2 . Assume for all k > 0, the sequences

{Tk }, 7k}, {Vk}, { '*k} and {ak} satisfy

k+1 (-~ak)'Yk + ak/, (4.5)

(-ak)'k 1 ___

Vk+1 Exp Exp-(vk) -- Vf (Yk) (4.6)
XPk 'Yk+l Y 'Yk+1

*4+C =(1- ak) (- akf (yk) - _ Vf (yk)1 2

k+I k2%k+1

+ ak(1 - ak)- __x (Vk 2 + (Vf (yk), Exp-1(Vk)) (4.7)+~ YYk A 47

Nk+fExp- 1 1(x*) - Exp 1 (k+11
2 7k+lExp-2(x*) - Exp-('vk+11 2, (4.8)

00

ak E (0, 1), Zak oo, (4.9)
k=O

then the pair of sequence {1) k(X)ko and { Ak o 0, defined by

(Ik+1(X) + + Nk1 |lExp1 I(x) - Exp (k+ 12 (4.10)

A0 = 1, Ak+1 -- (- ak)Ak. (4.11)

is a (weak) estimate sequence.

Proof. Recall the definition of Dk+1 (x) in Equation (4.3). We claim that if 4Tk(x) -

*+E p (Expp - -J(kA 2, then we have 4)k+1(X) - +1 + flExp-() -

Exp-7(Vk+) 12. The proof of this claim requires a simple algebraic manipulation

as is noted as Lemma 4.4. Now using the assumption (4.8) we immediately get

<Dk+1(X) < 1k+1(x*). By Lemma 4.1 the proof is complete. l

91

We verify the specific form of 4k+1 (x) in Lemma 4.4, whose proof can be found

in the Appendix 4.7.3.

Lemma 4.4. For all k > 0, if 1)k (x) = * +2|-Exp-J(x) - Exp 1 (vk)||2 , then with Dk+1

defined as in (4.3), Yk+1 as in (4.5), Vk+1 as in Algorithm 3 and Ic*+1 as in (4.7) we have

Ik+ 1 (X) +1 + 4'' Exp (x) - Exp- (Vk+l)|2

The next lemma asserts that the iterates {Xk} of Algorithm 3 satisfy the require-

ment that the function values f(xk) are upper bounded by V*, defined in our esti-

mate sequence.

Lemma 4.5. Assume V = f (xo), and {*} be defined as in (4.7) with {xk} and other

terms defined as in Algorithm 3. Then we have * f (Xk) for all k > 0.

The proof is standard. We include it in Appendix 4.7.4 for completeness. Fi-

nally, we are ready to state the following theorem on the convergence rate of Algo-

rithm 3.

Theorem 4.1 (Convergence of Algorithm 3). For any given T > 0, assume (4.8) is

satisfied for all 0 < k < T, then Algorithm 3 generates a sequence {Xk} 00 such that

f(xT) - f(x*) Ar (f(xo) - f(x*) + Exp-(x*) 2) (4.12)

where A0 - 1 and Ak -= - a).

Proof. The proof is similar to [Nesterov, 2004, Theorem 2.2.1]. We choose 4o(x)

f(xo) + 2| Exp-J(x)jj2, hence = f(xo). By Lemma 4.3 and Lemma 4.5, the as-

sumptions in Lemma 4.2 hold. It remains to use Lemma 4.2. E

4.5 Local fast rate with a constant step scheme

By now we see that almost all the analysis of Nesterov's generalizes, except that the

assumption in (4.8) is not necessarily satisfied. In vector space, the two expressions

both reduce to x* - Vk+1 and hence (4.8) trivially holds with -y =57. On Riemannian

manifolds, however, due to the nonlinear Riemannian metric and the associated

92

exponential maps, I|Exp- 1 (x*) - Exp- (k+1)H and I|Exp;l(x*) - Exp- 1 (vk+1)jI in

general do not equal (illustrated in Figure 4-2). Bounding the difference between

these two quantities points the way forward for our analysis, which is also our

main contribution in this section. We start with two lemmas comparing a geodesic

triangle and the triangle formed by the preimage of its vertices in the tangent space,

in two constant curvature spaces: hyperbolic space and the hypersphere.

EX - 1 (VVk+
EpTyk+ _1- (A+

@.+1 YkYkk+

Ex

ExpgJ(x*) Exp-Y 1
1 (x*

Figure 4-2: A schematic illustration of the geometric quantities in Theorem 4.2. Tangent
spaces of Yk and Yk+1 are shown in separate figures to reduce cluttering. Note that even
on a sphere (which has constant positive sectional curvature), d(x*, Vk+1), IExp-l(x*) -
Exp 1 (Vk+1) | and I|Exp-1 (x*) - Exp-2(vk+1)| generally do not equal.

Lemma 4.6 (bi-Lipschitzness of the exponential map in hyperbolic space). Let a, b, c

be the side lengths of a geodesic triangle in a hyperbolic space with constant sectional

curvature -- 1, and A is the angle between sides b and c. Furthermore, assume b < , c > 0.
Let Adbe be the comparison triangle in Euclidean space, with b b, e = c, A= A, then

d2 < a2 < (1 + 2b2)Z2. (4.13)

Proof. The proof of this lemma contains technical details that deviate from our

main focus; so we defer them to the appendix. The first inequality is well known.

To show the second inequality, we have Lemma 4.9 and Lemma 4.10 (in Appendix)

which in combination complete the proof. D

We also state without proof that by the same techniques one can show the fol-

lowing result holds.

Lemma 4.7 (bi-Lipschitzness of the exponential map on hypersphere). Let a, b, c be

the side lengths of a geodesic triangle in a hypersphere with constant sectional curvature 1,

93

and A is the angle between sides b and c. Furthermore, assume b < 1, c C [0, 7]. Let AdbV

be the comparison triangle in Euclidean space, with b = b, o = c, A A, then

a2 < C2 < (1 + 2b2)a2. (4.14)

Albeit very much simplified, spaces of constant curvature are important objects

to study, because often their properties can be generalized to general Riemannian

manifolds with bounded curvature, specifically via the use of powerful compari-

son theorems in metric geometry [Burago et al., 2001]. In our case, we use these

two lemmas to derive a tangent space distance comparison theorem for Rieman-

nian manifolds with bounded sectional curvature.

Theorem 4.2 (Multiplicative distortion of squared distance on Riemannian mani-

fold). Let x*, Vk+1, Yk, Yk+1 E X be four points in a g-convex, uniquely geodesic set X

where the sectional curvature is bounded within [-K, K], for some nonnegative number

K. Define bk+1 = max {H1Exp-1(x*) 1, IExpg ,(x*) 1}. Assume bk+1 < ' for K > 0

(otherwise bk+1 < oc), then we have

IIExp-. 1 (x*) - Exp- (Vk+1)1| 2 < (1+ 5Kb2i)11Exp-~1 (x*) - Exp-~ 1 (vk+l)|1 2 . (4.15)

Proof. The high level idea is to think of the tangent space distance distortion on

Riemannian manifolds of bounded curvature as a consequence of bi-Lipschitzness

of the exponential map. Specifically, note that Aykx*vk+1 and Ayk+1x*Vk+1 are two

geodesic triangles in X, whereas I|Exp- (x*) - Exp-'(vk+1)l| and ||Exp-' (x*) -

Exp- (Vk+1)| 11are side lengths of two comparison triangles in vector space. Since

X is of bounded sectional curvature, we can apply comparison theorems.

First, we consider bound on the distortion of squared distance in a Riemannian

manifold with constant curvature -K. Note that in this case, the hyperbolic law

of cosines becomes

cosh(VKa) = cosh(Kb) cosh(Kc) - sinh(Kb) sinh(Kc) cos(A),

which corresponds to the geodesic triangle in hyperbolic space with side lengths

Ka, Kb, Kc, with the corresponding comparison triangle in Euclidean space

having lengths Ka, Kb, VKe. Apply Lemma 4.6 we have (Ka)2 < (1 +

94

2(Kb) 2)(KClf) 2 , i.e. a 2 < (1 + 2Kb2)& 2 . Now consider the geodesic triangle

Ayk*vk+1. Let =|Exp- 1 (X*)||, b = ||Exp 1 (Vk+1)|| < bk+1 , c =I Expl(x*),A=

ZX*ykvk+1, so that IlExp-,(x*) - Expg (Vk+l)f1 2 = b2 + c2 - 2bc cos(A). By Topono-

gov's comparison theorem [Burago et al., 2001], we have < K a hence

HExp-1 i(X*)12 < (1 + 2Kb2+1) ||Exp-J(x*) - Exp- (Vk+1) 2 . (4.16)

Similarly, using the spherical law of cosines for a space of constant curvature K

cos(VKa) = cos(Kb) cos(Kc) + sin(Kb) sin(Kc) cos(A)

and Lemma 4.7 we can show C2 < (1 + 2Kb2)a2 , where , is the side length in

Euclidean space corresponding to a. Hence by our uniquely geodesic assumption

and [Meyer, 1989, Theorem 2.2, Remark 7], with similar reasoning for the geodesic

triangle Ayk+lx*vk+1, we have a < 11Exp-11 (x*) 1, so that

|Exp- 1 (x*) - Exp (vk+1)12 < (1 + 2Kb2+ 1) a2 < (1 + 2Kbl+1) 11Exp-'I (X*)1 2.

(4.17)

Finally, combining inequalities (4.16) and (4.17), and noting that (1 + 2Kb2+1) 2

1 + 4Kbk+1 + (4Kbk+1)Kb2 < 1+ 5Kbk+ 1, the proof is complete. E

Theorem 4.2 suggests that if bk+1 < 1 , we could choose # > 5Kbk+ 1 and

y 1 4: to guarantee <bk+Q1(2) Tk+1 (X*)- It then follows that the analysis holds

for k-th step. Still, it is unknown that under what conditions can we guarantee

4bk+1(X*) Ik+1(x*) hold for all k > 0, which would lead to a convergence proof.

We resolve this question in the next theorem.

Theorem 4.3 (Local fast convergence). With Assumptions 4.1, 4.2, 4.3, 4.4, denote
3

D = 20$ () and assume Bx*,D {x c M : d(x,x*) < D} ; X. If we set

h = ,fz = and xO e Bx*,D, then Algorithm 4 converges; moreover, we have

f(Xk) - f(X*) 5 1 - f(o) - f(I*) + 2Exp2&v*)H| . (4.18)

Proof. sketch. Recall that in Theorem 4.1 we already establish that if the tangent

space distance comparison inequality (4.8) holds, then the general Riemannian

95

Nesterov iteration (Algorithm 3) and hence its constant step size special case (Al-

gorithm 4) converge with a guaranteed rate. By the tangent space distance com-

parison theorem (Theorem 4.2), the comparison inequality should hold if Yk and x*

are close enough. Indeed, we use induction to assert that with a good initialization,

(4.8) holds for each step. Specifically, for every k > 0, if Yk is close to x* and the

comparison inequality holds until the (k - 1)-th step, then Yk+1 is also close to x*

and the comparison inequality holds until the k-th step. We postpone the complete

proof until Appendix 4.7.6.

4.6 Discussion

In this work, we proposed a Riemannian generalization of the accelerated gradi-

ent algorithm and developed its convergence and complexity analysis. For the

first time (to the best of our knowledge), we show gradient based algorithms on

Riemannian manifolds can be accelerated, at least in a neighborhood of the mini-

mizer. Central to our analysis are the two main technical contributions of our work:

a new estimate sequence (Lemma 4.3), which relaxes the assumption of Nesterov's

original construction and handles metric distortion on Riemannian manifolds; a

tangent space distance comparison theorem (Theorem 4.2), which provides suffi-

cient conditions for bounding the metric distortion and could be of interest for a

broader range of problems on Riemannian manifolds.

Despite not matching the standard convex results, our result exposes the key

difficulty of analyzing Nesterov-style algorithms on Riemannian manifolds, an

aspect missing in previous work. Critically, the convergence analysis relies on

bounding a new distortion term per each step. Furthermore, we observe that the

side length sequence d(yk, Vk+1) can grow much greater than d(yk, x*), even if we

reduce the "step size" hk in Algorithm 1, defeating any attempt to control the dis-

tortion globally by modifying the algorithm parameters. This is a benign feature

in vector space analysis, since (4.8) trivially holds nonetheless; however it poses a

great difficulty for analysis in nonlinear space. Note the stark contrast to (stochas-

96

tic) gradient descent, where the step length can be effectively controlled by reduc-

ing the step size, hence bounding the distortion terms globally [Zhang and Sra,

2016].

A topic of future interest is to study whether assumption (4.8) can be further

relaxed, while maintaining that overall the algorithm still converges. By bounding

the squared distance distortion in every step, our analysis provides guarantee for

the worst-case scenario, which seems unlikely to happen in practice. It would be

interesting to conduct experiments to see how often (4.8) is violated versus how

often it is loose. It would also be interesting to construct some adversarial problem

case (if any) and study the complexity lower bound of gradient based Riemannian

optimization, to see if geodesically convex optimization is strictly more difficult

than convex optimization. Generalizing the current analysis to non-strongly g-

convex functions is another interesting direction.

4.7 Proofs

4.7.1 Proof of constant step scheme

Lemma 4.8. Pick /A= 03 > 0. If in Algorithm 3 we set

, 2 +4 4(I + Bh - 0
hk = h, Vk ;> 0, 170 ay = -pV0 2 +4(1 +)pth+ 0

then we have

2M+ -4(1+ O)ph - /
a= a 2 ' +1 =(+)), hYk+1 7Y, Vk > 0.

(4.19)

Proof. Suppose that Yk= -y, then from Algorithm 3 we have ak is the positive root

of

a-- (P -- 7)hak -yh = 0.

Also note
/3a a2

P - Oa =and -y = (4.20)
(1 + O)h' (1 + #)h

97

hence

ak
(#u-y)h + h(-) 2 42 4h

2

a 1 #2a 2 4a2

2(1+0) 2 (1+3)2 1+

Furthermore, we have

7k+1 (1 ~ ak)7k + ak (1 -- a)- + aP

a2

= + (i -)a= (
+ + (1)h

and 7k+1 - 14k+1 =7- Since "Yk =y holds for k = 0, by induction the proof is

complete. E

4.7.2 Proof of Lemma 4.1

Proof. The proof is similar to [Nesterov, 2004, Lemma 2.2.2] except that we intro-

duce 1 k+1 as an intermediate step in constructing (1 k+1 (x). In fact, to start we have

'1o(x) < (1 - Ao)f (x) + Ao~Io(x) - 1o(x). Moreover, assume (4.1) holds for some

k > 0, i.e. 4 'k(X) - f (x*) Ak(10(x*) - f (X*)), then

4)kH-(X*) - f(x*) < C+1(X*) - f(*

<(1 - ak)Dk(x*) + ak f(X) - f (x*)

= (1 - ak)(1k(x*) - f (x*))

< (1 - ak)Ak(o(x*) - f(x*))

Ak+1(m (x)- f(X*

where the first inequality is due to our construction of 4bk+1 (X) in (4.4), the second

inequality due to strong convexity of f. By induction we have (k(X*)

Ak)f(x) + AkIO(x*) for all k > 0. It remains to note that condition 4 ensures Ak -

D-0.

98

(1 -

4.7.3 Proof of Lemma 4.4

Proof. We prove this lemma by completing the square:

Ik+(X)1 -k) (k + ||ExpYk(x) - Exp (Vk)lI)

+ ak (f(Yk) + (Vf(yk), Exp- 1 (x)) + ||Exp 1(x)||

2 JjExp- (x)f1 2 + akVf(yk) - (1 - ak)1kExp (Vk),

+ (1 - ak) (D* + ||JExpy-(Vk))2 + akf(yk)

Exp 1 (x) -
(1 a)Yk Expl(Vk) -

= 1 k |Exp 1 (x) - ExpY-1(Vk+112

where the third equality is by completing the square with respect to Exp- 1 (x) and

use the definition of 4D*+ in (4.7), the last equality is by the definition of Yk in Algo-

rithm 3, and 1 k+1 (x) is minimized if and only if x = Exp (-ak)Yk Exp, (vk) - Vf(yk)

Vk+1- L-]

4.7.4 Proof of Lemma 4.5

Proof. For k = 0, * ;> f(xk) trivially holds. Assume for iteration k we

f(xk), then from definition (4.7) we have

have 4* >

+1 (1--k) f(xk) + akf(Yk) - _- 1
Yk+1

f f(Yk) - 2k+ (Y)1 2

27k+1

2

+ (1 - ak)

Vf(yk)

Vf(yk

2+ - Ck)-Y(
k+1

)k~ Exp-(Vk)

Vf(yk), Exp- (vk))

+ Exp1 (Xk

where the first inequality is due to 4* > f(xk), the second due to f(xk) > f(yk) -F

(Vf(yk), Exp,-(Xk)) by g-convexity, and the equalities follow from Algorithm 3.

99

2

Exp 1 (x))

2

- Vf(yk)J
'Yk+ I

+ C+1

-doom

On the other hand, we have the bound

L
f(Xk+1) f(Yk) + KVf(yk), Exp- (Xk+l)) + -HExp- (Xk+112

f(Yk) - hk I- Lhk f f(yk)1 2

< f(Yk) - 2 VfW(y)2 - +1

where the first inequality is by the L-smoothness assumption, the equality from

the definition of Xk+1 in Algorithm 3 Line 9, and the second inequality from the

assumption that hk '. Hence by induction, b* > f(Xk) for all k > 0. 11

4.7.5 Proof of Lemma 4.6

Lemma 4.9. Let a, b, c be the side lengths of a geodesic triangle in a hyperbolic space with

constant sectional curvature -1, and A is the angle between sides b and c. Furthermore,

assume b < , c > 1. Let Adb4 be the comparison triangle in Euclidean space, with

b = b, j - c, =A A, then

a 2 < (1 + 2b2)2 (4.21)

Proof We first apply [Zhang and Sra, 2016, Lemma 5] with = -1 to get

a2 < C b2 + c2 - 2bc cos(A).
- tanh(c)

We also have

a2 = b2 + c2 - 2bccos(A).

Hence we get

a 2 -- 2 < c -1) b2 .
-- (tanh(c)

It remains to note that for b < c > 1
4- - 2'

2a2 > 2(c - b)2 > 2 c- > >
4 tanh(1/2) - tanh(c)

which implies a 2 < (1+ 2b2)a2 . D

Lemma 4.10. Let a, b, c be the side lengths of a geodesic triangle in a hyperbolic space with

constant sectional curvature -1, and A is the angle between sides b and c. Furthermore,

assume b < , c < 1. Let Adbc be the comparison triangle in Euclidean space, with

100

b =b, = c, A A, then

a2 < (1 + b2) 2

Proof. Recall the law of cosines in Euclidean space and hyperbolic space:

62 =b2 + 2 - 2 cos A,

cosh a = cosh b cosh c - sinh b sinh c cos A,

and the Taylor series expansion:

coshx = (2)! 2n
n=O (2)

sinh x = (2n 1) +
n=O

(4.25)

We let b = b, e = c, A = A, from Eq. (4.23) we have

cosh t cosh (V/b2 + C2- 2bc cos A) (4.26)

It is widely known that a < a. Now we use Eq. (4.25) to expand the RHS of

Eq. (2.6) and Eq. (4.26), and compare the coefficients for each corresponding term

b'ci in the two series. Without loss of generality, we assume i > j; the results for

condition i < j can be easily obtained by the symmetry of b, c. We expand Eq. (2.6)

as

cosha =
n=O

I b2n)
(2n)!

1 c2n
(2n)!

00

Y, I b 2n+1

- (2n + 1)!)

where the coefficient a(i, j) of bzcj is

(I1)c2n+1 cos A
(2n + .)

ai,j) -
(2p)!(2q)!,

cos A
(2p 1)!(2q+1)!'

if p, q E N and i = 2p,j - 2q,

ifp,q C Nandi = 2p+ 1,j = 2q+ 1,

0, otherwise.

Similarly, we expand Eq. (4.26) as
00

coshi d 1
n==O(2)

(b 2 + c 2 - 2bc cos A)n

101

(4.22)

(4.23)

(4.24)

(4.27)

where the coefficient d(i, j) of b ci is

(,j) { k 0 (k 2k,(2cosA 2
k if p, q E N and i = 2p,j = 2q,(2p 2q)!

q=0 (_ p+q+1)(2 cos A) 2k+1Z=0 (P-(2k2q+2) , if p, q E N and i = 2p + 1,j = 2q + 1,

0, otherwise.
(4.28)

We hence calculate their absolute difference

ca(i, j) - ai)

=0 (Pk q-)22k (1-(cos A)2k)

(2p+2q)!

E (q= 9++)22k+1 (1 (cos A)
2
k) I cos Alk=0 (p-kp--k,2k,

(2 p,2q+2)!

0,
vq (+q 2 2 kk

k=O p-k q-k,2k) 2si ,(2p+2q)! Ii A
Z=g (pk,k)22k+1k 2 A

(2p 2q+2)!I

0,
E (p+q)22
k pkq-k ,2k in 2 A,

(2p 2q)!I
q Pfq1 32k+lq k=0 (p-k,q-k,2k)2 sin 2 A,(2p+2q 2)! s I

if p, q E N and i 2p,j = 2q,

if p, q E N and i 2p 1, j = 2q + 1,

otherwise.

if p, q E N and i = 2p, j = 2q,

ifp,qe Nandi 2p+1,j =2q+1,

otherwise.

ifp,qc Nandi= 2p,j =2q,

ifp,qE Nandi =2p+1,j 2q+I1,

0, otherwise.

q . A
(2p)!(2q)l S A

(2p+1)!(2q+1)! sin2 A,

if p, q E N and i =2p, j =2q,

if p, q E N and i= 2p + 1,3j = 2q + 1, (4.29)

0, otherwise.

where the two equalities are due to Lemma 4.11, the first inequality due to the

following fact

1 - (cosA) 2" = (1 - (cos A) 2) (1 + (cos A) 2 + (cos A) 4 + - + (cos A)n 1)

= sin2 A (1 + (cos A) 2 + (cos A) 4 + - + (cos A) 2 (n- 1)) < m sin 2 A

By setting q = 0, we see that in the Taylor series of cosh a - cosh 4, any term that

does not include a factor of c 2 cancels out. By the symmetry of b, c, any term that

does not include a factor of b 2 also cancels out. The term with the lowest order of

power is thus b2 c2 sin2 A. Since we have c < j, b < 1, the terms a(i, j) - (i, j) bIc

102

=I

=1

must satisfy

+Z a(ij) - (i,j)IbWc <

4

E
i+j=2k,

i,j>2,k>3

2i!+j 1
2 (Z!) (J!) 2 2k-4

1 b~~i 2

+ 2 2k-3 2C2 sin2 A
k>3 /

b2c 2 sin2 A

!b2C2 sin2 A
2

11
-b 2 2 sin2 C < I-a2b2
2 2

where the first inequality follows from Eq. (4.29) and is due to min(p, q) < Lj, the

second inequality is due to E i+j=2k < < (2 < Ifor k > 3
i>2,j2 2!)(p - (M)

is due to Euclidean law of sines. We thus get

cosh a - cosh e < E a(ilj) - d(i, j) bc sin2 A <
i~j

and the last equality

2
(4.30)

On the other hand, from the Taylor series of cosh we have

cosh a - cosh a = a - On 2 I(a2 - d2)1

h 2 ((2n)! 2

hence a 2 < (1 + b 2)62 .

D

Lemma 4.11 (Two multinomial identities). For p, q E N, p > q, we have

(2p + 2q)!

(2p)!(2q)!

(2p+2q+2)!

(2p + 1)!(2q + 1)!

k=O

k=O

(p
p + q 22k

- k, q - k, 2k)

(p-
p+qk+1 22k+1

k, q- k,2k +1)

Proof. We prove the identities by showing that the LHS and RHS correspond to

two equivalent ways of counting the same quantity. For the first identity, consider

a set of 2p + 2q balls bi each with a unique index i = 1,. . . , 2p + 2q, we count how

many ways we can put them into boxes B1 and B2, such that B1 has 2p balls and

B2 has 2q balls. The LHS is obviously a correct count. To get the RHS, note that we

can first put balls in pairs, then decide what to do with each pair. Specifically, there

are p + q pairs {b 2i- 1, b2i}, and we can partition the counts by the number of pairs

of which we put one of the two balls in B2 . Note that this number must be even.

103

(4.31)

(4.32)

If there are 2k such pairs, which gives us 2k balls in B2, we still need to choose

2(q - k) pairs of which both balls are put in B2, and the left are p - k pairs of which

both balls are put in B1 . The total number of counts given k is thus

p +q 2 2k

(-kq-k,2k)

because we can choose either ball in each of the 2k pairs leading to 2 2k possible

choices. Summing over k we get the RHS. Hence the LHS and the RHS equal. The

second identity can be proved with essentially the same argument. D

4.7.6 Proof of Theorem 4.3

Proof. The base case. First we verify that yo, yi is sufficiently close to x* so that the

comparison inequality (4.8) holds at step k = 0. In fact, since yo xo by construc-

tion, we have

Exp,-(x*)Il = I|Exp (*)I < 1 5KIVExp')('*) </.

(4.33)

To bound jjExp-(x*) j, observe that yi is on the geodesic between x1 and v1. So

first we bound IIExp; (x*)II and IIExp-'(x*) 1. Bound on IIExp- (x*)I comes from

strong g-convexity:

2 2 1
Exp- 1 *) 2 -- (f(Xi) - f(x*)) < -- (f(xo) - f (x*)) + -- (2

< L + -y IlExp,-e(x*)1 2

whereas bound on IIExp- (s*) utilizes the tangent space distance comparison the-

orem. First, from the definition of 41 we have

IVj112=2 2 L + - lx - (* 1
|lExp,-(x*)-Exp (vi) 2 -- ((*)-*) -(Io(x*)-f(x*)) (HExp-(0*)

Then note that (4.33) implies that the assumption in Theorem 4.2 is satisfied when

k = 0, thus we have

Exp-1(*)fl 2 (1 + #)flExp-l(x*) - Exp-J(vi) 12 <2(L +-)Exp- (x*)112.

104

Together we have

||Exp-'(x*)|I < IlExp-l(x*)l + |I|Exp-'(vi)fY1 X1 ly + aYtt X

HExp;- 1(x*)IH + ' (HExp-il(x*)II + IlExp-l(x*)fl)

L + -yIExp- (x*)I| + ay L + y 2(L + y) lExp2 (x*)
p- X0-y+ ap p p

1 + v2 L + 7< 1+ IoExpl*()*)||
2 p0

< < (4.34)
10K\L ~4 K

which also implies

5KlExp-J(x*)11 2 < 2 (4.35)

By (4.34), (4.35) and Theorem 4.2 it is hence guaranteed that

-yI|Exp-J(x*) - Exp I(vI)|12 < TyIExp j(x*) - Exp-1 (vi) 12.

The inductive step. Assume that for i = 0, . . . , k - 1, (4.8) hold simultaneously, i.e.:

-y l Exp-, (x*) - Exp- 1 (vi+1) 12 < 7yllExpi(x*) - Exp-1 (vi+1)l 2, Vi = 0, ... , k - 1

and also that |lExpJ (x*) < 1 (L) 4. To bound flExp 1 (*) |, observe that yk+1

is on the geodesic between Xk+1 and Vk+1. So first we bound flExp-' 1 (x*)1 and

|Exp'fk 1 (x*) 1. Note that due to the sequential nature of the algorithm, statements

about any step only depend on its previous steps, but not any step afterwards.

Since (4.8) hold for steps i = 0, . . . , k -1, the analysis in the previous section already

applies for steps i =0,. . . , k -1. Therefore by Theorem 4.1 and the proof of Lemma

4.5 we know

f(x*) f(Xk+1) < 4k+1 < k+1(X*) < f(x*) + (1 -- () k+1(Do) - f(X*))

o(X*) f (xo) + ||Exp0*2

Hence we get f (Xk+) - f(X*) %(X*) - f(x*) and 21IExp-l(x*) - Exp-7(k+l)|2 -

'k+1(X) - 4 < 4o (x) - f(x*). Bound on ||Exp (x*) comes from strong

105

g-convexity:

IIExp- I(x*)1 2 2(ff

2k1 Y fxpx*))* 112
Xk+1) -- (X*)) < A(f(xo) - f(x*)) + P Exp *(

pt p

< L + lExp-l(x*) 12,

whereas bound on IIExp- (x*) utilizes the tangent space distance comparison

theorem. First, from the definition of C+1 we have

2
lExp-l(x*)-Exp-J(Vk+l) 2 -- (k+1(x*-%+I)Yk Yk Y

2 L +-
-(- 0(x*)--f(x*)) Y Exp- (x*) 2

Then note that the inductive hypothesis implies that

TExpr (X*) 2 v

Together we have

(1I + A)Exp-(x*) - Exp 1 (k+1)1 2 < 2 |Exp *2
Yk Yk ~ 1Y

Exp- (x*)Il < I|Exp- (x*)II +

< IlExp- (x*)Il +

cry + Exp 7 1 (Vk+1)

crY

1Y + alt

< L + 1Exp-(x*)+
FP 0 +a t

i 1 +
10K

which also implies that

(IlExp, (x*) + Exp- ,(x*)1)

H|Exp,-(x*)fl

5K lExp- 1 (x*)1 2 1 ft
-2061L

By the two lines of equations above and Theorem 4.2 it is guaranteed that fExp 1 (x*) <
1

1() i and also

1HExp, (x*) - Exp- 1 (k+1) 12 < T||Exp-(x*) - Exp- (vk+1)12.

i.e. (4.8) hold for i = 0, .. . , k. This concludes the inductive step.

By induction, (4.8) hold for all k > 0, hence by Theorem 4.1, Algorithm 4 converges,

106

1+V2 L+ _' IExp- (x*)l
Fit p

\L -4K

L y+ 2(L+7)

P LP

as V32+ 4(22+K)h - - = -- + 4 1+

El

107

with

>9 F/ i
-10 L

mixup: Beyond Empirical Risk

Minimization

Large deep neural networks are powerful, but exhibit undesirable behaviors such

as memorization and sensitivity to adversarial examples. In this work, we propose

Mixup, a simple learning principle to alleviate these issues. In essence, Mixup

trains a neural network on convex combinations of pairs of examples and their

labels. By doing so, Mixup regularizes the neural network to favor simple linear

behavior in-between training examples. Our experiments on the ImageNet-2012,

CIFAR-10, CIFAR-100, Google commands and UCI datasets show that Mixup im-

proves the generalization of state-of-the-art neural network architectures. We also

find that Mixup reduces the memorization of corrupt labels, increases the robust-

ness to adversarial examples, and stabilizes the training of generative adversarial

108

networks.

5.1 Introduction

Large deep neural networks have enabled breakthroughs in fields such as com-

puter vision [Krizhevsky et al., 2012], speech recognition [Hinton et al., 2012], and

reinforcement learning [Silver et al., 2016]. In most successful applications, these

neural networks share two commonalities. First, they are trained as to minimize

their average error over the training data, a learning rule also known as the Empir-

ical Risk Minimization (ERM) principle [Vapnik, 1998]. Second, the size of these

state-of-the-art neural networks scales linearly with the number of training exam-

ples. For instance, the network of Springenberg et al. [2015] used 106 parameters

to model the 5. 104 images in the CIFAR-10 dataset, the network of [Simonyan and

Zisserman, 2015] used 108 parameters to model the 106 images in the ImageNet-

2012 dataset, and the network of Chelba et al. [2013] used 2 - 1010 parameters to

model the 10' words in the One Billion Word dataset.

Strikingly, a classical result in learning theory [Vapnik and Chervonenkis, 1971]

tells us that the convergence of ERM is guaranteed as long as the size of the learn-

ing machine (e.g., the neural network) does not increase with the number of train-

ing data. Here, the size of a learning machine is measured in terms of its number

of parameters or, relatedly, its VC-complexity [Harvey et al., 2017].

This contradiction challenges the suitability of ERM to train our current neu-

ral network models, as highlighted in recent research. On the one hand, ERM

allows large neural networks to memorize (instead of generalize from) the training

data even in the presence of strong regularization, or in classification problems

where the labels are assigned at random [Zhang et al., 2017]. On the other hand,

neural networks trained with ERM change their predictions drastically when eval-

uated on examples just outside the training distribution [Szegedy et al., 2014], also

known as adversarial examples. This evidence suggests that ERM is unable to ex-

plain or provide generalization on testing distributions that differ only slightly from

109

the training data. However, what is the alternative to ERM?

The method of choice to train on similar but different examples to the training

data is known as data augmentation [Simard et al., 1998], formalized by the Vicinal

Risk Minimization (VRM) principle [Chapelle et al., 2000]. In VRM, human knowl-

edge is required to describe a vicinity or neighborhood around each example in the

training data. Then, additional virtual examples can be drawn from the vicinity

distribution of the training examples to enlarge the support of the training distri-

bution. For instance, when performing image classification, it is common to define

the vicinity of one image as the set of its horizontal reflections, slight rotations, and

mild scalings. While data augmentation consistently leads to improved general-

ization [Simard et al., 1998], the procedure is dataset-dependent, and thus requires

the use of expert knowledge. Furthermore, data augmentation assumes that the

examples in the vicinity share the same class, and does not model the vicinity rela-

tion across examples of different classes.

Contribution Motivated by these issues, we introduce a simple and data-agnostic

data augmentation routine, termed Mixup (Section 5.2). In a nutshell, Mixup con-

structs virtual training examples

Ax 2 + (1 - A)xy, where xi, xj are raw input vectors

= Ayj + (1 - A)yj, where yi, yj are one-hot label encodings

(iI Yi) and (xj, yj) are two examples drawn at random from our training data, and

A - [0, 1]. Therefore, Mixup extends the training distribution by incorporating the

prior knowledge that linear interpolations of feature vectors should lead to linear

interpolations of the associated targets. Mixup can be implemented in a few lines

of code, and introduces minimal computation overhead.

Despite its simplicity, Mixup allows a new state-of-the-art performance in the

CIFAR-10, CIFAR-100, and ImageNet-2012 image classification datasets (Sections 5.3.1

and 5.3.2). Furthermore, Mixup increases the robustness of neural networks when

learning from corrupt labels (Section 5.3.4), or facing adversarial examples (Sec-

110

tion 5.3.5). Finally, Mixup improves generalization on speech (Sections 5.3.3) and
tabular (Section 5.3.6) data, and can be used to stabilize the training of GANs (Sec-
tion 5.3.7). The source-code necessary to replicate our CIFAR-10 experiments is
available at:

https : //github . com/facebookresearch/mixup- cifar1O.

To understand the effects of various design choices in Mixup, we conduct a thor-
ough set of ablation study experiments (Section 5.3.8). The results suggest that
Mixup performs significantly better than related methods in previous work, and
each of the design choices contributes to the final performance. We conclude by ex-
ploring the connections to prior work (Section 5.4), as well as offering some points
for discussion (Section 5.5).

5.2 From Empirical Risk Minimization to Mixup

In supervised learning, we are interested in finding a function f e Y that describes
the relationship between a random feature vector X and a random target vector Y,
which follow the joint distribution P(X, Y). To this end, we first define a loss func-
tion f that penalizes the differences between predictions f(x) and actual targets y,
for examples (x, y) - P. Then, we minimize the average of the loss function f over

the data distribution P, also known as the expected risk:

R(f) = f f(f (x), y)dP(x, y).

Unfortunately, the distribution P is unknown in most practical situations. Instead,

we usually have access to a set of training data D {(xi, yi)} I 1, where (xi, yi) ~ P

for all i = 1, ... , n. Using the training data D, we may approximate P by the

empirical distribution

P6(x,y) = n 6(x = xi, y = yi),
i=1

111

where 6(x = xi, y = yi) is a Dirac mass centered at (xi, yi). Using the empirical

distribution Pj, we can now approximate the expected risk by the empirical risk:

Rj(f) = f(f (x), y) d Pj(x, y) =_ n Y (xi), yi). (5.1)

Learning the function f by minimizing equation 5.1 is known as the Empirical

Risk Minimization (ERM) principle [Vapnik, 1998]. While efficient to compute, the

empirical risk equation 5.1 monitors the behaviour of f only at a finite set of n

examples. When considering functions with a number parameters comparable to

n (such as large neural networks), one trivial way to minimize equation 5.1 is to

memorize the training data [Zhang et al., 2017]. Memorization, in turn, leads to

the undesirable behaviour of f outside the training data [Szegedy et al., 2014].

However, the naive estimate P is one out of many possible choices to approx-

imate the true distribution P. For instance, in the Vicinal Risk Minimization (VRM)

principle [Chapelle et al., 2000], the distribution P is approximated by

P(, Q)V- = I~z xi, yi),
i=1

where v is a vicinity distribution that measures the probability of finding the virtual

feature-target pair (J, Q) in the vicinity of the training feature-target pair (xi, y2).

In particular, Chapelle et al. [2000] considered Gaussian vicinities v(z, Jx.i, yi) =

N(z - xi, o2)(Q= y2), which is equivalent to augmenting the training data with

additive Gaussian noise. To learn using VRM, we sample the vicinal distribution

to construct a dataset D. := {(zi, fpi)} iL, and minimize the empirical vicinal risk:

Rv(f) = M f

The contribution of this chapter is to propose a generic vicinal distribution, called

Mixup:

P(, fikIx, y,) = EA [= A -xi + (1 - A) -xj, p = A -y + (1 - A) -yj)] ,

where A ~ Beta(a, a), for a E (0, c). In a nutshell, sampling from the Mixup

112

ERM mbW

yl, y2 should be one-hot vectors .

for (xl, yl), (x2, y2) in zip(loaderl, loader2):

lam = numpy .random. beta (alpha, alpha)e

x = Variable (lam * xl + (1. - lam) * x2)

y = Variable (lam * yl + (1. - lam) * y2)

optimizer. zerograd ()

loss (net (x), y) .backward() (b) Effect of Mixup (a = 1) on
optimizer.step() a toy problem. Green: Class 0.

Orange: Class 1. Blue shading
(a) One epoch of Mixup training in PyTorch. indicates p(y = IIX).

Figure 5-1: Illustration of Mixup, which converges to ERM as a -* 0.

vicinal distribution produces virtual feature-target vectors

x Axi + (1 - A)xj,

= Ayj + (1 - A)yj,

where (xi, yz) and (x,, y3) are two feature-target vectors drawn at random from the

training data, and A E [0, 1]. The Mixup hyper-parameter a controls the strength of

interpolation between feature-target pairs, recovering the ERM principle as a -+ 0.

The implementation of Mixup training is straightforward, and introduces a

minimal computation overhead. Figure 5-1a shows the few lines of code necessary

to implement Mixup training in PyTorch. Finally, we mention alternative design

choices. First, in preliminary experiments we find that convex combinations of

three or more examples with weights sampled from a Dirichlet distribution does

not provide further gain, but increases the computation cost of Mixup. Second,

our current implementation uses a single data loader to obtain one minibatch, and

then Mixup is applied to the same minibatch after random shuffling. We found

this strategy works equally well, while reducing I/O requirements. Third, inter-

polating only between inputs with equal label did not lead to the performance

gains of Mixup discussed in the sequel. More empirical comparison can be found

in Section 5.3.8.

What is Mixup doing? The Mixup vicinal distribution can be understood as a

form of data augmentation that encourages the model f to behave linearly in-

113

50 0.5
- ERM - ERM

40 - mixup 0.4- - mixup

.130 0.3-

b 20 0.2

10 0.1

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
A A

(a) Prediction errors in-between training (b) Norm of the gradients of the model
data. Evaluated at x = Ax, + (1 - A)xj, a w.r.t. input in-between training data, eval-
prediction is counted as a "miss" if it does uated at x = Axi + (1 - A)xj. The model

not belong to {yj, y3}. The model trained trained with Mixup has smaller gradient
with Mixup has fewer misses. norms.

Figure 5-2: Mixup leads to more robust model behaviors in-between the training data.

between training examples. We argue that this linear behaviour reduces the amount

of undesirable oscillations when predicting outside the training examples. Also,

linearity is a good inductive bias from the perspective of Occam's razor, since it is

one of the simplest possible behaviors. Figure 5-lb shows that Mixup leads to de-

cision boundaries that transition linearly from class to class, providing a smoother

estimate of uncertainty. Figure 5-2 illustrate the average behaviors of two neural

network models trained on the CIFAR-10 dataset using ERM and Mixup. Both

models have the same architecture, are trained with the same procedure, and are

evaluated at the same points in-between randomly sampled training data. The

model trained with Mixup is more stable in terms of model predictions and gradi-

ent norms in-between training samples.

5.3 Experiments

5.3.1 ImageNet classification

We evaluate Mixup on the ImageNet-2012 classification dataset [Russakovsky et al.,

2015]. This dataset contains 1.3 million training images and 50,000 validation im-

ages, from a total of 1,000 classes. For training, we follow standard data augmen-

114

Model Method Epochs Top-1 Error Top-5 Error

ResNet-50 ERM [Goyal et al., 2017] 90 23.5 -
Mixup a = 0.2 90 23.3 6.6

ResNet-101 ERM [Goyal et al., 2017] 90 22.1 -
Mixup a = 0.2 90 21.5 5.6

ResNeXt-101 32*4d ERM [Xie et al., 2016] 100 21.2 -
ERM 90 21.2 5.6
Mixup a = 0.4 90 20.7 5.3

ResNeXt-101 64*4d ERM [Xie et al., 2016] 100 20.4 5.3
Mixup a = 0.4 90 19.8 4.9

ResNet-50 ERM 200 23.6 7.0
Mixup a = 0.2 200 22.1 6.1

ResNet-101 ERM 200 22.0 6.1
Mixup a = 0.2 200 20.8 5.4

ResNeXt-101 32*4d ERM 200 21.3 5.9

Mixup a = 0.4 200 20.1 5.0

Table 5.1: Validation errors for ERM and Mixup on the development set of ImageNet-2012.

tation practices: scale and aspect ratio distortions, random crops, and horizontal

flips [Goyal et al., 2017]. During evaluation, only the 224 x 224 central crop of each

image is tested. We use Mixup and ERM to train several state-of-the-art ImageNet-

2012 classification models, and report both top-1 and top-5 error rates in Table 5.1.

For all the experiments in this section, we use data-parallel distributed train-

ing in Caffe21 with a minibatch size of 1,024. We use the learning rate schedule

described in [Goyal et al., 2017]. Specifically, the learning rate is increased linearly

from 0.1 to 0.4 during the first 5 epochs, and it is then divided by 10 after 30, 60

and 80 epochs when training for 90 epochs; or after 60, 120 and 180 epochs when

training for 200 epochs.

For Mixup, we find that a c [0.1, 0.4] leads to improved performance over ERM,

whereas for large a, Mixup leads to underfitting. We also find that models with

higher capacities and/or longer training runs are the ones to benefit the most from

Mixup. For example, when trained for 90 epochs, the Mixup variants of ResNet-

101 and ResNeXt-101 obtain a greater improvement (0.5% to 0.6%) over their ERM

analogues than the gain of smaller models such as ResNet-50 (0.2%). When trained

1https: //caffe2. ai

115

for 200 epochs, the top-1 error of the Mixup variant of ResNet-50 is further reduced

by 1.2% compared to the 90 epoch run, whereas its ERM analogue stays the same.

5.3.2 CIFAR-10 and CIFAR-100

We conduct additional image classification experiments on the CIFAR-10 and CIFAR-

100 datasets to further evaluate the generalization performance of Mixup. In par-

ticular, we compare ERM and Mixup training for: PreAct ResNet-18 [He et al.,

2016b] as implemented in [Liu, 2017], WideResNet-28-10 [Zagoruyko and Komodakis,

2016b] as implemented in [Zagoruyko and Komodakis, 2016a], and DenseNet [Huang

et al., 2017] as implemented in [Veit, 2017]. For DenseNet, we change the growth

rate to 40 to follow the DenseNet-BC-190 specification from [Huang et al., 2017].

For Mixup, we fix a = 1, which results in interpolations A uniformly distributed

between zero and one. All models are trained on a single Nvidia Tesla P100 GPU

using PyTorch2 for 200 epochs on the training set with 128 examples per minibatch,

and evaluated on the test set. Learning rates start at 0.1 and are divided by 10 after

100 and 150 epochs for all models except WideResNet. For WideResNet, we fol-

low [Zagoruyko and Komodakis, 2016b] and divide the learning rate by 10 after

60, 120 and 180 epochs. Weight decay is set to 10-4. We do not use dropout in these

experiments.

We summarize our results in Figure 5-3a. In both CIFAR-10 and CIFAR-100

classification problems, the models trained using Mixup significantly outperform

their analogues trained with ERM. As seen in Figure 5-3b, Mixup and ERM con-

verge at a similar speed to their best test errors. Note that the DenseNet models

in [Huang et al., 2017] were trained for 300 epochs with further learning rate de-

cays scheduled at the 150 and 225 epochs, which may explain the discrepancy the

performance of DenseNet reported in Figure 5-3a and the original result of Huang

et al. [2017].

2http: / /pytorch. org

116

Dataset Model ERM Mixup

PreAct ResNet-18 5.6 4.2
CIFAR-10 WideResNet-28-10 3.8 2.7

DenseNet-BC-190 3.7 2.7

PreAct ResNet-18 25.6 21.1
CIFAR-100 WideResNet-28-10 19.4 17.5

DenseNet-BC-190 19.0 16.8

CIFAR-10 Test Error
- DenseNet-190 baseline

15 - DenseNet-190 mixup

910
Z

5

0 50 100 150 200
epoch

(b Test error evolution for the(a) Test errors for the CIFAR experiments best ERM and Mixup models.

Figure 5-3: Test errors for ERM and Mixup on the CIFAR experiments.

5.3.3 Speech data

Next, we perform speech recognition experiments using the Google commands

dataset [Warden, 2017]. The dataset contains 65,000 utterances, where each utter-

ance is about one-second long and belongs to one out of 30 classes. The classes

correspond to voice commands such as yes, no, down, left, as pronounced by a few

thousand different speakers. To preprocess the utterances, we first extract nor-

malized spectrograms from the original waveforms at a sampling rate of 16 kHz.

Next, we zero-pad the spectrograms to equalize their sizes at 160 x 101. For speech

data, it is reasonable to apply Mixup both at the waveform and spectrogram levels.

Here, we apply Mixup at the spectrogram level just before feeding the data to the

network.

For this experiment, we compare a LeNet [Lecun et al., 2001] and a VGG-11

[Simonyan and Zisserman, 2015] architecture, each of them composed by two con-

volutional and two fully-connected layers. We train each model for 30 epochs with

minibatches of 100 examples, using Adam as the optimizer [Kingma and Ba, 2014].

Training starts with a learning rate equal to 3 x 10-3 and is divided by 10 every 10

epochs. For Mixup, we use a warm-up period of five epochs where we train the

network on original training examples, since we find it speeds up initial conver-

gence. Table 5-4 shows that Mixup outperforms ERM on this task, specially when

using VGG-11, the model with larger capacity.

117

Model Method Validation set Te

ERM 9.8
LeNet Mixup (a = 0.1) 10.1

Mixup (a = 0.2) 10.2

ERM 5.0
VGG-11 Mixup (a = 0.1) 4.0

Mixup (a = 0.2) 3.9

Figure 5-4: Classification errors of ERM and Mixup on the Google

st set

10.3
10.8
11.3

4.6
3.8
3.4

commands dataset.

5.3.4 Memorization of corrupted labels

Following Zhang et al. [2017], we evaluate the robustness of ERM and Mixup mod-

els against randomly corrupted labels. We hypothesize that increasing the strength

of Mixup interpolation a should generate virtual examples further from the train-

ing examples, making memorization more difficult to achieve. In particular, it

should be easier to learn interpolations between real examples compared to mem-

orizing interpolations involving random labels. We adapt an open-source imple-

mentation [Zhang, 2017] to generate three CIFAR-10 training sets, where 20%, 50%,

or 80% of the labels are replaced by random noise, respectively. All the test labels

are kept intact for evaluation. Dropout [Srivastava et al., 2014] is considered the

state-of-the-art method for learning with corrupted labels [Arpit et al., 2017]. Thus,

we compare in these experiments Mixup, dropout, Mixup + dropout, and ERM.

For Mixup, we choose a E {1, 2, 8, 32}; for dropout, we add one dropout layer in

each PreAct block after the ReLU activation layer between two convolution lay-

ers, as suggested in [Zagoruyko and Komodakis, 2016b]. We choose the dropout

probability p E {0.5, 0.7,0.8, 0.9}. For the combination of Mixup and dropout, we

choose a E {1, 2, 4, 8} and p E {0.3, 0.5, 0.7}. These experiments use the PreAct

ResNet-18 [He et al., 2016b] model implemented in [Liu, 2017]. All the other set-

tings are the same as in Section 5.3.2.

We summarize our results in Table 5.2, where we note the best test error achieved

during the training session, as well as the final test error after 200 epochs. To quan-

tify the amount of memorization, we also evaluate the training errors at the last

118

Label corruption Method Test error Training error

Best Last Real Corrupted

ERM 12.7 16.6 0.05 0.28
20% ERM + dropout (p = 0.7) 8.8 10.4 5.26 83.55

Mixup (a = 8) 5.9 6.4 2.27 86.32
Mixup + dropout (a = 4, p 0.1) 6.2 6.2 1.92 85.02

ERM 18.8 44.6 0.26 0.64
50% ERM + dropout (p = 0.8) 14.1 15.5 12.71 86.98

Mixup (a = 32) 11.3 12.7 5.84 85.71
Mixup + dropout (a = 8, p 0.3) 10.9 10.9 7.56 87.90

ERM 36.5 73.9 0.62 0.83

80% ERM + dropout (p = 0.8) 30.9 35.1 29.84 86.37
Mixup (a = 32) 25.3 30.9 18.92 85.44
Mixup + dropout (a = 8, p= 0.3) 24.0 24.8 19.70 87.67

Table 5.2: Results on the corrupted label experiments for the best models.

epoch on real labels and corrupted labels. As the training progresses with a smaller

learning rate (e.g. less than 0.01), the ERM model starts to overfit the corrupted la-

bels. When using a large probability (e.g. 0.7 or 0.8), dropout can effectively reduce

overfitting. Mixup with a large a (e.g. 8 or 32) outperforms dropout on both the

best and last epoch test errors, and achieves lower training error on real labels

while remaining resistant to noisy labels. Interestingly, Mixup + dropout performs

the best of all, showing that the two methods are compatible.

5.3.5 Robustness to adversarial examples

One undesirable consequence of models trained using ERM is their fragility to

adversarial examples [Szegedy et al., 2014]. Adversarial examples are obtained by

adding tiny (visually imperceptible) perturbations to legitimate examples in order

to deteriorate the performance of the model. The adversarial noise is generated by

ascending the gradient of the loss surface with respect to the legitimate example.

Improving the robustness to adversarial examples is a topic of active research.

Among the several methods aiming to solve this problem, some have proposed

to penalize the norm of the Jacobian of the model to control its Lipschitz con-

stant [Bartlett et al., 2017, Cisse et al., 2017, Drucker and LeCun, 1992, Hein and

119

Andriushchenko, 2017]. Other approaches perform data augmentation by pro-

ducing and training on adversarial examples [Goodfellow et al., 2015]. Unfortu-

nately, all of these methods add significant computational overhead to ERM. Here,

we show that Mixup can significantly improve the robustness of neural networks

without hindering the speed of ERM by penalizing the norm of the gradient of

the loss w.r.t a given input along the most plausible directions (e.g. the directions

to other training points). Indeed, Figure 5-2 shows that Mixup results in models

having a smaller loss and gradient norm between examples compared to vanilla

ERM.

To assess the robustness of Mixup models to adversarial examples, we use three

ResNet-101 models: two of them trained using ERM on ImageNet-2012, and the

third trained using Mixup. In the first set of experiments, we study the robust-

ness of one ERM model and the Mixup model against white box attacks. That is,

for each of the two models, we use the model itself to generate adversarial exam-

ples, either using the Fast Gradient Sign Method (FGSM) or the Iterative FGSM

(I-FGSM) methods [Goodfellow et al., 2015], allowing a maximum perturbation of

e = 4 for every pixel. For I-FGSM, we use 10 iterations with equal step size. In the

second set of experiments, we evaluate robustness against black box attacks. That

is, we use the first ERM model to produce adversarial examples using FGSM and

I-FGSM. Then, we test the robustness of the second ERM model and the Mixup

model to these examples. The results of both settings are summarized in Table 5.3.

For the FGSM white box attack, the Mixup model is 2.7 times more robust than

the ERM model in terms of Top-1 error. For the FGSM black box attack, the Mixup

model is 1.25 times more robust than the ERM model in terms of Top-1 error. Also,

while both Mixup and ERM are not robust to white box I-FGSM attacks, Mixup is

about 40% more robust than ERM in the black box I-FGSM setting. Overall, Mixup

produces neural networks that are significantly more robust than ERM against ad-

versarial examples in white box and black settings without additional overhead

compared to ERM.

120

Metric Method FGSM I-FGSM Metric Method FGSM I-FGSM

ERM 90.7 99.9 ERM 57.0 57.3

Mixup 75.2 99.6 Mixup 46.0 40.9

ERM 63.1 93.4 ERM 24.8 18.1
Mixup 49.1 95.8 Mixup 17.4 11.8

(a) White box attacks. (b) Black box attacks.

Table 5.3: Classification errors of ERM and Mixup models when tested on adversarial
examples.

Dataset ERM Mixup Dataset ERM Mixup

Abalone 74.0 73.6 Htru2 2.0 2.0
Arcene 57.6 48.0 Iris 21.3 17.3
Arrhythmia 56.6 46.3 Phishing 16.3 15.2

Table 5.4: ERM and Mixup classification errors on the UCI datasets.

5.3.6 Tabular data

To further explore the performance of Mixup on non-image data, we performed

a series of experiments on six arbitrary classification problems drawn from the

UCI dataset [Dheeru and Karra Taniskidou, 2017]. The neural networks in this

section are fully-connected, and have two hidden layers of 128 ReLU units. The

parameters of these neural networks are learned using Adam [Kingma and Ba,

2014] with default hyper-parameters, over 10 epochs of mini-batches of size 16.

Table 5.4 shows that Mixup improves the average test error on four out of the six

considered datasets, and never underperforms ERM.

5.3.7 Stabilization of Generative Adversarial Networks (GANs)

Generative Adversarial Networks, also known as GANs [Goodfellow et al., 2014],

are a powerful family of implicit generative models. In GANs, a generator and a

discriminator compete against each other to model a distribution P. On the one

121

hand, the generator g competes to transform noise vectors z ~ Q into fake sam-

ples g(z) that resemble real samples x ~ P. On the other hand, the discriminator

competes to distinguish between real samples x and fake samples g(z). Mathemat-

ically, training a GAN is equivalent to solving the optimization problem

max min Ex,z f(d(x), 1) + f(d(g(z)), 0),
g d

where f is the binary cross entropy loss. Unfortunately, solving the previous min-

max equation is a notoriously difficult optimization problem [Goodfellow, 2016],

since the discriminator often provides the generator with vanishing gradients. We

argue that Mixup should stabilize GAN training because it acts as a regularizer

on the gradients of the discriminator, akin to the binary classifier in Figure 5-1b.

Then, the smoothness of the discriminator guarantees a stable source of gradient

information to the generator. The Mixup formulation of GANs is:

max min E,z,, f(d(Ax + (1 - A)g(z)), A).
g d

Figure 5-5 illustrates the stabilizing effect of Mixup the training of GAN (orange

samples) when modeling two toy datasets (blue samples). The neural networks in

these experiments are fully-connected and have three hidden layers of 512 ReLU

units. The generator network accepts two-dimensional Gaussian noise vectors.

The networks are trained for 20,000 mini-batches of size 128 using the Adam op-

timizer with default parameters, where the discriminator is trained for five itera-

tions before every generator iteration. The training of Mixup GANs seems promis-

ingly robust to hyper-parameter and architectural choices.

5.3.8 Ablation Studies

5.3.8.1 Comparison with alternative designs

Mixup is a data augmentation method that consists of only two parts: random

convex combination of raw inputs, and correspondingly, convex combination of

one-hot label encodings. However, there are several design choices to make. For

example, on how to augment the inputs, we could have chosen to interpolate the

122

ERM GAN Mixup GAN (a = 0.2)

Figure 5-5: Effect of Mixup on stabilizing GAN training at iterations 10, 100, 1000, 10000,
and 20000.

latent representations (i.e. feature maps) of a neural network, and we could have

chosen to interpolate only between the nearest neighbors, or only between inputs

of the same class. When the inputs to interpolate come from two different classes,

we could have chosen to assign a single label to the synthetic input, for exam-

ple using the label of the input that weights more in the convex combination. To

compare Mixup with these alternative possibilities, we run a set of ablation study

experiments using the PreAct ResNet-18 architecture on the CIFAR-10 dataset.

Specifically, for each of the data augmentation methods, we test two weight

decay settings (10- which works well for Mixup, and 5 x 10-4 which works well

for ERM). All the other settings and hyperparameters are the same as reported in

Section 5.3.2.

To compare interpolating raw inputs with interpolating latent representations,

we test on random convex combination of the learned representations before each

residual block (denoted Layer 1-4) or before the uppermost "average pooling +
fully connected" layer (denoted Layer 5). To compare mixing random pairs of

inputs (RP) with mixing nearest neighbors (KNN), we first compute the 200 nearest

neighbors for each training sample, either from the same class (SC) or from all the

classes (AC). Then during training, for each sample in a minibatch, we replace the

sample with a synthetic sample by convex combination with a random draw from

its nearest neighbors. To compare mixing all the classes (AC) with mixing within

the same class (SC), we convex combine a minibatch with a random permutation

of its sample index, where the permutation is done in a per-batch basis (AC) or a

123

Method Specification Modified Weight decay

Input Target 10- 4 5 x 10-4

ERM X X 5.53 5.18

Mixup AC + RP / / 4.24 4.68
AC + KNN / / 4.98 5.26

mix labels and latent Layer 1 / / 4.44 4.51
representations Layer 2 / / 4.56 4.61
(AC + RP) Layer 3 / / 5.39 5.55

Layer 4 / / 5.95 5.43
Layer 5 / / 5.39 5.15

mix inputs only SC + KNN [Chawla et al., 2002] v/ X 5.45 5.52
AC + KNN / X 5.43 5.48
SC + RP / X 5.23 5.55
AC + RP / X 5.17 5.72

label smoothing c = 0.05 X / 5.25 5.02
[Szegedy et al., 2016] c = 0.1 X / 5.33 5.17

6 = 0.2 X / 5.34 5.06

mix inputs + e = 0.05 / / 5.02 5.40
label smoothing (= 0.1 / / 5.08 5.09
(AC + RP) E = 0.2 / / 4.98 5.06

E = 0.4 / / 5.25 5.39

add Gaussian noise o- = 0.05 / X 5.53 5.04
to inputs 0 = 0.1 / X 6.41 5.86

a= 0.2 / X 7.16 7.24

Table 5.5: Results of the ablation studies on the CIFAR-10 dataset. Reported are the median
test errors of the last 10 epochs. A tick (/) means the component is different from standard
ERM training, whereas a cross (X) means it follows the standard training practice. AC:
mix between all classes. SC: mix within the same class. RP: mix between random pairs.
KNN: mix between k-nearest neighbors (k=200). Please refer to the text for details about
the experiments and interpretations.

124

per-class basis (SC). To compare mixing inputs and labels with mixing inputs only,

we either use a convex combination of the two one-hot encodings as the target, or

select the one-hot encoding of the closer training sample as the target. For label

smoothing, we follow Szegedy et al. [2016] and use -m- as the target for incorrect10

classes, and 1 - - as the target for the correct class. Adding Gaussian noise to10

inputs is used as another baseline. We report the median test errors of the last 10

epochs. Results are shown in Table 5.5.

From the ablation study experiments, we have the following observations. First,

Mixup is the best data augmentation method we test, and is significantly better

than the second best method (mix input + label smoothing). Second, the effect of

regularization can be seen by comparing the test error with a small weight decay

(10-') with a large one (5 x 10--). For example, for ERM a large weight decay

works better, whereas for Mixup a small weight decay is preferred, confirming its

regularization effects. We also see an increasing advantage of large weight decay

when interpolating in higher layers of latent representations, indicating decreas-

ing strength of regularization. Among all the input interpolation methods, mixing

random pairs from all classes (AC + RP) has the strongest regularization effect.

Label smoothing and adding Gaussian noise have a relatively small regularization

effect. Finally, we note that the SMOTE algorithm [Chawla et al., 2002] does not

lead to a noticeable gain in performance.

5.3.8.2 Effects of dataset size

5.4 Related Work

Data augmentation lies at the heart of all successful applications of deep learn-

ing, ranging from image classification [Krizhevsky et al., 2012] to speech recog-

nition [Amodei et al., 2016, Graves et al., 2013]. In all cases, substantial domain

knowledge is leveraged to design suitable data transformations leading to im-

proved generalization. In image classification, for example, one routinely uses

rotation, translation, cropping, resizing, flipping [Lecun et al., 2001, Simonyan and

125

Zisserman, 20151, and random erasing [Zhong et al., 2017] to enforce visually plau-

sible invariances in the model through the training data. Similarly, in speech recog-

nition, noise injection is a prevalent practice to improve the robustness and accu-

racy of the trained models [Amodei et al., 2016].

More related to Mixup, Chawla et al. [2002] propose to augment the rare class

in an imbalanced dataset by interpolating the nearest neighbors; DeVries and Tay-

lor [2017b] show that interpolation and extrapolation the nearest neighbors of the

same class in feature space can improve generalization. However, their propos-

als only operate among the nearest neighbors within a certain class at the input

/ feature level, and hence does not account for changes in the corresponding la-

bels. Recent approaches have also proposed to regularize the output distribution

of a neural network by label smoothing [Szegedy et al., 2016], or penalizing high-

confidence softmax distributions [Pereyra et al., 2017]. These methods bear sim-

ilarities with Mixup in the sense that supervision depends on multiple smooth

labels, rather than on single hard labels as in traditional ERM. However, the la-

bel smoothing in these works is applied or regularized independently from the

associated feature values.

Mixup enjoys several desirable aspects of previous data augmentation and reg-

ularization schemes without suffering from their drawbacks. Like the method

of DeVries and Taylor [2017b], it does not require significant domain knowledge.

Like label smoothing, the supervision of every example is not overly dominated by

the ground-truth label. Unlike both of these approaches, the Mixup transformation

establishes a linear relationship between data augmentation and the supervision

signal. We believe that this leads to a strong regularizer that improves general-

ization as demonstrated by our experiments. The linearity constraint, through its

effect on the derivatives of the function approximated, also relates Mixup to other

methods such as Sobolev training of neural networks [Czarnecki et al., 2017] or

WGAN-GP [Gulrajani et al., 2017].

126

5.5 Discussion

We have proposed Mixup, a data-agnostic and straightforward data augmentation

principle. We have shown that Mixup is a form of vicinal risk minimization, which

trains on virtual examples constructed as the linear interpolation of two random

examples from the training set and their labels. Incorporating Mixup into existing

training pipelines reduces to a few lines of code, and introduces little or no com-

putational overhead. Throughout an extensive evaluation, we have shown that

Mixup improves the generalization error of state-of-the-art models on ImageNet,

CIFAR, speech, and tabular datasets. Furthermore, Mixup helps to combat mem-

orization of corrupt labels, sensitivity to adversarial examples, and instability in

adversarial training.

In our experiments, the following trend is consistent: with increasingly large a,

the training error on real data increases, while the generalization gap decreases.

This sustains our hypothesis that Mixup implicitly controls model complexity.

However, we do not yet have a good theory for understanding the 'sweet spot'

of this bias-variance trade-off. For example, in CIFAR-10 classification we can get

very low training error on real data even when a -+ oc (i.e., training only on av-

erages of pairs of real examples), whereas in ImageNet classification, the training

error on real data increases significantly with a -+ oo. Based on our ImageNet and

Google commands experiments with different model architectures, we conjecture

that increasing the model capacity would make training error less sensitive to large

a, hence giving Mixup a more significant advantage.

Mixup also opens up several possibilities for further exploration. First, is it

possible to make similar ideas work on other types of supervised learning prob-

lems, such as regression and structured prediction? While generalizing Mixup

to regression problems is straightforward, its application to structured prediction

problems such as image segmentation remains less obvious. Second, can similar

methods prove helpful beyond supervised learning? The interpolation principle

seems like a reasonable inductive bias which might also help in unsupervised,

127

semi-supervised, and reinforcement learning. Can we extend Mixup to feature-

label extrapolation to guarantee a robust model behavior far away from the train-

ing data? Although our discussion of these directions is still speculative, we are

excited about the possibilities Mixup opens up, and hope that our observations

will prove useful for future development.

128

Zerolnit: Training Deep Residual

Networks without Normalization

Normalization layers are a staple in state-of-the-art deep neural network archi-
tectures. They are widely believed to stabilize training, enable higher learning
rate, accelerate convergence and improve generalization, though the reason for
their effectiveness is still an active research topic. In this work, we challenge the
commonly-held beliefs by showing that none of the perceived benefits is unique
to normalization. Specifically, we propose Zerolnit, an initialization motivated by
solving the exploding and vanishing gradient problem at the beginning of train-
ing by properly rescaling a standard initialization. We find training residual net-
works with Zerolnit to be as stable as training with normalization - even for net-
works with 10,000 layers. Furthermore, with proper regularization, Zerolnit with-

129

out normalization matches or exceeds the performance of state-of-the-art residual

networks in image classification and machine translation.

6.1 Introduction

Artificial intelligence applications have witnessed major advances in recent years

[Hinton et al., 2012, Krizhevsky et al., 2012, Sutskever et al., 2014]. At the core of

this revolution is the development of novel neural network models and their train-

ing techniques. For example, since the landmark work of He et al. [2016a], most

of the state-of-the-art image recognition systems are built upon a deep stack of

network blocks consisting of convolutional layers and additive skip connections,

with some normalization mechanism (e.g. batch normalization [Ioffe and Szegedy,

2015]) to facilitate training and generalization. Besides image classification, vari-

ous normalization techniques [Ba et al., 2016, Salimans and Kingma, 2016, Ulyanov

et al., 2016, Wu and He, 2018] have been found essential to achieving good per-

formance on other tasks, such as machine translation [Vaswani et al., 2017] and

generative modeling [Zhu et al., 2017]. They are widely believed to have multi-

ple benefits for training very deep neural networks, including stabilizing learning,

enabling higher learning rate, accelerating convergence, and improving general-

ization.

Despite the enormous empirical success of training deep networks with skip

connections with normalization, there is currently no general consensus on why

these normalization techniques help the training process [Santurkar et al., 2018].

Intrigued by this topic, in this work we study

(i) without normalization, can a deep residual network be trained reliably? (And

if so,)

(ii) without normalization, can a deep residual network be trained with the same

learning rate, converge at the same speed, and generalize equally well (or

even better)?

Perhaps surprisingly, we find the answers to both questions are Yes. In particu-

130

lar, we show:

" Why normalization helps training. We derive a lower bound for the gradient

norm of a residual network at initialization, which explains why with standard

initializations, normalization techniques are essential for training deep residual

networks at maximal learning rate. (Section 6.2)

" Training without normalization. We propose Zerolnit, a method that rescales

the standard initialization of residual branches by adjusting for the network ar-

chitecture. Zerolnit enables training very deep residual networks stably at max-

imal learning rate without normalization. (Section 6.3)

" Image classification. We apply Zerolnit to replace batch normalization on image

classification benchmarks CIFAR-10 (with Wide-ResNet) and ImageNet (with

ResNet), and find Zerolnit with proper regularization matches the well-tuned

baseline trained with normalization. (Section 6.4.2)

" Machine translation. We apply Zerolnit to replace layer normalization on ma-

chine translation benchmarks IWSLT and WMT using the Transformer model,

and find it outperforms the baseline and achieves new state-of-the-art results.

(Section 6.4.3)

In the remaining of this chapter, we first analyze the exploding gradient prob-

lem of residual networks at initialization in Section 6.2. To solve this problem, we

develop Zerolnit in Section 6.3. In Section 6.4 we quantify the properties of Ze-

rolnit and compare it against state-of-the-art normalization methods on real world

benchmarks. A comparison with related work is presented in Section 6.5.

6.2 Problem: ResNet with Standard Initializations Lead

to Exploding Gradients

Standard initialization methods [Glorot and Bengio, 2010, He et al., 2015, Xiao

et al., 2018] attempt to set the initial parameters of the network such that the activa-

131,

remove add scalar rescale add scalar

+ normalization multipliers weights biases

bias1
mukpne .

3x3 conv c 0w J
-bias

bias .muliper. initialized at 1 - -

mulpier 3x3conv J. * initialized at 0 bias

3x3 cony 3x3 conv]. * scaled down by 'L bias

(He et al. 2016) Zerolnit

Figure 6-1: Left: ResNet basic block. Batch normalization [Ioffe and Szegedy, 2015] layers

are marked in red. Middle: A simple network block that trains stably when stacked to-

gether. Right: Zerolnit further improves by adding bias parameters. (See Section 6.3 for

details.)

tions neither vanish nor explode. Unfortunately, it has been observed that without

normalization techniques such as BatchNorm they do not account properly for the

effect of residual connections and this causes exploding gradients. Balduzzi et al.

[2017] characterizes this problem for ReLU networks, and we will generalize this

to residual networks with positively homogenous activation functions. A plain

(i.e. without normalization layers) ResNet with residual blocks {F1, ... , FL and

input xo computes the activations as

1-1
xI = xo + Fi(xi). (6.1)

i=O

ResNet output variance grows exponentially with depth. Here we only con-

sider the initialization, view the input xo as fixed, and consider the randomness

of the weight initialization. We analyze the variance of each layer xj, denoted

by Var[xi] (which is technically defined as the sum of the variance of all the co-

ordinates of xi.) For simplicity we assume the blocks are initialized to be zero

mean, i.e., E[F(xi) xj] = 0. By x1+1 - x, + Fi(xi), and the law of total variance,

we have Var[xl+] E[Var[F(xi)jx]] + Var(xi). Resnet structure prevents x, from

vanishing by forcing the variance to grow with depth, i.e. Var[xi] < Var[xl+1] if

E[Var[F(xj)lxi]] > 0. Yet, combined with initialization methods such as [He et al.,

132

2015], the output variance of each residual branch Var[F(xi) xi] will be about the

same as its input variance Var[x], and thus Var[x+1] ~ 2Var[x]. This causes the

output variance to explode exponentially with depth without normalization

Var[xi] = Var[xo] + Var[xi]E Var Fi x i = Q(2') (6.2)
i=O , VVar [xi]

for positively homogeneous blocks (see Definition 6.1). This is detrimental to

learning because it can in turn cause gradient explosion.

As we will show, at initialization, the gradient norm of certain activations and

weight tensors is lower bounded by the cross-entropy loss up to some constant. In-

tuitively, this implies that blowup in the logits will cause gradient explosion. Our

result applies to convolutional and linear weights in a neural network with ReLU

nonlinearity (e.g. feed-forward network, CNN), possibly with skip connections

(e.g. ResNet, DenseNet), but without any normalization.

Our analysis utilizes properties of positively homogeneous functions, which

we now introduce.

Definition 6.1 (positively homogeneous function of first degree). A function f
Rm - R' is called positively homogeneous (of first degree) (p.h.) if for any input

x e R m and a > 0, f(ax) = af(x).

Definition 6.2 (positively homogeneous set of first degree). Let 0 {O}eS be the

set of parameters of f(x) and 0 ph {Oi}iESph CS- We call Oph a positively homogeneous

set (offirst degree) (p.h. set) if for any a > 0, f(x; 0 \ O,, aOph) - af(x; 0 \ Oph, Oph),

where acOh denotes {aoi}iESph-

Intuitively, a p.h. set is a set of parameters 0 ph in function f such that for any

fixed input x and fixed parameters O\Oph, f(Oph) f (x; 0\Oph, Oph) is a p.h. function.

Examples of p.h. functions are ubiquitous in neural networks, including vari-

ous kinds of linear operations without bias (fully-connected (FC) and convolution

layers, pooling, addition, concatenation and dropout etc.) as well as ReLU nonlin-

earity. Moreover, we have the following claim:

Proposition 6.1. A function that is the composition of p.h. functions is itself p.h.

133

We study classification problems with c classes and the cross-entropy loss. We

use f to denote a neural network function except for the softmax layer. Cross-

entropy loss is defined as f(z, y) A yT(z - 1ogsumexp(z)) where y is the one-

hot label vector, z A f(x) E RC is the logits where zi denotes its i-th element,

and logsumexp(z) A log (Z [H exp(zi)). Consider a minibatch of training ex-

amples Dm = {(x~m, y(m)) 1 and the average cross-entropy loss favg (DA)

m 1 e(f (x(m)), y(l4)), where we use (n) to index quantities referring to the m-th

example. denotes any valid norm. We only make the following assumptions

about the network f:

1. f is a sequential composition of network blocks {f }[__1 , i.e.

f(xo) = fL(fL-1(... f (xo))), each of which is composed of p.h. functions.

2. Weight elements in the FC layer are i.i.d. sampled from a zero-mean symmet-

ric distribution.

These assumptions hold at initialization if we remove all the normalization layers

in a residual network with ReLU nonlinearity, assuming all the biases are initial-

ized at 0.

Our results are summarized in the following two theorems, whose proofs are

listed in the appendix:

Theorem 6.1. Denote the input to the i-th block by xi_ 1 . With Assumption 1, we have

at__ e(z, y) - H(p) (6.3)
axi-1 ~ IIxiI11|

where p is the softmax probabilities and H denotes the Shannon entropy.

Since H(p) is upper bounded by log(c) and Jjx_ 1 11 is small in the lower blocks,

blowup in the loss will cause large gradient norm with respect to the lower block

input. Our second theorem proves a lower bound on the gradient norm of a p.h.

set in a network.

Theorem 6.2. With Assumption 1, we have

DE1 Al
avg ; A'If",y" - H(p('t)) G((m)). (6.4)

m=1

134

Furthermore, with Assumptions 1 and 2, we have

EG(9h) > E[maxiE[1] zi] - log(c) (6.5)
110phll

It remains to identify such p.h. sets in a neural network. In Figure 6-2 we pro-

vide three examples of p.h. sets in a ResNet without normalization. Theorem 6.2

suggests that these layers would suffer from the exploding gradient problem, if

the logits z blow up at initialization, which unfortunately would occur in a ResNet

without normalization if initialized in a traditional way. This motivates us to in-

troduce a new initialization in the next section.

tk +
conv IT conv Cn

Figure 6-2: Examples of p.h. sets in a ResNet without normalization: (1) the first convolu-
tion layer before max pooling; (2) the fully connected layer before softmax; (3) the union of
a spatial downsampling layer in the backbone and a convolution layer in its corresponding
residual branch.

6.3 Zerolnit: Update a Residual Network 9(r) per SGD

Step

Our analysis in the previous section points out the failure mode of standard ini-

tializations for training deep residual network: the gradient norm of certain layers

is in expectation lower bounded by a quantity that increases indefinitely with the

network depth. However, escaping this failure mode does not necessarily lead us

to successful training - after all, it is the whole network as a function that we care

about, rather than a layer or a network block. In this section, we propose a top-

down design of a new initialization that ensures proper update scale to the net-

135

work function, by simply rescaling a standard initialization. To start, we denote

the learning rate by Tj and set our goal:

f (x; 0) is updated by E(,) per SGD step after initialization as rq -4 0.

That is, |A f(x)II = (,q) where Af(x) f (x; 0 - q -L(f(x), y)) - f(x; 0).

Put another way, our goal is to design an initialization such that SGD updates

to the network function are in the right scale and independent of the depth.

We define the Shortcut as the shortest path from input to output in a residual

network. The Shortcut is typically a shallow network with a few trainable layers.1

We assume the Shortcut is initialized using a standard method, and focus on the

initialization of the residual branches.

Residual branches update the network in sync. To start, we first make an impor-

tant observation that the SGD update to each residual branch changes the network

function in highly correlated directions. This implies that if a residual network has

L residual branches, then an SGD step to each residual branch should change the

network function by E(2]/L) on average to achieve an overall O() update. We

defer the formal statement and its proof until Section 6.7.2.1.

Study of a scalar branch. Next we study how to initialize a residual branch with

m layers so that its SGD update changes the network function by O(}/L). We

assume m is a small positive integer (e.g. 2 or 3). As we are only concerned

about the scale of the update, it is sufficiently instructive to study the scalar case,

i.e. F(x) = (11' aj) x where ai,... , am, x E R+. For example, the standard ini-

tialization methods typically initialize each layer so that the output (after non-

linear activation) preserves the input variance, which can be modeled as setting

Vi E [m], ai = 1. In turn, setting a, to a positive number other than 1 corresponds

to rescaling the i-th layer by aj.

'For example, in the ResNet architecture (e.g. ResNet-50, ResNet-101 or ResNet-152) for Ima-
geNet classification, the Shortcut is always a 6-layer network with five convolution layers and one
fully-connected layer, irrespective of the total depth of the whole network.

136

Through deriving the constraints for F(x) to make E(,q/L) updates, we will also

discover how to rescale the weight layers of a standard initialization as desired. In

particular, we show the SGD update to F(x) is 9(r//L) ifand only if the initialization

satisfies the following constraint:

(a x = x 1 , where j C arg min ak (6.6)

We defer the derivation until Section 6.7.2.2.

Equation (6.6) suggests new methods to initialize a residual branch through

rescaling the standard initialization of i-th layer in a residual branch by its corresponding

scalar ai. For example, we could set Vi c [m], ai = L2.-2 . Alternatively, we

could start the residual branch as a zero function by setting am = 0 and Vi E

[Im - 1], ai = L- --. In the second option, the residual branch does not need

to "unlearn" its potentially bad random initial state, which can be beneficial for

learning. Therefore, we use the latter option in our experiments, unless otherwise

specified.

The effects of biases and multipliers. With proper rescaling of the weights in

all the residual branches, a residual network is supposed to be updated by O(I)

per SGD step - our goal is achieved. However, in order to match the training

performance of a corresponding network with normalization, there are two more

things to consider: biases and multipliers.

Using biases in the linear and convolution layers is a common practice. In nor-

malization methods, bias and scale parameters are typically used to restore the

representation power after normalization. 2 Intuitively, because the preferred in-

put/output mean of a weight layer may be different from the preferred output/in-

put mean of an activation layer, it also helps to insert bias terms in a residual net-

work without normalization. Empirically, we find that inserting just one scalar bias

before each weight layer and nonlinear activation layer significantly improves the

2For example, in batch normalization gamma and beta parameters are used to affine-transform
the normalized activations per each channel.

137

training performance.

Multipliers scale the output of a residual branch, similar to the scale parameters

in batch normalization. They have an interesting effect on the learning dynamics of

weight layers in the same branch. Specifically, as the stochastic gradient of a layer

is typically almost orthogonal to its weight, learning rate decay tends to cause the

weight norm equilibrium to shrink when combined with L2 weight decay [van

Laarhoven, 2017]. In a branch with multipliers, this in turn causes the growth of

the multipliers, increasing the effective learning rate of other layers. In particular,

we observe that inserting just one scalar multiplier per residual branch mimics the

weight norm dynamics of a network with normalization, and spares us the search

of a new learning rate schedule.

Put together, we propose the following method to train residual networks with-

out normalization:

Zerolnit (or: How to train a deep residual network without normalization)

1. Initialize the classification layer and the last layer of each residual branch

to 0.

2. Initialize every other layer using a standard method, e.g. He et al. [2015],

and scale only the weight layers inside residual branches by L- -m.

3. Add a scalar multiplier (initialized at 1) in every branch and a scalar bias

(initialized at 0) before each convolution, linear, and element-wise activa-

tion layer.

It is important to note that Rule 2 of Zerolnit is the essential part as predicted by

Equation (6.6). Indeed, we observe that using Rule 2 alone is sufficient and neces-

sary for training extremely deep residual networks. On the other hand, Rule 1 and

Rule 3 make further improvements for training so as to match the performance of

a residual network with normalization layers, as we explain in the above text.3 We

31t is worth noting that the design of Zerolnit is a simplification of the common practice, in
that we only introduce O(K) parameters beyond convolution and linear weights (since we remove
bias terms from convolution and linear layers), whereas the common practice includes O(KC)

138

find ablation experiments confirm our claims (see Section 5.3.8).

6.4 Experiments

6.4.1 Training at increasing depth

One of the key advatanges of BatchNorm is that it leads to fast training even for

very deep models [Joffe and Szegedy, 2015]. Here we will determine if we can

match this desirable property by relying only on proper initialization. We pro-

pose to evaluate how each method affects training very deep nets by measuring

the test accuracy after the first epoch as we increase depth. In particular, we use the

wide residual network (WRN) architecture with width 1 and the default weight

decay 5e-4 [Zagoruyko and Komodakis, 2016b]. We specifically use the default

learning rate of 0.1 because the ability to use high learning rates is considered to

be important to the success of BatchNorm. We compare Zerolnit against three

baseline methods - (1) rescale the output of each residual block by ' [Balduzzi

et al., 2017], (2) post-process an orthogonal initialization such that the output vari-

ance of each residual block is close to 1 (Layer-sequential unit-variance orthogonal

initialization, or LSUV) [Mishkin and Matas, 2015], (3) batch normalization [Ioffe

and Szegedy, 2015]. We use the default batch size of 128 up to 1000 layers, with

a batch size of 64 for 10,000 layers. We limit our budget of epochs to 1 due to the

computational strain of evaluating models with up to 10,000 layers.

Figure 6-3 shows the test accuracy at the first epoch as depth increases. Observe

that Zerolnit matches or exceeds the performance of BatchNorm at the first epoch,

even with 10,000 layers. LSUV and 1/2 -scaling are not able to train with the same

learning rate as BatchNorm past 100 layers.

[loffe and Szegedy, 2015, Salimans and Kingma, 2016] or O(KCWH) [Ba et al., 2016] additional
parameters, where K is the number of layers, C is the max number of channels per layer and W, H
are the spatial dimension of the largest feature maps.

139

55 --i- scafing
50 -- LSUV
4-I- BatchNorm

-I- Zerolnit
040

.~35

'~30

25
10 100 1000 10000

Depth

Figure 6-3: Depth of residual networks versus test accuracy at the first epoch for various

methods on CIFAR-10 with the default BatchNorm learning rate. We observe that Zerolnit

is able to train very deep networks with the same learning rate as batch normalization.

(Higher is better.)

6.4.2 Image classification

In this section, we evaluate the ability of Zerolnit to replace batch normalization in

image classification applications. On the CIFAR-10 dataset, we first test on ResNet-

110 [He et al., 2016a] with default hyper-parameters; results are shown in Table 6.1.

Zerolnit obtains 7% relative improvement in test error compared with standard ini-

tialization; however, we note a substantial difference in the difficulty of training.

While network with Zerolnit is trained with the same learning rate and converge

as fast as network with batch normalization, we fail to train a Xavier initialized

ResNet-110 with 0.1x maximal learning rate.4 The test error gap in Table 6.1 is

likely due to the regularization effect of BatchNorm rather than difficulty in opti-

mization; when we train Zerolnit networks with better regularization, the test er-

ror gap disappears and we obtain state-of-the-art results on CIFAR-10 and SVHN

without normalization layers (see Section 6.7.3.2).

On the ImageNet dataset, we benchmark Zerolnit with the ResNet-50 and ResNet-

101 architectures [He et al., 2016a], trained for 100 epochs and 200 epochs respec-

tively. Similar to our finding on the CIFAR-10 dataset, we observe that (1) train-

ing with Zerolnit is fast and stable with the default hyperparameters, (2) Zerolnit

alone significantly improves the test error of standard initialization, and (3) there

4 Personal communication with the authors of [Shang et al., 2017] confirms our observation, and

reveals that the Xavier initialized network need more epochs to converge.

140

Dataset ResNet-110 Normalization Large q Test Error (%)

w/ BatchNorm [He et al., 2016a] / / 6.61
CIFAR-10 w/ Xavier Init [Shang et al., 2017] x x 7.78

w/ Zerolnit X / 7.24

Table 6.1: Results on CIFAR-10 with ResNet-110 (mean/median of 5 runs; lower is better).

is a large test error gap between Zerolnit and BatchNorm. Further inspection re-

veals that Zerolnit models obtain significantly lower training error compared with

BatchNorm models (see Section 6.7.3.3), i.e. Zerolnit suffers from overfitting. We

therefore apply stronger regularization to the Zerolnit models using Mixup [Zhang

et al., 2017]. We find it is beneficial to reduce the learning rate of the scalar mul-

tiplier and bias by lOx when additional large regularization is used. Best Mixup

coefficients are found through cross-validation: they are 0.2, 0.1 and 0.7 for Batch-

Norm, GroupNorm [Wu and He, 2018] and Zerolnit respectively. We present the

results in Table 6.2, noting that with better regularization, the performance of Ze-

rolnit is on par with GroupNorm.

Model Method Normalization Test Error (%)

BatchNorm [Goyal et al., 2017] 23.6
BatchNorm + Mixup [Zhang et al., 2017] / 23.3

ResNet-50 GroupNorm + Mixup 23.9
Xavier Init [Shang et al., 2017] 31.5
Zerolnit K 27.6
Zerolnit + Mixup 24.0

BatchNorm [Zhang et al., 2017] 22.0

ResNet-101 BatchNorm + Mixup [Zhang et al., 2017] / 20.8
GroupNorm + Mixup 21.4

Zerolnit + Mixup K 21.4

Table 6.2: ImageNet test results using the ResNet architecture. (Lower is better.)

6.4.3 Machine translation

To demonstrate the generality of Zerolnit, we also apply it to replace layer nor-

malization [Ba et al., 2016] in Transformer [Vaswani et al., 2017], a state-of-the-art

141

neural network for machine translation. Specifically, we use the fairseq library

[Gehring et al., 2017] and follow the Zerolnit template in Section 6.3 to modify the

baseline model. We evaluate on two standard machine translation datasets, IWSLT

German-English (de-en) and WMT English-German (en-de) following the setup of

Ott et al. [2018]. For the IWSLT de-en dataset, we cross-validate the dropout prob-

ability from {0.3, 0.4, 0.5, 0.6} and find 0.5 to be optimal for both Zerolnit and the

LayerNorm baseline. For the WMT'16 en-de dataset, we use dropout probability

0.4. All models are trained for 200k updates.

It was reported [Chen et al., 2018] that "Layer normalization is most critical to

stabilize the training process... removing layer normalization results in unstable

training runs". However we find training with Zerolnit to be very stable and as

fast as the baseline model. Results are shown in Table 6.3. Surprisingly, we find

the models do not suffer from overfitting when LayerNorm is replaced by Zerolnit,

thanks to the strong regularization effect of dropout. Instead, Zerolnit matches or

supersedes the state-of-the-art results using Transformer model on both datasets.

Dataset Model Normalization BLEU

[Deng et al., 2018] 33.1
IWSLT DE-EN LayerNorm 34.2

Zerolnit 34.5

[Vaswani et al., 2017] 28.4
WMT EN-DE LayerNorm [Ott et al., 2018] 29.3

Zerolnit 1 29.3

Table 6.3: Comparing Zerolnit vs. LayerNorm for machine translation tasks. (Higher is
better.)

6.5 Related Work

Normalization methods. Normalization methods have enabled training very deep

residual networks, and are currently an essential building block of the most suc-

cessful deep learning architectures. All normalization methods for training neu-

142

ral networks explicitly normalize (i.e. standardize) some component (activations

or weights) through dividing activations or weights by some real number com-

puted from its statistics and/or subtracting some real number activation statistics

(typically the mean) from the activations. 5 In contrast, Zerolnit does not compute

statistics (mean, variance or norm) at initialization or during any phase of training,

hence is not a normalization method.

Theoretical analysis of residual networks. Training very deep neural networks

is an important theoretical problem. Early works study the propagation of vari-

ance in the forward and backward pass for different activation functions [Glorot

and Bengio, 2010, He et al., 2015]. Recently, the study of dynamical isometry [Saxe

et al., 2013] provides a more detailed characterization of the forward and backward

signal propogation at initialization [Hanin, 2018, Pennington et al., 2017], enabling

training 10,000-layer CNNs from scratch [Xiao et al., 2018]. For residual networks,

activation scale [Hanin and Rolnick, 2018], gradient variance [Balduzzi et al., 2017]

and dynamical isometry property [Yang and Schoenholz, 2017] have been studied.

Our analysis in Section 6.2 leads to the similar conclusion as previous work that the

standard initialization for residual networks is problematic. However, our use of

positive homogeneity for lower bounding the gradient norm of a neural network

is novel, and applies to a broad class of neural network architectures (e.g. ResNet,

DenseNet) and initialization methods (e.g. Xavier, LSUV) with a minimal set of

assumptions and a simple proof.

Understanding batch normalization. Despite its popularity in practice, batch

normalization has not been well understood. loffe and Szegedy [2015] attributed

its success to "reducing internal covariate shift", whereas Santurkar et al. [2018]

argued that its effect may be "smoothing loss surface". Our analysis in Section 6.2

corroborates the latter idea by showing that standard initialization leads to very

steep loss surface at initialization; however, Section 6.3 and various experiments

'For reference, we include a brief history of normalization methods in Section 6.7.4.

143

suggests that steep loss surface may be an artifact of improper initialization, at least

for residual networks. Hoffer et al. [2018], van Laarhoven [2017] studied the effect

of (batch) normalization and weight decay on the effective learning rate. Their

results inspire us to include a multiplier in each residual branch.

ResNet initialization in practice. Balduzzi et al. [2017], Gehring et al. [2017] pro-

posed to address the initialization problem of residual nets by using the recurrence

x, = -'/ 2 (xj 1 + Fi(xj_1)). Mishkin and Matas [2015] proposed a data-dependent

initialization to mimic the effect of batch normalization in the first forward pass.

While both methods limit the scale of activation and gradient, they would fail to

train stably at the maximal learning rate for very deep residual networks, since

they fail to consider the accumulation of highly correlated updates contributed by

different residual branches to the network function (Section 6.7.2.1). Goyal et al.

[2017], Hardt and Ma [2016], Kingma and Dhariwal [2018], Srivastava et al. [2015]

found that initializing the residual branches at (or close to) zero helped optimiza-

tion. Our results support their observation in general, but Equation (6.6) suggests

additional subtleties when choosing a good initialization scheme.

6.6 Conclusion

In this work, we study how to train a deep residual network reliably without nor-

malization. Our theory in Section 6.2 suggests that the exploding gradient problem

at initialization in a positively homogeneous network such as ResNet is directly

linked to the blowup of logits. In Section 6.3 we develop Zerolnit to ensure the

whole network as well as each residual branch gets updates of proper scale, based

on a top-down analysis. Extensive experiments on real world datasets demon-

strate that Zerolnit matches normalization techniques in training deep residual

networks, and achieves state-of-the-art test performance with proper regulariza-

tion.

Our work opens up new possibilities for both theory and applications. On the

144

theory side, removing the normalization layers is supposed to simplify the analy-

sis of these residual networks. Our empirical results suggest that some previous

hypotheses [e.g. loffe and Szegedy, 2015, Santurkar et al., 2018] about the effects of

(batch) normalization may need to be revised. It would also be interesting to un-

derstand the regularization benefits of various normalization methods. On the ap-

plication side, it may be possible to develop better regularization methods, which,

when combined with Zerolnit, yield further improvements.

6.7 Appendix

6.7.1 Proofs for Section 6.2

6.7.1.1 Gradient norm lower bound for the input to a network block

Proof of Theorem 6.1. We use fisj to denote the composition fj o f. o ... o fi, so that

z = fiL(xi-1) for all i E [L]. Note that z is p.h. with respect to the input of each

network block, i.e. fiL((l + E)Xi-1) = (1 + E)fiL(Xi-) for c > -1. This allows us

to compute the gradient of the cross-entropy loss with respect to the scaling factor

c at e = 0 as

af(fi- ((I +)xi 1), y) = = __+ - yTz+pT z e(z, y) - H(p) (6.7)
06 E=0 &Z aE

Since the gradient L2 norm |10 /axi|| must be greater than the directional derivative

9f(fi-4(Xi-1 + t - 1), y), defining c = t/ xi-| we have

BE &E - xe y),y)-H-pat > (fi L(Xi i + Xi) 1Yz, y) .) (6.8)
axj_1 0E at IX-11

145

6.7.1.2 Gradient norm lower bound for positively homogeneous sets

Proof of Theorem 6.2. The proof idea is similar. Recall that if 0pi is a p.h. set, then

f(n)(Oph) f (x(m; 0 \ Oph, Oph) is a p.h. function. We therefore have

a - 1 Of 01(m) 1 M H(
Oe favg (DM; (1 + E)Oph) Z(m) Ef (m)) -

E= n M=1 m=1
(6.9)

hence we again invoke the directional derivative argument to show

aavg ;> 1 Zf(z(m), y(m)) - H(p(m)) 4 G(O,) (6.1O)
ph - MlOph0m=1

In order to estimate the scale of this lower bound, recall the FC layer weights are

i.i.d. sampled from a symmetric, mean-zero distribution, therefore z has a sym-

metric probability density function with mean 0. We hence have

Ef(z, y) = E[-yT(z - 1ogsumexp(z))] > E[yT(maxE[c] zi - z)] = E[maxj[,c zi]

(6.11)

where the inequality uses the fact that logsumexp(z) ;> maxic, zi; the last equal-

ity is due to y and z being independent at initialization and Ez = 0. Using the

trivial bound EH(p) < log(c), we get

EG(Oph) _ E[maxj,[,] zi] - log(c) (6.12)
11ph

which shows that the gradient norm of a p.h. set is of the order Q(E[maxc[[, zi]) at

initialization. l

6.7.2 Proofs for Section 6.3

6.7.2.1 Residual branches update the network in sync

A common theme in previous analysis of residual networks is the scale of activa-

tion and gradient [Balduzzi et al., 2017, Hanin and Rolnick, 2018, Yang and Schoen-

holz, 2017]. However, it is more important to consider the scale of actual change to

the network function made by a (stochastic) gradient descent step. If the updates

to different layers cancel out each other, the network would be stable as a whole

146

despite drastic changes in different layers; if, on the other hand, the updates to dif-

ferent layers align with each other, the whole network may incur a drastic change

in one step, even if each layer only changes a tiny amount. We now provide anal-

ysis showing that the latter scenario more accurately describes what happens in

reality at initialization.

For our result in this section, we make the following assumptions:

" f is a sequential composition of network blocks {f }f_ 1, i.e. f (xo) = fL (fL-1 -- (XOM

consisting of fully-connected weight layers, ReLU activation functions and

residual branches.

* fL is a fully-connected layer with weights i.i.d. sampled from a zero-mean

distribution.

* There is no bias parameter in f.

For 1 < L, let x1_ 1 be the input to f, and F1(x_11) be a branch in f, with mi lay-

ers. Without loss of generality, we study the following specific form of network

architecture:
m, ReLU

F1(xi_ 1) = (ReLU o W"") o ... o ReLU o W 0)(Xi_1),

f1 (xl_ 1) x1_1+ F(xi_1).

For the last block we denote mL 1 and fL(xL-1) = FL(XL-1) = W(IXL_1.

Furthermore, we always choose 0 as the gradient of ReLU when its input is 0.

As such, with input x, the output and gradient of ReLU(x) can be simply written as

D, [xo]x, where D,[x>o] is a diagonal matrix with diagonal entries corresponding to

1 [x > 0]. Denote the preactivation of the i-th layer (i.e. the input to the i-th ReLU)

in the l-th block by x . We define the following terms to simplify our presentation:

F(A D VVa1)W - -D x 3 W E xj_1 I < L, i E [mi]

F AD W() .. D i , 1 < L, i E mil]

A XL1

L -

147

We have the following result on the gradient update to f:

Theorem 6.3. With the above assumptions, suppose we update the network parameters by

AO -r yQf (f(xo; 0), y), then the update to network output Af (xo) A f (xo; 0 + A0) -

f(xo;0) is

f() = - F F F + +O(r)), (6.13)

where z f (xo) c Rc is the logits.

Let us discuss the implecation of this result before delving into the proof. As

each Jj is a c x c real symmetric positive semi-definite matrix, the trace norm of each

Jj equals its trace. Similarly, the trace norm of J E >T Jj equals the trace of the

sum of all Jj as well, which scales linearly with the number of residual branches

L. Since the output z has no (or little) correlation with the target y at the start of

training, D is a vector of some random direction. It then follows that the expected

update scale is proportional to the trace norm of J, which is proportional to L as

well as the average trace of J. Simply put, to allow the whole network be updated

by 8(q) per step independent of depth, we need to ensure each residual branch

contributes only a 0(,q/L) update on average.

Proof. The first insight to prove our result is to note that conditioning on a specific

input x0, we can replace each ReLU activation layer by a diagonal matrix and does

not change the forward and backward pass. (In fact, this is valid even after we

apply a gradient descent update, as long as the learning rate ' > 0 is sufficiently

small so that all positive preactivation remains positive. This observation will be

essential for our later analysis.) We thus have the gradient w.r.t. the i-th weight

layer in the l-th block is

___ Oa Of Of T/f O
OE _ xl of OE-(F- 0 P) I (F('. (6.14)

&vec(W/z)) Xvec(W) _x 9z (T (6

where & denotes the Kronecker product. The second insight is to note that with our

assumptions, a network block and its gradient w.r.t. its input have the following

148

relation:
Of,

fi(xi-1) = -x1_1 1. (6.15)

We then plug in Equation (6.14) to the gradient update A = -- j(f(xo; 0), y),

and recalculate the forward pass f(xo; 0 + AO). The theorem follows by applying

Equation (6.15) and a first-order Taylor series expansion in a small neighborhood

of q = 0 where f(xo; 0 + AO) is smooth w.r.t. q. D

6.7.2.2 What scalar branch has 6(7/L) updates?

For this section, we focus on the proper initialization of a scalar branch F(x) =

(H a)x. We have the following result:

Theorem 6.4. Assuming Vi, ai > 0, x = E(1) and E = e(1), then AF(x)
49F(x)-

F(x; 0 - 77i1) - F(x; 0) is 6(71/L) if and only if

(1 ak x = (where j c arg min ak (6.16)
kE~m]\{j}

1L

Proof. We start by calculating the gradient of each parameter:

e- ak X (6.17)
Oai OF (kE[m]\{i}

and a first-order approximation of AF(x):

of m

AF(x) = -9F) (F(x))2 ? (6.18)
2=1 2

where we conveniently abuse some notations by defining

F(x) I ak X, if a. = 0. (6.19)
afkC[m]\{i}

Denote Ei= as M and mink ak as A, we have

(F(x))2 - < (F(x))2 M < (F(x))2 . (6.20)

and therefore by rearranging Equation (6.18) and letting AF(x) = 0(7/L) we get

1 (AF(x)\ _

(F(x))2 . A2=__ - L (6.21)
\jkF(x)

149

i.e. F(x)/A = 0(1/vT/). Hence the "only if" part is proved. For the "if" part, we

apply Equation (6.20) to Equation (6.18) and observe that by Equation (6.16)

A F(x) = 0 (r;(F (x))2 - = ((6.22)

The result of this theorem provides useful guidance on how to rescale the stan-

dard initialization to achieve the desired update scale for the network function.

6.7.3 Additional experiments

6.7.3.1 Ablation studies of Zerolnit

In this section we present the training curves of different architecture designs and

initialization schemes. Specifically, we compare the training accuracy of batch nor-

malization, Zerolnit, as well as a few ablated options: (1) removing the bias pa-

rameters in the network; (2) use 0. 1x the suggested initialization scale and no bias

parameters; (3) use lIx the suggested initialization scale and no bias parameters;

and (4) remove all the residual branches. The results are shown in Figure 6-4. We

see that initializing the residual branch layers at a smaller scale (or all zero) slows

down learning, whereas training fails when initializing them at a larger scale; we

also see the clear benefit of adding bias parameters in the network.

6.7.3.2 CIFAR and SVHN with better regularization

We perform additional experiments to validate our hypothesis that the gap in test

error between Zerolnit and batch normalization is primarily due to overfitting. To

combat overfitting, we use Mixup [Zhang et al., 2017] and Cutout [DeVries and

Taylor, 2017a] with default hyperparameters as additional regularization. On the

CIFAR-10 dataset, we perform experiments with WideResNet-40-10 and on SVHN

we use WideResNet-16-12 [Zagoruyko and Komodakis, 2016b], all with the default

hyperparameters. We observe in Table 6.4 that models trained with Zerolnit and

150

C.)

C.)

F-.

100
1 -- BatchNorm

-- Zerolnit
80 - L -7,no bias

60 --- 1L-r__

40

20

0
0 200 400 600 800 1000 1200

Batch Index

Figure 6-4: Minibatch training accuracy of ResNet-110 on CIFAR-10 dataset with different
configurations in the first 3 epochs. We use minibatch size of 128 and smooth the curves
using 10-step moving average.

strong regularization are competitive with state-of-the-art methods on CIFAR-10

and SVHN, as well as our baseline with batch normalization.

Dataset Model Normalization Test Error (%)
[Zagoruyko and Komodakis, 2016b] 3.8
[Yamada et al., 2018] Yes 2.3

CIFAR-10 BatchNorm + Mixup + Cutout 2.5
[Graham, 2014] No3.5
Zerolnit + Mixup + Cutout 2.3
[Zagoruyko and Komodakis, 2016b] 1.5
[DeVries and Taylor, 2017a] Yes 1.3

SVHN BatchNorm + Mixup + Cutout 1.4
[Lee et al., 2016] 1.7
Zerolnit + Mixup + Cutout No1.4

Table 6.4: Additional results on CIFAR-10, SVHN datasets.

6.7.3.3 Training and test curves on ImageNet

Figure 6-5 shows that without additional regularization Zerolnit fits the training

set very well, but overfits significantly. We see in Figure 6-6 that Zerolnit is com-

151

petitive with networks trained with normalization when the Mixup regularizer is

used.

60
-- BatchNonn

50 - GroupNorm
-Zeroinit

40

30

20

10
0 20 40 60 80 100

Epochs

50
- BatchNonn

- GroupNorm
- ZeroInit

45

S40

35

30

25

20
0 20 40

Epoch:
60 80 100

Figure 6-5: Training and test errors on ImageNet using ResNet-50 without additional reg-
ularization. We observe that Zerolnit is able to better fit the training data and that leads
to overfitting - more regularization is needed. Results of BatchNorm and GroupNorm
reproduced from [Wu and He, 2018].

\

0 20 40 60 80 100
Epochs

- BatchNonn + Mixup
- GroupNorm + Mixup
- Zerolnit + Mixup

Figure 6-6: Test error of ResNet-50 on ImageNet with Mixup [Zhang et al., 2017]. Zerolnit
closely matches the final results yielded by the use of GroupNorm, without any normal-
ization.

6.7.4 Additional references: A brief history of normalization meth-

ods

The first use of normalization in neural networks appears in the modeling of bio-

logical visual system and dates back at least to Heeger [1992] in neuroscience and

to Lyu and Simoncelli [2008], Pinto et al. [2008] in computer vision, where each

152

F-

50

45

40

35

30

25

20

neuron output is divided by the sum (or norm) of all of the outputs, a module

called divisive normalization. Recent popular normalization methods, such as lo-

cal response normalization [Krizhevsky et al., 2012], batch normalization [loffe and

Szegedy, 2015] and layer normalization [Ba et al., 2016] mostly follow this tradition

of dividing the neuron activations by their certain summary statistics, often also

with the activation mean subtracted. An exception is weight normalization [Sal-

imans and Kingma, 2016], which instead divides the weight parameters by their

statistics, specifically the weight norm; weight normalization also adopts the idea

of activation normalization for weight initialization. The recently proposed act-

norm [Kingma and Dhariwal, 2018] removes the normalization of weight param-

eters, but still use activation normalization to initialize the affine transformation

layers.

153

7
Conclusions

In the previous chapters, I have presented two lines of my work in the field of non-

convex optimization and learning. The first part consists of iteration complexity

analysis of first-order Riemannian optimization algorithms, and the second part

focuses on important practical issues in deep neural network training. How do

these results fit into the global picture of non-convex optimization and learning?

What insights do they tell us about machine learning and data science in general?

I would like to conclude with some discussions on these questions.

7.1 A Zoomed-Out Summary

Optimization is an instrumental algorithmic tool in virtually every field of applied

math and quantitative sciences, yet the difficulty of obtaining a solution can vary

154

drastically. On the one hand, there exist notoriously hard non-convex problems

where even testing an approximate solution seems hopeless in the worst case; on

the other hand, fruitful theory and algorithmic development has been made for

interesting problem structures, such as convexity or submodularity, that allows for

efficient solvers even in the worst case.

Why are certain problems easy to solve? Assumptions about the objective

function, such as convexity or smoothness, are perhaps the most important fac-

tor. However, the role of the linear space assumption is often taken for granted.

Is the benign vector space geometry an essential component in the analysis, or is

it an irrelevant confounding factor? The results in this thesis support instead the

middle ground, that the actual answer may be mixed. Indeed, for most first-order

methods, convergence is global in both vector space and Riemannian manifolds,

and the corresponding rates differ by at most a constant depending on the mani-

fold curvature; whereas for Nesterov's accelerated gradient methods, convergence

analysis seems to be much more difficult under nonlinear metric. This is interest-

ing and perhaps surprising, since it could imply intricate interactions between the

geometry of certain manifolds and well-known optimization algorithms. Such ob-

servation may also help us gain understanding of vector space optimization - a

side-by-side comparison of vector space optimization with the analysis developed

in this thesis could serve to put the former theory in perspective.

As neural networks achieve dominant performance across the board, gone are

the golden days when convexifying a model suggests halfway to success. In con-

trast to the convex models, much less is known about the optimization and gener-

alization properties of neural networks. In fact, a lot of the current best practices in

deep learning are accumulated results of trial and error. The most notably exam-

ple of this trend is Google's AutoML project. By systematically searching through

the design space of network modules, data augmentations or hyperparameters,

automatic machine learning can spare human experts from the tiring task of itera-

tively refining a design solution. For example, the recently proposed AmoebaNet

[Real et al., 2018] was the result of running a new evolutionary algorithm to search

155

through the combinatorial space of network modules (called cells); the AutoAug-

ment project [Cubuk et al., 2018] found out data augmentation policies for different

datasets each consists of 25 sub-policies, each of which is in turn a pair of transfor-

mations chosen from about ten primitive data augmentation transformations.

While the promise of automatic machine learning appears attractive, in the long

run it might serve to slow down machine learning research progress. The gener-

ated best performing models and augmentation policies are often a convoluted

mix of various primitives and harder to interpret than manually designed models.

It is difficult to attribute the success (or failure) of such automatic design process

to what actually matters, as we can hardly tell what matters from what does not, except

for the empirical observation that a diverse mixture of sub-modules helps to boost

test results. Furthermore, these methods do not address the problem of invent-

ing good learning primitives. The best primitives at this time, such as learning

rate schedule, batch normalization, and various kinds of convolutions are often

discovered through trial and error without fully understanding their effects and

effectiveness. What if we could distinguish the "active ingredient" from the "in-

active"? Even if AutoML is an effective method in its own right, it is likely that

we could miss out many important primitives, unless we invest more efforts into

further understanding.

In this thesis, the approach to deep learning follows a different route. Instead

of conforming to existing primitives and let a machine figure out their best combi-

nations, I prefer to identify problems and solve them by inventing new primitives.

Seeing training set overfitting as a major problem of empirical risk minimization,

I came up with mixup as a remedy. While exploring how batch normalization

helps optimization, I came up with Zerolnit as an alternative without normaliza-

tion. Importantly, neither of the two ideas came solely from an exhaustive search

of existing hypotheses, a series of laborious experiments, or a relentless theoretical

contemplation. Instead, they emerged from a combination of all three activities.

Without serious contemplation, the experimental results could often seem incomprehensi-

ble; without an unforgiving attitude towards performance, confounding theories cannot be

156

ruled out; finally, something new is learned whenever we have exhausted and rejected all

the existing hypotheses. We know much less about deep learning than we should,

which means the field is full of opportunities. To me, the best way to moving

forward is to take the approach of natural science, where theories, hypotheses and

experiments interact and co-evolve with each other under ruthless scrutiny.

7.2 Open Problems

Related to the problems studied in this thesis, some important questions remain

unanswered while exciting new problems emerge. Future research may help to

elucidate on these topics:

Riemannian optimization. A recurring hurdle of Riemannian optimization anal-

ysis seems to be the lack of a sensible duality theory for functions on Rieman-

nian manifolds. While the Fenchel duality argument approximately holds when

the neighborhood is sufficiently small or the space sufficiently flat, more efforts

are required to understand the nonasymptotic setting in practice. A related ques-

tion is iteration complexity lower bounds of Riemannian optimization problems.

The construction of such lower bounds may involve geometric arguments such as

varying sectional curvatures along the iterate trajectory. It could be that a gen-

eral theory that applies to arbitrary Riemannian manifolds is far beyond reach, in

which case even a better understanding of a particular manifold (e.g. the compact

Stiefel manifold) would be impressive.

Deep neural networks. The battle against overfitting remains one of the most

important topics of machine learning in the deep learning era. While the deep

learning revolution is arguably fueled by the availability of large datasets, in many

applications training data are still a scarce resource. Moreover, state-of-the-art

models typically have sufficient amount of capacity for overfitting even a large

dataset such as the ImageNet. For vanilla classification tasks, regularization tech-

157

niques such as mixup have shown their superior performance. However, for tasks

beyond vanilla classification, our regularization toolkit is rather limited. For ex-

ample, with structured input (such as the graph representation of a molecule) or

structured output (such as a sentence), the assumptions of mixup does not apply.

While it is possible to embed the structured input and output in a vector space

and apply mixup there, it is worth taking a step back and thinking about the basic

question: For our task at hand, what properties should a good predictor have?

For vanilla classification tasks, a desirable property is that the model prediction

is Lipschitz between training data, which is the rationale behind mixup. Hence a

good question to ask first may be: what does Lipschitzness mean for a prediction

task on graphs? Similarly, we should think about what kind of regularization is

preferable for sequential prediction, object detection, or question answering. The

more we think about these questions, the better control we will have on the models

we design to ensure their desired behaviors.

While the exploding and vanishing gradient problem used to be daunting, it

now appears solved thanks to the development of new architectures and initial-

ization methods. However, we may be just at the starting point of understanding

the effects of optimization algorithms to the generalization performance of a neural

network. For example, is solving the exploding and vanishing gradient problem

enough for achieving good performance? Or is updating the network at a constant

speed (e.g. via Zerolnit) a good choice? Should the network function be initialized

near zero? How can we stably train a network with very large minibatches and

a large learning rate? How can we make efficient use of the representation of pa-

rameters, such as in a low-precision training setting? Further research into these

topics will help to release the full potential of our models as well as hardware in-

frastructures.

158

A
Mathematical definitions

For completeness, this section provides additional technical definitions in building
up mathematical concepts of Riemannian geometry, as presented in Section 1.2.1.
Interested readers should also refer to a standard text, such as Uost, 2011].

Definition A.1 (topological space). A topological space is a set M together with a
family S of subsets of M satisfying the following properties:

1. S1,S 2 c S =-> S1 n S2 c S

2. For any index set A, (Sa),aA C S -- > UaEASa E S

3. 0,MES

The sets from S are called open.

159

Definition A.2 (Hausdorff). A topological space is called Hausdorff if for any two

distinct points Pi, P2 c M there exists open sets S1 , S2 c S with pi C SI, P2 C

S2,Sj nS2 = 0.

Definition A.3 (locally finite covering). A covering (S,), is called locallyfinite if

each p E M has a neighborhood that intersects only finitely many S,.

Definition A.4 (paracompact). M is called paracompact if any open covering pos-

sesses a locally finite refinement, i.e. for any open covering (S,)aA there exists a

locally finite open covering (S3),EB with

VO c B 3 a c A: S. c Sa.

Definition A.5 (homeomorphism). A bijective map is called a homeomorphism if it

maps every open set to an open set.

Definition A.6 (differentiable). An atlas {U0 , x,} on a manifold is called differen-

tiable if all chart transitions x, o x;1 : x0 (U, n U) - xfl(U, n U3) are differentiable

of class C . A maximal differentiable atlas is called a differentiable structure. A

differentiable manifold of dimension d is a manifold of dimension d with a differen-

tiable structure.

We assume all atlases are differentiable. A chart is called compatible with an

atlas if adding the chart to the atlas yields again an atlas. An atlas is called maximal

if it consists of all charts that are compatible with it.

Definition A.7 (diffeomorphism). A map h : Al - M' between differentiable man-

ifolds M and M' with charts {U0, xz} and {U', x' } is called differentiable if all maps

' o h o x; are differentiable of CO where defined. Such a map is called a diffeo-

morphism if it is bijective and differentiable in both directions.

For purposes of differentiation, a differentiable manifold locally has the struc-

ture of Euclidean space. With a differentiable structure and a diffeomorphism, we

can now define the notion of tangent spaces. From now on we adopt the Einstein

summation convention that an index occuring twice in a product is to be summed

over (but with the summation symbol omitted), e.g. vigij represents E vig 3 .

160

Definition A.8 (tangent space, Euclidean). Let x = (x 1,. . . , xd) be Euclidean coor-

dinates of Rd, M c R d an open set, xO c M. The tangent space of S at the point

XO, denoted T, M, is the space {xo} x E where E is the d-dimensional vector space

spanned by the partial derivatives {-}d, at the point ao. If M c Rd, M' c Rc are

open, and f : M -+ M' is differentiable, we define the derivative df(xo) for xo c M

as the induced linear map between the tangent space

df(xo) : TOA4 -+ T* M'

__ afi __V = V (xO) f

The mapping -F : TM - M, (x, v) - x is called a tangent bundle of M. TM is

called the total space of the tangent bundle.

Definition A.9 (immersion). A differentiable map f : M --+ M is called an immer-

sion, if for any x c M the derivative df : TxM - Tf(x)Ar is injective.

If an immersion f : M -+ M maps M homeomorphically onto its image in P1,

f is called a differentiable embedding. It can be shown that any immersion is locally

a differentiable embedding.

Definition A.10 (submanifold). If f :M A- M is a differentiable embedding, f (M)

is called a differentiable submanifold of A.

A subset A' of A , equipped with the relative topology, is a differentiable sub-

manifold of N, if A' is a manifold and the inclusion is a differentiable embedding.

Charts on A' are given by restrictions of charts of A" to M'.

Definition A.11 (length). Let [a, b] be a closed interval in R and y : [a, b] -+ M a

smooth curve. The length of y is defined as

L(y) jb (t) dt = g/gij(x((t)))2i(t) i(t)dt.

The length of a piecewise smooth curve may be defined as the sum of the lengths

of the smooth pieces.

161

Definition A.12 (energy). The energy of a curve 'y is defined as

E() jbd(t) 2 d i((((t)))i(ti (t)dt.

Definition A.13 (distance). The distance between two points p, q on a Riemannian

manifold can be defined as

d(p, q) inf{L(-) : - : [a, b] -+ A is piecewise smooth with -y(a) = p, 'y(b) = q}.

Definition A.14 (geodesic). A smooth curve y = [a, b] -4 A is called a geodesic if it

satisfies

s +(t) + 1k(x(t)) j tk (t) 0, fori 1,...,d.

where Tjk (gjlgJk g+kj - gyjk,) are called Christoffel symbols with (gij)ij1 ,...,d

(g 1j)- and gj3 ,k = kgjI.

This definition of geodesic is derived from computing the stationary points of

the energy functional. It can be shown that for a geodesic, A(,)- 0, i.e. the

curve is parametrized proportionally to arc length. Furthermore, for any compact

Riemannian manifold, there is always more than one geodesic connection between

any two points. However, if p and q are sufficiently close, then the shortest geodesic

is unique. Indeed, an alternative characterization of geodesics is that they are lo-

cally distance minimizing curves on a manifold.

Definition A.15 (geodesically complete). A Riemannian manifold M is geodesically

complete if for all p E Al, the exponential map ExpP is defined on all of TpM.

The Hopf-Rinow Theorem shows that any Riemannian manifold that is com-

plete as a metric space is also geodesically complete. The next definition char-

acterizes the domain of the inverse of an exponential map, and is important for

implementing and analyzing a Riemannian optimization algorithm.

Definition A.16 (injectivity radius). Let A be a Riemannian manifold and p c Al.

The injectivity radius of p is defined as inj (p) A sup{p > 0 : ExpP is defined on dp(0) c

TM and is injective} where dp(0) is the Euclidean ball of radius p centered at 0 in

the tangent space of p. The injective radius of Al is inj (M) infpm i(p).

162

To study tangent vectors on Riemannian manifolds, we further introduce:

Definition A.17 (vector field). A differentiable vector field X on a differentiable

manifold M is an association M -D p -4 Xp E TpM such that in every chart p

U - V with coordinates x', . .., x", the coefficients (' : U -÷ R in the representation

X (p) I are differentiable functions.

We now recall the definition of directional derivative for a vector field:

Definition A.18 (directional derivative, vector field). Let Y be a differentiable vec-

tor field, defined on an open set of Rd, and let X be a fixed directional vector

at some fixed point p of this open set, i.e. (p, X) c TpRd. The the expression

DxY|, A DY|p(X) = limto {(Y(p + tX) - Y(p)) is called the directional deriva-

tive of Y in the direction of X, where DY denotes the Jacobi matrix.

It can be shown that DxY|p = E X'DeYlp p E Xi limteo(Y(p + tel) - Y(),

where {e} }d are the standard basis.

The definition of directional derivative is intuitive and natural; however, it has

the disadvantage that even the derivative of tangential vectors in the tangent di-

rection may have a normal component, which depends on how the manifold is

embedded. Therefore, a better definition to characterize the intrinsic geometry of

a manifold is to consider only the component of that directional derivative which

is tangent to the surface. This leads to the definition of covariant derivative.

Definition A.19 (covariant derivative, vector field). Let X : M - TM, Y : M A

TM be two vector fields on a Riemannian manifold M. The covariant derivative of

Y in the direction of X is again a vector field of M, defined as VxY A DxY -

(DxY, v)v, where v is the surface normal (at the base of Y). Intuitively, covariant

derivative is the projection of directional derivative into the tangent space of its

base.

It can be shown that the covariant derivative is a quantity of the intrinsic ge-

ometry of the surface.

163

That a vector field Y in Euclidean space is constant is equivalent to saying that

the directional derivative DxY vanishes in all directions X. On a Riemannian

manifold, generalization of the concept of a constant vector field can be developed

using covariant derivative in the following sense:

Definition A.20 (parallel vector field). Let Y be a tangent vector field of a Rieman-

nian manifold. Y is called parallel if VxY - 0 for every tangent vector X.

If Y is a vector field along a regular curve -y(t), then Y is said to be parallel along

-y, if VxY = 0 for every X which is tangent to '-.

Notably, this definition provides an alternative (and more general) way to de-

fine geodesics for manifolds not necessarily equipped with a Riemannian metric:

A non-constant curve y on a surface is called a geodesic (or auto-parallel) if Vy = 0

holds along the curve y.

In general there is no non-trivial parallel vector field on open sets of surfaces,

however there are always parallel vector fields along given curves, which leads to

the definition of parallel transport.

164

Bibliography

Pierre-Antoine Absil and Kyle A. Gallivan. Accelerated line-search and trust-

region methods. SIAM J. Numer. Anal., 47(2):997-1018, 2009.

Pierre-Antoine Absil and Ivan Oseledets. Low-rank retractions: a survey and new

results. Computational Optimization and Applications, 2014.

Pierre-Antoine Absil, Robert Mahony, and Rodolphe Sepulchre. Riemannian ge-

ometry of Grassmann manifolds with a view on algorithmic computation. Acta

Appl. Math., 80(2):199-220, 2004. ISSN 0167-8019.

Pierre-Antoine Absil, Christopher G. Baker, and Kyle A. Gallivan. Trust-region

methods on Riemannian manifolds. Found. Comput. Math., 7(3):303-330, July

2007. doi: 10.1007/s10208-005-0179-9.

Pierre-Antoine Absil, Mariya Ishteva, Lieven De Lathauwer, and Sabine Van Huf-

fel. A geometric Newton method for Oja's vector field. Neural Comput., 21(5):

1415-1433, May 2009a.

Pierre-Antoine Absil, Robert Mahony, and Rodolphe Sepulchre. Optimization algo-

rithms on matrix manifolds. Princeton University Press, 2009b.

Pierre-Antoine Absil, Luca Amodei, and Gilles Meyer. Two Newton meth-

ods on the manifold of fixed-rank matrices endowed with Riemannian quo-

tient geometries. Computational Statistics, 29(3-4):569-590, 2014. doi: 10.1007/

s00180-013-0441-6.

165

Alekh Agarwal and Leon Bottou. A lower bound for the optimization of finite

sums. In Proceedings of the 32nd International Conference on Machine Learning

(ICML-1 5), pages 78-86, 2015.

Naman Agarwal, Zeyuan Allen Zhu, Brian Bullins, Elad Hazan, and Tengyu Ma.

Finding approximate local minima for nonconvex optimization in linear time.

CoRR, abs/1611.01146, 2016.

Zeyuan Allen-Zhu and Elad Hazan. Variance reduction for faster non-convex op-

timization. arXiv:1603.05643, 2016.

Zeyuan Allen-Zhu and Lorenzo Orecchia. Linear coupling: An ultimate unifica-

tion of gradient and mirror descent. arXiv:1407.1537, 2014.

Luigi Ambrosio, Nicola Gigli, Giuseppe Savare, et al. Metric measure spaces with

Riemannian Ricci curvature bounded from below. Duke Mathematical Journal, 163

(7):1405-1490, 2014.

Dario Amodei, Sundaram Ananthanarayanan, Rishita Anubhai, Jingliang Bai, Eric

Battenberg, Carl Case, Jared Casper, Bryan Catanzaro, Qiang Cheng, Guoliang

Chen, Jie Chen, Jingdong Chen, Zhijie Chen, Mike Chrzanowski, Adam Coates,

Greg Diamos, Ke Ding, Niandong Du, Erich Elsen, Jesse Engel, Weiwei Fang,

Linxi Fan, Christopher Fougner, Liang Gao, Caixia Gong, Awni Hannun, Tony

Han, Lappi Vaino Johannes, Bing Jiang, Cai Ju, Billy Jun, Patrick LeGresley,

Libby Lin, Junjie Liu, Yang Liu, Weigao Li, Xiangang Li, Dongpeng Ma, Sha-

ran Narang, Andrew Ng, Sherjil Ozair, Yiping Peng, Ryan Prenger, Sheng Qian,

Zongfeng Quan, Jonathan Raiman, Vinay Rao, Sanjeev Satheesh, David Seeta-

pun, Shubho Sengupta, Kavya Srinet, Anuroop Sriram, Haiyuan Tang, Liliang

Tang, Chong Wang, Jidong Wang, Kaifu Wang, Yi Wang, Zhijian Wang, Zhiqian

Wang, Shuang Wu, Likai Wei, Bo Xiao, Wen Xie, Yan Xie, Dani Yogatama, Bin

Yuan, Jun Zhan, and Zhenyao Zhu. Deep speech 2: End-to-end speech recogni-

tion in english and mandarin. In Proceedings of the 33rd International Conference

on International Conference on Machine Learning, ICML, 2016.

166

Yossi Arjevani, Shai Shalev-Shwartz, and Ohad Shamir. On lower and

upper bounds for smooth and strongly convex optimization problems.

arXiv:1503.06833, 2015.

Devansh Arpit, Stanislaw Jastrzebski, Nicolas Ballas, David Krueger, Emmanuel

Bengio, Maxinder S Kanwal, Tegan Maharaj, Asja Fischer, Aaron Courville,

Yoshua Bengio, et al. A closer look at memorization in deep networks. ICML,

2017.

Hedy Attouch, J6r6me Bolte, and Benar Fux Svaiter. Convergence of descent

methods for semi-algebraic and tame problems: proximal algorithms, forward-

backward splitting, and regularized Gauss-Seidel methods. Mathematical Pro-

gramming, 137(1-2):91-129, 2013.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization.

arXiv preprint arXiv:1607.06450, 2016.

Miroslav BacAk. Convex analysis and optimization in Hadamard spaces. Berlin, Boston:

De Gruyter, 2014.

Francis Bach and Eric Moulines. Non-strongly-convex smooth stochastic approxi-

mation with convergence rate 0(1/n). In Advances in Neural Information Process-

ing Systems, pages 773-781, 2013.

Christopher G. Baker, Pierre-Antoine Absil, and Kyle A. Gallivan. An implicit

trust-region method on Riemannian manifolds. IMA J. Numer. Anal., 28(4):665-

689, 2008. doi: doi:10.1093/imanum/drn029.

David Balduzzi, Marcus Frean, Lennox Leary, JP Lewis, Kurt Wan-Duo Ma, and

Brian McWilliams. The shattered gradients problem: If ResNets are the answer,

then what is the question? arXiv preprint arXiv:1702.08591, 2017.

Peter Bartlett, Dylan J Foster, and Matus Telgarsky Spectrally-normalized margin

bounds for neural networks. NIPS, 2017.

167

Glaydston C Bento, Orizon P Ferreira, and Jefferson G Melo. Iteration-complexity

of gradient, subgradient and proximal point methods on Riemannian manifolds..

Journal of Optimization Theory and Applications, 173(2):548-562, 2017.

Rajendra Bhatia. Positive Definite Matrices. Princeton University Press, 2007.

Louis J Billera, Susan P Holmes, and Karen Vogtmann. Geometry of the space of

phylogenetic trees. Advances in Applied Mathematics, 27(4):733-767, 2001.

Dario A Bini and Bruno lannazzo. Computing the Karcher mean of symmetric

positive definite matrices. Linear Algebra and its Applications, 438(4):1700-1710,

2013.

Richard L Bishop and Barrett O'Neill. Manifolds of negative curvature. Transac-

tions of the American Mathematical Society, 145:1-49, 1969.

Silvere Bonnabel. Stochastic gradient descent on Riemannian manifolds. IEEE

Transactions on Automatic Control, 58(9):2217-2229, 2013.

Pierre B. Borckmans, S. Easter Selvan, Nicolas Boumal, and Pierre-Antoine Absil.

A Riemannian subgradient algorithm for economic dispatch with valve-point

effect. J. Comput. Applied. Math., 255:848-866, 2013. doi: 10.1016/j.cam.2013.07.

002.

Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik. A training algo-

rithm for optimal margin classifiers. In Proceedings of the fifth annual workshop on

Computational learning theory, pages 144-152. ACM, 1992.

Nicolas Boumal and Pierre-Antoine Absil. Low-rank matrix completion via pre-

conditioned optimization on the Grassmann manifold. Linear Algebra and its Ap-

plications, 475:200-239, 2015. doi: 10.1016/j.laa.2015.02.027. URL http: / /www.

sciencedirect.com/science/article/pii/S024379515001342.

Nicolas Boumal, Pierre-Antoine Absil, and Coralia Cartis. Global rates of con-

vergence for nonconvex optimization on manifolds. IMA Journal of Numerical

Analysis, 2016a.

168

Nicolas Boumal, Vlad Voroninski, and Afonso Bandeira. The non-convex Burer-

Monteiro approach works on smooth semidefinite programs. In Advances in Neu-

ral Information Processing Systems, pages 2757-2765, 2016b.

Stephen Boyd, Seung-Jean Kim, Lieven Vandenberghe, and Arash Hassibi. A tuto-

rial on geometric programming. Optimization and engineering, 8(1):67-127, 2007.

Martin R Bridson and Andre Haefliger. Metric spaces of non-positive curvature, vol-

ume 319. Springer, 1999.

Sebastien Bubeck, Yin Tat Lee, and Mohit Singh. A geometric alternative to Nes-

terov's accelerated gradient descent. arXiv:1506.08187, 2015.

Dmitri Burago, Yuri Burago, and Sergei Ivanov. A course in metric geometry, vol-

ume 33. American Mathematical Society Providence, 2001.

Yu Burago, Mikhail Gromov, and Grigori Perelman. A.D. Alexandrov spaces with

curvature bounded below. Russian mathematical surveys, 47(2):1-58, 1992.

Emmanuel J Candes and Michael B Wakin. An introduction to compressive sam-

pling. IEEE signal processing magazine, 25(2):21-30, 2008.

Yair Carmon, John C. Duchi, Oliver Hinder, and Aaron Sidford. Accelerated meth-

ods for non-convex optimization. CoRR, abs/1611.00756, 2016.

Yair Carmon, Oliver Hinder, John C Duchi, and Aaron Sidford. "Convex until

proven guilty": Dimension-free acceleration of gradient descent on non-convex

functions. arXiv preprint arXiv:1 705.02766, 2017.

Olivier Chapelle, Jason Weston, Leon Bottou, and Vladimir N. Vapnik. Vicinal risk

minimization. NIPS, 2000.

Nitesh V Chawla, Kevin W Bowyer, Lawrence 0 Hall, and W Philip Kegelmeyer.

SMOTE: synthetic minority over-sampling technique. Journal of artificial intelli-

gence research, 16:321-357, 2002.

169

Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge, Thorsten Brants, and

Phillipp Koehn. One billion word benchmark for measuring progress in sta-

tistical language modeling. CoRR, abs/1312.3005, 2013. URL http: / /arxiv.

org/abs/1312 .3005.

Mia Xu Chen, Orhan Firat, Ankur Bapna, Melvin Johnson, Wolfgang Macherey,

George Foster, Llion Jones, Niki Parmar, Mike Schuster, Zhifeng Chen, Yonghui

Wu, and Macduff Hughes. The best of both worlds: Combining recent ad-

vances in neural machine translation. CoRR, abs/1804.09849, 2018. URL ht t p:

//arxiv.org/abs/1804.09849.

Anoop Cherian and Suvrit Sra. Riemannian dictionary learning and sparse coding

for positive definite matrices. arXiv preprint arXiv:1507.02772, 2015.

Sumit Chopra, Raia Hadsell, and Yann LeCun. Learning a similarity metric dis-

criminatively, with application to face verification. In Computer Vision and Pat-

tern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, volume 1,

pages 539-546. IEEE, 2005.

Moustapha Cisse, Piotr Bojanowski, Edouard Grave, Yann Dauphin, and Nico-

las Usunier. Parseval networks: Improving robustness to adversarial examples.

ICML, 2017.

Marco Congedo, Bijan Afsari, Alexandre Barachant, and Maher Moakher. Approx-

imate joint diagonalization and geometric mean of symmetric positive definite

matrices. PloS one, 10(4):e0121423, 2015.

Dario Cordero-Erausquin, Robert J McCann, and Michael Schmuckenschlager. A

Riemannian interpolation inequality a la Borell, Brascamp and Lieb. Inventiones

mathematicae, 146(2):219-257, 2001.

Stephen C Cowin and Guoyu Yang. Averaging anisotropic elastic constant data.

Journal of Elasticity, 46(2):151-180, 1997.

170

Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V

Le. Autoaugment: Learning augmentation policies from data. arXiv preprint

arXiv:1805.09501, 2018.

Wojciech Marian Czarnecki, Simon Osindero, Max Jaderberg, Grzegorz Swirszcz,

and Razvan Pascanu. Sobolev training for neural networks. NIPS, 2017.

Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. SAGA: A fast incremental

gradient method with support for non-strongly convex composite objectives. In

Advances in Neural Information Processing Systems, pages 1646-1654, 2014.

Yuntian Deng, Yoon Kim, Justin Chiu, Demi Guo, and Alexander M Rush. Latent

alignment and variational attention. Thirty-second Conference on Neural Informa-

tion Processing Systems (NIPS), 2018.

Terrance DeVries and Graham W Taylor. Improved regularization of convolutional

neural networks with Cutout. arXiv preprint arXiv:1 708.04552, 2017a.

Terrance DeVries and Graham W Taylor. Dataset augmentation in feature space.

ICLR Workshops, 2017b.

Dua Dheeru and Efi Karra Taniskidou. UCI machine learning repository, 2017.

URL http: //archive . ics . uci. edu/ml.

Harris Drucker and Yann LeCun. Improving generalization performance using

double backpropagation. IEEE Transactions on Neural Networks, 3(6):991-997,

1992.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for

online learning and stochastic optimization. Journal of Machine Learning Research,

12(Jul):2121-2159, 2011.

Alan Edelman, Tomas A Arias, and Steven T Smith. The geometry of algorithms

with orthogonality constraints. SIAM journal on Matrix Analysis and Applications,

20(2):303-353, 1998.

171

Gamaleldin F Elsayed, Dilip Krishnan, Hossein Mobahi, Kevin Regan,

Samy Bengio. Large margin deep networks for classification. arXiv preprint

arXiv:1803.05598, 2018.

Orizon P. Ferreira and Paulo Roberto Oliveira. Subgradient algorithm on Rie-

mannian manifolds. Journal of Optimization Theory and Applications, 97(1):93-104,

1998.

Orizon P. Ferreira and Paulo Roberto Oliveira. Proximal point algorithm on Rie-

mannian manifolds. Optimization, 51(2):257-270, 2002.

Nicolas Flammarion and Francis Bach. From averaging to acceleration, there is

only a step-size. In Conference on Learning Theory, pages 658-695, 2015.

P Thomas Fletcher and Sarang Joshi. Riemannian geometry for the statistical anal-

ysis of diffusion tensor data. Signal Processing, 87(2):250-262, 2007.

Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The elements of statistical

learning. Springer series in statistics New York, NY, USA:, 2001.

Daniel Gabay. Minimizing a differentiable function over a differential manifold.

Journal of Optimization Theory and Applications, 37(2):177-219, 1982.

Dan Garber and Elad Hazan. Fast and simple PCA via convex optimization. arXiv

preprint arXiv:1509.05647, 2015.

Rong Ge, Chi Jin, and Yi Zheng. No spurious local minima in nonconvex low rank

problems: A unified geometric analysis. arXiv:1704.00708, 2017.

Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N Dauphin.

Convolutional sequence to sequence learning. arXiv preprint arXiv:1705.03122,

2017.

Saeed Ghadimi and Guanghui Lan. Stochastic first- and zeroth-order methods for

nonconvex stochastic programming. SIAM Journal on Optimization, 23(4):2341-

2368, 2013.

172

and

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep

feedforward neural networks. In Proceedings of the thirteenth international confer-

ence on artificial intelligence and statistics, pages 249-256, 2010.

Pinghua Gong and Jieping Ye. Linear convergence of variance-reduced stochastic

gradient without strong convexity. arXiv preprint arXiv:1406.1102, 2014.

Ian Goodfellow. Tutorial: Generative adversarial networks. NIPS, 2016.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets.

NIPS, 2014.

Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harness-

ing adversarial examples. ICLR, 2015.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,

2016. http: //www. deeplearningbook. org.

Priya Goyal, Piotr Dollir, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski,

Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large

minibatch SGD: Training ImageNet in 1 hour. arXiv, 2017.

Benjamin Graham. Fractional max-pooling. arXiv preprint arXiv:1412.6071, 2014.

Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech recognition

with deep recurrent neural networks. In ICASSP. IEEE, 2013.

Robert E. Greene and Katsuhiro Shiohama. Convex functions on complete non-

compact manifolds: topological structure. Inventiones mathematicae, 63(1):129-

157, 1981.

Mikhail Gromov. Manifolds of negative curvature. J. Differential Geom, 13(2):223-

230, 1978.

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron

Courville. Improved training of Wasserstein GANs. NIPS, 2017.

173

Boris Hanin. Which neural net architectures give rise to exploding and vanishing

gradients? arXiv preprint arXiv:1 801.03744, 2018.

Boris Hanin and David Rolnick. How to start training: The effect of initialization

and architecture. arXiv preprint arXiv:1803.01719, 2018.

Mehrtash T Harandi, Conrad Sanderson, Richard Hartley, and Brian C Lovell.

Sparse coding and dictionary learning for symmetric positive definite matrices:

A kernel approach. In Computer Vision-ECCV 2012, pages 216-229. Springer,

2012.

Moritz Hardt and Tengyu Ma. Identity matters in deep learning. arXiv preprint

arXiv:1611.04231, 2016.

Nick Harvey, Chris Liaw, and Abbas Mehrabian. Nearly-tight VC-dimension

bounds for piecewise linear neural networks. JMLR, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into

rectifiers: Surpassing human-level performance on ImageNet classification. In

Proceedings of the IEEE international conference on computer vision, pages 1026-1034,

2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning

for image recognition. In Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 770-778, 2016a.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in

deep residual networks. In European conference on computer vision, pages 630-645.

Springer, 2016b.

David J Heeger. Normalization of cell responses in cat striate cortex. Visual neuro-

science, 9(2):181-197, 1992.

Matthias Hein and Maksym Andriushchenko. Formal guarantees on the robust-

ness of a classifier against adversarial manipulation. NIPS, 2017.

174

Geoffrey Hinton, Li Deng, Dong Yu, George E. Dahl, Abdel rahman Mohamed,

Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N.

Sainath, and Brian Kingsbury. Deep neural networks for acoustic modeling in

speech recognition: The shared views of four research groups. IEEE Signal Pro-

cessing Magazine, 29(6):82-97,2012.

Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning algorithm

for deep belief nets. Neural computation, 18(7):1527-1554, 2006.

Sepp Hochreiter and Jilrgen Schmidhuber. Long short-term memory. Neural com-

putation, 9(8):1735-1780, 1997.

Elad Hoffer, Ron Banner, Itay Golan, and Daniel Soudry. Norm matters: ef-

ficient and accurate normalization schemes in deep networks. arXiv preprint

arXiv:1803.01814, 2018.

Reshad Hosseini and Suvrit Sra. Matrix manifold optimization for Gaussian mix-

tures. In Advances in Neural Information Processing Systems (NIPS), 2015a.

Reshad Hosseini and Suvrit Sra. Manifold optimization for mixture modeling.

arXiv:1506.07677, 2015b.

Jiang Hu, Andre Milzarek, Zaiwen Wen, and Yaxiang Yuan. Adaptive quadrati-

cally regularized newton method for Riemannian optimization. SIAM Journal on

Matrix Analysis and Applications, 39(3):1181-1207, 2018.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger.

Densely connected convolutional networks. In CVPR, volume 1, page 3, 2017.

Wen Huang, Pierre-Antoine Absil, and Kyle A. Gallivan. A Riemannian symmetric

rank-one trust-region method. Mathematical Programming, 2014. doi: 10.1007/

s10107-014-0765-1.

Sergey loffe and Christian Szegedy. Batch normalization: Accelerating

deep network training by reducing internal covariate shift. arXiv preprint

arXiv:1502.03167, 2015.

175

Mariya Ishteva, P-A Absil, Sabine Van Huffel, and Lieven De Lathauwer. Best low

multilinear rank approximation of higher-order tensors, based on the Rieman-

nian trust-region scheme. SIAM Journal on Matrix Analysis and Applications, 32

(1):115-135, 2011.

Ben Jeuris, Raf Vandebril, and Bart Vandereycken. A survey and comparison of

contemporary algorithms for computing the matrix geometric mean. Electronic

Transactions on Numerical Analysis, 39:379-402, 2012.

Bo Jiang, Shiqian Ma, Anthony Man-Cho So, and Shuzhong Zhang. Vector

transport-free SVRG with general retraction for Riemannian optimization: Com-

plexity analysis and practical implementation. arXiv preprint arXiv:1705.09059,

2017.

Chi Jin, Sham M Kakade, Cameron Musco, Praneeth Netrapalli, and Aaron Sid-

ford. Robust shift-and-invert preconditioning: Faster and more sample efficient

algorithms for eigenvector computation. arXiv:1510.08896, 2015.

Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using pre-

dictive variance reduction. In Advances in Neural Information Processing Systems,

pages 315-323, 2013.

Jflrgen Jost. Riemannian Geometry and Geometric Analysis. Springer Science & Busi-

ness Media, 2011.

Narendra Karmarkar. A new polynomial-time algorithm for linear programming.

In Proceedings of the sixteenth annual ACM symposium on Theory of computing, pages

302-311. ACM, 1984.

Hiroyuki Kasai, Hiroyuki Sato, and Bamdev Mishra. Riemannian stochastic vari-

ance reduced gradient on Grassmann manifold. arXiv preprint arXiv:1605.07367,

2016.

Kenji Kawaguchi. Deep learning without poor local minima. In Advances in Neural

Information Processing Systems, pages 586-594, 2016.

176

Leonid G Khachiyan. Polynomial algorithms in linear programming. USSR Com-

putational Mathematics and Mathematical Physics, 20(1):53-72, 1980.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980, 2014.

Diederik P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible

1x1 convolutions. arXiv preprint arXiv:1807.03039, 2018.

Jakub Konecny and Peter Richta'rik. Semi-stochastic gradient descent methods.

arXiv:1312.1666, 2013.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet classification

with deep convolutional neural networks. NIPS, 2012.

Wolfgang Ktihnel. Differential geometry, volume 77. American Mathematical Soc.,

2015.

Simon Lacoste-Julien, Mark Schmidt, and Francis Bach. A simpler approach to

obtaining an O(1/t) convergence rate for the projected stochastic subgradient

method. arXiv preprint arXiv:1212.2002, 2012.

Yann Lecun, Leon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based

learning applied to document recognition. Proceedings of IEEE, 2001.

Chen-Yu Lee, Patrick W Gallagher, and Zhuowen Tu. Generalizing pooling func-

tions in convolutional neural networks: Mixed, gated, and tree. In Artificial In-

telligence and Statistics, pages 464-472, 2016.

Bas Lemmens and Roger Nussbaum. Nonlinear Perron-Frobenius Theory, volume

189. Cambridge University Press, 2012.

Laurent Lessard, Benjamin Recht, and Andrew Packard. Analysis and design of

optimization algorithms via integral quadratic constraints. SIAM Journal on Op-

timization, 26(1):57-95, 2016.

177

Kuang Liu, 2017. URL https: //github. com/kuangliu/pytorch-cifar.

Xin-Guo Liu, Xue-Feng Wang, and Wei-Guo Wang. Maximization of matrix trace

function of product Stiefel manifolds. SIAM Journal on Matrix Analysis and Ap-

plications, 36(4):1489-1506, 2015.

Xiuwen Liu, Anuj Srivastava, and Kyle Gallivan. Optimal linear representations

of images for object recognition. IEEE TPAMI, 26(5):662-666, 2004.

Yuanyuan Liu, Fanhua Shang, James Cheng, Hong Cheng, and Licheng Jiao. Accel-

erated first-order methods for geodesically convex optimization on Riemannian

manifolds. In Advances in Neural Information Processing Systems, pages 4868-4877,

2017.

Siwei Lyu and Eero P Simoncelli. Nonlinear image representation using divisive

normalization. In Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE

Conference on, pages 1-8. IEEE, 2008.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and

Adrian Vladu. Towards deep learning models resistant to adversarial attacks.

arXiv preprint arXiv:1706.06083, 2017.

James Martens and Roger Grosse. Optimizing neural networks with kronecker-

factored approximate curvature. In International conference on machine learning,

pages 2408-2417, 2015.

Wolfgang Meyer. Toponogov's theorem and applications. SMR, 404:9, 1989.

Dmytro Mishkin and Jiri Matas. All you need is a good init. arXiv preprint

arXiv:1511.06422, 2015.

Bamdev Mishra and Rodolphe Sepulchre. Riemannian preconditioning. SIAM

Journal on Optimization, 26(1):635-660, 2016.

178

Bamdev Mishra, Gilles Meyer, Francis Bach, and Rodolphe Sepulchre. Low-rank

optimization with trace norm penalty. SIAM Journal on Optimization, 23(4):2124-

2149, 2013.

Maher Moakher. Means and averaging in the group of rotations. SIAM journal on

matrix analysis and applications, 24(1):1-16, 2002.

Maher Moakher. A differential geometric approach to the geometric mean of sym-

metric positive-definite matrices. SIAM Journal on Matrix Analysis and Applica-

tions, 26(3):735-747, 2005.

ArkadiI Semenovich Nemirovsky and David Borisovich Yudin. Problem complexity

and method efficiency in optimization. New York: Wiley, 1983.

Yurii Nesterov. A method of solving a convex programming problem with conver-

gence rate 0(1/k2). In Soviet Mathematics Doklady, pages 372-376, 1983.

Yurii Nesterov. Introductory lectures on convex optimization, volume 87. Springer

Science & Business Media, 2004.

Erkki Oja. Principal components, minor components, and linear neural networks.

Neural Networks, 5(6):927-935, 1992.

Yann Ollivier. A visual introduction to Riemannian curvatures and some discrete

generalizations. Analysis and Geometry of Metric Measure Spaces: Lecture Notes of

the 50th Seminaire de Mathematiques Superieures (SMS), Montreal, 56:197-219, 2011.

Myle Ott, Sergey Edunov, David Grangier, and Michael Auli. Scaling neural ma-

chine translation. arXiv preprint arXiv:1806.00187, 2018.

Xavier Pennec, Pierre Fillard, and Nicholas Ayache. A Riemannian framework for

tensor computing. International Journal of Computer Vision, 66(1):41-66, 2006.

Jeffrey Pennington, Samuel Schoenholz, and Surya Ganguli. Resurrecting the sig-

moid in deep learning through dynamical isometry: theory and practice. In

Advances in neural information processing systems, pages 4785-4795, 2017.

179

Gabriel Pereyra, George Tucker, Jan Chorowski, Lukasz Kaiser, and Geoffrey Hin-

ton. Regularizing neural networks by penalizing confident output distributions.

ICLR Workshops, 2017.

Peter Petersen. Riemannian geometry, volume 171. Springer Science & Business

Media, 2006.

Nicolas Pinto, David D Cox, and James J DiCarlo. Why is real-world visual object

recognition hard? PLoS computational biology, 4(1):e27, 2008.

Boris T. Polyak. Gradient methods for the minimisation of functionals. USSR

Computational Mathematics and Mathematical Physics, 3(4):864-878, January 1963.

Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evo-

lution for image classifier architecture search. arXiv preprint arXiv:1802.01548,

2018.

Sashank J. Reddi, Ahmed Hefny, Suvrit Sra, Barnabas Poczos, and Alexander J.
Smola. Stochastic variance reduction for nonconvex optimization. In Proceedings

of the 33nd International Conference on Machine Learning, ICML, pages 314-323,

2016.

Herbert Robbins and Sutton Monro. A stochastic approximation method. Annals

of Mathematical Statistics, 22:400-407, 1951.

Reuven Y Rubinstein and Dirk P Kroese. Simulation and the Monte Carlo method,

volume 707. John Wiley & Sons, 2011.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,

Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexan-

der C. Berg, and Li Fei-Fei. ImageNet large scale visual recognition challenge.

IJCV, 2015.

Tim Salimans and Diederik P Kingma. Weight normalization: A simple reparam-

eterization to accelerate training of deep neural networks. In Advances in Neural

Information Processing Systems, pages 901-909, 2016.

180

Chafik Samir, Pierre-Antoine Absil, Anuj Srivastava, and Eric Klassen. A gradient-

descent method for curve fitting on Riemannian manifolds. Foundations of Com-

putational Mathematics, pages 49-73, 2012. ISSN 1615-3375.

Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry. How

does batch normalization help optimization? arXiv preprint arXiv:1805.11604,

2018.

Andrew M Saxe, James L McClelland, and Surya Ganguli. Exact solutions to the

nonlinear dynamics of learning in deep linear neural networks. arXiv preprint

arXiv:1312.6120, 2013.

Mark Schmidt, Nicolas Le Roux, and Francis Bach. Minimizing finite sums with

the stochastic average gradient. arXiv:1309.2388, 2013.

Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified em-

bedding for face recognition and clustering. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pages 815-823, 2015.

Ohad Shamir. A stochastic PCA and SVD algorithm with an exponential con-

vergence rate. In International Conference on Machine Learning (ICML-15), pages

144-152, 2015.

Wenling Shang, Justin Chiu, and Kihyuk Sohn. Exploring normalization in deep

residual networks with concatenated rectified linear units. In AAAI, pages 1509-

1516, 2017.

Hao Shen, Stefanie Jegelka, and Arthur Gretton. Fast kernel-based independent

component analysis. Signal Processing, IEEE Transactions on, 57(9):3498-3511,

2009.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre,

George van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Pan-

neershelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham,

181

Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray

Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game of Go

with deep neural networks and tree search. Nature, 529(7587):484-489, 2016.

Patrice Simard, Yann LeCun, John Denker, and Bernard Victorri. Transformation

invariance in pattern recognition-tangent distance and tangent propagation.

Neural networks: tricks of the trade, 1998.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for

large-scale image recognition. ICLR, 2015.

Steven T Smith. Optimization techniques on Riemannian manifolds. Fields institute

communications, 3(3):113-135, 1994.

Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin Ried-

miller. Striving for simplicity: The all convolutional net. ICLR Workshops, 2015.

Suvrit Sra. A new metric on the manifold of kernel matrices with application to

matrix geometric means. In Advances in Neural Information Processing Systems,

pages 144-152, 2012.

Suvrit Sra and Reshad Hosseini. Geometric optimisation on positive definite ma-

trices for elliptically contoured distributions. In Advances in Neural Information

Processing Systems, pages 2562-2570, 2013.

Suvrit Sra and Reshad Hosseini. Conic geometric optimization on the manifold of

positive definite matrices. SIAM J. Optimization (SIOPT), 25(1):713-739, 2015.

Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. Dropout: a simple way to prevent neural networks from overfit-

ting. Journal of Machine Learning Research, 15(1):1929-1958, 2014.

Rupesh Kumar Srivastava, Klaus Greff, and Jirgen Schmidhuber. Highway net-

works. arXiv preprint arXiv:1505.00387, 2015.

182

Weijie Su, Stephen Boyd, and Emmanuel Candes. A differential equation for mod-

eling Nesterov's accelerated gradient method: Theory and insights. In Advances

in Neural Information Processing Systems, pages 2510-2518, 2014.

Ju Sun, Qing Qu, and John Wright. Complete dictionary recovery over the sphere

II: Recovery by Riemannian trust-region method. arXiv:1511.04777, 2015.

Ju Sun, Qing Qu, and John Wright. Complete dictionary recovery over the sphere

I: Overview and the geometric picture. IEEE Transactions on Information Theory,

63(2):853-884, 2017.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with

neural networks. In Advances in neural information processing systems, pages 3104-

3112, 2014.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,

Ian J. Goodfellow, and Rob Fergus. Intriguing properties of neural networks.

ICLR, 2014.

Christian Szegedy, Vincent Vanhoucke, Sergey loffe, Jon Shlens, and Zbigniew Wo-

jna. Rethinking the Inception architecture for computer vision. Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, 2016.

Mingkui Tan, Ivor W Tsang, Li Wang, Bart Vandereycken, and Sinno J Pan. Rie-

mannian pursuit for big matrix recovery. In Proceedings of the 31st International

Conference on Machine Learning (ICML-14), pages 1539-1547, 2014.

Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the gradient

by a running average of its recent magnitude. COURSERA: Neural networks for

machine learning, 4(2):26-31, 2012.

Paul Tseng. On accelerated proximal gradient methods for convex-concave opti-

mization. SIAM Journal of Optimization, 2009.

183

Constantin Udriste. Convex functions and optimization methods on Riemannian mani-

folds, volume 297. Springer Science & Business Media, 1994.

Dmitry Ulyanov, Andrea Vedaldi, and Victor S. Lempitsky. Instance normalization:

The missing ingredient for fast stylization. CoRR, abs/1607.08022, 2016.

Twan van Laarhoven. L2 regularization versus batch and weight normalization.

arXiv preprint arXiv:1706.05350, 2017.

Bart Vandereycken. Low-rank matrix completion by Riemannian optimization.

SIAM Journal on Optimization, 23(2):1214-1236, 2013.

Vladimir N. Vapnik. Statistical Learning Theory. Wiley-Interscience, 1998.

Vladimir N. Vapnik and Alexey Ya. Chervonenkis. On the uniform convergence

of relative frequencies of events to their probabilities. Theory of Probability and its

Applications, 1971.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need.

In Advances in Neural Information Processing Systems, pages 5998-6008, 2017.

Andreas Veit, 2017. URL https: / /github. com/andreasveit.

Peter Warden, 2017. URL https: //research.googleblog. com/2017/08/

launching-speech-commands-dataset .html.

Andre Wibisono, Ashia C Wilson, and Michael I Jordan. A variational perspective

on accelerated methods in optimization. Proceedings of the National Academy of

Sciences, page 201614734, 2016.

Ami Wiesel. Geodesic convexity and covariance estimation. Signal Processing, IEEE

Transactions on, 60(12):6182-6189, 2012.

Yuxin Wu and Kaiming He. Group normalization. In The European Conference on

Computer Vision (ECCV), September 2018.

184

Lechao Xiao, Yasaman Bahri, Jascha Sohl-Dickstein, Samuel S Schoenholz, and
Jeffrey Pennington. Dynamical isometry and a mean field theory of CNNs:

How to train 10,000-layer vanilla convolutional neural networks. arXiv preprint
arXiv:1806.05393, 2018.

Lin Xiao and Tong Zhang. A proximal stochastic gradient method with progressive

variance reduction. SIAM Journal on Optimization, 24(4):2057-2075, 2014.

Saining Xie, Ross Girshick, Piotr Dollar, Zhuowen Tu, and Kaiming He. Aggre-

gated residual transformations for deep neural networks. CVPR, 2016.

Yoshihiro Yamada, Masakazu Iwamura, and Koichi Kise. ShakeDrop regulariza-

tion. arXiv preprint arXiv:1802.02375, 2018.

Ge Yang and Samuel Schoenholz. Mean field residual networks: On the edge of
chaos. In Advances in neural information processing systems, pages 7103-7114, 2017.

Xinru Yuan, Wen Huang, Pierre-Antoine Absil, and Kyle Gallivan. A Riemannian

limited-memory BFGS algorithm for computing the matrix geometric mean. Pro-
cedia Computer Science, 80:2147-2157, 2016.

Sergey Zagoruyko and Nikos Komodakis, 2016a. URL https: //github. com/
szagoruyko/wide-residual-networks.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. BMVC, 2016b.

Chiyuan Zhang, 2017. URL https://github.com/pluskid/

fitting-random-labels.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals.

Understanding deep learning requires rethinking generalization. ICLR, 2017.

Hongyi Zhang and Suvrit Sra. First-order methods for geodesically convex opti-
mization. In Conference on Learning Theory, pages 1617-1638, 2016.

185

Hongyi Zhang, Sashank J Reddi, and Suvrit Sra. Riemannian SVRG: Fast stochas-

tic optimization on Riemannian manifolds. In Advances in Neural Information

Processing Systems, pages 4592-4600, 2016.

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup:

Beyond empirical risk minimization. arXiv preprint arXiv:1 710.09412, 2017.

Junyu Zhang and Shuzhong Zhang. A cubic regularized Newton's method over

Riemannian manifolds. arXiv preprint arXiv:1 805.05565, 2018.

Teng Zhang, Ami Wiesel, and Maria S Greco. Multivariate generalized gaussian

distribution: Convexity and graphical models. IEEE Transactions on Signal Pro-

cessing, 61(16):4141-4148, 2013.

Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and Yi Yang. Random eras-

ing data augmentation. arXiv, 2017.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-

image translation using cycle-consistent adversarial networks. In IEEE Interna-

tional Conference on Computer Vision (ICCV), 2017.

186

