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Abstract

Thermoelectric materials with large figures of merit zT (zT = S
2 ,T where S, T, a, K

are the Seebeck coefficient, absolute temperature, electrical conductivity and thermal
conductivity) are promising candidate materials for efficient solid-state devices for
electricity generation, cooling and refrigeration. Over the past decades, there has been
great progress in enhancing the zT values of thermoelectric materials above 300K, but
not much in thermoelectric performance below room temperature due to the relatively
small Seebeck coefficient and high thermal conductivity at low temperatures, which
limits the efficiency of thermoelectric coolers and refrigerators.

First discovered in the 1950s, phonon drag effect describes the phenomenon that
the Seebeck coefficients of semiconductors are often enormously augmented at low
temperatures. More recent works have shown that it can play an important role in
many materials' thermoelectric performance even at room temperature. One recent
study of silicon has pointed out that the major phonons contributing to phonon
drag are with longer mean free path and lower frequency than those carrying heat.
Meanwhile, alloying has been found to be an effective tool to enhance thermoelectric
performance. The point defects in alloys tend to scatter phonons with short mean
free path and high frequency which contribute more to thermal conductivity rather
than phonon drag. Therefore, combining phonon drag effect with alloying might be
a new approach to design better low-temperature thermoelectric materials. However,
most of trial-and-error experiments on optimizing the alloys' composition and doping
concentration are very time-consuming and theoretical studies with predictive power
are much desired as guidelines. While good progress has been made on first-principles
studies on alloys' thermal conductivity, along with a few recent first-principles works

on alloying effects on electron mobility, there is little first-principles work done on
alloying effect on the Seebeck coefficient, which is another important factor affecting
the overall thermoelectric performance, and even less on computing zT within a fully
first-principles approach.

3



In this work, we calculate the Seebeck coefficient, electrical conductivity, thermal
conductivity and zT of n-type SiGe alloys with different carrier concentrations (from
1015 cm- 3 to 1020 cm- 3 ) over the complete range of compositions within the virtual
crystal approximation at 300K and 150K. In particular, we have included the phonon
drag part contribution in our Seebeck calculation and taken both alloy scattering of
phonons and alloy scattering of electrons into account. We found that phonon drag
effect contributes significantly to the total Seebeck coefficient in SiGe alloys, especially
at lower temperatures. There are peaks both in the normal (diffusive) part of Seebeck
coefficient and the phonon drag part of Seebeck coefficient around the composition of

SiO.1 3Geo.8 7 . The agreement of our calculated results and reported experimental data
validates the methodology that we have adopted. Our first-principles calculations
with improved accuracy in the Seebeck coefficient is able to predict the thermoelectric
properties of typical alloy materials and provide guidelines for the design of better
thermoelectric materials utilizing alloying and phonon drag effect.

Thesis Supervisor: Gang Chen
Title: Carl Richard Soderberg Professor of Power Engineering
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Chapter 1

Introduction

The global demand for energy output keeps growing as our society develops. As the

dominant and traditional energy resource, fossil fuels are non-renewable and combus-

tion of them produces waste heat which means a large portion of energy input into

different industries is lost. In addition to the waste heat, fuel burning is harmful to

the environment as it releases a large amount of greenhouse gases to the atmosphere.

Sustainable development requires renewable energy sources and energy recycling tech-

niques that are environmentally-friendly and energy-efficient.

Thermoelectric devices can directly convert heat into electricity as well as electri-

cal power into cooling or heating. The former conversion can help recover some of the

lost energy in the fuel burning process and the latter can be used for low-temperature

applications (e.g. refrigeration). Compared with conventional refrigeration, ther-

moelectric devices feature no moving part or environmentally unfriendly refrigerant,

invulnerability to leaks, long life time, rapid response time, accurate and constant

temperature control, portability, and flexible shape that can accommodate to smaller

or more severe environments.
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1.1 Thermoelectrics

Thermoelectric materials can realize the direct conversion between heat and electricity

based on the thermoelectric effects caused by temperature difference or current flow.

The most important two thermoelectric effects are the Seebeck effect and the Peltier

effect.

Named after the Baltic German physicist Thomas Johann Seebeck for his findings

of a circuit made from two dissimilar metals, with junctions at different temperatures

would deflect a compass magnet [7], the Seebeck effect can be understood as follows.

When a temperature gradient is applied to a material in an open circuit, the charge

carriers at the hot side have larger kinetic energy and travel faster than the charge

carriers at the cold side. The high-energy carriers diffuse from the hot side to the

cold side and this forms a net electric current within the material. As the charge

carriers accumulate at the cold side, an electric field will be formed and the drift

current induced by this electric field will finally balance out the one generated by the

temperature gradient. By this means, the Seebeck coefficient S is defined locally as

the ratio of the generated electric field Eemf to the temperature gradient VT when

these two electric currents are balanced out: Eemf = -SVT.

Named after the French physicist Jean Charles Athanase Peltier for his discovery of

an electrical current would produce heating or cooling at the junction of two dissimilar

metals [81, the Peltier effect is the underlying principle of thermoelectric cooling.

As the electricity carriers carry charge as well as heat, an electric current passing

through the material will generate a heat current, which can be regarded as the

reverse phenomenon of the Seebeck effect. Similarly, the Peltier coefficient 11 is defined

as the ratio of the induced heat current Jq to the electric current J as Jq = HJ,

representing how much heat is carried per unit charge. The second Thomson relation

gives H = TS, which can be proven using Onsager reciprocal relation [9, 10] for a

time-reversal symmetric material, we will also prove this in chapter 3 where we derive

the expressions of the normal (diffusive) Seebeck coefficient and of the normal Peltier
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coefficient. The ability of a given material at a given absolute temperature T to

efficiently convert heat to electricity or vice versa is related to its dimensionless figure

of merit zT given by

S uT
zT = (1.1)

K

where S is the Seebeck coefficient, o- is the electrical conductivity and K is the thermal

conductivity. The thermal conductivity could be divided into two parts, K = ri +

K., where ie denotes the electronic thermal conductivity and , denotes the lattice

thermal conductivity (more details will be discussed in section 3.2). The maximum

thermoelectric energy conversion efficiency of a thermoelectric material is expressed

as [11]

(T - Tc) Z + - 1(1.2)

TH VzT+ +Tc/TH

with TH and TC are the absolute temperatures of the hot side and the cold side, and

STH+Tc. It should be noticed that equation (1.2) assumes constant materials2

properties (S, o- and K) [12, 13] at different temperatures that zT is assumed to have

the same value (zT) along the direction of the thermal gradient in the thermoelectric

material. However, this approximation is not valid when the temperature gradient

is large or the material properties are strongly temperature-dependent. Anyway,

equation (1.2) makes it clear that high zT materials are needed to make efficient

solid-state devices for heat-to-electricity conversion, cooling and refrigeration.

The past decades have seen excellent progress in enhancing the zT values of ther-

moelectric materials above 300K [11, 14, 15, 161, but not much in thermoelectric

performance below room temperature due to the relatively small Seebeck coefficient

and high thermal conductivity at low temperatures. This is due to, as figure 1-1 shows

the case of bismuth telluride, the Seebeck coefficients of materials usually decreases as

the temperature gets lower for there are less high-energy charge carriers. The lattice

thermal conductivity, which is the dominant part of the total thermal conductivity

in most of thermoelectric materials, goes higher at lower temperatures (but not ex-
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Figure 1-1: Meiasured Seebeck coefficient and thermal conductivity of Bi2Te 3 as func-
tions of temperature [1], where rz is estimated from measured electrical conductivity
using the Wiedemann-Franz law (see section 3.2), and Ki = Ktotal - e.

tremely low for at very low temperatures there will be less phonons and the lattice

thermal conductivity will be reduced) since intrinsic phonon-phonon interaction is

weaker at lower temperatures. Those together limit the efficiency of thermoelectric

coolers and refrigerators.

1.2 Phonon Drag Effect

Phonon drag effect describes the phenomenon first discovered in the 1950s [17] that

the Seebeck coefficients of many non-magnetic semiconductors are often enormously

augmented at low temperatures (the Kondo effect [18] that involves scattering of

conduction electrons due to magnetic impurities can also lead to an increase in the

Seebeck coefficient below certain temperature [19], which will not be discussed in our

work). The previous diffusive picture in section 1.1 where we introduced the Seebeck

effect does not consider the phonons flowing between the two ends. However, as long

as there is a temperature gradient, there are phonons travelling from the hot side to

the cold side. During this process, phonons and electrons would interact with each

other and part of phonons' momentum will transfer to electrons. Electrons would

gain extra momentum from phonons in the forward direction and be able to travel

22



from the hot side to the cold side, contributing to extra current to be balanced out

by the generated electric field, and therefore increasing the Seebeck coefficient. The

extra part of the Seebeck coefficient is dubbed as the phonon drag part of Seebeck

for it is like the phonons that are travelling forward drag the electrons to travel

with them [17]. This phonon drag part is particularly important and would increase

the Seebeck coefficient of thermoelectric materials dramatically at low temperatures

since the phonon-phonon interaction will be weak and phonons could transfer more

momentum to electrons. However, not all materials would have significant phonon

drag effect. To have a large phonon drag effect, phonons in the material should not

be strongly scattered and should have long mean free path, while the electron-phonon

interaction should be strong. For example, phonons in Bi2Te3 are intrinsically heavily

scattered due to the complex crystal structure and the heavy atoms, which leads to

the low thermal conductivity. Plus the electron-phonon coupling in Bi2 Te 3 is proven

to be weak [20], there is little phonon drag effect in Bi2 Te 3 as shown in figure 1-1.

More recent experimental works have shown that phonon drag effect can play an

important role in many materials thermoelectric performance even at room tempera-

ture [21, 22, 23, 24]. Early theoretical works [25, 26, 17, 27] tried to quantitatively de-

termine the phonon drag contribution by solving the coupled electron-phonon Boltz-

mann transport equations using a variational approach [25] and reasonable agreements

with experiments were achieved [28, 29]. However, the calculations adopted simpli-

fied scattering models where there were a number of adjustable parameters and the

variational method was limited to the lowest orders of the trial functions. All these im-

paired their predictive power. Another approach to solve the coupled electron-phonon

Boltzmann transport equations is to partially decouple the electron and the phonon

transport [30]. Compared with the variational method, it gives better interpretation

of the results in terms of contributions from different phonon modes. Recently, this

approach has been applied to bulk silicon and achieved good agreements with exper-

iments. Mahan et al. [31] incorporated the accurate phonon-phonon scattering rates

obtained from first-principles calculation and the electron-phonon scattering rates
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calculated using the adjustable material-dependent parameters (deformation poten-

tials) into the model at low carrier concentrations. Zhou et al. [32] further enhanced

the predictive power by obtaining the electron-phonon scattering rates from first-

principles calculation without any adjustable parameters at several temperatures and

carrier concentrations. They pointed out that the major phonons contributing to the

phonon drag are with longer mean free path and lower frequency than those carrying

heat, and suggested if proper filtering of phonons can be designed, it is possible to

lower the thermal conductivity and increase the Seebeck coefficient simultaneously

by utilizing phonon drag effect at low temperatures.

1.3 SiGe Alloys

Alloying has been found to be an effective tool to enhance thermoelectric performance

and the key idea is to enhance the electrical to thermal conductivity ratio by a se-

lective scattering on phonons that scatters phonons more effectively than electrons

(or holes). The large mass contrast in alloys serves as scattering centers and disrupts

the phonon transport in the material and therefore reduce the lattice thermal con-

ductivity [33, 34]. This strategy has been applied to a wide variety of traditional

thermoelectric materials including BiSbTe alloys for room-temperature use, PbTeSe

alloys for moderate-temperature use, and the SiGe alloys for high-temperature use

[34]. A recent study of Pei et al. [35] has also shown that alloying is able to con-

verge the valence or conduction bands to achieve high valley degeneracy, and the high

density of states near the Fermi level can enhance the power factor .

Similar to Rayleigh scattering, it is well understood that the atom-size point de-

fects in alloys tend to scatter phonons with short wavelength which are typically of

high frequency, and according to Zhou et al. [32], those are the phonons contributing

more to thermal conductivity rather than phonon drag. As Klemens [36] pointed

out that in semiconductors, only phonons below certain frequency are considered to
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interact with electrons and one can optimize the figure of merit by introducing point

defects that scatter high-frequency phonons to reduce the lattice thermal conductiv-

ity while phonon drag would not be much affected, we think alloying might be able to

filter the phonons that contribute more to the thermal conductivity while retaining

the phonons that contribute to phonon drag. Though phonon drag effect has been

studied in many alloys [37, 38, 39], almost all of those alloy systems are metal alloys

and are of little practice use for thermoelectrics. Also, as said in the last section, the

most studied thermoelectric material for low-temperature (around and below room

temperature) use, Bi2Tc 3 and its common alloy BiSbTe, do not exhibit large phonon

drag effect. Since phonon drag was first seen in germanium at low temperatures and

theoretically explained by Herring [17], as well as it has been shown that phonon

drag effect is large in silicon even at room temperature [31, 32], we think SiGe al-

loys should be a suitable system for us to study to see if the method above will be

effective in enhancing the Seebeck coefficient and lowering the thermal conductivity

simultaneously in the materials with significant phonon drag effect.

SiGe alloys are relatively well-studied thermoelectric materials that feature high

reliability, abundance of elements and non-toxicity. NASA uses SiGe alloys on Ra-

dioisotope Thermoelectric Generators (RTGs) operating from 600-1000 *C for space

missions [34]. Early measurements of mobility in p-type SiGe alloys were reported

by Levitas [40] and n-type by Glicksman [41] in 1955. The thermal conductivity was

first measured by Joffe et al. [42], Steele et al. [4] and Abeles et al. [43] in 1950s

and early 1960s. The Seebeck coefficient was first measured by Steele et al. in 1958

[4] and later SiGe alloys have become the established material for high temperature

power generation applications. In the 1960s and 1970s, studies were carried out on

the grain size effect on the lattice thermal conductivity in fine-grained SiGe alloys

[44, 45, 46]. The study on the grain boundary scattering in SiGe alloys has been fur-

ther pushed forward by more recent studies on the thermoelectric properties in SiGe

nanocomposites [47, 48], which show that the increased phonon scattering at the grain

boundaries of the nanostructures leads to a large reduction of thermal conductivity.
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More information of SiGe alloys including preparation methods, mechanical proper-

ties, more detailed development of SiGe thermoelectrics from the earliest research

efforts at RCAs Princeton Laboratory to the use in more recent space applications

can be found in reviews by Rosi [49, 50], Bhandari and Rowe [51], Rowe [52] and

Wood [53].

Most of trial-and-error experiments on finding and optimizing alloy recipes for

thermoelectric use are very time-consuming. To make the screening and optimizing

processes more efficient, guidelines on optimizing the alloys' composition and dop-

ing concentration are much desired. The first-principles methods within the virtual

crystal approximation that will be introduced in more detail in the next section and

chapter 2, have been used to study alloys' electronic band structure since the late

1980s [54]. Electronic band structure provides important information (e.g. band gap,

effective mass) that determines many of materials' electrical properties, thus obtain-

ing alloys' band structures using first-principles methods can give useful insights into

their thermoelectric performance. Recent first-principles studies [55, 56, 57, 32] that

incorporates theories of scattering mechanisms for electrons and phonon, are able

to calculate materials' transport properties (in particular, the thermal conductivity,

the Seebeck coefficient, the electrical conductivity) based on Boltzmann transport

equations. First-principles thermal transport calculations that take phonon-phonon

interaction, electron-phonon interaction, grain size effect and effect of alloying into

account have gained success in obtaining results with accuracy comparable to experi-

ments [55, 58, 32, 59]. In comparison with the first-principles calculations for thermal

transport, calculations of electrical transport in semiconductors have only received

attention recently and so far only a few materials (e.g. silicon, SiGe, phosphorene,

MoS 2 , GaAs, BP, BAs, BSb) are calculated within a fully first-principles approach

for the electrical transport properties [56, 57, 60, 61, 62, 32, 63, 64, 65]. These works

demonstrate the inclusion of carrier scattering by equilibrium phonons, carrier scat-

tering by polar optical phonons, scatterings due to impurities and alloying, as well

as the phonon drag effect. One of the biggest challenges in electrical transport first-
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principles calculations for more materials is to obtain more accurate electronic band

structures (e.g. extra care is needed when dealing with spin-orbit coupling for heavy

elements) with reasonable computational cost. More advanced quantum chemistry

methods (e.g. GW calculation [66, 67]) than the current density functional theory

(DFT) method are being developed but so far are still much less popular than the

DFT method due to their heavy computational load. In the case of SiGe alloys,

several first-principles works [56, 57, 55, 59] using the virtual crystal approximation

(which is adopted in our work) have achieved good agreement with the early exper-

iments mentioned in the last paragraph. This shows that the VCA method works

well for the SiGe alloys system on thermal transport calculation [55, 59] and elec-

tron transport calculation [56, 57]. These above give us the confidence to study the

phonon drag effect in SiGe alloys system using first-principles methods to exam if the

method of combining phonon drag and the alloying will be effective in enhancing the

thermoelectric properties.

1.4 Virtual Crystal Approximation

To simulate a non-alloy system, by that we mean a real single-crystal material, we

always start our calculation by constructing its unit cell that has atoms of particular

elements that can be found on periodic table. All calculations can be performed on the

unit cell through the use of periodic boundary conditions (such as the Block theorem)

to represent the entire crystal. However, in a real alloy material, the arrangement of

atoms is usually not ordered. Atoms of different elements could sit randomly on the

lattice sites and there can be defects like vacancies, interstitial atoms and dislocations

that break the periodicity of the structure and no longer allow the simulation of the

system with a simple unit cell. It would require very large supercell to capture all these

disorders and hence drastically increase the computation complexity. Unfortunately,

the first-principles calculations using this kind of supercells are extremely heavy and

current computing power cannot handle such daunting tasks.
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Right now, one of the most widely-used and computationally practical approaches

to deal with alloys is the virtual crystal approximation (VCA) [68, 33]. First proposed

by Nordheim [68], VCA treats the actual alloy system as a superposition of two parts:

(1) the virtual single-crystal with perfect periodicity, composed of fictitious virtual

atoms that interpolate between the behavior of the atoms in the parent materials, and

(2) a random part to account for the difference between the actual crystal potential

and the virtual crystal potential at lattice points. Early theoretical work applied VCA

to electronic band calculation, as well as phonon scattering due to anharmonicity and

mass disorder [69, 33, 70]. With the development of computational power, VCA has

been adopted to study alloy materials in density functional theory calculations since

the late 1980s [54].

Despite of its advantages of simplicity and computational efficiency, we need to

be very careful about its use for it may not apply to every alloy system. As described

above, VCA does not deal with the crystal defects like vacancies, interstitial atoms

and dislocations. The disorder is only treated as a first-order perturbation (single

scattering) despite the presence of possible large impurity concentration, which might

or might not work satisfactorily depending on the complexity of the system. For

instance, Mendoza et al. [71] studied the elastic phonon scattering in SiGe alloys

and examined the validity of the VCA for phonon heat conduction using the Green's

function approach. The Green's function approach allows inclusion of the resonant

effect that stems from the constructive interference of the multiple scattering processes

in a system with impurities while these multiple scattering processes are not taken into

account in the VCA approach. The calculated density of states of phonon is distinctly

different from that of the VCA approximation at high frequencies. However, at these

high frequencies, the lifetimes obtained for these phonon modes are small in both

the full scattering theory and the VCA, resulting in their negligible contribution to

thermal transport. Several first-principles studies [56, 57, 55, 59] have also shown that

the VCA method works well for the calculations of SiGe alloys' thermal conductivity

and electron mobility. This indicates that the VCA method captures the phonons' and
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the electrons' dynamics in SiGe alloys reasonably well in term of describing thermal

transport and electron transport. Therefore, we like to expand this methodology to

calculate the Seebeck coefficients (including the contribution from phonon drag) of

SiGe alloys.

We follow Abeles' work [33] to construct our virtual SiGe alloy systems and de-

termine the atomic masses and the pseudopotentials by interpolating between the

masses and the pseudopotentials of the parent elements silicon and germanium. The

Si.Gei_ alloy system is generated by compositionally averaging the masses and the

pseudopotentials of Si and Ge as below

myca = Xmsi + (1 - x)mGe (1.3)

The averaging of pseudopotentials can be done using the virtual.x program in

QUANTUM ESPRESSO [72] package, which is doing

Vvca = xVsi + (1 - X)VGe (1.4)

We also interpolate the lattice constants in the same way. However, in practice,

we relax the lattice parameters once we have determined the atomic masses and the

pseudopotentials using the linearly-interpolated values as initial input. The final

relaxed lattice constants are used in our calculations.

1.5 Boltzmann Transport Equation

In this work, transport properties of materials are studied based on Boltzmann trans-

port equation. Devised by Ludwig Boltzmann in 1872, Boltzmann transport equation

describes dilute gases where only binary collisions are considered at the kinetic level

so it is not valid for dense fluids such as liquids. It also has found applications
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in fields involving dilute carrier mediated transport like the ones of electron gases,

phonon gases and photon gases. The original Boltzmann transport equation tracks

the number of the particles in one-particle phase space and does not include explicitly

wave effects such as interference or tunneling so it is applicable to classical system

only. Extension to quantum system requires special treatment [73]. Despite these

restrictions, Boltzmann transport equation is powerful and can be applied to a wide

range of problems from nanoscale to macroscale [74].

More specifically, Boltzmann transport equation characterizes all the particles'

motion in the system using the single particle distribution f(r, p, t) in the phase

space made of the particle's real-space position r, momentum p and time t. And

the single particle distribution f(r, p, t) is the expected number of particles in a

differential phase space element located at (r, p) at time t. The particle's changing

states can be caused by the external forces along their trajectories, or more generally,

the potential gradients acting on the particle as well as the scattering events, i.e., the

interaction between particles.

We will use velocity v(p = my) or wavevector k(p = hk) rather than momentum

p below. In this way, the general form of Boltzmann transport equation is [74

Of F Of
+v-Vrf + -. Vkf= -- (1.5)

Ot =(f)Coll

where F(r, t) is the external force (i.e., not due to other particles) on the particle.

For example, F = qE where q is the charge of the electron when the particle is the

electron in an electric field E, and F = 0 when the particle is the phonon since there

is no external force for the phonon. The terms on the left-hand side include the evo-

lution of f with respect to t, r and k, which are balanced out by the collision term on

the right hand side that represents the net gain of the particle in one quantum state

due to scattering events. The collision term lumps the interaction of this one parti-

cle with the rest of the particles in the system and it represents the non-conserving

nature of the single particle distribution. While collision is a time-dependent process
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and the rigorous way of dealing with it is to solve the time-dependent Schr6dinger

equation, this approach is usually extremely complicated and not practical. An eas-

ier way is to use the perturbation method [75] that considers the time-dependent

interaction between the particles as a small perturbation in energy. Take the two-

particle interaction as an example, the total system Hamiltonian H is represented

as H = Ho(r) + H'(r, t), where H'(r, t) is the small perturbation from the original

steady-state, non-interacting unperturbed Hamiltonian Ho(r) of the two particles. In

this way, the solution of the Schrodinger equation with the new Hamiltonian H can

be obtained through the perturbation method and expressed in terms of the wave-

function '1 of the unperturbed Hamiltonian HO. Using the perturbation solution, the

transition rate (probability of transition per unit time) from one quantum state Di

to another quantum state (f is given by Fermi's golden rule

WV-f =7 * H'id3 r 6( 5 - Ei) (1.6)

where d3r means integration over the whole volume of the system and the delta func-

tion J(ef - fi) manifests the requirement of energy conservation. In fact, depending

on the detailed scattering mechanism, before and after the scattering event, the mo-

mentum, or the energy, or both, of the system should conserve. For instance, electron

scattering by ionized impurity is an elastic process, i.e. the energy of the electron

does not change after the scattering event happens, while the momentum of it could

change. For electron-phonon scattering, the total energy of the electrons and the

phonons involved should conserve: the energy of the phonon that participates in the

electron-phonon interaction should equal the energy difference between the electron's

initial state and final state. The crystal momentum conserves only when the wavevec-

tor of the final state is within the first Brillouin zone: the wavevector of the phonon

connects the initial wavevector and the final wavevector of the electron that being

scattered (known as the normal process [76]). If the wavevector of the final state falls

outside the first Brillouin zone, it will be mathematically folded back to the first Bril-

louin zone by some reciprocal-lattice vector and in this case the crystal momentum
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is not conserved (known as the Umklapp process [76]). As will be discussed in more

detail in chapter 2, these above introduce a restriction on the phonon wave vector

and energy, and search for conditions that meet these conservations is required in our

first-principles calculations.

According to Fermi's golden rule, the collision term can be evaluated using the

scattering probability of the particle by summing over all the initial states and final

states. Again, take the two-particle scattering process as an example. the initial

wavevector and distribution function of one particle are k, f(t, r, k) and it collides

with another particle with the wavevector k, and distribution function f(t, r1 , k1 ).

After the scattering, the wavevectors and distribution functions become k', f(t, r', k')

and k , f(t, r', k'). The scattering term for the particle at state k can be expressed

as

S- f(t, r, k)f(t, r, k1 )W(k, k1 -4 k', k')
atColl ki,k',k'

+ E f(t, r, k')f(t, r, k')W(k', k' -+ k, k1 )
kiL,k' (1.7)

- (29 f(t,r, k)f(trk1)W(k, k1 -+ k', k )d k1 d3k'd3 k'

+ 29 f (tr, k')f(t, r, k')W(k', k' -+ k, k1 )d3kid3k'd3 k'

where the V
3 term is the factor that converts the summation over wavevector into

integration over the phase space. The minus terms indicate the particle is being

scattered out of the state to some other state and the plus terms indicate the particle

is being scattered into this state from some other state.

However, this integral-differential equation (1.7) is very difficult to solve. A widely

used simplification is the relaxation time approximation (RTA) that characterizes the

scattering event by the relaxation time r, which is a measure of how long it takes for

a nonequilibrium system to relax back to an equilibrium distribution.
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(f f - f(T, e,cf (1.8)

is the energy of the state and Ef is the chemical potential, f0 represents the

equilibrium distribution of the particles, such as Fermi-Dirac distribution (f0 =
1 -, will be shown in figure 2-2) for electrons and Bose-Einstein distribu-et  -f)kBT+l

tion (r0 = l,,,Tl) for phonons. Relaxation time approximation is a mean-field

approximation and it assumes isotropic scattering for a given energy. For elastic scat-

tering, it is valid for low-field transport. Despite for the limitation, it is used widely

even for processes including inelastic scattering, with correct end results for most

situations [74].

Denote g f - f0 , we rewrite the Boltzmann transport equation under the

relaxation time approximation [74]

Og Of0  F F 9- + + V - VrfV+ V - VVg + - - VVfk+ - Vg= (1.9)
&t Ot h h r

In our work, in order to solve the coupled electron-phonon Boltzmann transport

equations, we make the following approximations: (1) the transient terms are negli-

gible, i.e. the first two terms on the left hand side of equation (1.9) will be neglected;

(2) the gradient of g is much smaller than the gradient of f0 , i.e. the fourth and the

last terms on the left hand side of equation (1.9) will be neglected; (3) g is much

smaller than f0 and we can use this to solve the coupled electron-phonon Boltzmann

transport equations (as the electron-phonon interaction would affect both electrons'

and phonons' states, the Boltzmann transport equation for electrons and the Boltz-

mann transport equation for phonons will be coupled when we take electron-phonon

interaction into account) in chapter 2 and chapter 3. With these approximation, we

can simplify equation (1.9) and get the linearized Boltzmann transport equation [74]

V -Vrf + -V f (1.10)
h 7
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We will use equation (1.10) to calculate the thermoelectric properties in chapter

3. In particular, the coupled electron-phonon Boltzmann transport equations along

with the detailed phonon drag formula derived from solving these equations will be

given in section 3.3.

1.6 Thesis Outline

In this work, we study phonon drag effect in alloys by calculating the Seebeck coef-

ficients, electrical conductivity and thermal conductivity of n-type SiGe alloys with

different carrier concentrations (from 1015 cm- 3 to 1020 cm- 3 ) over the complete range

of compositions using first-principles method within the virtual crystal approximation

at 300K and 150K, considering electron-phonon interaction, phonon scattering due

to anharmonicity, alloy and boundary, as well as electron scattering due to ionized

impurity and alloy.

Chapter 1 gives the background of this study and introduces the basic concepts.

Chapter 2 provides the details of the first-principles method adopted in this work

for transport properties calculations. Chapter 3 shows that how we use the results

from first-principles calculations to obtain transport properties based on Boltzmann

transport equations. Finally, a summary of the current work and an outlook for the

future work are given in chapter 4.
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Chapter 2

First-principles Simulation of

Transport Properties in SiGe Alloy

System

To quantitatively evaluate phonon drag effect, we partially decouple the electron and

phonon transport to solve the coupled electron-phonon linearized Boltzmann trans-

port equations within the relaxation time approximation, and resort to first-principles

calculations to obtain the detailed electron's information including the electronic band

structure (the energy and the group velocity of the electron, Ek, and Vka, where k

and a denote the wavevector and the band number of an electron), the electron

relaxation time rka, phonon's information including the phonon dispersion (the fre-

quency and the group velocity of the phonon, WqA and VqA, where q and A denote

the wavevector and the branch number of a phonon), the phonon relaxation time rqx

and the electron-phonon interaction matrix element. The electronic band structure

is the equilibrium property that describes the eigenstates of the electrons, which can

be calculated using density functional theory (DFT). Density functional perturba-

tion theory (DFPT) can be used to obtain phonon dispersion, electron-phonon and

phonon-phonon interactions for it calculates the second and third derivatives of the
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total energy at any arbitrary wavelength. The relaxation times describe the dynamics

of the particle taking the interactions between the particle and different elements of

its environment into account.

In this chapter, we start with introducing the basics of the many-body problem,

especially density functional theory as well as density functional perturbation theory,

then move to discussion on each scattering mechanism for electrons and phonons that

is included in our first-principles calculations.

2.1 The Many-body Hamiltonian and Density Func-

tional Theory

As we know, though we can solve the Schrddinger equation exactly for a single hy-

drogen atom, the problem will get much trickier if we are trying to do the same

thing for the hydrogen molecule. As the system that we are looking at gets more

complex, it is impossible to solve the many-electron problem without approximations

except for small molecules. One of the most common approximations made in the

many-body problem is the Born-Oppenheimer approximation. It assumes that the

motion of atomic nuclei and electrons in a molecule can be separated because elec-

trons travel much faster than atomic nuclei due to the large mass difference between

them. Mathematically, it allows the wavefunction of a molecule to be broken into its

electronic and nuclear (vibrational, rotational) components: (P = Oeiectronic X Onuclear.

The many-body Hamiltonian for an electronic system with Ne electrons and N" nuclei

may be written in atomic unit as

Ne Ne Nn Ne Ne Nn N.

H =- 7 _ Z ZZ 21
2. . 2 y |+R2 - RI (2.1)SI ir , i j3/ i I J R -Rl

where Z is the charge of the ion, ri is the position of electron i, R1 is the position of

nucleus I. Indices i and j run over the electronic degrees of freedom and I and J rum
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over nuclei. From left to right, the four terms on the right in equation (2.1) describe

(1) kinetic energy, (2) nucleus-electron interaction: a Coulombic interaction involving

one electron at a time. Electrons are considered as quantum mechanical particles

and thus this interaction behaves like an external single-body potential acting on

the electrons. In practice, this part is taken care of by replacing the true potentials

of the nuclei with pseudopotentials, (3) electron-electron interaction: a Coulombic

interaction involving pairs of electrons and (4) nucleus-nucleus interaction: nuclei are

taken as classical particles that interact via the Coulombic forces. For the time being

we can only consider the electronic Hamiltonian, and take the final term to be a

constant.

Although the many-body Hamiltonian in equation (2.1) seems very straightfor-

ward, its exact solution is almost impossible to obtain for systems with more than

a few electrons, largely due to the complexity in dealing with the correlation among

electrons. As the number density of free electrons in any real semiconductor material

can easily be greater than 1015 cm 3 , it will be impossible for us to solve the wave-

function considering every electron's interaction with one or multiple other electrons.

Almost all electronic structure calculation methods resort to approximations which

simplify the electron-electron interaction. The quality of the particular calculation

used for a system depends on how well this approximation is chosen. Several methods

have been devised to find accurate approximations. There are two broad classes of

methods: (1) wavefunction-based methods (e.g. Hartree-Fock method [77, 78, 79])

where an explicit form for the wavefunction is written down and observables are cal-

culated using this wavefunction, (2) density-based methods (e.g. density functional

theory) in which the focus is shifted from the wavefunction to the electronic density

and the wavefunction is not written explicitly.

A year after the publication of the Schrddinger equation, Hartree assumed that

the nucleus together with the electrons formed a spherically symmetric field, and the

charge distribution of each electron was the solution of the Schrbdinger equation for

an electron in an effective potential derived from the field. Each electron feels the
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presence of the other electrons indirectly through the effective potential. The electrons

are considered as occupying single-particle orbitals making up the wavefunction and

each orbital is affected by the presence of electrons in other orbitals [80]. The starting

point of the Hartree-Fock method is to write a variational wavefunction, which is built

from these single particle orbitals. The simplest wavefunction that can be formed from

these orbitals is their direct product

4'T(riL, ... , rN) = 01 (r1) 02 (r2) O.N (rN) (2.2)

This is the Hartree approximation and it is straightforward to calculate the variational

lowest energy. It allows us to to change the 3N dimensional Schr6dinger equation (N

electrons in 3 dimensions) into a 3 dimensional equation for each electron. However,

pointed out by Slater and Fock independently [77, 78], the Pauli exclusion principle

demands that the many-body wavefunction should be antisymmetric with respect to

interchange of any two electron coordinates, for example

<(b(rl, r2, ... , rN) = ~~ 4D(2, r1, ---. , rN) (2-3)

which clearly can not be satisfied by equation (2.2).

In order to satisfy the antisymmetry condition, a more sophisticated form than

that of the Hartree wavefunction is needed. It was then shown that a Slater determi-

nant, a determinant of one-particle orbitals first used by Heisenberg [81] and Dirac

[82] in 1926, trivially satisfies the antisymmetric property of the exact solution and

hence is a suitable ansatz for applying the variational principle. For an N-electron

system where the orbitals are taken to satisfy orthonormality, the wavefunction can

be written as
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q1(ri) q 2(r1) ... N(rl)

1 q 1 (r 2 ) 02(r2) ... kN(r2) (2.4)

01 (rN) $2 (rN) ... 4'N(rN)

where the factor in front ensures normalization. Then we minimize the expectation

value of the Hamiltonian in equation (2.1) (11HIF) with respect to the basis functions.

This requires functional differentiation where any change affected in the expectation

value above due to an infinitesimal change in any of the orbitals wavefunction should

be zero.

Solving the many-particle Schrbdinger equation for the ground state wavefunction

and energy is a daunting task even for the smallest system. An alternative route to the

direct solution of the Schrddinger equation is shifting focus of the problem from 4)(r)

to a fundamental observable of the problem, namely the density n(r). This route is

based on the Hohcnberg-Kohn theorem [83], which asserts that the electron density of

any system consisting of electrons moving under the influence of an external potential

determines all ground-state properties of the system. In other words, the underlying

principle of DFT is that the total energy of the system is a unique functional of the

electron density, hence it is unnecessary to compute the full many-body wavefunction

of the system. The functional that delivers the ground state energy of the system

gives the lowest energy if and only if the input density is the true ground state density.

However, the precise functional dependence of the energy on the density is not known,

and since the solutions are for the ground state of the system, the temperature of the

system is assumed to be OK. Walter Kohn and Lu Jeu Sham [84] introduced the idea

that the intractable many-body problem of interacting electrons in a static external

potential can be reduced to a tractable problem of non-interacting electrons moving

in an effective potential. The effective potential includes the external potential (the

second term on the right hand side of equation (2.6)) and the effects of the Coulomb

interactions between the electrons (the third term on the right hand side of equation
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(2.6)). To eliminate the wavefunction by writing all terms making up the total ground

state energy of the electronic system in terms of density, the density can be written

as the sum of norm squares of a collection of single-particle orbitals

Ne

njon( r)2 (2.5)

Then the total ground state energy may be written as

Nef

E = - ! f dro* (r)V2 0"(r)dr + n(r)V14(r)dr
n (2.6)

+ - drdr' ) + AT + + AEee
+21 Ir - r'l

The kinetic energy as written cannot be differentiated directly with respect to n(r)

but it can be minimized with respect to the orbitals which is equivalent to minimizing

with respect to n(r). AT comes from the difference between the kinetic energy of the

real many-particle system and the kinetic energy as the sum of the kinetic energies

of the Kohn-Sham orbitals, and AEe, is to correct the self-interaction term included

in the third term. The last two correction terms together is named as the exchange-

correlation energy (Exc). More concisely, the origin of this term is the difference

between a system of N interacting and non-interacting particles. Exchange energy (for

same spins) is due to Pauli repulsion while correlation energy (more for opposite spins

since they are more likely to occupy nearby locations) is due to collective behavior

of electrons to screen and decrease the Coulombic interaction. Nonetheless, writing

the exchange-correlation term in terms of the density becomes the difficulty within

Kohn-Sham DFT. In practice, there are many approximations to model this, as the

most popular ones are listed in Table 2.1.

For example, the oldest and simplest approximation, the local density approx-

imation (LDA), is based upon exact exchange energy for a uniform electron gas.

Non-interacting systems are relatively easy to solve as the wavefunction can be rep-
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Table 2.1: Approximations (exchange-correlation functionals)

Exchange-correlation functionals Exc depends on
Local Density Approximation (LDA) the particle density at that point

Generalized Gradient Approximations (GGA) + the local density gradient
Meta-GGAs + the Laplacian of the density

resented as a Slater determinant of orbitals. The kinetic energy functional of such a

system is known exactly, but the exchange-correlation part of the total energy func-

tional remains unknown and must be approximated. LDA assumes a simple form

which is a linear functional of the density:

ELD A Eham
ELDA = drn (r) x,,(n (r)) (2.7)

where E,,c,"(n(r)) is the exchange correlation energy density of an interacting homo-

geneous electron gas at the density n(r). Its exchange part is calculated exactly in

the Hartree-Fock sense whereas the correlation part is a result of a fit to accurate

MC data. Although LDA is a very crude approximation for systems that are not as

homogeneous as an electron gas, it has proven to be a huge success. This is in part

due to the cancellation of errors where LDA typically overestimates exchange energy

while it underestimates correlation energy.

The quality of a DFT calculation is determined by how close the approximate ex-

change and correlation term comes to the exact value. As there is no known universal

functional, nor even a framework in which to improve exchange-correlation approx-

imations systematically, the performance of an exchange-correlation functional may

only be tested by comparison to simple model systems, known experimental results

or high-quality, computationally intensive post-DFT quantum chemistry calculations

(e.g. GW calculation [66, 67]).

Compared to many conventional models that lack predictive power for they in-

clude adjustable parameters, and determine the parameters by fitting the calculated

one or several measurable properties to the experimental data, density functional the-
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ory starts directly at the level of established laws of quantum mechanics and does not

make assumptions such as empirical model and fitting parameters. It is a computa-

tional quantum mechanical modelling method to study the ground-state properties of

a many-electron system. In practical, we calculate the electronic band structure by

using QUANTUM ESPRESSO package [72], which calculates the Kohn-Sham orbitals

and energies to obtain the ground-state energies. There are some other approxima-

tions, e.g. using the effective interaction (pseudopotential) and a plane waves basis set

with a finite number of plane waves, that do not alter the quantum mechanical frame-

work of the first-principles method and usually have been carefully justified before

use. We use a finite number of discrete reciprocal space points to sample the Bril-

loun zone in order that the calculation remains finite. This is justified as long as the

orbitals vary smoothly with respect to the sampling points. A Monkhorst-Pack grid

[85] is an unbiased method of choosing a set of points for sampling the Brillouin zone.

In fractional coordinates, it is a rectangular grid of points of dimensions nr x ny x nz,

spaced evenly throughout the Brillouin zone. The larger the dimensions of the grid,

the finer and more accurate will be the sampling. Hereinafter we refer k-points or

k-mesh to the reciprocal space sampling in electronic band calculations, q-points or

q-mesh mostly to the reciprocal space sampling in phonon calculations. Much like the

cut-off energy, the size of grid required depends on the system under study, but the

appropriate size can be established by means of a convergence test (we will provide

our convergence test in section 3.3.4). In this sense, our DFT calculations can not be

entirely accurate. However, with careful exam on the approximations above, realistic

modeling of materials based on the solution of the density functional theory from the

nanoscale upwards with accuracy comparable to experiment can be achieved.

Ground-state DFT calculations solve the wavefunctions with corresponding band

energies, while the density functional perturbation theory [86, 87, 88) is a power-

ful and flexible theoretical technique that allows calculation of properties depending

upon a system's response to some form of perturbation within the density functional

framework. Many physical properties depend upon a system response to some form of
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perturbation, examples include polarisabilities, phonons, Raman intensities. The ba-

sic ansatz behind DFPT is that quantities such as the wavefunction, electron density,

or potential can be written as a perturbation series

X(A) = X(0) + AX( 1) + A 2X 2 ) +... (2.8)

where X(A) is a generic physical quantity that could, for example, be the Kohn-Sham

orbitals O(A), the Kohn-Sham energy E(A), or the electronic density n(A), and A is a

perturbing parameter, assumed to be small. The expansion coefficients are given by

- 1 d"X (2.9)
n! dA " (A=O

Starting from

H(A)jb(A)) Ei(A)|<Dj(A)) VA (2.10)

and inserting:

H(A) = H(O) + AH 1) + A 2H +...

<lj(A) = DO)+ A ) + 24p 2 ... (2.11)

(0) + (A1) 26(2)+

We will have the 0 " order terms:

H(0)jI)0)) = (O)j(O)) (2.12)

the 1 st order terms:

H(0)| I()) + H(1)I O)) - 4|ID() + 4E1l) 140)) (2.13)

the 2 nd order terms:

H() I( 2 )) + H(1)14)1)) + H (2)|1)) = 0)jD2)) + E|1)I?)) + E 2)jDO)) (2.14)

And the expansion of the normalization condition that (<Dj(A)|Dj(A)) = 1 VA gives
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the 0 th order terms:

( ) 1 (2.15)

the 1 st order terms:

(,D ) + (4)I )Jq ) = 0 (2.16)

the 2 "d order terms:

(<D ()<D2)) + () ) + (,<2)1(D0)) - 0 (2.17)

Premultiply the 1st order of Schr6dinger equation (equation (2.13)), we will get to

the Hellman-Feynman theorem:

(1) = (<b |)H(1) g 0)) (2.18)

that the 0 1h order of wavefunctions are thus the only required ingredient to obtain the

1st order corrections to the energies. Similarly for higher order terms, the nth order

wavefunctions give access to the 2nth and 2n+1th order energy ("2n+1" theorem).

There are 4 different methods to get the 1st order wavefunctions: (1) solving the

Sternheimer equation (H(0) - ef))IP1)) = (H() - e ()D0) directly, complemented

by a condition derived from the normalization requirement, (2) using the Green's

function technique, (3) exploiting the sum over states expression, (4) minimizing the

constrained functional for the 2nth order corrections to the energies. More information

on the detailed methods of DFPT can be found in literature [89].

As the atomic displacement corresponding the wavevector of a phonon can be

regarded as a perturbation to the Hamiltonian of the electron system, we use DFPT

method incorporated in QUANTUM ESPRESSO code [72] to obtain the force con-

stant, phonon dispersion and the perturbed potential &VqA for later use in the electron-

phonon interaction matrix element calculation. Starting with the electronic structure

of the undistorted crystal obtained from a conventional DFT self-consistent calcula-

tion, the charge response to lattice distortions of definite wavevector q is calculated.
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A different charge response must be calculated for each of the 3N independent atomic

displacements, or for any equivalent combination thereof. Once the charge response to

all atomic displacements (the computing effort is cut down by exploiting symmetry)

have been processed, the dynamical matrix for the given q is obtained. However, dy-

namical matrix for any q is required in order to calculate the full phonon dispersion

and all quantities depending on integrals over the Brillouin zone. This is accom-

plished by the inverse Fourier transform of dynamical matrices that are calculated

on a finite uniform q-mesh to get the real-space interatomic force constants [90, 89],

and constructing as well as diagonalizing the dynamical matrix at any given q in the

Brillouin zone to obtain the phonon eigenstates.

2.2 Wannier Function-based Interpolation

Using the methods introduced in the last section, we calculate the electronic band

structure and phonon dispersion using the QUANTUM ESPRESSO software [72],

with norm-conserving pseudopotentials (Si.pz-n-nc.UPF and Ge.pz-n-nc.UPF, both

are LDA) and a kinetic energy cut-off for wavefunctions of 80 Rydberg, a conver-

gence threshold for self-consistency of 1012 Rydberg. Electronic band structure is

calculated using a 12 x 12 x 12 k-mesh and phonon dispersion is calculated using a

6 x 6 x 6 q-mesh.

However, for electron-phonon interaction matrix calculation, we need much denser

meshes (e.g. 80 x 80 x 80 k-mesh and q-mesh) than those above to meet the stringent

convergence demands of the calculation of the electron-phonon interaction matrix

element for the search of all possible electron-phonon scattering events that satisfy the

conservation of energy and momentum rules. Limited by current computing power,

we cannot use the same routine as above to obtain wavefunctions and perturbed

potentials on the dense meshes as required. Our current best solution is to use

the Wannier function-based [91] interpolation which interpolates between the matrix
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elements from the coarse meshes to finer meshes with reasonably good accuracy and

speed.

The simplest way of interpolation is linear interpolation that averages the contri-

bution from sampling points and thus it has little physical significance. Interpolation

methods that can capture and utilize the physical feature of the system will be much

more efficient in sampling with limited number of sampling points. In systems where

short-range interaction is dominant, single particle wavefunctions are localized around

atomic sites, and tight-binding model is often used to calculate the band structure

and single-particle Bloch states of the system. It assumes that in the vicinity of

each lattice point the full periodic crystal Hamiltonian can be approximated by the

Hamiltonian of a single atom located at the lattice point (Hat). Take the unit cell

that contains only one atom as an example (can be extended to any unit cell [92]),

the tight-binding model represents the crystal states as a linear superposition of the

wavefunctions for isolated atoms on different sites, with coefficients incorporating the

overlap

(Dn(r) = c,n(r - R)eiR-k (2.19)
m,R

where 0, is a bound level that meets Hat#, = E#,O R indicates different unit

cells. Above is considering the wavefunctions as a function of k for fixed r, while

the wavefunction and associated band energy will vary as the wavevector k changes

across the first Brillouin zone, the band structure is determined by the superposition

coefficients cn,, for that the interaction is essentially short ranged. These coefficients

can be obtained from the information on a coarse k-mesh in the reciprocal space, and

once the coefficients are determined, the wavefunction and band energy on a finer

k-mesh can be interpolated. This is the key concept of the Wannier interpolation

method. Replacing the atomic wavefunctions #. in equation (2.19) with Wannier

functions (denoted as f), the Bloch functions for any band can always be similarly

written as [92]

IPnk(r) = E fn(R, r) (2.20)
R
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where the coefficients in the sum depend on r as well as on the "wavevector" R,

since for each r it is a different function of k that is being expanded, and the Fourier

coefficients are given by the inversion formula

fn(R, r) = I J dke-iR'kT'fk(r) (2.21)

This shows if r and R are both shifted by the Bravais lattice vector RO, f is indeed

unchanged as a consequence of Bloch's theorem. Thus, f,(R, r) has the form of

fn(R, r) = fn(r - R). However, the Wannier states given by equation (2.21) are

not necessarily localized in the real space, while the tight-binding model first assumes

that the electrons are strongly localized. To make a meaningful analogy from tight-

binding model in terms of interpolating information on a coarse mesh to a fine mesh,

effort has been made on achieving the maximal localization of Wannier states via the

Fourier transform of the Bloch wavefunctions to the real space, e.g. the concept known

as the maximally-localized Wannier functions [93] adopted in our calculations. It has

been shown to connect with local orbitals in the material and achieve a successful

mapping between points in the real space and in the reciprocal space.

Apart from electron's information, in order to obtain the electron-phonon matrix

element, the perturbed potential and phonon's information are also required. It has

been shown that extreme localization is achievable in the case of lattice vibrations

because of the discrete number of degrees of freedom associated with the classical ions

[94, 95], which means the maximally localized Wannier functions can be safely used

to represent phonon dispersion. The perturbed potential &Vp for a phonon of given

mode A and wavevector q is due to a collective motion of atoms sitting on different

atomic sites. Its Fourier transform gives the perturbed potential of which the spatial

localization can be quantitatively assessed by the spatial decay of the interatomic

force constants as long as the system under consideration can be described by the

local density approximation to density functional theory [96]. Therefore, as long as

the dominant forces among atoms are short ranged (which is the case for SiGe alloys),

the same Wannier function-based method as above can be applied to interpolate the
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perturbed potential.

In summary, in our calcualtions, electronic Wannier functions and phonon pertur-

bation in the Wannier representation in the real space are first constructed from the

information on coarse meshes, and they are interpolated to finer reciprocal meshes

to obtain the electron-phonon matrix element. The interpolation is implemented in

the EPW code [97] which uses routines from Wannier90 code [98] to calculate the

Wannier functions, and is part of the Quantum ESPRESSO suite [72].

2.3 Electron Calculations

As described in section 2.1, the electronic band structure of SiGe alloys is calculated

using DFT method and the results are shown in figure 2-1. Since the VCA method

we adopted is basically weighted averaging pure Si's and pure Ge's properties, we can

see starting from pure Si, as Ge content increases, the band shape gradually changes

from Si's band structure to Ge's. Si and Ge have different band structures, and their

conduction band minima are located at different valleys (Ge's is at L valley and Si's

is near the X valley). When the two materials are being alloyed, their conduction

bands start to cross over each other, and there will be a particular composition at

which the two conduction band minima align with each other (as shown in the lower

left figure in figure 2-1). This is the band convergence feature that will affect many

of the alloys' transport properties, and we will discuss more about this when looking

at different scattering mechanisms in the following sections as well as justifying our

calculated thermoelectric properties in chapter 3.

The scattering mechanisms on electron considered in our calculations are electron-

phonon interaction (EPI). alloy scattering on electron and ionized impurity scattering.

In the following sections, we will discuss in detail how to obtain the relaxation times

decided by these different scattering mechanisms under the relaxation time approxi-

mation. After obtaining those relaxation times, using the Matthiessen's rule [92], the
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Figure 2-1: Calculated electronic band structiure of SiGe alloys.The figure in the lower
left corner shows the band convergence region (around the composition of Sio.DGeo.87 )
where the L valley and the valley near X point are aligned.

effective relaxation time of the electron, T-k can be calculated as below

1 1 1 1

T7k Tka, electron-phonon Tka, alloy-electron Tka. impurity-electron

2.3.1 Electron Scattering by Phonons

In the electron-phonon scattering rate calculations, in order to reduce the computation

complexity, we make the first-order approximation and assume phonons are at their

equilibrium, that is, phonons obey Bose-Einstein distribution and we do not take the

effect of scattering events on phonons' state into account. Later we will use these

results for nonequilibrium case when we are calculating the transport properties,

assuming the deviation of the phonons' state from equilibrium is small.

First, we enumerate all the possible electron-phonon scattering events relating to
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the electron with wavevector k at band a in Table 2.2 where a and 3 denote the

bands of the electron's initial and final states, and k and k' denote the wavevectors

of the electron's initial and final states. q, A and w denote the wavevector, the branch

and the frequency of the phonon. The EPW code [97] allows k' to fall outside the

first Brillouin zone and can calculate the energy of an electron state with wavevector

that is outside the first Brillouin zone directly without folding the wavevector back to

the first Brillouin zone, getting the same energy as for its counterpart inside the first

Brillouin zone. Therefore, we can loop over the initial and the final states using the

relations between k, k' and q in Table 2.2 and do not need to differentiate between

the normal process (crystal momentum conserves) and the Umklapp process (crystal

momentum does not conserve).

Table 2.2: Possible electron-phonon scattering events for an electron

case phonon initial state final state momentum relation energy relation
1 emitted ka k'/ k - k' - q = 0 ea - 410 -hwq = 0

2 absorbed ka k'B k + q - k' = 0 EO, + hwqA - ek', = 0
3 emitted k'L3 ka k + q - k' = 0 Eka+ hwqA, - 6,k = 0

4 absorbed k'_ ka k - k' - q = 0 Ea -kf- hWqO = 0

The total transition rate will be the sum of these transition rates above. Recall

that we use equation (1.6) Fermi's golden rule to calculate the transition rates

k2 2r F 1 + F2 + F3 + F 4  (2.22)
e-ph Nq qAk

where the factor of 2 accounts for the electron spin. As introduced in section 2.1, a q-

mesh of Nq = Nqi x Nq2 x Nq3 to discretize the Brillouin zone into a IF-centered regular

grid is used for summation. The 4 cases of scattering elements in Table 2.2 correspond

to F to F4. Write F to F4 out specifically using qAV as the perturbed potential

(caused by the ionic displacement corresponding to a phonon with wavevector q and

at branch A) in equation (1.6),

F1 = -fka(1-fk',O)(n+1) ({) (k'IOqVjka)126(k - k' - q) 6 (Eka - Ek,3 - hWqA)
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F2 = -fk,(1 - fk i3)n )I(k',3IxVlk)6(k+q-k')6(eka+hwqA -ekf,3)

F3 = +fki (1-fka) (nA+1) (m JA ) O(k'|qAVIka) 12 6(k+q-k')6(eka+hwqA -ek',)
2mowgx

F4 = +fk'l(l-fka)nA (2I")3 k' i|qAVIka)126(k - k' - q)6(Ek, - 6k, - hWqA)
(2mowgi,

The (2\mwqA 2 (k'3|OqAVka)l is the electron-phonon interaction matrix element,

mo is the mass of one unit cell, jka) and Ik',8) describe the eigenstates of electrons.

Similar to equation (1.8), the rate at which fk, relaxes can be defined as

1 _ 6 Ofka (2.23)
Tk, 6 fka Ot

where is the variational derivative respect to fk,. After some algebra, the electron

scattering rate by equilibrium phonons can be expressed as

1 2 ~ ~ S (no + f,,)G- + (b + 1 - f,)G+] (2.24)
Tko,el-ph Nqh

where

G+ = |(k'0 AVlku)1 26(k - q)3(ex - ek'fl - hWk,)
\ 2 mowqA/ (2.25)

G- = |() (k'3 OqAV~ka)|126 (k + q - k') 6 (eka + hwqA - EWk'f)
2mowqa

We will go through this again when we derive the expression of phonon drag in section

3.3.1.

As said before, we first obtain the information (e.g. electronic band, the per-

turbed potential, phonon dispersion) on coarse meshes and then use the EPW code

[97] to interpolate them onto an 80 x 80 x 80 k-mesh and an 80 x 80 x 80 q-mesh.

The tetrahedra integration method [99] that incorporates the energy conservation is

used when we are doing the integration by looping over the wavevectors k at the

initial states and k' at the final states that conserve the momentum. The tetrahe-
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dral method [99] linearly interpolates the information on the discrete mesh to the

continuous reciprocal space, allowing analytic evaluation of the integration involving

delta functions. Compared to many other smearing methods that require increasing

the mesh density and decreasing the broadening parameter simultaneously, it con-

tains only one parameter, the mesh density. We adopt the tetrahedral integration

in our calculations for it features only one tuning parameter and easier check on the

convergence. As shown in figure 2-1, SiGe alloys are semiconductor with non-zero

.0

kBT=Ef

--- kBT = El2

00.5 -- k BT= EY0

---k T = EY10

k 
-- B T = E 200

UL -
0 2 4

(E-Ef)/Ef

Figure 2-2: Fermi-Dirac distributioni, where E denotes the electron's energy, Ef de-
notes the Fermi level. In SiGe alloys, kBT at room temperature is typically around
or smaller than Ef/200.

band gap. Remember the assumption that the deviation of the electron distribution

function from the equilibrium Fermi-Dirac distribution function is small as we are us-

ing the linearized Boltzmann equation. And as shown in figure 2-2, the Fermi-Dirac

distribution function decays exponentially as the energy goes above the Fermi level.

Electrons with energy far above the Fermi level will only have negligible contribution

to the transport properties. So for n-type semiconductors, the major contribution to

the electrical transport properties comes from the electrons near the conduction band

edge (as long as the material is not so heavily doped that the Fermi level has gone

much higher than the conduction band edge). Hence, we further reduce the compu-
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tational effort by setting an energy range of electrons that will be considered in our

calculations. We set the highest energy of the electron that will be taken into account

to 0.2 eV above conduction band edge or 0.2 eV above the Fermi level, whichever

is higher. We add another 0.2 eV while we are searching for possible final states

that satisfy the conservation of energy and momentum rules to ensure a full count of

electron-phonon scattering events. The calculated electron scattering rate by phonons
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Figure 2-3: Calculated electron scattering rate by phonons vs. electron energy with

respect to conduction band minimum, n denotes the n-type carrier concentration. T

= 300K and 150K. (a)(c) of lightly doped n-type SiGe alloys (b)(d) of heavily doped
n-type SiGe alloys.

of lightly doped and heavily doped SiGe alloys at 300K and 150K are shown in figure

2-3. In the very vicinity of the conduction band minimum, only phonon absorption

process is allowed to happen and electron's scattering phase space is pretty restricted

by the energy and momentum selection rules. As electron energy gets higher, more
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phonon emission events can happen and more electron states that meet the energy

conservation and momentum conservation are available for electron-phonon scatter-

ing events. This is proved in the drastic increase near the band edge in the scattering

rate in figure 2-3, as well as visualized in figure 2-4. Figure 2-4 shows the strength of

intervalley and intravalley scattering at the band edge of Sio.1 5GeO.85 , the comparison

between the two subfigures tells that the intervalley scattering is the dominant pro-

cess. Silicon has six equivalent valleys in the conduction band and germanium has

four, plus the F valley that is not far above the conduction band edge for germanium,

we count any scattering event in which the electron' initial and final states are at

any two different valleys among the eleven as an intervalley process and the ones in

which the electron' initial and final states are at the same one valley as an intravalley

process. We can see that the electron-phonon scattering rate is the highest in the

band convergence region (around the composition of Sio.1 3Geo.s 7 ). This is partially

due to that, when the conduction band minima are aligned, there are more available

electron states that meet the energy conservation and momentum conservation con-

ditions of the electron-phonon scattering events, which would especially lead to an

increase in electrons' intervalley scattering. As shown in figure 2-5, the intravalley

scattering rate does not vary much with composition around the band convergence

composition and indeed the increase is in the intervalley scattering rate at the band

convergence point. In figure 2-3 we also notice that at higher temperatures, larger

phonon population leads to higher electron-phonon scattering rates. Changing the

doping concentration would affect the Fermi level and thus the electron population.

Its effect on electron-phonon scattering rate is more significant at lower temperatures

for Fermi-Dirac distribution has the form of f0 = (E-f)kBT'

2.3.2 Alloy Scattering of Electrons

The model of alloy scattering of electrons rests on the VCA theory. As introduced in

section 1.4, Nordheim was the first to consider the problem of calculating the resistiv-
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Figure 2-4: Calculated intervalley and intravalley electron scattering rates by phonons
in SiO 15Geo.8 5 at T = 300K, n-type carrier concentration n = 1 x 1020 Cm- 3 . The
conduction band minimum for silicon is near X valley [0, 0.85(2), 0] with Ik =

0.85(!) and for germanium it is at L valley [Z, Z, Z] with Iki = 0.866(2), where
a denotes the lattice constant. Scattering rates for the electron states with energy
out of the range that we consider are not calculated and taken as zero.

ity of alloys within a quantum mechanics picture, where he dealt with the perfectly

random crystal by introducing the concept of virtual crystal [68]. The actual crystal

was considered to be divided into a perfectly periodic array of potentials, the vir-

tual crystal that is composed of the composition weighted potentials from different

species of atoms in the crystal, and a random part due to the difference between

the actual crystal potential and the virtual crystal potential at a given lattice point.

This random part was used as a perturbed potential, leading to a matrix element for

transitions between electron states. In 1956, Flinn developed the electronic theory of

local order and obtain an expression for the energy that includes a local order depen-

dent term by applying the perturbed free-electron approximation to a binary metallic

solid solution [100]. Later Hall [101] extended Nordheim's theory to account for ionic

potentials that extend outside the unit cell and order of any range, and pointed out

that Flinn's electronic theory of order can be extended similarly. Based on Nord-

heim's theory for purely random alloys and Hall's extension for nonrandom alloys,

Asch and Hall [102] further developed a quantum theory of the residual electrical

resistivity of binary disordered alloys for atomic potentials extending outside the unit

cell that is valid for any degree of order, including the change in lattice parameter
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Figure 2-5: Calculated intervalley and intravalley electron scattering rates by phonons
vs. electron energy near the band convergence region at T = 300K, n-type carrier
concentration n = 1 x 1020 cm-3.

with alloying and the change in effective number of conduction electrons per atom

with composition. Harrison and Hauser [103] calculated the alloy scattering rate for

ternary Il-V compounds where one of the elements is common to both of the con-

stituent compounds using a pseudobinary alloy model and a "square-well" potential.

These early theoretical works suffice as the formal framework for our first-principles

calculations.

Here in our work, we adapt an approach from the VCA method in F. Murphy-

Armando and S. Fahy's work [56, 104], where they used first-principles electronic

structure methods to find the rates of intravalley and intervalley n-type carrier scat-

tering due to alloy disorder in SiGe alloys. Our first-principles approach starts with

the construction of the supercells (each supercell is a 2 x 2 x 2 conventional cubic cell

containing 64 atoms) modeling a unperturbed virtual crystal (VC) system, for which

we find the ground-state density and the Hamiltonian of the system via the super-

cell eigenvalues and eigenstates. Later we need to find out the perturbed potential,

so we also construct supercells of the same size as above modeling a perturbed VC

system by substituting one VC atom with a Si atom, and a perturbed VC system by

substituting one VC atom with a Ge atom. Limited by computing power, we cannot

deal with an infinitely large alloy system as in the formal model of alloy scattering,
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however, we are able to capture the alloy scattering behavior by averaging within the

2 x 2 x 2 conventional cubic supercell containing 64 atoms. We interpret the number

of ions in the system N as the number of atoms in the supercell and the volume of

the system Q as the supercell volume. As described by Nordtheim, the potential

can be decomposed into two parts: the VCA potential, being an average potential

weighted according to the proportions of each species, which can be obtained from

the case of the unperturbed VC system, and a random part due to the difference

in potential arising from the substitution of one atomic species for the other that

we get from subtracting the potential of one of the perturbed cases from the other

perturbed case. It is this random part that provides a perturbation giving rise to

scattering. Hereafter, we refer to AV(r) as the alloy scattering potential and we use

this perturbed potential to calculate the transition rate between an initial state Ok

and final state q3, in Fermi's golden rule within the first Born approximation where

represents the undisturbed Bloch wavefunction of the periodic host lattice.

(Van) = (Vb) - (Vi) = (@k'bIAVGe ka) - (Ok'blbIAV' ka) = (Ok'bAV(r) I ka)

where AVA (with A = Si or Ge) is the perturbed potential caused by the substitution

of one atom in the periodic VC host 2 x 2 x 2 supercell by a type-A atom. a and b

mark different valleys and both intravalley (a = b) and intervalley (a 7 b) terms are

included in the total scattering rate.

With the assumptions that (1) the alloy is completely random, there is no corre-

lation between the atomic species on different sites, the scattering matrix element is

independent of the wavevectors of the initial and the final states, k and k'; (2) Si and

Ge are relatively weak scatterers that each site scatters carriers independently; (3)

the average of the scattering matrix is zero for the average crystal does not scatter,

the scattering rate of electron of wavevector k in valley a due to alloy disorder in the

random binary substitutional alloy is given by [104]
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1 x( - xQ)N, d k'|(V3 |2j
T($ka) alloy-electron h b 7 3 dkI(V b)I ( ka -k'b)

(2.26)
2 ix(1- x)N ZI(Vab) 126(Eka - Ek'b)

where x is the Ge content, b labels the valley into which scattering occurs. As intro-

duced in section 2.1, a k-mesh of Nk = Nkl x Nk2 x Nk3 to discretize the Brillouin zone

is used for summation in the reciprocal space. The undisturbed Bloch wavefunction

of the periodic host lattice is obtained from the DFT calculation using VC unit cell.

By changing the phase factor, this undisturbed Bloch wavefunction is mapped to the

VC supercell. And after normalization within the supercell, the wavefunction is used

in the integral on the right hand of equation (2.26). While in theory this integral is

over the full real space, due to the fact that the perturbed potential is very localized,

we assume the supercell is large enough that outside the supercell the perturbed po-

tential is zero, thus we equate the integral within the supercell with the integral over

the full space.

Again we first obtain the information (e.g. alloy scattering matrix element) on

coarse meshes and interpolate them onto an 80 x 80 x 80 k-mesh and an 80 x 80 x 80 q-

mesh (similar to ionized impurity scattering, alloy electron scattering does not involve

phonon and is an elastic process, unlike in electron-phonon scattering calculations that

q can represent phonon's wavevector, here the q-mcsh is only for the loop over final

state k' = k + q) with Wannier interpolation. The tetrahedra integration method

[99] that incorporates the energy conservation is used when we are doing the integra-

tion by looping over the initial states k and the the change in electron wavevector

q (equivalent of looping over the final states k' for k' = k + q) that conserve the

energy. The alloy-electron scattering results are shown in figure 2-6. The plot on the

logarithmic scale clearly shows the trend of alloy-electron scattering rate to electron

energy that at the conduction minimum, constrained by the energy conservation rule,

there are very few states that electron can be scattered into thus the scattering rate is
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Figure 2-6: Alloy-electron scattering rate of SiGe alloys on logarithmic scale and

linear scale.

very low. As electron energy gets higher, there are more initial and final states that

meet the energy conservation and thus the scattering rate increases and gradually

saturates (note that the drop at the tail of the curves is due to our cut-off in electron

energy, we stop searching for final states when electron energy is out of the range

that we consider), which is also visualized in figure 2-7. Figure 2-7 takes Sio.2 Geo.S as

an example and gives the comparison between the intervalley and intravalley scatter-

ing rates and shows the intervalley scattering is more significant than the intravalley

scattering. We also notice in figure 2-6, more valleys would be involved at higher

electron energy and electron at different valleys would scatter differently because of

the different band shapes of those valleys, thus the scattering curves would split into

several branches. From the electron energy we can determine that the upper branches

with higher scattering rates correspond to the scattering happening at L valley where

the conduction band minimum locates for germanium and the lower branches corre-

spond to the scattering happening at the valley near X point where the conduction

minimum for silicon locates. We can see from figure 2-6, starting from pure silicon

side, as the content of germanium increases, the alloy-electron scattering increases

and then decreases, which can be intuitively interpreted as that the "randomness" of

the alloy increases and then decreases. We notice from the plot on the linear scale

that the alloy-electron scattering rate is the highest in the band convergence region
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Figure 2-7: Calculated intervalley and intravalley alloy-electron scattering rates in

SiO.GcO.S. The conduction band minimum for silicon is near X valley [0, 0.85(y), 0]
with Iki = 0.85(2-') and for germanium it is at L valley [a, i, [] with ki = a.866(3).

Scattering rates for the electron states with energy out of the range that we consider
are not calculated and taken as zero.

(around the composition of SiO. 3 Geo.87 ) for there are more available electron states

that meet the energy conservation condition when the conduction band minima are

aligned. We plot the intervalley and intravalley scattering rates at the conduction

band edge around near the band convergence point in figure 2-8. We can see both

intervalley and intravallev scattering happening at the valley near X point increase

with the increasing "randomness" of the alloy. Though the scattering happening at

L valley is stronger than the one happening at the valley near X point, the electrons

population at L valley gets smaller as the "randomness" of the alloy becomes greater.

In short, the "randomness" of the alloy, the shape of conduction band minimum and

the band population would all affect alloy-electron scattering.

2.3.3 Ionized Impurity Scattering

Charge carriers are scattered when they encounter the electric field of an ionized

impurity, thus ionized impurity scattering should be considered when we study the

electron transport properties in heavily doped samples. The classical theories of ion-

ized impurity scattering based on the Born approximation (the Born approximation
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Figure 2-8: Calculated intervalley and intravalley alloy-electron scattering rates vs.
electron energy near the band convergence point.

will be good if the scattering potential falls off rapidly at large distances, and if the

carrier energy or the temperature is high, which should be satisfied in our case) in-

cludes the Conwell-Weisskopf model (unscreened Coulomb scattering) [105] and the

Brooks-Herring model (screened Coulomb scattering) [106, 107]. Their subsequent re-

finements and other methods beyond Born approximation like the phase-shift method

are nicely summarized in Chattopadhyay et al. 's review [108]. For the sake of sim-

plicity, in this work we adopt the Brooks-Herring model to estimate the effect of

ionized impurity scattering.

We start by assuming that the ionized impurity scattering potential is Coulombic

(in this model, the atomic core potential of the ionized impurity atom is neglected thus

the core scattering of ionized impurity is not included), however, the ionized impurity

attracts mobile carriers that screens the potential. For an n-type semiconductor, the

screened Coulomb potential is [107]

U.(r) = Zq2 e-'LD
4 7riEO

(2.27)

where q is the elementary charge and Z is the charge of the impurity, er is the dielectric

constant of the host material, co is the permittivity of vacuum, LD is the Debye length
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given by

L= 6 r "O2r
(2.28)

where n is the carrier density. With the scattering potential in equation (2.27), the

matrix element can be obtained [107, 108]

eip'r/h (e-r/LD )ip-r/hd 3r (2.29)

or in a spherical coordinate system according to the geometry of the scattering event

shown in figure 2-9.

= ( ( ,2 ) f d e-r/LDi(p-p')r/h s
(2.30)

The scattering by ionized impurities is an elastic process, that is, in figure 2-9, hf3 =

- p, and ho = 2psin(2). The triple integrals give the expression of the matrix

element as a function of 3

Z

It

r

P
tip 0

P

Figure 2-9: Definition of h,3, the momentum change resulting from scattering.

1 (2 )J2) f 27~ r 1+1 rer/LD e-3r cos d(cos 9)ddr
41rerco 0 0 _1

_ q2
QE,.O /2 + 1/LD

(2.31)

Again with Fermi's golden rule and similar algebra in the last section, and multiply
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by the number of impurities (N1Q) in the normalization volume, the scattering rate

due to scattering from ionized impurities in the normalization volume can obtained

1 27r NZ 2q4

Tka, impurity-electron h E21E2QNk

J(e(k') - E(k))

(p2 1/L2)
2

We calculate ionized impurity scattering rate on an 80 x 80 x 80 k-mesh (for the initial

states) by summing over an 80 x 80 x 80 q-mesh (represents 0). The tetrahedra

integration method [99] is used to deal with the energy conservation. The results

are shown in figure 2-10. The plots on the logarithmic show the trend that at the
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Figure 2-10: Calculated ionized impurity scattering rate of lightly doped and heavily
doped SiGe alloys both on logarithmic scale and linear scale. n denotes the n-type

carrier concentration.
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conduction minimum, constrained by the energy conservation rule, there are very

few states that electron can be scattered into thus the scattering rate is very low.

As electron energy gets higher, there are more initial and final states that meet the

energy conservation. Also, equation (2.32) shows scattering events with smaller 3

are more likely to happen (actually 3 is assumed to be small in the derivation of the

Brooks-Herring model [108] hence we only take intravalley scattering into account).

This together with the energy conservation rule lead to the large scattering rates

around 0.02-0.05 eV above the conduction band minimum, and the slight decrease in

scattering rate when electron energy gets higher than 0.05 eV above the conduction

band minimum. At the higher doping concentration, the 1/L2 becomes the dominant

term in the denominator in equation (2.32), change in 32 would affect the scattering

rate less and the decreasing trend alters. We notice from the plots on the linear

scale that the highest impurity scattering rate is neither at the pure silicon nor in the

band convergence region. This is because that, first the several deciding parameters

of the VC alloys in equation (2.32) (dielectric constant, cell volume) are more or

less weighted averaged from those parameters of pure Si and of pure Ge's, therefore

virtual crystal alloys generally show some averaging feature, that the ionized impurity

scattering rates are higher at the Si-rich side than at the Ge-rich side. Second, as

discussed in the previous sections, the scattering phase space of electrons near the

band edge becomes larger in the band convergence region, and larger scattering phase

space will increase the scattering rate. A combined effect of these two influencing

factors account for that the highest ionized impurity scattering rate is in the Si-rich

alloys. It is confirmed by the comparison between the scattering rates at two carriers

concentration that ionized impurity scattering become more significant as the doping

concentration gets higher.

The electron mobilities, calculated using the scattering rate from

1 _1 1 1I -I + I +I+
Tka Tka, electron-phonon Tka, alloy-electron Tka, impurity-electron

based on linearized Boltzmann transport equation in the relaxation time approxima-
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tion, are compared with experimental data on bulk, unstrained germanium and SiGe

alloy in section 3.1.1, followed with discussion on possible causes of error.

2.4 Phonon Calculations

The phonon dispersion of SiGe alloys has been calculated based on the DFPT method

as described in section 2.1, and the results are shown in figure 2-11. We can see the

shapes of SiGe alloys' phonon dispersion are very similar since Si and Ge both have

the same face-centered diamond-cubic crystal structure, but with different phonon

frequencies because of the different atomic weights. And as the VCA method we

adopted is basically weighted averaging pure Si's and pure Ge's properties, starting

from pure Si, as Ge content increases, the phonon frequency changes from Si's to

Ge's.
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Figure 2-11: Calculated phonon dispersion of SiGe alloys around the center

Brillouin zone.
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The scattering mechanisms on phonon considered in our calculations are intrin-
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sic phonon-phonon scattering, electron-phonon interaction (EPI), alloy scattering on

phonon (mass disorder scattering) and boundary scattering. We will discuss in detail

how to obtain the relaxation times decided by these different scattering mechanisms

under the relaxation time approximation in the following sections. After obtaining

those relaxation times, the effective relaxation time of the phonon, TqA can be calcu-

lated using Matthiessen's rule [92] as below

1 1 1 1 1

TA TqA. phonon-phonon TqA, electron-phonon TqA, alloy-phonon TqA, boundary

which will be used for thermal transport calculations in chapter 3.

2.4.1 Phonon-phonon Interaction

If we make the first-order approximation to express the total energy of the system as

a quadratic function of the atom displacements, we can obtain the harmonic phonon

properties, including dispersion, heat capacity, group velocity by using DFPT method

as introduced in section 2.1. This harmonic approximation treats phonons as inde-

pendent oscillators, which means they have infinite lifetimes. In an "ideal" insulating

crystal, the possibility for harmonic phonons to scatter off electrons can be removed

and they would propagate without hinderance as free particles. However, infinite ther-

mal conductivity is unrealistic in this kind of materials that we are left to attribute

the finite thermal conductivity to phonons' scattering by crystal imperfections, i.e.,

defects and ultimately the surfaces of the crystal. Scattering of phonons from crystal

imperfections does produce a finite thermal conductivity but with a different tem-

perature dependence from experiments'. To address the issue above, the anharmonic

effect is required and the phonon-phonon scattering needs to be included to model

heat transport. The anharmonicity is a perturbation to the harmonic system that

allows transitions of phonons between different states. In fact, when the temperature

is not very low, the dominant scattering mechanism of phonons is the phonon-phonon

interaction and it is the key component determining phonons' relaxation times.
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As given in equation (2.8), in perturbation theory, the crystal potential can be

expanded as a power of displacement and the Hamiltonian may be written as

H(A) = H( + AH(') + A 2H + ... (2.33)

where H(O) is the harmonic Hamiltonian and HM, H(, ... are the perturbation

terms involving three, four or more interacting phonons. The simplest phonon-phonon

interaction and usually the dominant one in most of materials is the three-phonon

interaction where a phonon decays into two other phonons or vice-versa (as shown in

figure 2-12). The Hamiltonian for three-phonon process reads [25, 109]

1h 3 1 VAA'A" ' ",QH(1 = E (-) i-Jq+ q' + q", Q
3! 2 N WAWAWAI" (2.34)

x (at -aqA)(a , - a_-,/)(a,, - a-q/A')

where at and a are the phonon creation and annihilation operators, q, q', q", A,

A', A", WA, WAI,wAl are the wavevectors, phonon branches and frequencies of the 3

phonons involved. The scattering matrix element V is

VA =( /( , ( t/ (k) (2.35)VAjkA/MMM
iEunit cell j,k 3-y V lI Mk

where e is the normalized eigenfunctions of the three phonons involved, <b,,3 is theijk

third-order anharmonic interatomic force constants and Mi is the mass of the ith

atom. i, j, k run over atomic indices while a, 0 and -y denote Cartesian coordinates.

Again Nq = Nqi x Nq2 x Nq3 is the number of q-points on the discrete q-mesh used

for summation in the reciprocal. Conservation of quasimomentum requires that q" -

q q' + Q for some reciprocal lattice vector Q such that q" is in the same image

of the Brillouin zone as q and q'. Take case 1 in figure 2-12 as an example, Fermi's

golden rule (equation (1.6)) gives the transition rate of

wrh IVaiwA| 2
W1 = n4NqI V 1 2iw,(nW,,+1)(nws,+1)6(q + q' + q", Q)S(wA-wA'-wAI) (2.36)4Nq U)WAWA/In
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where n represents the phonon's distribution. The factor 1/3! is cancelled out due to

case 1: n(n'+1)(n"+1)
q"

creation of phonon q

sq :

case 2: nn'(n"+1)

case 3: n'n"(n+1)

annihilation of phonon q

case 4: n"(n+1)(n'+1)

Figure 2-12: Possible three-phonon interactions involving phonons with wavevectors

of q, q', q". n denotes the distribution of phonon with wavevector of q at branch A,
so as n' for phonon of q'A', n" for phonon of q"A".

the 3! equivalent terms from the summation in equation (2.34). In the single-mode

relaxation time approximation (only phonons in mode qA has a displaced distribution,

and all other phonons have their equilibrium distribution), after some algebra, the

life time determined by phonon-phonon scattering of the phonon with wavevector q,

frequency cv and at branch A, TqA,phonon-phonon can be given as [25, 109]

1 17 A - -
, _hononIphn + n q I\, ,,

TqA, phonon-phonon Nq \,\I ,, , , 2
(2.37)

where '+" indicates the processes in which a phonon is absorbed (two phonons are

combined into one) and "-" indicates the processes in which a phonon is emitted (one

phonon is split into two). n' denotes the Bose-Einstein distribution. The factor 1/2
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in the second term is introduced to avoid double counting of equivalent terms.

h7r no no
I =- hi ' ^"I VAIA 26(wx + WA' - WA") (2.38)4 WAWA'WAI,

hjrno +no +I
I'A = - r ' + M" IVA 16(WA - WA' - WA") (2.39)

W,\4 WAWA"

The calculation above is carried out in the ShengBTE package [110] using an

80 x 80 x 80 q-mesh and the phonon Boltzmann transport equation is solved under

the relaxation time approximation. The calculated phonon-phonon scattering rate

is shown in figure 2-13 (since the thermal conductivity that will be discussed in de-

tail in section 3.2 is mostly contributed by phonons with both relatively long life

time and large group velocity, which are typical with low phonon frequency, we here

only show the scattering rate of those low-frequency phonons). The general trend
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Figure 2-13: Calculated phonon-phonon scattering rate of SiGe alloys at 300K and
150K.

is that phonon-phonon scattering rate is higher at the germanium side than at the

silicon side, partially due to the germanium side has lower phonon frequencies (as

shown in the phonon dispersion in figure 2-11) thus larger phonon population at a

given temperature. However, the anharmonicity, another deciding parameter on the

strength of phonon-phonon interaction that is related to the third-order anharmonic

interatomic force constants, characterized by the mode-weighted Gruneisen parame-
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ter [111], does not change monotonically with composition under our virtual crystal

approximation as shown in figure 2-14. The comparison between the scattering rates

at the two temperatures shows that phonon-phonon scattering is more prominent at

higher temperatures because of larger phonon population.

0.65

0.5

a 0.5

0.5

0.35
0 o0.3

Figure 2-14:
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Calculated mode-weighted Gruneisen parameter vs. alloy composition.

2.4.2 Phonon Scattering by Electrons

To reduce the computation complexity of the electron-phonon calculations, we make

the first-order approximation and assume electrons are at their equilibrium, that is,

electrons obey Fermi-Dirac distribution and we do not take the effect of scattering

events on electrons' state into account. Later we will use these results for nonequi-

librium case when we are calculating the transport properties, assuming the devia-

tion of the electrons' state from equilibrium is small. Same as listing the possible

Table 2.3: Possible electron-phonon scattering events for a phonon

phonon initial state final state momentum relation energy relation
emitted ka k' k - k' - q = 0 eka - ek'f l-- hWqA = 0

absorbed ka k' k + q - k'= 0 6kc + hwqA - ek' = 0
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electron-phonon scattering events for an electron in Table 2.2, we list the possible

electron-phonon scattering events for a phonon in Table 2.3, which is actually a sim-

plified version of the electron case since the phonon will either be emitted or absorbed

(shown in figure 2-15) and there is no need to differentiate between electron's initial

and final states. From equation (1.6) Fermi's golden rule, the transition rate of phonon

qq k' k

k ky

Phonon absorption Phonon emission

Figure 2-15: Possible clectron-phonon interactions involving phonons with wavevector
of q and electrons of wavevectors k and k'.

of wavevector q at branch A due to electron-phonon interaction can be expressed as

( ) = 
T E+ fkr(1 - fk') (nA + 1)Nemit

e-ph !V pk)k

- fka(I - fk1)n\INabsorb

where we represent the emission and absorption rate elements as Nmit and Nabss,.

Nemit = (k'IOj|,qVjka)126(k - k- q)6(Ek. - hWA)2mwoqA 
(2.41)

h12
Nabsarb = (2m wq {) (k'Oqa|Vjkai)|2 6(k + q - k')6(Eka + hWqA - Ekip)

Noticing the summations of a and / are over the same possible electronic bands so

they are equivalent, same as k and k', we can switch a with 3 and k with k' at the

same time in Na,,b to combine Nemit and Nbsb,, terms. Again, go through what we

did for the electron case in equation (2.23), we will get to the phonon scattering rate
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by electrons [25]

1 EZ ( ) J(k'/qxVJkC)|2 ( fka -- fw/3)
'qA,el-ph Nk h kk' 2moA (2.42)

6k- k' - q)(Fa- Eic'. - hWqA\)

in which the notations are the same with the ones in equation (2.24).

Similar to the calculation of electron scattering rate-by phonons in section 2.3.1,

we use Wannier method to interpolate the information obtained from DFT and DFPT

calculations on the coarse meshes onto an 80 x 80 x 80 k-mesh and an 80 x 80 x 80

q-mesh, use tetrahedra integration method [99] for the integration that loops over

the initial and final states while conserving energy. According to the study of Zhou

et al. on silicon [32], the major phonons contributing to phonon drag are those near

IP point. We have also tested and justified this in our phonon drag calculations: the

calculated phonon drag part of Seebeck of the calculations that only include phonons

with wavevector length q| _< 0.2(2) have negligible difference from the results of

the calculations that include the full spectrum of phonons. So we further reduce the

computational effort by setting a wavevector length range of phonons that will be

taken in to account to Jql <; 0.2(2), and only calculate those phonons' scattering

rate on the dense mesh.

The calculated phonon scattering rate by electrons of SiGe alloys at 300K and

150K are shown in figure 2-16. Because electrons' energy scale is much larger than

the energy scale of phonons, that the energy difference between electrons of two very

different wavevectors will be way too large for a phonon to provide or carry, phonon

with larger wavevectors are less likely to be scattered by electrons. In other words,

since the phonon frequency is proportional to the phonon wavevector near the 1P point,

as phonon frequency increases, the scattering phase space of phonons will be more

restricted by the energy and momentum selection rules and thus get smaller, as we

can see the scattering rate decreases with increasing phonon frequency. The trend is

that phonon scattering by electrons is higher at the silicon side than at the germanium
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Figure 2-16: Calculated phonon scattering rate by electrons vs. phonon frequency, n

denotes the n-type carrier concentration. T = 300K and 150K. (a)(c) of lightly doped

n-type SiGe alloys (b)(d) of heavily doped n-type SiGe alloys.

side, which can be explained by the size of the scattering phase space determined by

their different phonon dispersion and electronic band structure, as well as the electron-

phonon interaction strength that is related to the perturbed potential OV,\. Generally

speaking, the electron-phonon coupling that relates to the perturbed potential aVo

is stronger at the Si side than at the Ge side. Figure 2-16 also tells that the phonon

scattering rate by electrons is more significant at higher carrier concentrations, for

electron-phonon "collisions" in figure 2-15 are more likely to happen when carrier

concentration gets higher. Another feature is that the scattering rate decreases faster

at lower temperatures with increasing phonon frequency for electron's Fermi-Dirac

distribution decays faster with increasing electron energy at lower temperatures.
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2.4.3 Alloy Scattering of Phonons

The lattice thermal conductivity of a semiconducting or insulating single crystal al-

loy is usually lower than the average of the thermal conductivities of the constituent

materials. This can be attributed to phonon's scattering by a combined effect of

the mass difference, the difference in the elastic constants of the nearest linkages,

and of the strain field in alloys [112]. However, taking into account the strain and

interatomic force constants difference effects in first-principles calculation would re-

quire the self-consistent atomic relaxation of extremely large supercells. Given the

difficulties and the minor resulting effect on the total thermal conductivity [113, 59],

the force constants differences and strain effect will be neglected here, and the alloy

scattering on phonon will be treated as mass-difference scattering.

We adapt an approach from the virtual crystal approximation method in Garg

et al.'s work [55] for alloy-phonon scattering rate calculation, where they calculated

the phonon modes of the virtual crystal of any given composition, derived from those

the frequencies, group velocities, and populations that enter into the calculation of

thermal conductivity. As introduced in section 1.4, we construct the virtual crys-

tals using the atomic masses calculated from equation (1.3) and the pseudopoten-

tials calculated from equation (1.4). The lattice parameters are relaxed around their

linearly-interpolated values. For each individual composition, the phonon scattering

from anharmonicity, electron and boundary can be treated as described in other sec-

tions in this chapter. The disordered lattice in the real alloy is replaced by the ordered

virtual crystal and the disorder is treated as a perturbation. An atom of the virtual

crystal is replaced by an atom of the alloy (Si or Ge) and it acts as a virtual impu-

rity and scatters phonons. In general, the virtual impurity atom would differ from

the atoms of the virtual crystal in its mass, size as well as the coupling forces to its

neighbors. And as a result of anharmonicity, the coupling forces are modified by the

misfit strain field in the neighborhood of the impurity [33]. However, as mentioned

above, we here only consider mass-difference scattering.
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Klemens [112] has studied the scattering of phonons by static imperfections. By

using perturbation theory he has derived expressions for the single-mode phonon re-

laxation time due to scattering by a substitutional atom of different mass. Tamura's

work [701 on isotope scattering also comes down to phonon scattering caused by mass

disorder. Their results both show that in highly disordered alloys, high-frequency

phonons are strongly scattered (scattering rate oc w') and the heat is mostly trans-

ported by low-frequency phonons that have long mean free path.

Let fi be the atomic fraction of the atom i, mvca = Z f mi (this is essentially the

same with equation (1.3)) is the average mass in the solid. The perturbation due to

mass difference Hmd is [109]

Hind = ~ mvca -- i (2.43)
n

where u,-, is the lattice displacement vector

un(r) = -i 2NmO (WqA)~2(aqA - a qA)eqA exp [i(q - rn - Wt)] (2.44)
qA

NO is the number of unit cell in the crystal and mo is the mass of the unit cell.

Again with Fermi's golden rule and single-mode relaxation time approximation, the

mass-difference scattering rate can be obtained [112, 70]

1 :6(A-wA') >: g(i)|e*(i)-eA(i)|2  (2.45)
TqA 2unit cell

where eA(i) is the phonon eigenfuntion of mode A at the ith atom, g is the Pearson

deviation coefficient calculated by

g(f) (1-
iESi,Ge mvca

Equation (2.45) is implemented in ShengBTE package [1101 to account for scatter-

ing from isotopic disorder, and we adapt it for alloy-phonon scattering calculation

75



since they are essentially the same mass-difference scattering. Klemens and Tamura

[112, 70] obtained 1 oc w' by further simplifying equation (2.45) using isotropic

continuum approximation (which is based on the reasoning that at low temperatures

most of the phonons excited in a solid are confined to low-q or long-wavelength acous-

tic branches. Within this approximation, details of crystal structure are ignored, and

the isotropic relation w.A = cq with c as the phase velocity, is used for all the normal

modes lying within a sphere of radius q). The integration over the Brillouin zone in

equation (2.45) is carried out in the ShengBTE package using an 80 x 80 x 80 q-mesh,

under the relaxation time approximation to the phonon Boltzmann transport equa-

tion. The calculated alloy-phonon scattering rate is shown in figure 2-17. We can

see that the alloy-phonon scattering rate is the largest when the silicon content and

germanium content are close (approaching the composition of Sio.Geo.5 ) which can be

intuitively interpreted as that the "randomness" is the greatest at this point. We fit

the mass-difference scattering rates with respect to the phonon frequency, and find a

good match with Klemens and Tamura's 1 oc w' scaling rule for the low-frequency

phonons. SiO.Geo.4 is taken as an example to show the fitting curves in figure 2-17.
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Figure 2-17: Phonon scattering rate due to mass disorder of SiGe alloys.
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2.4.4 Boundary Scattering

Sintered (hot pressed) alloys prepared from powder of small grain sizes show marked

relative reduction in thermal conductivity over their single crystal (zone-levelled)

counterparts. This is because that phonons with mean free path comparable to grain

size are likely to suffer strong boundary scattering, over and above other scatter-

ing mechanisms listed above, and thus generate extra thermal resistance. Boundary

scattering is important for low-dimensional nanostructures, especially at low temper-

atures when the phonon mean free path is long. We estimate the boundary scattering

rate in Casimir limit [114]. The corresponding relaxation time is given by

1 VqA

TqA, boundary D

where vqA is the phonon's group velocity and D is the characteristic length of the

system. This calculation is also carried out using the ShengBTE package.

In our calculation, we use the sample size (the shortest dimension) or the grain

size given in the experimental work from [115, 5, 6], as listed in Table 2.4 below.

Table 2.4: Characteristic lengths used in boundary scattering calculations

sample characteristic length
Si 0.086 cm
Ge 0.13 cm.

SiGe alloys 0.0762 cm

In this case, we have found the boundary scattering's contribution to the total

phonon scattering rate is minor, compared to the other scattering mechanisms intro-

duced above. This is the case both at 150K and 300K.
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Chapter 3

Calculations of Thermoelectric

Properties in SiGe Alloys

In this chapter, we will use the electron's and phonon's information (e.g. velocity,

energy, relaxation time) obtained from our first-principle calculations to calculate

thermoelectric properties of SiGe alloys based on the Boltzmann transport equations

for electrons and phonons.

As indicated in the figure of merit zT expression that is given in chapter 1 (equa-

tion (1.1)), the thermoelectric properties that we are interested in are electrical con-

ductivity o-, thermal conductivity K, Seebeck coefficient S. We are going to discuss

them separately in the following sections.
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3.1 Electrical Properties

3.1.1 Electrical Conductivity and Mobility

Electrical conductivity is the measure of a material's ability to allow the transport

of an electric current and it is usually denoted with the Greek letter a-. The field

definition gives that J = oE where J, E are the current density and the electric

field. Generally, a is a rank-2 tensor. If the material is isotropic, the properties in all

directions should be the same. For simplicity, we will derive the properties in x-axis

direction and take electrons as the charge carriers (since we are focusing on n-type

SiGe alloys) in the following paragraphs.

The energies are defined relative to the conduction band edge e, and e, is relative

to an absolute reference level (and the result should not depend on the reference)[74J,

recall the linearized Boltzmann transport equation in equation 1.10, for electrons in

an electric field only, we have

Ofoa Opf 0  (31fka +p Wkfa fka -fk0a
x.ka Ox (evxka- - (31

Ox Ox De u

where - is the electron energy, Vx,ka is the group velocity along x-axis of the electron

with wavevector k at band a, -e is the charge of electron, p is the electrostatic

potential, so the force applied to the electron is F = -eE = -e(-2). The chain

rule gives = . Together with p = my = hk and e = jmv 2 , the ;{ term

becomes evg 2 . fkc, - fk, is the nonequilibrium electrons that contribute to electric

flux (equilibrium electrons do not contribute to electric flux) and will be denoted as

Afk below. Equation (3.1) gives

Afka = -TkcVxka((a + e- e O (3-2)
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Then we can write the electric flux in x-axis direction as

S(-e)vx,kaAfka
Je,x ~ NkQ

1-, V Of2) 2 1 a~fka) (3.3)
(e vx,krka 0; + N (2 x ka ka .X &3.a,k a~k

_O(an) On
= + enpE ea-x-+ enpE

where Q is the volume of the unit cell, ,N is the number of the k-points on the

discrete k-mesh that we use to sum over the reciprocal space in the calculation, n is

the carrier concentration, p is the mobility and a is the diffusivity. Equation (3.3) tells

that the electric flux has contribution both from the drift of electrons driven by the

electrostatic field and the diffusion of electrons driven by concentration gradient [74]

and the approximation is only valid when the diffusivity is independent of location

[116]. From equation (3.3), using !U= kI f0 (1 - f0 ), the mobility can be written

specifically as

e 2V 2 karka 9fk e 2 ZEVx2ka Tka f ka(f ka-
1 a.k 1 a.k (4

A iVkQ ne NkQkBT ne

The electrical conductivity can be obtained as the electrical conductivity o is

related to the mobility p through

o- = enp (3.5)

As discussed in section 2.3, we include the electron-phonon interaction, alloy-

electron scattering and ionized impurity scattering while we were calculating the

electron relaxation time. Our calculated mobilities at 300K, at four different carrier

concentrations are shown in figure 3-1. It is clear that both alloy-electron interaction

and ionized impurity scattering have a significant impact on SiGe alloys' mobilities.

We notice that, in the case that the carrier concentration is low or the ionized

impurity scattering is not taken into account, the mobilities are the lowest around
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Figure 3-1: Mobilities of SiGe alloys at 300K. Electron-phonon scattering, alloy-
electron scattering and ionized impurity scattering are considered.

the composition of Sio.13Geo.87 . We attribute it to the band convergence happening

at this point that has been discussed in section 2.3.1 and section 2.3.3. Both electron

scattering rate by phonons and alloy-electron scattering rate are the highest near the

band convergence point as shown in figure 2-3 and figure 2-6 because more electron

states that meet the energy conservation and momentum conservation conditions of

the electron-phonon or alloy-electron scattering events are available when the two

conduction minima are aligned (shown in the lower left corner of figure 2-1). How-

ever, when the carrier concentration is high, the long range electrostatic scattering

caused by ionized impurity is especially strong and as discussed in section 2.3.3, it

has a different trend with the alloy composition (it is stronger at the Si-rich side)

from the trends of the other two scattering mechanisms. As the carrier concentration

gets higher, the ionized impurity scattering becomes more significant. It lowers the
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mobility in Si-rich alloys more than in Ge-rich alloys, thus flattens the mobility curve.

The calculated mobilities (considering electron-phonon scattering, alloy-electron scat-

tering and impurity scattering) of SiGe alloys at different carrier concentrations at

130K are shown in figure 3-2. It shared the same trends as what we have discussed

before. At lower temperatures, the electron-phonon interaction gets weaker thus the

mobility gets higher. The kink in the top curve in figure 3-2 at SiO. 8Geo.2 is mostly

due to the larger change in alloy-electron scattering rate compared to the change in

electron-phonon scattering rate, which can be seen from in figure 2-6 and figure 2-3.

And as the carrier concentration increases, this kink is smoothed out by the increasing

ionized impurity scattering rate.

15000 0 150K, n=1x101 5 cm-3

0 150K, n=1017 cm-3
0 15K, =U119 C-3150K, n=lxlO cm-

E10000 0 150K, n=1x1020 cm-3

50000

0 20 40 60 80 100
At. Si%

Figure 3-2: Calculated mobilities of SiGe alloys at four different carrier concentrations
at 150K. Electron-phonon scattering, alloy-electron scattering and ionized impurity
scattering are considered.

The calculated mobilities of pure Ge and SiO.2 GeO.8 at different doping concentra-

tions at 300K are compared to the measured results from Fistul et al.'s work [2] and

Dismukes et al.'s work [3] in figure 3-3. Again we can see the impurity scattering

plays an important role when the carrier concentration is high. After including ion-

ized impurity scattering, the calculated mobility is more in line with the experimental
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results.
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Figure 3-3: Mobilities of Ge and Sio.2GeO.8 vs. doping concentration at 300K. The

experimental data for germanium is from [2], the experimental data for SiO. 2iGeo.8 is

from [3].

The existing error between our calculated mobilities and experimental data might

be due to several things: First, the band structure generated by DFT is not per-

fectly accurate, especially for the Ge-rich alloys. Secondly, there are other scatters

in the materials that we do not take into consideration, e.g. dislocations, stacking

faults and other defects. Thirdly, electron-electron scattering tends to equalize the

energy among the electrons and thus modifies the mobility [117]. Electron-electron

scattering is important for an isotropic material at low concentrations where the elec-

tron gas is nondegeneraten[108]. Approximate calculations made by Appel [118] and

Bates et al. [119] show electron-electron interaction can further reduce the mobility

calculated using the Brooks-Herring model by about 40% at all temperatures. At

high concentrations where the electron gas is degenerate, the influence of electron-

electron scattering is small because conservation of momentum and energy near the

Fermi surface implies conservation of total electron velocity [108]. However, the extra

carriers can alter the band structure and there might be more vacancies or vacancy

complexes and structural disorder in the material at high concentrations. Other

than these three, we also have made many approximations and assumptions while we

are dealing with the electron-phonon scattering (e.g. phonons are assumed to be at

equilibrium), alloy-electron scattering (e.g. the virtual crystal approximation, only
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single scattering is considered and the after-scattering state is described as the undis-

turbed Bloch state of the periodic host lattice within the first Born approximation)

and ionized impurity scattering (e.g. the Brooks-Herring model assigns electrons to

plane-wave states, and the core scattering of ionized impurity is not considered), thus

our calculations cannot be entirely accurate. Also, there might be certain error in the

experimental data itself.

3.1.2 Diffusive Seebeck Coefficient

As introduced in section 1.1, there are two parts that contribute to the Seebeck coef-

ficient, one is caused by the electrons' thermal diffusion due to temperature gradient

and the other by phonon drag. The part contributed by electrons' thermal diffu-

sion is sometimes called as diffusive Seebeck coefficient, which is the typical (normal)

Seebeck coefficient studied by people.

In section 3.1.1, we wrote down the linearized Boltzmann transport equation

(equation (3.1)) for electrons under the condition of an electric field only. How-

ever, it is necessary to include the temperature gradient to study the Seebeck effect.

In this case, both the Fermi level and the temperature are functions of location and

the a; term in the linearized Boltzmann transport equation for electrons becomes

- d2 nI.5 + 4-- dT using 2 _ - L and 2E - eE f accordingly equation
ae dx T aE dx 86 aef aT T O

(3.2) will be changed to

De 5- e o9T 0< 0fAf = --TkaaVa( - + + e 9  ) a (3.6)
Ox T Ox Ox) e

Note that equation (3.6) does not take electrons that are driven by nonequilibrium

phonons into account. To account for phonon drag effect, an extra term related to

the drift of phonon is required [30]. So the "diffusive" contribution to the thermo-

electric flux along x-axis which arises when the phonon distribution is held in thermal
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equilibrium is

Z(-e)vxkaAfka
Je,x a,k

(e2Ev'.,warkc M -- +1
NkQ a* vxkak DE C Ox (3.7)

___ 2 ___-_______f

+ N e V2,kaTk T oi x

a,k

= L(--) + L 1 2 (- )

As defined in section 3.1.1, the energy of the state E and the chemical potential Ef

are relative to the conduction band edge Ec and e, is relative to an absolute reference

level. With this reference, (D = P - is electrochemical potential, where p is the

electrostatic potential that taken as -ec/e and (-e) is the charge of electron when

electrons are taken as the charge carriers [74]. Recall Eemi = -SVT in section

1.1 when we introduced the Seebeck coefficient. Here, in the x-axis direction, the

electrochemical potential Eemj = - 2, we can write the Seebeck coefficient when the

drift flux balances out the diffusion flux, i.e. J, is zero in equation (3.7)

ZvXkceka (E - E___
S -L12 1 a.k

Snorma =f Lil -= ~ o
E- L eT V aTka

a~k

a.k vk TkaT(E - ef)f (f -1) (3.8)

eT Z VX akafkOa (fkO _ 1)
a,k

The calculated normal (diffusive) Seebeck coefficient will be shown in section 3.3.3

together with the phonon drag part.

86



3.2 Thermal Conductivity

Thermal conductivity is the property of a material's ability to conduct heat and it

is often denoted with the Greek letter K. It appears primarily in Fourier's Law for

heat conduction: q = --KVT, where q is the local heat flux density and VT is the

temperature gradient. Like electrical conductivity, thermal conductivity is a rank-2

tensor. But again we will be looking at isotropic materials and in x-axis direction to

simplify the problem in the following discussion.

As we know the most common heat carriers are phonon, electron and photon.

While in thermoelectric materials, the major ones are phonon and electron and the

thermal conductivity could be divided into two parts, K = K1 + Ke, where Ke denotes

the part contributed by electron and Ki denotes the part contributed by phonon. The

former is named as the electronic thermal conductivity and the latter as the lattice

thermal conductivity.

3.2.1 Lattice Thermal Conductivity

From the definition of the lattice thermal conductivity above, we have

E huqAVqA,xAnqA
1 A,q

K =1 ' (3.9)
KNqQ aNaax

where vqA,x and wqA denote the group velocity along x-axis and the frequency of the

phonon with wavevector q at branch A, AnqA = nqA- no denotes the nonequilibrium

phonons since the equilibrium phonons do not contribute to the heat flux, Q is the

volume of the unit cell and Nq is the number of q-points on the q-mesh on which we

sum over in the reciprocal space in our first-principles calculation.

From the linearized Boltzmann transport equation (equation (1.10)) of phonon

within the relaxation time approximations
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V 0Aq = n, - ry, (3.10)ax TqA

we have
OT 

.o

AnqA = -rqAVqa,2 4 (3.11)

Ono
Plug this into the expression of the lattice thermal conductivity above and use -q' =

- "$nq, K.l + 1), we get

k 

= T2N E nqA(nA + 1)(hqA)2V,qAqA (3.12)
kBP~q Q A,q qX

A previous study in silicon [58] shows that electron-phonon interaction can signifi-

cantly reduce the lattice thermal conductivity when the carrier concentration is high,

thus we take this effect into account while calculating our zT values. However, for

the case of SiGe alloy, it has been well-known that the lattice thermal conductivity

has already been largely reduced by alloy-phonon scattering, and it was not clear that

if electron-phonon interaction would further reduce the lattice thermal conductivity

significantly. We investigate the effect of electron-phonon interaction on the lattice

thermal conductivity of SiGe alloys by comparing the calculated the lattice thermal

conductivities of SiGe alloys in both cases where we consider electron-phonon inter-

action and do not consider electron-phonon interaction. Other than electron-phonon

interaction, as described in section 2.4, we include intrinsic phonon-phonon scatter-

ing, alloy-phonon scattering and boundary scattering in the Casimir limit [114] while

calculating the lattice thermal conductivity of SiGe alloys. We use the effective relax-

ation time TqA ontained from Matthiessen's rule - = where j indicates different
Tj

scattering mechanisms [921. The integration over the Brillouin zone in equation (3.12)

is carried out in the ShengBTE package using a 60 x 60 x 60 q-mesh, under the relax-

ation time approximation to the phonon Boltzmann transport equation. Figure 3-4

shows the comparison between our calculated lattice thermal conductivity of SiGe

alloys at room temperature with literature. Steele's samples include both n-type and
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Figure 3-4: Calculated lattice thermal conductivity of SiGe alloys at four different
carrier concentrations at 300K compared to experiments [3, 4].

p-type ones, and the electrical resistivity varies from 2 to 70 Q-cm (having an electrical

resistivity of 0.006Q - cm is approximately equivalent to having a carrier concentra-

tion of 1.2 x 1018 cm- 3 ) [4]. We can regard them all as lightly doped samples (should

be lower than 107 cm- 3 ). Dismukes et.al. [3] measured the thermal conductivity of

n-type SiGe alloys with a carrier concentration of 1.5 x 1020 cm- 3 , with which our

calculated heavily doped (with a carrier concentration of 1 x 1020 cm- 3) SiGe alloys'

lattice thermal conductivity shows very good agreement. We should note that, in

figure 3-4, the experimental data includes the electronic component of the thermal

conductivity, while our result here is the lattice thermal conductivity only. We also

calculate the electronic part of thermal conductivity and show it in figure 3-10. It

is around 1.5 W/mK at the carrier concentration of 1 x 1020 cm- 3 . However, since

the experimental data from Dismukes is with a larger carrier concentration, it makes

sense that its lattice thermal conductivity plus the electronic thermal conductivity

matches out calculated lattice thermal conductivity reasonably well. Our calculated

lattice thermal conductivity of SiGe alloys at 150K is also given in figure 3-5. The

curves basically share the same trend with the ones in figure 3-4 but the absolute
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values of the lattice thermal conductivity increase compared to 300K. This is due to

that phonon-phonon interaction becomes much weaker for less phonons are populated

at lower temperatures. While phonon scattering by electrons is less affected by tem-

perature as discussed in section 2.4.1, and electron-phonon scattering becomes more

significant at higher carrier concentrations, the increase in the lattice thermal conduc-

tivity with decreasing temperature is more prominent at low carrier concentrations

than at high carrier concentrations.

70
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- n =1x10 5 cm-3
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Figure 3-5: Calculated lattice thermal conductivity at four different carrier concen-
trations of SiGe alloys at 150K.

As we can see in figure 3-4, the last three curves (n = 1017 cm-3, n = 1015 cm-3

and without EPI) almost overlap completely, which means that at low carrier concen-

tration, electron-phonon interaction has a minor effect on the lattice thermal conduc-

tivity, intrinsic phonon scattering and alloy-phonon scattering are the dominant scat-

tering mechanisms. However, as the carrier concentration goes above n - 1020 cm- 3 ,

the reduction of the lattice thermal conductivity due to electron-phonon interaction

(EPI) becomes much more significant. We further plot the reduction in terms of

percentage in figure 3-6, which shows at 300K, the reduction in the lattice thermal

conductivity due to EPI ranges from 30 - 60% across all the alloys compositions,
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and the reduction increases to 35 - 70% at 150K. The degree of reduction is intu-

itively determined by the relative strength of electron-phonon scattering compared

to the sum of intrinsic phonon scattering and alloy-phonon scattering. As shown

in figure 2-13 and figure 2-17, the phonon-phonon scattering rate increases with Ge

content, while the alloy-phonon scattering rate would first increases with Ge content

when Ge content is low (< 50%) and then decreases with Ge content when it is high

(> 50%). The opposite trends and relatively close absolute values of the slopes of

intrinsic phonon scattering rate vs. alloy composition and alloy-phonon scattering

rate vs. alloy composition lead to the short plateau in the last three curves as well

as and the peak in the lattice thermal conductivity reduction in figure 3-6 around

the composition of Sio. 15 GeO.8 5. In other words, since the intrinsic phonon scattering

and alloy-phonon scattering are the dominant scattering mechanisms at low carrier

concentrations, as Si content increases, there will be a point at which the increase

in alloy-phonon scattering rate compensates the decrease in intrinsic phonon scatter-

ing thus the lattice thermal conductivity will stay almost constant near this point.

As the electron-phonon interaction keeps getting stronger with increasing Si content

(shown in figure 2-16), the reduction percentage will reach a local maximum around

this point shown in figure 3-6. There is no alloy-phonon scattering for pure Si or pure
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Figure 3-6: Reduction in SiGe alloys' lattice thermal conductivity in terms of per-

centage due to electron-phonon interaction.

Ge. The intrinsic phonon scattering is the weakest and the electron-phonon interac-
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tion is the strongest at pure Si while Ge has the opposite case according to figure

2-13 and figure 2-16, therefore the reduction percentage in Ge is lower than in Si.

However, it is not clear why the reduction percentage in pure Si is much smaller than

its neighboring Si-rich alloys, since both intrinsic phonon scattering rate and alloy-

phonon scattering rate decreases while electron-phonon scattering rate increases with

increasing Si content in this region. We further do some spectrum analysis to explain

this counter-intuitive feature. Figure 3-7 shows accumulated lattice thermal conduc-
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Figure 3-7: Accumulated lattice thermal conductivity vs. phonon mean free path in
lightly doped and heavily doped SiGe alloys. (a) (b)T = 300K, (c)(d) T = 150K. The
y-axis is cut and the maximum value is set to 30W/mK to show the difference between
the curves of alloys at different temperatures and different doping concentrations more

clearly.

tivity versus phonon mean free path in lightly doped and heavily doped SiGe alloys.

By comparing the curves of pure Si and Ge and the curves of alloys in each subfigure,
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we know that alloy scatters heavily on phonons with mean free path of < 10 pm.

By comparing figure 3-7a and figure 3-7b, as well as figure 3-7c and figure 3-7d, we

know that electron-phonon interaction has an impact on phonons with mean free path

> 1 Mm thus can further reduce the lattice thermal conductivity. In other words, the

phonons scattered by electrons and the phonons scattered by mass difference in the

alloys are spectrally different. This justifies that the reduction in the lattice thermal

conductivity caused by electron-phonon interaction in Si-rich alloys is more significant

than in pure Si in terms of percentage. Figure 3-8 takes Sio.1Geo.f as an example and

shows the mean free path distribution for phonons with different frequencies in three

cases. Similarly, the phonon scattering rate of phonons with different frequencies of

10
* Intrinsic ph-ph
* ph-ph + alloy-ph

ph-ph + alloy-ph + EPIn-1x10 -m

1004.

-2
10-

0
3

0 1 2 3 4 5 6 7 8 9
Phonon frequency (THz)

Figure 3-8: Phonon mean free path determined by intrinsic phonon scattering, alloy-

phonon scattering and electron-phonon scattering vs. phonon frequency, taking

Sio.1 Geo.9 as an example.

Sio.1 Geo.9 is plotted in figure 3-9 in three cases. By comparing the three cases, we can

see the low frequency phonons are greatly scattered by the electrons over and above

other phonons and mass disorder in alloys, while the high frequency ones are heavily

scattered by mass disorder in the alloy. Figure 3-8 and figure 3-9 together show that,

at high carrier concentration (here n = 1 x 1020 cm- 3 ) electron-phonon scattering is
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Figure 3-9: Intrinsic phonon scattering rate, alloy-phonon scattering rate and
electron-phonon scattering rate vs. phonon frequency, taking Sio.1 Geo.9 as an ex-
ample.

the dominant scattering mechanism for low-frequency and long-wavelength phonons

hence it is important to include EPI in the lattice thermal conductivity calculations.

3.2.2 Electronic Thermal Conductivity

Similar to equation (3.7) of electric flux, we can write down the expression of the heat

flow when there are both electric field and temperature gradient as below [74]

D'(E - Ef)V,kaAfka

Jq,x = J6,2 - Ef Jn,x = k N (3.13)

where Jqx, J6,X, J ., are the heat flux, the energy flux, and the particle flux along

x-axis. Again Vxkc and e are the group velocity along x-axis and energy of the

electron with wavevector k at band a, ef is the Fermi level, Afkc = fka - f a is the

nonequilibrium electrons that contributes to heat flux, Q is the volume of the unit

cell and Nk is the number of the k-points on the k-mesh on which we sum over in the
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calculation. Plug equation (3.6) into equation (3.13), we will get

NgGDeOx e axa.k a f2 Oy 1T f49f 0"T

+ N 2Ef)2V,aTka &kO( ) (3.14)
a.k

= L 21 (- TX) + L22(-T)

We can use equation (3.7) to eliminate the electrochemical potential term and obtain

Jq.,x = ~ Je, + L22 - LL 2 )(- ) (3.15)Lnl Ll ax)

where H = L 1 = T- = TS is the Peltier coefficient andrse = L22 _ L1L2 is theL1 L1L 11  i h

electronic thermal conductivity.

While for metals, the electron density is very large and the transport does not

affect the Fermi level, and a common method to estimate the electronic thermal

conductivity is the Wiedemann-Franz law,

Ke =LoT (3.16)

where T is the temperature, L is the Lorenz number, usually treated as a constant

(2.44 x 10-8 VVQK- 2 ) with slight changes for most of metals (for semiconductors, the

Lorenz number needs to be calculated using L = r'e/(-T) for doping would change the

Fermi level, but the magnitude of it would not vary much [74]). This is based upon

the fact that the heat transport (electrons are the dominant heat carriers in metals)

and the electrical transport both involve the free electrons in the metal: the thermal

conductivity increases with increasing average particle velocity since that increases

the forward transport of energy. The electrical conductivity decreases with increasing

particle velocity because the collisions divert the electrons from forward transport of

charge. This means that the ratio of thermal to electrical conductivity depends upon

the average velocity squared, which is proportional to the kinetic temperature.
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Our calculated results at room temperature (all the scattering mechanisms dis-

cussed in chapter 2 are considered) in figure 3-10 show that, at the carrier con-

centration of 1019 cm-3, the electronic thermal conductivity is still much smaller

(Ke/Kj < 3%) than the lattice thermal conductivity with electron-phonon interac-

tion taken in to account. The electronic thermal conductivity is typically about

1.5 W/mK and the Ke/KI ratio varies from 2% to 35% when the carrier concentration

goes to 102 cm- 3 . In most semiconductors, the electronic thermal conductivity is

generally much smaller than the lattice thermal conductivity in the considered range

of carrier concentrations (lower than 1020 Cm- 3 ).
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Figure 3-10: Thermal conductivity (including the electronic part) of SiGe alloys at
300K compared to experiments [3, 4]
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3.3 Seebeck Coefficient Contributed by Phonon Drag

3.3.1 Formula Derivation

As given in section 1.2, the previous diffusive picture of Seebeck effect only accounts

for the case where there is no phonon flowing between the two ends of the material.

But when there is a temperature gradient, there are phonons travelling from hot side

to cold side and during this process, phonons could "drag" the electrons to travel

with them, and this increases the Seebeck coefficient.

Below we will derive the phonon drag formula in the Peltier picture (the isothermal

electric field produces a heat flow, actually in this case it is "electron drag" rather

than phonon drag: electrons driven by the electric field drag phonons to travel with

them), solving the coupled electron-phonon linearized Boltzmann transport equations

by partially decoupling the electron and phonon transport [30]. Again we take the

material to be isotropic, thus we can simplify the problem by looking at one direction

(e.g. along x-axis) since the three directions are equivalent.

In the Peltier picture below, there is no temperature gradient along x-axis at the

beginning so we assume the phonons are at equilibrium. There is 1-D electric current

along x-axis so there are nonequilibrium electrons at the initial state. The Peltier

effect will gradually form a temperature difference and the equilibrium of phonon will

be disturbed.

Vriting down the linearized Boltzmann transport equation (equation (1.10)) for

electron

Ofkoc, T __ _ fkO(317
Vxka iT f a fka - f-+ev + (3T17)

OT Ox -E OX pka h& _

In the first term on the right hand side of equation (3.17), we assume that all

other scattering mechanisms except the electron-phonon interaction can be described
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by the mode-dependent relaxation time model, that is, the relaxation time approx-

imation can include interactions like alloy-electron, impurity-electron by using an

effective relaxation time rka, according to the Matthiessen's rule rka = ' where

j indicates different scattering mechanisms [92].

Denote the distribution function as nqA for the phonon at branch A with wavevec-

tor q, the linearized Boltzmann transport equation for phonons is

qA - = - - ( ) (3.18)
OT Ox Tq A +_)-

Similarly, the first term on the right hand side of equation (3.18) can include

interactions like phonon-phonon scattering, alloy-plonon scattering and boundary

scattering by using the Matthiessen's rule to obtain an effective relaxation time [921.

In the Peltier picture, there is no thermal gradient, this simplifies equation (3.18)

to

-- qA ( l (3.19)
TqA -qA / e-ph

The Peltier coefficient

= TS induced heat flux

electric current flux

heat carried by charge carriers + by phonons dragged by travelling charge carriers

electric current flux

=unormal + r'phonon drag = T(Snormal + Sphonon drag)

where in our calculations,

x 

V,k,(eka -ef) fka

Llnormai= Z(evt ~ f(3.20)
n~ E(al-e)V.,k-,Asfk.
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1q ZhwqAVx,qAAflqA

Lphorion drag 1-( )
1 (e)Vx,cAafka

a,k

To find out the (at-)e-ph term, let us go back to equation (2.22). As we assume

that at the initial state, phonons are at equilibrium, though afterwards its equilibrium

will be disturbed by the nonequilibrium electrons, the effect of the nonequilibrium

phonons caused by the "electron drag" on electrons' state is a higher order effect

which is relatively minor. We will use the first-order approximation to neglect the

AnqA term and replace the nqA with the Bose-Einstein distribution n We will

also neglect the AfkaAfk', term as a first-order approximation. After some algebra,

equation (2.22) can be rearranged as:

( fka N 27 0r
- [(n + f",)G- + (nOA + 1 - fk,))G+] Afkaat ) e-p IV,, h qA,k'O f

+ [(n + 1 - foa0)G- + (n"o + f2Q)G+] Afwt3
qA,k'3

(3.22)

where G- and G+ are given in equation (2.25)

Notice that the first term on the right hand side of equation (3.22) can be combined

with the first term on the right hand side of the linearized Boltzmann transport

equation (equation (3.17)) using the relaxation time approximation. And another

approximation is to assume the second term on the right hand side on equation

(3.22) will vanish [107]. With these approximations listed above, equation (3.17) is

simplified to

ekaf a fk-- - f -- Afka (3.23)ae ax Tka Tka
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Rewrite equation (3.23) and equation (3.19), we have

A fka = -e-Tkavxkca O (3.24)Afka~~ E ek~k 0 DX

AnX = Trq (OrinA) (3.25)
at e-ph

If the carrier concentration is assumed to be uniform throughout the material, we

can neglect the diffusion term in equation 3.3 and have

Z(-e)vx.kAfkCa
JeX .k = (- (3.26)

eyx N9G Ox

Plug equations (3.24) and (3.26) into equation 3.20, the expression of the normal

Peltier coefficient, we get

E Vxka (Ek - E )Afko Z Uxka(eka - e-f)Afko
a k a.k

1 1 normal = (-e)x,kOLA fkc -uNkQ" O
o k (3.27)

Z ekak(Eka - Ef)afa
a.k

o-NkQ

This is exactly what we got in equation (3.8) if divided it by T, as - is given

by plugging equation (3.4) into equation (3.5), which proves the second Thomson

relation 1 = TS mentioned in chapter 1.

To figure out the phonon drag part,

11phonon drag = " h AEVxkA qA afka (3.28)

ak

we need to start again from counting the possible scattering events relating to the
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phonon with wavevector q at branch A to determine the (9 .) term. Slightly

different from equation (2.40), here we need a factor of 2 as we need to count in

consistency with the electron case above (count the events according to Table 2.2

instead of Table 2.3), and represent the emission and absorption rate elements as

Nernit and Nbsob that are given in equation (2.41).

Ongs 2 9,T( t 1 ) 2 w + f(1 - fk )(n + 1)Nemit
e-ph Nk h a,3 k.k'

- fka( - fk')3)nAl absorb

(3.29)

Noticing the summations of a and 3 are over the same possible electronic bands

so they are equivalent, same as k and k', we can switch a with # and k with k'

at the same time in Nbsorb to combine Nemit and Nabsorb terms. Again, we will use

the Bose-Einstein distribution n for phonon's distribution q\ and also neglect the

AfkaAfk', term as a first-order approximation.

From equation (3.24), we can write

Afka - CkaVx,ka

Afk, = -e7-k'lvk', ,'a a-x
OE ax

(3-30)

(3.31)

again using 'O = gf 0 (1 - f 0 ), after some algebra, equation (3.29) is rearranged to

(a47rA = z 2oq)(k'iajaqAvjka) 126 (k - k1- q)
)e-ph kk' 2

-- p - hW) [Afka(n 1 - fk"O) - A fk'A(nOA + fa )]

4re2 -2 h
= Ox ( m ) (k'jaqAVjka)1 26(k - k' - q)
hNkkBT Q.0 k,k' 2mowqA

6(Ea -- Ek'O- hWqA)[(TkaVx,ka - Tk'flV,k'O,)(1 - fkjfkipn ]

(3.32)
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Now plug equation (3.32) into the expression of the phonon drag part of Peltier

coefficient equation (3.28) with equation (3.26),

Hphonon drag = aN T TqAVxqAWqA E S 22 q) (k iqAVIka) 12
or~q~k~B'T qAa,3 k, ,k' q

6k- k q)J(Eka - EO- hwqA)[(7kaVx,kc, - Tk'/3Vx,I'3)(1 - fka)fkflflA]

(3.33)

With the second Thomson relation fIphonon drag = TSphonon drag, the phonon drag part

of Seebeck is

Sphonon drag N k B q qAVxqAWqA h (k'31&qAVjka) 12 qkB qA a,O k,k'

6(k - k- q)6(Ek, - Ek, - hwqA)[(TcaVx,a - Tk'l3Vxk',0)(1 - f2.)fk0',\]

(3.34)

Note that the fiphonon drag and Sphonon drag above are derived along x-axis and they

should'have the same value along different directions for an isotropic material. While

in our calculation, we calculate them as tensors and the values on the diagonal are

substantially the same, which reflects the isotropy of the crystal structure of SiGe

alloys.

3.3.2 Validation in Silicon

Before going to the calculated phonon drag results of SiGe alloys, we need to make

sure that our method above is reliable. We validate our calculation of the two parts of

Seebeck coefficient by reproducing Zhou et al.'s result for the Si case [32]. Our result

of Si in figure 3-11 shows that by incorporating the phonon drag part of Seebeck

coefficient, we are able to match our calculated Seebeck coefficient of silicon with the

experimental data very well and thus we would like to expand this methodology to

the cases of SiGe alloys.
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Figure 3-11: Seebeck coefficient of silicon (n = 2.75 x 10" cm- 3 )
temperature. The experimental data is from [5].

as a function of

3.3.3 SiGe Alloys Results

The calculated Seebeck coefficients of SiGe alloys at 300K and 150K are shown in

figures 3-12. Our calculated total Seebeck coefficients show good agreement with the

experimental data from Amith [6]. We notice several regions with interesting changes

and we would like to explain several important features of the results in the respect

of the trend.

According to equation (3.34), the expression of the phonon drag part of Seebeck,

we know the phonon drag part of Seebeck is related to the phonon mean free path.

As temperature goes lower, the intrinsic phonon scattering gets weaker, which means

phonons will be able to travel longer distance before getting scattered, hence the

phonon drag effect is more significant at low temperatures. As discussed in section

1.3, alloying might be able to filter the phonons that contribute more to the thermal

conductivity while retaining the phonons that contribute to phonon drag. However,

we found that alloy scattering is not that ideal in maintaining the phonon drag part
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Figure 3-12: Calculated Seebeck coefficients of SiGe alloys vs. composition. The
experimental data is from [6]. (a)(b)T = 300K, (c)(d) T =150K.

of Seebeck coefficient while suppressing thermal conductivity as the phonon drag part

would also decrease with alloying in the the Si-rich and the Ge-rich regions. That

is, though the mass disorder in alloys tends to scatter phonons with high frequency

and short mean free path more, it is not having zero effect on phonons with low

frequency and long mean path and it still scatters those phonons to a certain extent.

Nonetheless, if we look closer, the degrees of influence on these two properties are

different. For example, in the Si-rich region in figure 3-12a, when we add 10% Ge to

pure Si, the total Seebeck coefficient drops to about three fourths of pure silicon's,

while the thermal conductivity is almost an order of magnitude smaller than pure

silicon's thermal conductivity (around 145 W/mK at 300K at low carrier concentra-

tions, the maximum of y-axis in figure 3-10 is set to 70 W/mK to show SiGe alloys'
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thermal conductivity more clearly) as shown in figure 3-10. By comparing figure 3-

12a and figure 3-12b as well as figure 3-12c and figure 3-12d, we can see the phonon

drag effect is less significant at high carrier concentration. This can be understood

as that, as shown in figure 3-8, when the carrier concentration is high, the strong

electron-phonon interaction would reduce the phonon mean free path and weaken the

phonon drag effect.

Recall the expression of the diffusive Seebeck coefficient (equation (3.8)), the dif-

fusive Seebeck coefficient is mostly determined by e - Ef, that is how much heat can

an electron carry. At a fixed carrier concentration, Fermi level gets higher when the

temperature gets lower. And at a given temperature, Fermi level gets higher with

increasing carrier concentration. This explains the trend in the diffusive Seebeck

coefficient with respect to the carrier concentration and the temperature.

As briefly mentioned in section 2.3 while discussing our calculated band structure

(figure 2-1), another feature of alloying effect that is worth noticing is band conver-

gence, which is shown in the region near the composition of Sio. 1 3 Geo.87 (hereinafter

band convergence region). As we know, Si and Ge have different band structures

(shown in figure 2-1). Their conduction band minima are located at different valleys

of the electronic band structure (germanium's is at L valley and silicon's is near X

valley). When the two materials are being alloyed, their conduction bands start to

cross over each other, and there will be a particular composition at which the two

conduction band minima align with each other. At this point, the density of states

at the conduction band minimum is the largest and there are more electron states

available for free electrons which can participate both in the normal (diffusive) See-

beck effect and phonon drag effect, resulting in a peak in the Seebeck coefficient as

shown in figure 3-12 in the band convergence region, which is also supported by the

experimental data from Amith [6]. We can further justify this band convergence fea-

ture by plotting the density of states near the conduction band edge of SiGe alloys

in this composition region (figure 3-13). It can be seen clearly that among our cal-

culated compositions, the conduction band minima (the one at L point and the one
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near X point) align with each other the best (according to the lower left subfigure in

figure 2-1) and the density of states near conduction band edge becomes the largest

at 13 At.Si%, which is in line with the peak in the Seebeck coefficient in the band

convergence region shown in figure 3-12.
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Figure 3-13: Density of states of SiGe alloys in the band convergence region. At

SiO. 87 GeO.1 3 the density of states is the highest.

3.3.4 Convergence Test Results

Every first-principles calculation is an approximate one given the physical approxi-

mations (e.g. Born-Oppenheimer, exchange-correlation functionals, relaxation time

approximation, etc.) we have mentioned in chapter 2 as well as numerical approxima-

tions (e.g. basis-set size, integral evaluation cutoffs, sampling mesh density, iterative

schemes: number of iterations and exit criteria, system size etc.) in real implemen-

tation. In fact, no first-principles calculation is ever fully-converged. This does not

mean that first-principles calculations cannot provide reliable result or valuable in-

sight. The appropriate numerical setting can be determined by means of a convergence

test and calculations using current computing resource with accuracy comparable to

experiment can be achieved.

We believe our choices in the size of supercell, the kinetic energy cut-off for wave-
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functions, the convergence threshold for self-consistency and other parameters in our

first-principles calculations have been set to the values that are good enough to cap-

ture the transport properties of SiGe alloys. Our major concern in terms of con-

vergence lies in the k-mesh and q-mesh (introduced in section 2.1) sampling density.

Theoretically, the denser the sampling mesh is, the more accurate the result will

be. Limited by the computing power in hand, we cannot make our sampling k-mesh

and q-mesh as dense as desired (e.g. 200 x 200 x 200). However, most of time, a

relatively dense mesh (e.g. 80 x 80 x 80) can capture the major features well and

provide reasonably converged results. In this section, we show our convergence test

(mesh density from 30 x 30 x 30 to 100 x 100 x 100) on the q-mesh density used in

ShengBTE package for the lattice thermal conductivity calculations, as well as the

fine mesh density (both k-mesh and q-mesh) in Wannier interpolation for mobility

calculations and Seebeck coefficients calculations.

The convergence test on the lattice thermal conductivity at low carrier concentra-

tions (without considering electron-phonon interaction) at 300K and 150K is plotted

in figure 3-14. It shows that for the lattice thermal conductivities of SiGe alloys, con-

vergence is well guaranteed when the density of the mesh is denser than 60 x 60 x 60

for the values actually change very little across the entire range of the mesh density

we have tested.
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Figure 3-14: Calculated lattice thermal conductivity vs. sampling mesh density

The convergence test on calculated mobility, diffusive part of Seebeck coefficient
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and the phonon drag part of Seebeck coefficient in figure 3-15, figure 3-16 and figure 3-

17 show that the convergence in germanium's calculated electrical properties is harder

to achieve, which might be due to the more complex band structure (compared to

Si or Si
0

.
3

Ge
0

.
7

, Ge has more valleys involved near the conduction band minimum as

shown in figure 2-1), especially at low temperatures and high carrier concentrations

when the Fermi level is entering the conduction band. Also, the convergence demand

becomes more stringent at low temperatures for that the populated phonons are more

centered around the I? point, as well as that the populated electrons are more centered

at the conduction band edge at low temperatures, thus denser sampling meshes are

required to sufficiently capture phonons' information and electrons' information.

We use q-mesh of dimensions 60 x 60 x 60 for our thermal conductivity calculations,
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Figure 3-16: Calculated diffusive part of Seebeck coefficient vs. sampling mesh density
for lightly doped and heavily doped SiGe alloys. (a)(b)T = 300K, (c)(d) T = 150K.

k-mesh and q-mesh both of dimensions 80 x 80 x 80 for the calculations of mobility and

Seebeck coefficients. In short, the convergence test results show that the calculated

thermoelectric properties obtained with our chosen mesh densities in the previous

sections should be reliable in terms of convergence.

3.4 Thermoelectric Figure of Merit

As given in section 1.1, the dimensionless figure of merit zT = S2 ,7T is directly related

to the maximum energy conversion efficiency of the thermoelectric material. Now we

have much confidence in our calculated thermal conductivity, electrical conductivity

and Seebeck coefficients based on the discussion in the previous sections, we would
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Figure 3-17: Calculated phonon drag part of Seebeck coefficient vs. sampling mesh
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= 150K.

like to put our results above together, calculate the zTs and examine the thermo-

electric performance of n-type SiGe alloys at different carrier concentrations (from

n = 1 x 1015 cm-3 to 1 x 1020 cm- 3 ) over the complete range of compositions at low

temperature (150K) and room temperature (300K).

We further plot the power factor and the thermal conductivity along with the

figure of merit in figure 3-19 for heavily doped SiGe alloys at 300K and 150K, in both

cases where we consider phonon drag and do not consider phonon drag. From the

comparison between the two cases, we conclude that phonon drag effect contributes

significantly to SiGe alloys' thermoelectric performance and it is essential to include

it while we are calculating the Seebeck coefficient.
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Figure 3-18: Calculated zT values of SiGe alloys vs. composition at four different

carrier concentrations. (a) T = 300K, the experimental data is from [3], (b) T -

150K.

As the carrier concentration gets higher, the lattice thermal conductivity would

decrease while the electronic thermal conductivity would increase. We have shown in

section 3.2 that the former effect is more important in SiGe alloys when the carrier

concentration is not extremely high (n <= 1 x 1020 cm 3 ). Though the mobility would

decrease with increasing carrier concentration for the impurity scattering would get

stronger, the electrical conductivity would still increase (the decrease in p is less

significant than the increase in n in equation 3.5). The Seebeck coefficient will be

lower at higher carrier concentrations as discussed in section 3.3.3. Therefore, the

trend in power factor S2 
a and zT with respect to the carrier concentration cannot be

described with a simple conclusion, and this is exactly why trial-and-error experiments

on finding and optimizing alloy recipes for thermoelectric use are very time-consuming

and first-principle studies are much need as guidelines. As the temperature goes lower,

the Seebeck coefficient drops while the electrical conductivity increases as electrons

are less scattered by phonon. The intrinsic phonon interaction gets weaker thus the

lattice thermal conductivity increases. The degree of the changes in these properties

varies with the temperature as well as the alloy composition that we cannot draw a

simple universal conclusion saying one specific SiGe alloy compositions will have the

best thermoelectric performance at all temperatures. And the results of our first-

principles calculation shown in figure 3-18 and figure 3-19 can make the screening
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and optimizing processes of the alloys' composition and doping concentration for

thermometric use under different conditions much more efficient.
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Figure 3-19: Calculated zT values of SiGe alloys vs. composition, at carrier concen-
tration of 1019 cm-3 and 1020 cm-3 , with and without phonon drag. (a)(b) T = 300K,
(a)(b) T = 150K.

Taking all the factors of zT into account, our calculated results show that heavily

doped SiGe alloys have much better thermoelectric performance than lightly doped

SiGe alloys (this is mostly due to that the electrical conductivity gets much larger at

high carrier concentrations). At 300K, an optimal zT value of 0.26 is obtained near

the composition of Sio. 15 Gco.8 5 with a carrier concentration of 1020 cm-3 . At 150K, an

optimal zT value of 0.18 is obtained near the composition of SiO.1 GeO.9 with a carrier

concentration of 1019 cm-3.

The gap between our calculated figure of merit zT and the experimental data

from Dismukes et al. should be mostly due to the existing error in our calculated
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electron mobility, which has been discussed thoroughly in section 3.1.1. Our entire

calculation is based on the virtual crystal approximation, which is only a first-order

approximation. As discussed in section 1,4, it models alloy systems as homogeneous

crystals and cannot capture many other disordered features in real alloy materials.

This will definitely result in a certain amount of error in our calculations compared

to the experiments. And we estimate that there might be an error of 5 - 20% in our

current results compared to the ideally converged results if denser meshes are allowed

by computing power according our convergence test in section 3.3.4.

In conclusion, from the results we discussed above, combining phonon drag and

alloying effect together is beneficial to thermoelectric performance.

113



114



Chapter 4

Summary and Future Work

4.1 Summary

In summary, we have presented the first-principles calculations of the Seebeck coef-

ficients, electrical conductivity and thermal conductivity of n-type SiGe alloys with

different carrier concentrations (from 1015 cm-3 to 1020 cm- 3 ) over the complete range

of compositions within virtual crystal approximation at 300K and 150K. In particular,

we have included the phonon drag part contribution in our Seebeck calculation and

taken both alloy scattering of phonons and alloy scattering of electrons into account.

We found that phonon drag effect contributes significantly to the total Seebeck

coefficient in SiGe alloys, especially at lower temperatures. The band convergence

happens around the composition of Sio.13 Geo.8 7 . As a result, there are peaks both in

the normal(diffusive) part of Seebeck coefficient and the phonon drag part of Seebeck

coefficient. However, the mobility is low in this region due to stronger electron-phonon

scattering and ionized impurity scattering for the aligned conduction band minima

give a larger density of states.

Taking all the factors of zT into account, our calculated zT values show that
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combining phonon drag and alloying effect together is beneficial to thermoelectric

performance. Heavily doped SiGe alloys have much better thermoelectric performance

than lightly doped ones. An optimal zT value around 0.26 is obtained near the

composition of SiO.1 5Geo.85 with a carrier concentration of 1020 cm- 3 at 300K and an

optimal zT value around 0.18 is obtained near the composition of Sio.1Geo.9 with a

carrier concentration of 1019 cm- 3 at 150K.

4.2 Future Work

The agreement of our calculated results and reported experimental data validates the

methodology that we have adopted and we would like to apply this methodology to

other alloy systems of interest (e.g. BiSb alloys) in the future.

We are aware of the limitations of our approximations and possible errors that

might exist in our calculations. For example, the band structure generated by DFT is

not perfectly accurate, especially for the Ge-rich alloys. In the alloy-electron scatter-

ing calculations, only single scattering is considered and the after-scattering state is

described as the undisturbed Bloch state of the periodic host lattice within the first

Born approximation. The ionized impurity scattering is estimated using the Brooks-

Herring model, which assigns electrons to plane-wave states and does not take the

core scattering of ionized impurity into account. We found that the calculated optimal

recipe of SiGe alloys as thermoelectric materials is sensitive to the calculated mobili-

ties. Therefore, our next step is to work on obtaining more accurate band structure

and better pictures of alloy-electron scattering and ionized impurity scattering to fur-

ther improve the accuracy of our mobility calculations. Our entire work is based on

the virtual crystal approximation, which is only a first-order approximation. It mod-

els alloy systems as homogeneous crystals and cannot capture many other disordered

features in real alloy materials (e.g. vacancies, interstitial atoms and dislocations).

We would like to include the effects of those defects in our future calculations.
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