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Abstract

The recent proliferation of ancillary services means that airline passengers can face sub-
stantially different ancillary service prices and offerings based on their itinerary and fare
class selection. At the same time, airlines have become interested in accounting for this
supplementary revenue stream in their revenue management (RM) systems to maximize
total, not just ticket, revenue. This thesis develops models for both of these issues, with a
goal of providing a better understanding of how ancillary services affect the airline industry.

We develop the Ancillary Choice Model (ACM) to describe how passengers make purchase
decisions about ancillary services in conjunction with the selection of a fare class. We model
two extremes of passenger knowledge and awareness of ancillary services, which we term
simultaneous and sequential. We show that under the simultaneous model, the presence
and price of ancillary services can affect the fare class selection of a passenger, even when
all fare classes have the same ancillary prices.

The second part of this thesis studies total revenue optimization. We provide a detailed
assessment of a prior total revenue maximization approach, the Optimizer Increment (01),
proving that it can be an optimal revenue management strategy under limited conditi-
ons, but also showing through the Passenger Origin-Destination Simulator (PODS) that it
decreases revenue in more realistic environments.

We then develop a new revenue management optimization model, the Ancillary Choice Dy-
namic Program (ACDP), which maximizes total revenue by explicitly including the revenue
and fare class choice impacts of ancillary services. We describe an Ancillary Marginal De-
mand (AMD) and Ancillary Marginal Revenue (AMR) transformation that can be used as
heuristics to provide the ancillary and choice awareness benefits of ACDP to existing RM
optimization models.
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We test the revenue performance of our new AMD and AMR heuristics using PODS in
a wide range of scenarios. In a network with competing airlines and hundreds of flights,
our heuristics can increase total revenue by 2-3%. A consistent trend throughout our
simulations is that the forecasting and optimization model that maximizes total revenue
is often not the model that maximizes ancillary revenue, because models that maximize
ancillary revenue often do so to the detriment of ticket revenue.

Thesis Supervisor: Peter P. Belobaba
Title: Principal Research Scientist in Aeronautics and Astronautics
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Chapter 1

Introduction

Since the advent of discounted leisure fares in the 1970s, airlines have invested in revenue

management systems to maximize the proceeds from ticket sales. In the mid-2000s, however,

airlines began developing a secondary, ancillary, revenue stream by both unbundling their

fares and offering new products, services, and amenities for sale. Because these ancillary

services have been traditionally less important to overall profitability, or not offered at all,

airlines do not have a good understanding of how passenger decisions to purchase ancillary

services are related to decisions about itineraries and fare classes. As the number and

price of ancillary services grow, the availability and price of ancillary services may alter the

way in which passengers select itineraries and fare classes. In addition, airlines have little

understanding of how to account for this new and growing revenue stream within revenue

management systems to maximize total revenue, not just ticket revenue. This thesis explores

both topics.

This chapter is organized as follows. Section 1.1 provides the motivation and context for

the research, describing the development of ancillary services and their associated revenues,

and describing the airline systems involved in selling tickets and ancillary services. Section

1.2 describes the research objectives and contributions of this thesis. Section 1.3 outlines
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Table 1.1: Ancillary service categorization

Itinerary Trip Relationship

Baggage Hotels Loyalty
Seating Rental cars Co-branded credit card
Meals Destination activities Subscription clubs
Priority boarding
Lounge access

the remaining chapters of the thesis.

1.1 Motivation and Context

Passenger airlines sell more than just basic transportation of passengers. In the broadest

sense, all revenue from sources other than passenger tickets can be considered ancillary

revenue: revenue from performing maintenance for other carriers; revenue from transporting

mail, cargo, and freight; and non-ticket revenue from passengers, for example. This thesis

focuses on non-ticket revenue from passengers, or revenue from selling passenger-related

ancillary services.

Passenger-related ancillary services are optional services sold by airlines that are related,

in some way, to passenger transportation. These services can be roughly divided into three

groups: services related to a specific itinerary, services related to a particular trip, and

services related to a passenger's relationship with the airline. Table 1.1 summarizes this

categorization.

Itinerary-related services are directly related to a specific itinerary and are fulfilled as part

of transporting the passenger. Examples include checked and carry-on baggage, seating

upgrades and assignments, inflight meals and entertainment, priority boarding, and lounge

access. Upgrade revenues for Delta's additional legroom Comfort+ seating section provided
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$125 million in 4Q 2015, and the airline expected these revenues to grow.1 Spirit Airlines

earns more than $110 million, or 5% of total operating revenue, from seat assignment fees. 2

Checked and carry-on baggage fees provided nearly $1.5 billion for American Airlines in

2016, representing 2.8% of total operating revenue. 3

Trip-related services are related to a specific trip, but are not fulfilled as part of transporting

the passenger. Examples include hotel rooms, rental cars, and destination activities, which

provided 3% of Allegiant Airline's total operating revenue in 2016.1

Relationship-related services are not linked to a specific trip or itinerary, but occur as part of

a passenger's relationship with the airline. Examples include loyalty programs, co-branded

credit cards, and subscription discount clubs. United Airlines reported more than $3 billion

in revenue from frequent flyer mile sales (primarily related to a Chase Bank co-branded

credit card)."

1.1.1 Ancillary Revenue Reporting and Data Sources

The revenue impact of ancillary services is difficult to quantify given limited data and

reporting. Airlines in the United States are required to report financial information on Form

41 to the US Department of Transportation (DOT), which releases the data to the public.

The US DOT typically defines ancillary revenue as three line items within Form 41, Schedule

P-1.2: Reservation Cancellation Fees, Miscellaneous Operating Revenues, and Property -

Passenger Baggage Fees. These categorizations, however, provide only a limited view of

ancillary services: they contain several revenue streams that are not typically considered

as ancillary products (like reservation cancellation fees and compensation for collecting

airport Passenger Facility Charges). They also exclude several important ancillary revenue

'Delta Air Lines Earnings Call (4Q 2015)
2Spirit Airlines Form 10-K (2016)
3 US DOT Form 41, Schedule P-1.2
4 Allegiant Airlines Form 10-K (2016)
5 United Airlines Form 10-K (2016)
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streams, like onboard food/drink sales (categorized as Transport Related Revenue, which

also includes codeshare ticket revenue and contracted maintenance service revenue), loyalty

program income. (categorized as ticket revenue) and seat assignment fees (categorized as

ticket revenue). Outside of the United States, there are no comparable and consistent

governmental financial reporting requirements.

Financial statements for publicly-traded airlines (such as 10-K and 20-F Securities and

Exchange Commission (SEC) filings in the United States and equivalent filings in other

countries) provide some additional data on ancillary services. However, each carrier has

its own reporting methodologies and no two carriers use the same revenue categories. Low

cost and ultra-low cost carriers (LCCs and ULCCs) that specifically target ancillary reve-

nue tend to provide more detail about the revenue impacts of their ancillary services. For

example, Allegiant reports three different categories of scheduled service revenue in its 10-K

filings: ticket revenue, "ancillary air-related revenue," and "ancillary third-party revenue"

(charter operations are reported separately as well). Delta reports four different categories

of passenger revenue: mainline and regional ticket revenue; "loyalty programs;" administra-

tive fees, club, and on-board sales;" and baggage fees in its 10-K filings-a very different

system than used by Allegiant. Other carriers have other schemes, and an individual carrier

may change reporting practices over time, making comparisons between carriers and years

challenging.

In general, the only comprehensive global ancillary revenue reports are estimated and compi-

led by third-party consulting firms like IdeaWorks, by assessing 10-K and equivalent filings,

Form 41 data, press releases, and executive interviews to assemble estimates. IdeaWorks

therefore has a more holistic view of ancillary revenue than Form 41, but because of the

variety of data sources, is potentially also more variable. In addition, IdeaWorks specifically

attempts to include the impact of loyalty programs (e.g. sale of frequent flyer miles/points

to banks issuing co-branded credit cards); such revenues are not otherwise considered in

this thesis.
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1.1.2 Ancillary Service History and Trends

IdeaWorks estimates that the major US carriers collected more than $18 billion in passenger-

related ancillary revenue in 2015 (about 11% of total revenue), and that airlines around the

world collected $59 billion in ancillary revenue in the same year,6 far greater than the

global airline profit of $33 billion. 7 Although ancillary revenue is clearly important to

airlines today, it is a relatively new revenue stream that airlines have put substantial effort

into developing over the last ten years. Airlines have increased ancillary revenues both

by developing new products and by "unbundling," the practice of charging separately for

products or services that were traditionally included as part of a plane ticket. Unbundling

initiatives have typically been led by LCCs and ULCCs whose business models rely heavily

on revenue from ancillary fees.

Although no longer operational, People Express introduced checked baggage fees and paid

onboard meals for trans-Atlantic flights in the 1980s (Conrady, 2013). More recently, Ry-

anair in Europe and Allegiant Airlines and Spirit Airlines in the United States have trans-

formed into LCCs and ULCCs, with substantial increases in ancillary revenue (as shown in

Figure 1.1). Ryanair began the transition to low fares and no frills in the early 1990s, and

then began to grow ancillary revenues. By 1997, Ryanair obtained 5% of its revenue from

inflight sales, primarily from duty-free items. 8 Until the early 2000s, ancillary services (in

the form of inflight sales, destination car rentals, and other non-flight ancillary services)

provided about 9% of Ryanair's operating revenue.' Ancillary revenue grew through fiscal

year 2016 to 24% as the airline implemented fees for checked baggage, airport check-in,

flight notifications, seat assignments, and extra legroom seats.10

6IdeaWorks. (November 9, 2015). Airline ancillary revenue projected to be $59.2 billion worldwide in 2015
[Press release]. Retrieved from http: //www.ideaworkscompany.com/wp- content/uploads/2015/11/Press-
Release- 103-Global-Estimate.pdf

7IATA Economic Performance of the Airline Industry End-Year Report (2015)
8 Ryanair Initial Public Offering Prospectus (1997)
9 Ryanair Initial Public Offering Prospectus (1997); Ryanair Annual Report (1999-2001)
l 0Ryanair Form 20-F (2001-2016)
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Figure 1.1: Portion of revenue from ancillary services for Ryanair, Allegiant, and Spirit.
Source: Ryanair Annual Report (1999-2001), Ryanair Form 20-F (2001-2016), Allegiant Airlines Initial
Public Offering Prospectus (2006), Allegiant Airlines Form 10-K (2006-2016), Spirit Airlines Initial Public
Offering Prospectus (2012), Spirit Airlines Form 10-K (2010-2016).

Allegiant started its transformation to a ULCC, and began a concerted effort to increase

ancillary revenue, when it emerged from bankruptcy in 2002. In 2003, only 2% of total

operating revenue was derived from ancillary services." In 2006, the airline implemented

fees for checked baggage and for bookings made through the airline's website (as opposed to

bookings made at the airport) and ancillary revenue rose to 12% of total operating revenue.

The airline implemented fees for carry-on baggage in 2012; by 2016, 40% of Allegiant's

revenue came from ancillary services, as shown in Table 1.2.

Spirit Airlines began its transition to a ULCC in 2006. It implemented seat selection fees

in 2008, an online booking fee in 2009, and a call center booking fee in 2010. In 2010, Spirit

was one of the first airlines to charge customers for carry-on baggage. 12 These and other

charges increased Spirit's ancillary revenue from 14% of total operating revenue in 2008 to

46% in 2016.13

"Allegiant Airlines Initial Public Offering Prospectus (2006)
1 2 Spirit Airlines Initial Public Offering Prospectus (2012)1 3Spirit Airlines Initial Public Offering Prospectus (2012); Spirit Airlines Form 10-K (2011-2016)
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Table 1.2: History of ancillary revenue at Allegiant Airlines

Portion of total revenue
Year New ancillary services from ancillary services

2002 None 0%
2005 Seat assignment fees 8%
2006 Checked baggage fee, online booking fee 12%
2012 Carry-on baggage fee 30%
2016 Refinement of existing fees 40%

Source: Allegiant Airlines Initial Public Offering Prospectus (2006), Allegiant Airlines Form 10-K (2006-
2016).

Legacy network carriers have also adopted the ancillary fee model. Most US network carriers

implemented fees for checked bags in 2008 and 2009. By 2010, all US legacy carriers had

discontinued free domestic economy meal service, in favor of onboard food sales. Lufthansa

began charging for seat assignments on short-haul flights in 2013, and later expanded the

fees to its long-haul network. In 2017, United Airlines and American Airlines launched

basic economy tickets, which provide seating in the standard economy cabin but prohibit

carry-on bags (passengers must pay to check all baggage).14 Basic economy fares have since

spread to other North American and European airlines.

In addition to unbundling, airlines have been developing new services and products. Luft-

hansa launched the first Wi-Fi equipped flights in 2004, and Wi-Fi is now sold on many

flights worldwide. In 2010, Air New Zealand launched "SkyCouches," which are sets of three

economy class seats that convert into a bed for two passengers. In 2015, American Airlines

led US carriers in launching a premium economy cabin, which provides more legroom, wider

seats, and improved service (non-US carriers had previously offered premium economy).

Although many large airlines utilize ancillary fees, not all have completely unbundled their

product offerings. Some airlines have pursued a hybrid approach to bundling: offering a mix

of bundled and unbundled fares. For example, Delta Air Lines provides complimentary up-

grades to "preferred" seats to the highest value economy fare classes, while selling such seats
4 Delta introduced Basic Economy tickets in 2016, but includes complimentary carry-on bags. In 2018,

American Airlines dropped its basic economy carry-on prohibition.
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Figure 1.2: Baggage revenue for US network airlines
Source: US DOT Form 41, Schedule P-1.2.

to passengers in lower value fare classes. Other airlines, such as Qantas and Air Canada,

offer "branded" fares or bundles whose various restrictions and ancillary fee structures are

clearly marketed; the goal is to make clear to consumers the benefit of selling-up from the

lowest offered fare (Vinod and Moore, 2009). For more details on the evolution of ancillary

fees, see Garrow et al. (2012).

According to the US DOT definition of ancillary revenue, the impact of unbundling has

been a substantial increase in ancillary revenue. As shown in Figure 1.2, baggage-related

fees. for major US network carriers (including first and second checked bags, overweight

bags, oversize bags, and excess bags) increased by a factor of five between 2007 and 2010 as

these airlines unbundled fares. Baggage fees now account for nearly $1.5 billion per year for

American Airlines, and are equal to 3%-4% of ticket revenue for major US network airlines.

Ancillary revenue as a whole, as reported to the US DOT, has grown in the last decade

from 2% to 8% of total revenue, or from $2.2 billion to $15.0 billion per year, as shown in

Figure 1.3. As discussed above, these figures likely underestimate total ancillary revenue

production.
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Figure 1.3: Total ancillary revenue for US airlines, as reported to US DOT.
Source: US DOT Form 41, Schedule P-1.2.

IdeaWorks ancillary revenue estimates also include the significant financial impact of loyalty

programs, which are not otherwise considered in this thesis. Estimated total passenger-

related ancillary revenue for United Airlines in 2015, for example, was $6.2 billion, of which

$3.0 billion is attributed to the MileagePlus loyalty program (primarily through revenue

from a co-branded credit card). Sales of frequent flyer miles are estimated to provide 47%

of American's 2015 IdeaWorks ancillary revenue, and 64% of Delta's.1 5 IdeaWorks estimates

that ancillary revenues grew dramatically between 2008 and 2015, as shown in Table 1.3.

For carriers that were in the top ten in ancillary revenue production in both 2008 and 2015,

estimated ancillary revenues grew between 90% and 350%.

Although ancillary revenues have increased, empirical studies of add-on pricing suggest the

increases have led to decreases to base (flight) prices. Ancarani et al. (2009) use transaction

data for airlines, hotels, online retailers, and restaurants to demonstrate that increases in

add-on prices typically lead to decreases in base prices. Scotti and Dresner (2015) focus on

the airline industry and evaluate average fares, passenger traffic, and ancillary fees between

1
5 IdeaWorks Yearbook of Ancillary Revenue (2015)
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Table 1.3: IdeaWorks estimates of ten largest airlines by ancillary revenue (in billions).

2008 2015

Rank Airline Ancillary revenue Rank

1 American $2.2 1
2 United $1.6 2
3 Delta $1.5 3
4 Ryanair $0.8 4
5 Qantas $0.6 5
6 easyJet $0.5 6
7 JetBlue $0.4 7 1
8 Emirates $0.3 8 e
9 TAM $0.2 9
10 Alaska $0.2 10
Source: IdeaWorks Top 10 Ancillary Revenue Rankings (2015).

Airline

Jnited
American
)elta
Air France/KLM
Southwest

Ryanair
Lufthansa

asyJet.
Qantas
Alaska

Ancillary revenue

$6.2
$4.7
$3.8
$2.2
$2.1
$1.7
$1.5
$1.5
$1.2
$1.1

2007 and 2010. They find that increasing checked baggage prices results in lower average

base fares and passenger counts. Brueckner et al. (2015) also show a reduction in average

base fares when airlines implement baggage fees. Zou et al. (2017) find that, when a la carte

airlines compete against airlines that bundle checked baggage, there is a correlation between

the baggage price for the a la carte carriers and average fares for the bundled carrier.

Because ancillary services were previously not offered, or were only a minor component

of an airline's revenue and a passenger's cost to travel, they have not been extensively

analyzed. This thesis will examine the impact of ancillary services on passengers and on

airline revenue management systems.

1.1.3 Overview of the Airline Industry

Airlines offer networks of flights (which consist of one take-off and one landing) that serve a

variety of origin-destination (OD) markets (pairs of cities or airports where passengers begin

or end an air travel journey) and passenger types (i.e. business, leisure, etc.). Each market

has its own demand characteristics, and each passenger has their own budget, schedule,
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and quality preferences. Airlines leverage passenger heterogeneity to increase profits by

price and product discrimination: on each flight, airlines may offer several distinct cabins

of service (e.g. first class, business class, and economy class). Within each market and each

cabin of service, airlines offer a variety of different fare classes, or price points with purchase

and use restrictions. Typically, the most expensive fare class has no restrictions, while the

least expensive fare class is highly restricted. These restrictions may include a round trip

purchase requirement, a minimum and/or maximum stay requirement, a Saturday night

stay requirement, or a cancellation penalty. For example, when Delta was the only non-stop

carrier between Boston and Detroit, it offered the restricted fare structure shown in Table

1.4. Passengers wanting to purchase the lowest-value class V had to purchase round trip

tickets three weeks in advance with a Saturday night at their destination, and pay a penalty

to make changes or cancel the reservation. Airlines impose these restrictions on discount

fares in an attempt segment demand: restrictions force restriction-averse (but typically

high budget) business travelers to purchase more expensive, less-restricted tickets while

still allowing restriction-tolerant (and typically low budget) leisure travelers to purchase

less expensive discount tickets.

Not all airlines impose such extensive restrictions on their low-value fare classes, and airlines

tend to offer similar fare structures as their non-stop competitors. In 2014, Delta modified its

Boston-Detroit fare structure as JetBlue introduced new non-stop service. Delta eliminated

the Saturday night stay requirement and dramatically lowered its lowest-value fares-to $69

in V class and $99 in X class from $205 and $215, respectively (Belobaba, 2015).

In an airline network, each physical seat on each flight is a perishable asset that can be sold to

passengers flying in different markets and paying different fares. Typically, airlines establish

schedules and the fares discussed above far in advance of operating a flight; see Belobaba

et al. (2009) for an overview of the airline planning process. During the booking window,

when travelers are shopping, the airline's revenue management (RM) system determines

which fare classes to sell in each market at any given time. The optimization model inside
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Table 1.4: Restricted Boston-Detroit fare structure for Delta Air Lines in September 2013.

Fare One way Advance Change Round trip Minimum

class fare purchase Refundable fee required stay

Y $936 None Yes None No None
B $794 None No $200 No None
M $603 None No $200 No None

H $501 14 days No $200 No None
K $365 None No $200 Yes Sat Night
T $249 7 days No $200 Yes Sat Night
X $215 14 days No $200 Yes Sat Night
V $205 21 days No $200 Yes Sat Night

Source: Belobaba (2015).

the RM system attempts to offer the revenue-maximizing fares, considering both the supply

of seats on each flight leg and the demand within each OD market. The demand forecast

is generated based on historical booking data. More details about RM and forecasting

methods can be found in Chapter 4.

The booking window for a future flight departure begins up to 330 days before departure.

Conceptually, consumers purchase travel via a travel retailer, which could be an airline

website or call center, an online travel agent or meta-search (such as Expedia or Google

Flights), or other service. Retailers provided by the airline are direct booking channels;

those provided by others are indirect booking channels. A consumer provides the retailer

with a booking request, which consists of an origin, destination, departure dates, and desired

class of service. Direct booking channels send the booking request directly to the airline's

reservations inventory system, which returns a set of available options for the passenger.

As illustrated in Figure 1.4, indirect booking channels typically send the booking request

to a Global Distribution System (GDS), which combines information from three sources to

return a set of options for the passenger: schedules, from a third-party data source (typically

OAG, or Official Airline Guide); availability, from the marketing airline for each flight; and

fares, from another third-party data source (typically ATPCO, or Airline Tariff Publishing

Company). The retailer presents the set of options (from either the GDS or the airline)
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Figure 1.4: Airline distribution system schematic.
a travel retailer, who then passes the request to a
airline supplies schedules and fares/prices to OAG
to the airline is for fare class availability.

I
Travel Retailer

$96 7:15 AM - 9:57 AM
one way Delta

$103 jetBue 6:02 AM - 8:54 AM
one way JetBlue

$104 8:00 AM - 2:26 PM
one way American Republic Air..

-- Real time process

Consumers request travel options from
Global Distribution System. While the
and ATPCO, the only real time request

to the consumer, who then books one option, makes a new request, or leaves the system.

If the consumer books, the retailer notifies the GDS or airline, which issues a ticket and a

reservation.

Approximately 50% of bookings worldwide are made through a GDS, and therefore the

structure of GDSs has a significant impact on how airlines sell travel (Taubmann, 2016).

As GDSs were originally designed to sell tickets, they are anchored around fare classes-

availability is controlled at the fare class level, fares are filed at the fare class level, and

booking options are specific itinerary and fare class combinations. GDSs have limited ca-

pability to offer and sell ancillary services. For example, according to IdeaWorks, American

Airlines sells paid seat assignments, but not checked baggage, though Sabre GDS. Delta Air

Lines sells bundled fares and paid seat assignments through Amadeus GDS, only bundled

fares through Sabre GDS, and only paid seat assignments through Travelport GDS.16

1 6 IdeaWorks Yearbook of Ancillary Revenue (2016)
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The industry is in the process of replacing this workflow with New Distribution Capability

(NDC), which features several important changes. When NDC is fully implemented, GDSs

will no longer need to aggregate schedules, availability, and fares to assemble sets of booking

options-the GDS could request offers from airline offer management systems. These offers

would no longer necessarily be centered on a fare class-each offer could consist of an

itinerary, a set of zero or more ancillary services, various purchase/use restrictions, and a

single price.

The shift from a traditional distribution environment to NDC has significant implications for

airlines. Because NDC improve travel retailers' abilities to sell ancillary services, airlines

expect ancillary revenues to rise with the implementation of NDC. In addition, because

NDC could move away from fare class-centered availability control, airlines will be able

to develop offer management systems. NDC also allows more detailed and personalized

booking requests (including information such as frequent flyer number and marital status

in the initial booking request), and allows airlines to respond with individualized sets of

offers. At the limit, with NDC, each offer could be dynamically and personally constructed

and priced for each consumer.

1.2 Research Objectives and Contributions

This thesis address two primary research questions surrounding airline ancillary services.

First, it examines how the presence and/or price of ancillary services might affect the way

passengers make choices about air travel. Second, it investigates mechanisms for airlines to

effectively incorporate information about ancillary revenues into their revenue management

systems, to maximize the total combination of ticket and ancillary revenue.

These questions reflect two significant gaps in the literature. Knowledge about the choice

process(es) airline consumers use to select an itinerary and fare class in conjunction with

ancillary services is lacking. Although authors have studied passenger selection of airline,
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itinerary, and fare class or have studied valuation of ancillary services, and other authors

have studied consumer selection of bundled vs unbundled products, no research has integra-

ted these questions. How and when consumers consider the price and presence of ancillary

services in conjunction with other booking decisions has not been modeled.

Second, an effective optimization process incorporating ancillary revenues is lacking. Opti-

mizing for total expected contribution (i.e. the optimizer increment, discussed in Chapter 5)

leads to revenue losses in many airline simulations, but reportedly increases revenue for hotel

casinos. No formal proof of optimality exists under any set of assumptions, and no research

addresses which assumptions are most important in maintaining revenue performance.

No studies have connected ancillary-aware passenger choice with ancillary-aware optimiza-

tion and no research explains how different choice processes may affect revenue generation

or the optimality of any particular RM method.

This thesis addresses both knowledge gaps with three principal contributions:

1. Development of the Ancillary Choice Model framework for extending existing itiner-

ary/fare class choice models to incorporate ancillary services, while allowing passen-

gers to vary in their degree of knowledge about ancillary services (Chapter 3).

2. Development of a theoretical background for the existing Optimizer Increment and

simulation results illustrating why the approach does not provide consistent revenue

benefits (Chapter 5).

3. Development of the Ancillary Choice Dynamic Program (ACDP), a RM optimization

model that is both ancillary-aware and passenger choice-aware; development of two

associated heuristics, the Ancillary Marginal Demand (AMD) transformation and

Ancillary Marginal Revenue (AMR) transformation, that allow the benefits of ACDP

to be applied to existing RM optimization models; and development of additional

approximations and processes required the operationalize ACDP and the AMD/AMR
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heuristics (Chapter 6). Simulation results compare AMD and AMR against previous

models and show revenue benefits in a variety of environment (Chapter 7).

Together, these contributions create a better understanding of the impacts ancillary services

have on passengers and on airline pricing, revenue management, and distribution systems.

They suggest methods for airlines to leverage ancillary services to increase revenues, espe-

cially with the imminent development of NDC.

1.3 Thesis Outline

The remainder of this thesis is organized into two parts. Part I focuses on the behavioral

impacts of ancillary services and contains two chapters. Chapter 2 reviews the literature on

consumer behavior, discrete choice modeling, and passenger choice modeling and identifies

deficiencies in the manner in which previously published models handle ancillary services.

Chapter 3 presents a new Ancillary Choice Model, which describes two methods by which

passengers might integrate the presence and price of ancillary services into their itinerary

and fare class selection. The chapter also presents simulated booking and revenue impacts

of the proposed model.

Part II contains four chapters and focuses on revenue management methods that incorporate

ancillary services. Chapter 4 reviews the literature on pricing theories, revenue manage-

ment, forecasting, and distribution. Chapter 5 describes a previously-proposed ancillary-

aware RM method, the optimizer increment, and develops a theoretical background for the

approach in a limited setting. The chapter also explains why the optimizer increment is not

beneficial in more general settings. Chapter 6 presents the new Ancillary Choice Dynamic

Program (ACDP) for ancillary and choice-aware revenue management, as well as an An-

cillary Marginal Demand (AMD) transformation and Ancillary Marginal Revenue (AMR)

transformation that allow the benefits of new model to be incorporated into existing RM

systems. Simulated performance for the heuristics are included in Chapter 7 and show a
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revenue benefit in a variety of environments and networks, including competitive scenarios.

Finally, Chapter 8 provides a conclusion to the thesis, summarizing the key findings and

contributions, and suggesting future research directions.
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Part I

Impacts of Ancillary Services on

Passenger Behavior
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Chapter 2

Literature Review: Passenger

Behavior and Decision Making

As the number and value of ancillary services grows, so does the need to understand how

they affect airline passengers. As discussed in Section 1.1.2, airlines are currently employing

a variety of pricing and marketing schemes for ancillary services. A better understanding of

how passengers purchase ancillary services in conjunction with itineraries and fare classes

can further inform airlines on optimal pricing, bundling, and marketing strategies, as well

as on strategies for total revenue optimization, since the design of those strategies depends

on how ancillary valuations vary across different demand segments (Stremersch and Tel-

lis, 2002). With the advent of New Distribution Capability and the promise of increased

distribution flexibility, airlines will have more latitude to leverage their knowledge of the

passenger choice process to develop more customized offers and increase revenue and market

share, and the potential benefit of additional passenger choice knowledge will increase.

In this Part, we develop and assess an integrated model of passenger choice with ancillary

services, fare classes, and itineraries that could be used to assess potential pricing, bundling,

marketing, and total revenue optimization strategies. This chapter provides a review of the
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relevant literature, while Chapter 3 presents our Ancillary Choice Model. The remainder of

this chapter is organized as follows. Section 2.1 describes key characteristics of the passen-

ger choice problem. Section 2.2 reviews a framework for modeling discrete choice problems,

including general mathematical formulations. Section 2.3 describes relevant previous ap-

proaches to modeling passenger choice and to modeling the purchase of ancillary services,

both in the airline and the economics literature. Finally, Section 2.4 summarizes the key

gaps in the literature that our Ancillary Choice Model seeks to address.

2.1 Characteristics of the Passenger Choice Problem

The airline passenger choice problem-the set of tasks associated with evaluating (and

purchasing) an airline travel plan-is a discrete choice problem with consumer heterogeneity,

alternatives with complicated attributes, and very large choice sets.

Consider the example of two passengers shopping for air travel. At one extreme may be a

business executive traveling to an important away-from-home conference at an airport hotel.

Her destination, date, and arrival time are likely dictated by the conference schedule and are

not part of her choice process; she only needs to select a specific itinerary, booking class,

and set of onboard amenities. At the other extreme may be a college student planning

a summer vacation to Europe. His choice task will include the dimensions faced by the

executive, as well as possibly the selection of destination country/city, travel date, and

travel time. Figure 2.1 lists some of the dimensions that may be included in the problem.

The attributes of each alternative are potentially numerous and not necessarily easy to

measure. Obvious attributes include departure and arrival times, duration, number of

connections, and price, but airlines and itineraries may vary in other ways as well. In the

winter, a connection in Chicago may be less desirable than a connection in Dallas because

of Chicago's higher risk of disruption due to snow and ice. When destination (or origin) is

included in the choice problem, as in the case of our college student, two airports may be
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Destination Origin city
city and Date and airport
airport

Airline Itinerary Fare class Ancillary
Services

Figure 2.1: Possible dimensions in the airline passenger choice problem

perceived similarly if they are close geographically (i.e. London's Heathrow and Gatwick

airports) or if they offer similar destination activities or amenities (e.g. Spanish beaches

and Greek beaches).

Consider one aspect the passenger choice problem: the selection of an airline and a route

(a sequence of connection airports, without regard to the specific flights between those

airports) for a travel from San Francisco International Airport (SFO) to Boston Logan

International Airport (BOS). Between April and June 2015, US Department of Transpor-

tation data indicates that passengers actually traveled on at least 260 different airline and

route combinations, thus the number of alternatives is at least 260.1. When the problem

is expanded to cover itineraries and not just routes (i.e. considering the specific flights

between airports), the choice set grows, and when fare classes are also considered the choice

set grows again. De IMarcken (2003) reports that for a round trip from SFO to BOS and

back, constrained to only American Airlines flights connecting through Chicago O'Hare In-

ternational Airport (ORD) on the outbound and Dallas/Fort Worth International Airport

(DFW) on the inbound, had more than 25 million valid flight and fare combinations in

2003.

'US DOT Airline Origin and Destination Survey (DB1B) which is a 10% sample of all domestic tickets sold
in the United States.
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Harvey (1987) proposes simplifying passenger choice models to a set of sequential decisions

for both calibration and application. While studying the selection of airport and airport

access mode in the San Francisco area, he finds that access mode choice does not appear

to be made simultaneously with airport choice. This framework of simplifying the passen-

ger choice problem to a few simultaneous dimensions is used implicitly in many models,

including ours.

In addition, because alternative attributes are numerous and because airlines are continually

adjusting their pricing and marketing strategies, the problem is characterized by limited

knowledge on the part of decision makers. Evidence indicates that airline passengers are

not always knowledgeable about ancillary services: a study of US adults who had flown at

least once in the previous year showed that 55% of travelers were surprised by additional

ancillary fees after their ticket purchase, and that 47% found it "very difficult or nearly

impossible" to compare the total cost of travel (including desired ancillary fees) across

different airlines and itineraries (Open Allies, 2014, Exhibit 1, pg. 1-2). In studies on the

perceived fairness of ancillary services, data from travel agent customer surveys shows that

baggage fees, particularly carry-on bag fees, generate a sense of "betrayal" amongst airline

customers (Chung and Petrick, 2013; Tuzovic et al., 2014), and the Open Allies (2014,

Exhibit 1, pg. 2) survey found that 81% of respondents believe that airline ancillary fees

are "unfair or deceptive."

Limitations in knowledge or awareness are also found in a variety of empirical pricing stu-

dies outside of the airline context, with several studies providing evidence that consumers

cannot accurately compare equivalent combined and partitioned/unbundled prices. John-

son et al. (1999) demonstrate that consumer perceptions of a two-product offer improve as

price information is bundled and as discount information is unbundled, in accordance with

prospect theory. Chakravarti et al. (2002) and Morwitz et al. (1998), however, show that

consumers use may heuristics to compute the total cost for product offers, and that the

heuristics tend to underestimate the total cost of a partitioned offer. Morwitz et al. (1998)
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suggest that consumers may even ignore secondary pricing components completely to re-

duce their information processing effort. Xia and Monroe (2004) find that as the number

and value of partitions increases, consumers may begin to overestimate the total cost of a

partitioned offer. See Greenleaf et al. (2016) for other behavioral impacts of partitioned

pricing.

Finally, as suggested above, consumers shopping for air travel have a variety of trip purposes

and preferences. These different demand segments may be based on travel purpose or

perceived value of transportation. Kothari et al. (2016) subdivide the business and leisure

segments by class of service and as a visitor or resident. Schwieterman (1985) suggests three

segments for "highly discretionary consumers" who travel for personal reasons and alter

their travel plans to obtain a low fare, "moderately discretionary consumers" who cannot

comply with minimum stay requirements, and "non-discretionary consumers" who do not

compromise on schedule convenience. Belobaba (1987) proposes a four-segment model, with

each segment corresponding to a combination of high/low price sensitivity and high/low

time sensitivity. For example, a time-sensitive, price-sensitive consumer has a preferred

departure time, but will make some schedule concessions to obtain lower fares. (C.arrier

(2008) notes that as the number of segments increases, the ability to deterministically

assign a travel to any individual segment decreases, and that a probabilistic approach may

be more appropriate. Carrier (2008), Teichert et al. (2008), and Bruning et al. (2009)

all develop probabilistic membership models with two to five price, quality, and schedule-

oriented segments. A sophisticated passenger choice model must support variations in

demand segments.

The high problem dimensionality, limitations in decision maker knowledge, and heteroge-

neity of preferences makes accurately modeling the passenger choice problem challenging.
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2.2 Framework for Discrete Choice Modeling

Discrete choice models predict the decision of an individual faced with a choice task-such

as the selection of an airline ticket. In this section we review key concepts in the general

choice modeling literature, following the ideas of Ben-Akiva and Lerman (1985). They

view a choice as the outcome of a multi-step process that includes with problem definition,

generation of alternatives, evaluation of alternative attributes, and application of a decision

rule.

Problem definition includes an assessment of the problem dimensions to include, which, in

the passenger choice problem, could be any of the dimensions in Figure 2.1. Generation

of alternatives refers to the process of determining possible options from which to choose.

These options must be known to the decision maker and must be feasible for the decision

maker to select. Each alternative has a variety of attributes (such as price, schedule, quality,

etc. in the context of choosing an airline ticket); the decision maker must assess each of the

attributes she intends to use when applying the decision rule. The set of alternatives for

any individual decision maker is the choice set.

2.2.1 Decision Rules

Decision rules govern how the assessment of alternative attributes leads to a choice outcome.

Many theoretical decision rules have been proposed. The simplest is the dominance rule,

which states that the decision maker will choose the alternative that is best in all attributes.

Relaxing the requirement for strict dominance leads to a threshold rule or lexicographic rule.

Under a threshold policy, an individual eliminates any alternative with attributes worse than

his or her threshold level (which may be deterministic or stochastic). Threshold rules do not

typically result in a unique alternative, so other decision rules must also employed. Under a

lexicographic policy, an individual selects the alternative(s) that are best according to one

single (most important) attribute. If multiple alternatives are chosen, the decision maker
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considers the best according to the next most important attribute. This process continues

until only one alternative is selected.

Dominance, threshold, and lexicographic rules are examples of non-compensatory decision

rules. A compensatory rule, on the other hand, states that decision makers will weigh each

attribute against all other attributes, making trade-offs between various attributes. Under

a compensatory rule, the decision maker chooses the alternative with the greatest utility,

where the utility of each alternative is some weighted function of the alternative's attributes.

In practice, these theoretical decision rules could be combined such that decision makers are

non-compensatory in some aspects, but compensatory in others. Decision makers know al-

ternative attributes either deterministically or stochastically. Finally, decision makers may

consider all attributes at the same time (simultaneously) or in groups (sequentially, as in

Harvey (1987)). In a simultaneous approach, attributes from all dimensions are conside-

red and, assuming utility-maximization, the combination of all dimensions with the highest

total utility will be selected. In a sequential approach, groups of attributes are evaluated in-

dependently; no attributes from other groups are included in the utility function. Sequential

models are often used when the choice process can be decomposed into multiple different,

somewhat independent, dimensions. Simultaneous and sequential decision processes result

in different types of utility maximizing behavior: simultaneous decisions maximize utility

globally (over all alternatives), while sequential decisions maximize utility locally (within

each group/dimension).

2.2.2 Rationality

In their simplest form, the theoretical models of the preceding section assume that con-

sumers behave rationally: they use "a consistent and calculated decision process" with

"consistent and transitive preferences" (Ben-Akiva and Lerman, 1985, pg. 38). In classic

economics, rational actors are assumed to assess alternatives carefully, correctly, and with
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full information.

Concerns about this perfectly intelligent model were raised early, with claims of "a complete

lack of evidence" that actual human behavior in any sort of complex choice environment

followed the classic economic model (Simon, 1955, pg. 104). Instead, Simon proposed that

humans have limited knowledge and calculating abilities-a model referred to as bounded

rationality. This more restricted view of human ability may include limitations in assessing

risky outcomes and performing mental calculations (Kahneman and Tversky, 1979), in as-

sessing time (Schiffman, 1990), in knowledge and awareness (Simon, 1989), or in accounting

for the impact of emotional and physical conditions on preferences (Loewenstein, 1996).

Kahneman and Tversky (1979) propose prospect theory, which states that consumer deci-

sions are made not by comparing absolute values of each option, but by comparing gains or

losses relative to some reference point, and that gains are valued with diminishing margins of

positive returns while losses are valued with diminishing margins of negative returns. Thaler

(1985) utilizes prospect theory in developing the principle of mental accounting, which sta-

tes that people "track" different types of spending or consumption in different "accounts,"

which are not generally allowed to cross-subsidize eachother. McFadden (1999) provides

an extensive review of rationality and its limitations. As discussed above, there is sub-

stantial evidence of bounded rationality, in both the airline and general marketing/pricing

literature.

2.2.3 Mathematical Formulations

Threshold and Dominance Models

Threshold and dominance models are common in the economics literature. In the classic

work of Adams and Yellen (1976), for example, consumers choosing between two products

(or a bundle of the two products) select the option that maximizes their surplus, defined as
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the difference between their reservation price (or valuation of the product(s)) and the price

charged by the firm; this process is subject to the threshold that surplus must be positive.

These economic models are typically focused on more providing a platform for analyzing

pricing strategies by the firm and their consequences on consumer welfare, rather than on

providing a sophisticated view of how consumers make decisions.

Random Utility Models

A commonly employed mathematical model of choice behavior is a random utility model

(RUM), in which a decision maker assigns a utility to each alternative and then selects the

alternative with the highest utility. The utility is typically decomposed into a determinis-

tic systematic utility, which can be observed and measured by an analyst and is a direct

function of alternative attributes, and a stochastic error term, which accounts for unobser-

ved attributes of alternatives, preference variations amongst consumers, and measurement

errors by the analyst. The distributions and covariances of the error terms affects choice

probabilities. The classic multinomial logit model has independent and identically distri-

buted type-I extreme value error terms and rational decision makers. A typical use of a

multinomial logit model decomposes systematic utility into a linear function of preferences

and alternative attributes:

u>~+ V~=3X2 exp(V )

U, = V + Ei V := OXi Pr(i) = p, i
ri 'n exp(Vj)

where Ui is the utility of alternative i, Vi is the systematic utility, Ei is the error term,

# is a vector of preferences, Xi is a vector of attributes, and Pr(i) is the probability the

decision maker selects alternative i (out of n possible alternatives). The variance of the

error terms Ei is 7Ir2 /6pA 2 , where p is the scale and is typically normalized to 1. At the

extreme, a model with infinite scale (zero variance) error terms is deterministic; a model
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with zero scale (infinite variance) error terms results in equal choice probabilities regardless

of alternative attributes.

Multinomial logit models are convenient because they have closed form expressions for choice

probabilities and therefore for maximum likelihood estimation of the (typically unknown)

preferences /. However, the assumption of independent and identically distributed error

terms limits their flexibility. In particular, multinomial logit models misspecify choice pro-

babilities when some alternatives share unobserved characteristics (as in the "red bus, blue

bus" problem). In addition, the models are inherently compensatory and rational.

Extensions to the multinomial logit specification alleviate some of these concerns. These

extensions may introduce correlations amongst the error terms within groups of alternatives

(nested logit, see Ben-Akiva (1973)) or allow decision makers to consider only a portion of

the choice set (probabilistic choice multinomial logit, see Swait and Ben-Akiva (1987)).

The most flexible and general extension is a mixture of logit model, in which choice proba-

bilities follow traditional multinomial logit model conditional on a vector of parameters 3,

which is distributed according to some distribution G(O, 6) (where 0 is a vector of parame-

ters controlling the distribution G):

V (O) = fX Pr(i 1 8) = Z xp V ) Pr(i) JPr(i I 3)G(o, 6)dO

McFadden and Train (2000) show that, if correctly specified, mixture of logit models can

approximate any other random utility choice model to arbitrary precision. This allows

mixture of logit models to capture latent class membership (in which each consumer belongs

with some probability to one of several classes, or segments; classes differ in the form of their

utility equation and/or in the set of alternatives considered), random preference coefficients

(which explicitly model the variation of preferences across the population), and some of

the cognitive and behavioral deviations from classic rationality identified above. Mixture
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of logit models allow a richer representation of the choice process, and have found use in

several sophisticated models of airline passenger choice, as described below. The Ancillary

Choice Model developed in Chapter 3 is a mixture of logit model. For more detail on

mixture of logit models, see McFadden and Train (2000), Walker and Ben-Akiva (2002), or

Train (2009).

2.3 Previous Approaches

Aspects of the passenger choice problem with ancillary services have been studied in the

airline, product bundling, and product add-on literatures, including work by economists

and marketers. This section reviews relevant work in all three areas.

2.3.1 Airline Passenger Choice

Choice modeling applied to passengers in the airline industry typically utilizes random

utility models, with varying degrees of complexity. Previous work has studied passenger

choice of an itinerary, then of an itinerary and fare class, and finally of ancillary services.

Itinerary Choice Models

Itinerary choice models describe the selection of an airline and itinerary by a passenger,

given a pair of origin and destination airports. These models typically include fares and

departure and arrival times as choice determinants. Smith et al. (2007) utilize a latent-

class mixture of logit model, while excluding dominated alternatives from the consideration

set. Hess and Adler (2011) estimate a multinomial logit model using stated preference

data, considering aircraft size and number of connections in addition to fare and departure

and arrival times. A more nuanced view of connections is provided by Theis (2011), who

develops an integrated choice/latent variable mixture of logit model to incorporate traveler
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perceptions about risk and stress.

Itinerary and Fare Class Choice Models

Several authors go beyond the selection of airline and itinerary to include the selection of fare

class as an itinerary and fare class choice model. Algers and Beser (2001) combine stated

and revealed preference datasets in a nested logit formulation to predict fare class selection

within three Scandinavian markets. Carrier (2008) develops an approach for collecting the

dataset necessary to estimate a revealed preference itinerary and fare class choice model.

He utilizes a latent class mixture of logit formulation to account for different trip purposes.

Hopperstad (2005) proposes a model, used the Passenger Origin-Destination Simulator,

for the .selection of airline, itinerary, and fare class. The model is a mixture of logit with

an infinite scale parameter, random coefficients, latent classes, and incorporates threshold

decision rules. Consumers within a particular market assess each available itinerary and

fare class option on all airlines serving that market and select the itinerary and fare class

combination that maximizes their trip utility (minimizes disutility), given their travel prefe-

rences, subject to a budgetary constraint 0 ,, on out-of-pocket costs. Passengers who find no

combinations within their budget do not fly. For each itinerary and fare class combination,

utility is a function of fare fik, a disutility for #CNX connecting (if applicable, 6 NX 1;

0 otherwise), a disutility #DTW for departing or arriving outside of a preferred window (if

applicable XTW is the total deviation from desired time window), and disutilities 3 Ri for

coping with fare class restriction j (if applicable, kR = 1; 0 otherwise). Mathematically,

the utility of itinerary i and fare class k for decision maker n is:

Unik = fi -- X _DTWXDTW - R 3

Unik fik ik n nik 3nV i
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(i*,k*) = arg max Unik
(i, k): fi k < O

The preferences 0 are randomly distributed (e.g. 13Th Of); the budgetary constraint is

drawn from a shifted exponential distribution and disutilities from a normally distribution;

the distribution means and variances may vary based on latent class (demand segment)

membership.

Ancillary Valuation Models

In the airline context, the impact of ancillary services on passenger choices is poorly un-

derstood. Most ancillary research has used discrete choice models to study how passengers

value ancillary services-not how passenger decide to purchase ancillary services in the

context of the rest of their travel decisions. For example, Balcomnbe et al. (2009) use a

stated preference survey to estimate willingness-to-pay for meals, beverages, seat legroom,

seat width, and in flight entertainment; Mumbower et al. (2015) use a revealed preference

dataset to assess the factors that influence purchase of extra legroom seats on JetBlue.

Garrow et al. (2007) incorporate the value of legroom into a study primarily focused on

how the number and type of connections affect itinerary choice, and Espino et al. (2008)

integrate meals into a study of airline choice (modeling meals a a quality differentiator

between airlines). Neither model, however, incorporates separate, optional sales of the

service (legroom or meals), so the results do not indicate how ancillary purchase decisions

might be related to itinerary purchase decisions.

2.3.2 Bundled Goods

Economists typically assume that consumers perceive the utility of a bundle of goods as

equal to the sum of the utilities of its components (e.g. Adams and Yellen (1976)). In
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the marketing literature, how ver, more complex assumptions are made. Ben-Akiva and

Gershenfeld (1998) develop a probabilistic choice nested logit to model how consumers select

telephone ancillary services (call waiting, caller ID, etc.) from a menu containing bundled

and ' la carte items. Gaeth et al. (1990) propose that consumers evaluate the utility of a

bundle according to some average of the utility of each component; Yadav (1994) provides

some empirical evidence to claim that consumers evaluate bundles in a multi-step process,

determining a "dominant" good upon which to anchor their valuation and then adjusting

the valuation up and down based on other components of the bundle.

2.3.3 Add-ons

In the economics literature, when one product (such as in-flight internet access) only provi-

des value to a consumer if purchased in conjunction with another product (such as a plane

ticket), it is referred to as an add-on (Lal and Matutes, 1994; Ellison, 2005; Fruchter et al.,

2011; Geng and Shulman, 2015). Specific to the airline industry, Allon et al. (2011) show

that a monopolist should unbundle baggage fees to reduce the airline's operating cost, and

that airline baggage policies are consistent with cost reduction but not demand segmen-

tation, based on the authors' model of airline demand segments. Brueckner et al. (2015)

model consumers as perfectly informed and rational and show that, with idiosyncratic chec-

ked bag preferences, a monopolist can increase profits by simultaneously unbundling and

lowering base fares; the optimal unbundled base fare plus checked bag price may be lower

or higher than the original bundled fare. Cui et al. (2016) show that, with two demand

segments, unbundling is profitable for a monopolist airline if it can price discriminate for

fares and higher fare consumers are less likely to purchase the add-on; when the airline

cannot discriminate, unbundling is profitable if higher fare consumers are more likely to

purchase the add-on. As above, the conclusions of these papers are dependent on models

of consumer behavior, and determining the applicability of the results to any particular

situation requires understanding how airline passengers view and value ancillary services.
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Two notable papers, although not airline-focused, develop models that explicitly incorpo-

rate consumer limitations in knowledge/awareness of add-on services when selecting a base

goods. Gabaix and Laibson (2006) develop an analytical model examining the optimal pri-

cing and consumer welfare implications of add-on pricing when firms can shroud add-on

prices. The authors define a shrouded attribute as "a product attribute that is hidden by

a firm, even though the attribute could be nearly costlessly revealed," drawing parallels

to the add-on prices of airlines (as well as other business) that are difficult to determine

(Gabaix and Laibson, 2006, pg. 512). They allow consumers to be sophisticates, who are

classically rational, or myopes, who are boundedly rational. In particular, myopes do not

(always) account for the price of the add-on when selecting a base good, and never account

for a shrouded add-on price.

Sliuhnai and Geng (2013) also develop an analytical model for add-on pricing for two

firms. In addition, their model incorporates asymmetric quality in products between the

firms and allows consumers to have a firm preference. Base consumers have no need for

the add-on; they choose the firm that maximizes a base good utility (given by base good

quality net of base good price). Boundedly rational consumers do value the add-on, but

(erroneously) believe that it does not have an additional cost. They select the firm that

maximizes a base good utility (base good quality net of base good price) plus the add-on

quality. Knowledgeable consumers know add-on prices; they choose the firm that maximizes

total utility (base good quality net of base good price plus add-on good quality net of add-on

good price).

In both models, the presence of myopic/boundedly rational consumers results in different

optimal pricing schemes by the firms than would be the case with all classically rational

consumers, illustrating the importance of accounting for cognitive bounds: Gabaix and

Laibson (2006) show that unlike previous models (e.g. Lal and Matutes (1994) and Ellison

(2005)), if there is a sufficiently high portion of myopes, shrouding can be a price equilibrium

even when advertising (which represents the cost of unshrouding) is free. In addition, in
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sudh air equilibrium, there is a "curse of debiasing:" neither firms nor sophisticates have

an incentive to educate (or debias) myopes: decreasing the portion of myopes increases

equilibrium base good prices (which is bad for the existing sophisticates) and decreases firm

profits (which is bad for firms).

Although these approaches provide mechanisms to incorporate add-ons and bounded ratio-

nality in choice models, they have several simplifications which limit their direct applicabi-

lity to the airline passenger choice problem. All consumers in the models purchase the base

good from a firm (regardless of price) and the firm is limited to one add-on. In the Gabaix

and Laibson (2006) model, all uninformed myopes purchase the add-on regardless of cost;

all other consumers avoid the add-on at a fixed, deterministic cost. In Shulman and Geng

(2013), all non-base consumers value the add-on for a given firm at a fixed, deterministic

value. Quality is modeled as a single exogenous and deterministic attribute. All consumers

have the same deterministic quality assessments for the goods and the add-ons, and the

firm with the higher-quality base good also has the higher-quality add-on.

2.4 Key Literature Gaps

Our model, described in Chapter 3, combines concepts from previous airline itinerary choice

models as well as add-on models.

Although previous work has studied factors that influence selection of itineraries and/or fare

classes, and valuation of ancillary services, none of the models described above explicitly

connect decisions about ancillary services to decisions about itineraries and fare classes.

In addition, the airline passenger choice models all assume classically rational behavior by

passengers. Finally, ancillary services differ from other dimensions in the passenger choice

problem because they impose additional out-of-pocket costs, are optional, and require the

purchase of a (base) itinerary/fare class. Thus, none of the models described above can be

used directly for the ancillary choice problem. Our model extends itinerary/fare class choice
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Table 2.1: Summary of relevant choice modeling literature

Ancillary Bounded
Base good Itinerary Fare class or add-on rationality

Passenger Choice
Espino et al. (2008) V
Balcombe et al. (2009)
Munbower et al. (2015)
Smith et al. (2007)
Hess and Adler (2011)
Theis (2011)
Algers and Beser (2001)
Hopperstad (2005)
Carrier (2008)

Economics
Lal and Matutes (1994)
Ellison (2005)
Fruchter et al. (2011) /
Geng and Shulman (2015) / /
Gabaix and Laibson (2006) / / /
Shulrnan and Geng (2013) /

This Work
Ancillary Choice Model / / /

models to include the ancillary service dimension and to support non-rational behavior and

decision making.

In the context of the add-on pricing literature, we extend base-good/add-on choice models

to incorporate threshold and compensatory decision rules, to include variations in consumer

preferences, and to allow itinerary/fare classes to differ in multiple dimensions. Table 2.1

summarizes the key differences between our model and previous work.
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Chapter 3

Ancillary Choice Model

In this chapter we develop, calibrate, and assess a passenger choice model that describes

how consumers select ancillary services in conjunction with an airline itinerary and specific

fare class.' We propose that consumers are either classically rational, which we term si-

multaneous, or boundedly rational, which we term sequential. Simultaneous consumers are

modeled to choose an itinerary, fare class, and set of ancillary services at the same time;

sequential consumers are modeled to choose an itinerary and fare class in one phase and

then choose a set of ancillary services in a second phase. We also assess the sensitivity of

revenues and bookings to various ancillary fee structures, showing that ancillary bundling

can result in buy-up or buy-down by simultaneous passengers, suggesting a potential benefit

for integrating ancillary services into revenue management processes.

Portions of this chapter were previously published as Bockelie, A. and Belobaba, P. (2017). Incorpora-
ting ancillary services in airline passenger choice models. Journal of Revenue and Pricing Management,
16(6):553-568.
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3.1 Model Formulation and Definitions

The Ancillary Choice Model (ACM) introduced in this chapter is an integrated itinerary,

fare class, and ancillary service passenger choice model that extends existing itinerary and

fare class choice models. The ACM allows consumers to differ in their level of knowledge

about ancillary services and allows fare classes and itineraries to differ in their ancillary

offerings and prices.

We define ancillary services using the terms of Shugan et al. (2017). Namely, ancillary ser-

vices are those that have a value less than the core transportation product, are occasionally

bundled with the core, and, when unbundled, can be purchased only in conjunction with the

core product. In addition, we restrict our attention to services that are "itinerary-related"

or "trip-related," as defined in Chapter 1.

In the ACM, consumers are assumed to fall into one of two behavior types based on their

knowledge of airline ancillary service policies and prices. We define simultaneous consu-

mers as those who integrate information about ancillary services into their decision about

itineraries and fare classes, and thus behave as classically rational consumers similar to so-

phisticates in Gabaix and Laibson (2006) or knowledgeable consumers in Shulman and Geng

(2013). We define sequential consumers, on the other hand, as those who are boundedly ra-

tional in knowledge, awareness, or computing ability. Our sequential consumers correspond

to Gabaix and Laibson's myopes or Shulman and Geng's boundled rational segment, and

do not consider ancillary service differences until after selecting an itinerary and fare class.

In the terms of Morwitz et al. (1998), simultaneous passengers perfectly calculate prices (or

generalized costs) of all alternatives, while sequential passengers (initially) ignore ancillary

prices completely.

Table 3.1 summarizes the notation. In a given origin-destination market, one or more

airlines offer one or more itineraries (indexed by i), which may be non-stop, direct, or

connecting. Each airline offers one or more fare classes for each itinerary (indexed by k),
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which may be subject to restrictions on their use and/or purchase. Together, the set of all

possible itinerary and fare class combinations within the market (including the option to not

fly) is g. Each airline operates a revenue management system, so not all combinations are

available to all consumers; when consumer n arrives, she is presented with the set g C g

of available combinations. Itinerary and fare class attributes, including fares, as well as the

availability set, are determined by the airlines and assumed to be exogenous.

Each airline also offers zero or more ancillary services for each itinerary and fare class

combination. Ancillary services are bundled for notational convenience; each consumer

purchases exactly one bundle m, which could be the bundle containing no ancillary services. 2

Each itinerary/fare class combination (i, k) offers the set of ancillary bundles Mik, which

is determined by the airlines and assumed to be exogenous.

Over the course of an Initial Booking Phase (IBP) and a Follow-up Phase (FUP) each con-

sumer chooses a combination of itinerary, fare class, and ancillary bundle (i, k, m), with the

possibility of selecting the "combination" corresponding to not flying. The IBP corresponds

to decisions made when the ticket is initially purchased; the FUP corresponds to decisions

made later. It is important to note that these phases represent the timing of purchase

decisions, not necessarily the act of making the purchase itself.3

Consumers of both behavior types select the utility-maximizing combination from their

choice set (as described below). The utility of any alternative is decomposed into an itine-

rary/fare class utility and an ancillary utility. The itinerary/fare class utility is provided

by an existing itinerary/fare class choice model referred to as the "kernel." Although the

kernel may take various forms, the ancillary utility component is an infinite-scale random

coefficient mixture of logit model with threshold rules (see Chapter 2).

Each consumer has an out-of-pocket budgetary limit of 0, > 0, drawn from distribution E,
2 This modeling notation is not meant to imply that ancillary services must be marketed to consumers or
priced as bundles.

3 Some airlines and sale channels do not allow passengers to purchase ancillary services at the same time as
purchasing a ticket; this technological limitation does not prohibit simultaneous choice behavior.
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as well as a disutility 03 , ;> 0 experienced when foregoing ancillary service s (drawn from

distribution Q,). Consumers also have preferences about itinerary and fare class attributes

(such as number of connections, airline, etc.). Multiple consumer segments (such as business

or leisure) may be present, each with different budget and disutility distributions. However,

for notational convenience, in this section we do not include a consumer segment index.

3.1.1 Sequential Passengers

A sequential consumer makes a decision about an itinerary and fare class during the IBP

without regard to ancillary services, using the fare class/itinerary kernel, such as Hopper-

stad (2005). The budgetary limit constrains out of pocket expenses incurred during the

IBP. Subject to the budgetary limit and RM availability, the consumer selects the utility-

maximizing itinerary and fare class combination. The utility Unik for sequential consumer

n of itinerary i and fare class k is given by the itinerary/fare class choice model. Every

passenger also has the option of not flying, which has utility Unoo = -R and fare foo = 0.

When -R = -oo, the no-fly option is the least desirable alternative, but the zero fare

ensures that it is always included in the choice set.

At the time passenger n makes a booking request, the distribution system returns the

"availability set" of itinerary and fare class combinations available for purchase g, including

the option to not fly. The passenger, however, only considers the set of combinations Qn(On)

(the "consideration set") with an out of pocket cost within their budget:

Qn (On) {(i, k) G 9n : fik On}I

During the IBP, passenger n chooses the utility-maximizing combination (i*, k*) from

Qn(O,):
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Table 3.1: Summary of ancillary choice model notation

Counts
N Number of consumers in market
S Number of ancillary services in market

Indices
n Consumer index
i Itinerary index
k Fare class index
s Ancillary service. index
m Ancillary bundle index
i* Itinerary selected by consumer n
k* Fare class selected by consumer n
m* Ancillary bundle selected by consumer n

Consumer Preferences
On Consumer n budgetary limit, On - E
Ons Consumer n disutility for forgoing ancillary service s, /3, ~ ,-

Availability

g

Qn (O)
Ln(On)
Mik

Utility

Unikm'

Unik
-R

Alternative

fik

Pikm
6ims

and Consideration Sets
Set of all possible itineraries/fare class combinations, including the option to
not fly
Availability set, set of itineraries/fare classes available to consumer n, gn c 9
Consideration set, subset of gn with sequential OPC less than or equal to On
Consideration set, subset of g with simultaneous OPC less than or equal to On
Set of ancillary bundles applicable to itinerary i and fare class k

Utility for consumer n of itinerary i, fare class k, and ancillary combination m
Utility for consumer n of itinerary i and fare class k, excluding ancillary services
Utility of no-fly option, typically set to -R = -oo

Attributes
Fare of itinerary i, fare class k
Price of ancillary bundle m for itinerary i, fare class k
1 if ancillary service s is forgone for itinerary i ancillary bundle m; 0 otherwise

60



(i, k*) = arg max Unik
(i,k)EQn

After selecting (i*, k*), sequential consumers enter the FUP to evaluate ancillary services.

The consumer evaluates the utility Uni-k*m of each bundle m of purchasable services for

their selected itinerary and fare class from the set of all bundles Mi*k*, which typically

includes the bundle of no ancillary services:

S
Uni* k* = - E -p - Pi* km - soims

s=1

where Pikm is the price of ancillary bundle m when purchased for itinerary i in class k;

6 ikms is a binary indicator variable with value 1 if ancillary service s is foregone (i.e. neither

purchased nor received complimentary) by passengers selecting bundle m with itinerary i

and class k, and value 0 otherwise. Note that for the bundle containing no ancillary services,

the consumer will experience no additional ancillary fee but will experience a disutility for

every ancillary service.

Consumer n selects the combination of ancillary services m* that maximizes their utility:

m* = arg max Uni*k*mn MM1 * n n

If Mik includes all possible bundles of ancillary services and no-purchase options, and if

ancillary services are priced individually (i.e., Pikm is the sum of the prices of all included

services, without any discounting), a sequential consumer will never purchase an ancillary

service if its price is greater than their disutility for that service.
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The probability that a sequential passenger selects a particular itinerary, fare class, and

ancillary service -combination is a function of the passenger's itinerary/fare class utility,

7aicillaryservice disutilities, budget, and the availability set. The itineraries and classes in

the availability set are-outputs of the various airlines' revenue management systems, and are

random variables with unknown distributions. The conditional probability Pr((i, k) I gn)

of a passenger choosing itinerary and fare class combination (i, k) given an availability set

gn is:

Pr ((i, k) 9 4n) = Pr ((i, k) Qn (On)) fo (On)dOn

where fo(On) is the probability density function of a passenger's budgetary limit. Together,

On and consideration set Qn(On) form a latent class for each passenger. Given membership

within a particular class (i.e., given that a passenger can afford a particular set of itinerary

and fare class combinations), the probability of choosing itinerary and fare class combination

(i, k) is:

Pr Unik max Cn'k (i, k) EQn (On)
Pr ((i, k) Qn (On)) = (i',k')EQn(O,)\(i,k)

0 (i, k) Qn Q(On)

The probability that a sequential passenger purchases ancillary service combination m,

given that they have selected itinerary and fare class combination (i, k) is:

Pr Unikm M max Unikm') m E Mik
Pr (^m (i, k)) = 'EMik Vm

0 m Mik

Thus, the probability that a sequential passenger purchases itinerary i, fare class k, and

ancillary combination m, given an availability set, is:
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Pr ((i, k, m) 9n) j Pr (m (i, k)) Pr ((i, k) I Q,(0,)) fo(O,)d9,

3.1.2 Simultaneous Passengers

A simultaneous consumer selects an itinerary, fare class, and set of ancillary services during

the IBP. Because the IBP decision includes ancillary services, those prices are included in

the budget-constrained out of pocket cost. The utility Unikm for simultaneous consumer n

of itinerary i, fare class k, and combination of ancillary services m combines the kernel and

ancillary contribution:

S
Unikm = Unik - Pikm - ( Ins'ims (3.1)

s=1

Again, every passenger also has the option of not flying, which has utility Unooo = -R

and fare foo = 0.4 When passenger n makes a booking request the distribution system

returns availability set g. Each passenger n will choose the utility-maximizing combination

(i*, k*, m*) from the consideration set Ls(64), which includes all available itinerary, fare

class, and ancillary service combinations with an out of pocket cost within the passengers'

budget:

Ln (0n) = {(i, k, m) : (i, k) E gn, m E Mik, fik + Pikm On}

(i, k, m*) arg max Unikm
(i,k,m)EL,(On)

4 This is the same as the sequential utility for not flying because consumers are assumed to have no benefit
or disutility for ancillary services when not flying.

63



As with sequential consumers if Mik includes all combinations of ancillary and no-ancillary

options and if ancillary services are priced individually, a simultaneous consumer will never

purchase an ancillary service if its price is greater than their disutility for that service.

If Mik includes the option to buy no ancillary services, a simultaneous passenger will fly

without ancillary services before choosing not to fly at all. Because simultaneous passengers

choose an itinerary, fare class, and ancillary bundle in the IBP, they have no FUP.

The probability that a simultaneous passenger selects a particular itinerary, fare class,

and ancillary service combination is again a function of the a function of the passenger's

itinerary/fare class utilities, ancillary service disutilities, budget, and the availability set.

The conditional probability Pr((i, k, m) I gn) of a passenger choosing itinerary, fare class,

and ancillary service combination (i, k, m) given an availability set 9, is:

Pr ((i, k, m) I ]n) Pr ((i, k, m) I Ln(On)) fo(On)dOn
0o

where the consideration set and budget again form the latent class. Pr ((i, k, m) I Ln(On))

takes the form:

Pr Unik max Uni/k ml (i, k , m) E n L(On)
Pr ((i, k, m) I Ln(On)) =m (i',k',m') ELn (O)\(i,k,m)

0 (i, k, m) Ln L(On)

3.1.3 Key Differences in Behaviors

Simultaneous and sequential passengers differ in two critical ways. First, because different

components are considered in the utility functions during the IBP, passengers with different

behaviors who otherwise have identical preference may have different views on the "best"

alternative, and may select different fare classes and itineraries. Second, because the bud-
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getary constraint is applied in different ways for the two behavior types and because it

is assumed to apply only to decisions made during the IBP, it constrains both fare and

ancillary purchases for simultaneous passengers. For sequential passengers, however, only

fare is constrained by the budget. Hence, all else equal, sequential passengers can "afford"

more ancillary services and will have a higher ancillary purchase rate and will contribute

more ancillary revenue.

Because simultaneous passengers incorporate ancillary services into their IBP utility, an-

cillary services can incentivize them to either buy-up or to buy-down-meaning that the

presence of ancillary services can cause a passenger to select a more or less expensive fare

class than they otherwise would have.

With a few mild assumptions, we can assess the conditions in which a simultaneous passen-

ger would change her fare class selection from (i*, k*) absent ancillary services to (*, kt, mt)

when ancillary services are present. We assume that the availability set and passenger pre-

ference distributions are unaffected by the ancillary service, and we assume that ancillary

prices for any given bundle are non-decreasing in fare class index and that fares are strictly

decreasing in fare class index (i.e. higher number fare classes have lower fares and do not

have lower ancillary prices):5

apk/alk > 0 &fk/&k < 0

To simplify notation, we drop the consumer and itinerary indices. Note that absent the

ancillary, the passenger's choice will be governed only by the itinerary/fare class kernel;

therefore the class k* has the greatest kernel utility of all affordable fare classes:

Uk* Uk' Vk' E 9n s.t. fA < 0 (3.2)
5 The assumption of decreasing fare in fare index is common and implies no loss of generality; the assumption

on ancillary prices holds for most airline ancillary fee structures in practice.
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Likewise, with the ancillary, the combination (kt, mt) has the highest simultaneous utility

of all affordable combinations:

Uktmt Ui ,m' Vk' E- T n' E M k' SAt fk' + Pk'm' < 0

Thus, when kt 5 k* (the fare class choice has changed), the following equation must hold:

Uktmt - Uk*m' > 0 Vm' E Mk* s.t. fk* + Pk*m' ; 0 (3.3)

In other words, the new combination has a higher utility than any (affordable) combination

in fare class k*. Combining Equations 3.1 and 3.3 yields:

S
(Ct - Uk* - (Pktmt Pk*m') - 0 (6 mts - m's)) > 0 (3.4)

(lkt - Uk*) (Vktmt - Vk*m') > 0 (3.5)

where Vkm is the net ancillary disutility contribution associated with selecting ancillary

bundlem 'in fare class k:

S
Vkm A Pm - i:Is6ms

S=1

Since both kt and f* have been selected, they must both be within the budgetary constraint.

Therefore, from Equation 3.2, Uk* > Ukt and first term in Equations 3.4 and 3.5 must be

non-positive. For the fare class choice to change, Equation 3.4 and 3.5 must hold and the

second term of Equation 3..5 must be negative: the net ancillary disutility of (kt, mt) must
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be lower than the net ancillary disutility of any (affordable) combination in class k*.

The intuition for buy-up (kt < k* , where the ancillary entices passengers to purchase a

more expensive, but lower index fare class) is clear: if some fare classes offer complimentary

or discounted ancillary services, passengers who consider ancillary services during the IBP

(i.e. simultaneous passengers) will find those fare classes more appealing when the ancillary

services are present than in a case absent ancillary services.

Ancillary-driven buy-up is leveraged in airline pricing structures that entice consumers to

book in higher value fare classes with complimentary services, such as the complimentary

access to preferred seating or branded fare structures discussed in Section 1.1.2.

The case for buy-down (k > k*, where the ancillary entices passengers to purchase a less

expensive, but higher index fare class) is more complicated: some passengers who, absent

ancillary services, would purchase fares close to their budgetary constraint may find that

they do not have a sufficient budget when the ancillary service is present to purchase the

same fare class as well as the ancillary service. They will change to the lower value fare

class if the improvement in their net benefit (v) of purchasing the service outweighs the

decrease in their itinerary/fare class utility associated with the lower value fare class.

With sequential passengers, none of these booking shifts occur, because the IBP utility

does not incorporate ancillary services. The potential for these shifts has implications for

airline pricing: complimentary or discounted ancillary services in some fare classes will entice

(some) simultaneous passengers to purchase that class, which may be beneficial to the airline

(because of a higher profit margin, perhaps). However, with sequential passengers, the

discount will not drive any changes in bookings, and will only dilute revenue from ancillary

purchases. Thus, airlines have no incentive to offer complimentary ancillary services if

passengers are sequential.
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3.1.4 Differences from Previous Models

Our formulation is the first that explicitly links the purchase of ancillary services, or add-

ons, to the selection of an itinerary/fare class, or base good, while allowing consumers to

choose from many base goods that may vary in multiple quality dimensions. In the airline

literature, no other works have related ancillary purchases to itinerary/fare class purchases.

In addition, unlike much of the existing airline literature, our model allows consumers to

vary in their level of knowledge and awareness of airline policies, capturing both classic and

boundedly rational behavior.

In the economics literature, some authors (such as Gabaix and Laibson (2006) and Shulman

and Geng (2013)) study the relationship between add-on purchases and base good purchases.

These models, however, do not account for the multiple, varied base goods present in the

itinerary/fare class choice problem and do not allow consumers to chose not to purchase the

base good. Our formulation combines concepts from both the airline and economics fields

to describe passenger behavior given a choice of fare classes and ancillary services.

3.2 Passenger Origin-Destination Simulator

We integrated the ACM within the Passenger Origin-Destination Simulator (PODS) to

study the effects of our passenger choice model, as well as to study mechanisms for incor-

porating ancillary revenues into revenue management models (see Part II of this thesis).

PODS is a software package originally developed by Boeing to evaluate the interaction

between passenger choice and forecasting and revenue management -optimization models.

It simulates the interactions between potential customers and airlines in a competitive

environment and has been used in the past to assess the effects of low-fare carriers entering

markets (Gorin, 2004), the influences of revenue management system users (Weatherford,

2016), and the potential revenue benefits of various dynamic pricing mechanisms (Wittman,
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2018), among other topics.

Each PODS simulation consists of several independent trials; each trial has several hundred

samples. A sample represents a single departure day, and all samples represent different

realizations of the same departure day (meaning each sample has the same flight schedule

and same expected demand, but randomized actual demand). A trial is a series of successive

samples, where the bookings received for one sample are used to forecast subsequent sam-

ples. The first samples of each trial are burned, or excluded from all analyses, and are only

used to warm up the airline demand forecasting models. The simulator reports results for

a simulation as aggregate (e.g. mean, variance, etc.) metrics (e.g. ticket revenue, bookings

by fare class, etc.) across all unburned samples for all trials. A typical simulation features

two to five trials, a warm-up of 200 samples per trial, and an additional 400 samples per

trial for analyses. Thus, the reported results are aggregates of 800 to 2,000 realizations

of a particular departure day. Each simulation has the same set of random seeds, so dif-

ferences between simulation results are due to changes in pricing, forecasting, or revenue

management optimization models, not due to differences in underlying demand generation.

Statistical testing is performed with a paired t-test, with the null hypothesis that there is no

true change in revenue vs alternative hypothesis that there is a true change in revenue; see

Sections 5.2.1. and 7.2 for more details. The paired test means that although the simulator

has high stochasticity in terms of demand and passenger preferences, very small revenue

changes can be statistically significant.

PODS features two interdependent modules, as shown in the schematic in Figure 3.1: an

agent-based passenger generation and choice module, and an airline revenue management

and distribution module. The passenger generation and choice module generates passen-

gers within each origin-destination market in the simulation, and assigns randomly drawn

preferences and disutilities to each passenger. Passengers book the itinerary and fare com-

bination that is most desirable according to their preferences and choice model.

The booking window for each departure day is 63 days long and is broken into 16 time frames
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Figure 3.1: Schematic view of Passenger Origin-Destination Simulator. Modified from
Wittman (2018).

or data collection points (DCPs) for passenger generation, booking database, forecasting,

and optimization purposes. The booking window opens at the start of DCP 1, and departure

occurs at the end of DCP 16. The number of days in each DCP varies, with longer DCPs

early in the booking window and shorter DCPs late in the booking window. This results

in more frequent and finer temporal resolution forecast and optimization updates closer to

departure.

3.2.1 Passenger Module

Demand Generation

As discussed in Section 1.1.3, passenger demand is composed of different passenger segments,

with each segment representing different travel purposes and/or time, cost, and quality

sensitivities. PODS supports two passenger segments; passengers in the business segment

represent travelers with low value of money and high value of time while passengers in the
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leisure segment, on the other hand, represent travelers with a high value of money and low

value of time.

The overall mean demand for each market and passenger segment is specified as a simulation

input. The actual mean demand for any sample is a function of several random factors:

. A single system factor, which increases or decreases demand for all markets and pas-

senger segments.

. A market factor, drawn separately for each market, which increases or decreases de-

mand for individual markets for all passenger segments.

. A passenger segment factor, drawn separately for each passenger segment, which in-

creases or decreases demand for individual passenger segments for all markets.

The actual demand for each passenger segment and market, for a given sample, is normally

distributed based on the actual mean demand described above, and variance that is a

constant multiple (typically 2.0) of the actual mean demand.

As an example, consider an input demand of 100 for business passengers in market A.

A system factor of 1.1 (representing high overall demand), market factor of 0.9 (meaning

market A, compared to others, is less busy), and passenger segment factor of 1.0 (meaning

business passengers are not more or less busy compared to other segments) would have an

actual mean demand of 99. Thus business passenger demand for market A for the sample

would be normally distributed with mean 99 and variance 198.

A demand arrival curve for each passenger segment controls when the actual demand arrives

during the booking window. The curve specifies the mean percentage of demand arriving

within a particular DCP; the actual demand arriving during the DCP is again normally

distributed (with variance given by a constant multiple of the mean). The cumulative de-

mand arrival curves for domestic business and leisure travelers in Network UlO are shown in
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Figure 3.2: Cumulative demand arrival curves for consumers in domestic markets in Network
U10

Figure 3.2. In general, business passengers arrive closer to departure and leisure passengers

arrive further in advance.

Passenger Characteristics As an agent-based simulation, each passenger is modeled

individually. When generated, passengers are assigned behaviors, budgets, and a set of

preferences. In our simulations, passengers are randomly assigned a behavior type (simul-

taneous or sequential), according to an input probability. Preferences consist of disutilities

for connections, for schedule deviations from a passenger's preferred departure and arrival

times, for fare class purchase/use restrictions (such as a round trip or Saturday night stay

requirement), and for foregoing ancillary services.

All budgetary and disutility distributions are dependent on passenger segment and origin-

destination market as an input linear function of the base fare (bf are) for the segment and

market. The base fare is typically the lowest fare in the market for leisure passengers and

2.5 times the lowest fare for business travelers. Budgets are distributed according to an

72



exponential distribution (shifted by the base fare) with an input elasticity multiplier for

each passenger segment. Thus all simulated passengers can afford their base fare within the

market.

Disutilities are normally distributed and are also a function of base fares, such that Qjg=

N(pjg, o g) with tjg = cjg + djgbf areg and Ujg = V/jg, where Qjg is the distribution of di-

sutility j for passenger segment g (for connections, schedule deviation, fare class restriction,

or foregone ancillary service), cjg and dj, are input intercept and slope parameters, and v

is the input coefficient of variation.

Business passengers tend to have higher budgetary limits and higher disutilities for connecti-

ons, schedule deviations, fare class restrictions, and foregoing ancillary services. Passengers

from the leisure segment, on the other hand, tend to have lower budgetary limits, and lower

connection, schedule deviation, fare class restriction, and foregone ancillary service disutili-

ties. Thus, in general, business passengers are more likely than leisure passengers to spend

more to purchase a less restricted but more expensive itinerary/fare class. Because prefe-

rences are random and widely distributed, though, some leisure passengers will have higher

budgets and higher disutilities for fare class restrictions than some business passengers.

Passenger Choice Set and Decision

As described in Section 3.1, when a passenger makes a booking request in a particular

market, each airline serving that market returns a list of available itinerary/fare class com-

binations (which is an output of the airlines' revenue management systems). Together,

these options form the passenger's availability set. PODS passengers make a booking re-

quest when they are generated.

Ancillary services are sold and priced separately and all passengers have the option to forgo

any service. Ancillary prices vary by market, but are the same for all airlines, itineraries,

and fare classes within a market. Prices are a linear function of the lowest published fare
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within the market. For service s, price ^s = a. + bs min(i,k) fik, where a8 and b8 are input

parameters. For modeling purposes ancillary bundle prices Pikm are equal to the sum of

all ancillary service prices fi, included within the bundle. Within a given market, ancillary

prices are the same for business and leisure passengers.

The passenger constructs their choice set as the portion of the availability set with an

out-of-pocket cost less than or equal to the passenger's budgetary constraint. As descri-

bed in Section 3.1, the out-of-pocket cost could include the price of ancillary services for

simultaneous passengers. The ACM implementation in PODS incorporates the previous

PODS passenger choice model (Hopperstad, 2005) as the itinerary/fare class choice kernel.

Passengers who choose not to fly are not "regenerated" in subsequent samples.

3.2.2 Airline Module

The airline RM and distribution module stores information on passenger bookings and

uses that information to generate demand forecasts. The demand forecasts are fed to

an optimizer that produces booking policies; the booking policies determine the set of

itineraries and fare classes made available to passengers within each market. The airline RM

and distribution module only has access to the same types of information as real airlines;

underlying simulation details, like demand generation parameters, are not visible to the

module. Each airline in the simulation has its own booking database, forecasting system,

and optimization system. This section reviews the forecasting and optimization models

supported by PODS that are relevant to this thesis. For a more technical description and

history of forecasting and optimization models, see Chapter 4.

Historical Database

Each booking received by an airline in the simulation is recorded in that airline's historical

booking database. These databases aggregate bookings by DCP, fare class, and either
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itinerary or flight leg (depending on the demand forecasting model in use, see below). The

simulated airlines also store data on ancillary purchases, aggregated by ancillary service,

fare class, and market.('

Demand Forecaster

Forecasting models predict future demand based on historical booking observations. PODS

supports demand forecasts generated for each itinerary/fare class combination or for each

flight leg/fare class combination. Demand forecasts in PODS are generated at the start of

each DCP. PODS forecasting modeling include:

* Standard forecasting, the simplest forecasting model, which estimates future demand

for an itinerary/fare class or flight leg/fare class as an average of bookings received

in the past for the same itinerary/fare class or flight leg/fare class, assuming that

demand for each class and itinerary/leg are independent (Littlewood, 1972).

* Q forecasting, developed by Hopperstad and Belobaba (2004) and intended for use

with completely unrestricted fare structures, in which the airline estimates total his-

torical demand (at the lowest published fare, denoted "Q") for an itinerary or flight

leg by scaling up bookings received in the past by estimated sell-up rates. The airline

averages the historical total demands to estimate future total demand, and then uses

the sell-up rates to partition that demand to each fare class.

. Hybrid forecasting, intended for use with mixed or partially restricted fare structures,

in which the forecast is computed separately for yieldable demand (where passen-

gers only purchase their preferred fare class) and priceable demand (where passengers

purchase the least expensive fare offered, regardless of the restrictions) (Boyd and

Kallesen, 2004). The yieldable demand is estimated with a standard forecast and the

priceable demand with a Q forecast; the total demand is the sum of the two processes.

6The airlines can also record purchase data at other levels of aggregation for specialized reporting.
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Figure 3.3: Standard FRAT5 curves in PODS

The sell-up estimates used by airlines are represented by FRAT5 (fare ratio at which 50%

of passengers sell-up) curves. A FRAT5 of 2.5 implies that 50% of passengers are willing to

pay 2.5 times the lowest fare in a market. Several standardized FRAT5 curves are used in

PODS, referred to as curve "A" (the most aggressive, with high sell-up rates) to "E" (the

least aggressive, with low sell-up rates). The curves are shown in Figure 3.3; note each curve

is increasing in DCP: later DCPs have a higher portion of high-budget business travelers,

so potential sell-up is higher.

Forecasting models that utilize historical booking data must include a detruncation process,

which accounts for the fact that historical observations of bookings are constrained by

historical booking policies (i.e. bookings are the lesser of demand and available capacity).

PODS includes several detruncation models:

. Booking curve detruncation, which estimates booking arrival rates for unconstrained

observations and then applies those rates to constrained observations (Wickham, 1995)

* Expectation-maximization and projection detruncation, which fit a statistical distribu-
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tion to the unconstrained observations (Skwarek, 1996; \Veatherford and PW1t, 2002)

RM Optimizer

The RM optimizer determines which itinerary/fare classes should be available at any time,

given a demand forecast and given remaining capacities on each flight leg in the airline's

network. The RM optimizer is run at either the start of each DCP, or at the start of each

day during the booking window. Because a new forecast is only generated at the start of

each DCP, daily reoptimization requires the (old) forecast to be decremented to account for

demand that has already arrived.7 The output of a revenue management model in PODS

is either a booking limit for each itinerary/fare class or flight leg/fare class, or a bid price

for each flight leg. A booking limit specifies the (maximum) number of bookings that may

be made before the class becomes unavailable; a bid price represents an estimate of the

opportunity cost of a seat on each flight. With a bid price output, a booking request for a

particular itinerary/fare class is accepted if and only if its fare is greater than or equal to

the sum of the bid prices for all flight legs traversed.

Leg-based models apply availability controls at the flight leg level and attempt to maximize

revenue on each flight leg independently. PODS supports many models, the most relevant

of which are:

" Expected Marginal Seat Revenue (EMSR), which protects space in higher-value (la-

ter arriving) classes against booking requests made early in the booking process; the

output is a set of nested booking limits for each flight leg/fare class (Belobaba, 1987,

1989; Belobaba and Weatherford, 1996). A booking request for a particular itiner-

ary/fare class is accepted if that fare class has a positive booking limit for each flight

leg traversed.

. Leg Dynamic Programming (LDP), which assumes Poisson demand arrivals and pro-

7 See Bockelie and Belobaba (2016a) for forecast decrementing methods supported by PODS.
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duces a bid price for each time/capacity state for each flight leg (Lee and Hersh, 1993;

Lautenbacher and Stidhan, 1999).

Network-based models (or origin-destination models) apply availability controls at the itine-

rary/fare class level and attempt to maximize total network revenue, and require forecasts

generated at the itinerary/fare class level. Network-based RM models available in PODS

include:

. Displacement-Adjusted Virtual Nesting (DAVN), which uses a deterministic network

linear program to estimate displacement costs for each flight leg, groups displacement-

adjusted OD fares for each leg into several virtual classes, and then optimizes availa-

bility of virtual classes on each leg with EMSR (Smith and Penn, 1988; Williamson,

1988). A booking request for a particular itinerary/fare class is accepted if that vir-

tual class into which the request falls has a positive booking limit for each flight leg

traversed.

. Probabilistic Bid Price (ProBP), in which an iterative convergence algorithm prorates

OD fares to legs according to the ratio of the displacement costs of the legs, and then

displacement costs are computed as the marginal seat revenue determined by running

EMSR on each leg. The final bid prices are the converged displacement costs (Bratu,

1998).

. Unbucketed Dynamic Programming (UDP), which combines the displacement cost-

adjustment network LP of DAVN with the leg optimization of LDP to produce

displacement-aware bid prices for each flight leg (Hopperstad, 2009).

The above models, which are intended for use with restricted fare structures and assume

independence of demand between fare classes, can be paired with fare adjustment (and

hybrid or Q forecasting) to account for demand dependencies. With fare adjustment, fares

(as used for optimization and availability control, not the fare actually paid by consumers)
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are decreased to account for buy-down (Fig et al., 2010; WValezak et al., 2010). The buy-

down adjustment is based on an exponential sell-up model with an input FRAT5 curve

and an input scaling parameter. The scaling factor (between 0 and 1) allows simulated

airlines to apply less aggressive sell-up estimates to fare adjustment than in hybrid or Q

forecasting. With hybrid forecasting, the buy-down adjustment is prorated to only apply

to the priceable demand component.

3.2.3 Networks

A network file contains the schedules, flight capacities, and fares for each airline in a si-

mulation and contains demand generation parameters for each market. PODS supports

networks that range in size and complexity from single airline, single flight leg "toy" net-

works (such as AlONE) to large, realistic networks with multiple airlines with connecting

hubs, hundreds of flight legs, and hundreds of markets (such as U10). Specific networks will

be described as necessary in subsequent sections and chapters.

3.3 Booking and Revenue Impacts

We can study the revenue and booking impacts of the ancillary choice model, as well as its

sensitivity to behavior type and ancillary fee structure, via simulation in PODS. For this

work, we use the four airline, many flight leg network U10 calibrated in Appendix A. The

four competing airlines each operate a connecting hub, and some airlines offer some point-

to-point flights, as shown in Figure 3.4. The airlines each offer ten economy fare classes

and three ancillary services: a checked bag (BAG), an advance seat reservation (ASR),

and upgraded seating (UPG). Fares vary across markets, but within a particular market all

airlines offer the same set of fares. The highest fare, FC 1, is between 1.7 and 6.0 times the

lowest fare, FC 10.
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Figure 3.4: Network UlO map. Airline hubs shown with stars. Domestic destinations shown
in black, international destinations shown in red. Airline l's domestic network shown in
blue, with international network in dashed black. Airline 2-4 networks shown in grey.

All airlines have a branded fare structure, meaning fare classes are grouped into three

"brands" with similar purchase/use restrictions and similar ancillary product offerings. Pas-

sengers booking in FC 1 receive all services complimentary; passengers booking in FC 2-6

must pay UPG but receive BAG and ASR complimentary; passengers booking in FC 7-10

must pay for all three services. The full fare and ancillary fee structure is shown in Table

3.2, and the fare class restriction disutilities, ancillary service disutilities, and ancillary ser-

vice prices are shown in Table 3.3. Note that there are two sets of calibrated disutilities and

ancillary prices: one set assuming all passengers are simultaneous, and one set assuming

passengers are a random mix of 50% simultaneous and 50% sequential.

We focus on Airline l's domestic markets. We refer to the fare structure in Table 3.2 as

the partial bundling case because some ancillary services are bundled for some of the fare

brands. We will look at two additional cases: where the industry (that is, all four airlines)

moves to a fully bundled offering for all ancillary services (e.g. all ancillary services are

complimentary to all passengers) and a to a fully a la carte offering for all ancillary services
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Table 3.2: Network UlO fare and ancillary fee structure. Advanced purchase requirement
in days.

Average Advanced Restrictions Ancillary Services

Fare range fare purchase R1 R2 R3 R4 BAG ASR UPG

Brand 1
FC 1 $255-3,037 $905 None - - - - Free Free Free

Brand 2
FC 2 $153-2,360 $632 None Yes - - - Free Free Paid
FC 3 $139-2,015 $563 3 Yes - - - Free Free Paid
FC 4 $124-1,670 $494 7 Yes - - - Free Free Paid
FC 5 $115-1,463 $450 17 Yes - - - Free Free Paid
FC 6 $96-1,361 $406 21 Yes Yes - - Free Free Paid

Brand 3
FC 7 $89-1,241 $372 7 Yes - - Yes Paid Paid Paid
FC 8 $79-1,180 $338 14 Yes - - Yes Paid Paid Paid
FC 9 $72-1,075 $309 21 Yes - Yes Yes Paid Paid Paid
FC 10 $64-979 $280 28 Yes Yes - Yes Paid Paid Paid

Table 3.3: Network UlO mean disutility ranges and price ranges for each restriction and
ancillary service.

Restrictions Ancillary Services

R1 R2 R3 R4 BAG ASR UPG

Mean disutilities
Simultaneous calibration
Business $32-169 $16-84 $8-42 $24-126 $23 $10-23 $28-101
Leisure $10-51 $10-51 $3-17 $13-67 $28 $12-27 $28-101

50/50 mix calibration
Business $32-169 $16-84 $8-42 $32-169 $23 $10-23 $28-101
Leisure $10-51 $10-51 $3-17 $16-84 $25 $10-23 $25-92

Prices n/a n/a n/a n/a $25 $15-33 $40-147
Note: price and disutility ranges are shown only for domestic markets; prices are higher in simulated
international markets.
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(e.g., no ancillary services are complimentary to any passengers). We use cases where all

airlines have the same pricing structure to minimize booking shifts between airlines, allowing

us to focus on booking shifts between fare classes and brands. We each case for either all

simultaneous or a 50/50 mix of simultaneous and sequential passengers.

Expected Results In both the fully bundled and fully a la carte cases, there will be no

differentiation between fare classes or brands in terms of ancillary service pricing. There-

fore, simultaneous passengers will have less incentive to sell-up to the higher-priced brands

1 and 2. (Recall that fare class restrictions do differ between brands, causing some pas-

sengers sell-up). Because sequential passengers do not consider ancillary services during

their itinerary/fare class selection, their booking decisions will not change as ancillary fee

structures change. Therefore booking changes with the 50/50 mix of simultaneous and

sequential passengers should be smaller than with all simultaneous passengers.

The fully a la carte case should increase ancillary revenues, because passengers in all classes

must pay for all services. The fully bundled case will have no ancillary revenue, and the

net impact on total revenue will depend on how ticket revenues change.

Ticket, ancillary, and total revenues for each of the cases with each behavior type are listed

in Table 3.4. Note that the partial bundling case has higher ticket revenue than either the

fully bundled or fully a la carte cases for both behavior types. The partial bundling case

has the highest ticket revenue because the bundling in brands 1 and 2 creates ancillary

differentiation across the brands, which encourages some simultaneous passengers to sell-up

to brands 1 and 2.

The fully a la carte case has the highest ancillary revenue because all passengers have to

pay for all ancillary services, and the fully bundled case has no ancillary revenue because

all passengers receive all services complimentary.

Although the a la carte structure increases ancillary revenue vs the partial bundling case,
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Table 3.4: Network UlO Airline 1 simulation results with various ancillary bundling stra-
tegies and passenger behavior types. Average fare and average ancillary revenue expressed
per passenger segment.

Fully bundled Partial Bundling Fully a la carte

100% Simultaneous Passengers
Ticket Revenue
Ancillary Revenue
Total Revenue
Passenger Segments
Average Fare
Average Ancillary Revenue

Change from Partial Bundling
Ticket Revenue
Ancillary Revenue
Total Revenue
Passenger Segments
Average Fare
Average Ancillary Revenue

$2,572,060
$0

$2,572,060
19,200

$133.96
$0.00

$2,776,606
$124,642

$2,901,248
19,250

$144.24
$6.47

-7.4%
-100.0%

-11.3%
-0.3%
-7.1%

-100.0%

50% Simultaneous/50% Sequential Passengers
Ticket Revenue $2,632,971
Ancillary Revenue $0
Total Revenue $2,632,971
Passenger Segments 19,220
Average Fare $136.99
Average Ancillary Revenue $0.00

Change from Partial Bundling
Ticket Revenue
Ancillary Revenue
Total Revenue
Passenger Segments
Average Fare
Average Ancillary Revenue

$2,738,155
$117,751

$2,855,906
19,233

$142.37
$6.12

-3.8%
-100.0%

-7.8%
-0.1%
-3.8%

-100.0%

$2,569,151
$211,280

$2,780,431
19,205

$133.77
$11.00

-7.5%
+69.5%

-4.2%
-0.2%
-7.3%

+69.9%

$2,631,822
$177,830

$2,809,652
19,221

$136.92
$9.25

-3.9%
+51.0%

-1.6%
-0.1%
-3.8%

+51.1%
Results include domestic markets only.
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with these parameters the decrease in ticket revenue is greater than the increase in ancillary

revenue, and therefore the a la carte case has a lower total revenue than the partial bundling

case., Because the fully bundled case has lower ticket and ancillary revenues than the partial

bundling case, it also a lower total revenue.

With the 50/50 mix of behavior types, the directionality of changes is consistent with the all

simultaneous behavior results, but the magnitude of changes is reduced (because sequential

passengers do not change their booking decisions based on changing ancillary fee structures).

Although the change in the total number of bookings (measured as enplanements) is small

between the cases, the distribution of those bookings across fare brands varies widely, as

shown in Figure 3.5. The fully bundled and fully a la carte cases have substantially more

bookings in the lowest priced brand 3, and substantially fewer bookings in the higher priced

brands 1 and 2 compared to the partial bundling case. Because there is no difference in

ancillary service pricing across fare brands in either the fully bundled or fully a la carte

cases, simultaneous passengers have less incentive to purchase a brand 1 or brand 2 ticket

when brand 3 tickets are available. Because sequential passengers do not consider ancillary

services when selecting an itinerary and fare class, their choices are not affected by the

ancillary fee structure and the magnitude of booking shifts is smaller for the 50/50 mix of

simultaneous and sequential passengers.

The potential for ancillary fee structures to drive buy-up amongst simultaneous passengers

is clear from Figure 3.5. However, ancillary fee structures can also create buy-down amongst

simultaneous passengers, in which the presence of the ancillary fee causes passengers to pur-

chase a lower-priced fare than they otherwise would. Figure 3.6 illustrates this phenomenon,

comparing the booking by fare class for the fully a la carte case against the fully bundled

case. Although neither case has any differentiation in ancillary service pricing across fare

classes or brands, in the fully a la carte case passengers must pay for any ancillary service

in any fare class. These patterns of simultaneous passenger buy-up/down indicate that

when an airline introduces, unbundles, or re-bundles an ancillary service, ticket revenues
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may change (in addition to ancillary revenues) without any explicit change to the airline's

revenue management processes. This also suggests that the airline may be able to improve

its total revenue by accounting for ancillary services in its RM processes.

3.4 Conclusions

This chapter proposes a new Ancillary Choice Model that integrates ancillary service prices

and offerings into the consumer decision process about airline itineraries and fare classes.

Boundedly rational sequential passengers select an itinerary and fare class, then consider

ancillary services, potentially leading to a different booking decision than classically ratio-

nal simultaneous passengers, who select all three components in one utility-maximization

process.

Simulation results in PODS, with the Hopperstad (2005) model as the itinerary/fare class

selection kernel, illustrate that simultaneous passengers may alter their itinerary and fare
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Figure 3.6: Network U10 change in enplanements by fare class for the fully a la carte case
vs fully bundled case (domestic markets only).

class selection, either as buy-up or buy-down, under different ancillary fee structures. Use

of other kernels could change these results. For example, a more traditional non-infinite

scale kernel (containing an error term in the utility equation) would have greater choice

stochasticity, which would decrease the magnitude of the impacts of incorporating ancil-

lary services in the choice model. Other fare structures, network structures, or passenger

preference distributions could also change these results.

Future work could explicitly reframe the ancillary choice model to include behavior type as

a latent class, and then investigate the factors that may influence a person to be, or that.

indicate a person is, simultaneous or sequential. In addition, variations on the simultaneous

or sequential behaviors could be considered, where budgetary constraints are implemented

in different manners, or where passengers are simultaneous about some ancillary services

but sequential about others.

Overall, this chapter's findings that ancillary structures and passenger behavior type influ-

ence booking decisions suggests that ancillary-aware revenue management forecasting and
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optimization models may need to account for ancillary-specific behavior. Part II of this

thesis investigates such concepts.
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Part II

Revenue Management with

Ancillary Services
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Chapter 4

Literature Review: Airline

Revenue Management

Growth in the number of ancillary services, and the revenue they provide airlines, not

only prompts the need for the new passenger choice modeling described in Part 1, but also

suggests the potential for new revenue optimization approaches. The economics literature

contains many studies and models of optimal pricing strategies for goods, bundles, and

add-ons, showing that the ability to charge separately for add-ons can result in changes in

optimal prices for goods.1 In addition, empirical studies have shown that the introduction

of airline ancillary fees has reduced average ticket prices. 2 The airline revenue management

problem differs significantly from the pricing models in the economics literature because

prices are discrete (through filed fares), capacity is constrained, and seats are perishable

assets (meaning that once a flight departs, unsold seats have no value). Little work has

assessed if or how, under these conditions, airline revenue management models should be

modified to attempt to optimize total revenue, not just ticket revenue.

'See for instance the bundling/partitioned pricing work of Oi (1971); Adams and Yellen (1976) or the add-on
work of Lal and Matutes (1994); Ellison (2005); Gabaix and Laibson (2006); Fruchter et al. (2011); Shulman
and Geng (2013); Geng and Shulman (2015).

2 See Section 1.1.2, Ancarani et al. (2009), Brueckner et al. (2015), and Scotti and Dresner (2015).
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In this-Part of the thesis, we study the impacts of ancillary services on airline revenue ma-

nagement models. This Chapter reviews the literature around revenue management (RM)

forecasting and optimization models, with a particular focus on choice-based RM and the

limited work on total (or ancillary-aware) RM. Chapter 5 expands upon a previous total

revenue optimization heuristic, the optimizer increment, and develops a theoretical foun-

dation for the heuristic, but also shows through simulation that the performance of the

optimizer increment degrades when demand forecasts are uncertain and when passengers

make choices. Chapter 6 provides the main contribution of this Part by developing the

Ancillary Choice Dynamic Program, an ancillary-aware and choice-aware RM approach for

total revenue optimization. The chapter includes two derivative heuristics, the Ancillary

Marginal Demand and Ancillary Marginal Revenue transformations, that allow traditio-

nal (non-ancillary-aware and non-choice-aware) RM methods to be extended to support

ancillary services and passenger choice. Challenges in operationalizing the heuristics are

addressed, as are potential applications to larger networks. Chapter 7 provides simulation

results showing the benefit of our heuristics compared to existing RM methods, including

both single airline/single leg network settings and under competition. Finally, Chapter 8

summarizes and concludes the thesis.

4.1 Independent Demand Revenue Management

Revenue management models were developed when airlines began to introduce discounted

"leisure" or "tour" fares; the central problem in revenue management is to determine the

revenue-maximizing number of early booking, discounted leisure tickets to sell, while pro-

tecting seats for the later arriving full fare passengers. Initial revenue management models

assumed no ancillary revenue and independent demand streams for each fare class, meaning

each passenger only considers one type of fare and will not buy-up or buy-down or choose

another itinerary if the desired fare is unavailable.
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Leg-based RM models apply availability controls at the flight leg level and attempt to

maximize (ticket) revenue on each flight leg independently. The first contribution came

from Littlewood (1972), who proposed an optimal leg-based booking strategy for an ai-

rline with two nested fare classes where all low fare demand arrived before all high fare

demand. Extending Littlewood's model to more than two fare classes requires either com-

putationally complex demand function convolution or heuristic approximations. Optimal

solutions, known as Optimal Booking Limits (OBL), were proposed by Wolirner (1992)

and Bruinelle and McGill (1993). Belobaba proposed heuristic solutions in the form of the

Expected Marginal Seat Revenue models (EMSRa and EMSRb) (Belobaba, 1987, 1989;

Belobaba and Weatherford, 1996). A different approach, with a Poisson demand arrival

process, was taken by Lee and Hersh (1993) and Lautenbacher and Stidhai (1999), who

developed optimal dynamic programming (DP) solutions. Lautenbacher and Stidhan sho-

wed that their approach could simplify to the static OBL solutions.

The next major development was a move toward optimizing network (not just flight leg)

revenue through the use of origin-destination (OD) availability controls. Development of OD

optimization began in 1983 at American Airlines with a system to group OD itineraries into

virtual fare classes and then apply existing leg-based controls to the virtual classes (Smith

and Penn, 1988). American revised the original algorithm to incorporate a displacement-

cost adjustment into the virtual classes, known as Displacement-Adjusted Virtual Nesting

(DAVN) (Smith and Penn, 1988; Williamson, 1988).

A different approach to OD control is the use of bid prices, which measure the opportunity

cost (or reduction in expected future revenue) of selling a seat on a particular flight leg. In

contrast to the complexity of the booking limit controls described above, additive bid price

controls are simple: a booking request is accepted if the revenue value of the request is gre-

ater than the sum of the bid prices across all the legs traversed. Bratu (1998) developed one

approach, known as Probabilistic Bid Price (ProBP), which uses an iterative convergence

algorithm to prorate OD fares to legs according to the ratio of the displacement costs of
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the legs. The final bid prices are the converged displacement costs. Talluri and van Ryzin

(1998) created a more general dynamic bid price model and identified some instances in

which bid price controls might not be optimal.

Bertsimas and de Boer (2005) proposed a third approach to network revenue management:

a virtual nesting solution computed through simulation. Their algorithm combines a net-

work linear program with a simulation-based dynamic program to provide an RM model

that accounts for stochastic demand, detailed network effects, and remains tractable for

large networks. van Ryzin and Vulcano (2008b) extended the model with continuous ap-

proximations of demand and capacity to decrease computational complexity and to further

increase tractability for large networks.

RM optimization models require a forecast of future demand; forecasting models predict

future demand based on historical booking observations, either at the itinerary/fare class

level (origin-destination (OD) based) or at the flight leg/fare class (leg-based) level. The

simplest models, known as standard forecasting, estimate future demand as an average

of bookings received for the same OD or leg and fare class on previous departure days,

assuming that demands for each class and itinerary are independent (Littlewood, 1972).

L'Heureux (1986) extended the Littlewood formulation to include data from flights that

have not yet departed. Lee (1990) provided a comprehensive Poisson model of airline

bookings and cancellations and illustrated several different maximum likelihood approaches

for estimating the underlying Poisson rate parameters.

Forecasting models that utilize historical booking data must include a detruncation pro-

cess, which accounts for the fact that historical observations of bookings are constrained by

historical booking policies (i.e. bookings are the lesser of demand and available capacity).

Lee (1990)'s estimation methods directly account for demand truncation. For pick-up based

forecasts, multiple detruncation models have been proposed. Booking curve detruncation

estimates booking arrival rates for unconstrained observations, and then applies those rates

to constrained observations; see Wickham (1995) for additional details and numerical perfor-
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mance simulations. More sophisticated approaches include fitting a statistical distribution

to the unconstrained demand estimate through expectation-maximization and projection

detruncation (Skwarek, 1996; Weatherford and' hilt, 2002). Queenan t al. (2007) provided

a comparison of multiple detruncation methods and developed a double exponential smoo-

thing model. For additional review of detruncation and demand models, see Azadeh et al.

(2014).

4.2 Choice-aware Revenue Management

Traditional airline fare structures contained sufficient restrictions to ensure each fare class

was, more or less, purchased by a single segment of travelers. In the early 2000s, howe-

ver, low cost carriers grew and implemented less restricted fare structures. The lack of

restrictions permitted more travelers belonging to different demand segments to purchase

the lowest offered fare. Because RM forecasts rely on historical bookings to estimate fu-

ture demand, a spiraling down of revenue occurred as systems built on the assumption of

independent demand failed to account for passenger behavior (Cooper et al., 2006). While

simulations indicate that even in semi-unrestricted environments the independent demand

RM models discussed above can deliver revenue gains over a first-come first-serve system

(Belobaba et al., 2009), choice-aware models can deliver substantially better performance

(Cl6az-Savoyen, 2005).

Work to relax the independent demand assumption has long been underway. Belobaba

(1987) offered a variant of EMSRa that incorporates "passenger shift" from a lower to

higher value fare class. Belobaba and Weatherford (1996) presented an extension to the

EMSRb heuristic to incorporate passenger sell-up, and show simulated revenue gains over

the original EMSRb.

A key development is the single-leg single-airline choice-based dynamic program of Talluri

and van Ryzin (2004), whose dynamic programing formulation explicitly assumes a gene-
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ral model of passenger choice. -They show that the optimal solution relies on a series of

efficient sets, which are nested by fare order under certain demand models. They note,

however, that their exact formulation would be impractical for networks and that some

approximation method would be required. Gallego et al. (2004) suggested a Choice-based

Deterministic Linear Program (CDLP) as an approximation of the true stochastic program,

and approximate demand and capacity as continuous and deterministic. They show that

the resulting LP can be solved with column generation. Liu and Van Ryzin (2008) further

analyzed CDLP, showing that the solution LP solution relies on a network extension of the

concept of Talluri and van Ryzin (2004)'s efficient sets and develop a choice-based equiva-

lent of DAVN. van Ryzin and Vulcano (2008a) extended the simulation-based model of van

Ryzin and Vulcano (2008b) to account for customer choice with a general choice model.

Separately, Gallego et al. (2009) developed an extension to EMSR that incorporates custo-

mer choice via a multinomial logit model (MNL) for fare class selection. They presented

solutions when demand is mixed and when demand is ordered by "first choice" preference.

Forecasting with passenger choice is more complex than with independent demand, because

dependencies between classes must be considered. Hopperstad and Belobaba (2004) develo-

ped the Q-forecasting process for completely unrestricted fare structures, in which an airline

forecasts total demand for a flight/market at the lowest fare class (denoted "Q"), and then

uses estimated sell-up rates to partition that demand into higher-value fare classes. Boyd

and Kallesen (2004) proposed separately forecasting yieldable demand (where passengers

only purchase their preferred fare class) and priceable demand (where passengers purchase

the least expensive fare offered, regardless of the restrictions), a system known as hybrid

forecasting (HF). The yieldable demand segment is forecasted with traditional (indepen-

dent demand) standard forecasting methods; the priceable segment is forecasted with a

Q-forecast. Fiig et al. (2010) and Walczak et al. (2010) developed marginal revenue trans-

formations and marginal demand transformations for the inputs to the RM system based

on a model of customer choice. The transformations feed the optimizer with the expected

incremental revenue or demand to be captured by opening an additional fare class, taking
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into account the potential for buy-down. These transformations allow independent-demand

revenue management optimization models to be extended to account for passenger choice,

enabling such models to operate in an unrestricted or semi-restricted fare environment.

The marginal revenue transformation is often operationalized as fare adjustment (FA) and

paired with hybrid forecasting as HF/FA. Together, these extensions and models provide a

mechanism to directly incorporate choice behavior into RM systems.

Choice-aware RM and forecasting models require knowledge or estimation of passenger

behavior. Guo (2008) simulated the performance of several different non-parametric met-

hods of estimating the sell-up rates utilized by Q-forecasting, hybrid forecasting, and fare

adjustment. Talluri and van Ryzin (2004) and van Ryzin and Vulcano (2017) proposed

expectation-maximization methods for estimating passenger behavior for choice-based RM,

and see Section 2.3 for additional approaches to estimating passenger choice models.

4.3 Ancillary-aware Revenue Management

Previous work on incorporating ancillary revenue streams into revenue management sys-

tems is limited, though the need to account for ancillary revenue streams in RM systems

has long been acknowledged (Phillips, 2005). Metters et al. (2008) reports that Harrah's, a

hotel casino chain, operates its hotel revenue management system on expected total nightly

contributions-the amount that an individual spends on a hotel room plus their expected

gambling losses. No mathematical or numerical details are provided. The only detailed

theoretical work found in the literature is Zhuang and Li (2012), who develop a dynamic

programming formulation for hotel casinos to dynamically price hotel rooms while accoun-

ting for expected gambling revenue. The model, however, has continuous instead of discrete

price points and does not incorporate customer choice between different products.

The most relevant work is that of Hao (2014), who simulates the revenue performance of

two heuristics in a two-airline competitive environment. In Hao's simulations, passengers
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are generated within each market and select an itinerary and fare class according to the

Hopperstad (2005) model. Passengers are then assigned an ancillary "spend" based on their

market and selected fare class. Airlines in the simulations always collect the full ancillary

spend of every passenger, and passenger choice is not affected by the ancillary offer.

Hao's two heuristics are an optimizer increment (01, which he terms "RM Input Fare Adjus-

tment") and an availability increment (AI, which he terms "Availability Fare Adjustment").

Airlines employing 01 augment each fare sent to the optimizer by the expected ancillary

revenue per passenger. In Hao's simulations, the airlines have perfect knowledge about

expected ancillary revenue. Airlines employing Al optimize based on actual fares, but in-

corporate ancillary revenue estimates when interpreting the optimizer outputs: the RM

system calculates bid prices or virtual class boundaries based on actual fares and the dis-

tribution system then makes available any class whose fare plus expected ancillary revenue

exceeds the bid price or falls within an open virtual class. 3

Hao's simulations show revenue losses for 01 when coupled with standard forecasting, but

show revenue gains when coupled with hybrid forecasting and fare adjustment. AI showed a

mix of gains and losses with standard forecasting (with better performance at lower demand

levels) and gains with HF/FA. Hao found that both methods lead to more low-fare seat

availability, which increased bookings in lower value fare classes and decreased bookings in

higher value fare classes.

4.4 Key Literature Gaps

Total revenue optimization has remained an elusive goal, despite interest among airline RM

practitioners. The literature shows the need to integrate information about customer choi-

ces, in particular willingness-to-pay, into revenue management, however, no known models

incorporate both customer choice information and ancillary service information. We ad-
3 Because of the reliance on bid prices or virtual classes, Al is not applicable to all RM optimization models.
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dress this knowledge gap in two ways: first, with a detailed assessment of Hao's Optimizer

Increment in Chapter 5, showing why the mechanism leads to revenue dilution. And second,

with the development of an ancillary-aware and choice-aware dynamic program and associ-

ated heuristics in Chapter 6 that maximizes total revenue. Simulations in Chapter 7 show

that our heuristics can increase revenue over existing methods in a variety of scenarios.
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Chapter 5

Naive Total Revenue Optimization:

The Optimizer Increment

The simplest approach to total revenue management would be to optimize not on ticket

revenues (fares), but on an estimate of total revenues, such as fares plus expected ancillary

revenue-an approach we term the optimizer increment. Performance of the optimizer

increment has been previously simulated by Hao (2014), and other reports suggest that the

approach has been used by hotel casinos to incorporate gambling revenue into hotel room

pricing systems (Metters et al., 2008).

Hao studied the optimizer increment with the Passenger Origin-Destination Simulator

(PODS, described in Section 3.2). He utilized a two airline network (D6) with six fare

classes. In a significant departure from the work of this thesis, in Hao's simulations the

passenger choice process does not include consideration of ancillary services. Passengers

select an itinerary and fare class according to the Hopperstad (2005) model, which incor-

porates price, schedule, number of connections, and fare class restrictions. After having

selected an itinerary and fare class, passengers are assigned an expected "ancillary spend"

based on the selected fare class (typically $30 if booking in FC 3-6 and $0 if booking in
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FC 1 or FC 2); the airlines in the simulation always collect the expected ancillary "spend"

of each passenger. Hao however does not provide a thorough theoretical assessment of the

approach.

In this chapter, we contribute to the literature by developing a theoretical basis for the

optimizer increment, showing that it is part of an optimal control strategy in a limited

number of environments. However, we also provide simulation results illustrating that the

approach leads to a decrease in total revenue in more realistic settings as it increases buy-

down and leads to displacement of late-arriving, high-fare customers. These findings serve

as motivation for the development of the ancillary choice dynamic program (ACDP) in

Chapter 6, which accounts for both ancillary revenue and passenger choices.

The remainder of this chapter is organized as follows. Section 5.1 provides the first contri-

bution of this chapter, with a proof of optimality for optimizer increment in a very simple

two fare class environment with independent and ordered demands. The proof is then ex-

tended to cases with more than two fare classes and mixed passenger arrivals by reference

to Section 6.1.3. Section 5.2 then describes simulation results in the very simple two class

environment, a more general six class environment, and a larger network with multiple airli-

nes and hundreds of flights, showing that the revenue gains of optimizer increment decrease

in the more realistic conditions where airlines must forecast demand and where passengers

make choices about fare classes and ancillary services. Section 5.3 provides concluding re-

marks and explains how this chapter motivates the central contribution of this thesis, the

Ancillary Choice Dynamic Program.

5.1 Optimality of the Optimizer Increment

In this section we demonstrate that the optimizer increment is optimal under limited con-

ditions. Consider first the simplest possible revenue management setting, known as the

Littlewood Conditions: a single airline/single leg network where the airline offers two fare
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classes, FC 1 and FC 2, with the fare for FC 1 fi greater than that of FC 2. Demand for

each class is stochastic but independent and drawn from a known distribution. All FC 2 de-

mand arrives before any FC 1 demand. Under these conditions, the airline must determine

at the start of the booking process the number of seats 7r to protect for FC 1 passengers.

Littlewood (1972) and Richter (1982) show that the expected ticket-revenue maximizing

solution is to choose lr* such that:

fi Pr(Xi 7r*) = f2 (5.1)

where X1 is the stochastic demand for FC 1. There is also a stochastic demand X 2 for

FC 2, but its distribution has no effect on the optimal protection level for FC 1. We now

consider a slight modification: the airlines also sells an ancillary service to each passenger,

with a price ak in class k, such that total revenues remain nested fi + a, > f2 + a2.

Theorem 1. The expected total revenue maximizing protection level 7r* is chosen with the

optimizer increment such that:

(fi + ai) Pr(Xi r*) = (f2 + a2) (5.2)

Note that this is equivalent to saying that the airline optimizes its protection levels based

on an optimizer increment adjusted fare.

Proof. We begin be defining the expected total revenue earned by the airline R as a sum of

the expected total revenue Rk from each class. In addition, we make the assumption that

demands and protection levels are continuous. Because -R is convex at lr*, R is maximized

with respect to 7r when: 1

'See Appendix B.1 for the proof that -R is convex at 7r*.
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We define the terms DRk/D7r as the expected marginal total revenue earned from FC k due

to protecting 7r seats for FC 1. Increasing 7r reduces FC 2 revenue if FC 2 demand exceeds

the remaining capacity of the flight; therefore the marginal revenue for FC 2 is:

DR2
Dr= -(f2 + a2 ) Pr(X2 > c -ir) (5.4)

where c is the capacity of the flight. Increasing 7r increases FC 1 revenue if FC 1 demand

exceeds -r (otherwise the extra space is wasted) and if FC 2 demand exceeds its allocated

space (otherwise the unused FC 2 space would be released to FC 1 passengers anyway);

therefore the marginal revenue for FC 1 is:

DR1
I= (f + a) Pr(XI > 7r) Pr(X2 > c - r)a7r

Combining the previous three equations yields:

(5.5)

(fi + ai) Pr(Xi > ir) Pr(X2 > c - -r) = (f2 + a2) Pr(X2 > c - 7r)

(fi + ai) Pr(Xi ;> 7r) = (f2 + a2 )

(5.6)

(5.7)

If we introduce the assumption that customer arrivals occur due to a Poisson process, we

can extend the proof to cover more than two fare classes and we can drop the requirement

for ordered demands. In addition, we can allow the purchase of the ancillary service to be
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probabilistic, with different probabilities for each fare class (although independent fare class

demands remain). In this case, incrementing by the expected ancillary revenue per passenger

(by fare class) remains an optimal solution because it is equivalent to the Ancillary Marginal

Revenue (AMR) transformation developed in this thesis, with independent demand. AMR

is introduced in Chapter 6; see Section 6.1.3 for the proof.

5.2 Simulated Performance of Optimizer Increment

We integrated the optimizer increment in the Passenger Origin-Destination Simulator to

test its performance and to understand how violations of the assumptions in the optimiza-

tion model can result in revenue losses. In the PODS implementation, airlines continually

estimate expected ancillary revenue per passenger based on the average historical ancillary

service purchases. These estimates are computed for each market/fare class combination

separately, and are averaged across all DCPs.

Consider that the airline has a historical dataset of bookings and ancillary purchases and

uses observations from the n0 b most recent departure days (set to 262) in the estimation

process for [mkt,ks, the true mean ancillary revenue per passenger in market mkt and fare

class k from ancillary service s. If the airline has ancillary services 1, ... , s,. . . , S and has

previously sold Xmkt,k,s,dep units of ancillary service s to passengers in fare class k within

market mkt on previous departure day dep, and received a total of bmkt,k,dep bookings for

in class k and market mkt on previous departure day dep when the ancillary service s is

priced at rmkt,k,s when purchased in market mkt, fare class k, then the estimated average

ancillary revenue per passenger is:

2 If each sample represents a typical Friday, for example, 26 observations corresponds to 26 weeks, or 6
months, of data.
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Note that in the case when no bookings have been received for a given market/class during

the period used for forecasting, the estimator will be undefined, and some default value

amkt,k must be used. The expected value of the estimator, conditional on some booking

history, is:

Bdepl 1 sES E [Xmkt,k,s,deprmkt,k,s] E seS Tmkt,k,s F bmkt,k,dep # 0
E [&,rkt,k I b] =nob. bZdep=1 mkt,k,dep amkt,k otherwise

Note that the estimator is conditionally unbiased, but has a bias of E., Imkt,k,s -dmkt,k when

a market/class has no bookings (e.g. missing observations) during the historical data period.

In our implementation, we set dmkt,k = 0. This approach produces a biased estimator when

a fare class receives no bookings in a market during the historical data period; section 5.2.4

evaluates the magnitude of this bias and the effect of an alternative estimation method.

5.2.1 Result Analysis Methodology

We measure the performance of the optimizer increment relative to a baseline simulation,

where all airlines use standard (independent demand) forecasting and optimization models

that do not account for ancillary services or revenues.

Recall form Chapter 3 that each PODS simulation consists of 2 to 5 independent trials of 600

samples. Each sample represents one realization of the "same" departure day (meaning the

demand and passenger characteristics for all samples are drawn from the same distribution).
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The first 200 samples of each trial are used to warm up the forecasting models and are

"burned" and never included in any reported results, leaving 400 samples per trial. The

seeds for all random draws (i.e. the number of passengers generated and individual passenger

preferences) are the same for all simulations with the same demand parameters, so the

difference in revenue or bookings between two simulations with different forecasting or

optimization methods is due to the change in forecasting or optimization, not due to different

demand generation.

The primary item of interest in our studies is the change in total revenue due to a change in

forecasting or optimization method, which we measure as the average across all (unburned)

samples of the sample-specific change in total revenue for a test simulation vs a baseline

simulation. Mathematically, if X3 is the revenue (or other simulation output) for sample i

for simulation j E {TEST, BASE}, we are interested in the term A:

inA =-Za, E = XEST _ BASE

i=1

Unless otherwise stated, all references to statistical significance and confidence intervals in

this chapter are derived from a paired t-test (or a one sample t-test on the change in revenue

by sample), with the null hypothesis that there is no true change in revenue (Ho : A = 0)

vs alternative hypothesis that there is a true change in revenue (Ha : A =L 0). The test

statistic t is:

t = Tdf-n1
seA

where seA is the standard error of A.

The demand forecasting process nominally introduces a dependency between demand ge-

nerated (and therefore total revenue) in one sample and booking limits (and therefore total
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revenue) in another sample. These dependencies potentially violate the t-test assumption of

independence between samples; however, as discussed in Appendix C, our testing indicates

that these correlations are minor and therefore should not affect the statistical significance

of our results.

5.2.2 Littlewood Conditions (Network C2)

We start by considering a case where the optimizer increment is proven optimal, the Litt-

lewood Conditions described above. The demand and fare parameters for the single air-

line/single leg network are summarized in Table 5.1: FC 1 has a fare of $500 and provides

no ancillary revenue; FC 2 has a fare of $300 and provides $25 to $100 in ancillary revenue

(per booking; all passengers in FC 2 purchase the ancillary service). Demand for each fare

class is independent, normally distributed, and we initially assume the distribution para-

meters are known to the airline. FC 2, which books first, has a mean demand of 40 to

60 and standard deviation of 16 to 24 (always 40% of the mean); FC 1, which books last,

has a mean demand of 20 to 80 and a standard deviation of 8 to 32 (always 40% of the

mean).3 As a baseline scenario, the airline calculates the number of seats to protect for FC

1 based on Equation 5.1; as a test scenario, the airline computes the protection limit using

the optimizer increment (Equation 5.2).

The simulations are run within an Excel-based simulator (for instances where demand

distribution parameters are assumed to be known) and PODS (for instances where we

relax the assumption that demand distributions are known). For any specific set of demand

parameters, the simulated random draws are exactly the same between all PODS and Excel-

based simulations; hence, statistical comparisons between two simulations (with the same

demand parameters) can still be performed on a paired basis. Reporting for each simulation

covers 2,000 individual departure days, composed of 5 trials of 400 (unburned) samples each.

3Other demand and fares combinations were tested and showed similar trends to the results described here.
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Table 5.1: Network C2 fare and ancillary fee structure.

Fare Ancillary price Mean demand k-factor Demand arrival

FC 1 $500 $0 20 to 80 0.4 Last
FC 2 $300 $25 to $100 40 to 60 0.4 First

In this simplest possible scenario, the optimizer increment increases total revenue, as shown

in Figure 5.1. The revenue gain of the optimizer increment reaches 1.8%, with higher revenue

gains at higher ancillary prices (where the benefit of ancillary-awareness increases) and at

higher demand levels (where revenue management systems are generally more effective).

Figure 5.2 shows 99% confidence intervals (df = 1, 999) for the total revenue impact of the

increment for $50 and $100 ancillary price levels, and Table 5.2 provides a more detailed

breakout of results. The optimizer increment consistently decreases bookings in FC 1 while

increasing bookings in FC 2. In revenue terms, the increment decreases FC 1 revenue,

increases FC 2 ticket revenue, and increases ancillary revenue, with an overall decrease in

ticket revenue but increase in total revenue. These effects are shown for a range of ancillary

prices in Figure 5.3. The revenue impacts of the increment are statistically significant (p <

0.01, df = 1, 999) at the $100 ancillary price for a wide range of demand scenarios; at the

$50 ancillary price, the revenue changes are statistically significant (p < 0.01, df = 1, 999)

for higher FC 1 demand.

In reality, airlines do not know demand distribution parameters and must forecast demand

based on historical bookings. When we introduce demand forecasting in these simulations,

performance of the optimizer increment deteriorates dramatically. In these forecasted-

demand experiments, the airline uses a standard independent-demand forecasting model

(Littlewood, 1972) for both the baseline and the test cases. As shown in Figure 5.4, the

optimizer increment results in a (small) decrease in revenue for many demand and ancillary

price combinations, with total revenue changes ranging from +0.1% to -0.2%. As with

the known demand cases, the increment with demand forecasting results in a decrease in

FC 1 protection levels, increasing FC 2 bookings and decreasing FC 1 bookings (with a
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Figure 5.1: Network C2 change in total revenue due to optimizer increment vs baseline with
various ancillary prices and market demand levels (known demand).
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Table 5.2: Network C2
levels (known demand,

simulation results with various ancillary prices and market demand
FC 2 p = 60).

$50 Ancillary $100 Ancillary

FC 1 t = 40 FC 1 =60 FC 1 40 FC 1 p 60

Baseline
FC 1 Ticket Revenue $17,223 $24,236 $17,223 $24,236
FC 2 Ticket Revenue $15,730 $12,842 $15,730 $12,842
Ticket Revenue $32,953 $37,077 $32,953 $37,077
Ancillary Revenue $2,622 $2,140 $5,243 $4,281
Total Revenue $35,574 $39,217 $38,196 $41,358
Load Factor 86.9% 91.3% 86.9% 91.3%

Optimizer Increment
FC 1 Ticket Revenue $16,739 $22,857 $16,192 $21,106
FC 2 Ticket Revenue $16,167 $14,061 $16,608 $15,397
Ticket Revenue $32,906 $36,918 $32,800 $36,503
Ancillary Revenue $2,695 $2,343 $5,536 $5,132
Total Revenue $35,601 $39,261 $38,336 $41,636
Load Factor 87.4% 92.6% 87.7% 93.5%

Change from Baseline
FC 1 Ticket Revenue -2.8% -5.7% -6.0% -12.9%
FC 2 Ticket Revenue +2.8% +9.5% +5.6% +19.9%
Ticket Revenue -0.1% -0.4% -0.5% -1.5%
Ancillary Revenue +2.8% +9.5% +5.6% +19.9%
Total Revenue +0.1% +0.1% +0.4% +0.7%
Load Factor +0.5 pts +1.3 pts +0.9 pts +2.3 pts

Significance of Change in Total Revenue from Baseline
Standard Error 0.0% 0.1% 0.1% 0.1%
t-statistic 2.12 1.82 5.72 5.86
p-value 0.034 0.069 < 0.001 < 0.001
Note: Total yield in cents per mile. Standard error expressed as percentage of baseline total revenue.
df = 1, 999.
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Figure 5.3: Network C2 change in bookings by fare class (left) and change in revenue
component (right) due to optimizer increment vs baseline with various ancillary prices
(known demand, FC 1 p = 60, FC 2 p = 60).

larger effect at higher ancillary prices), as shown in Figure 5.6. In addition, the increment

increases ancillary revenue and decreases ticket revenue, however, with demand forecasting,

the increase in ancillary revenue does not outweigh the decrease in ticket revenue and net

revenue (typically) declines.

Figure 5.5 shows 99% confidence intervals (df = 1, 999) for the $50 and $100 ancillary price

scenarios; note that in general these revenue differences are not statistically significant. An

exception is the highest FC 1 and FC 2 demand scenarios, in which case the revenue loss

due to the optimizer increment is significant for both ancillary prices (p < 0.01, df = 1, 999,

for FC 1 demand of 60 or 80 and FC 2 demand of 60).

It is notable, and concerning from an implementation perspective, that the violation of

only one assumption, known demand distributions, leads to such a dramatic change in the

total revenue effects of the optimizer increment. Note that all other optimality conditions-

independent fare class demands, ordered demand, only two fare classes-have been main-
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Figure 5.4: Network C2 change in total revenue due to optimizer increment vs baseline with
various ancillary prices and market demand levels (forecasted demand).
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Figure 5.5: Network C2 change in total revenue due to optimizer increment and 99% confi-
dence interval vs baseline with various ancillary prices and market demand levels (forecasted
demand). df = 1, 999.
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Table 5.3: Network C2 simulation results with various ancillary prices and market demand
levels (forecasted demand, FC 2 p = 60).

$50 Ancillary $100 Ancillary

FC1p=40 FC1p=60 FC1p=40 FC1p=60

Baseline
FC 1 Ticket Revenue $16,604 $20,581 $16,604 $20,581
FC 2 Ticket Revenue $16,266 $15,750 $16,266 $15,750
Ticket Revenue $32,870 $36,331 $32,870 $36,331
Ancillary Revenue $2,711 $2,625 $5,422 $5,250
Total Revenue $35,581 $38,956 $38,292 $41,581
Load Factor 87.4% 93.7% 87.4% 93.7%

Optimizer Increment
FC 1 Ticket Revenue $16,307 $20,170 $16,008 $19,723
FC 2 Ticket Revenue $16,506 $16,038 $16,734 $16,341
Ticket Revenue $32,813 $36,208 $32,742 $36,064
Ancillary Revenue $2,751 $2,673 $5,578 $5,447
Total Revenue $35,564 $38,881 $38,320 $41,511
Load Factor 87.6% 93.8% 87.8% 93.9%

Change from Baseline
FC 1 Ticket Revenue -1.8% -2.0% -3.6% -4.2%
FC 2 Ticket Revenue +1.5% +1.8% +2.9% +3.8%
Ticket Revenue -0.2% -0.3% -0.4% -0.7%
Ancillary Revenue +1.5% +1.8% +2.9% +3.8%
Total Revenue -0.0% -0.2% +0.1% -0.2%
Load Factor +0.2 pts +0.1 pts +0.4 pts +0.3 pts

Significance of Change in Total Revenue from Baseline
Standard Error 0.0% 0.0% 0.0% 0.0%
t-statistic -2.29 -11.58 2.07 -6.19
p-value 0.022 < 0.001 0.038 < 0.001
Note: Total yield in cents per mile. Standard error expressed as percentage of baseline total revenue.
df = 1, 999.
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Figure 5.6: Network C2 change in bookings by fare class (left) and change in revenue
component (right) due to optimizer increment vs baseline with various ancillary prices
(forecasted demand, FC 1 IL = 60, FC 2 p 60).

tained throughout these experiments.

Although the incremental benefit of the optimizer increment essentially disappears (or be-

comes negative) when demand distributions must be forecast, as shown in Figure 5.7, the

optimizer increment with forecasting can still produce a higher revenue than the known

demand baseline. Recall that with a $100 ancillary price, the optimizer increment with

forecasting has a lower total revenue than the baseline with forecasting (and the change is

statistically significant), yet both forecasted demand cases, in this scenario, have a higher

total revenue (+0.5% for baseline and +0.4% for the optimizer increment) than the known

demand baseline. The known demand optimizer increment has the highest revenue. This

unintuitive result is a consequence of forecasting errors that unintentionally increase total

revenue in the forecasted demand baseline case by under-forecasting FC 1 demand and

accepting more FC 2 bookings (vs the known demand baseline).

Figure 5.8 shows the baseline FC 1 demand forecast and breakout of baseline revenue by
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Figure 5.7: Network C2 total revenue with known and forecasted demand and with various
ancillary prices (FC 1 y = 60, FC 2 p = 60). Percentages show the change in total revenue
vs known demand baseline.

source when FC 1 and FC 2 mean demand are 60, the ancillary service has a price of $100,
and the demand distributions are either known or forecasted. In the forecasted demand

case, the airline generates a new demand forecast at the start of each departure day based

on the bookings received on the most recent previous nob departure days. Each generated

forecast has an estimate of the mean and an estimate of the standard deviation of underlying

demand. Figure 5.8 shows the average (across all 2,000 departure days) of the FC 1 forecast

mean (in the horizontal bar), the typical range (plus/minus one standard deviation) of the

forecast mean (as the shaded rectangle), and the average (across all 2,000 departure days)

of the forecast standard deviation (as the dashed error bars, drawn from the high/low ends

of the typical range of the forecast mean). In the known demand case there is no estimation

process and the "forecast" mean is always the true value of 60 and the "forecast" standard

deviation is always the true value of 24.

The forecasted demand case has a much smaller FC 1 forecast mean and standard deviation

than the known demand case. This leads to a lower protection level for FC 1, which
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Figure 5.8: Network C2 baseline FC 1 forecast (left) and baseline revenue components
(right) (FC 1 p = 60, FC 2 p = 60, $100 ancillary price). The average forecast mean is
shown with a horizontal line, plus and minus one standard deviation of the estimate of the
forecast mean with a shaded box, and plus and minus the average estimate of the forecast
standard deviation (from the high/low end of the forecast mean range) with the dashed
line. Percentages show the change in revenue component vs known demand.
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Figure 5.9: Network C2 change in baseline total revenue due to demand forecasting vs
known demand with various ancillary prices and market demand levels.

allows more FC 2 bookings but reduces space available for FC 1 bookings. Recall that

protection levels in the baseline case are set to maximize ticket revenue; the net impact of

the introduction of forecasting is a reduction (by 2.0%) of baseline ticket revenue. However,

with ancillary revenues present, the baseline protection levels undervalue FC 2 bookings.

The forecasting errors that result in additional FC 2 bookings also result in an increase (by

23%) in ancillary revenue; in this scenario, the increase in ancillary revenue outweighs the

loss in ticket revenue and results in an increase in total revenue. Note that this inadvertent

total revenue increase is dependent on the value of the ancillary service: as shown in Figure

5.9, at lower ancillary prices, the baseline with demand forecasting has lower total revenue

than the baseline with known demand (and the magnitude of the effect is greater at higher

demand levels).

With the demand forecasting baseline accepting more FC 2 bookings (vs the known demand

baseline), incorporating the optimizer increment (slightly further increasing FC 2 bookings

and decreasing FC 1 bookings) results in too many FC 2 bookings, and leads to a reduction

in total revenue (vs the forecasted demand baseline).

115

-- *-$25 Ancillary

I



The Littlewood Conditions represent the simplest possible revenue management environ-

ment, and each of the necessary assumptions for optimality is violated in reality. The

introduction of additional assumption violations (such as multiple re-optimization periods,

more than two fare classes, unordered fare class demands, and passenger choice of fare class

and/or ancillary services) may combine to increase, reduce, or even reverse, some of the

effects outlined in this section. Nonetheless, the Littlewood Conditions provide a useful

setting for examining the fundamental dynamics of an independent-demand optimization

approach, such as the optimizer increment. Subsequent sections of this chapter assess the

performance of OI in increasingly complex environments, with the analysis focused on il-

lustrating how revenue impacts of Ol in the more complex environments differ from those

under the Littlewood Conditions.

5.2.3 One Airline, One Flight Leg Network (AlONE)

Network AlONE consists of one airline with one flight leg and six fare classes. Passengers

make choices about fare classes and the ancillary service (according to the simultaneous or

sequential models described in Chapter 3, and in contrast to the Littlewood Conditions),

and therefore fare class demands are not independent and passenger arrivals are not ordered.

Network A10NE has two passengers segments, business and leisure, as described in Section

3.2; business passengers typically (although not always) have higher budgets, are more

restriction-averse, and book closer to departure than leisure travelers. In addition, the

airline divides the booking window into 16 data collection points (DCPs); it generates new

demand forecasts and re-optimizes its protection levels/booking limits at the start of each

DCP. Thus, each of the optimality assumptions of the Littlewood Conditions is violated.

As with network C2, A10NE simulations have 2,000 total samples (5 trials of 400 unburned

samples each) and the underlying stochastic demands for a given sample are the same

between different simulations with the same demand generation parameters, so comparisons

on performed on a pairwise basis.
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Table 5.4: Network AlONE fare and ancillary fee structure.

Advanced Restriction Applies?

Fare purchase R1 R2 R3

FC 1 $500 None - -

FC 2 $390 3 days - - Yes
FC 3 $295 7 days - Yes Yes
FC 4 $200 10 days Yes - Yes
FC 5 $160 14 days Yes Yes
FC 6 $125 21 days Yes Yes Yes

The fare and ancillary fee structure is shown in Table 5.4. FC 1 has the highest fare

at $500 and has no restrictions; FC 6 has the lowest fare at $125 and has several advance

purchase and other restrictions in place. The airline sells one ancillary service, priced at $25

to $100 depending on the scenario. We consider several different mean ancillary disutility

scenarios: an "equally appealing" case where both segments have a mean ancillary disutility

equal to its price, and a "business-oriented" and "leisure-oriented" case where the business

(leisure resp.) segment has a mean ancillary disutility equal to 125% of its price and the

leisure (business resp.) segments has a mean disutility equal to 75% of its price. These

configurations are summarized in Table 5.5.

Table 5.6 lists booking and ancillary purchase data for a baseline case with 100% simulta-

neous passengers, medium demand, a $50 ancillary price, and equally appealing disutility

scenario. In the baseline scenario, about 33% of passengers purchase the ancillary service,

with a much higher purchase rate in the higher fare classes (46% for FC 1) than in the lower

Table 5.5: Ancillary disutility scenarios. Mean ancillary disutility for each passenger seg-

ment shown as a function of ancillary price.

Scenario Business Leisure

Leisure-oriented 75% 125%
Equally appealing 100% 100%
Business-oriented 125% 75%
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Table 5.6: Network AlONE baseline bookings and ancillary purchase data by fare class
(medium demand, 100% simultaneous passengers, $50 ancillary price, $50 ancillary disuti-
lity).

FC1 FC2 FC3 FC4 FC5 FC6

Bookings 6 14 10 8 16 56
Booking Mix 5% 12% 9% 8% 15% 52%
Average Fare $500 $390 $295 $200 $160 $125
Average Ancillary per Passenger $23 $22 $21 $22 $19 $12
Portion of Total Revenue from Ancillary 4% 5% 7% 10% 11% 9%
Ancillary Sales Rate 46% 44% 41% 44% 39% 25%

fare classes (25% in FC 6); likewise, the average ancillary revenue per booking is highest in

FC 1 ($23) and lowest in FC 6 ($12). Despite the lower ancillary purchase rate and lower

average ancillary revenue in lower fare classes, because fares are lower in FC 6 than FC 1,

the portion of total revenue derived from ancillary sales is highest in the lower fare classes

(11% in FC 5) and lowest in higher fare classes (4% in FC 1). Recall that major US airlines

report about 8% of total revenue from ancillary services, according to the US Department

of Transportation. 4

The lower ancillary purchase rate in the lower fare classes is driven by a fundamental beha-

vioral assumption in the Simultaneous choice model: passengers have an overall budgetary

constraint that limits their spending on the combination of fare and ancillary services. Pas-

sengers booking in the lower fare (and highly restricted) fare classes tend to have smaller

budgets, which constrains their ability to afford ancillary services. These basic ancillary

purchase and revenue trends are similar in the other baseline and experimental cases.

Given these characteristics, the change in total revenue when the airline implements the

optimizer increment is shown in Figure 5.10 for various ancillary prices, demands, and

disutility configurations. The low, medium, and high demand cases correspond to baseline

load factors of 77%, 84%, and 88%, respectively. The optimizer increment consistently

decreases total revenue in these simulations; while the change is small, it is statistically

4US DOT Form 41, Schedule P-1.2
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Figure 5.10: Network AlONE change in total revenue due to optimizer increment and 99%
confidence interval vs baseline with various ancillary prices, market demand levels, and
disutility scenarios (100% simultaneous passengers). df = 1, 999.

significant: the 99% confidence intervals (df = 1, 999) lie exclusively below zero in Figure

5.10.

Additional results are shown in Table 5.7 for the range of ancillary prices with medium

demand and equally appealing disutility configuration. Although the changes in total reve-

nue due to the optimizer increment are small, they are statistically significant (p < 0.001,

df = 1, 999) and they are consistent with the findings in Section 5.2.2 when the airline

forecasted demand: the optimizer increment decreases ticket revenue, increases load factor,

decreases yield (meaning the booking mix shifts toward the lower-value fare classes), and

increases ancillary revenue. In these cases, the net impact is a consistent decrease in total

revenue, with a (slightly) larger decrease at higher ancillary prices. Although the results

are not shown here, the same trends exist when all passengers exhibit sequential behavior

or when passengers have a mix of 50% simultaneous and 50% sequential behavior types.
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Table 5.7: Network AlONE simulation results with various ancillary prices (medium de-
mand, 100% simultaneous passengers, equally appealing disutility scenario).

$25 Ancillary $50 Ancillary $75 Ancillary $100 Ancillary

Baseline
Ticket Revenue $22,123 $22,098 $22,067 $22,034
Ancillary Revenue $1,096 $1,808 $2,290 $2,618
Total Revenue $23,219 $23,906 $24,357 $24,652
Load Factor 83.8% 83.8% 83.8% 83.8%
Total Yield 21.32 21.95 22.36 22.63
Ancillary Purchase Rate 40.3% 33.2% 28.0% 24.0%

Optimizer Increment
Ticket Revenue $22,107 $22,068 $22,029 $21,987
Ancillary Revenue $1,096 $1,808 $2,288 $2,618
Total Revenue $23,203 $23,876 $24,317 $24,605
Load Factor 83.8% 83.9% 83.9% 83.9%
Total Yield 21.29 21.90 22.30 22.57
Ancillary Purchase Rate 40.2% 33.2% 28.0% 24.0%

Change from Baseline
Ticket Revenue -0.1% -0.1% -0.2% -0.2%
Ancillary Revenue +0.0% +0.0% -0.1% +0.0%
Total Revenue -0.1% -0.1% -0.2% -0.2%
Load Factor +0.1 pts +0.1 pts +0.1 pts +0.1 pts
Total Yield -0.1% -0.2% -0.3% -0.3%
Ancillary Purchase Rate -0.0 pts -0.0 pts -0.1 pts -0.0 pts

Significance of Change in Total Revenue from Baseline
Standard Error 0.0% 0.0% 0.0% 0.0%
t-statistic -4.59 -7.69 -6.73 -7.66
p-value < 0.001 < 0.001 < 0.001 < 0.001
Note: Total yield in cents per mile. Standard error expressed as percentage of baseline total revenue.

df = 1, 999.
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Table 5.8: Network D6 fare and ancillary fee structure.

Average Advanced Restriction Applies?

Fare range fare purchase R1 R2 R3

FC 1 $188-743 $413 None - -

FC 2 $137-515 $293 3 days - Yes
FC 3 $88-297 $179 7 days Yes - Yes
FC 4 $76-248 $153 10 days Yes Yes
FC 5 $65-198 $127 14 days Yes Yes Yes
FC 6 $54-153 $101 21 days Yes Yes Yes

5.2.4 Two Airline, Many Flight Leg Network (D6)

Our final study of the optimizer increment utilizes the two airline, multiple flight leg network

D6. In D6, shown in Figure 5.11, the airlines each operate a connecting hub, with a total

of 252 flight legs serving 482 different origin-destination markets. Each airline offers three

itineraries in each market and each airline has six fare classes and sells one ancillary service.

Fares vary by market but both airlines have the same fares within a given market. The

FC 1 fare for a market is between 3 and 5 times the FC 6 fare. Fares and demands were

previously calibrated based on data provided by airline members of the MIT PODS Research

Consortium

Because both airlines operate connecting hubs, in all our simulations they utilize network-

based revenue management optimization and forecasting models (DAVN and standard fo-

recasting, described in Sections 3.2 and 4.1). The fare structure is shown in Table 5.8. The

ancillary service is priced at 40% of the FC 6 (the same ratio as the $50 ancillary price in

network AlONE), which corresponds to ancillary prices between $22 and $62. We use the

same disutility scenarios as in the previous section (see Table 5.5). D6 simulations have two

trials of 400 unburned samples, leading to a total of 800 simulated departure days.

Baseline revenues for both airlines are shown in Table 5.9 for a medium demand, equally

appealing case with simultaneous passengers. Airline 2's more southern hub makes its
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Figure 5.11: Network D6 map. Traffic flows from west to east, except for flights between
the two hubs which are bi-directional. Each airline operates three connecting banks.

flights slightly longer and slightly less appealing to most connecting traffic; it therefore has

a slightly smaller load factor and revenues than Airline 1. Airline 1 has a system load factor

of 83.7%, and 42.6% of its passengers purchase the ancillary service.

A breakout of booking and ancillary purchase data by fare class for the same case is shown

in Table 5.10 for Airline 1. Results for Airline 2 are not shown but are similar. The ancillary

service has a relatively even purchase rate, between 40% and 46% in all fare classes. The

higher average budgets in this network result in similar ancillary purchase rates across fare

classes, even with simultaneous passengers. Between 4% (for FC 1) and 14% (for FC 6) of

total revenue from each fare class comes from the ancillary service, leading to a network

average of 8%, again in line with US DOT estimates of ancillary revenue for US airlines.

We conduct two sets of experiments to assess the effect of the optimizer increment in this

large, competitive network. First, we evaluate a symmetrically competitive case where both

airlines use the optimizer increment, and second an asymmetric case where Airline 1 only

implements the optimizer increment (and Airline 2 retains its standard forecasting and
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Table 5.9: Network D6 baseline statistics (medium demand, 100% simultaneous passengers,
equally appealing disutility scenario).

Airline 1 Airline 2

Ticket Revenue $1,326,442 $1,307,530
Ancillary Revenue $115,904 $115,431
Total Revenue $1,442,346 $1,422,961
Load Factor 83.7% 83.0%
Total Yield 14.04 13.46
Ancillary Sales Rate 42.6% 42.4%
Portion of Total Revenue from Ancillary 8.0% 8.1%
Note: Total yield in cents per mile.

optimization systems from the baseline case); these cases are described in Table 5.11.

Symmetric Optimizer Increment

As shown in Figure 5.12, when both airlines implement the optimizer increment they both

see decreases in total revenue for low, medium, and high demand (corresponding to 78.2%,

83.7%, and 87.6% Airline 1 baseline load factors with 100% simultaneous passengers and

the equally appealing disutility scenario). The change in total revenue vs baseline cases

where the airline optimizes only on the fare are small-between -0.2% and -0.4%-but

are statistically significant (as shown by the 99% confidence interval, df = 799). As with

networks C2 and AlONE, use of the optimizer increment results in a decrease in ticket

Table 5.10: Network D6 Airline 1 baseline bookings and ancillary purchase data by fare class

(medium demand, 100% simultaneous passengers, equally appealing disutility scenario).

FC1 FC2 FC3 FC4 FC5 FC6

Bookings 987 1,334 992 938 545 2,506
Booking Mix 14% 18% 14% 13% 7% 34%
Average Fare $363 $278 $169 $145 $123 $91
Average Ancillary per Passenger $17 $17 $17 $15 $14 $15
Portion of Total Revenue from Ancillary 4% 6% 9% 9% 10% 14%
Ancillary Sales Rate 45% 44% 46% 40% 36% 42%
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Table 5.11: Network D6 experimental outline.

Case Airline 1 Airline 2

Baseline Filed fares Filed fares
Symmetric 01 Optimizer increment Optimizer increment
Asymmetric 01 Optimizer increment Filed fares

-- JJSimult. 99% CI MM Seq. 99% CI --- Simultaneous -W-50/50 Mix -Ar-Sequential

1.0% -

0.5% -

0.0%

(0.5%)

1.0% -

0.5% -

(.0%

(0.5%)-
Low Medium

demand demand

Airline 1

High

demand
Low Medium High

demand demand demand

Airline 2

Figure 5.12: Network D6 change in Airline 1 and Airline 2 total revenue revenue due
to symmetric optimizer increment and 99% confidence interval vs baseline with various
market demand levels and passenger behavior types (equally appealing disutility scenario).
df = 799.

revenue, an increase in ancillary revenue, and a decrease in total revenue, as shown for

Airline 1 in Figure 5.13. The decrease in ticket revenue is driven by a shift in the booking

mix toward lower-value fare classes and not by a reduction in the number of bookings. In

fact, as the optimizer increment leads to more availability in the lowest-value fare classes,

the airline accepts more bookings. The increase in total bookings, and the magnitude of

the shift in the booking mix toward FC 6, increase at higher demand levels. Results for

Airline 2 show similar patterns.

Figure 5.14 shows how bookings by fare class change within each DCP for Airline 1 (with
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Figure 5.13: Network D6 change in Airline 1 revenue component (left) and change in book-
ings by fare class (right) due to symmetric optimizer increment vs baseline with various
market demand levels (100% simultaneous passengers, equally appealing disutility scena-
rio).

the total industry change plotted for comparison). The figure suggests that a primary driver

of optimizer increment-induced revenue losses is buy-down. In the early DCPs, for each FC

6 booking gained, Airline 1 loses bookings in higher-value fare classes (in particular FC 4

and FC 5), driving ticket revenue losses (recall that FC 4 and 5 have higher fares than FC

6, so trading one FC 4 booking for one FC 6 booking reduces revenue). Airline 1 accepts

more bookings during the first portion of the booking window and therefore can accept

fewer bookings in the last few DCPs, resulting in displacement of late-arriving passengers.

Although the magnitude of booking changes is small in the DCPs near departure, the

changes occur entirely in the highest value fare classes, so each incremental booking has a

large effect on total revenue.
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Figure 5.14: Network D6 change in Airline 1 bookings by fare class and DCP due to sym-
metric optimizer increment vs baseline (medium demand, 100% simultaneous passengers,
equally appealing disutility scenario). Industry total includes all Airline 1 and Airline 2
fare classes.

Asymmetric Optimizer Increment

Results for asymmetric competition, where Airline 1 uses the optimizer increment and

Airline 2 maintains its baseline approach of optimizing only on the fare, are similar for

Airline 1 as the symmetric case. As shown in Figure 5.15, the optimizer increment again

decreases total revenue for Airline 1 for low, medium, and high demand and with all three

passenger behavior scenarios, with small but statistically significant changes vs baseline

(as shown by the 99% confidence interval, df = 799). Again, the optimizer increment

results in a decrease in ticket revenue, an increase in ancillary revenue, and a decrease in

total revenue. Airline 2 (results not shown) is largely unaffected by Airline 1's use of the

optimizer increment, and sees total revenue increases less than 0.1%.

Empirical cumulative distribution functions for the change in total revenue (vs baseline)

are shown in Figure 5.16 for both airlines for both the symmetric and asymmetric cases.
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Figure 5.15: Network D6 change in Airline 1 total revenue (left) and change in Airline 1
revenue component (right) due to asymmetric optimizer increment vs baseline with various
market demand levels and passenger behavior types (100% simultaneous passengers for
revenue component change, equally appealing disutility scenario). df = 799.

For the symmetric optimizer increment, both airlines have median and mean total revenue

changes below zero; for the asymmetric optimizer increment (where Airline 2 maintains its

traditional optimization based only on filed fares), Airline 1 has a median and mean total

revenue change less than zero while Airline 2 has a median and mean total revenue change

near zero.

Estimation Quality

Some markets and fare class combinations may receive very few bookings, in which case the

historical database may not contain any booking records for these combinations during some

of the historical data periods used for estimating average ancillary revenue per passenger.5

In such a case, use of the default estimate Jmkt,k will lead to a biased estimate.

5United Airlines, for example, states that it generates nearly 8 million forecasts per day and that "nearly all
have [less than] one passenger forecasted" (United Airlines Investor Day Presentation (2016), pg. 46-47).
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Figure 5.16: Network D6 empirical cumulative distribution function of change in total
revenue by sample due to symmetric optimizer increment (left) and asymmetric optimizer
increment (right) vs baseline (medium demand, 100% simultaneous passengers, equally
appealing disutility scenario).

To reduce the bias in &mkt,k caused by the use of the default value amkt,k for the periods

without bookings, we tested an alternative estimation method ("Method 2") in which we

estimate ancillary purchase rates for each ancillary service and fare class across a group of

markets, where the true purchase rate is Pmkt,k,s for market mkt (not group), fare class k,

and ancillary service s. The market groups have similar fare class restrictions, ancillary

service offerings, and competitive characteristics (in D6 all markets are combined into one

group); the group-level purchase rates are combined with market-specific ancillary prices to

get market and class-specific estimates of average ancillary revenue. The estimated purchase

rate pg,ks for market group g, fare class k, and ancillary service s is given by:

f P=1ZEmktEMGg Xmkt,k,s,dep

b bmktkdep bmkt,k,dep -# 0
Pg,k,s -- ddep= mktEMG

Pgks otherwise
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where MG 9 is the set of markets in group g, and pg,k,, us a default value (set to 0 in our

implementation). The market/class specific estimate is computed as:

amkt,k Z gmkt,k,srmkt,k,s

SCS

where gmkt is the group of market rnkt. Note that this estimation method will also be biased

if different markets (within a market group) have different ancillary purchase characteristics,

even assuming a market group receives some bookings during the historical data period:

B 'gmktks I b] 'rmkt,k,s

sES

nob

Pmkt,k,sTmnkt,k,s E bdep,mkt,k
sES dep=1

nob

E bdep,mkt,k +
dep==1

nob

+ Z j Pq,k,s E bdep,q,k
qE(MGgrk \mkt) \sES dep=1

nob

S E bdep,q,k
qE(MGgmk \mkt) dep=1

(5.8)

The left hand term in both the numerator and the denominator of Equation 5.8 simplify to

an unbiased estimate of the mean ancillary revenue per passenger:

EscS Pmkt,k,s? mkt,k,s E noe$=1 bdep,mkt,k
ESnob P k Z: Pmkt,k,sTmkt,k,s = 

T
mkt,k,s

dep=1 bdep,mkt,k sES sES

The right hand terms in both the numerator and denominator of Equation 5.8 reflect the

bias introduced in the estimator by integrating purchase rates from other markets within

the same market group. The number and type of markets within each group will affect

this bias: larger groups increase bias because p mixes effects from more markets, but also

decreases bias because fewer estimate instances will have zero bookings (and therefore rely
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Figure 5.17: Network D6 actual and estimated Airline 1 average ancillary revenue per
passenger by fare class with symmetric optimizer increment using historical average ancillary
revenue per booking (left, "Method 1") and historical average ancillary purchase rate (right,
"Method 2") (medium demand, 100% simultaneous passengers, equally appealing disutility
scenario). Note that unlike Table 5.10, the averages reported here are not weighted by
bookings within each market. Percentages show the change vs actual average per passenger
by fare class.

on default purchase rate ;).

The difference between the actual ancillary revenue per passenger by fare class and the

estimated value using estimation Method 1 or Method 2 is shown in Figure 5.17 for the

symmetric optimizer increment (the asymmetric case has similar results and is not shown).

Using Method 1, the estimated values (and therefore the magnitude of the increment)

generally match actual values, with the largest difference (of less than 8%) occurring in FC

6. FC 6 is most likely to have zero bookings (and therefore a biased estimate) because the

revenue management system may close it entirely. Using estimation Method 2 produces

a closer match with the actual values, with the maximum error reduced to less than 3%.

While Method 1 consistently underestimates ancillary revenue, Method 2 shows a mix of

over and under estimates. Although there are slight differences in the estimated values,
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both method produce similar revenue performance: a decrease in total revenue for Airline 1

vs baseline of 0.3% with either symmetric or asymmetric optimizer increment with medium

demand, 100% simultaneous passengers, and the equally appealing disutility scenario. Thus,

the alternative estimation method does not appear to have a substantial benefit in these

tests.

5.3 Conclusions

The optimizer increment is an easy and intuitive approach to optimization of total revenues

(ticket plus ancillary). Previous studies have simulated its performance in environments

where passengers do not make choices about their ancillary services, but no prior work

has provided a thorough theoretical assessment of the mechanism, nor has any prior work

evaluated its performance when passengers do make choices about ancillary services. In this

chapter, we have shown that the optimizer increment is an optimal approach to maximizing

total expected revenue under limited conditions, and under such conditions its use leads to

higher ancillary and total revenues, with the increase in ancillary revenue partially offset

by a decrease in ticket revenue.

Two additional important findings from this analysis are that the optimizer increment is

not an optimal revenue management optimization approach when passenger make choices

about fare classes, and that introducing demand forecasting can substantially degrade the

optimizer increment's revenue performance (even in cases where it is otherwise an optimal

strategy). Our simulations show decreases in total revenue driven by ticket revenue los-

ses that more than offset gains in ancillary revenue in variety of environments, including

competitive networks with connecting flights and hundreds of origin-destination markets.

These key findings provide the motivation for Chapter 6, where we develop an ancillary-

aware revenue management optimization and forecasting model that explicitly accounts for

passenger choices, and for Chapter 7, where we verify that our total revenue optimization
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proposal remains functional even when demand forecasting and other complexities of more

realistic environments are introduced.
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Chapter 6

Ancillary Choice Dynamic

Program

For decades, airlines have invested in revenue management (RM) systems to maximize the

proceeds from ticket sales.' Since the mid-2000s, however, airlines have been developing a

secondary, ancillary, revenue stream by both unbundling their product and offering new ser-

vices for sale. As the number, price, and value to airlines of ancillary services grow, so does

the potential benefit of a new generation of revenue management models that attempt to

maximize total revenue, not just ticket revenue. In this chapter, we develop a new approach

to total revenue optimization with the Ancillary Choice Dynamic Program (ACDP), which

explicitly incorporates ancillary revenues and the passenger choice impacts of ancillary ser-

vices. We then show that the model leads to two heuristics, an Ancillary Marginal Demand

transformation (AMD) and an Ancillary Marginal Revenue transformation (AMR), which

together can transform existing RM models to be both ancillary-aware and choice-aware in

their calculation of fare class booking limits. Finally, we discuss how emerging technologies

'Portions of this chapter were previously awarded the 2018 Anna Valicek bronze medal as Bockelie, A.
and Belobaba, P. (2018). Total revenue optimization with the Ancillary Marginal Demand and Ancillary
Marginal Revenue transformation heuristics. Presented at the 58th Annual AGIFORS Symposium, Tokyo,
Japan.
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in airline distribution will allow further extensions to our model, and describe how our work

could provide a platform for an offer generation engine.

As with Chapter 3, we focus specifically on optional services sold to passengers in con-

junction with a particular itinerary, such as checked baggage, seating upgrades and seat

assignments, inflight meals and entertainment, priority boarding, and lounge access. We

develop a single leg RM optimization and forecasting algorithm, using a flexible customer

choice model. We discuss the significant practical marketing and distribution constraints

that restrict the types of offers and that airlines can sell, and show how our model can be

restricted to produce booking policies that can be implemented under these conditions. We

develop two heuristics that can be used to convert existing RM models to total revenue ma-

nagement (i.e. maximizing the sum of ticket and ancillary revenue) and we show that under

specific choice models our heuristics are equivalent to existing total revenue optimization

methods, but that in general our models provide an additional level of specificity. We also

describe additional approximations and processes that may be required to operationalize

our models.

The remainder of this chapter is organized as follows: Section 6.1 presents our model formu-

lation, discusses practical constraints, introduces our two heuristics, and investigates their

equivalence to previous approaches. Section 6.2 addresses challenges that may be encoun-

tered in implementing our heuristics and proposes two solution processes: one addressing

the presence of inefficient booking policies, another providing a demand forecasting mo-

dule. Section 6.3 describes how the heuristics could be used in a network setting, despite

the leg-based formulation of ACDP. We conclude with a summary in Section 6.5 as well as

thoughts on potential future work.
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6.1 Model Formulation

We consider a single airline, single flight leg network, with multiple fare classes and multiple

ancillary services. The fare classes are indexed 1,... , k,. .. , nFC and ordered by decreasing

fare; the fare for class k is fk, so fi fh A > fnFC. The airline has grouped its ancillary

services into purchasable combinations 0, 1,... m, m... , nCOMB, where set 0 corresponds to

the set of no ancillary services. These combinations are formulated subject to the airline's

marketing policies and goals (and ensure that passengers combine ancillary services in a

sensible manner, such as a prohibiting a second checked bag without also buying a first

checked bag); the set Mk ; {0, 1,...,nCOMB} lists the combinations that are permitted

in class k. Combination m of ancillary services purchased in conjunction with fare class k

has price akm. For modeling convenience, we assume that the fare class 0 corresponds to a

decision by the passenger to not fly.

Time is discrete and counts down to departure, which occurs at t = 0. We assume that

demand has a Poisson distribution, that time slices are small enough that there is at most

one arrival per slice, and the probability of an arrival during slice I is \t. Capacity x is

the number of unsold seats, which constrains the total number of sales. We assume that

individual ancillary services have no capacity constraints and have a negligible marginal

cost to the airline. We assume no cancellations or overbooking.

The airline's booking policy for each time and capacity state (t, x) is an offer set 0. We

define an offer (k, m) E 0 as a specific fare class k and combination m E Mk of ancillary

services; a consumer purchases exactly one offer in its entirety from the offer set. The offer

(0, 0), which corresponds to the no-fly option, is always included in the offer set. Ancillary

services are considered "optional" for a fare class if there are offers for that class in the offer

set both with and without the ancillary service.

We assume that consumers make choices according to a flexible and general choice model,

where the probability that a consumer chooses a particular offer is a function of the booking
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policy in effect and the time at which the consumer arrives in the booking process. We

specify this choice model in terms of choice probabilities Pkmt(O), which is the probability

that a consumer arriving at time t chooses offer (k, m) when presented with offer set 0, with

Pkmt(O) = 0 if (k, m) 0. The exact structure of this choice function can vary by context;

two potential models are the sequential or simultaneous behaviors described in Chapter 3.

Multiple consumer demand segments may be present, each with their own choice function.

However, we assume that the airline cannot provide different booking policies to these seg-

ments, and so the probabilities Pkmt(O) reflect a weighted average of the segments arriving

at time t.

The probability that the airline sells offer (k, m) during time t, given that it has booking

policy 0 in effect, is AtPkmt (O). The probability that the airline sells nothing at time t is

(1 - At) + AtPoot(O), which reflects that the lack of sale may be due to no arrival, or because

the consumer chose not to fly. The total probability of sale TPt for a particular booking

policy is the probability that an arriving consumer purchases anything from the policy, and

is:

TPt(O) = Pkmt(O) (6.1)
(k,m)EO

Likewise, the total expected revenue TRt from an arriving customer presented with policy

O is:

TRt (O) - Pkmt (0)(fk - akm) (6.2)
(k,m)EO

The airline selects the booking policy that maximizes the total expected revenue to come

V in future time periods via the Ancillary Choice Dynamic Program (ACDP):
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V (t, x) = max E AtPkm..t(O) (fk +akm* +V(t --1, X- 1))
0 (k,m) EQ

+ (AtPoot(O) + 1 - At) V(t - 1, x) (6.3)

We define a bid price function AV(t, x) = V(t, x) - V(t, x - 1) as the marginal cost of

capacity and can rewrite Equation 6.3 in simpler terms:

V(t, x) = max AtPkmt(O)(fk + aki - AV(t - 1,x)) + V(t - 1,x) (6.4)
0 (k,M)EO

The airline chooses the one offer set, or booking policy, 0 in each time and capacity state

that maximizes the total expected revenue earned from that time and capacity state, minus

the cost of consumed capacity, plus the maximum expected revenue to come in future time

periods. For modeling convenience, it is possible that the airline would only "offer" the

no-fly option. This function is solved recursively, with the boundary conditions V(O, x) = 0

and V(t, 0) = 0: no future revenue can be earned when there is no time and/or capacity

remaining.

We can redefine an offer (k, m) as a product j sold by the airline, with price rj = fk(j) +

ak(j),m(j) where k(j) and m(j) map the product index to the fare class and ancillary combi-

nation indices. Product j has purchase probability Pjt(O) = Pk(j),m(j),t(O) when the airline

is selling the set of products 0. We can now rewrite Equation 6.4 as:

V(t,x) max AtPjt(O)(rj - AV(t - 1,x)) +V(t-1,x) (6.5)

which recovers the time-varying extension of the choice-based dynamic program proposed
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by Talluri and van Ryzin (2004), although our use case contains the addition ancillary

dimension. Talluri and van Ryzin prove several important points about the optimal solutions

to Equation 6.5 (in the non-time-varying case):

1. When input parameters At, Pjt(O), and rj are known and accurate, and when demand

is Poisson, the solutions to Equation 6.5 are optimal booking policies.

2. The optimal policies are always one of the efficient sets.

An efficient set, or efficient policy, is one which maximizes total expected revenue for any

given total sale probability, or is part of a linear combination of policies that maximizes

total expected revenue for any given total sale probability; the linear combination is, in

practice, equivalent to alternating between booking policies. Talluri and van Ryzin define

a policy 0 as inefficient in time slice t if there exists a set of policy weights at(S), with

vsc at(S) = 1, such that:

TPt(O) > Eat(S)TPt(S) and TRt(O) <Eat(S)TRt(S)
VS VS

otherwise 0 is efficient in time t (Talluri and van Ryzin, 2004, Section 3.1). In other words,

a set is inefficient if there is a weighted combination of other sets with a smaller (or equal)

sale probability and a greater total expected revenue. The no-fly-only policy (offering (0,0)

in our notation) is always efficient.

We can index and order the efficient sets in time t by increasing sale probability, such

that 01,t,..., OnEstt have TPt(Oi,t) <; TPt(Oigi,t); the sets are therefore also ordered in

terms of increasing expected revenue (Talluri and van Ryzin, 2004, Proposition 3). Fiig

et al. (2010), Walezak et al. (2010), and Gallego (2013) develop marginal revenue and

marginal demand transformations to convert Equation 6.5 into an equivalent independent

demand formulation. We extend those ideas to the ancillary dimension as the Ancillary
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Marginal Demand transformation (AMD, Equation 6.6) and Ancillary Marginal Revenue

transformation (AMR, Equation 6.7):

di,= At (TPt(Oi,t) - TJt(Oi_1,t)) (6.6)

TRt(Oi,t) - TRt(Oi_1,t) (6.7)
- TPt(Oit) - T t(Oi_1,t)

where dit is the marginal, or additional, demand that can be accommodated and fit is the

marginal total revenue per unit of capacity that can be earned by moving from policy Oi-1,,t

to Oit in time t, and we define TRt(Oo,t) = TPt(Oo,t) = 0. Fiig et al. (2010) show that

these marginal unit revenues are decreasing in i, and that the optimal policy in time t is to

offer the set Ogt with the smallest expected revenue greater than or equal to the bid price:

it* = max{i I ft ;> AV(t, x)}

6.1.1 Practical Constraints and Limitations

Airline marketing policies and distribution technology impose significant practical con-

straints on the types of offers and offer sets that airlines can sell. Traditionally, airlines

have sold tickets to consumers directly (through the airline website, call center, and tic-

ket offices) and indirectly (through travel agents and online travel retailers). Airline sales

through indirect channels are subject to the technical limitations of distribution technology,

and sales through all channels are potentially subject to commercial agreements with vari-

ous retailers. In practice, for many airlines, the same booking policy must be in place for

consumers shopping in all channels (direct and indirect).

Indirect sales are often made through a Global Distribution System (GDS), which serves
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as a content aggregator. Approximately 50% of bookings worldwide are made through a

GDS, and therefore the structure of GDSs has a significant impact on how airlines sell travel

(Taubmann, 2016). A consumer makes a shopping request to a travel retailer (such as a

human travel agent, or an online travel agent like Expedia), which then requests search

results from a GDS. The GDS draws upon schedule data from a third party (Official Airline

Guide, OAG), fare and ancillary pricing data from a third party (Airline Tariff Publishing

Company, ATPCO), and availability data from airlines. The airline availability data lists

the number of seats available in each booking class. The GDS then combines all of this

information to assemble the travel options returned to the retailer (and in turn to the

consumer). Figure 1.4 shows a schematic of this process.

Airlines are responsible for providing their schedules to OAG and fares to ATPCO, and can

update the data in batch processes as necessary. However, the only "real time" control that

the airline has in this process is the availability response. Thus, the airline can only control

products at the fare class level. In the example in Figure 1.4, the airline has responded that

fare classes Y, B, and M are available, and that the airline sells two ancillary products, BAG1

and BAG2. The airline cannot dictate in real time how those booking classes and ancillary

services can be combined: if the airline wants to sell BAG1 and BAG2 to passengers booking

in all three fare classes in general, the booking policy must always permit an optional BAGI

and BAG2 for classes Y, B, and M. 2 We term this constraint fare class completeness, and say

that, to comply with traditional distribution system architecture, the offer sets considered

by ACDP must be fare class complete.

Definition 1 (Fare Class Completeness). An offer set 0 is fare class complete (FCC) if

and only if, for every fare class included in the set, all possible offers based on that fare

class are also included in the set: if (k, m) eQ for some m E Mk, then 0 is FCC if and

only if (k, m') E 0 for all m' E Mk.

2
1t is possible that the airline marketing policies would offer some ancillary services complimentary to some
fare classes, or would prohibit their purchase in other fare classes. These restrictions can be implemented
through fare filing (and would affect the composition of Mk), but cannot be generated in real time.
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In addition, we impose the practical constraint that offer sets must be nested by fare order

(a common assumption in many of today's revenue management systems):

Definition 2 (Nesting by Fare Order). An offer set 0 is nested by fare order (NFO) if

and only if, for every fare class included in the set, all fare classes with a higher priced fare

are also included in the set: if (k, m) E 0 for some m E Mk, then 0 is NFO if and only if

(j, m') C 0 for all j < k and for some m' E Mj.

Offer sets that are both fare class complete and nested by fare order are marketable by

airlines within traditional distribution frameworks.

6.1.2 Ancillary Marginal Demand Transformation and Ancillary Margi-

nal Revenue Transformation Heuristics

With the constraints described in the previous section, we can simplify our notation: the

airline uses Equation 6.3 to choose a fare class complete, nested by fare order booking

policy, which is equivalent to choosing a lowest available fare class with no RM-imposed

limitations on ancillary purchase options.3 We denote this policy simply as k, which in

our earlier notation is equivalent to the set 0 = {(i, m) I Vi < k, Vm C Mi}. Following

Fiig et al. (2010) and Walczak et al. (2010), we propose using AMD and AMR, which are

optimal as inputs to an independent demand dynamic program, as heuristics to transform

the demand and revenue inputs for existing (independent demand) static RM optimizers,

such as EMSR. These systems are typically designed for fare-class level control, which is

why we focus on the case where the airline must choose a fare class complete, nested by

fare order policy to implement.

Using AMD and AMR as heuristic input modifiers provides an easy method to obtain the

benefits of ancillary-awareness and choice-awareness without the need to significantly modify

3 To reiterate, ancillary purchase options for a given fare class could be limited by pre-specified marketing

policies.

141



the core processes of the RM optimizer. The AMD demand corresponds to the incremental

demand accommodated by opening class k, and the AMR fare to the incremental total

revenue per unit of capacity earned by opening class k. We initially assume that each of

these FCC/NFO policies is efficient, which allows the AMD and AMR outputs to give an

adjusted demand and fare for each fare class, minimizing the need to modify the optimizer

structure. We discuss the case of inefficient policies in Section 6.2.1. We express the total

sale probability and total expected revenue for these booking policies as TPt(k) and TRt(k),

and the heuristic versions of AMD and AMR are:

Ancillary Marginal Demand Transformation. The heuristic marginal demand dk,t

associated with moving from fare class complete and nested by fare order booking policy

k - 1 to k in time slice t is:

dk,t = At (TPt(k) - TPt(k - 1)) (6.8)

Ancillary Marginal Revenue Transformation. The heuristic marginal total revenue

f , associated with moving from fare class complete and nested by fare order booking policy

k - 1 to k in time slice t is:

-k~ TRt (k) - TRt (k - 1) (6.9)
TPt(k) - TPR(k -1)

In practice the airlines collect booking data, generate forecasts, and estimate parameters

at various Data Collection Points (DCPs), which aggregate many time slices. In our simu-

lations (Chapter 7), we break the booking window into 16 DCPs. We assume that choice

probabilities and demand arrival rates are equal for each time slice within a DCP, and we

express these parameters in terms of DCPs:
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At = Adcp,, Pimt(k) = Pi,m,dcp,(k), TPt(k) = TPdcp,(k) (6.10)

TRt (k) = TRdcyp(k), fkt = fe,

where dcpt is the DCP that contains time slice t. We will typically refer to these quantities

by DCP only, without reference to any particular time slice.

Gallego (2013) cautions that this heuristic approach is no longer an optimal solution, as

the assumptions of the existing RM model are likely violated. For example, EMSR assu-

mes that all low-fare demand arrives before high-fare demand, but under the general choice

model we have incorporated there is no requirement that this assumption will hold. In ad-

dition, EMSR (typically) assumes normal demand distributions instead of Poisson demand

distributions.

Despite the misalignment of these assumptions and loss of optimality, we believe (and our

simulation results indicate) that the AMD and AMR heuristics can still provide a significant

revenue benefit over traditional RM models when passengers make choices among fare classes

and ancillary services.

6.1.3 Equivalence to Other Models

In this section we show that, under certain choice model conditions, the AMD and AMR

heuristics are equivalent to the optimizer increment (01) and 01 combined with the (non-

ancillary) marginal demand and revenue transformations.

The optimizer increment is a total revenue optimization heuristic for existing RM models

based on supplying the optimizer with an adjusted fare the includes the expected ancillary

revenue per passenger:

fp= fA + dkdcp (6.11)
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where fgl is the 01-adjusted fare for class k in DCP dcp and ak,dcp is the expected ancillary

revenue per booking in class k in DCP dcp. In practice, - would likely be estimated based

on historical ancillary purchase data and could be aggregated across DCPs. No change is

made to demand estimates.

The (non-ancillary) marginal demand and marginal revenue transformations (MD) and

(MR) have the same structure as AMD and AMR Equations 6.8 and 6.9, except they rely

on TPMR(k) and TRMR(k), which exclude the ancillary dimension:

k

T P'f( Pi,m,dcp(k) (6-12)
i=1 mEMk

k

TRdcp (k) = Pim,dcp (k) fk (6.13)
i=1 mEMk

When these approaches are combined, the optimizer increment occurs before the expected

revenue calculation:

k k

TR+MR(k) =1 P emdcp(k)f 'cp Pi,m,dcp(k)(fk + amkgdP) (6.14)
i=1 meMk i=1 mEMk

There is no additional change to total sale probability, so:

T P +M R (k)- RTpR(k) (6.15)
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Independent Demand Model

We first consider the independent demand choice model, in which each arriving customer

has one preferred fare class k* and combination of ancillary services m*. If (k*, m*) is

included in the airline's booking policy, the customer purchases it. Otherwise, they choose

the no-fly option. We denote by qk,m,dcp the probability that an arriving consumer in DCP

dcp has preference (k, m). Then, the independent demand model is specified by the choice

probabilities:

Pi,m,dcp(k) { qi,m,dcp i < k (6.16)
0 otherwise

Theorem 2. With an independent demand model, the AMR heuristic has the same expected

value as the optimizer increment: f AMR j fc, where f AMR is the AMR adjusted fare

and f'o0 is the optimizer increment adjusted fare.

Proof. We first note that with the independent demand model total sale probability is

given by TPdcp(k) = E=1 EmEi qi,m,dcp and total expected revenue by TRdcp(k)

Zi=1 EmEuM qi,m,dcp(fi + ai,m). The expected ancillary revenue akdpc from a booking in k

class during DCP dcp is:
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akdcp akm Prdcp(buy m I book k)
nE Mk

Prdep(buy m n book k)

nEMk Prdp(book k)

E ak qk,m,dcp

mEMk MZi'EMkqk,m',dcp

_ MEMk ak,mqk,mdcp

MEMk qk,m,dcp

We can now show that the AMR fare is equal to the filed fare plus the (DCP-specific)

expected ancillary revenue per passenger:

AMR - TRdep(k) - TRdep(k - 1)
Jkdcp TPdcp(k) - TPdp(k - 1)

_ 1 ZmEM qi,m,dcp(fi + ai,m) - >i= 1  meMs qi,m,dcp(fi + ai,m)

i= 1 ZmEMi qi,m,dcp - z mEzv qi,m,dcp

f ZmEMk qk,,dcp mEMk qk,m,dcpak,m (6.17)
ZmeMk qk,m,dcp

k mEMk ak,mqk,m,dcp
m eMk qk,m,dcp

fk + ak,dcp

Thus, flAj R =Vol and the two formulations lead to equivalent adjusted fares. 0

Remark. With the independent demand model, the ancillary marginal demand transforma-

tion has no effect on forecasting: the marginal demand associated with opening a class is

the entire demand for the class, since passengers either purchase their (one) preferred class

or do not fly.
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Conditionally Independent Demand

We now consider the case when passengers exhibit conditionally independent behavior, that

is, where all passengers booking in class i in DCP dcp have a constant conditionalprobability

wmli,dcp of purchasing ancillary combination m, regardless of which booking policy k > i is

in effect. Therefore, the choice probabilities satisfy the following equation:

Wmli,dcp Prdep(buy m I book i under policy k)

Pi,m,dcp(k) V < k (6.18)
m'EMi Pi,m',dcp(k) --

Theorem 3. With a conditionally independent demand model that satisfies Equation 6.18,

the AMR heuristic has the same expected value as the optimizer increment combined with the

(non-ancillary) Marginal Revenue transformation defined by Fig et al. (2010) and Walczak

et al. (2:010): flAMR -frjO+MR, where f'AMR is the AMR adjusted fare and f'0I+MR is

the optimizer increment with marginal revenue transformation adjusted fare.

Proof. With conditionally independent demand, the expected ancillary revenue in DCP dcp

for a booking in class i is ai,dcp EmEMi ai,mWmJi,dcp; therefore the optimizer increment

adjusted fare is f'o, = fA + EmMi ai,mwmli,dcp. For the remainder of this section, we will

refer to Equations 6.1 and 6.2 (and the DCP variants in Equation 6.10) as TPgAMR(k) and

TRAIR(k); the AMR adjusted fare is therefore:

TR AMR(k) - TR AMR(k - 1)FtAMR __ dcp dcp
Jk,dcp TpAMR(k) - TpAMR(k - 1)dcp dcp

The optimizer increment/marginal revenue transformation adjusted fare has the same struc-

ture:
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TROI+MR(k) - TROI+MR (k-1)
fI+M __ dcp
k,dcp -POI+MR(k) _ TPOI+MR(k-i)

dcp dcp

To prove f -AMR _ fQ+MR, we show that the formulations have equivalent total sale

probabilities and total expected revenues: TPAMR(j) = TPOI+MR(j) and TRAMR(j) -
dcp dcp Wdep

TROI+MR(j). Total sale probability for the marginal revenue transformation is given by

Equation 6.15:

TPaOI+MRi
2=1

Pi,dcp(j) = E 3 Pi,m,dcp(j)
i=1 mEMi

which is equivalent to TP AMR(j) as defined in Equations 6.1 and 6.10. Next we show that

the total expected revenues are equivalent:

TR;I+MR(k) -dcp

k

k

i

k

Pi,dcp' i i-dcp

Pm,dcp(k)) fi + E a2,mwmli,dc)(mEMi mE Mi

fi E
mEMi

Pi,,mdcp(k)) + mEMi ai,mPi,m,dcp(k)

Zm'EMi Pi,m',dcp(k) E3
mEMi

>3 >3 Pi,m,cp(k)(fi +aim)
i=1 mEMi

- TAR (k)

Since TPAMR = TPOI+MR and TRAMR - TROI+MR for the conditionally independent

choice model, the two approaches have the same expected adjusted fares (and same adjusted

demands).
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Under a general choice model, Equation 6.18 will not hold: the probability that a passenger

purchases a particular ancillary combination, even given that they book in class k, may

vary based on the other classes offered. In this case, AMR and the optimizer increment

plus marginal revenue transformation will lead to different adjusted fares and, potentially,

different booking policies. Our AMD and AMR formulations, by explicitly including the

ancillary dimension of passenger choice, can more precisely measure the marginal total

revenue (or demand) associated with opening a fare class than the previous approaches.

6.2 Operationalization

In this section we discuss additional processes and assumptions that are necessary or helpful

to implement the AMD and AMR heuristics. First, as noted above, the AMD and AMR

transformations described in Equations 6.8 and 6.9 are only valid if the booking policies

k and k - 1 are optimal solutions to the original Equation 6.3. As described by Talluri

and van Ryzin (2004), the solutions to Equation 6.3 must always be efficient sets, and it is

possible that the booking policies k and/or k - 1 are not efficient. Borrowing from previous

Fare Family research, we propose several convex hull approximation methods, which we will

refer to as "gap-filling" methods, to cope with inefficient booking policies (see Hopperstad

(2008) and Fiig et al. (2012)). Second, the ACDP formulation assumes that demand arrival

rates Adep are known; in reality, forecasting demand is a significant challenge for airlines.

We develop an AMD Forecasting Model below to help cope with this challenge, particularly

when the heuristics are coupled with an optimizer that requires a forecast of demand-to-

come by fare class.

6.2.1 Gap-Filling

In cases where a fare class complete, nested by fare order policy k is not efficient, AMR

adjusted fares will be inverted (i.e. the adjusted fare for class k may be less than the
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adjusted fare for class k + 1).

The optimal approach to dealing with these inefficient policies is, of course, to not offer

them. However, our proposed use case for the AMD and AMR heuristics is to feed adjus-

ted demands and adjusted fares to an existing RM optimizer (such as EMSR) to provide

ancillary and choice-awareness without significantly revising the core of the optimization

procedure. As existing RM optimizers are based on fare class demands and revenues, it is

important that the output of AMD/AMR can be expressed in terms of fare classes as well:

each class needs an AMD demand and an AMR fare.

We propose three different mechanisms, which we term gap-filling methods, to deal with

inefficient booking policies while maintaining compatibility with the structure of existing

RM optimizers. The first two, vertical and horizontal gap-filling, involve approximating

the airline's computed choice probabilities to move the inefficient policies onto the efficient

frontier. The third mechanism, exclusion gap-filling, involves strategically modifying the

AMD/AMR outputs to prevent the optimizer from producing an inefficient booking policy.

The outputs of gap-filling are the adjusted total sale probabilities TPd,,P(k) and adjusted

total expected revenues TR'dp(k) for each DCP and for each booking policy. These adjusted

TP' and TR' values are used in subsequent AMD/AMR processes.

To illustrate each of these mechanisms, we consider a running example with six fare classes

and one ancillary service (corresponding to DCP 2 of the simulation results presented in

Section 7.3). The computed total sale probabilities and total expected revenues are listed in

the upper-left portion of Table 6.1, along with the associated EMSR booking limits. Note

that without any gap-filling, the AMR adjusted fares for FC 2 and FC 5 are inverted.

Figure 6.1 shows a plot of the efficient frontier and the fare class complete/nested by fare

order booking policies {1}, {1, 2}, and {1, 2, 3}; the policy of offering classes 1 and 2 is

inefficient. Graphically, the AMR adjusted fare is the slope of the line segment connecting

two adjacent policies. Vertical and horizontal gap-filling operate by shifting the policy FC
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1-2 until it falls on the segment connecting FC 1 and FC 1-3. Vertical gap-filling shifts the

policy up; horizontal gap-filling shifts the policy left. Other (diagonal) gap-filling policies

would be possible, but are not investigated here.

Vertical Gap-Filling

With the vertical gap-filling approximation, the airline's computed total expected revenue

TRdcp(k) is increased for inefficient policies until the policy falls on the efficient frontier.

AMD forecasting is not directly affected by this process, as the total sale probabilities

remain unchanged. It is important to note that this approximation changes only the airline's

perception of expected revenue; the airline does not change fares, fare class restrictions, or

ancillary prices, so actual passenger choice will not be affected.

The vertical gap-filling approximations are:

TPd'cp(k) = TPdcp(k)

TRdc(k) if k is efficient

TR1 c(k) TRd, (k - 1) + TRdcp(k+1)-TRdcp(k-1)dpdc T Pcp (k+1)--T Pdcp(k- 1)

x (TPdcp(k) - TPdcp(k - 1)) otherwise

The result of vertical gap-filling is shown in upper-right section of Table 6.1. With the

example parameters, vertical gap-filling increases TR for FC 2 by 2.3% and for FC 5 by

0.4%. These small changes, however, translate into a 27% increase in the adjusted fare of

FC 2, as well as smaller changes for the adjusted fares of FC 3, 5, and 6. In addition, the

EMSR booking limits change; one fewer seat is permitted to FC 3 and one additional seat

is permitted to FC 5.
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Figure 6.1: Portion of an example convex hull, showing efficient policies in blue circles and
inefficient policies in red squares. The slope (AMR adjusted fare) of various segments is
indicated, with emphasis in red for inverted fares and in blue for gap-filled fares.

152

N Inefficient



Table 6.1: Example AMD mean demand Ak, AMR fares fk, and associated EMSR booking
limits (BL) for DCP 2 with various gap-filling methods. Inverted fares are emphasized in
red; changes from no gap-filling emphasized in blue with the size of the change indicated in
parentheses. (Forecast volume mean f 85, forecast volume standard variance a2 = 900,
and capacity remaining x = 110).

k TP(k) TR(k) A k fk Booking Limit

No Gap-Filling
1 15.5% $81 13 $522 110
2 21.4% $89 5 $172 102
3 30.1% $105 7 $192 101
4 52.8% $134 19 $126 96
5 71.7% $148 16 $77 85
6 100.0% $172 24 $82 78

Vertical Gap-Filling
1 15.5% $81 13 $522 110
2 21.4% $91 (+2.3%) 5 $168 (+27%) 102
3 30.1% $105 7 $168 (-12%) 100 (-1)
4 52.8% $134 19 $126 96
5 71.7% $149 (+0.4%) 16 $80 (+4%) 86 (+1)
6 100.0% $172 24 $80 (-2%) 78

Horizontal Gap-Filling
1 15.5% $81 13 $522 110
2 20.1% (-1.2pts) $89 4 (-21%) $168 (+27%) 102
3 30.1% $105 9 (+14%) $168 (-12%) 101
4 52.8% $134 19 $126 96
5 71.0% (-0.7pts) $148 15 (-4%) $80 (+4%) 86 (+1)
6 100.0% $172 25 (+2%) $80 (-2%) 78

Exclusion Gap-Filling
1 15.5% $81 13 $522 110
2 n/a n/a 0 (-100%) $168 (+27%) 102
3 30.1% $105 12 (+67%) $168 (-12%) 102 (+1)
4 52.8% $134 19 $126 96
5 n/a n/a 0 (-100%) $80 (+4%) 85
6 100.0% $172 40 (+67%) $80 (-2%) 85 (+7)
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Horizontal Gap-Filling

With the horizontal gap-filling approximation, the total sale probability TPcp(k) for inef-

ficient policies is decreased until the policy lies on the efficient frontier. AMD forecasting

is directly affected by this process. While the airline does not adjust TRdcp(k), because

of the change to TPpc, AMR adjusted fares also change. The AMR fares from horizontal

gap-filling will be equal to those of vertical gap-filling because adjusted fares are dictated

by the properties of the efficient booking policies in both cases.

The horizontal gap-filling approximations are:

T Pdcp(k) if k is efficient

TPd (k) TPdC(k - 1) + TPdc,(k+1)-TPdcp(k-1)
TRdc(k+1)-TRdp(k-1).

X (TRdcp(k) - TRdcp(k - 1)) otherwise

TR'dc(k) = TRdcp(k)

In our running example, shown in the bottom-left of Table 6.1, the change to total sale

probabilities due to horizontal gap-filling is small-a decrease of 1.2 percentage points for

FC 2, and of 0.7 points for FC 5. However, these small changes again have large impacts

on AMD and-AMR: adjusted demand decreases 21% for FC 2 and increases 24% for FC 3;

there are also smaller changes for FC 5 and FC 6. The net result of horizontal gap-filling,

in this example, is an increase by 1 in the FC 5 booking limit compared to the no gap-filling

case. Recall that vertical gap-filling increased the FC 5 booking limit by 1, but also reduced

the FC 2 booking limit.
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Exclusion Gap-Filling

Exclusion gap-filling is the most mathematically-correct approach to dealing with inefficient

policies when AMD and AMR are used as heuristic input modifiers for existing RM optimi-

zers. Exclusion gap-filling is a multistage process that attempts to produce AMD demands

and AMR fares that prevent the RM optimizer from selecting inefficient booking policies.

In the first stage, inefficient policies are discarded, and AMD demands and AMR fares are

computed using only the efficient policies. Next, demands and adjusted fares are filled in

for the inefficient policies: a demand of zero and an adjusted fare equal to the adjusted

fare of the next efficient policy. This process ensures that, at the time of optimization with

EMSR, the inefficient policies (in the case of this example, offering FC 1-2 or FC 1-5) will

never be selected.

It is important to note that "FC 1-2" as an inefficient policy does not mean that consumers

should be prohibited from booking in FC 2; when FC 1-3 are available (which is an efficient

policy, as shown in Figure 6. 1), consumers are free to choose to buy-up to FC 2 if they wish.

The bottom-right of Table 6.1 shows the effect of exclusion gap-filling on our running ex-

ample. Note that the AMR fares are equal to those produced by vertical and horizontal

gap-filling. However, the AMD demands differ from both methods; the exclusion gap-filling

forecast has less high-fare demand and more lower-fare demand (note that all demand from

FC 2 in the no gap-filling case gets moved to FC 3 with exclusion gap-filling; the same

applies for FC 5 and 6). This leads exclusion gap-filling to have less aggressive booking

limits than the no, vertical, and horizontal gap-filling: compared to no gap-filling, exclusion

gap-filling increases the FC 6 booking limit by 7, and increases the FC 3 booking limit by

1.

The adjusted total sale probability and adjusted total expected revenue from any of the

gap-filling methods will be used to compute AMR fares and AMD demands.
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6.2.2 Demand Forecasting

Our AMD Forecasting Model provides an approach for estimating parameters for the dis-

tribution of demand volume, based on historical bookings. This model is an extension

of Q-Forecasting (Hopperstad and Belobaba, 2004) to support generic fare structures and

generic passenger choice models. We propose a four step process, in which we convert his-

torical booking observations into estimates of historical demand volume, and then forecast

future demand based on the historical volume estimates. Note that this process occurs after

any gap-filling.

1. Convert observed (historical) bookings to equivalent "Q"-bookings, which represents

the number of bookings that would have been received in the past if all fare classes

and all ancillary services had been available. We assume that the airline has recorded

which offer set was presented to the consumer for each booking. The equivalent Q-

bookings for DCP dcp on previous departure day dep is given by:

nFC bdcpdeplk

k=1c

where nFC is the number of fare classes, bdcp,depjk is the number of bookings received

in DCP dcp on previous departure date dep when FCC and NFO booking policy k

was offered to consumers, and qbdcp,dep is the equivalent Q-bookings for DCP dcp on

previous departure date dep, and serves as the estimate for total demand volume for

that DCP and day.

2. Detruncate historical observations for any instances where all classes were closed:

qbdg,,d, = d(qbdcp,dep, Z) (6.20)

where qbdcpep, is the detruncated (unconstrained) equivalent Q-bookings for DCP dcp

on previous departure date dep, do is a detruncation function, and Z is a vector of
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other data or parameters for the detruncation process, including whether or not all

classes were closed. For details on detruncation methods, see Lee (1.990), Wickham

(1995), Skwarek (1996), Weatherford and P6lt (2002), and Queenan et al. (2007).

3. Forecast future demand volume distribution parameters based on detruncated histo-

rical equivalent Q-demand for ndep previous departure days:

ndep 
q

1tdcp E dcp,dep
ndep dep=1

2 1 ndep Je ~dcp)9dcp -ndep E (dp=dep
dep=-1

where Pdcp is the forecast future demand volume mean for DCP dcp and Or2 is the

forecast future demand volume variance for DCP dcp .

4. Partition demand within each DCP to each booking policy:

I-k,dcp = dcp(TPdP(k) - TP dcp(k - 1))

2dc - - TPd'cp(k - 1))

For RM optimizers such as EMSR that utilize demand-to-come forecasts, instead of

DCP-specific forecasts, the demands must be aggregated across DCPs. The forecast

of all future demand to come, generated at the start of DCP dcp, for policy k, is:

nDCP nDCP

k ki ,dcp ,Ilkcdc0
i=dcp i=dcp

and the total future demand to come from the start of DCP dcp (aggregating across

all booking policies) is:
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Figure 6.2: AMD/AMR process diagram when used as a heuristic in conjunction with
EMSR. Inputs are shown in grey, AMD/AMR processes and operations in blue, the RM
optimizer in red, and the RM output in green.

nFC nFC

Adcp k,dcp dcp ,dcp
k=1 k=1

We use these aggregated-across-DCP demand parameters (fk,dep and &acP) in our

implementation of AMD and AMR with EMSR.

6.2.3 Process Summary

An overview of the complete AMD and AMR methodology, when used as a heuristic

with EMSR, is illustrated in Figure 6.2. The process requires input choice probabilities

(Pim,dcp(k)) for each of the fare class complete/nested by fare order booking policies, fares

and ancillary prices, and historical bookings. The process returns AMR fares and AMD

demand estimates (mean and variance) for each class, generated at the start of each DCP.

These adjusted fares and demands are fed to the RM optimizer (along with remaining flight

capacity), which then returns a booking policy in the form of booking limits.
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6.3 Use in Larger Networks

The ACDP model and AMD/AMR heuristics described in the preceding sections are de-

signed for a single-airline, single-leg environment. With multiple airlines and/or multiple

flight legs, the ACDP formulation becomes much more complicated:

* A network extension of ACDP, as with other dynamic programs, would suffer from

"exploding dimensionality," meaning the size of the state space increases with the

number of possible itinerary/fare class combinations, which grows much faster than

just the number of flight legs.

" The choice probabilities Pkmt(O) in Equation 6.3 would need to be redefined. As dis-

cussed in Chapter 3 of this thesis, the probability that a consumer chooses a particular

itinerary/fare class/ancillary service is conditional on the set of options available to the

consumer. A true network extension of ACDP would account for these choice depen-

dencies between different itineraries and between the airline and its competitors-the

set 0 would include information not just on the fare class/ancillary service combina-

tions to offer for a particular itinerary, but also on similar itineraries offered by the

airline and its competitors.

Fully extending ACDP to address these issues is beyond the scope of this thesis and is left

to future work. However, we will consider a more limited application of the AMD/AMR

heuristics in larger networks. Our simple approach relies on combining leg and network

optimization, as with other origin-destination RM heuristics. We propose forecasting de-

mand with AMD and adjusting fares with AMR for each itinerary/fare class in isolation

(i.e. without including multiple itineraries in 0); we then feed the AMD demands and

AMR fares to a network optimization heuristic (such as DAVN). While this approach does

not account for choice dependencies between itineraries or between airlines, it is easy and

computationally tractable. In general, revenue management forecasting and optimization
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models do not consider demand dependencies between different itineraries and/or flights.

6.4 Estimating Choice Probabilities

Our model description has, thus far, assumed that the airline has accurate knowledge of

a customer choice model and can compute the choice probabilities Pi,k,dcP(k). In reality,

however, airlines would need to estimate these probabilities. The airline could estimate the

parameters of a customer choice model, as in Appendix A, and then apply the model to

the airline's fare structure to compute the probabilities. This approach has the advantage

of providing a behavioral explanation for customer decision making, and would allow the

airline to understand how changes in the fare or ancillary fee structure would affect customer

booking choices.

An alternative approach, which is potentially simpler to implement, would be to directly

estimate choice probabilities from historical booking data, without attempting to devise a

functional form to explain why customer make the choices that have been observed. We

propose two forms of this simple approach, incorporating different levels of aggregation and

external information. In both cases we assume that the airline will use a long-term offline

calibration process (i.e. incorporating data from month or years of departure days, with

the estimation process performed infrequently) due to substantial complications of missing

observations/sparse data.

6.4.1 Raw Estimates

Our first proposal, which we refer to as "raw estimates," directly estimates the probabilities

Pi,m,dcp(k) from historical booking data with minimal processing or adjustment:
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I Vdep bi,m,dcp,depk Zh 0

Pi,m,dcp(k) - Evdep hdcp,deplk (6.21)

0 otherwise

where P is the estimate of P, bi,m,dcpdeplk is the number of bookings received in class i with

ancillary option m during DCP dcp for previous departure day dep when class k was the

lowest available fare class, and hdcp,deplk is the number of booking requests the airline received

during DCP dcp for previous departure day dep when class k was the lowest available fare

class. Note that the estimate aggregates across "all" previous departure days, denoting that

the historical data utilized is much greater than that used by a demand forecasting model.

6.4.2 Heuristic Estimates

The raw estimate described above utilizes a simple, straightforward procedure, but in

practice could have several significant flaws. First, even utilizing data from many previous

departure days, there may be very few (or zero) booking requests for some DCP/lowest

available class combinations. For example, FC 1 is almost never the lowest available class

at the start of the booking window (DCP 1), so Pi,m,i(1) will have a small sample size (and

therefore high variance), or will have no data and therefore be 0. Second, the formulation

is not market specific, so in a multi-leg network variations in choice probabilities caused by

variations in fare ratios will be averaged out, and choice probabilities will be biased for any

particular market.

Third, and potentially most problematic, the approach requires observing booking requests,

which are created not just for each booking, but also for each consumer who searches and

decides not to book. Although airlines could track the number of booking requests processed

by their own systems, consumers shopping via third parties who do not end up booking

may not generate a booking request to the airline (the request could be answered by the

third party's cache of previous shopping results). Alternatively, one consumer shopping on
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a "meta-search" engine (such as Kayak or Google Flights) could trigger multiple booking

requests to the airline (because each party contacted by the meta search engine could pass

the request to the airline). Airlines in 2015 experienced more than 1,000 booking requests

for each actual booking received, and expected that to rise to 10,000 or more requests per

booking as more consumer use meta search engines (tnooz, 2015). Finally, some airlines

already have estimates of price elasticity (used for hybrid forecasting and fare adjustment),

which are not incorporated in the raw estimate described above.

To address these challenges, we propose a second estimation approach, which we refer to

as the "heuristic estimate." The airline separates the estimate Pi,m,dcp(k) into two compo-

nents, a sell-up estimate (a), or the probability that a consumer will book anything, and a

conditional purchase estimate (b), or the probability that a consumer will book a particular

offer, given that they book something from the offer set:

Pi,m,dcp(k) = Pdp(Book I k) - Pi,m,dcplBook(k) (6.22)

(a) (b)

This separation allows the airline to use an external sell-up estimate for the first component,

decreasing the challenges of estimation with small numbers and missing observations, and

eliminating the need to estimate the "no-go" alternative. The second component is estima-

ted based on historical purchases and requires no assumptions about the no-go alternative.

The external sell-up estimate could take many forms, but a common approach (used by

Q-forecasting and fare adjustment) is an exponential curve:

Pdp(Book I k) = exp -(fr i) (6.23)

where Edft is the (externally estimated) price elasticity multiplier, and fg denotes the

lowest published fare in the market (thus fk ;> fQ Vk). The conditional purchase estimate
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is estimated from the historical booking database:

{ Vdep bi,m,dcpdepk

li,m,dcplBook (k) VdeP bdcp,dep k b

Pi,m,dcplBook (k) otherwise

where bdcp,deplk is the total number of bookings received during DCP dcp for departure day

dep when class k was the lowest available fare class.

We apply an additional processing step of "neighbor matching" for instances where no

bookings have been received (Zydep bdcp,deplk = 0). In those cases, we use the conditional

purchase estimate for the same booking policy from the nearest DCP dcp* that has received

bookings in the past:

P,m,dcplBook(k) =li,m,dcp*IBook (k)

dcp* = arg min {dcp' - dcpl s.t. E bdep1,dpk > 0
. dCPVdep

The heuristic estimation method allows the airline to aggregate multiple markets in esti-

mating conditional purchase probabilities, but also allows the airline to integrate market-

specific fares in the sell-up estimate to produce choice probabilities that are less susceptible

to missing observations than the raw estimates while still scaling to market-specific con-

ditions. The performance of these estimation approaches will be tested via simulation in

Sections 7.4 and 7.5.
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6.5 Conclusions

In this chapter, we have developed a new dynamic programming model for total revenue

optimization that incorporates fares, ancillary revenues, and passenger choices. The model

produces an optimal set of offers, which we define as a fare class and a combination of

ancillary services, to be presented at any given time. Following previous work on choice-

based RM, we use the Ancillary Marginal Demand transformation and Ancillary Marginal

Revenue transformation to convert our ancillary and choice-aware DP into an equivalent

independent demand formulation. After addressing practical distribution constraints, we

devised a series of processes to utilize AMD and AMR as total revenue optimization heuris-

tics in conjunction with existing RM optimizers, and we developed the Ancillary Marginal

Demand forecasting model to provide demand volume estimates.

Numerous extensions and enhancements to our work are possible. For example, while exact

network formulations for dynamic programs suffer from exploding dimensionality, our heu-

ristics could be more formally extended to support a network setting. A key challenge will

be determining the level of detail and specificity necessary in the input choice probabilities

to maintain reasonable revenue performance; the extent to which these probabilities could

be aggregated and/or scaled across different markets and fare structures is unknown. In

addition, competitive effects in a network setting raise questions about the degree to which

competitor offerings should be explicitly incorporated in the model: failing to account for

competitor offerings could lead to availability decisions that are too aggressive, while expli-

citly modeling competitor actions increases data and computation requirements. Further

work is required to develop more efficient choice probability estimation methods, and to

understand how inaccuracies in the input choice probabilities affect revenue performance.

Finally, the rise of New Distribution Capability could allow airlines to have significantly

more control over the offers they produce. We believe that this work could be extended

to generate offers based on filed fares and prices. A separate, potentially larger challenge,
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would be devising dynamic offer generation engines that also incorporate a dynamic pricing

aspect.
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Chapter 7

Simulated Performance of AMD

and AMR

In the previous chapter we developed the Ancillary Choice Dynamic Program (ACDP) for

total revenue management in a single-airline, single-leg environment.1 We then described

two heuristics, the Ancillary Marginal Demand and Ancillary Marginal Revenue transfor-

mations (AMD and AMR), for utilizing the dynamic program. In this chapter, we test the

performance of the heuristics via simulation in the Passenger Origin-Destination Simulator

(PODS) described in Section 3.2. We examine how AMD and AMR affect booking and

ancillary purchase patterns across a range of demand and passenger preferences.

In the first section, we consider a single-airline, single-leg network (AlONE) and show that

AMD and AMR increase revenue over a variety of existing RM approaches. Then, we exa-

mine the performance of the heuristics when competition is introduced, with a two-airline,

two-flight-leg network (A2TWO). A2TWO provides a platform for assessing the impacts of

'Portions of this chapter were previously awarded the 2018 Anna Valicek bronze medal as Bockelie, A.
and Belobaba, P. (2018). Total revenue optimization with the Ancillary Marginal Demand and Ancillary
Marginal Revenue transformation heuristics. Presented at the 58th Annual AGIFORS Symposium, Tokyo,
Japan.
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different competitive strategies on AMD and AMR. In all cases we compare the performance

of AMD and AMR against existing methods for total revenue optimization. Although both

AlONE and A2TWO are small networks that significantly simplify the airline RM problem,

they provide useful insights into the interactions between RM optimization and forecast,

and between competitors, when AMD and AMR is used.

In a final set of tests we utilize the much larger network D6, which features two airlines

with hundreds of flight legs and markets. D6 illustrates the performance of the heuristics

in a complex environment with connecting flights, and where the ability to scale choice

probabilities across markets becomes important.

7.1 AMD and AMR Implementation within PODS

A version of the AMD and AMR heuristics were programmed into PODS, supporting one

ancillary service with booking policies that are both fare class complete and nested by fare

order (see Section 6.1.1). The airline's marketing policy may provide the ancillary com-

plimentary or a la carte in any fare class, but no class is prohibited from purchasing the

ancillary. One set of choice probabilities Pmdcp(k) is entered per airline; the airline uses

those probabilities for all itineraries in all markets (unless the choice probability heuristic

is activated as described below). Because choice probabilities can vary by DCP, the air-

line performs its gap-filling computations for each DCP. All three gap-filling mechanisms

described in Section 6.2.1 are supported.

PODS does not include an inline choice probability estimation process, meaning that in the

course of a simulation, airlines cannot estimate choice probabilities and use those estimates

in the same simulation. Instead, PODS supports a simple batch estimation process: at the

end of a simulation, each airline reports the portion of all generated passengers who booked

a particular fare class with or without the ancillary service, conditional on offered booking

policy and DCP. These estimates are aggregated over all markets and provide estimates of
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Pi,m,dcp(k) using Equation 6.21, where "Vdcp" means all trials and all un-burned samples.

The estimated probabilities are then used as inputs for subsequent simulations. The same

simulation reporting is used to generate the estimates Pi,m,dcplBook(k) if the airline is to

use the heuristic estimation process (Section 6.4.2). For the heuristics, the price elasticity

multipliers Edcp input from a standard PODS FRAT5 curve, matching the price elasticity

values used for hybrid forecasting and fare adjustment. PODS computes the Pdep(Book I k)

terms (Equation 6.23) separately for each market, based on the fares of the market; the

values are then combined with the input conditional purchase probabilities to produce

market-specific estimates of choice probabilities.

7.2 Result Analysis Methodology

As in Chapter 5, we measure the performance of RM forecasting and optimization methods

relative to a baseline simulation, where all airlines use standard (independent demand)

forecasting and optimization models that do not account for ancillary services or revenues.

Each PODS simulation consists of 2 to 5 independent trials of 400 samples. Each sample

represents one realization of the "same" departure day (meaning the demand and passenger

characteristics for all samples are drawn from the same distribution). The first 200 samples

of each trial are used to warm up the forecasting models and are "burned" and never

included in any reported results, leaving 400 samples per trial. The seeds for all random

draws (i.e. the number of passengers generated and individual passenger preferences) are

the same for all simulations with the same demand parameters, so the difference in revenue

or bookings between two simulations with different forecasting or optimization methods is

due to the change in forecasting or optimization, not due to different demand generation.

Our analytical approach in this chapter matches that of Chapter 5. The primary item

of interest in our studies is the change in total revenue due to a change in forecasting or

optimization method, which we measure as the average across all (unburned) samples of
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the sample-specific change in total revenue for a test simulation vs a baseline simulation.

Mathematically, if X4 is the revenue (or other simulation output) for sample i for simulation

j E {TEST, BASE}, we are interested in the term :

S=- ,ai = XTEST _ BASE

i=1

Unless otherwise stated, all references to statistical significance and confidence intervals in

this chapter are derived from a paired t-test (or a one sample t-test on the change in revenue

by sample), with the null hypothesis that there is no true change in revenue (Ho : A = 0)

vs alternative hypothesis that there is a true change in revenue (Ha : A :L 0). The test

statistic t is:

A
t = seA ~ Tdn_1

where seA is the standard error of A.

The demand forecasting process nominally introduces a dependency between demand ge-

nerated (and therefore total revenue) in one sample and booking limits (and therefore total

revenue) in another sample. These dependencies potentially violate the t-test assumption of

independence between samples; however, as discussed in Appendix C, our testing indicates

that these correlations are minor and therefore should not affect the statistical significance

of our results.

7.3 One Airline, One Flight Leg Network (AlONE)

We utilize the single airline, single flight leg network AlONE within PODS for our initial

studies. AlONE is a simple network, and because it lacks competition it closely matches
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Table 7.1: Network AlONE and A2TWO fare and ancillary fee structure.

Advanced Restriction Applies?

Fare purchase Ri R2 R3

FC 1 $500 None - -

FC 2 $390 3 days - - Yes
FC 3 $295 7 days - Yes Yes
FC 4 $200 10 days Yes - Yes
FC 5 $160 14 days Yes Yes
FC 6 $125 21 days Yes Yes Yes

the ACDP assumptions. The only significant assumption violations are that demand is

unknown (and must be forecast) and that the underlying demand generation process is not

Poisson, but is instead based on a series of normal distributions (as described in Section 3.2).

The flight has a capacity of 130 seats. The airline offers one optional ancillary service and six

economy fare classes, denoted FC 1 (the most expensive and least restricted, $500) through

FC 6 (the least expensive, most restricted, and subject to advance purchase requirements,

$125), as shown in Table 7.1. The airline divides its booking window into 16 DCPs, with

the end of DCP 16 corresponding to departure. Forecasts are generated and booking limits

are re-optimized at the start of each DCP.

This network features two consumer demand segments, business and leisure. Business

passengers tend, although do not always, to have higher budgetary constraints, to book

closer to departure, and to be more averse to fare class restrictions (such as a Saturday-

night stay, or non-refundability). The average business passenger and leisure passenger

booking curves, as well as the business/leisure mix, are shown in Figure 7.1. Note that

the early DCPs have a low proportion of business travelers shopping, while shoppers in the

later DCPs are predominantly from the business segment.
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Figure 7.1: Cumulative average business and leisure consumer arrival curves, and the ratio
of average business to leisure arrivals within each DCP. Ratio of average business to leisure
arrivals within each DCP indicated in dotted line. Shaded region indicates 99% range of all
realized arrival curves.

7.3.1 Experimental Outline

In all of our A10NE simulations, the airline uses EMSR as its RM optimizer. As a baseline,

we consider the case where the airline optimizes based on filed fares and uses an independent-

demand forecasting model (see Belobaba and Weatherford (1996) and Littlewood (1972)).

For AMD and AMR, we assume that the airline has accurately estimated a passenger choice

model, and can therefore compute the probabilities Pimdcp(k) as described in Equation 6.10.

Unless otherwise noted, the airline will employ Exclusion Gap-Filling when using AMD and

AMR.

We will compare the performance of AMD and AMR against the baseline as well as three

existing approaches for accounting for ancillary revenue and/or passenger choice: the opti-

mizer increment (01), hybrid forecasting and fare adjustment (HF/FA), and a combination

of the two approaches (01 + HF/FA). In our implementation of 01, the airline estimates
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ak,dcp based on historical purchases aggregated across all DCPs. Recall that hybrid fore-

casting and fare adjustment are operationalized versions of the (non-ancillary) marginal

revenue and marginal demand transformations, where demand is divided into two groups:

product-oriented, which is forecasted with an independent demand model and no marginal

revenue transformation, and price-oriented, which is forecasted with a marginal demand

model and has a marginal revenue transformation applied to the fares (based on a negative

exponential sell-up curve expressed with a FRAT5); the final demand and fare values sent

to the optimizer are a combination of the price and product values.

We focus our detailed assessment of AMD and AMR on a representative case in which the

ancillary service has a price of $50, and both consumer segments have a mean disutility

of forgoing the service of $50. We assume initially that passengers in the simulation are

aware of ancillary prices and incorporate ancillary prices and preferences into their fare class

decision process ("simultaneous" behavior, as defined in Chapter 3).

The total probabilities TPp(k) computed by the airline are shown in Figure 7.2. Early

in the booking window, the airline calculates that the probability of sell-up is low (as

indicated by the low total sale probability for FC 1, and reflecting the low proportion of

business travelers). However, later in the booking window, when the portion of business

passengers is higher, the total sale probability for higher-value classes increases, suggesting

that more sell-up is possible. Note that the total sale probability for FC 6 is always 100%,

reflecting that all generated passengers in the simulation can afford to purchase the lowest

published fare.

7.3.2 Initial Results

Table 7.2 lists booking and ancillary purchase data for the baseline simulation. In the

baseline scenario, about 33% of passengers purchase the ancillary service, with a much

higher purchase rate in the higher value fare classes (46% for FC 1) than in the lower value

172

RW"- -11, 1 1 W! I I P P.9,,_W 11 11 qw, m" "M



-4-FC 1 -- FC 2 -r-FC 3 -*-FC 4 -M-FC 5 FC 6

100%

90% -

80% -

70%

60% -

50% -

40%

30%

20%

10%

.: Mz cc t- 10 MC Nq Mo "Io~ c o

-4 P-1 f14 '-44 f1

Figure 7.2: Total sale probability TPdcp(k) for each class as computed by the airline prior to
any gap-filling (100% simultaneous passengers, $50 mean ancillary disutility, $50 ancillary
price).

fare classes (25% in FC 6); likewise, the average ancillary revenue per booking is highest in

FC 1 ($23) and lowest in FC 6 ($12). Despite the lower ancillary purchase rate and lower

average ancillary revenue, because fares are lower in FC 6 than FC 1, the portion of total

revenue derived from ancillary sales is highest in the lower value classes (11% in FC 5) and

lowest in higher value classes (4% in FC 1). Recall that major US airlines report about 8%

of total revenue from ancillary services, according to the US Department of Transportation. 2

The lower ancillary purchase rate in the lower value classes is driven by a fundamental beha-

vioral assumption in the Simultaneous choice model: passengers have an overall budgetary

constraint that limits their spending on the combination of fare and ancillary services. Pas-

sengers booking in the lower value (and highly restricted) fare classes tend to have lower

budgets, which constrains their ability to afford ancillary services. These basic ancillary

purchase and revenue trends in the baseline case are similar in the other experimental

cases.
2 US DOT Form 41, Schedule P-1.2
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Table 7.2: Network AlONE baseline bookings and ancillary purchase data by fare class

(medium demand, 100% simultaneous passengers, $50 ancillary price, $50 ancillary disuti-
lity).

FC1 FC2 FC3 FC4 FC5 FC6

Bookings 6 14 10 8 16 56
Booking Mix 5% 12% 9% 8% 15% 52%
Average Ancillary per Passenger $23 $22 $21 $22 $19 $12
Portion of Total Revenue from Ancillary 4% 5% 7% 10% 11% 9%
Ancillary Sales Rate 46% 44% 41% 44% 39% 25%

The total revenue, load factor, and yield (expressed as revenue per passenger mile) for each

of the experimental cases (with AMD and AMR using exclusion gap-filling) are shown in

Table 7.3. AMD and AMR produces a revenue increase of 1.8% over baseline; HF/FA

produces a gain of 1.2%, 0.6 pts less than AMD and AMR. Both AMD and AMR and

HF/FA decrease load factor by 1.3 pts, and both increase total yield, although the increase

is larger for AMD and AMR (3.4%) than for HF/FA (2.7%).

The optimizer increment has a small negative effect on revenue: an 0.1 pt decrease compared

to baseline, and a reduction of the benefit of HF/FA by 0.1 pt. 01 increases load factor by

0.1 pt when used alone, and decreases the load factor loss due to HF/FA by 0.1 pt. Although

the revenue and load factor changes due to 01 are small, they are directionally consistent

with the results seen in numerous studies within the MIT PODS Research Consortium (e.g.

Chapter 5).

These revenue and load factor changes are driven by shifts in the booking mix, as shown

in Figure 7.3. Both HF/FA and AMD/AMR reduce bookings in the lowest value class (FC

6), while increasing bookings in the highest value class (FC 1). The methods differ in the

magnitudes of changes: AMD/AMR reduces bookings in FC 6 by about 2, while HF/FA

reduces by 5. Changes in bookings in higher value fare classes have a disproportionate

effect on total revenue: recall that FC 1 has a fare of $500, and FC 6 has a fare of $125, so

each FC 1 booking is worth four times the ticket revenue of an FC 6 booking. The FC 1
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Table 7.3: Network AlONE simulation results for baseline and experimental cases (medium
demand, 100% simultaneous passengers, $50 ancillary price, $50 ancillary disutilities).

Baseline 0I HF/FA 01 + HF/FA AMD/AMR

Ticket Revenue $22,098 $22,068 $22,383 $22,372 $22,548
Ancillary Revenue $1,808 $1,808 $1,798 $1,799 $1,788
Total Revenue $23,906 $23,876 $24,181 $24,171 $24,336
Load Factor 83.8% 83.9% 82.5% 82.6% 82.5%
Total Yield 21.95 21.90 22.54 22.50 22.70
Ancillary Sales Rate 33.2% 33.2% 33.5% 33.5% 33.4%

Change from Baseline
Ticket Revenue -0.1% +1.3% +1.2% +2.0%
Ancillary Revenue +0.0% -0.6% -0.5% -1.1%
Total Revenue -0.1% +1.2% +1.1% +1.8%
Load Factor +0.1 pts -1.3 pts -1.2 pts -1.3 pts
Total Yield . -0.2% +2.7% +2.5% +3.4%
Ancillary Sales Rate -0.0 pts +0.3 pts +0.3 pts +0.2 pts

Significance of Change in Total Revenue from Baseline
Standard Error 0.0% 0.1% 0.1% 0.1%
t-statistic -7.69 11.43 11.61 13.10
p-value < 0.001 < 0.001 < 0.001 < 0.001
Note: Total yield in cents per mile. Standard error expressed as percentage of baseline total revenue.
df = 1, 999.
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Figure 7.3: Change in bookings by fare class vs baseline (medium demand, 100% simulta-
neous passengers, $50 mean ancillary disutility, $50 ancillary price).

booking increase with AMD/AMR is worth six times the revenue loss associated with the

FC 6 booking decrease.

While both AMD/AMR and HF/FA reduce FC 6 bookings (which saves space for later

arriving, higher value FC 1 bookings), only AMD/AMR also reduces FC 5 bookings; HF/FA

leads to an increase in FC 5 (as well as FC 4). The booking changes by fare class due to

01 are minimal, and the changes with 01 + HF/FA are approximately equal to the sum of

the changes in the 01 case and in the HF/FA case.

The initial demand and ticket revenue forecast (generated at the start of DCP 1) is shown

in Figure 7.4. Compared to the baseline, AMD provides a lower demand forecast mean (by

15%), but a higher demand forecast standard deviation (by 33%). Overall, the probability

that demand exceeds the aircraft capacity of 130 (a rough indicator of whether the capacity

constraint should restrict availability) is 24% for AMD, a reduction from the 39% of the

baseline or 34% of HF/FA. Despite the lower volume of demand with AMD, however, the

value of demand with AMD is greater because the composition of the AMD forecast is
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shifted toward FC 1. AMD produces an initial forecast of ticket revenue (computed as

a sum of demand for each class multiplied by the fare for each class) 13% higher than

the baseline, with a standard deviation 65% higher. A higher value forecast, for the same

demand mean and standard deviation and same optimizer fares, will lead to more aggressive

availability decisions and fewer low-value bookings.

In addition to the higher value forecast, the AMR adjusted fares are lower than filed fares,

especially for the low value fare classes. The higher value forecast of AMD combined with

the reduced optimizer fares of AMR reduces availability of lower-value fare classes, as shown

in Figure 7.5. Reducing lower class availability forces consumers to buy-up to higher value

classes, reducing load factor and increasing yields (and in this case increasing total revenue).

By explicitly accounting for ancillary revenue and passenger choices, AMD/AMR can more

precisely close classes. Note that AMD/AMR has a smaller reduction in FC 6 availability

than HF/FA, but a larger reduction in FC 5 availability (especially in DCP 7 and 8), leading

to the booking shifts seen in Figure 7.3.

7.3.3 Effect of Gap-Filling

Table 7.4 lists performance data for each of the gap-filling mechanisms. Exclusion gap-filling

produces a revenue increase of 1.8% over baseline; AMD/AMR with the other gap-filling

methods has a smaller revenue gain, with the worst revenue performance when gap-filling

is not used. Load factor changes with AMD/AMR are inverse to total revenue changes: the

largest revenue gain (exclusion gap-filling) has the smallest load factor loss (-1.3 pts), while

the lowest revenue gain (1.4%, no gap-filling) has the largest load factor loss (-3.1 pts). All

of the gap-filling methods have higher revenue than HF/FA.

As shown in Figure 7.6, exclusion gap-filling, which has the highest revenue and is most

mathematically correct, has the smallest reduction on FC 6 bookings; the other gap-filling

methods all have FC 6 booking reductions of similar magnitude to HF/FA. In addition,
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Figure 7.4: Initial (DCP 1) demand and ticket revenue forecasts (medium demand, 100%
simultaneous passengers, $50 mean ancillary disutility, $50 ancillary price). Solid bars show
forecast mean; dashed error lines show forecast standard deviation. The forecast probability
that demand exceeds capacity (of 130) is indicated at the base of the solid bars.
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Figure 7.5: Availability for first 8 DCPs (medium demand, 100% simultaneous passengers,
$50 mean ancillary disutility, $50 ancillary price). Measured as the portion of time a class
is available for sale for FC 6 (left) and FC 5 (right).
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Table 7.4: Network AlONE simulation results for baseline and AMD and AMR cases

with various gap-filling mechanisms (medium demand, 100% simultaneous passengers, $50
ancillary price, $50 ancillary disutilities).

Baseline None Vertical Horizontal Exclusion

Ticket Revenue $22,098 $22,488 $22,523 $22,540 $22,548
Ancillary Revenue $1,808 $1,760 $1,776 $1,781 $1,788
Total Revenue $23,906 $24,248 $24,299 $24,321 $24,336

Load Factor 83.8% 80.7% 81.5% 81.9% 82.5%
Total Yield 21.95 23.12 22.92 22.85 22.70
Ancillary Sales Rate 33.2% 33.6% 33.5% 33.5% 33.4%

Change from Baseline
Ticket Revenue +1.8% +1.9% +2.0% +2.0%
Ancillary Revenue -2.7% -1.8% -1.5% -1.1%
Total Revenue +1.4% +1.6% +1.7% +1.8%
Load Factor -3.1 pts -2.2 pts -1.9 pts -1.3 pts

Total Yield +5.3% +4.4% +4.1% +3.4%
Ancillary Sales Rate +0.4 pts +0.3 pts +0.3 pts +0.2 pts

Significance of Change in Total Revenue from Baseline

Standard Error 0.2% 0.2% 0.1% 0.1%
t-statistic 8.61 10.80 11.75 13.10
p-value < 0.001 < 0.001 < 0.001 < 0.001

Note: Total yield in cents per mile. Standard error expressed as percentage of baseline total revenue.

df = 1, 999.

179



exclusion gap-filling is the only method that reduces FC 5 bookings; the other methods

trade large FC 6 losses for smaller FC 5 gains. This is an expected result; as shown in Table

6.1, exclusion gap-filling protects no seats for FC 5, and therefore FC 5 and FC 6 have the

same booking limit. In that example, exclusion gap-filling has an FC 6 booking limit 7 seats

greater than any of the other gap-filling methods, include no gap-filling. Despite the greater

booking limit for FC 6, though, exclusion gap-filling has the second greatest increase in FC

1 bookings vs baseline (the additional space to accommodate FC 1 customers is provided

by accepting fewer bookings in FC 5 and 4 compared to the other gap-filling mechanisms).

The differences in fare class booking changes amongst the gap-filling methods illustrate that

no gap-filling is the most aggressive form of AMD/AMR, followed by vertical gap-filling,

then horizontal gap-filling, and finally exclusion gap-filling. This variation in aggressiveness

is a function of the AMD forecast generated by each approach: recall that vertical, horizon-

tal, and exclusion gap-filling all have the same AMR fares. Horizontal gap-filling partially

reduces demand forecasts for inefficient policies (and increases the forecast for the next

efficient policy); exclusion gap-filling completely eliminates inefficient policy forecasts, and

shifts all demand to the next efficient policy. Thus, exclusion gap-filling will always have

less aggressive availability, and will accept more FC 6 bookings than the other gap-filling

methods. The increase in FC 6 availability (relative to other gap-filling) means less space

is protected for FC 5 bookings, which produces the decrease in FC 5 (relative to both the

baseline and other gap-filling methods) seen in Figure 7.6.

7.3.4 Sensitivity to Ancillary Prices and Disutilities

In this section we assess the sensitivity of our results to the input ancillary prices and

ancillary disutility parameters. We vary ancillary prices from $25 to $100, with mean

passenger ancillary disutilities equal to 75%, 100%, or 125% of the ancillary price. We

consider three combinations of disutilities, listed in Table 5.5: a leisure-oriented service,

where leisure passenger mean disutility is 125% of the ancillary price and business passenger
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Figure 7.6: Change in bookings by fare class vs baseline with various gap-filling settings
(medium demand, 100% simultaneous passengers, $50 mean ancillary disutility, $50 ancil-
lary price).

disutility is 75% of the ancillary price, a business-oriented service where the percentages are

reversed, and an equally appealing service, with a mean disutility of 100% of the ancillary

price for both segments.

The results of the previous section are consistent across the range of parameters tested.

The change in total revenue (vs baseline) is shown in Figure 7.7. The optimizer increment

leads to revenue losses on the order of 0.1% in all cases. Hybrid forecasting and fare

adjustment provides revenue increases of 1.0-1.2% over baseline in each of the cases. AMD

and AMR provide an additional 0.6-0.7 pts of revenue benefit over HF/FA, for a total

gain of about 1.8% over baseline when the ancillary service is optional in all classes. The

benefit of AMD and AMR over HF/FA or baseline is relatively stable over the range of

ancillary prices and ancillary disutilities tested. Figure 7.8 lists the airline's load factor for

each simulation; in general, the optimizer increment slightly increases load factor, while

HF/FA and AMD/AMR decrease load factor compared to the baseline. HF/FA has a

slightly greater load factor decrease (around -1.2 pts) than AMD/AMR (around -0.9 pts)
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Figure 7.7: Network AlONE change in total revenue vs baseline with various ancillary prices
and disutility scenarios (medium demand, 100% simultaneous passengers). 99% confidence
interval for change in total revenue due to AMD and AMR. df = 1, 999.

vs baseline.

Ancillary purchase rates, average ancillary revenue by passenger, and the portion of total

revenue generated by ancillary services (by class and overall) vary widely across these para-

meter ranges. However, the effect of AMD and AMR on booking mix is similar across price

ranges, as shown in Figure 7.9, but has more variability as relative disutilities change (from

the leisure-oriented to equally appealing to business-oriented cases). The leisure-oriented

disutilities result in a decrease in bookings in all but the highest fare class. The business-

oriented disutilities decrease bookings in FC 2, 5 and 6, but increase bookings in FC 3

and 4; the magnitude of the FC 6 decrease (and the total decrease across all fare classes)

is greater with the business-oriented disutilities. The business-oriented disutilities have a

larger decrease in FC 6 for two reasons. First, with the higher business disutility, more

passengers booking in later DCPs and more passengers booking in higher value fare classes

will purchase the ancillary service, making it more important to save space for late arriving,

high value customers. Second, with the lower leisure disutility, fewer passengers booking in
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Figure 7.8: Load factor with various ancillary disutility scenarios and prices (medium de-
mand, 100% simultaneous passengers). Ancillary disutility scenario (see Table 5.5) and
ancillary price ($25-$100) listed on horizontal axis.

early TFs and fewer passengers booking in lower value classes will purchase the ancillary,

making the value of early FC 6 bookings low, and compounding the booking limit effects

of the higher business disutility.

7.3.5 Sensitivity to Demand Level

We now consider the sensitivity of AMD/AMR to varying overall levels of demand. We

will consider the previous simulations, in which the base case had an 84% load factor, as

medium demand, and will assess both higher and lower demand levels. We increase the mean

demand (number of passengers generated) for both business and leisure passengers by 15%

for a high demand set of scenarios, and decrease mean demand for both segments by 10%

for a low demand scenario (matching the studies in Section 5.2.3). Baseline results for these

three demand scenarios are shown in Table7.5. The low demand baseline has a load factor

of 77% and the high demand baseline has a load factor of 88%. As demand grows, so does
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Figure 7.9: Change in bookings by fare class vs relevant baseline due to AMD and AMR
with various ancillary disutility scenarios and prices (medium demand, 100% simultaneous
passengers). Left: various disutility disutility scenarios (see Table 5.5) and a $50 ancillary
price. Right: various ancillary prices when both consumer segments have a mean ancillary
disutility equal to price. The $50 equally appealing case corresponds to the results in the
previous portion of this section.
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Table 7.5: Network AlONE simulation results for baseline case with various market demand
levels (100% simultaneous passengers, $50 ancillary price, $50 ancillary disutilities).

Low demand Medium demand High demand

Ticket Revenue $20,279 $22,098 $24,325

Ancillary Revenue $1,678 $1,808 $1,927
Total Revenue $21,957 $23,906 $26,252
Load Factor 77.1% 83.8% 87.7%
Total Yield 21.90 21.95 23.02
Ancillary Sales Rate 33.5% 33.2% 33.8%

Change from medium demand
Ticket Revenue -8.2% +10.1%
Ancillary Revenue -7.2% +6.6%
Total Revenue -8.2% +9.8%
Load Factor -6.7 pts +4.0 pts
Total Yield -0.2% +4.9%
Ancillary Sales Rate +0.3 pts +0.6 pts

Note: Total yield in cents per mile.

load factor, although at a diminishing rate of return (a 10% decrease in demand results in a

6.7pt decrease in load factor, but a 15% increase in demand only results in a 4pt increase in

load factor). Revenues-ticket, ancillary, and total-also increase with demand. Ancillary

revenue grows as a function of load factor, while ticket revenue grows due to higher load

factor (more bookings) and higher yield (more revenue per booking). Even though demand

increases for both segments, the RM system protects seats for and preferentially accepts

bookings from the higher-yielding fare classes (with primarily business passengers), so an

increase in overall demand increases yield.

The revenue benefit of AMD/AMR increases with load factor, as shown in Figure 7.1.0. At

lower demand, for a range of ancillary prices (with mean disutility equal to price for both

demand segments), AMD/AMR increases revenue by about 0.3% over HF/FA, and by about

0.6% over baseline. Recall that at medium demand the benefit of AMD/AMR is about 0.6%

over HF/FA and 1.8% over baseline. At higher demand, AMD/AMR increases revenue by

about 0.9% over HF/FA and by 2.6% over baseline. Both HF/FA and AMD/AMR are
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Figure 7.10: Network AlONE change in total revenue vs baseline with various ancillary
prices and market demand levels (100% simultaneous passengers, $50 ancillary disutilities).
99% confidence interval for change in total revenue due to AMD and AMR. df = 1,999.
Note the change in vertical axis scale from other plots in this section.
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more effective at higher demand levels because both mechanisms function by increasing

protection levels for late-arriving, high-value passengers; at higher demand, there are more

such customers. Figure 7.11 shows the load factor for each method; note that there is a

larger load factor decrease associated with HF/FA and AMD/AMR at higher demand levels.

The change in bookings due to AMD/AMR for each demand scenario (compared to the

relevant baseline) is shown in Figure 7.12. At higher demand levels, the increase in FC 1

bookings due to AMD/AMR grows, from +1.3 at low demand to +4.7 at high demand. As

the highest-fare class, changes in FC 1 bookings have a partcularly large effect on revenue;

Figure 7.13 shows the change in ticket revenue by fare class due to AMD/AMR for each

of the demand levels, and illustrates that the primary ticket revenue benefit comes from

an increase in FC 1 sales. In contrast to FC 1, at higher demand levels AMD/AMR has a

larger decrease in bookings (and therefore ticket revenue) in FC 2 and FC 5. Recall from

Section 6.2.1 that FC 2 and FC 5 in network AlONE are inefficient, and are never offered as

the lowest available class. A change in demand level is equivalent to changing A in Equation

6.10, and therefore has no effect on the efficiency or inefficiency of any class. AMD/AMR

shows larger booking reductions in FC 2 and FC 5 at higher demand levels because the

relevant baselines have more bookings in these classes-especially FC 5-at higher demand

levels. Finally, FC 6 changes show an inconsistent trend as demand level changes, with

AMD/AMR decreasing FC 6 bookings at low and medium demand levels but increasing

FC 6 bookings at high demand. This is again a symptom of variations in booking mix in

the baseline cases: at high demand, the RM optimizer in the baseline case closes FC 6 and

shifts bookings into FC 5; AMD/AMR, being aware of the inefficiency of FC 5 however,

trades those FC 5 bookings for additional FC 4 and FC 6 bookings.

7.3.6 Sensitivity to Passenger Behavior Type

We now consider the performance of AMD/AMR when behavior is not 100% simultaneous.

We will look at two alternative behavior types: 100% sequential, and a 50%/50% mix of
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Figure 7.12: Change in bookings by fare class vs relevant
with various market demand levels (100% simultaneous
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Figure 7.13: Change in ticket revenue by fare class vs relevant baseline due to AMD and
AMR with various market demand levels (100% simultaneous passengers, $50 mean ancillary
disutility, $50 ancillary price).
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Table 7.6: Network AlONE simulation results for baseline cases with various passenger
behavior types (medium demand, $50 ancillary price, $50 ancillary disutilities).

100% Simultaneous 50% Simultaneous 100% Sequential

& 50% Sequential

Ticket Revenue $22,098 $22,114 $22,132
Ancillary Revenue $1,808 $2,278 $2,729
Total Revenue $23,906 $24,392 $24,861

Load Factor 83.8% 83.8% 83.8%
Total Yield 21.95 22.40 22.83
Ancillary Sales Rate 33.2% 41.8% 50.1%

Change from 100% Simultaneous
Ticket Revenue +0.1% +0.2%

Ancillary Revenue +26.0% +50.9%
Total Revenue +2.0% +4.0%

Load Factor +0.0 pts -0.0 pts

Total Yield +2.1% +4.0%
Ancillary Sales Rate +8.6 pts +16.9 pts

Significance of Change in Total Revenue from 100% Simultaneous
Standard Error 0.0% 0.0%
t-statistic 73.60 108.03
p-value < 0.001 < 0.001
Note: Total yield in cents per mile. Standard error expressed as percentage of baseline total revenue.

df = 1, 999.

simultaneous and sequential behavior. Recall that in the PODS simulator, passengers are

randomly assigned a behavior in the 50/50 mix case.

Summary metrics for the baseline case with all three passenger behavior mixes are shown

in Table 7.6. As the portion of sequential passengers increases (from 0% to 100%), there is

a small increase in ticket revenue. As described in Section 3.1.3, simultaneous behavior can

lead to buy-down as (some) passengers choose lower-value tickets in order to afford ancillary

services. As the portion of simultaneous passengers decreases, this effect diminishes, which

increases ticket revenue. Note that this effect has essentially no impact on the load factor.

The largest effect of increasing the portion of sequential passengers is that ancillary revenue

189



U 100% Simultaneous E 50% Simultaneous/50% Sequential M 100% Sequential

60%

50%

40%

30%

20%

10%_-

0%

FC I FC 2 FC 3 FC 4 FC 5 FC 6

Figure 7.14: Ancillary purchase rate by fare class for baseline with various passenger beha-
vior types (medium demand, $50 mean ancillary disutility, $50 ancillary price).

grows dramatically. Because sequential passengers do not have their ancillary purchases

limited by the overall budgetary constraint, they can afford more ancillary services and the

ancillary purchase rate increases to about 50%. When the ancillary price is equal to the

ancillary mean disutilities (as in these cases), half of passengers will desire the ancillary ser-

vice. With sequential behavior, all passengers who desire the ancillary service will purchase

it, and purchase rates should be equal to 50%. As a result of the higher purchase rate,

revenue from ancillary services increase by up to 51%. Driven primarily by the increase in

ancillary revenue, the total revenue and the total yield increase as the portion of sequential

passengers increases (by 4% when all passengers are sequential).

The increase in ancillary purchase rates is greatest in the lowest value classes, as shown

in Figure 7.14. Because passengers who book in FC 6 tend to have the lowest budgetary

constraints, when exhibiting simultaneous behavior many cannot also afford the ancillary

service. Hence, when all passengers are simultaneous, ancillary purchase rates in FC 6 are

only about 25%. However, as the portion of sequential passengers increases, and therefore

as the portion of passengers whose ancillary purchases are not constrained by an overall
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Figure 7.15: Ancillary purchase rate for baseline with various passenger behavior types
and with various ancillary disutilities and prices (medium demand). Ancillary disutility
configuration (see Table 5.5) and ancillary price ($25-$100) listed on horizontal axis.

budget increases, ancillary purchase rates increase. With 100% sequential behavior, about

50% of passengers in any fare class will purchase the service.

Note that these trends are influenced heavily by the relationship between ancillary prices,

ancillary mean disutilities, and budgetary constraints. For a given budgetary distribution,

as ancillary prices increase, fewer simultaneous passengers will be able to afford the service

regardless of the number of passengers who desire it, and purchase rates for simultaneous

passengers will decrease, as shown in Figure 7.15. With sequential passengers, an increase in

ancillary price together with a corresponding increase in ancillary disutility leaves ancillary

purchase rates unchanged. As ancillary mean disutilities increase, more passengers will

desire the service, and purchase rates will increase.

With a mix of behavior types, the revenue impacts of the optimizer increment, hybrid fo-

recasting/fare adjustment, a combination of the two, and AMD/AMR are similar to the

case when all passengers are simultaneous, as shown in Tables 7.7 and 7.8: the optimizer
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Table 7.7: Network AlONE simulation results for baseline and experimental cases (medium
demand, 50% simultaneous and 50% sequential passengers,
disutilities).

$50 ancillary price, $50 ancillary

Baseline 0I HF/FA 01 + HF/FA AMD/AMR

50% Simultaneous/50% Sequential Passengers
Ticket Revenue $22,114 $22,075 $22,399 $22,385 $22,554
Ancillary Revenue $2,278 $2,281 $2,250 $2,255 $2,249
Total Revenue $24,392 $24,356 $24,649 $24,640 $24,803
Load Factor 83.8% 83.9% 82.5% 82.7% 82.7%
Total Yield 22.40 22.33 22.98 22.91 23.08
Ancillary Sales Rate 41.8% 41.8% 41.9% 41.9% 41.9%

Change from Baseline
Ticket Revenue -0.2% +1.3% +1.2% +2.0%
Ancillary Revenue +0.1% -1.2% -1.0% -1.3%
Total Revenue -0.1% +1.1% +1.0% +1.7%
Load Factor +0.1 pts -1.3 pts -1.0 pts -1.1 pts
Total Yield -0.3% +2.6% +2.3% +3.0%
Ancillary Sales Rate -0.0 pts +0.1 pts +0.1 pts +0.0 pts

Significance of Change in Total Revenue from Baseline
Standard Error 0.0% 0.1% 0.1% 0.1%
t-statistic -7.66 10.74 11.26 12.96
p-value < 0.001 < 0.001 < 0.001 < 0.001
Note: Total yield in cents per mile. Standard error expressed as percentage of baseline total revenue.
df = 1,999.
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Table 7.8: Network AlONE simulation results for baseline and experimental cases (medium
demand, 100% sequential passengers, $50 ancillary price, $50 ancillary disutilities).

Baseline 01 HF/FA 01 + HF/FA AMD/AMR

100% Sequential Passengers
Ticket Revenue $22,132 $22,088 $22,414 $22,397 $22,555
Ancillary Revenue $2,729 $2,736 $2,689 $2,700 $2,698
Total Revenue $24,861 $24,824 $25,103 $25,097 $25,253
Load Factor 83.8% 83.9% 82.5% 82.8% 82.8%
Total Yield 22.83 22.75 23.40 23.31 23.45
Ancillary Sales Rate 50.1% 50.2% 50.1% 50.1% 50.1%

Change from Baseline
Ticket Revenue -0.2% +1.3% +1.2% +1.9%
Ancillary Revenue +0.3% -1.5% -1.1% -1.1%
Total Revenue -0.1% +1.0% +0.9% +1.6%
Load Factor +0.2 pts -1.2 pts -0.9 pts -0.9 pts
Total Yield -0.4% +2.5% +2.1% +2.7%
Ancillary Sales Rate +0.0 pts +0.0 pts +0.0 pts -0.0 pts

Significance of Change in Total Revenue from Baseline
Standard Error 0.0% 0.1% 0.1% 0.1%
t-statistic -7.35 10.18 11.04 12.98
p-value < 0.001 < 0.001 < 0.001 < 0.001
Note: Total yield in cents per mile. Standard error expressed as percentage of baseline total revenue.

df = 1, 999.
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Figure 7.16: Change in total revenue vs baseline with various passenger behavior types

(medium demand, $50 mean ancillary disutility, $50 ancillary price).

increment decreases total revenue and increases load factor (whether applied alone or in

conjunction with HF/FA). Hybrid forecasting/fare adjustment and AMD/AMR both in-

crease total revenue and decrease load factor; AMD/AMR has a greater increase in total

revenue and a smaller decrease in load factor. With higher revenue and lower load fac-

tor, total yield increases with both HF/FA and AMD/AMR. The increase in yield due

to HF/FA or AMD/AMR is smaller with 100% sequential passengers than with 100% si-

multaneous passengers, and the increase in total revenue due to HF/FA or AMD/AMR is

smaller with 100% sequential passengers than with .100% simultaneous passengers. Figure

7.16 summarizes the total revenue change of each method for each passenger behavior.

Figure 7.17 shows the change in bookings by fare class due to HF/FA and due to AMD/AMR

for both 100% simultaneous and 100% sequential passenger behaviors, relative to the cor-

responding standard forecasting baselines. Passenger behavior has relatively little impact

on the performance of HF/FA: for both behavior types, HF/FA reduces FC 6 bookings by

about 5.5 (flight leg capacity is 130 seats), and increases bookings in higher value classes.

However, for AMD/AMR, which explicitly accounts for passenger ancillary choice behavior,
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Figure 7.17: Change in bookings by fare class vs baseline with various passenger behavior
types (medium demand, $50 mean ancillary disutility, $50 ancillary price).

there are greater differences. AMD/AMR with 100% simultaneous passengers reduces FC

6 bookings by 1.8, but with 100% sequential passengers there is essentially no change in FC

6 bookings. FC 5 bookings show a greater decrease due to AMD/AMR with 100% sequen-

tial passengers (2.3) than with 100% simultaneous passengers (1.5). The mean absolute

difference of differences is 0.02 for HF/FA, but 0.54 for AMD/AMR. 3

As indicated in Figure 7.18, the total revenue benefit of AMD/AMR decreases with higher

ancillary prices, for all three tested ancillary disutility scenarios (see Table 5.5). AMD/AMR

increases revenue over the baseline in all tested price/disutility combinations, providing a

total revenue benefit of 1.2% to 1.9%. AMD/AMR increases revenue over HF/FA as well,

by an incremental 0.4 pts to 0.9 pts. The optimizer increment used alone decreases revenue

in all cases, and decreases revenue when paired with HF/FA in the equally-appealing and

business-oriented disutility configurations. In the leisure-oriented disutility configuration,
3The mean absolute difference of differences compares variation in the impact of RM methods against a
baseline due to other parameter changes; in this case it is defined as: 1- k-(bi,, - b,1,2)-(b -

bi,22) 1 whee binf cs 2,

be, 2 ,2 ) I, where be,,k is the number of bookings received in fare class i for parameter setting j (either 100%
simultaneous or 100% sequential) and for RM method k (1: HF/FA or AMD/AMR, 2: Baseline).
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Figure 7.18: Network AlONE change in total revenue vs baseline with various ancillary pri-
ces and disutility scenarios (medium demand, 100% sequential passengers). 99% confidence
interval for change in total revenue due to AMD and AMR. df = 1, 999.

01 + HF/FA increases revenue slightly compared to HF/FA alone, and has a greater increase

at higher ancillary prices.

A summary of the total revenue impact of AMD/AMR across a range of passenger behaviors,

ancillary prices, and disutility scenarios is shown in Figure 7.19. AMD and AMR have

statistically significant increases in total revenue in all tested cases (p < 0.01, df = 1, 999).

On average, AMD and AMR increase total revenue more with simultaneous passengers than

with sequential passengers; Figure 7.20 shows the difference in differences in total revenue

change (measured as a percentage from AMD/AMR case relative to baseline) between 100%

sequential passengers and 100% simultaneous passengers. In nearly all cases the mean is

negative, meaning that the revenue gain with AMD/AMR is less when all passengers are

sequential than when all passengers are simultaneous. The difference in performance is

statistically significant for higher ancillary prices (as shown by the 99% confidence interval,

df = 1, 999, for price > $50 (leisure-oriented and equally appealing disutility scenario)

or price > $75 (business-oriented disutility scenario)) and the difference is larger in the
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Figure 7.19: Network AlONE change in total revenue due to AMD and AMR vs base-
line with various passenger behaviors, ancillary prices, and disutility scenarios (medium
demand). 99% confidence interval for change in total revenue with all simultaneous or all
sequential passengers. df = 1, 999.
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Figure 7.20: Network AlONE difference in differences for percentage change in total revenue
due to AMD and AMR vs baseline for 100% sequential passengers vs 100% simultaneous
passengers with various ancillary prices and disutility scenarios (medium demand). Vertical
axis has same scale as Figure 7.19 but is shifted. 99% confidence interval. df = 1, 999.

197

2.5% -

2.0% -

1.5% -

1.0%-

0.0%

-0.5% -

===-==---.-



Table 7.9: Network A2TWO baseline statistics (medium demand, 100% simultaneous pas-
sengers, $50 ancillary price, equally appealing ancillary disutility scenario).

Airline 1 Airline 2

Ticket Revenue $22,386 $22,388
Ancillary Revenue $1,825 $1,822
Total Revenue $24,211 $24,210
Load Factor 84.3% 84.2%
Total Yield 22.09 22.13
Ancillary Sales Rate 33.3% 33.3%
Portion of Total Revenue from Ancillary 7.5% 7.5%
Note: Total yield in cents per mile.

leisure-oriented disutility scenario.

7.4 Two Airline, Two Flight Leg Network (A2TWO)

We now introduce a competitor airline, offering the same six economy fare classes with

the same fare class restrictions and advanced purchase requirements. There is no quality

or schedule differentiation between the two airlines-both offer one non-stop flight in the

market, departing and arriving at the same time. Price differentiation only arises as a

result of revenue management action. As with AlONE, simulations in network A2TWO

feature five trials of 400 unburned samples each, for a total of 2,000 observations in the

reported outputs (each trial has additional samples used only to warm up the forecasting

models). Again, comparisons are made between two simulations on a pairwise basis because

the underlying stochastic demand is the same for each simulation (for the same demand,

passenger behavior, ancillary price, and ancillary disutility parameters). The total number

of passengers generated in A2TWO is double that of AlONE, and we use the same com-

binations of market demand levels, ancillary prices, and ancillary disutility scenarios as in

AlONE.

Baseline results for A2TWO with medium demand, 100% simultaneous passengers, and a

198



Table 7.10: Network A2TWO Airline 1 baseline bookings and ancillary purchase data by
fare class (medium demand, 100% simultaneous passengers, $50 ancillary price, $50 ancillary
disutility).

FC1 FC2 FC3 FC4 FC5 FC6

Bookings 6 14 10 8 15 57
Booking Mix 6% 12% 9% 7% 14% 52%
Average Fare $500 $390 $295 $200 $160 $125

Average Ancillary per Passenger $22 $22 $20 $23 $20 $12

Portion of Total Revenue from Ancillary 4% 5% 6% 10% 11% 9%
Ancillary Sales Rate 45% 44% 41% 45% 39% 25%

$50 ancillary service with equally appealing disutilities are shown in Table 7.9. The results

are similar to the equivalent AlONE baseline, and both airlines in A2TWO have nearly

identical performance. Approximately 8% of total revenue comes from sales of the ancillary

service, in line with US DOT estimates of ancillary revenue for US airlines. A breakout of

bookings and ancillary purchases by fare class for Airline 1 are shown in Table 7.10. As

with AlONE, most bookings occur in the lowest value fare class. Purchase rates for the

ancillary service range broadly by fare class, with lower purchase rates in the lower-value

fare classes (where many passengers have tight budgetary constraints) and higher purchase

rates in the higher-value fare classes. The portion of total revenue coming from ancillary

services, however, is higher in lower-value classes (11% in FC 5) and lower in higher-value

classes (4% in FC 1). Results for Airline 2 are similar.

7.4.1 Symmetric Competition

We first consider cases of symmetric competition, i.e. both airlines use the same revenue

management forecasting and optimization configurations. We use the same revenue mana-

gement configurations as with network AlONE: the optimizer increment (01), hybrid fore-

casting with fare adjustment (HF/FA), a combination of 01 and HF/FA, and AMD/AMR.

We assume that the airline has accurate knowledge of single-airline passenger choice proba-

bilities but does not attempt to account for competition. In other words, for given passenger
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Table 7.11: Network A2TWO Airline 1 simulation results for baseline and symmetric ex-
perimental cases (medium demand, 100% simultaneous passengers, $50 ancillary price, $50
ancillary disutilities).

Baseline 01 HF/FA 01 + HF/FA AMD/AMR

Airline 1
Ticket Revenue $22,386 $22,376 $22,585 $22,585 $22,798
Ancillary Revenue $1,825 $1,827 $1,809 $1,812 $1,807
Total Revenue $24,211 $24,203 $24,394 $24,397 $24,605
Load Factor 84.3% 84.4% 82.6% 82.9% 82.9%
Total Yield 22.09 22.07 22.71 22.65 22.84
Ancillary Sales Rate 33.3% 33.3% 33.7% 33.6% 33.5%

Change from baseline
Ticket Revenue -0.0% +0.9% +0.9% +1.8%
Ancillary Revenue +0.1% -0.9% -0.7% -1.0%
Total Revenue -0.0% +0.8% +0.8% +1.6%
Load Factor +0.0 pts -1.7 pts -1.4 pts -1.4 pts
Total Yield -0.1% +2.8% +2.5% +3.4%
Ancillary Sales Rate +0.0 pts +0.4 pts +0.3 pts +0.2 pts

Significance of Change in Total Revenue from Baseline
Standard Error 0.0% 0.1% 0.1% 0.2%
t-statistic -1.20 5.98 6.51 10.71
p-value 0.229 < 0.001 < 0.001 < 0.001
Note: Total yield in cents per mile. Standard error expressed as percentage of baseline total revenue.
df = 1, 999.

behavior, ancillary price, and ancillary disutility settings,

A2TWO are the same as those in AlONE.

the choice probabilities used in

Results for these symmetric competition cases are shown in Tables 7.11 and 7.12. AMD and

AMR result in an increase of total revenue of 1.6% for both airlines, driven by an increase

in ticket revenue (+1.8%) and a decrease in ancillary revenue (-1.0%). The decrease in

ancillary revenue is a result of a decrease in load factor (-1.4 pts for Airline 1; -1.3 pts for

Airline 2), which is slightly offset by a higher ancillary purchase rate (+0.2 pts for Airline

1; +0.1 pts for Airline 2). The difference in total revenue due to AMD/AMR vs baseline

is statistically significant for both airlines (t = 10.71 (Airline 1) and 10.55 (Airline 2),
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Table 7.12: Network A2TWO Airline 2 simulation results for baseline and symmetric ex-
perimental cases (medium demand, 100% simultaneous passengers, $50 ancillary price, $50
ancillary disutilities).

Baseline 0I HF/FA 01 + HF/FA AMD/AMR

Airline 2
Ticket Revenue $22,388 $22,341 $22,684 $22,670 $22,786
Ancillary Revenue $1,822 $1,821 $1,815 $1,816 $1,803
Total Revenue $24,210 $24,162 $24,499 $24,486 $24,589
Load Factor 84.2% 84.2% 82.9% 83.0% 82.9%
Total Yield 22.13 22.07 22.73 22.69 22.81
Ancillary Sales Rate 33.3% 33.3% 33.7% 33.7% 33.5%

Change from baseline
Ticket Revenue -0.2% +1.3% +1.3% +1.8%
Ancillary Revenue -0.1% -0.4% -0.3% -1.0%
Total Revenue -0.2% +1.2% +1.1% +1.6%
Load Factor +0.1 pts -1.3 pts -1.2 pts -1.3 pts
Total Yield -0.3% +2.7% +2.5% +3.1%
Ancillary Sales Rate -0.0 pts +0.4 pts +0.4 pts +0.1 pts

Significance of Change in Total Revenue from Baseline
Standard Error 0.0% 0.1% 0.1% 0.1%
t-statistic -7.76 9.59 9.75 10.55
p-value < 0.001 < 0.001 < 0.001 < 0.001
Note: Total yield in cents per mile. Standard error expressed as percentage of baseline total revenue.
df = 1, 999.
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p < 0.001, df = 1, 999). Trends for other RM configurations are similar in direction to

those in network AlONE: 01 decreases total revenue when applied to the baseline or to

HF/FA, and HF/FA increases total revenue compared to the baseline, though not to the

same degree as AMD/AMR. Symmetric use of AMD/AMR increases total revenue by 0.8

pts (Airline 1) to 0.4 pts (Airline 2) over HF/FA, a statistically significant increase for both

airlines .(t = 9.36, p < 0.001 for Airline 1; t 4.09, p < 0.001 for Airline 2; df = 1, 999;

using HF/FA as the baseline).

The difference in total revenue between Airline 1 and 2 when both use the same RM con-

figuration is not statistically significant (t = 1.14, p = 0.256, df = 1,999 when both use

HF/FA, which has the largest differences between airlines).

As with network AlONE, AMD/AMR increases ticket and total revenue by reducing book-

ings in the lowest-value FC 6, and by reducing bookings in the inefficient FC 2 and FC 5,

as shown in Figure 7.21. The booking reductions in these classes allow the airline to accept

more bookings in the highest-value FC 1. The booking changes observed in A2TWO are

very similar to those in the equivalent AlONE case.

The sensitivity of these results to variations in passenger behavior type, ancillary price, and

disutility scenario are shown in Figure 7.22. AMD/AMR consistently produce revenue gains,

with an increase in total revenue vs baseline of 1.2% to 1.8%. These revenue differences

are all statistically significant (p < 0.01, df = 1, 999), as shown by the 99% confidence

interval. In general, the revenue gains of AMD/AMR are slightly greater with simultaneous

passengers than with sequential passengers, and the variation in performance by passenger

type is exaggerated at higher ancillary prices and when the ancillary service is more favorable

to leisure passengers (leisure-oriented). Airline 2 results show similar trends.

In summary, in this simple competitive network, when both airlines use AMD/AMR results

are generally similar to the single airline network (AlONE), even though the airlines have

not accounted for the competitor in the AMD/AMR choice probabilities.
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Figure 7.21: Network A2TWO change in bookings by fare class due to symmetric AMD
and AMR vs baseline (medium demand, 100% simultaneous passengers, $50 ancillary price,
$50 ancillary disutility). Equivalent network AlONE result shown in grey for comparison.

-::::- Simult. 99% CI E-.-Seq. 99% CI -- Simultaneous -4

2.5% -

2.0% -

1.5% -

1.0%-

0.5% -

0.0% -

-0.5% -

----------------

--- - -- - -- - -- - ----------------

50/50 Mix -- Sequential

-- -----------
-----------

$25 $50 $75 $100

Leisure-oriented

$25 $50 $75 $100

Equally appealing

$25 $50 $75 $100

Business-oriented

Figure 7.22: Network A2TWO change in Airline 1 total revenue due to symmetric AMD and
AMR vs baseline with 99% confidence interval with various passenger behaviors, ancillary
prices, and disutility scenarios (medium demand). df = 1, 999.
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Table 7.13: Network A2TWO Airline 1 simulation results for baseline and asymmetric
experimental cases (medium demand, 100% simultaneous passengers, $50 ancillary price,
$50 ancillary disutilities). Airline 2 always uses standard forecasting and optimizes on filed
fares; Airline 1 uses specified forecasting and optimization model.

Baseline 01 HF/FA 01 + HF/FA AMD/AMR

Airline 1
Ticket Revenue $22,386 $22,361 $22,678 $22,676 $22,788
Ancillary Revenue $1,825 $1,826 $1,803 $1,807 $1,811
Total Revenue $24,211 $24,187 $24,481 $24,483 $24,599
Load Factor 84.3% 84.4% 81.8% 82.0% 83.4%
Total Yield 22.09 22.04 23.03 22.96 22.70
Ancillary Sales Rate 33.3% 33.3% 33.9% 33.9% 33.4%

Change from baseline
Ticket Revenue -0.1% +1.3% +1.3% +1.8%
Ancillary Revenue +0.1% -1.2% -1.0% -0.8%
Total Revenue -0.1% +1.1% +1.1% +1.6%
Load Factor +0.1 pts -2.5 pts -2.3 pts -1.0 pts
Total Yield -0.2% +4.3% +3.9% +2.8%
Ancillary Sales Rate -0.0 pts +0.6 pts +0.6 pts +0.1 pts

Significance of Change in Total Revenue from Baseline
Standard Error 0.0% 0.1% 0.1% 0.2%
t-statistic -3.69 7.79 8.40 10.35
p-value < 0.001 < 0.001 < 0.001 < 0.001
Note: Total yield in cents per mile. Standard error expressed as percentage of baseline total revenue.
df 1, 999.

7.4.2 Asymmetric Competition

In asymmetric competition, the airlines use different optimization and/or forecasting mo-

dels. We assume initially that Airline 2 uses a standard (independent demand) forecasting

and optimizes on filed fares (the same as the baseline). Airline 1 only changes its revenue

management and/or forecasting configuration to the optimizer increment, hybrid forecasting

and fare adjustment, a combination of the two approaches, or AMD/AMR. We continue to

assume that choice probabilities do not account for competition.
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Table 7.14: Network A2TWO Airline 2 simulation results for baseline and asymmetric

experimental cases (medium demand, 100% simultaneous passengers, $50 ancillary price,

$50 ancillary disutilities). Airline 2 always uses standard forecasting and optimizes on filed

fares; Airline 1 uses specified forecasting and optimization model.

Baseline 01 HF/FA 01 + HF/FA AMD/AMR

Airline 2
Ticket Revenue $22,388 $22,381 $22,449 $22,429 $22,587

Ancillary Revenue $1,822 $1,821 $1,834 $1,834 $1,833

Total Revenue $24,210 $24,202 $24,283 $24,263 $24,420

Load Factor 84.2% 84.1% 85.3% 85.2% 84.2%
Total Yield 22.13 22.13 21.91 21.90 22.31
Ancillary Sales Rate 33.3% 33.3% 33.1% 33.1% 33.5%

Change from baseline
Ticket Revenue -0.0% +0.3% +0.2% +0.9%
Ancillary Revenue -0.1% +0.7% +0.7% +0.6%
Total Revenue -0.0% +0.3% +0.2% +0.9%
Load Factor -0.1 pts +1.1 pts +1.1 pts +0.0 pts

Total Yield +0.0% -1.0% -1.0% +0.8%
Ancillary Sales Rate +0.0 pts -0.2 pts -0.2 pts +0.2 pts

Significance of Change in Total Revenue from Baseline
Standard Error 0.0% 0.1% 0.1% 0.1%
t-statistic -1.23 4.01 3.02 10.43

p-value 0.218 < 0.001 0.003 < 0.001
Note: Total yield in cents per mile. Standard error expressed as percentage of baseline total revenue.

df = 1, 999.
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Figure 7.23: Network A2TWO change in Airline 1 and Airline 2 total revenue due to
change in ticket and ancillary sales volumes and yields due to asymmetric AMD and AMR vs
baseline (medium demand, 100% simultaneous passengers, $50 ancillary price, $50 ancillary
disutility). "Volume" columns are portion of ticket or ancillary revenue change attributable
to change in load factor; "yield" columns are portion of ticket or ancillary revenue change
attributable to change in average fare or average ancillary revenue earned per passenger.
All values expressed as percentage change from baseline total revenue.

Tables 7.13 and 7.14 shows results for the asymmetric cases. The results for Airline 1

are directionally similar to those with symmetric competition: AMD/AMR result in an

increase in ticket revenue (+1.8%), a decrease in ancillary revenue (-0.8%), and an increase

in total revenue (+1.6%). The reduction in ancillary revenue is driven by a reduction in load

factor (-1.0 pts). These changes in total revenue are statistically significant (t = 10.35 for

Airline 1 and 10.43 for Airline 2, p < 0.001, df = 1, 999), with the 99% confidence interval

for the total revenue change equal to (1.2%, 2.0%). Note that a pairwise comparison of

AMD/AMR vs HF/FA shows a statistically significant increase in total revenue due to

AMD/AMR (t = 4.90, p < 0.001, df = 1, 999, using HF/FA as the baseline). Although

Airline 2 makes no changes to its forecasting or optimization processes in these asymmetric

experiments, it sees a substantial increase in total revenue (+0.9%) vs baseline when Airline

1 implements AMD/AMR.
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Figure 7.24: Network A2TWO change in bookings by fare class (left) and change in Airline
2 initial demand forecast mean (right) due to asymmetric AMD and AMR vs baseline (me-
dium demand, 100% simultaneous passengers, $50 ancillary price, $50 ancillary disutility).
Percentages show change in demand forecast vs baseline.

Figure 7.23 shows how changes in load factor, average fare, and average ancillary revenue per

passenger contribute to the change in total revenue for Airline 1 and Airline 2 when Airline

1 only implements AMD/AMR. AMD/AMR produces more aggressive booking limits for

Airline 1, which reduces its load factor and increases its ticket yields; the reduction in ticket

revenue due to the lower load factor is more than offset by the increase in ticket revenue due

to higher average fares. Likewise, the reduction in load factor has a (small) negative effect

on ancillary revenue, which is partially offset by (slightly) higher ancillary purchase rates

(and therefore higher "ancillary yield" or average ancillary revenue per passenger). Airline

2 sees a (small) increase in load factor, and a larger increase in ticket yield, resulting in

higher ticket revenues and higher total revenues.

In contrast to the symmetric competition case, where both Airline 1 and 2 showed similar

booking changes due to AMD/AMR as did the airline in network AlONE, in the asymmetric

case trends differ from AlONE. Figure 7.24 shows the change in bookings by fare class for
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Figure 7.25: Network A2TWO FC 6 availability with symmetric and asymmetric AMD and
AMR (medium demand, 100% simultaneous passengers, $50 ancillary price, $50 ancillary
mean disutility). Availability measured as the portion of samples for which FC 6 is for sale.

both airlines when Airline 1 only implements AMD/AMR. Under asymmetric competition,

Airline 2, which continues to use the same forecasting and optimization methods as in

the baseline case, sees a decrease in FC 6 bookings and an increase in FC 2 through FC

5 bookings. Airline 1, on the other hand, experiences no decrease in FC 6 bookings (in

contrast to the effect of AMD/AMR under symmetric competition). This difference in

results between the symmetric and asymmetric cases is a result of competitive booking and

forecast feedbacks between the two airlines, as shown in Figure 7.24. In the asymmetric

case, AMD/AMR reduces availability for Airline 1; consumers therefore are more likely to

book on Airline 2. The increase in Airline 2 bookings results in an increase Airline 2's

forecast, particularly for FC 4 and FC 5.

The increased forecast results in less Airline 2 availability in FC 6, which in turn drives

additional up-sell of passengers from FC 6 to higher value classes, reinforcing the effects

of Airline l's use of AMD/AMR. As shown in Figure 7.25, the result of these forecasting

feedbacks is that under asymmetric competition, Airline 1 has a greater FC 6 availability
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Figure 7.26: Network A2TWO change in Airline 1 total revenue due to asymmetric AMD
and AMR vs baseline with 99% confidence interval with various passenger behaviors, ancil-
lary prices, and disutility scenarios (medium demand). df = 1, 999.

than Airline 2 during the last DCPs in which FC 6 can be sold (recall that FC 6 has an

advance purchase requirement, so it is never sold after DCP 8).

The sensitivity to variations in passenger behavior type, ancillary price, and ancillary di-

sutility scenario of the change in Airline 1 total revenue due to asymmetric AMD/AMR

is shown in Figure 7.26. In all cases AMD/AMR increases total revenue over the baseline

and the change is statistically significant (p < 0.01, df = 1, 999), as indicated by the 99%

confidence intervals. Total revenue changes for Airline 1 range from +1.1% to +1.9%. Total

revenue changes for Airline 2 are not shown but are between +0.4% and +1.0%, although

Airline 1 sees a revenue increase at least 0.5 pts greater than Airline 2 in all cases. As with

the symmetric case, the benefit of AMD/AMR is smaller with sequential passengers than

with simultaneous passengers, and the difference in performance is greater at higher ancil-

lary prices and when the service is more favorable to leisure passengers. The improvement

in Airline 1 total revenue vs asymmetric use of HF/FA (i.e., Airline 1 using HF/FA and

Airline 2 using standard forecasting and optimizing on filed fares) is not shown, but ranges
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between +0.2% and +1.3%, with the change statistically significant (p < 0.01, df = 1, 999)

in all cases.

7.4.3 Choice Probability Estimation

Simulation result to this point have assumed that the airline has knowledge of the passenger

choice probabilities P,m,dcp(k), allowing our analysis to focus solely on the effects of our

proposed forecasting and optimization processes, without the confounding effects of esti-

mation errors. In reality, however, airlines do not know passenger choice probabilities and

must estimate them. In this section, we test the performance of AMD/AMR when using

choice probabilities that have been estimated from historical booking data with either the

"raw" or "heuristic" approach, as described in Section 6.4. For these simulations, all choice

probabilities are estimated from the baseline case, and each airline performs its own esti-

mation process. 4 For the heuristic approach, the airline uses one of the standard PODS

FRAT5 curves as its estimate of passenger price elasticity. These curves are lettered "A"

through "E," with A leading to the most aggressive sell-up estimates, and E to the least

aggressive, as shown in Figure 3.3.

Consider initially the scenario with medium demand, 100% simultaneous passengers, a $50

ancillary price, and $50 mean ancillary disutilities for both passenger segments. The total

sale probabilities TPp,(k) for Airline 1 from both the raw and the heuristic estimation

process (using FRAT5 D) are shown in Figure 7.27. Although the batch estimation process

has a total of 2,000 samples, as shown by the raw total sale probability estimates, there are a

number of lowest available class/DCP combinations with no booking in any of the samples,

which leads to missing data points in the figure (for AMD/AMR computation purposes

the missing values are treated as zero). In addition, the values that can be computed

show substantial variability between DCPs-the total sale probability of FC 4, for example,
4We also explored estimating choice probabilities from the hybrid forecasting and fare adjustment cases, but
did not find meaningful differences in trends or conclusions.
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Figure 7.27: Network A2TWO estimated total sale TPcp(k) for Airline I using the raw
estimator (left) or heuristic estimator with FRAT5 D (right) (medium demand, 100% simul-
taneous passengers, $50 ancillary price, $50 mean ancillary disutilities). Choice probabilities
estimated from baseline case. Total sale probabilities shown prior to any gap-filling.

drops from 38% in DCP 5 to 23% in DCP 6, before climbing to 87% in DCP 11. The total

sale probabilities from the heuristic estimator are derived entirely from the sell-up estimate

(Equation 6.23), which relies on the input FRAT5 curve. Therefore, the heuristic total sale

probability curves are much smoother and have no missing. data points. Comparing the

estimated total sale Tprobabilities toor Aline i the airline

knew the customer choice model (Figure T.2) shows several important differences. The

heuristic estimates are in general much cleaner and more reflective of the trends in the

true values, but the heuristic estimates have lower total sale probabilities for all fare classes

in early DCPs, and have lower total sale probabilities for the highest value fare classes in

the DCPs close to departure. This will, all else equal, lead to less aggressive availability

decisions by AMD/AMR.5

Figure 7.28 shows the change in Airline 's AMR fare vs using true choice probabilities

5The heuristic estimate total sale probabilities are a function of the selected FRAT5 curve. We display
FRAT5 D because it produces the highest AMD/AMR revenue for Airline 1.
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Figure 7.28: Network- A2TWO change in Airline 1 AMR fare due to estimated choice
probabilities vs true choice probabilities using the raw estimator (left) or heuristic estimator
with FRAT5 D (right) (medium demand, 100% simultaneous passengers, $50 ancillary price,
$50 mean ancillary disutilities). Choice probabilities estimated from baseline case.

when the airline uses either the raw estimator or the heuristic estimator with FRAT5 D.

With either estimator, adjusted fares tend to be higher. When the adjusted fare for class

i increases, its availability also increases (all else equal), and the availability of lower value

classes may decrease (all else equal). Thus it is difficult to determine directly the impact of

choice probability estimation on availability of lower value classes, but Figure 7.28 makes

clear that the estimation processes will substantially affect adjusted fares.

Symmetric AMD/AMR simulation results when both airlines use true choice probabilities

or estimated choice probabilities are shown in Tables 7.15 and 7.16. AMD/AMR with true

choice probabilities has the highest total revenue, with a gain of +1.6% over baseline. Use

of raw estimated choice probabilities leads to a substantial decrease in total revenue (-3.1%

for Airline 1, -1.2% for Airline 2) vs the baseline, with decreases in both ticket revenue and

ancillary revenue for both airlines. Load factor for both airlines increases while total yield

decreases, suggesting that the raw estimated probabilities lead to less aggressive booking
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Table 7.15: Network A2TWO Airline 1 simulation results for baseline and symmetric AMD
and AMR cases with various choice probability estimation methods (medium demand, 100%
simultaneous passengers, $50 ancillary price, $50 ancillary disutilities). "True" refers to
choice probabilities computed with accurate knowledge of the customer choice model; "raw"
and "heuristic" are estimated choice probabilities.

Heuristic Heuristic
Baseline True Raw FRAT5 C FRAT5 D

Airline 1
Ticket Revenue $22,386 $22,798 $21,657 $22,682 $22,710
Ancillary Revenue $1,825 $1,807 $1,811 $1,796 $1,824

Total Revenue $24,211 $24,605 $23,468 $24,478 $24,534
Load Factor 84.3% 82.9% 84.7% 82.1% 83.5%
Total Yield 22.09 22.84 21.31 22.93 22.59
Ancillary Purchase Rate 33.3% 33.5% 32.9% 33.6% 33.6%

Change from baseline
Ticket Revenue +1.8% -3.3% +1.3% +1.4%
Ancillary Revenue -1.0% -0.8% -1.6% -0.1%
Total Revenue +1.6% -3.1% +1.1% +1.3%
Load Factor -1.4 pts +0.4 pts -2.2 pts -0.8 pts
Total Yield +3.4% -3.5% +3.8% +2.3%
Ancillary Purchase Rate +0.2 pts -0.4 pts +0.3 pts +0.3 pts

Significance of Change in Total Revenue from Baseline
Standard Error 0.2% 0.2% 0.1% 0.1%
t-statistic 10.71 -15.22 7.67 12.17
p-value < 0.001 < 0.001 < 0.001 < 0.001
Note: Total yield in cents per mile. Standard error expressed as percentage of baseline total revenue.

df = 1, 999.
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Table 7.16: Network A2TWO Airline 2 simulation results for baseline and symmetric AMD
and AMR cases with various choice probability estimation methods (medium demand, 100%
simultaneous passengers, $50 ancillary price, $50 ancillary disutilities). "True" refers to
choice probabilities computed with accurate knowledge of the customer choice model; "raw"
and "'heuristic" are estimated choice probabilities.

Heuristic Heuristic
Baseline True Raw FRAT5 C FRAT5 D

Airline 2
Ticket Revenue $22,388 $22,786 $22,109 $22,736 $22,621
Ancillary Revenue $1,822 $1,803 $1,818 $1,800 $1,812
Total Revenue $24,210 $24,589 $23,927 $24,536 $24,433
Load Factor 84.2% 82.9% 84.5% 82.3% 83.3%
Total Yield 22.13 22.81 21.77 22.92 22.56
Ancillary Purchase Rate 33.3% 33.5% 33.1% 33.6% 33.5%

Change from baseline
Ticket Revenue +1.8% -1.2% +1.6% +1.0%
Ancillary Revenue -1.0% -0.2% -1.2% -0.5%
Total Revenue +1.6% -1.2% +1.3% +0.9%
Load Factor -1.3 pts +0.4 pts -1.8 pts -0.8 pts
Total Yield +3.1% -1.6% 3.6% +1.9%
Ancillary Purchase Rate +0.1 pts -0.2 pts +0.3 pts +0.2 pts

Significance of Change in Total Revenue from Baseline
Standard Error 0.1% 0.2% 0.1% 0.1%
t-statistic 10.55 -6.29 9.38 8.59
p-value < 0.001 < 0.001 < 0.001 < 0.001
Note: Total yield in cents per mile. Standard error expressed as percentage of baseline total revenue.
df = 1, 999.
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limits than even the baseline case, and certainly less aggressive than AMD/AMR with the

true choice probabilities.

The heuristic estimates produce better revenue performance than the raw estimates, incre-

asing total revenue for both airlines when they both use FRAT5 C (+1.1% for Airline 1 and

+1.3% for Airline 2) or FRAT5 D (+1.3% for Airline 1 and +0.9% for Airline 2). FRAT5 C

performs better for Airline 2 than for Airline 1, and FRAT5 D performs better for Airline 1

than for Airline 2. With either FRAT5, AMD/AMR increases ticket revenue and decreases

ancillary revenue vs baseline. The decrease in ancillary revenue is driven by a decrease in

load factor that is only slightly offset by an increase in the ancillary service purchase rate.

Although this is a symmetric competition case, in the sense that both airlines use the same

revenue management forecasting and optimization methods, and use the same approach to

calculating or estimating choice probabilities, it is important to note that the two airlines

perform the choice probability estimation separately, on their own booking databases. The

difference in total revenue between the two airlines for AMD/AMR with heuristic choice

probabilities is not statistically significant (t = 0.63, p = 0.526, df = 1, 999 for FRAT5 C;

t = -1.14, p = 0.255, df = 1,999 for FRAT5 D; using Airline 2 as the "test" case and

Airline 1 as the "baseline," pairing by sample as usual). However, clearly, there are some

differences in the results of the estimation processes between the airlines, and the raw choice

probabilities show a significant difference between the two airlines (t = 4.67, p < 0.001,

df = 1, 999; using Airline 2 as the "test" case and Airline 1 as the "baseline," pairing by

sample as usual). The small random differences in booking histories for the two airlines

lead to slightly different choice probability estimates, with greater differences for the lowest

available class/DCP combinations that receive few bookings. In an extreme case, with

the raw estimation heuristic, one airline could receive one booking for a particular lowest

available class/DCP combination while the other receives none; the airline that receives

the booking would be able to estimate choice probabilities for that combination and could

compute non-zero AMD demands and AMR fares, leading to different availability decisions.

215



E Airline 1 (Heuristic) 0 Airline 2 (Heuristic) E Airline 1 (True) 0 Airline 2 (True)

8

6

4

2-

0-

-2

-4

-6

-8

FC 1 FC 2 FC 3 FC 4 FC 5 FC 6

Figure 7.29: Network A2TWO change in bookings by fare class due to symmetric AMD and
AMR with heuristic estimated (FRAT5 D) or true choice probabilities vs baseline (medium
demand, 100% simultaneous passengers, $50 ancillary price, $50 ancillary disutility).

The raw estimation method is more susceptible to these influences because it relies only on

the historical database; the heuristic estimation method is more stable because it includes

both the "neighbor matching" process and sell-up estimates based on the input FRAT5

value. The remainder of this section focuses on the heuristic estimation methods because

of their stability.

Figure 7.29 shows the change in bookings vs baseline when the airlines implement AMD

and AMR with either the heuristic estimated choice probabilities (with FRAT5 D) or with

the known true choice probabilities. In all cases, the result is a reduction in FC 5 and FC 6

bookings, and an increase in FC 1 bookings. However, the heuristic estimated probabilities

have a smaller increase in FC 1 bookings, and instead have an increase in FC 4 bookings.

The sensitivity of AMD/AMR revenue gains with heuristic estimated choice probabilities

is shown in Figure 7.30. AMD/AMR increases total revenue vs baseline for Airline 1 in

all the tested scenarios, including with 100% simultaneous and 100% sequential passenger
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Figure 7.30: Network A2TWO change in Airline 1 total revenue due to symmetric AMD and
AMR with heuristic estimated choice probabilities (FRAT5 D) vs baseline with 99% con-
fidence interval with various passenger behaviors, ancillary prices, and disutility scenarios
(medium demand). df = 1, 999.

behavior, and the change is statistically significant (p < 0.01, df = 1, 999). As with previous

AMD/AMR results, the revenue benefits are higher with simultaneous passengers, and the

difference in performance between the two passenger types increase with higher ancillary

prices and when leisure passengers value the service more than business passengers.

These results illustrate that even with estimated choice probabilities, the AMD/AMR for-

mulation can increase total revenue compared to the baseline case. However, the revenue

benefit of AMD/AMR is reduced when choice probabilities are estimated, and the estima-

tion process can be sensitive to small variations in historical bookings. Choice probabilities

estimated based on a combination of input price elasticity (FRAT5) and historical book-

ings produce booking limits that are not as effective at increasing ticket revenue as the true

choice probabilities, and choice probabilities estimated only from historical data can lead

to revenue decreases.

Overall, our simulations in network A2TWO illustrate that AMD/AMR is capable of pro-
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ducing revenue gains in a simple competitive environment, even when the airlines do not

adjust their choice probabilities to explicitly account for competition. Results under symme-

tric competition are similar to the results from network AlONE: AMD and AMR increase

ticket revenue, decrease ancillary revenue, and increase total revenue, with the decrease in

ancillary revenue driven by a decrease in load factor that is only slightly offset by an incre-

ase in ancillary purchase rate., Although the theoretical formulation does not include any

form of competition, our tests in this limited environment illustrate that increases in total

revenue remain possible when only one of the airlines implements AMD/AMR, while the

other maintains its simplistic independent demand (baseline) forecasting and optimization

models.

7.5 Two Airline, Many Flight Leg Network (D6)

In our final set of experiments, we apply AMD and AMR in a large network with competition

and connecting flights. The focus of this section is on comparing the performance of AMD

and AMR in this more realistic setting to the findings in the toy networks AlONE and

A2TWO. Network D6, used for studies of the optimizer increment in Section 5.2.4, has

two hypothetical airlines operating connecting hubs. Each airline has 252 flight legs which

serve a total of 482 different origin-destination markets. Both airline serve every market,

and both airlines offer six economy fare classes and one ancillary service. Figure 5.11 shows

a map of the network, and Table 5.8 lists fare information for the network. Fares and

demands in D6 were previously calibrated based on data provided by airline members of

the MIT PODS Research Consortium. In general, passengers in network D6 have higher

budgets than in AlONE or A2TWO, so the benefit of revenue management methods that

correct for buy-down (i.e. hybrid forecasting/fare adjustment and AMD/AMR) is greater.

In all our simulations, both airlines use network-based revenue management optimization

models (DAVN, see Sections 3.2 and 4.1). As a baseline, the airline uses a standard (inde-
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pendent demand) forecasting model and optimizes on filed fares. We primarily focus on a

medium demand case (about 83% baseline load factor) where the ancillary service is priced

at 40% of the FC 6 fare, which is the same ratio as the $50 ancillary price in networks

AlONE and A2TWO. We use the same disutility scenarios as in networks AlONE and

A2TWO (see Table 5.5). All D6 simulations have two trials of 400 unburned samples each

(with an additional 200 samples per trial "burned" to warm up the forecasting models),

producing a total of 800 samples per simulation. As with all other PODS studies, compari-

sons are made on a pairwise basis (by sample) between different simulations that have the

same demand generation parameters (i.e. overall demand level and ancillary disutilities).

Baseline statistics are shown in Table 5.9. As with network AlONE, we consider four

other revenue management configurations: optimizer increment (01), hybrid forecasting

and fare adjustment (HF/FA), a combination of the two approaches (01 + HF/FA), and

AMD/AMR. We conduct tests with symmetric competition, where both airlines use the

same RM methods, and asymmetric competition, where Airline 1 varies its RM method

and Airline 2 always uses its baseline independent demand forecasting and optimization.

When using the optimizer increment the airline estimates average ancillary revenue per

passenger according to Method 1, as described in Chapter 5. When using hybrid forecasting

and fare adjustment the airline uses FRAT5 curve A. Note that curve A is more aggressive

than curve C used in network AlONE and A2TWO; A was selected because of the higher

budgets of passengers in network D6.

When using AMD/AMR in network D6, the airlines always estimate choice probabilities

using the heuristic estimator described in Section 6.4.2. The airlines estimate conditional

purchase probabilities separately, using their own historical booking databases, based on

the booking and ancillary purchase data from the baseline case. The airlines always use the

same FRAT5 curves for sell-up estimates.

We begin by "tuning" the FRAT5 curve used by the airlines for sell-up estimation with
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AMD/AMR. Figure 7.31 shows the change in total revenue for Airline 1 and Airline 2

plotted against the change in system load factor for the symmetric AMD/AMR cases with

various FRAT5 curves (compared to the baseline case). As expected, the least aggressive

FRAT5 curves result in load factor increases and total revenue decreases for the airlines.

The most aggressive FRAT5 curve, A, produces the highest total revenue, but also the

largest load factor decrease. Because FRAT5 B produces a total revenue increase nearly as

large as FRAT5 A, but has only half the load factor decrease, we select to use FRAT5 B

for all subsequent AMD/AMR simulations in this section.

The AMR adjusted fares for Airline 1 (averaged across all markets) when the airline uses

FRAT5 B as its sell-up estimate are shown in Figure 7.32. Note that AMR fares are both

higher and lower than the filed fares-the increase comes from accounting for ancillary

revenue, and the decrease comes from accounting for the risk of buy-down. In contrast to

networks AlONE and A2TWO, where the booking policies of offering FC 2 or FC 5 as the
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Figure 7.32: Network D6 Airline 1 network-averaged AMR fares (left) and fare class inef-
ficiency (right) (100% simultaneous passengers, ancillary price = 40% FC 6 fare, equally
appealing disutility scenario). Network-averaged fares are unweighted. Dotted black lines
indicate filed fares (with FC 6 lowest and FC 1 highest). Fare class inefficiency measured
as percentage of itineraries and DCPs in which the fare class is closed by gap-filling.
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lowest available fare are inefficient, in network D6 the policy of offering FC 4 as the lowest

available fare is often inefficient. Because fares vary by market, classes may be efficient

in one market but inefficient in other markets. On a network average basis, FC 4 is only

efficient during DCP 11, indicated by the FC 4 AMR fare being equal to the FC 5 AMR

fare for earlier DCPs in Figure 7.32.

7.5.1~ Symmetric Competition

Tables 7.17 and 7.18 show simulation results for each of the four symmetric test cases as

well as the baseline case. As with other networks tested, the optimizer increment leads

to a decrease in total revenue whether applied alone (-0.3% for both airlines) or applied

in conjunction with HF/FA (reduces HF/FA gain 0.5 pts for Airline 1 and by 0.4 pts

for Airline 2). The optimizer increment produces an increase in ancillary revenue which

is consistently outweighed by a decrease in ticket revenue. Hybrid forecasting and fare

adjustment decrease load factor and increase total yield, which increases ticket revenue,

decreases ancillary revenue, and increases total revenue.

AMD and AMR also have similar effects as in the smaller networks, but in D6 the magnitude

of effects is exaggerated. AMD and AMR increase ticket revenue (3.8% for Airline 1; 3.9% for

Airline 2), decrease ancillary revenue (-3.6% for Airline 1; -3.2% for Airline 2), and increase

total revenue (3.2% for Airline 1; 3.3% for Airline 2). In networks AlONE and A2TWO,

AMD and AMR produced revenue gains of only 1.6-1.8%. However, the incremental

improvement in total revenue over HF/FA is similar between D6 (where AMD/AMR has

a total revenue gain 0.6 pts higher than HF/FA for Airline 1 and 0.7 pts higher for Airline

2) and networks AlONE and A2TWO (where the AMD/AMR total revenue gain is 0.4 pts

to 0.8 pts higher than the total revenue gain of HF/FA).

The primary effects of AMD/AMR-increased ticket revenue, decreased bookings, and de-

creased ancillary revenue-are seen in many, but not all, markets across the network. As
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Table 7.17: Network D6 Airline 1 simulation results for baseline and symmetric experimental
cases (100% simultaneous passengers, ancillary
disutility scenario).

price = 40% FC 6 fare, equally appealing

Baseline 01 HF/FA 01 + HF/FA AMD/AMR

Airline 1
Ticket Revenue $1,326,442 $1,321,852 $1,366,610 $1,358,186 $1,376,276
Ancillary Revenue $115,904 $116,207 $113,255 $114,195 $111,721
Total Revenue $1,442,346 $1,438,059 $1,479,865 $1,472,381 $1,487,997
Load Factor 83.7% 83.8% 82.3% 82.7% 81.7%
Total Yield 14.04 13.99 14.67 14.52 14.85
Ancillary Sales Rate 42.6% 42.6% 42.3% 42.5% 42.2%

Change from baseline
Ticket Revenue -0.3% +3.0% +2.4% +3.8%
Ancillary Revenue +0.3% -2.3% -1.5% -3.6%
Total Revenue -0.3% +2.6% +2.1% +3.2%
Load Factor +0.1 pts -1.5 pts -1.1 pts -2.1 pts
Total Yield -0.4% +4.5% +3.4% +5.8%
Ancillary Sales Rate +0.1 pts -0.3 pts -0.1 pts -0.4 pts

Significance of Change in Total Revenue from Baseline
Standard Error 0.0% 0.1% 0.1% 0.1%
t-statistic -29.31 37.83 31.98 44.01
p-value < 0.001 < 0.001 < 0.001 < 0.001
Note: Total yield in cents per mile. Standard error expressed as percentage of baseline total revenue.
df = 799.
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Table 7.18: Network D6 Airline 2 simulation results for baseline and symmetric experimental
cases (100% simultaneous passengers, ancillary
disutility scenario).

price = 40% FC 6 fare, equally appealing

Baseline 01 HF/FA 01 + HF/FA AMD/AMR

Airline 2
Ticket Revenue $1,307,530 $1,303,664 $1,347,674 $1,339,838 $1,357,881
Ancillary Revenue $115,431 $115,710 $112,868 $113,830 $111,756
Total Revenue $1,422,961 $1,419,374 $1,460,542 $1,453,668 $1,469,637
Load Factor 83.0% 83.0% 81.6% 82.1% 81.0%
Total Yield 13.46 13.42 14.05 13.90 14.25
Ancillary Sales Rate 42.5% 42.5% 42.2% 42.4% 42.2%

Change from baseline
Ticket Revenue -0.3% +3.1% +2.5% +3.9%
Ancillary Revenue +0.2% -2.2% -1.4% -3.2%
Total Revenue -0.3% +2.6% +2.2% +3.3%
Load Factor +0.0 pts -1.4 pts -0.9 pts -2.0 pts
Total Yield -0.3% +4.4% +3.3% +5.9%
Ancillary Sales Rate +0.1 pts -0.2 pts -0.1 pts -0.2 pts

Significance of Change in Total Revenue from Baseline
Standard Error 0.0% 0.1% 0.1% 0.1%
t-statistic -23.37 38.15 33.20 44.33
p-value < 0.001 < 0.001 < 0.001 < 0.001
Note: Total yield in cents per mile. Standard error expressed as percentage of baseline total revenue.
df = 799.

Table 7.19: Network D6 distribution across network of symmetric AMD and AMR increases
in ticket revenue, decreases in bookings, and decreases in ancillary revenue vs baseline
(100% simultaneous passengers, ancillary price = 40% FC 6 fare, equally appealing disutility
scenario).

Portion of markets with... Airline 1 Airline 2

Increased ticket revenue 83.6% 81.3%
Decreased bookings 68.7% 62.9%
Decreased ancillary revenue 73.9% 67.0%
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Figure 7.33: Network D6 change in Airline 1 total revenue vs baseline due to symmetric
AMD and AMR with 99% confidence interval with various passenger behaviors, ancillary
prices, and disutility scenarios. df 799. Ancillary price expressed as percentage of FC 6
fare (20% to 80%).

shown in Table 7.19, both airlines see increased ticket revenue due to AMD/AMR in more

than 80% of their markets. More than 60% of markets have fewer bookings, and more 70%

of Airline 1's markets produce less ancillary revenue. It is important to note that the goal

of AMD/AMR is not to increase ancillary revenue, but to increase total revenue.

Although this analysis has focused on the case where the ancillary service is priced at

40% of the FC 6, both passenger segments value the service equally, and all passengers are

simultaneous, symmetric AMD/AMR in network D6 produces revenue increases in a variety

of settings. Figure 7.33 shows the change in Airline 1 total revenue for lower ancillary prices

(equal to 20% of the FC 6 fare) and higher ancillary prices (equal to 60% and 80% of the

FC 6 fare), for the leisure-oriented and business-oriented disutility scenarios, as well as

for sequential behavior. In all cases the change in total revenue vs baseline is statistically

significant (p < 0.01, df = 799).
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7.5.2 Asymmetric Competition

In asymmetric competition, only Airline 1 uses AMD/AMR; Airline 2 maintains its baseline

independent demand forecasting and optimization models. Asymmetric competition results

in substantial competitive feedback between the two airlines. Figure 7.34 shows the change

in total revenue and change in system load factor vs baseline for the two airlines when

Airline 1 uses AMD and AMR with various FRAT5 curves for sell-up estimates. The

symmetric case is also shown on the figure for comparison. With asymmetric competition,

Airline 1 has lower total revenues with AMD/AMR and has lower load factors-asymmetric

FRAT5 B produces only two thirds the revenue gain but more than twice the load factor

loss as symmetric FRAT5 B, for example. Airline 2, however, experiences an increase in

load factor and in total revenues for all cases where Airline 1 implements AMD/AMR. As

in the symmetric case, we restrict the remainder of our AMD/AMR analysis to cases where

Airline 1 uses FRAT5 B.

The change in system bookings by fare classes vs baseline for both airlines for symmetric

and asymmetric AMD/AMR are shown in Figure 7.35. In the symmetric case, both airlines

experience reductions in bookings in FC 6 (the lowest value class) and FC 4 (which is

frequently inefficient). In the asymmetric case, Airline 1 booking changes show similar

patterns, but with typically smaller magnitudes: the reduction in FC 6 and increase in FC 5

bookings decreases by 11% and 41%, respectively. Airline 1 does accept more FC 1 bookings

with asymmetric competition (by 77%). Airline 2, which does not change its forecasting or

optimization processes, has an increase in bookings vs baseline in FC 2 through FC 6, and

a reduction in bookings in FC 1.

The increase in Airline 1 total revenue is driven by an increase in ticket yield, which is offset

by the decrease in system load factor, as shown in Figure 7.36. Airline 2, on the other hand,

has opposite trends: ticket yields decrease (reflecting the increase in bookings in FC 2 to

FC 6 and decrease in FC 1 bookings) but system load factors increase. Revenue changes

for both airlines are dominated by ticket revenue changes; the contribution of changes in
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Figure 7.34: Network D6 change in total revenue and change in system load factor due
to asymmetric AMD and AMR with heuristic estimated choice probabilities using various
FRAT5 curves (100% simultaneous passengers, ancillary price = 40% FC 6 fare, equally
appealing disutility scenario). Airline 2 always uses independent demand (baseline) fore-
casting and optimization; FRAT5 labels refer to Airline 1 configuration.
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Figure 7.35: Network D6 change in system bookings by fare class for symmetric AMD and
AMR and asymmetric AMD and AMR (100% simultaneous passengers, ancillary price =
40% FC 6 fare, equally appealing disutility scenario). Percentages indicate difference in
booking change vs symmetric AMD and AMR.

ancillary revenue to the change in total revenue is small.

Tables 7.20 and 7.21 shows complete simulation results for the asymmetric case. In contrast

to previous studies, Airline 1 has the highest total revenue when it uses hybrid forecasting

and fare adjustment, not AMD/AMR. Although AMD/AMR is more theoretically appealing

because it accounts for ancillary revenue and accounts for the effects of ancillary services

on passenger choice of fare class, in this competitive environment it does not provide the

highest revenue. Note that Airline 2 experiences an increase in its total revenue when Airline

1 uses AMD/AMR or HF/FA, but the increase is greater when Airline 1 uses AMD/AMR.

Figure 7.37 illustrates the difference in performance between HF/FA and AMD/AMR for

Airline 1. Both methods increase ticket yield and decrease load factor, but the much larger

load factor loss (indicated as ticket volume) with AMD/AMR results in the lower overall

revenue increase.
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Figure 7.36: Network D6 change in Airline 1 and Airline 2 total revenue by change in
ticket and ancillary sales volumes and yields due to asymmetric AMD and AMR vs baseline
(100% simultaneous passengers, ancillary price = 40% FC 6 fare, equally appealing disutility
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Table 7.20: Network D6 Airline 1 simulation results for baseline and asymmetric experimen-
tal cases (100% simultaneous passengers, ancillary price = 40% FC 6 fare, equally appealing

disutility scenario). Airline 2 always uses independent demand (baseline) forecasting and

optimization; labels refer to Airline 1 configuration.

Baseline 0I HF/FA 01 + HF/FA AMD/AMR

Airline 1
Ticket Revenue $1,326,442 $1,321,524 $1,366,790 $1,362,133 $1,365,474

Ancillary Revenue $115,904 $116,345 $111,747 $113,311 $108,661
Total Revenue $1,442,346 $1,437,869 $1,478,537 $1,475,444 $1,474,135
Load Factor 83.7% 84.0% 80.5% 81.6% 78.6%
Total Yield 14.04 13.96 14.96 14.75 15.29
Ancillary Sales Rate 42.6% 42.6% 42.6% 42.6% 42.5%

Change from baseline
Ticket Revenue -0.4% +3.0% +2.7% +2.9%
Ancillary Revenue +0.4% -3.6% -2.2% -6.2%
Total Revenue -0.3% +2.5% +2.3% +2.2%
Load Factor +0.2 pts -3.2 pts -2.1 pts -5.1 pts
Total Yield -0.6% +6.6% +5.1% +8.9%
Ancillary Sales Rate +0.0 pts -0.0 pts +0.1 pts -0.1 pts

Significance of Change in Total Revenue from Baseline
Standard Error 0.0% 0.1% 0.1% 0.1%
t-statistic -29.72 27.86 29.55 20.22
p-value < 0.001 < 0.001 < 0.001 < 0.001
Note: Total yield in cents per mile. Standard error expressed as percentage of baseline total revenue.

df = 799.
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Table 7.21: Network D6 Airline 2 simulation results for baseline and asymmetric experimen-
tal cases (100% simultaneous passengers, ancillary price = 40% FC 6 fare, equally appealing
disutility scenario). Airline 2 always uses independent demand (baseline) forecasting and
optimization; labels refer to Airline 1 configuration.

Baseline 01 HF/FA 01 + HF/FA AMD/AMR

Airline 2
Ticket Revenue $1,307,530 $1,307,938 $1,314,417 $1,310,701 $1,327,608
Ancillary Revenue $115,431 $115,328 $117,465 $116,594 $119,993
Total Revenue $1,422,961 $1,423,266 $1,431,882 $1,427,295 $1,447,601
Load Factor 83.0% 82.9% 85.3% 84.5% 87.3%
Total Yield 13.46 13.48 13.18 13.26 13.01
Ancillary Sales Rate 42.5% 42.5% 42.2% 42.3% 42.2%

Change from baseline
Ticket Revenue +0.0% +0.5% +0.2%. +1.5%
Ancillary Revenue -0.1% +1.8% +1.0% +4.0%
Total Revenue +0.0% +0.6% +0.3% +1.7%
Load Factor -0.1 pts +2.3 pts +1.5 pts +4.4 pts
Total Yield +0.1% -2.1% -1.5% -3.3%
Ancillary Sales Rate +0.0 pts -0.2 pts -0.2 pts -0.2 pts

Significance of Change in Total Revenue from Baseline
Standard Error 0.0% 0.0% 0.0% 0.0%
t-statistic 2.27 24.18 13.82 47.52
p-value 0.023 < 0.001 < 0.001 < 0.001
Note: Total yield in cents per mile. Standard error expressed as percentage of baseline total revenue.

df = 799.

231



6%

4%

2%.

0%

-2%

-4%-

-6%

-8%

Ticket

Volume

2.5%

Ticket Ancillary Ancillary
Yield Volume Yield

Asymmetric HF/FA

2.2%

Net Ticket

Volume

Ticket Ancillary Ancillary
Yield Volume Yield

Asymmetric AMD/AMR

Figure 7.37: Network D6 change in Airline 1 total revenue by change in ticket and ancillary
sales volumes and yields due to asymmetric HF/FA or AMD and AMR vs baseline (100%
simultaneous passengers, ancillary price = 40% FC 6 fare, equally appealing disutility sce-
nario). "Volume" columns are portion of ticket or ancillary revenue change attributable
to change in load factor; "yield" columns are portion of ticket or ancillary revenue change
attributable to change in average fare or average ancillary revenue earned per passenger.
All values expressed as percentage change from baseline total revenue.
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Figure 7.38: Network D6 change in Airline 1 total revenue vs baseline due to asymmetric
AMD and AMR with 99% confidence interval with various passenger behaviors, ancillary
prices, and disutility scenarios. df = 799. Ancillary price expressed as percentage of FC 6
fare (20% to 80%). Airline 2 always uses independent demand (baseline) forecasting and
optimization.
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Figure 7.39: Network D6 change in Airline 1 total revenue by sample vs baseline due to
symmetric (left) or asymmetric (right) AMD and AMR and baseline total revenue (100%
simultaneous passengers, ancillary price = 40% FC 6 fare, equally appealing disutility sce-
nario). Each point on the figure represents the outcome of one sample (or departure day).

The change in total revenue provided by AMD/AMR is statistically significant (t = 20.2,

p < 0.001, df = 799 for 100% simultaneous passengers, ancillary price = 40% FC 6 fare,
equally appealing disutility scenario). These revenue impacts are present for asymmetric

competition across a range of passenger behavior types, ancillary prices, and disutility

scenarios, as shown in Figure 7.38, although the revenue increase of AMD/AMR is greater

with symmetric competition.

7.5.3 , Sample-by-Sample Analysis

Thus far, our analysis has primarily assessed the aggregate performance of AMD/AMR,

averaging the effects across all trials and (unburned) samples in each simulation. In this

section, we look at sample-by-sample changes in total revenue to gain additional insight

into the performance of the algorithm.
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Figure 7.40: Network D6 empirical CDF of Airline 1 total revenue change vs baseline for
symmetric (left) and asymmetric (right) cases (100% simultaneous passengers, ancillary
price = 40% FC 6 fare, equally appealing disutility scenario).

Figure 7.39 shows the change in Airline 1 total revenue due to AMD/AMR and the ba-

seline total revenue for each (unburned) sample in the simulation. In the symmetric case,

AMD/AMR produces a higher total revenue for nearly every sample (99.5%). In the asym-

metric case, where the aggregate performance of AMD/AMR is reduced, the method incre-

ases total revenue in many samples, but a substantial number of samples (28%) see revenue

reductions. The increase in total revenue due to AMD/AMR is clearly higher for samples

with higher baseline revenue (i.e. samples with higher total demand and/or higher budget

passengers), and the effect appears to be non-linear. The largest revenue increase for a given

sample occurs in the asymmetric case (10.8%), but the largest revenue loss also occurs in

the asymmetric case (-3.9%).

The empirical cumulative distribution function for the change in total revenue by sample is

shown in Figure 7.40. In the symmetric case, AMD/AMR clearly outperforms HF/FA, as

the AMD/AMR CDF is consistently below/to the right of the HF/FA CDF. Results with

asymmetric competition are less clear: the AMD/AMR CDF is above/left of the HF/FA
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CDF for lower values and for revenue losses, but is below/right of the HF/FA CDF for

the largest changes in total revenue (implying that AMD/AMR has a wider distribution of

revenue changes than HF/FA). As shown in Table 7.20, though, asymmetric HF/FA has a

greater mean than asymmetric AMD/AMR.

7.6 Experiment Limitations

The results presented in this chapter are dependent on the simulation environment, inclu-

ding network and RM configuration, passenger behavior, and competition. We have used

simple but reasonable forecasting and optimization models as the baselines for these tests,

but other baseline configurations could have higher or lower revenues and load factors, which

would then affect the relative performance of AMD/AMR to the modified baseline.

As with the simulations in Chapter 5, we have tested a variety of networks and demand

profiles to show how our algorithms perform under different conditions. However, the

Passenger Origin-Destination Simulator simplifies the real world processes it represents,

and thus our studies have several limitations.

First, real customers may "learn," based on past purchases, about when in the booking

window an airline typically offers low fares, and may shift their behavior to shop for future

flights when they expect low fares to be available. Our simulations do not include this

customer learning feedback between revenue management and the demand arrival process,

and it is difficult to estimate the impact of customer learning on our proposed algorithms.

In addition, while the demand for each departure day and the characteristics of each genera-

ted customer are stochastic, the distributions for these parameters are constant throughout

each simulation; there are no long-term trends like seasonality or macroeconomic shifts. Fi-

nally, forecasting or optimization models that result in strong competitive feedbacks (such

as in Section 7.5.2) could prompt a competitor to modify its forecasting or optimization
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approach, or to adjust its flight network to mitigate such effects. Because our simulations

are designed to test steady-state conditions, such strategic shifts are not included in our

simulations.

7.7 Conclusions

In this chapter we have simulated the performance of our proposed AMD and AMR heuris-

tics in a variety of environments to understand their effect on airline bookings and revenues,

in particular in settings in which the fundamental assumptions of the algorithm are violated.

In the single airline, single flight leg network, our formulation produced an increase in

total revenue across a wide range of ancillary price and passenger behaviors. AMD and

AMR reduced load factor to increase yields, ticket revenues, and total revenues, with small

decreases in ancillary revenue driven by the reduced load factor.

We introduced competition with the two airline, two flight leg network A2TWO, and tested

AMD/AMR in both a symmetric format, where both airlines use the algorithm, and an

asymmetric format, where only one airline uses the algorithm. Although the AMD and

AMR formulations do not include any provision for competition, our results indicated that

increase in total revenue are possible in both the symmetric and asymmetric environments.

We also tested the use of estimated choice probabilities, in lieu of assuming that the airline

has accurate knowledge of the passenger choice model. Although directly extracting choice

probability estimates from the historical booking database ("raw" estimates) resulted in

poor revenue performance, total revenue gains with AMD/AMR were possible by incor-

porating additional processing of the choice probability estimates and integrating external

price elasticity estimates (the "heuristic" estimates).

In the much larger network D6, with hundreds of flight legs and hundreds of origin-

destination markets, AMD and AMR using the heuristic estimated choice probabilities
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showed revenue increases under symmetric and asymmetric competition, although competi-

tive feedbacks were substantial in the asymmetric case and other RM methods (hybrid fore-

casting and fare adjustment) provided higher total revenues. A sample-by-sample analysis

showed that the benefit of AMD/AMR is greater for samples that produce higher revenues

in the baseline case, and that the relationship between baseline revenue and AMD/AMR

revenue increase is non-linear.

A consistent theme in these results is that, given the constraints imposed by traditional dis-

tribution systems, increasing total revenue does not necessarily require increasing ancillary

revenue, and in many of our results, ancillary revenue decreases as total revenue increases.

In this sense, an important benefit of a revenue management formulation like AMD/AMR

that integrates both passenger choice and ancillary revenue information is the ability to

successfully balance the competing objectives of more aggressive booking limits (decreasing

ticket revenue dilution) and greater load factor (increasing the number of passengers, which

increases the number of ancillary services that can be sold). Revenue management methods

that attempt to increase ancillary revenue without accounting for passenger choice (such as

the optimizer increment) risk incorrectly favoring booking policies that stimulate ancillary

revenue by increasing load factor, but have the unintended consequence of diluting ticket

revenue.
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Chapter 8

Conclusions

As ancillary revenues have grown, airlines have become more interested in shifting the

objective of their revenue management optimization from ticket revenue maximization to

total revenue maximization. At the same time, the proliferation of ancillary services means

that passengers can face substantially different ancillary service offerings and prices based

on their selection of itinerary and fare class. This thesis has explored both of these issues

with the goal of providing a better understanding of how ancillary services affect the airline

industry.

8.1 Research Findings and Contributions

Part I of this thesis focuses on modeling airline passenger choices. Previous studies of airline

passenger choice have modeled the selection of airline, itinerary, and/or fare class, and

other studies have attempted to measure customer valuations of various ancillary services.

However, no research has integrated these dimensions to describe how the presence or cost of

ancillary services affects itinerary or fare class choice. In Chapter 3, we develop the Ancillary

Choice Model, which combines these dimensions into a single choice framework. We specify
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two different behavioral paradigms, which we call simultaneous and sequential choice. Under

the simultaneous choice model, passengers are classically rational and integrate all ancillary,

fare class, and itinerary attributes and selections into a single unified decision process. Under

the sequential choice model, passengers are boundedly rational and initially unaware of

airline ancillary policies/prices/offerings. In an initial phase, passengers select an itinerary

and fare class without considering any ancillary attributes. After selecting the itinerary

and fare class, sequential passengers enter a follow-up phase where they choose ancillary

services.

We describe how the unified choice process of simultaneous passengers means that ancillary

prices and options can affect their fare class choice, and describe the conditions in which

the presence of an ancillary service will cause a simultaneous passenger to either buy-up

or buy-down to a different fare class. We demonstrate that even when all classes have the

same ancillary service pricing, the mere presence of an ancillary service can change the

fare class choice of a simultaneous passenger. We integrate both of our models into the

Passenger Origin-Destination Simulator (PODS), which we use to assess the booking and

revenue impacts on airlines of different ancillary service bundling strategies for different

mixes of passenger behavior.

Part 11 of this thesis focuses on the integration of ancillary services into airline revenue ma-

nagement processes. Specifically, it studies total revenue optimization methods, which are

intended to shift the focus of revenue management away from ticket revenue maximization

and toward total (ticket plus ancillary) revenue maximization. Prior research in this area is

quite limited, and no detailed theoretical formulations exist that integrate ancillary revenue

into an optimization algorithm that selects fare classes to offer to passengers.

In Chapter 5, we study one previous approach to total revenue optimization, which we refer

to as the Optimizer Increment (01). While other authors have simulated the performance

of the optimizer increment (Hao, 2014), its optimality has not been proven. We start by

demonstrating that the approach is an optimal total revenue maximizing solution in the very
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limited "Littlewood Conditions," with only two fare classes that have independent, ordered

demands drawn from distributions with known parameters. Subsequent development of the

Ancillary Choice Dynamic Program in Chapter 6 shows that the Optimizer Increment is

also optimal when multiple fare classes are present and fare class demands are unordered

(but still independent and drawn from a known Poisson distribution).

Despite the theoretical optimality of the approach, however, we demonstrate that even

in extremely simplistic simulation environments, incorporating something as fundamental

as demand forecasting (which all airlines must do) essentially eliminates any optimizer

increment revenue benefit. Simulations in larger, more complex environments show that

the optimizer increment tends to accept too many low fare bookings, diluting ticket and

decreasing total revenue (although increasing ancillary revenue).

Our findings illustrate two phenomena: first, that "optimal" solutions in theory do not

necessarily translate to revenue increases in more realistic simulated environments when

there is a mismatch between the assumptions of the optimizer and the environment being

simulated, and second, that buy-down is a threat to revenue performance when forecasting

and optimization models do not correctly account for passenger choice. This effect has

been shown in many previous RM studies in the context of ticket revenue, but has not been

previously demonstrated in studies with ancillary services, passenger choices, and total

revenue optimization.

In Chapter 6, we develop the principal contribution of this thesis: the Ancillary Choice

Dynamic Program (ACDP). ACDP builds on the growing body of choice-based revenue

management, and, for the first time, explicitly incorporates both ancillary service revenue

and ancillary service choice impacts in the revenue management forecasting and optimiza-

tion models.

We describe how the solutions to ACDP must be restricted to booking policies that are fare

class complete and nested by fare order to comply with current distribution system limita-
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tions faced by most airlines. We develop a forecasting process to produce demand volume

estimates from a historical booking database, and design a set of adjustment mechanisms

to correct for inefficiencies (in terms of expected revenue vs expected sale probability) in

the. airline's fare structure. We build on the existing literature on marginal revenue and

marginal demand transformations to develop the Ancillary Marginal Demand (AMD) and

Ancillary Marginal Revenue (AMR) transformations, which convert ACDP into an equi-

valent independent demand model and which we propose using as heuristics to feed the

demand and fare inputs to a traditional revenue management optimization model. Finally,

we propose two. estimation methods for obtaining from a historical booking database the

customer choice probabilities that are required for ACDP, AMD, and AMR.

We integrate AMD and AMR into PODS and, in Chapter 7, simulate the performance of the

heuristics in a variety of networks and environments, including a range of ancillary prices

and disutilities, demand levels, and passenger behavior types. We demonstrate that even in

large networks with competing airlines and hundreds of flights serving both local and con-

necting passengers, AMD and AMR can increase total revenue over existing RM forecasting

and optimization models that do not explicitly account for ancillary services or revenues,

including both independent demand models and hybrid forecasting/fare adjustments mo-

dels that account for passenger willingness-to-pay. However, our simulations, particularly

in the large network D6, also show that under asymmetric competition, AMD and AMR

produce booking and forecast feedbacks with competing airlines that can adversely affect

total revenue performance. If an airline's use of AMD and AMR leads it to reject bookings

in mid or higher fare classes, those bookings may spill to the competitor airline. As the

competitor accepts more of the (spilled) mid or higher fare class bookings, it will forecast

more mid/higher fare demand, leading it to set more aggressive booking limits, reject more

low fare class demand, and accept even more high fare class demand-a phenomenon known

as spiral-up that can increase the (competitor) airline's total revenue.

One key conclusion from our simulations is that the forecasting and optimization model
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that maximizes total revenue is often not the model that maximizes ancillary revenue.

For example, in network D6-(Table 7.17), AMD/AMR generates the highest total revenue

(3.5% higher than the optimizer increment), -but the optimizer increment has the highest

ancillary revenue (a full 4.0% higher than AMD/AMR). This potentially surprising result

is a function of conflicting drivers of the two revenue streams: more aggressive booking

limits typically decreasing ticket revenue dilution and increase ticket revenue, but reduce

the number of passengers and therefore the total ancillary revenue. On the other hand,

less aggressive booking limits increase load factor, which increases the number of ancillary

services that can be sold, but often lead to ticket revenue losses. The implications are clear

for revenue management practitioners: (1) the benefit of a total revenue optimization model

should be measured based on its impact on total revenue, not on ancillary revenue, and

(2) a successful total revenue optimization model must balance the potentially competing

dimensions of ticket and ancillary revenue.

Our simulation results, and the revenue benefit of AMD/AMR relative to existing RM fore-

casting and optimization models, are dependent on the simulation environment. Different

network configurations, different baseline revenue management forecasting and optimization

models, and incorporating effects like customer learning and changes in airline network or

strategy could affect the relative revenue gains.

8.2 Future Research Directions

The Ancillary Choice Model developed in this thesis provides a framework for understanding

airline passenger choices involving ancillary services, fare classes, and itineraries. Additional

work could further develop and test the models in several ways.

. The categorization as simultaneous or sequential behavior described in this thesis was

assumed to apply to all ancillary services, and passengers were assumed to be fully

aware of all other airline schedule and/or quality differentiators. A more nuanced
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application- of bounded rationality could describe additional behavior types in which

passengers are simultaneous about some ancillary services (or quality dimensions,

such as fare class restrictions) and sequential about other ancillary services or quality

dimensions.

We assumed that an exogenous budgetary constraint applies to all out of pocket costs

incurred during the Initial Booking Phase. Future work could explore the extent

to which budgetary constraints could vary as a function of the set of alternatives

presented to the passenger, or could vary across alternatives within a set based on

alternatives attributes.

We performed a heuristic calibration of our proposed choice models in Appendix A,

but a more extensive calibration process could attempt to assess the degree to which

one of our proposed behaviors better explains observed booking and purchase patterns.

Total revenue optimization, although long recognized as an area of promise, has very little

previous work. Our approach represents an initial proposal for integrating the revenue value

and passenger choice impacts of ancillary services into revenue management forecasting and

optimization models. Future research could improve and extend these models to increase

their practicality for airlines.

. Our process for estimating choice probabilities could likely be improved to increase

both the stability and accuracy of the resulting AMD demands and AMR fares. One

potential approach would be to forgo estimation of the individual choice probabilities

Pim,dcp(k) and to instead directly estimate total expected revenue and total sale

probabilities (TRdcp(k) and TPcp(k)) based on historical bookings. In additional,

future studies could model the impact of different choice probability estimation errors

on AMD demands and AMR fares, and on total airline revenue, to understand which

probabilities are most important to estimate correctly.
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* The models presented in this thesis assume that flight capacity is constrained, but

that ancillary capacity is unconstrained-a reasonable approximation for some servi-

ces, but not for others. Extensions to the Ancillary Choice Dynamic Program could

introduce additional state dimensions and variables for ancillary capacity; the re-

sulting value function would then jointly compute bid prices for the flight and for the

ancillary service(s). The joint computation of bid prices and the reliance on the com-

bination of both bid prices when determining availability would substantially increase

the complexity of the model.

Industry efforts are underway to reduce, or eliminate, the fare class completeness constraint

described in Section 6.1.1. The International Air Transport Association (IATA) is leading

the development of New Distribution Capability (NDC), which is a suite of new distribution

technologies and standards. One relevant aspect of NDC is that it would enable airlines to

display and sell more content through more channels, particularly indirect channels. When

NDC is implemented by an airline and its distribution partners, GDSs would no longer be

required to aggregate schedules, availability, and fares to assemble sets of booking options,

as described in Figure 1.4. Instead, GDSs (or other content aggregators) could request

offers directly from airlines.) Most importantly for this work, these offers will no longer be

limited to fare class availability. The airline could respond to each request with a specifically

designed offer or set of offers-each offer would consist of an itinerary, a set of zero or more

ancillary services, various purchase/use restrictions, and a price.

The shift from a traditional distribution environment to NDC has significant implications

for both passenger choice modeling and total revenue optimization.

From a passenger choice perspective, NDC increases the ability of airlines to display and

sell ancillary services in indirect channels, and therefore increases the importance of under-

standing how ancillary services affect the way passengers make decisions about itineraries

and fare classes. In addition, NDC allows airlines to increase the branding and marketing

'Airlines and GDSs could still choose to have the GDS assemble offers.
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around their product, even on indirect distribution channels. This potentially provides

new dimensions for airlines to attempt to differentiate their products, and allows airlines

to produce new product combinations. Airlines expect these distribution improvements to

increase ancillary revenues.

NDC could enable a new frontier of total revenue optimization. In addition to the expected

increase in ancillary revenue generation, because NDC moves away from fare class-centered

availability control, airlines could develop offer generation systems. NDC allows more de-

tailed booking requests (such as indicating round trip travel, or frequent flyer status), and

does not require the airline to utilize filed fares or ancillary prices, which could enable offer

generation systems to create individualized sets of offers. At the limit, each offer could be

personally and dynamically constructed and priced for each consumer.

Recent research has explored approaches to utilize NDC for dynamically pricing flights,

either as dynamic a price adjustment to a filed fare (Wittman, 2018; Wittman and Belobaba,

2018), a dynamic adjustment to fare class availability (Wittman and Belobaba, 2017), or

even without any fare classes. One exciting prospect for additional work is to combine

the ideas of dynamic pricing with this study on total revenue management to produce a

dynamic offer generation engine, responsible for determining simultaneously and in real time

whether or which ancillary services to bundle with a flight, and how the flight or bundle

as well as any a la carte ancillary services should be priced. Initial research in this area

shows promising results for a single ancillary service (Bockelie and Wittman, 2017; Bockelie,

2018), but many practical and theoretical questions remain.

In the near term, however, we imagine a more limited view of NDC that allows airlines to

control the availability of specific fare class and ancillary service combinations in real time,

but still relies on filed fares and filed ancillary prices and does not personalize or individualize

offers. Insuch an environment, the Ancillary Choice Dynamic Program we have developed in

this paper could serve as the basis for an offer generation system. In such an implementation,

the solutions to Equation 6.3 need not be fare class complete or potentially even nested by
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fare order. The solution space for the problem would grow significantly, and the task of

determining which offer sets are efficient would be more complex. However, significant gains

in total revenue could also be possible. As one example, consider a case where demand is

very high relative to capacity. With a traditional distribution system, the airline's highest

expected unit revenue booking policy is to offer only FC 1. However, with NDC and offer

generation, it would be possible to create an even higher unit revenue offer: FC 1 with a

requirement that the passenger purchase any typically optional ancillary services. While

requiring passengers to purchase ancillary services (likely marketed as a bundle, with a total

price equal to the fare plus the ancillary fees) would reduce the probability of a consumer

buying the offer, in very high demand to capacity scenarios (i.e. when the bid price is very

high), it is a revenue-maximizing strategy. Additional development and experimentation is

required to assess the revenue potential of this approach.

Airline business models have changed dramatically over the last ten to fifteen years as

airlines have broadened the product and revenue portfolios by unbundling fares and by

introducing new services to sell to passengers. As a result, consumers today have more

types of fares and more types of travel experiences to choose from than ever before, and

airlines have a greater potential to increase total revenue by accounting for the total spend

of each passenger. With new distribution technologies on the horizon, ancillary services will

become even easier for airlines to market and sell, further increasing ancillary revenues, and

further increasing the competitive advantage of airlines that thoroughly understand how

these changes impact both passengers and revenue management systems.

247



Appendix A

Calibrating the Ancillary Choice

Model

In this appendix, we demonstrate that our proposed Ancillary Choice Model can produce

realistic booking and ancillary service purchase patterns by calibrating it within a large,

complex, multi-airline network in PODS. Specifically, our objective is to estimate parameter

values for ancillary and fare class restriction disutilities for an assumed mix of simultaneous

and sequential passengers, using booking and purchase data provided by a major airline.

One approach to discrete choice model calibration is parameter estimation though a maxi-

mum likelihood estimator on a disaggregate revealed or stated preference dataset. However,

this approach is currently infeasible for the ancillary choice model because airlines do not ty-

pically collect or store individual-level purchase data that includes both booking information

and individual ancillary purchases-these purchase figures are typically only recorded and

stored at more aggregated levels. Thus, we must use an aggregate calibration framework. In

addition, because the choice probability output of the ACM is a function of preferences (to

be estimated) as well as itinerary and fare class availability (which is a complicated function

of forecasted demand, which is based on decision making by previous customers), there is
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no closed form expression that relates the estimated parameters to booking or ancillary

purchase metrics. Thus, we use the PODS simulator with integrated ACM to perform the

calibration.

A.1 Airline Data

A major airline provided a dataset covering bookings and ancillary purchases on their

short and medium-haul network for a one year period. The data includes all short and

medium-haul bookings in all fare classes and brands, and all ancillary purchases for the

specified ancillary services. The data was provided aggregated by month, booking class, fare

brand, and geographic region. Each record in the dataset includes the number of passengers

(measured as enplanements'), total ticket revenue, and total number of purchases and

associated revenue for four ancillary services: first checked bag, advanced seat reservation,

extra legroom seating upgrade, and cabin upgrade (economy to premium cabin). The

dataset contained 9,066 records for more than 16 million enplanements.

During the period covered by the data, the airline offered 14 economy fare classes grouped

into three fare brands. All fare classes in a brand share the same purchase/use restrictions

and ancillary service pricing, and the brands are marketed by name to consumers on the

airline's website. Brand 3, the least expensive five fare classes, is the most restricted, and

provides no free ancillary services. Brand 2, which has moderate prices, moderate restricti-

ons, and some complimentary ancillary services consists of the middle seven fare classes.

Brand 1, which has the highest prices, fewest restrictions, and the most complimentary

ancillary services, consists of the most expensive two fare classes. 2 The airline's website

allowed customers to choose amongst the three brands (subject to availability controls).

See Vinod and Moore (2009) for a more detailed description of branded fares.

'One enplanement is one take off and one landing for one passenger, so one passenger on an itinerary with
one connection would produce two enplanements.

2Brand names and fare class identifiers have been masked or modified to preserve the anonymity of the
airline that provided the data.
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A.2 Calibration Network

We start with an existing PODS network for the calibration. The existing network, U10,

had fares and demands previously calibrated based on data provided by PODS member

airlines and features four hub-and-spoke airlines offering 10 economy fare classes. Not all

airlines operate in all origin-destination markets, but most markets have competition from

multiple airlines; there are 44 cities with 442 flight legs per day and 572 origin-destination

markets (with more than 4,000 different itineraries). All airlines in a given market offer the

same fares, but different markets have different fares. The range of fares for each class is

shown in Table 3.2. Because the data provided by the airline for calibration only covers

short and medium-haul markets, we focus our calibration process on the short and medium

haul ("domestic") markets in the PODS network. We model the airline that provided the

data as Airline 1, and use Airlines 2-4 to represent (generic) competitors. Figure 3.4 shows

the networks of the four simulated airlines.

Airline 1 uses UDP (a network revenue management system based on a network linear pro-

gram and a leg dynamic program), similar to the system in use at the airline that supplied

the data. Airlines 2 and 4 represent sophisticated major network airlines and thus employ

a Displacement Adjusted Virtual Nesting revenue management model. Airlines 1, 2, and 4

incorporate estimates of customer willingness-to-pay in their revenue management forecas-

ting and optimization models through the use of hybrid forecasting and fare adjustment.

Airline 3 represents a simplified low cost carrier, and therefore uses a leg-based revenue

management model and a standard (independent demand) forecasting model.3

The existing PODS network did not have branded fares, so we modified the airline product

offerings to group fare classes into three distinct brands; each brand has a set of ancillary

service policies and purchase/use restrictions. All four airlines in the simulation have the

same product offerings. We focus on the four ancillary services included within the dataset.

3See Part II of this thesis for details on revenue management forecasting and optimization models.

250

1 11 11111111111111111111111111 M IRIM , 111,



Table A.1: Ancillary fee structure in airline dataset and in PODS

Dataset PODS

Brand 1 Brand 2 Brand 3 Brand 1 Brand 2 Brand 3

BAG Checked bag Free Free Paid Free Free Paid
ASR Advance seat Free Free Paid Free Free Paid

reservation
UPG Extra legroom Free Paid Paid

Cabin upgrade Paid Paid Paid Free Paid Paid

Due to limitations in the software, we combine the extra legroom seating and cabin upgrade

products as an "upgraded seating product." The ancillary fee structure, by brand, for the

airline the provided the data and for the simulation are shown in Table A.1. Passengers

purchasing brand 3 must pay for all three ancillary services. Passengers purchasing brand 2

receive a free first checked bag (BAG) and a free advance seat reservation (ASR) but must

pay for upgraded seating (UPG); passengers purchasing brand 3 in the simulation receive

all three ancillary products for free.

We also modify the default purchase/use restrictions for each fare class to match the branded

fare structure offered by the airline providing the data. We use four generic restrictions (de-

noted R1-4) to model the differences in purchase/use conditions between the three brands,

as shown in Table A.2. At the airline that provided the data, passengers booking brand

3 must pay a fee to change their flight or refund their ticket, only accrue 25% of possible

frequent flyer miles, do not have priority services, and are not eligible for loyalty-based up-

grades. Passengers booking brand 2 pay a smaller change/refund fee, earn full frequent flyer

miles, and are eligible for loyalty upgrades, but do not receive priority services. Passengers

booking brand 1 have no change/refund fee, earn 125% frequent flyer miles, are eligible for

loyalty upgrades, and receive priority services.

In the simulation, we model brands 2 and 3 as having generic restriction R1, which models

the primary differences between brand 1 and brands 2 and 3: full refundability and priority

services. We model brand 3 as also having generic restriction R4, which models the primary
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Table A.2: Fare class restriction structure in airline dataset and in PODS (advance purchase
in days).

Dataset PODS

Brand 1 Brand 2 Brand 3 Brand 1 Brand 2 Brand 3

Change fee Free $75 $100 None R1-3 R1-3
Frequent flyer miles 125% 100% 25% None None R4
Priority services Free n/a n/a None R1 R1-3
Advanced purchase None None to 7 7 to 21 None None to 21 7 to 28

Fare classes A & B C to I J to N 1 2 to 6 7 to 10

Note: more restrictive APs in PODS are used to model the (manual) RM analyst interventions that the
airline that reduce low-fare availability

differences between brands 1 and 2 and brand 3: full frequent flyer miles and eligibility for

loyalty upgrades. The value of full refundability is greater when booked further in advance

(because there is more time for plans to change), however PODS does not support changing

restriction disutilities over time. As a workaround, we apply additional generic restrictions

(R2 and R3) to the fare classes and brands (FC 6, 9, and 10) that have change/refund fees

and that are typically purchased early in the booking window. The complete simulated fare

structure is shown in Table 3.2.

A.3 Calibration Process

The objective of the calibration is to determine the ancillary service disutility and fare

class restriction disutility distribution parameters (Q, in Section 3.1 and Q7 in Section 2.3,3

respectively) that result in the best fit between the PODS outputs and the dataset provided

by the airline. We use the following process:

0. Initialization: Start with the default U10 fare class restriction and ancillary service

disutilities.

1. Simulation in PODS: each simulation ran for about 30 minutes, with an additional 10
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minutes to process the simulation outputs

2. Comparison of PODS outputs to provided data: we evaluated the squared differences

between PODS outputs and the real airline dataset for common airline industry per-

formance indicators. We weighted and combined the metrics into a single fit error,

with weights chosen to account for both the different dimensions/scales of each metric

and the relative importance of each metric to business decisions. We included these

metrics at multiple levels of aggregation to balance accuracy at the fare class, fare

brand, and ancillary service levels.

. Booking mix: the portion of bookings within each fare class or within each fare

brand

. Average ancillary revenue per enplanement, aggregated or broken out by fare

class and/or fare brand and/or ancillary service

. Ancillary service purchase rate, aggregated or broken out by fare class and/or

fare brand and/or ancillary service

. Portion of total revenue from ancillary services, aggregated or broken out by fare

class and/or fare brand and/or ancillary service

3. Parameter adjustment calculation: we stopped the calibration when the total fit error

was smaller than 0.05. Otherwise, we determined parameters for the next calibration

iteration based on our knowledge of the primary effects of each parameter (described

below) and simulated PODS again (process step 1). We used minimum step sizes of

$2.50 for the end points of the ancillary service mean disutilities (which were then

converted to an intercept and slope) and 0.05 for the fare class restriction mean

disutility slopes (fare class restriction disutilities in PODS do not typically use the

intercept parameter).

The primary effect of each parameter is as follows:

. RI: increasing RI makes brands 2 and 3 less appealing to consumers, and there-

fore decreases the portion of bookings in brands 2 and 3 and increases the portion
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of bookings in brand 1

* R4: increasing R4 makes brand 3 less appealing to consumers, and therefore

decreases the portion of bookings in brand 3 and increases the portion of bookings

in brands 1 and 2

* R2 and R3: increasing R2 and R3 makes brands 2 and 3 less appealing to

customers shopping early in the booking process, and therefore decreases the

portion of bookings in the early booking fare classes of brands 2 and 3 (FC 6, 9,

and 10) and increases the portion of early bookings in brand 1

BAG, PRS, and UPG price: increasing ancillary prices makes fewer consumers

interested in purchasing the service and increases the perceived value of receiving

the service complimentary, and therefore decreases the ancillary purchase rate,

decreases the portion of bookings in brand 3 (for BAG, PRS, and UPG) and

brand 2 (for UPG), and increases the portion of bookings in brand 1 (for BAG,

PRS, and UPG) and brand 2 (for BAG or PRS).

BAG, PRS, and UPG disutility: increasing ancillary disutilities makes more

consumers interested in purchasing the service and increases the perceived value

of receiving the service (complimentary or paid), and therefore increases the

ancillary purchase rate, increases the portion of revenue from ancillary services,

decreases the portion of bookings in brand 3 (for BAG, PRS, and UPG) and

brand 2 (for UPG), and increases the portion of bookings in brand 1 (for BAG,

PRS, and UPG) and brand 2 (for BAG or PRS).

We performed the calibration twice: once assuming 100% simultaneous passengers, and

once assuming a 50/50 mix of simultaneous and sequential behavior (where each genera-

ted consumer is randomly assigned a passenger type). We did not calibrate with a 100%

sequential mix because the airline's website clearly explains the differences between brands

during the booking process, making 100% sequential behavior unlikely for passengers who

purchase via the airline's website. While PODS supports different disutility distributions
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Figure A.1: Evolution of total fit error by iteration.

for different passenger segments (business and leisure), it does not support different distri-

butions for different behavior types (simultaneous and sequential). Once the initial network

modifications described in Section A.2 were complete, an additional 26 calibration iterations

were required.

A.4 Results

Figure A. 1 shows the total fit error by iteration for each behavior mix. The final calibrations

have fit errors less than 0.05. Figure A.2 shows the portion of revenue from ancillary services,

for several calibration steps for 100% simultaneous passengers.

The calibrated parameter values are shown in Table 3.3. Overall, the calibration with all

simultaneous passengers has a lower R4 disutility and higher ancillary disutilities than the

calibration with a 50/50 mix of simultaneous and sequential passengers. Because sequential

passengers do not consider ancillary services when choosing an itinerary and fare class,

they require higher fare class restriction disutilities to produce the same booking mix as
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Figure A.2: Portion of revenue from ancillary services for various iterations for Simultaneous
calibration (domestic markets only)

simultaneous passengers. In addition, because sequential passengers do not have an overall

budgetary constraint on out-of-pocket spending, they require lower ancillary utilities to

produce the same ancillary purchase rates as simultaneous passengers.

As R1-4 are generic restrictions that represent combinations of features not often sold

separately, it is hard to assess the reasonableness of the calibrated values. In general,

however, we see that for the simultaneous calibration, business passengers have higher mean

disutilities than leisure passengers, and that the primary (R1 and R4) disutilities are larger

than the secondary disutilities (R2 and R3). In addition, we see that business passengers

have a higher mean RI than R4, indicating that refundability and priority services are (on

average) even more important than full frequent flyer miles and upgrade eligibility. Leisure

passengers, however, have a lower mean R1 than R4, indicating that full frequent flyer miles

and upgrade eligibility are more important than refundability and priority services.

The calibration results show that business travelers have a lower mean utility for a checked

bag than do leisure travelers, but that mean utilities for both segments are close to the price
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of $25, so purchase rates will be high. As business travelers typically have shorter stays and

higher value of time (and therefore less desire to wait at baggage claim), this result makes

sense. Both segments have a mean ASR utility less than the price, indicating that purchase

rates will be low.

The calibrated mean ASR disutility for leisure passengers is higher than business passengers:

leisure passengers are more likely to travel in groups, where sitting near friends and family

(and therefore needing a seat assignment) is necessary.

Both passengers have a calibrated mean UPG utility lower than UPG price, so UPG pur-

chase rates will also be low. For the simultaneous calibration, both segments have the same

mean utility; for the 50/50 mix, the leisure segment has a lower mean utility than the

business segment.

Figure A.3 shows the portion of revenue from ancillary services, as well as the booking

mix, by brand for both calibrations. Most bookings occur in the lowest priced brand 3,

with the fewest bookings in the highest priced brand 1. Passengers who purchase brand 3

contribute the most revenue from ancillary services (about 8% of total). Both calibrations

are reasonably close to provided data, with a slightly better fit for the 50/50 mix calibration.

Ancillary purchase rates for each service, broken out by brand, are shown in Figure A.4,

which indicates that both calibrations are close to the provided data. Note that passengers

who purchase brand 1 and brand 2 receive BAG and ASR complimentary, and passengers

who purchase brand 1 receive UPG complimentary, so there are no purchases for those

services in those brands. Finally, Figure A.5 shows the average ancillary revenue per enpla-

nement, again broken out by service and brand. Although both calibrations are reasonably

close to the provided data, the all simultaneous calibration has a slightly better fit.
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Figure A.3: Portion of revenue from ancillary services (left) and booking mix (right) broken
out by fare brand (domestic markets only)
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Figure A.4: Ancillary purchase rate per enplanement (domestic markets only)
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Figure A.5: Average ancillary revenue per enplanement (domestic markets only)

A.5 Conclusions

By integrating the ACM within PODS, we performed an aggregate calibration using booking

and ancillary purchase data provided by a major airline for its short/medium-haul network.

We calibrated two environments, one with all simultaneous passengers and one with a 50/50

mix of simultaneous and sequential passengers, to show that the ACM, with appropriate

input parameters, can replicate the booking and ancillary purchase patterns observed by

real airlines. The results of this calibration process are used in the Ancillary Choice Model

sensitivity study in Section 3.3. Future work could include a more robust calibration,

in which the portion of simultaneous vs sequential passengers is a variable. This more

robust calibration could potentially estimate the behavior mix for the airline supplying the

calibration data.
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Appendix B

Proofs

B.1 Proof of Optimizer Increment Convexity

Theorem 4. The expected marginal total revenue R is concave (-R is convex) at F*.

Proof. We show R is concave at 7r* by showing that 0 2R <0. First consider &2 R2/07r 2:

<2 0.Frtcosdr R

2 2 a (-(f 2 + a2) Pr(X2 > c - 7r))

- -(f 2 + a2 ) a Pr(X2 > c - 7r)
a7r

(f2 + a2 )F2 (c - 7r)

where FXk denotes the probability density function of random variable Xk. Now consider
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=. a ((fi + a,) Pr(Xi > 7r) Pr(X2 > c - 7r)

(fi + al) (Pr(X 2 >

(fi + ai) -Pr(X 2

c - r) aPr(Xi ;> 7r) + Pr(X1 > lr) Pr(X2 > c -
7r P7r

>c-7r)Fe (7r) + Pr(Xi ; )F (c- 7r)

= -(fi + ai) Pr(X2 > c - r)F, (7r) + (fi + a,) Pr(Xi > 7r)Fe (c - 7r)

Combining the previous two equations yields:

0 2 R

072 -
& 2R1  

2 R1

Dir2 + Dir2

= -(fi +al)Pr(X 2 > c - 7r)Fi1 (7r) + (f1 + a,) Pr(Xi > 7r)F 2 (c - 7r)

- (f 2 + a2 )FX (c -r)

= -(fi + ai) Pr(X2 > c - 7r)Fl (ir)

+ FX2(C -0 or fi + a,) Pr(X1 > g7r) - (f2 + a2)

Note that at ir* the last term of the above line is zero due to the first order conditions in

Equation 5.6. Therefore, a evaluated at 7r* is:

02 R

Dir 2 17r* = -(fi + ai) Pr(X2 > c - 7r)Fi1 (7r*)

Because Pro is a probability statement, and because F 1 () is a probability density function,

262

O2R1
072



both are non-negative. Therefore, with the trivial assumption that fi + al > 0, 2R,* < 0

and R is concave at 7r*. D
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Appendix C

Impact of Correlations Between

Samples

As discussed in Sections 5.2.1 and 7.2, the t-tests used to measure the statistical significance

of revenue changes assume that each sample is independent. In PODS simulations, demand

forecasts generated for one sample depend on the bookings received in the previous nob

(typically 26) samples, which potentially introduces a correlation between different samples

and violates the assumptions of the t-test. In this appendix we investigate the degree to

which the total revenue changes due to the Optimizer Increment (01) or due to the Ancil-

lary Marginal Demand and Ancillary Marginal Revenue transformations (AMD/AMR) are

correlated between different PODS samples (within an individual trial), and we evaluate the

potential impact of an alternative experimental and analysis approach that uses simulations

with more trials, fewer samples, and performs statistical tests by trial, not by sample.
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C.1 Assessment of Correlations Between Samples

Recall the notation from Sections 5.2.1 and 7.2: Xj is the revenue (or other simulation

output) for sample i for simulation j G {TEST, BASE}, and Ei is the change in revenue

(or other simulation output) in sample i (due to a change in forecasting or optimization

method), with a = XiTEST - XiBASE.

The statistical tests in the main body of the thesis use a t-test on these differences Aj, with

the null hypothesis that there is no true change in revenue (Ho : A = 0) vs alternative

hypothesis that there is a true change in revenue (Ha : A z 0).

The forecasting process could potentially introduce a correlation between the revenue change

in sample i and the revenue change in sample i - 1 for 1 E {1, . . , nob}. However, Figure C.A

shows the correlations between sample i and i - I for the symmetric optimizer increment

and AMD/AMR in network AlONE and in network D6, using the same experimental

structures as in Sections 7.3 and 7.5. Note that all of the correlations are small, and

with the exception of the optimizer increment in network D6, all correlations have an

absolute value less than 0.1 and show no discernible pattern. Although there is a link

between samples (via the forecasting process), the variability of demand generated within

each sample (which is independent) dominates the simulation outputs. Thus, the revenue

changes between samples are essentially uncorrelated and the t-test is a valid statistical

approach.

To further investigate the case of the symmetric optimizer increment in network D6, we

visually example scatter plots of A3 vs Ajj for I E {1, ... , nob}, as shown in Figures

C.2 and reffig:statistical-significance.d6-sym-oi-lag-scatter-2. In general, the plots show no

obvious linear or non-linear relationships between A and Ai- 1 , again supporting our use

of t-test for statistical assessments.
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Dotted lines show +0.1 correlation.
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C.2 Alternative Experimental Structure: More Trials, Fewer

Samples

One alternative approach to our experimental structure, which would eliminate any concerns

about potential correlation between samples, would be simulating our test and baseline cases

with many trials, but few samples per trial, and then using the average revenue (or other

simulation output) within each trial as the basis of our analysis. We did not select this

approach for the main body of the thesis because even with few unburned samples per trial,

each trial requires 200 burned samples to warm up the forecasting models. Thus, increasing

the number of trials drastically increases the computation time for each simulation.

Under this alternative approach, we use a t-test on the difference in average revenue (or

other simulation output) across all (unburned) samples within an individual trial. Mathe-

matically, if XI is the revenue (or other simulation output) for sample i in trial trl fortrl'i

simulation j E {TEST, BASE}, we are interested in the term A*:

1 trl 1 smp 1 smpS*= tri At*i - -~s _ yBASE
ntr l t nsmp ii nsmp i-i

The null hypothesis of our t-test that there is no true change in revenue (Ho : A = 0) vs

alternative hypothesis that there is a true change in revenue (Ha : A # 0). The test statistic

t is now:

A*
t = Tdf=ntri--1

se,

where se*. is the standard error of A*.

The purpose of this section is to compare the statistical conclusions obtained from these

two analysis approaches. To do so, we re-run a few representative simulations with 50
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trials and 50 unburned samples per trial (with an additional 200 burned samples per trial,

which as usual are not included in any of the values reported here). The two approaches

are mathematically equivalent in terms of the average change in revenue, bookings, and

ancillary sales; they only differ in the way they measure the associated variances.

Table C.1 shows the results for network AlONE with medium demand, 100% simultaneous

passengers, $50 ancillary price, and the equally-appealing disutility scenario (see Table 5.5).

The original analysis method (comparing the change in total revenue by sample, and used in

the main body of the thesis) shows that all total revenue changes are statistically significant

(p < 0.001, df = 2,499). The alternative analysis method (comparing the change in total

revenue by trial, as described in this section) also shows that all total revenue changes are

significant (p < 0.001, df = 49). It is worth noting that there is very little difference in t

distribution for 49 degrees of freedom and 2,499 degrees of freedom, as shown in Figure C.4

(with such large degrees of freedom, the distribution has essentially already converged to

a normal distribution). Comparing the two analysis methods, the alternative method has

a larger (in absolute terms) t-statistic for the change in total revenue due to the optimizer

increment, but smaller (in absolute terms) t-statistics for the change due to HF/FA, 01 +

HF/FA, and AMD/AMR.

In network D6, both analysis methods also show statistically changes in total revenue (p <

0.001, df = 49 or 2,499) for all four (symmetric) experimental cases, as illustrated in Table

C.2. The original analysis method has a larger absolute t-statistic for the revenue change

due to 01 and 01 + HF/FA, but a smaller absolute t-statistic for the revenue change due

to HF/FA and AMD/AMR.

C.3 Conclusions

Although demand forecasting introduces a dependency between the bookings received in

one sample and the booking limits set in another sample, and therefore potentially induces
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Table C.1: Network AlONE simulation results paired by sample or by trial for baseline
and experimental cases with 50 trials and 50 unburned samples per trial (medium demand,
100% simultaneous passengers, $50 ancillary price, equally appealing disutility scenario).

Baseline 01 HF/FA 01 + HF/FA AMD/AMR

Ticket Revenue $22,057 $22,018 $22,347 $22,334 $22,493
Ancillary Revenue $1,805 $1,807 $1,796 $1,796 $1,786
Total Revenue $23,862 $23,825 $24,143 $24,130 $24,279
Load Factor 83.4% 83.5% 82.2% 82.3% 82.0%
Total Yield 22.00 21.94 22.60 22.56 22.76
Ancillary Sales Rate 33.3% 33.3% 33.6% 33.6% 33.5%

Change from Baseline
Ticket Revenue -0.2% +1.3% +1.3% +2.0%
Ancillary Revenue +0.1% -0.5% -0.5% -1.1%
Total Revenue -0.2% +1.2% +1.1% +1.7%
Load Factor +0.1 pts -1.3 pts -1.1 pts -1.4 pts
Total Yield -0.3% +2.7% +2.5% +3.5%
Ancillary Sales Rate -0.0 pts +0.3 pts +0.3 pts +0.2 pts

Significance of Change in Total Revenue from Baseline
By Sample (Original Analysis Method)
Observations 2,500 2,500 2,500 2,500
Standard Error 0.0% 0.1% 0.1% 0.1%
t-statistic -9.27 13.42 13.77 14.70
p-value < 0.001 < 0.001 < 0.001 < 0.001

By Trial (Alternative Analysis Method)
Observations 50 50 50 50
Standard Error 0.0% 0.1% 0.1% 0.1%
t-statistic -7.69 14.82 15.00 15.88
p-value < 0.001 < 0.001 < 0.001 < 0.001
Note: Total yield in cents per mile. Standard error expressed as percentage of baseline total revenue.
df = Observations - 1.

271



Table C.2: Network D6 simulation results paired by sample or by trial for baseline and

symmetric experimental cases with 50 trials and 50 unburned samples per trial (100%
simultaneous passengers, ancillary price = 40% FC 6 fare, equally appealing disutility sce-

nario).

Baseline 01 HF/FA 01 + HF/FA AMD/AMR

Airline 1
Ticket Revenue $1,322,131 $1,318,090 $1,363,385 $1,355,249 $1,373,430
Ancillary Revenue $115,569 $115,787 $113,013 $113,961 $111,546
Total Revenue $1,437,700 $1,433,877 $1,476,398 $1,469,210 $1,484,976
Load Factor 83.5% 83.5% 82.1% 82.6% 81.6%
Total Yield 14.03 14.00 14.65 14.50 14.84
Ancillary Sales Rate 42.6% 42.6% 42.3% 42.4% 42.1%

Change from Baseline
Ticket Revenue -0.3% +3.1% +2.5% +3.9%
Ancillary Revenue +0.2% -2.2% -1.4% -3.5%
Total Revenue -0.3% +2.7% +2.2% +3.3%
Load Factor -0.0 pts -1.4 pts -0.9 pts -1.9 pts

Total Yield -0.2% +4.4% +3.3% +5.8%
Ancillary Sales Rate +0.1 pts -0.3 pts -0.1 pts -0.4 pts

Significance of Change in Total Revenue from Baseline
By Sample (Original Analysis Method)
Observations 2,500 2,500 2,500 2,500
Standard Error 0.0% 0.0% 0.0% 0.0%
t-statistic -46.33 66.34 58.27 77.82
p-value < 0.001 < 0.001 < 0.001 < 0.001

By Trial (Alternative Analysis Method)
Observations 50 50 50 50
Standard Error 0.0% 0.0% 0.0% 0.0%
t-statistic -27.59 68.59 56.92 83.55
p-value < 0.001 < 0.001 <0.001 < 0.001
Note: Total yield in cents per mile. Standard error expressed as percentage of baseline total revenue.

df = Observations - 1.
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Figure C.4: Probability density function for t distribution with df = 49 and df = 2,499.

correlations in total revenue changes between different samples, our analysis in this appendix

illustrates that (1) these dependencies are weak, with only minor correlation between Ai

and Ai 1 for the tested values of 1 (1 to nob = 26) and (2) alternative analysis methods

that aggregate revenue by trial, and then perform statistical testing on the outcome of each

trial (eliminating any dependencies between different observations used for testing), lead to

similar conclusions about the statistical significance of our simulation results: in all tested

cases, both analysis approaches reject the null hypothesis that the change in revenue due

to the optimizer increment or AMD/AMR (or HF/FA or 01 + HF/FA) is zero, in favor of

an alternative hypothesis that the change is non-zero. Together, these conclusions validate

the statistical analysis methods used in the main body of this thesis.
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