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Abstract

The past decades have seen much progress in predictive kinetic modeling. Reac-

tion mechanisms have shown increased predictive capability, providing key insights

into chemical transformations under conditions of interest. Coupled and integrated

in multiscale-multiphysics models, reaction mechanisms help elucidate physical phe-

nomena that are driven by chemical kinetics and are recognized as a necessary tool

for chemical selection, reactor design and process optimization. These past kinetic

modeling achievements have opened new opportunities for novel scientific applica-

tions in chemical kinetics community and encouraged kinetic modelers to study even

more complex chemical systems.

As one can expect, the system complexity significantly increases modeling cost in

both reaction mechanism construction and simulation. Over the years we have seen

formulation of various lumping strategies. Despite simplicity, the lumping strategy

introduces an intrinsic error where the lumps contain molecules with very different re-

activities. Frequently, oversimplified models using the kinetic parameters fitted from

a very limited set of pilot experiments, resulting in poor accuracy in extrapolation.

This thesis focuses on automated detailed kinetic modeling strategy using Reac-

tion Mechanism Generator (RMG). RMG-generated models more faithfully represent

the chemistry so they have superior extrapolation potential. But as system complex-

ity increases, several computational limitations prevent RMG from converging. This

thesis has made several contributions: reducing memory usage, boosting algorithm

scalability, improving thermochemistry estimation accuracy, which eventually expand

RMG's modeling capability toward large complex systems. These contributions are

available to the kinetics community through the RMG software package. To demon-

strate the improved modeling capability of RMG, the thesis also includes a large
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chemical application: heavy oil thermal decomposition under geological conditions

via a C18 model compound, phenyldodecane.

As an extension of RMG, the thesis also explores a promising alternative to de-

tailed kinetic modeling when dealing with extremely large chemical systems: fragment-

based kinetic modeling, which generates a reaction network in fragment space rather

than molecule space. The thesis shows via a case study that the new method creates

a much smaller reaction network but with similar prediction accuracy on feedstock

conversion and products' molecular weight distribution compared to its counterpart

model generated by RMG.

Thesis Supervisor: William H. Green

Title: Hoyt C. Hottel Professor of Chemical Engineering
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1

INTRODUCTION

Since the birth of chemical engineering, modeling has been a central tool to guide

us from what we know to tackle the unkown. In early times when few tools were

available, researchers set up simple models to explain known chemical observations

and anticipate new ones. Failed predictions in return served as valuable "raw mate-

rials" for refining understanding. Gradually, chemical engineering has gone from an

experience-summarizing field, toward a predictive science. Nowadays the advance-

ment in computer power has enabled us to leverage the capability of complex models

to predict molecular properties, optimize chemical units, automate manufacturing

etc.

Throughout the history of chemical engineering, the prediction and modeling of

reactive systems has always been one of the most challenging and rewarding fields.

With the successes in method development of molecular dynamics, quantum mechan-

ics, numerical simulations, the past decades have seen many advances in predictive

kinetic modeling. Reaction mechanisms have shown increased predictive capabil-

ity, providing key insights on chemical transformations under conditions of interest.

Coupled and integrated in multiscale-multiphysics models, reaction mechanisms help

elucidate physical phenomena that are driven by chemical kinetics and are recognized

as a necessary tool for design and optimization of chemical systems/processes [1-3],
selection of future fuels [4-6], and to assist in environmental policymaking [7].

These past kinetic modeling achievements have opened new opportunities for novel

scientific applications in the chemical kinetics community and encouraged kinetic

modelers to study even more complex chemical systems. For instance, heavy feed-

stocks originally represented by a single-component surrogate of low-carbon number

hydrocarbon (e.g., the use of heptane to represent diesel fuel) can choose a more

realistic multicomponent formulation with larger hydrocarbons.

On the other hand, the changing global energy landscape also fuels the need to
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provide solutions for chemical systems of increasing complexity. For instance, over

the recent years the produced crude oils have become heavier with rich heteroatomic

content (e.g., sulfur-containing species), while the transportation sector maintains

high demand for light and clean products such as gasoline, jet fuel and diesel. The

conflicting trends draw great research attention to study heavy petroleum fraction

conversion and complex heteroatomic behaviors.

As one can expect, the system complexity significantly increases modeling cost

in both reaction mechanism construction and simulation. Over the years we have

seen formulation of various lumping strategies. Generally there are three choices for

modeling detail level balanced by system complexity (e.g., carbons in feedstock), as

shown in Figure 1.1.

H2 C1 C4 C8 C12 C20 huge hydrocarbons(coal, tar...)

Level3 - __-_-_ _original RMG
e.g., H2, mechane, butane to hexadiene

LcveI2 -, - - REACTION, MAXON and EXGAS
e.g., n-heptane, iso-octane, ... , diesel

Levell Manual construction
e.g., heavy oils, coal, biomass >> C2o

H2 C1 C4 C8 C12 C20 huge hydrocarbons(coal, tar...)

Figure 1.1: Illustration of trade off between modeling detail and chemical system
complexity.

Level 1 is usually chosen for the most complex systems (e.g., coal, biomass, vacuum

residue, etc.) where people have little knowledge on either composition or structure

of the feedstock. See an example of 3-lump model for the catalytic cracking process

in Figure 1.2 [8].

Level 2 is a more detailed strategy where species representation in mechanisms

is at molecule level but many isomers are lumped in one species. This effectively

reduces model complexity since the number of isomers increases exponentially with

carbon number in a hydrocarbon: C5 H12 has 3 isomers, C10H22 has 75, and C 20H42

has 366,319. For instance, Ranzi et al. proposed a scheme where radical isomers

such as alkyl, peroxy, hydroperoxyalkyl are lumped into properly selected species.

A resulting mechanism generated for n-heptane combustion process has no more
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than 145 species [9], which is later used in modelling C7-C20 chemistry. Literature

has shown that at level 2, modelers were able to construct mechanisms for up to

C20 systems (e.g., large component in diesel) [10]. However, the accuracy of this

approximation depends strongly on application characteristics, lumping schemes, and

model parameters estimation (e.g., thermochemistry properties for lumped species

and kinetics for lumped reactions). For instance, with systems where people care

about the certain isomer in product distribution that are sensitive to isomerization or

intramolecular reactions, e.g. low temperature ignition and cyclization, the prediction

accuracy is largely affected.

FeedGasoline 3-lump model
Weekman & Nace, 1970

Gas & Coke
E '00d (> 220C)Gasolinm (Cs-220*C)
Gs (Ci-C, Coke

Figure 1.2: A simple lumped model for catalytic cracking process by Weekman and
Nace. From Oliveira et al.

Level 3 is the most detailed modeling approach where the mechanisms distin-

guish all the isomers. In the past, chemical processes were often modelled at level

1 and level 2 due to lack of computing power and good understanding of underly-

ing chemistry. Today, with the advances in computational chemistry (e.g., ab initio

calculations) and emergence of fast numeric solvers, kinetic models can now be con-

structed at this level and applied to relatively simple systems. The detailed structural

information of every isomer allows direct connection of the reaction mechanisms to

individual "model compound" studies, ab initio calculations, and LFER (Linear Free

Energy Relationship, e.g. Benson Group Additivity Method) estimates. On the other

hand, level 3 incorporates relevant elementary pathways into the mechanisms so that

the resulting models reflect most fundamental chemistry and have highest predictive

potential.

1.1 Automatic reaction mechanism generation

In systems with relatively unselective chemistry, such as pyrolysis, combustion, partial

oxidation and many polymerizations, tens to even hundreds of thousands of species

are present. The increased detail requires keeping track of all of these species and

reactions with explicit representation of molecules. That makes manual model con-

struction tedious, error-prone and often biased. Thus, over past decades various
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automatic kinetic model generation packages have been developed [11-15]. They

errorlessly distinguish unique species and reactions, consistently construct kinetic

models using data that is continually updated, e.g., reaction templates and estima-

tion parameters, thus are increasingly adopted in many applications. Among them,

the Reaction Mechanism Generator (abbreviation: RMG) is an actively maintained

open source generator developed by Green Group at MIT and West Group at North-

eastern University. It is designed to automate kinetic mechanism generation at level

3, and has been used throughout this thesis. More details of the software can be

found elsewhere [15, 16].

1.2 Thesis overview

Before this thesis, RMG was suceesfully applied to a collection of relatively small

chemical systems (usually < C8): dimethyl ether, propane, butanol, neopentane,

hexane, hexadiene etc [4, 17-20]. As system complexity increases, several computa-

tional limitations prevent RMG from converging to mechanism completion. As will

be uncovered in later chapters, many of them are deeply related to RMG algorithm

design.

This thesis has made several contributions to identifying root issues, providing

corresponding solutions, and eventually expanding RMG's modeling capability to-

ward large complex systems. To demonstrate the improved modeling capability, the

thesis also includes a large chemical application: heavy oil thermal decomposition

under geological conditions via a C18 model compound, phenyldodecane.

Chapter 2 discusses one aspect of convergence difficulty: high memory usage.

It's directly associated with side byproduct species and reactions RMG has to store,

whose number grows exponentially with chemical mechanism size. A memory-efficient

algorithm is presented for coping with the combinatorial complexity. The algorithm

carefully identifies unimportant species during model generation and prunes them

as well as their reactions. The new algorithm reduces memory usage by about a

factor of 4 for a wide range of applications without sacrificing accuracy; with fixed

computer memory it enables convergence of reaction mechanisms about twice as large

as previously possible. The increased capability opens the possibility of discovering

unexplored reaction networks and modeling more complicated reacting systems.

Chapter 3 focuses on a second aspect of convergence difficulty: low execution

efficiency. There are causes from three sources: programming language, algorithm

scalability, and application size. Algorithm scalability was improved in this thesis. We
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examined a wide range of applications and identified bottlenecks in efficiency perfor-

mance. For instance, large systems usually suffer most from combinatorial reaction

generation, while applications with QMTP (Quantum Mechanics Thermodynamic

Property) enabled were bottlenecked by the slow quantum calculations. The chapter

presents two methods to speedup reaction generation: reaction filtering and paral-

lelization, as well as one method to speedup chemical data computation: concurrent

computation of thermochemistry. These methods jointly bring significant speedup

(e.g., 50 times in early conversion of phenyldodecane).

There is a hidden cause to convergence difficulty: inaccurate parameter estima-

tion. For instance, the thermochemistry error of a species can mislead RMG to explore

unnecessary pathways, indirectly wasting computer power and memory. In general,

cyclic and polycyclic species suffer poor thermochemistry estimation using existing

methods. Chapter 4 provides a fast heuristic method that extends the group addi-

tivity method with two additional algorithms: similarity match and bicyclic decom-

position. It significantly reduces Hf(298 K) estimation error from over 60 kcal/mol

(RMG's original group additivity method) to around 5 kcal/mol, Cp(298 K) error from

9 cal/mol/K to 1 cal/mol/K, and S(298 K) error from 70 cal/mol/K to 7 cal/mol/K.

This method also works well for heteroatomic polycyclics.

As RMG models increasingly complex chemical systems, the heuristic estimator

encounters molecules which breaks its hidden assumptions: large fused polycyclics.

New insights are needed to adapt the thermochemistry estimator to new molecule

domains. Instead of proposing new heuristics, Chapter 5 discusses the possibility of

creating a self-adapting estimator. It presents a new machine learning appraoch using

molecular convolutional neural networks (MCNN) which helps gain higher accuracy

than heuristic method without asking for human insights. We also designed the

uncertainty estimation scheme for the MCNN estimator, which eventually leads to

the construction of a pipeline that makes MCNN estimator self-evolve over time.

Chapter 6 presents a large chemical application that RMG originally wasn't able

to model smoothly: thermal decomposition of oil at geological conditions using a

C18 heavy oil analog, phenyldodecane (PDD). New version of RMG was used to au-

tomatically construct a full decomposition mechanism of PDD pyrolysis. The RMG-

generated model successfully achieved good agreements with various of experimental

datasets on both reactant conversion and major product distributions.

Chapter 7 explores an alternative modeling approach to current RMG algorithm.

It is mainly tailored for chemical systems larger than the ones RMG is currently able

to model. Instead of focusing on modeling at molecule level, it describes chemical
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reactions at fragment level (a fragment is a part of a molecule containing one or more

functional groups). Via a case study with the same application presented in Chapter

6, we show that the new method creates a much smaller reaction model but with

similar prediction accuracy on feedstock conversion and products' molecular weight

distribution compared to its counterpart model generated by RMG.

Finally, Chapter 8 discusses several recommendations for future work in predictive

chemical kinetics.

1.3 References

[1] C. K. Westbrook, W. J. Pitz, 0. Herbinet, H. J. Curran, and E. J. Silke. "A com-

prehensive detailed chemical kinetic reaction mechanism for combustion of n-alkane

hydrocarbons from n-octane to n-hexadecane." Combustion and Flame 156 (1), Jan.

2009, pp. 181-199. ISSN: 0010-2180. DOI: 10. 1016/j . combustflame . 2008 . 07 . 014.

URL: http ://www. sciencedirect . com/science/article/pii/S0010218008002125.

[2] F. Battin-Leclerc, J. M. Simmie, and E. Blurock, eds. Cleaner Combustion: Devel-

oping Detailed Chemical Kinetic Models. en. Green Energy and Technology. London:

Springer-Verlag, 2013. ISBN: 978-1-4471-5306-1. URL: //www . springer . com /us!

book/9781447153061.

[3] Sabbe Maarten K., Van Geem Kevin M., Reyniers Marie-Frangoise, and Marin Guy B.

"First principle-based simulation of ethane steam cracking." AIChE Journal 57(2),

Jan. 2011, pp. 482--496. ISSN: 0001-1541. DOI: 10. 1002/aic. 12269. URL: https:

//onlinelibrary-wiley-com.libproxy.mit.edu/doi/full/10.1002/aic.12269.

[4] M. R. Harper, K. M. Van Geem, S. P. Pyl, G. B. Marin, and W. H. Green. "Com-

prehensive reaction mechanism for n-butanol pyrolysis and combustion." Combus-

tion and Flame 158(1), Jan. 2011, pp. 16-41. ISSN: 0010-2180. DOI: 10. 1016/j .

combustf lame . 2010 .06. 002. URL: http: //www. sciencedirect. com/science/

article/pii/S0010218010001586.

[5] N. M. Vandewiele, G. R. Magoon, K. M. Van Geem, M.-F. Reyniers, W. H. Green,

and G. B. Marin. "Kinetic Modeling of Jet Propellant-10 Pyrolysis." Energy & Fuels

29 (1), Jan. 2015, pp. 413-427. ISSN: 0887-0624. DOI: 10 . 1021 / ef502274r. URL:

https://doi.org/10.1021/ef502274r.

[6] C. W. Gao, A. G. Vandeputte, N. W. Yee, W. H. Green, R. E. Bonoini, G. R. Magoon,

H.-W. Wong, 0. 0. Oluwole, D. K. Lewis, N. M. Vandewiele, and K. M. Van Geem.

"JP-10 combustion studied with shock tube experiments and modeled with automatic

reaction mechanism generation." Combustion and Flame 162 (8), Aug. 2015, pp. 3115-

26



3129. ISSN: 0010-2180. DOI: 10. 1016/j . combustf lame . 2015. 02. 010. URL: http:

//www. sciencedirect . com/science/article/pii/S0010218015000528.

[7] S. H. Schneider. "Integrated assessment modeling of global climate change: Transpar-

ent rational tool for policy making or opaque screen hiding value-laden assumptions?"

en. Environmental Modeling & Assessment 2 (4), Dec. 1997, pp. 229-249. ISSN: 1420-

2026, 1573-2967. DOI: 10. 1023/A: 1019090117643. URL: https : //link. springer.

com/article/10.1023/A:1019090117643.

[8] L. P. d. Oliveira, D. Hudebine, D. Guillaume, and J. J. Verstraete. "A Review

of Kinetic Modeling Methodologies for Complex Processes." en. Oil & Gas Sci-

ence and Technology - Revue d'IFP Energies nouvelles 71 (3), May 2016, p. 45.

ISSN: 1294-4475, 1953-8189. DOI: 10 . 2516 / ogst / 2016011. URL: https : / / ogst .

ifpenergiesnouvelles.fr/articles/ogst/abs/2016/03/ogstl5Oll7/ogstl5Oll7.

html.

[9] E. Ranzi, M. Dente, A. Goldaniga, G. Bozzano, and T. Faravelli. "Lumping proce-

dures in detailed kinetic modeling of gasification, pyrolysis, partial oxidation and com-

bustion of hydrocarbon mixtures." Progress in Energy and Combustion Science 27 (1),
Jan. 2001, pp. 99-139. ISSN: 0360-1285. DOI: 10.1016/SO360-1285(00)00013-7. URL:

http://www.sciencedirect. com/science/article/pii/S0360128500000137.

[10] F. Battin-Leclerc. "Detailed chemical kinetic models for the low-temperature combus-

tion of hydrocarbons with application to gasoline and diesel fuel surrogates." Progress

in Energy and Combustion Science 34 (4), Aug. 2008, pp. 440-498. ISSN: 0360-1285.

DOI: 10 . 1016/j . pecs . 2007. 10 . 002. URL: http: //www. sciencedirect . com/

science/article/pii/S0360128507000627.

[11] E. Ranzi, T. Faravelli, P. Gaffuri, and A. Sogaro. "Low-temperature combustion:

Automatic generation of primary oxidation reactions and lumping procedures." Com-

bustion and Flame 102 (1--2), July 1995, pp. 179-192. ISSN: 0010-2180. DOI: 10. 1016/

0010-2180(94)00253-0.

[12] F. Battin-Leclerc. "Development of kinetic models for the formation and degradation

of unsaturated hydrocarbons at high temperature." en. Physical Chemistry Chemical

Physics 4 (11), May 2002, pp. 2072-2078. ISSN: 1463-9084. DOI: 10. 1039/B110563A.

[13] L. J. Broadbelt, S. M. Stark, and M. T. Klein. "Computer Generated Pyrolysis Mod-

eling: On-the-Fly Generation of Species, Reactions, and Rates." Industrial & Engi-

neering Chemistry Research 33(4), Apr. 1994, pp. 790-799. ISSN: 0888-5885. DOI:

10.1021/ie00028a003.

27



[14] J. Song. "Building robust chemical reaction mechanisms : next generation of auto-

matic model construction software." eng. Thesis (Ph. D.)-Massachusetts Institute of

Technology, Dept. of Chemical Engineering, 2004. Thesis. Massachusetts Institute of

Technology, 2004.

[15] C. W. Gao, J. W. Allen, W. H. Green, and R. H. West. "Reaction Mechanism Gen-

erator: Automatic construction of chemical kinetic mechanisms." Computer Physics

Communications 203, June 2016, pp. 212-225. ISSN: 0010-4655. DOI: 10 . 1016/j

cpc .2016.02.013.

[16] C. W. Gao. "Automatic reaction mechanism generation: High Fidelity Predictive

Modeling of Combustion Processes." eng. Thesis. Massachusetts Institute of Technol-

ogy, 2016. URL: http://dspace.mit.edu/handle/1721.1/104205.

[17] E. E. Dames, A. S. Rosen, B. W. Weber, C. W. Gao, C.-J. Sung, and W. H. Green.

"A detailed combined experimental and theoretical study on dimethyl ether/propane

blended oxidation." Combustion and Flame 168, June 2016, pp. 310-330. ISSN: 0010-

2180. DOI: 10.1016/j . combustflame.2016.02.021. URL: http://www. sciencedirect.

com/science/article/pii/S0010218016000778.

[18] S. V. Petway, H. Ismail, W. H. Green, E. G. Estupifian, L. E. Jusinski, and C. A.

Taatjes. "Measurements and Automated Mechanism Generation Modeling of OH Pro-

duction in Photolytically Initiated Oxidation of the Neopentyl Radical." The Journal

of Physical Chemistry A 111 (19), May 2007, pp. 3891-3900. ISSN: 1089-5639. DOI:

10.1021/jp0668549. URL: https://doi.org/10.1021/jp0668549.

[19] Van Geem Kevin M., Reyniers Marie-Francoise, Marin Guy B., Song Jing, Green

William H., and Matheu David M. "Automatic reaction network generation using

RMG for steam cracking of n-hexane." AIChE Journal 52 (2), Oct. 2005, pp. 718

730. ISSN: 0001-1541. DOI: 10. 1002/aic. 10655. URL: https: //onlinelibrary-

wiley-com.libproxy.mit.edu/doi/abs/10.1002/aic.10655.

[20] S. Sharma, M. R. Harper, and W. H. Green. "Modeling of 1,3-hexadiene, 2,4-hexadiene

and 1,4-hexadiene-doped methane flames: Flame modeling, benzene and styrene for-

mation." Combustion and Flame 157 (7), July 2010, pp. 1331-1345. ISSN: 0010-2180.

DOI: 10. 1016/j . combustflame. 2010. 02. 012. URL: http: //www. sciencedirect.

com/science/article/pii/S0010218010000581.

28



2
MEMORY USAGE REDUCTION WITH PRUNING

ALGORITHM

To achieve high model fidelity, a very large number of possible reactions, interme-

diates, and byproducts must be considered when constructing the reaction mecha-

nism. When dealing with complicated reactive systems (e.g., higher carbon number

fuels, higher equivalence ratios), automated model generators like RMG are often

restricted by hardware limitations; numerous species and their reactions quickly fill

up the computer memory [1]. Because the number of possible bimolecular reactions

approximately scales as the square of the number of species in the model, the memory

usage increases superlinearly (see Figure 2.1). For instance, generating a model by

RMG with more than 230 species on a computer with 8GB RAM leads to memory

allocation shortage. Although this issue will eventually be relieved by future improve-

ment of RAM size, it usually takes time; historically it took the industry almost 5

years to increase standard RAM size by a factor of 4. Thus this chapter aims to

provide solutions to reduces RAM requirements for RMG.

To mitigate memory limitation, there have been several previous attempts to

develop software that combines model generation and model reduction. Among them

is Klinke and Broadbelt's work, which incorporated into their reaction mechanism

generation algorithm in NetGen a radical lumping strategy that groups radicals based

on their similarity in reactivity, and on-the-fly sensitivity analysis that evaluates the

importance of a certain species based on its impact on fluxes towards IN (Important

and Necessary) species [1]. This integration allowed NetGen to create more accurate

kinetic models.

However, the Klinke and Broadbelt approach cannot be implemented in RMG,

due to different model generation strategies: 1) RMG is designed to distinguish all

the radicals so that all the thermo-chemistry and kinetic parameters can be calcu-

lated from first principles; and 2) certain species in RMG (called edge species, see
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Figure 2.1: Memory (RAM) usage by RMG-Py grows super linearly as the reaction
mechanism is enlarged to improve fidelity. This example is partial oxidization of
natural gas.

Subsection 2.1.1) temporarily do not react, having no impact on the fluxes towards

core species (equavalent IN species in RMG), which makes sensitivity evaluation inef-

fective. Consequently, this chapter presents an alternative memory-efficient approach

for on-the-fly model reduction during mechanism generation. By identifying and

pruning unimportant species based on flux analysis in early stages, RMG was able to

generate a model of over 400 species without memory shortage.

2.1 Method

2.1.1 The original algorithm (no pruning)

RMG works by a "core-edge model" approach [2]. The model "core" collects all the

important species selected by a rate-based algorithm, while the model "edge" collects

all the other species appearing as products of reactions of the core species. The "edge"

serves as a species pool for future selections of important species. At each iteration

one of the edge species is moved into the "core", and new species are added to the

"edge". At the end of model generation, the "core" model will be the final model to

be exported.

Typical RMG model generation workflow is illustrated in Figure 2.2. User input

will be translated to initial core-edge model, which is further transformed into an

ODE system. Simulation starts from t=0 , along which edge species' fluxes will be

monitored at each time point. If an edge species's flux becomes greater than a pre-

defined threshold, that species will be selected to the core, next the new core species
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will be reacted with other core species so that model is enlarged. Updated model

will trigger a new ODE simulation. This process continues iteratively until the model

integrates to the specified final time. All reactions involving only core species are

output as the final model.

Input file

SCore-dge model

Initialize reactor
simulation at t = 0

Add species I to core Determine flux R,
and enlarge model for each species n

Yes Any Rthreshold Integte forward

No

Is t t".? No

- Yes

Final model

Figure 2.2: Model generation workflow of original algorithm

As Figure 2.3 shows in more detail, an RMG iteration starts with a pool of

species (species A, B, C in core, D, E, F, and G in edge), and solves the ODE

system corresponding to reactions within the set of core species. From the resulting

concentrations of core species, reacting fluxes towards each edge species are computed

as follows, and then compared to a flux threshold.

rspecies( = EV'r (W)

where viJ is stoichiometric coefficient of species i in reaction j and rj is reaction rate

for reaction j usually written in Arrhenius form rj (t) = kjT(t)"j exp(- )) Hm E.' (t).
For instance, at some time the flux towards edge species D is found to be sig-

nificant, i.e., rD(t) > flux threshold, then the computation is halted, and D is

moved to the "core". Specifically, the threshold is calculated as flux threshold =
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Rchar * toleranceMoveToCore, where Rchar is the root sum square of core species

fluxes and toleranceMoveToCore is specified by the user acoording to his/her pref-

erence of final mechanism accuracy (see more detail on toleranceMoveToCore in

2.1.2.1). RMG will later enlarge the core-edge model by exploring reactions between

D and other core species. After model "core" and "edge" are updated, the simula-

tor solves the system again from t = 0 to the point when next important species

is discovered. The whole iterative process terminates when the user-specified goal

time/conversion is reached and no additional important species is identified.

G D

Edge, / /

A4- - - * E Dynamic simulation

C - - ->F

Core

G H K

Edge

A BRxn generation

Core F

G

Edge

A4- 1- E

C- F

Core

Species selection

G

Edge

A B E

Core F

Figure 2.3: one iteration of model generation by RMG (original algorithm)

2.1.2 The new algorithm (with pruning)

Ultimately RMG produces a final kinetic model with only core species and reactions.

However, RMG has to store both edge and core throughout simulation. Since the

number of edge species is much larger than that of core species (typically by over 2

orders of magnitude), most memory is consumed by the model "edge". Furthermore,
among the edge species are many minor species unlikely to become core species due

to structural unstability and usually have low rpeciesi. Thus, pruning those minor

edge species is helpful to mitigate RAM limitation and still keeps model accuracy. In

order to achieve that, pruning module should first identify unimportant edge species

and then delete them and their reactions to minimize the impact on model accuracy.
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Figure 2.4: one iteration of

G D

Edge
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C F

Core

Prune E and F,
Select D

G

Edge

Rxn generation A

C
Core

model generation by RMG with pruning

The pruning module is integrated into the original RMG package illustrated in

Figure 2.5; the main difference from the original workflow is, after identifying new

core species, simulation will continue to final time to figure out maximum normalized

flux for each edge species:

ma~E[Otf,,-11f luxi (t)

m Rchar (t)

where tfja is set by user for simulation termination, see Figure 2.2.

Those species with ma<tE[o (; toleranceKeepInEdge will be pruned

(e.g. in Figure 2.4, edge species E and F having relatively small flux are pruned).

The simulation will only stop if some edge flux exceeds threshold2 (computed as

threshold2 = Rchar * toleranceInterruptSimulation, see more detail in 2.1.2.2 ),
in which case pruning won't be executed.

Four parameters are critical to make pruning functionality work properly.

2.1.2.1 to leranceMoveToCore: for thresholdi

This tolerance is inherited from the previous algorithm. Users get final kinetic mod-

els with desired accuracy by setting an appropriate toleranceMoveToCore. For in-

stance, toleranceMoveToCore = 0.1 means all the edge species with fluxes > 10%
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Input file

Core-odge 

model

Initialize reactor
simulation at t = 0

Add species Ito core Determine flux R.
and enlarge model for each species n

Yes
Any RWhreshold Integroue forward

No

Yes No
Any RM to hold2 Is t N l L

No Yes

Prune any specles k as t > lre No
whoser cf threshold3

t Yes

Final model

Figure 2.5: Workflow of pruning algorithm

of Reha, will be moved into the final model (model "core"). Normally, lower (tighter)

toleranceMoveToCore leads to a larger, more detailed final model.

2.1.2.2 to leranceInterruptSimulation: for threshold2

RMG has to run a complete dynamic simulation (from time=O to goal time/conversion)
to get maxEo, for edge species i. However, in cases where any of theto eta~E~fi\l (RchaT(t))/ eg
edge species has an unrealistically high flux, the species is clearly important and must

be included in the core first instead of conducting pruning. Thus, toleranceInterruptSimulat ion

is defined to decide if a flux is beyond certain limit; kinetic simulation will be halted

when some flux is higher than toleranceInterruptSimulation*Rchar. Small values

of toleranceInterruptSimulation have the effect of turning off pruning.
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2.1.2.3 toleranceKeepInEdge: for threshold

As a metric for importance of an edge species i , maxtEioitfsnt (au(t)ated

in each iteration. Any edge species with this metric larger than toleranceKeepInEdge

at any time t will be kept in the model edge, i.e., it will not be pruned. Thus, the

lower toleranceKeepInEdge is, the closer the pruned model will be to a non-pruning

model due to fewer edge species being removed.

Naturally, the lower bound for toleranceKeepInEdge is 0, indicating no edge

species will be deleted (non-pruning scenario); the upper bound is the value of

toleranceMoveToCore, since toleranceKeepInEdge defines the boundary to identify

unimportant species while t ol eranceMoveToCore selects the important ones.

2.1.2.4 maxEdgeSpecies

maxEdgeSpecies sets an upper bound for total number of edge species. Once it ex-

ceeds maxEdgeSpecies, RMG will start removing edge species with lowest maxtE[o,fina.l} (R 1axW(),

regardless of being higher or lower than toleranceKeepInEdge, which will greatly

help avoid memory crash but probably harm final model accuracy. It's always rec-

ommended to set maxEdgeSpecies as large as the computer can handle. In our ex-

perience, with 8 Gb of RAM an appropriate choice for maxEdgeSpecies is 100,000.

2.2 Results

Two high-temperature combustion systems were chosen to test the pruning algorithm

(see Table 2.1); one has natural gas (a combination of methane, ethane and propane)

as the fuel and 02 as the oxidizer while the other has n-heptane and 02. Both of

them are in high equivalence ratios that usually lead to combination of oxidation and

pyrolysis, generating significant amounts of intermediates, overflowing RAM with

the usual algorithm. However, the two systems have very different chemistries: first

system (hereafter, NG) goes through a chemical process where small molecules form

large ones on the way to soot formation, while the second (hereafter, C7) has large

molecules decomposing into small ones at the chosen reaction conditions (see Figure

2.6).

The new RMG with pruning was able to reduce the quadratic dependence of RAM

on core size to nearly linear dependence, as Figure 2.7 shows.

For various jobs converged to a range of toleranceMoveToCore (which generates

final models of various sizes), the pruning algorithm not only can generate identical

models, but also requires much less memory than the original algorithm does (Figure
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Figure 2.6: Species size (carbon number)

model at convergence

distribution in NG and C7 systems in "core"

system fuel composition fuel/02 equivalence ratio T and P

CH4 : 90 mol%
NG C2 H6 : 8 mol% 3.4 1400K, 20 atm

C3H: 2 mol%

C7 C7H16 : 100 mol% 11 1400K, 20 atm

Table 2.1: Specification of test chemistry

2.8). Pruning saves around 75% of memory for highly complicated systems (low

toleranceMoveToCore), still generating exactly the same final models as the original

algorithm.

On the other hand, the pruning algorithm makes it possible to generate large

models which the original RMG was not able to; a model with 200 core species can

quickly fill up 8Gb RAM using the original algorithm, while the pruning algorithm

can easily generate models of 400 core species with memory usage no more than 5Gb,

increasing the RMG modeling capability by at least a factor of two (see Table 2.2).

Table 2.2: Modeling capacity is greatly extended by pruning algorithm for both
natural gas and n-heptane systems

maximum species number maximum species number
system in model (RAM requirement) in model (RAM requirement)

with original algorithm with pruning algorithm

NG 220 (12 Gb) > 433 (5 Gb)
C7 230 (8 Gb) > 531 (4 Gb)
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Figure 2.7: Pruning significantly reduces RAM requirements for the NG system of
Figure 2.1

(a) NG system (b) C7 system
non-pruning Jobs non-pruning Jobs

12000 + pruning jobs 8000 .+- pruning Jobs
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00040
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2000

0. 01,
160 170 180 190 200 210 220 230 240 100 120 140 180 180 200 220 240

Number of Core Species In Final Models Number of Core Species In Final Models

Figure 2.8: Comparison of RAM usage between original algorithm and pruning algo-
rithm in two testing systems

In order to provide a more concrete example for pruning, phenyl dodecane (here-

after, PDD, see molecule structure Figure 6.1) thermal decomposition, an heavy oil-to-

gas application with which RMG originally fails due to high memory cost, illustrates

how pruning can make RMG keep searching and discovering important decomposition

pathways.

Figure 2.9: PDD (C18H30); phenyl dodecane

PDD with eighteen carbons, is one of the largest systems RMG has modelled;

compared with smaller molecules, it has much more reacting sites, higher number
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of species RMG has to keep track of and therefore higher memory consumption.

Consistent with previous testing cases, PDD job usually crashes around 200 species

(hitting 8 Gb RAM limit) using RMG original algorithm (see Figure 2.10).

The mechanism misses some decomposition pathways, leading to slower conversion

compared with experiment observations (see Figure 2.12); one important missing

pathway (see Figure 2.11) is PDD decomposes to pentadiene after more than five

consecutive steps, which can actively react with styrene and create radicals through

reverse disproportionation reactions.

Original RMG (no pruning) has to explore and store whole species space with

radius of > 5 steps to be able to find pentadiene but fails in the middle with memory

filled up. With pruning turned on, RMG focuses on the most significant decompo-

sition pathways, explores bigger species space and selects relevant pathways more

efficiently, eventually discovers pentadiene pathway (Figure 2.11) with less than 3 Gb

memory consumption, making the prediction of PDD conversion greatly improved

(Figure 2.12).

10000
-Pruning Algorithm

80 -- Non-pruning Algorithm

~8000

4000.

2000--

01
80 100 120 140 160 180 200 220 240

Number of Core Species

Figure 2.10: Pruning vs. Non-pruning memory consumption for phenyl dodecane
decomposition

2.3 Discussion

2.3.1 Trade-off between effectiveness and accuracy

We are concerned about two aspects of the pruning algorithm: its effectiveness in

reducing memory demands and its accuracy regarding final mechanisms generated.

Quantitatively effectiveness and accuracy defined as follows:
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Figure 2.11: Important PDD decomposition acceleration pathway found by pruning
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Figure 2.12: Pruning vs. Non-pruning phenyl dodecane conversion prediction

R A MNP
memory effectiveness =

RAMp

= |Speciesp n SpeciesNpI

I SpeciesNp I

where RAMNP and RAMp are memory requirements for building a model using the

non-pruning model and pruning algorithms respectively, SpeciesNp and Speciesp are

species sets in non-pruning model and pruning model respectively.
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Figure 2.13: Effect of toleranceKeepInEdge in balancing pruning effectiveness and ac-

curacy for NG system. Accuracy = 1 if pruning algorithm generates exactly identical
model as non-pruning one does. Memory effectiveness is RAM reduction factor.

4.5
1.00 -- AM A- tolEronmmceMbunbom.0.012

A-A twancw eqenbom=-.01

0.98
4.0

0.98 r -----

0.94 - S5

0.92 * ftkrnoencvUdbCre=0.015
Ata~Iwr4otu2bCbr#=0.015&

0.901 -J"In------ -----3.0 I -

10-2 10-1 10-3 10-2 10-1 100
*dfru-K~ylhae tdmKk~

Figure 2.14: Effect of toleranceKeepInEdge in balancing pruning effectiveness and
accuracy for C7 system. Accuracy = 1 if pruning algorithm generates exactly identical

model as non-pruning one does. Memory effectiveness is RAM reduction factor.

In the cases presented in Figure 2.8, the final models produced by RMG-Py are

exactly the same whether or not pruning is used, i.e. they have maximal accuracy =

1. In other extreme cases, pruning reaches maximal memory effectiveness by deleting

all the edge species, leading to a very different final model from the non-pruning case.

In pruning algorithms, toleranceKeepInEdge is the key handle balancing these two

aspects: a loose toleranceKeepInEdge reduces accuracy, but also reduces RAM

requirement.

Thus determining the value of toleranceKeepInEdge is crucial for pruning perfor-

mance. It turns out for complicated NG and C7 systems (with small toleranceMoveToCore)

that toleranceKeepInEdge being smaller than 1/10 of toleranceMoveToCore usu-
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. Core species Core reactions
in final model in final model

non-pruning 153 5491
minCoreSizeForPrune=0 157 5840

minCoreSizeForPrune=50 153 5491

Table 2.3: Premature pruning impact. This example is NG
MoveToCore=0.3 and toleranceKeepInEdge=0.01
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Figure 2.15: Maximal normalized flux (maxt (t' )) distribution of edge species

at 1 8 0th iteration in non-pruning scenario of C7 system. With pruning most of the
species on the left would be deleted, freeing a lot of memory

ally gives good memory effectiveness and maintains the same models (accuracy=1),

as Figure 2.13 and Figure 2.14 indicate.

By applying this rule of thumb (choose 1/10 of toleranceMoveToCore for toleranceKeepInEdge)

to phenyl dodecane study, the pruning model not only keeps all the important path-

ways originally included in non-pruning model, but also discovers the pentadiene

pathway that we discussed earlier.

Two additional components were designed to secure pruning accuracy. During

early iterations, incomplete models usually result in inaccurate edge flux estima-

tion, making the algorithm more likely to prune important species than it is when

models are close to completeness (see Table. 3). It is observed that pruning at an
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early stage usually loses important species. Once an important species is lost, the

model often grows in strange directions, including species which are not really im-

portant in the physical system. To prevent such undesired pruning, user-specified

minCoreSizeForPrune is added to the pruning algorithm; no pruning is performed if

the core species number is less than minCoreSizeForPrune. In both tested systems,

minCoreSizeForPrune = 50 is a good choice.

A second consideration is edge species eligibility to be pruned. For a newly gener-

ated edge species, its associated reaction network is usually not fully developed, and

the consequent low flux usually misleads pruning. To avoid that, RMG records the age

of each edge species ("age" = number of iterations since the species is first identified)

so that only those with age larger than the user-specified minExistIterationForPrune

are eligible to be pruned. We recommend setting minExistIterationForPrune to 3.

2.3.2 Flux evaluates species importance

Pruning algorithms rely on accurate evaluation of edge species' importance. From

Figure 2.15, we can clearly see by ranking all the edge species using maximal normal-

ized flux maxt (l' ), that most species (colored in green) have small fluxes (<
10% of toleranceMoveToCore). Our pruning algorithm removes them (dotted bars),
based on the assumption that the fluxes to these minor byproducts are unlikely to

change by orders of magnitude as the model is refined.

The original non-pruning algorithm [2] is designed conservatively, retaining all the

edge species so if the flux towards any of the species gets large enough, that species

will be added to the model. Our experience is that the reacting fluxes in the core

and towards the edge species sometimes change significantly early in the mechanism-

generation process, but after the major species have been included in the core, most

of the major species concentrations and computed fluxes stabilize. It is unlikely that

any of the fluxes will change by orders of magnitude because a few more minor species

have been included in the model.

As shown in Figure 2.15, the fluxes towards most of the edge species are tiny, ten

or more orders of magnitude smaller than the core species fluxes. It is therefore safe to

delete these negligible species. Note that if a new reaction pathway towards a deleted

edge species is discovered, the edge species will be resurrected, and maintained on

the edge for at least minExistIterationForPrune to allow a fair re-assessment of

its kinetic significance. We've observed that with reasonable tolerance values, the

original rate-based algorithm and this pruned version yield exactly the same final

models, but with very different memory requirements.
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2.4 Conclusion

This chapter introduces pruning algorithm that largely mitigates the memory limita-

tion associated with RMG. By first selecting unimportant edge species and pruning

them and their reactions, the algorithm reduces memory consumption by a factor of

4 for cases where the original RMG algorithm runs into memory shortage; if with

fixed computer memory it enables reaction mechanisms to contain about twice as

many species as previously possible. Several special considerations regarding pruning

eligibility were applied to reduce the risk of mistaken pruning. With the new pruning

algorithm, it is practical to generate converged models for more complicated systems

(high carbon number, high equivalence ratio, or low toleranceMoveToCore) than

was possible in the past; it was able to construct a more complete mechanism for a

real application (phenyl dodecane thermal decomposition) with important pathways

that original RMG missed due to memory limitation.

The new pruning algorithm performed well with two typical combustion systems

having distinct chemical behaviors. In order to save a significant amount of memory

with minimal loss in final mechanism accuracy, only negilible edge species should be

pruned. Follow-up study of the trade-off between effectiveness and accuracy suggests

an appropriate ranges of the tolerances for RMG users to employ to execute the

pruning algorithm properly.
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3
MECHANISM GENERATION SPEEDUP WITH SCALABLE

ALGORITHMS

Besides the memory usage issue covered in Chapter 2, RMG faces another challenge

from superlinear increase of simulation time as reaction-network size grows; It can

take weeks to months to complete network generation for large systems. On top

of that, RMG's add-on features such as sensitivity analysis [1], on-the-fly quantum

chemistry calculations for kinetics [2, 3] and uncertainty quantification [4] significantly

increases the computational burden. In order to facilitate RMG's evolution towards

modeling increasingly large systems and support many value-added features which

are otherwise unaffordable in practice, it becomes a must that we speedup RMG

simulation.

There are three primary aspects of RMG's slowness:

1) Application: Chemical systems with more components, more isomers and more

reactive sites need much larger reaction networks to capture relevant chemistry. For

instance, number of possible bimolecular reactions, whose generation is an inherently

combinatorial computation problem, exponentially increases with system complexity.

2) Language: RMG uses Python as its main language, whose slowness caused by

its flexibilty (e.g., dynamic typing) is widely known.

3) Algorithm: R.MG simulation follows an iterative algorithm where all the steps

are implemented in a serial execution fashion.

As extending RMG's modeling capability to large complex systems is the central

goal of this thesis, we mainly focuse on the non-application aspects. For language,

we have been introducing code optimization techniques throughout its codebase to

reduce the computational penalty of programming in Python. Performance-critical

code, such as the graph isomorphism algorithms has been converted to Cython [5],
which compiles Python code to C through static typing, leading to over an order of

magnitude or higher speed up for numerically intensive code. We also hook standard
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computational operations to compiled libraries. For instance, Ordinary Differential

Equations (ODEs) simulation, as one key step in RMG workflow (see Section 3.1), is

performed by DASSL [6] or DASPK [7], Fortran-based differential algebraic system

solvers. Many of these strategies were already practiced in early versions of RMG

and will not be further discussed in this chapter.

This chapter mainly summarizes the attempts that we explored to improve algo-

rithm scalability.

3.1 Reaction network generation workflow

As detailed in Chapter 2, RMG uses the rate-based algorithm [8] to iteratively grow

("enlargement") the reaction mechanism by adding one species into it at a time. To

obtain all information needed to decide which species to add, the enlargement pro-

cedure passes through four consecutive key phases: the reaction generation phase,

the synchronization phase, the chemical data computation phase and finally the re-

action system simulation phase (ODE solving) in which the reaction rate and species

concentrations are evaluated, as shown in Figure 3.1.

Reaction
generation

ODE Solving Synchronization

Chemical Data
Calculation

Figure 3.1: The enlargement step that integrates a species from the edge into the
core consists of four consecutive key components: reaction generation, synchroniza-

tion, calculation of chemical data such as thermodynamic properties of species and

kinetics of reactions and finally solving the system of ODEs and calculating species
concentrations and fluxes.

In the reaction generation phase, the species that was added in the previous en-

largement iteration is used as a reactant to generate new reactions and species. This

is done by matching the species to the reactant templates (e.g., pre-defined reactive
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sites) of a series of built-in reaction families. For bimolecular reaction families, this

species is reacted with itself or with a species already present in the network. Reac-

tants are transformed into products by applying reaction family-specific recipes with

instructions to break or form bonds, gain or lose electrons, etc. The reaction genera-

tion step results in the creation of a large number of new reactions and species. These

newly created product structures and reactions may be identical to those previously

generated. Therefore, the synchronization phase is designed to consolidate the lists of

new species and reactions and only allow the unique new ones to exist in memory; if a

newly generated species is identical to a previous species, RMG proceeds by deleting

the new structure and makes a reference to the object in memory that corresponds

to that species. A similar mechanism is in place for reactions.

The consolidated lists of new species and reactions from the synchronization phase

are further sent to the chemical data computation phase, i.e. the calculation of the

thermodynamic properties of the species or the kinetic parameters of the reaction.

RMG selects edge species to the mechanism based on flux they draw. The ODE

solving step facilitates the process by providing flux evaluation. RMG relies on the

differential equation solver DASSL accessed through the PyDAS Python interface.

3.2 Performance bottlenecks

This section presents the identification of performance bottlenecks in RMG simula-

tions, which helps tailor solutions toward the reduction of the time spent in these

steps and hence overall wall clock time.

As explained in the previous section, RMG's iterative algorithm is composed of

a loop that grows the mechanism by one species at a time. As an iteration uses

the results computed in previous iterations, it is not possible to execute different

iterations concurrently. Therefore, we focuse on performance improvements of the

individual phases within one iteration.

A number of profiling studies were devised to identify the characteristics of the

performance bottlenecks of RMG and aim at profiling the time spent in the four

phases of a single enlargement iteration as a function of the state of the simulation

and on the nature of the simulated process.

Three test RMG simulations are used to serve as benchmark cases (Table 3.1).

They represent a diverse and complementary collection of simulations that make use

of a large part of the features and settings of RMG. The first test application consists

of a diesel oxidation simulation. Its initial fuel mixture consists of five large linear
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alkanes and n-decylbenzene giving rise to large number of generated reactions, even

at early stages of the simulation. In the second application, the pyrolysis chemistry of

a 1,3-hexadiene doped methane diffusion flame is modeled, which could be employed

in studies of soot formation. On-the-fly quantum chemistry calculation (QMTP)

is turned on to estimate thermodynamic properties for polycyclic species, which is

critical in soot formation modeling. The third application is fuel-rich natural gas

combustion containing methane, ethane, propane and oxygen as the initial reactants.

Because the reactant molecules are small in size, a low number of reactions are created

per iteration early in the simulation, in contrast to test problem one.

Table 3.1: Overview of the simulation specifications of the test cases used for the
performance benchmarking.

Test application Diesel oxidation Hexadiene pyrolysis Natural gas combustion

hexadiene,
Initial mixture diesel + air CH4 , H2, N 2  Natural gas + air

Condition 500K, 200 bar 1350K, 1 bar 1400K, 20 bar

Thermo GA QMTP GA
estimator

GA = Benson group additivity, QMTP = on-the-fly quantum chemistry for thermody-
namic properties of species using PM7 from MOPAC 2012 [9]. Initial molar ratio for
diesel oxidation: n-C11: n-C13: n-C16: n-C19: nC21: n-decylbenzene: 02 = 1.00 :1.27
: 1.67 : 1.20 : 0.67: 0.80 : 0.33, hexadiene pyrolysis: 1,3-hexadiene : methane: H2
N 2 = 1 : 152 : 23 : 1288, natural gas combustion: CH4 : C2H6 : C 3H8 : 02 : N 2 =
1.00: 0.09: 0.02 : 0.71 : 0.33.

100

80

~40

20

0.
Reaction Synchronization Chemical data ODE Solving

generation computation

A diesel U hexadiene a natural gas

Figure 3.2: Relative contributions of the four phases of the enlargement procedure to
the simulation time for the three test applications
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Figure 3.2 shows the relative contributions of the four phases of the enlargement

procedure to the simulation time, averaged over all enlargement iterations of the three

test problems.

It can be observed in Figure 3.2 that the reaction generation phase is the perfor-

mance bottleneck for simulations that involve reactants such as long n-alkanes with

multiple reacting sites. In test case two, which employs the computationally expen-

sive on-the-fly quantum chemistry method for estimating thermodynamic properties,

the chemical data computation phase becomes limiting. Finally, as RMG simulations

advance to larger mechanism sizes of several thousands of species and reactions on the

edge, a significant amount of time is spent in the synchronization phase, verifying the

uniqueness of newly generated species and reactions, as is the case for the natural gas

combustion problem. The profiling results indicate that the computational load of

RMG simulations does not follow a single static pattern, but rather heavily depends

on the type of simulation. As a result, multi-faceted strategies that focus on the

computational performance across the wide spectrum of simulations are considered

to reduce the wall clock time.

3.3 Speedup strategies

This section summarizes the strategies we followed to speedup reaction generation

phase (Subsection 3.3.1) and chemical data computation phase (Subsection 3.3.2)

3.3.1 Speedup reaction generation

As generally dominated by bimolecular reaction generation, reaction generation phase

scales on the order of meaction sites species lresonance isomers fbimolecular reaction families

where n is the number of total core species, m and 1 are average numbers of reac-

tion sites and resonance isomers in a core species respectively and f is the number

of bimolecular reaction families. That makes reaction generation step usually the

performance bottleneck for large systems, which is also confirmed by the diesel test

application.

We approached this bottleneck with two speedup strategies:

1) Reaction filtering: use heuristic to filter out reactions with low expected fluxes

and only generate high-flux reactions. This strategy aims to reduce reaction genera-

tion workload.

2) Parallelization: reaction generation is a perfectly parallel problem which can

be divided into independent small tasks. This strategy aims to spread reaction gen-

eration workload across multiple CPUs.
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3.3.1.1 Reaction filtering

This algorithm implemented by Dr. Gao [4], is similar in nature to the pruning algo-

rithm (discussed in Chapter 2) which prunes species with low incoming fluxes. Since

reactions with high fluxes are deemed important in RMG's rate-based enlargement

scheme, the concentration of a species, greatly affecting reaction fluxes, can be treated

as an importance indicator for the reactions to be generated. By choosing an upper

bound for rate constant, the algorithm avoids generating unimportant reactions for

a species or a pair of species if the highest achievable reaction rates are below a

threshold.

3.3.1.2 Parallelization

Instead of reducing workload heuristically, the parallelization strategy attempts to

discretize original computation into independent tasks and spread them across multi-

ple CPUs. Fortunately, reaction generation is a perfectly parallel problem, as shown

in Figure 3.3 where generateFam is an independent and atomic task in the three

nested loops.

Algorithm react families
Input: spci, spcj, families
Output: collection of generated reactions

rxns = 0
for isomk E resonance(spcj):

for isom, E resonance(pcj):
for famm E families:

rxnsi = generateFam(iSOMk, isoml, famm)
rxns = rxns + rxnsi

end for
end for

end for

Figure 3.3: Algorithm outline for the generation of bimolecular reactions for a given
pair of species. The algorithm accepts two species and iterates over the resonance
isomers of each species in the two outermost loops. The innermost loop iterates over
the reaction families available to RMG. The algorithm for unimolecular reactions is
not depicted but follows a similar pattern.

The first two outermost loops iterate over all combinations of resonance iso-

mers of the chosen species pair (every species consists of one or more resonance

isomers). The innermost loop iterates over the reaction families that contain the

family-specific recipes to transform reactant structures into product structures. The
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task generateFam returns zero or more reactions, depending on the number of react-

ing sites identified in the reactant structures.

The two outermost loops are parallelized, cf. Figure 3.4. Given N species to react,

this results in the creation of N and N - (N + 1)/2 tasks for uni- and bimolecular

reaction families respectively, if one resonance isomer per species is assumed. It is

opted not to parallelize across the reaction families with the aim of creating tasks

with a computational load that is more uniformly distributed. In most applications

explored by RMG, the majority of the reactions are generated through only a limited

number of reaction families.

root reaction generation

task, task2  task3

- rxns

rxns

rxns

Figure 3.4: The parallelization scheme for the "reaction generation" phase as part of
one enlargement iteration in RMG. The scheme distributes the generation of reactions
by creating one task per molecule-molecule (ai, bi) pair and subsequently creates
reactions through application of the list of reaction families [fi, f2, ... ]. The generated
reactions created per task are sent to the root process, bundled together and further
processed in the synchronization phase.

Because CPython has the Global Interpreter Lock (GIL) that prevents the si-

multaneous execution of multiple threads (shared memory), the parallel execution

of tasks is achieved through multiple processes with separate memory spaces. Data

communication between processes occurs through message passing.

A task scheduler library, Scalable COncurrent Operations in Python (SCOOP)

vO.7.1 [10], is used to dynamically load-balance the tasks across available computa-

tional resources. In SCOOP, a central "broker" process mediates communications
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between worker processes that each run a distinct Python interpreter. Submitted

tasks are added to a broker queue through function calls such as map and submit

and are subsequently distributed across the pool of available worker processes. For

data communication between processes, SCOOP uses ZeroMQ, a lightweight library

for message passing.

3.3.2 Speed up chemical data calculation

The computation of chemical data becomes a performance bottleneck when com-

putationally demanding features such as on-the-fly quantum chemistry methods are

used to estimate thermodynamic properties of species rather than computationally

light group additive methods. Furthermore, the chemical data computing phase may

become more demanding in the future if more advanced quantum chemical methods

replace the faster but less accurate semi-empirical methods currently supported. To

reduce the contribution of the chemical data computation phase within the overall

simulation time, a scheme is devised that allows overlapping synchronization with

chemical data calculation, cf. Figure 3.5.

In this scheme, a concurrent task is spawned and sent to a worker that calculates

the required chemical data whenever the synchronization component discovers a new

species or reaction. Since the creation of such chemical data tasks is non-blocking, the

synchronization of newly generated species and reactions continues while independent

tasks are processed on the available pool of workers. Whenever the chemical data is

required, e.g. for solving the system of ODEs, the task responsible for the calculation

of the data is retrieved and the data is requested through a blocking call. Similar

schemes can be devised for other computationally intensive components of chemical

data computation, such as the estimation of pressure-dependent rate coefficients.

3.4 Results and Discussion

To get better assessments on scalability improvements offered by the concurrent

strategies, we carried out isolated experiments (Subsection 3.4.1) to evaluate im-

provements for specific bottleneck and RMG simulations (Subsection 3.4.2) for overall

improvements.

3.4.1 Isolated experiments

In the isolated experiments, i.e. not embedded in a RMG simulation, we measured

the elapsed wall clock time and parallel efficiency (defined as Eq. 1) under strong

scaling setting (scaling with the number of cores when the problem size is fixed) for
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Figure 3.5: Asynchronous calculation of thermodynamic properties of species during
the synchronization phase of an enlargement iteration. Whenever a new species is
handed off from the synchronization phase, a task is spawned on a remote worker in
which the thermodynamic properties of the species is calculated. When the task is
finished, the thermodynamic properties are sent back to the original species object.
Databases used to estimate thermodynamic properties are broadcasted to all workers
at the startup of the simulation.

the calculation of thermodynamic properties (470 unique hydrocarbons with MOPAC

2012 [9] at the PM3 level) and generation of reactions (500 reactions by the application

of 24 reaction families on 100 molecule pairs).

E = (1)
m - T,()

with T and T, the elapsed wall clock time of the experiment using 1 and m workers

respectively.

Figure 3.6A shows how the elapsed wall clock time to calculate the thermodynamic

properties of 470 hydrocarbons decreases from approximately 3600 seconds using one

core to 240 seconds using 24 cores, which translates in a speed-up factor of 15. Figure

3.6B shows how the elapsed wall clock time to generate approximately 500 reactions

for 100 molecule-molecule pairs by the application of 24 reaction families requires

35 seconds using one core, but only 1.4 seconds with 48 cores, which translates in a

speed-up factor of 25.
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Figure 3.6: Strong scalability characteristics for A. the calculation of thermodynamic

properties and B. the generation of reactions. Left vertical axis shows the elapsed
wall clock time, dotted line denotes the ideal, linear scaling. Right vertical axis shows

parallel efficiency

We also observed parallel efficiency gradually decrease for both cases from initial

100% to approximately 50% after using 48 cores. The decreased parallel efficiency

is possibly caused by communication between the master and the slave CPUs, con-

tention for shared resources and unbalanced tasks.

3.4.2 RMG simulations

Given the scalability characteristics of the individual components, we now assess

the impact of the new algorithmic scalability improvements on RMG simulations.

The wall clock time is compared for two versions of RMG: RMG v2.0.0 containing

the modified algorithms for improved scalability is compared against the benchmark

RMG v1.0.0 without these improvements. Figure 3.7 shows the wall clock time as

a function of the number of core species for the three test cases. The individual

contributions of the concurrent computing and reaction filtering algorithm to the

speed-up are indicated.

It can be seen that the new version of RMG is significantly faster than v1.0.

In the diesel oxidation case, a speed-up factor of 20 with the new, parallel version

using 1 worker is calculated after 50 species are added to the core. For instance, the

reaction filtering heuristic results in a drastically smaller edge containing 1218 species

and 10043 reactions, while the original version contains 10361 species and 47879

reactions at the same point of the simulation with 30 species added to the core. This

acceleration effect becomes more amplified at later stages of the simulation. The new

version of RMG using 8 workers results in an additional speed-up factor of two. The
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Figure 3.7: Wall clock time as a function of the number of species added to the
core. +: RMG v1.0 (benchmark) A: RMG v2.0 with 1 worker .: RMG v2.0 with 8
concurrent workers A. Diesel oxidation (test application 1) B. 1,3-hexadiene doped
methane pyrolysis (test application 2) C. Natural gas combustion (test application
3).

speed-up through concurrent computing may seem underwhelming compared to the

scalability metrics shown for the isolated experiments. However, in earliest stages of

the RMG simulation only a small number of species are present in the core, resulting

in fewer tasks than available workers. In addition, as Amdahl's law [11] dictates,
the maximum achievable speed-up in an enlargement iteration is governed by the

time spent in the serial parts of the code. The 1,3-hexadiene pyrolysis case shows

that significant speed-ups can be observed even for very small mechanisms when the

calculation of chemical data is expensive. As can be observed from Figure 3.7B, most

of the speed-up originates from the concurrent workers, which are employed in the

calculation of thermodynamic properties. Figure 3.7C highlights that the scalability

improvements within RMG also significantly impact wall clock times for systems

of smaller size reactants such as natural gas combustion. The higher wall clock

time at the initial stages of the natural gas combustion simulation with 8 workers

reflect the start-up costs associated with setting up the concurrent environment and

broadcasting the static databases to the available workers. The new version using 8

workers is only 20% faster than the version using only 1 worker, which is attributed

to the increasingly large contribution of the reaction network synchronization phase

in the overall simulation time.

In addition to the test cases, the new version of RMG was also applied to the main

application in this thesis (Chapter 6): thermal decomposition of phenyl-dodecane

(hereafter, PDD, Figure 6.1). The C18 hydrocarbon is by far one of the largest systems

RMG has modelled. Figure 3.8 shows new RMG has significantly improved scalability
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for PDD application, where it nearly halves the trend line slope from 6.8 to 3.5.

105 @- 48 CPUs
-" RMG v.0.0

~104

103

102

100 101 102
Core Species Number

Figure 3.8: Wall clock time as a function of the number of species added to the core
for early PDD thermal decomposition. RMG v.1.0 (benchmark) is colored blue, RMG
v2.0 with 48 workers is colored red. Linear trend lines are added to show scalability
improvements: blue line has slope of 6.8, while red line 3.5

3.5 Conclusion

Achieving efficient generation of reaction networks for complex systems has been

a long standing challenge. With the concerted efforts outlined in this chapter, we

have identified critical bottlenecks and provided scalable solutions to make computer-

aided reaction mechanism construction a tool of practical usefulness. It was shown

that bottlenecks for the overall performance of RMG simulations are dynamic in

nature and depend on the type of the simulation as well as methods used for the

calculation of chemical data. Code optimization, concurrent computing and algorithm

heuristics are three key strategies to accelerate the essential components of the rate-

based enlargement procedure.

Despite the iterative nature of the rate-based enlargement of RMG, integrated

simulations are now significantly faster, even for small mechanisms, relative to the

original version. Speed-up tests that measured individual scalability characteristics

have shown speed-up factors with respect to the use of a single core of 15 and 25 for

the calculation of thermodynamic properties and generation of reactions respectively.
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Overall, this chapter and Chapter 2 together demonstrate how the new version of

RMG opens up new opportunities for the construction of more comprehensive and

more accurate mechanisms of chemical processes and creates avenues for modeling

real world processes that previously were too complex to model. The scalability

improvements described in this chapter are implemented in the latest version of RMG

found at http://reactionmechanismgenerator.github. io/RMG-Py/.
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4
THERMOCHEMISTRY ESTIMATION FOR POLYCYCLICS:

HEURISTIC METHOD

During kinetic mechanism generation, RMG has to explore a large space of molecules;

it typically scans 10, 000 ~ 1, 000, 000 of species during a single run for chemical

systems with average size. As the modelled system complexity grows, we can expect

an even greater number. Such large scale of screening for which even cheap DFT

methods are not affordable, requires fast estimation of molecular properties, such as

thermochemistry. Group additivity method has served as a backend of RMG's main

thermochemistry estimator with major advantages of convenience and speed. An

enthalpy estimation scheme is depicted via Eq. 4.1.

ATaton

H1 (298K)= ( GAV (4.1)
i=1

where GAVi is group additivity value for ith atom centered group.

However, due to its underlying assumption that each atom-based group is inde-

pendent and their contributions are additive, group additivity methods have difficulty

estimating the thermochemistry of cyclic molecules, since ring strain is a joint effect

among many ring atoms that is beyond single-atom-based scope. The inaccurate esti-

mation is actually a hidden cause to RMG's convergence difficulty; an error in thermo

estimation for a critical species can mislead RMG to explore unnecessary pathways,

indirectly wasting computer power and memory.

To improve estimation accuracy for cyclics, Benson [1], Constantinou and Gani [2]

proposed ring corrections on top of the normal atom-based group additivity scheme

(Eq. 4.2).

Natom. Nring duster

Hf (298K) = ( GAVi + E (ring correction) (4.2)
i=1 j=1
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where (ring correction)j is additional strain contributed by ring cluster j as a whole.

Note a ring cluster may consist of several individual rings that share at least

one atom with at least one other individual ring in the cluster. To make accurate

predictions, Eq. 4.2 requires correction data for every ring cluster in each molecule.

Since each ring cluster structure has its specific ring correction, and there are an

extremely large number of possible fused ring clusters, this group additivity method

only gives accurate predictions for molecules whose ring structures have been studied

in the past. Estimation accuracy drops significantly when dealing with molecules

with ring cluster structures not included in the database.

The root problem is that one cannot list the infinite number of possible ring

clusters and prepare all the ring corrections. Due to the difficulty in acquiring data

from ab initio calculations or experimental measurements, less data is available for

molecules with larger ring clusters than for those with smaller ones. However, as

cluster size increases more possible structural variations exist, which worsens the

situation for estimating large polycyclics.

Therefore, we divide the problem of accurately estimating the thermochemistry

of a polycyclic into two sub-problems based on the size of the ring cluster (number

of smallest rings in the cluster, using Fan's algorithm [3] of Smallest Set of Smallest

Rings) in the molecule:

" small cyclics (< 2-ring molecules) and

" large cyclics (> 3-ring molecules)

For the former problem, we calculate and organize the available ring corrections

into a functional group tree that can find similar matches for any new small cyclics.

For the latter problem, we develop a bicyclic-decomposition model which estimates

large polycyclic ring cluster corrections by decomposing them into smaller ones and

adding up the contributions from the fragments. Overall, we managed to bring down

group additivity thermo prediction error from over 60 kcal/mol in some cases (original

group additivity method in cases where the ring cluster structure of interest had not

been studied previously) to 5 kcal/mol for both small cyclics and large cyclics as

judged using the dataset of Ramakrishnan, et al. [4].

In this chapter, we discuss our similarity match approach in Section 4.2 and

our bicyclic-decomposition approach in Section 4.3. Additionally, to power these

algorithms, we organize and precalculate ring corrections for a list of frequently seen

ring cluster structures, with more details in Section 4.1.

60



4.1 Pre-calculation

The precalculated list of hydrocarbon molecules covers molecules with mostly small

ring cluster structures (1-ring and 2-ring clusters, see Supporting Information). Some

example molecules are shown in Figure 4.1.

LZ 0

Figure 4.1: Example small cyclics in our database

To automate the data preparation process, a 3-step scheme was used as shown in

Figure 4.2. Firstly, molecular identifiers are fed into RDKit Chem module [5] to gener-

ate initial XYZ coordinates. A GAUSSIAN job creator receives the molecular coordi-

nates, composes GAUSSIAN 09 [6] job inputs and launches quantum chemistry jobs.

To optimize the geometry and to compute vibrational frequencies at the optimized

geometry XYZp,, we used the DFT method at M06-2X/cc-pVTZ level of theory [7].

Once the quantum chemistry calculation finishes, RMG's Cantherm module [8] (for

more detail on cantherm information, visit http: //reactionmechanismgenerator.

github. io/RMG-Py/users/cantherm/index. html) parses the output GAUSSIAN

log file and calculates the thermochemical parameters such as Hf (298 K), COand

S(298 K) using the Rigid Rotor Harmonic Oscillator (RRHO) approximation. At each

step, molecular representations (SMILES, XYZ, and optimized XYZ coordinates) are

converted into RMG species objects and RMG's isomorphism check ensures that they

still represent the same molecule.

Note that the single structure RRHO approach employed here only considers one

conformer, and ignores anharmonicity, so it is expected to underestimate S and C,

for floppy rings.
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Figure 4.2: Quantum calculation scheme for small cyclic thermochernistry

4.2 Similarity Match

As discussed in the previous section, Eq. 4.2 needs exact matches of target ring

clusters (otherwise no correction is applied at all), and thus requires extensive data

to ensure high prediction accuracy.

Here we propose a similarity match algorithm that can find a similar ring with

similar thermochemistry for situations where no exact matches are available.

4.2.1 Cyclic trees

The similarity algorithm greatly relies on data organization. The ring structures

are organized into trees (we have two trees so far: monocyclic tree and polycyclic

tree), see a sub-tree example in Figure 4.3. Nodes further down the tree have more

specific structural details. The top layer defines the skeleton frame, for instance,

s1_3_6 represents a bicyclic consisting of 3-member ring and 6-member ring with 1

atom shared, and the next layer defines categories such as alkane, alkene, diene or

aromatics. Finally, the bottom layer lists the most specific ring structures.

With this design, if a new molecule does not exactly match a known ring cluster, it

can be classified as similar to some other nodes in the tree, and assigned the average

of their values. For instance the molecule in Figure 4.4 most closely matches the

second-layer node s_ 3 6 _diene in Figure 4.3. Since there is no exact match, the

algorithm will use the average of the ring corrections of the children of s1_3__6_diene

62



I I I
S1_3.6_ane Si 3 6_ene S1_3_6_diene

>0>I >0
SI_3_6_ene_1 S1_3_6_ene_2 Si3_6-diene_1_3

28.8 kcel/mol 29.8 kcalftnol 32.1 kcal/mol

Figure 4.3: Example sub-tree that organizes polycyclic ring corrections with derived
ring correction for enthalpy of formation

as its estimated correction.

Figure 4.4: Example molecule which does not exactly match any node in the tree
in Figure 4.3. The tree gives enthalpy estimation of 32.1 kcal/mol, while its real
enthalpy of formation from quantum calculation in this study is 27 kcal/mol, leading

to around 5 kcal/mol error

4.2.2 Model test

To evaluate the performance of this similarity match algorithm, an external large

quantum calculation dataset [4] is used. This dataset contains 134,000 molecules and

has enabled several interesting big data studies [9, 10] that connect machine learning

models to molecular property estimation. This chapter selects cyclic molecules in

that dataset as the test dataset (named polycyclic 2954 table) and categorizes

the cyclics into small cyclics (1-ring and 2-ring molecules, see example in Figure

4.5(a)), large linear cyclics (at least 3-ring molecules, and atoms are at most shared

by two rings, see example in Figure 4.5(b)) and large fused cyclics (at least 3-ring

molecules, rings are heavily fused (having atoms shared by at least 3 rings), see

example in Figure 4.5(c)).

With the polycyclic tree (mostly small cyclics), the similarity match algorithm can

successfully reduce the mean absolute error of Hf (298 K) from 32 kcal/mol (original

group additivity method in cases where the ring cluster structure of interest had

not been studied previously) to 3 kcal/mol for small cyclics in the test dataset by

Ramakrishnan, et al. (see Table 4.1 and Figure 4.6) [4], which is expected since the

tree includes many pre-calculated small cyclic corrections.
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(a) (b) (C)

Figure 4.5: Example cyclics in each category: (a) small cyclics, (b) large linear cyclics,
and (c) large fused cyclics

Table 4.1: Mean absolute error (kcal/mol) of Hf (298 K) for each category in vali-
dataion dataset

Method small cyclics large linear cyclics large fused cyclics

Group Additivity Method 32 65 80
+ Similarity Match 3 29 40

+ Bicyclic Decomposition 3 4.9 9.8

Even though there are no large polycyclics in the tree, this similarity match ap-

proach also improves the predictions for large polycyclics by sub-molecule isomor-

phism (see an example in the Supporting Information for how a 3-ring molecule

matches a 2-ring node if no 3-ring node available in tree), cutting the mean absolute

error by about a factor of two (Table 4.1).

To further improve the accuracy of large cyclics thermochemistry prediction, ob-

vious approaches would require pre-calculated data on large cyclics. However, the

number of possible large polycyclics increases rapidly with the number of rings. To

avoid this poor scaling, we built a model that estimates ring corrections of polycyclics

from known corrections for bicyclics, as discussed in Section 4.3.

4.3 Bicyclic Decomposition

4.3.1 Method development

Having available ring correction data mostly for small cyclics, a model that estimates

the thermochemistry of large cyclics from small cyclic building blocks is needed. We

tried three methods, as shown in Figure 4.7.

Method (a) simply sums up ring correction contributions from single rings that

make up the targeted large cyclics. One main drawback of this method is that it

only counts the ring strain contributions from individual rings and overlooks the

extra strain from the fused part of the bicyclic ring AB in Figure 4.8. That is
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Figure 4.6: Predictions of enthalpy of formation (x axis) vs. quantum mechan-
ics values (y axis, calculated by Ramakrishnan using DFT method B3LYP/6-
31G(2df,p)) with various models and cyclic types, unit: kcal/mol, dataset:
polycyclic_2954_table

the reason method (a) underestimates the ring corrections by over 60 kcal/mol in

some cases (Figure 4.7). Significant discrepancy is observed between actual ring

corrections needed to accurately estimate bicyclics and the sums of individual ring

strain corrections (Figure 4.9).

Method (b) in Figure 4.7 divides a large cyclic into bicyclic components (called bi-

cyclic decomposition), which automatically captures thermo contributions from fused

parts. For instance, it decomposes a tricyclic into two bicyclics and estimates its ring

corrections by taking the sum of bicylic corrections.

Method (b) reduces the error in predicted enthalpy of formation of tricyclo-octane

to 27 kcal/mol by adding ring strain contributions from two fused parts in the tricyclic
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enthalpy correction
)A (estimated):

58.9 kcal/mol

(b) enthalpy correction
(estimated):

146.5 kcal/mol

enthalpy correction
(M06-2X):

119.4 kcal/mol

(c) enthalpy correction
----- 1I>- (estimated):

120.3 kcal/mol

Figure 4.7: Large cyclic corrections estimation method evolution: (a) sum of indi-
vidual single ring corrections, (b) sum of bicyclic corrections, and (c) sum of bicyclic
corrections with overlapping ring correction subtraction

estimated by

(ring AB) (ring A) (ring B)

Figure 4.8: bicyclic AB correction estimated as sum of single ring A and B's correc-
tions

(Figure 4.7). However, it always over-predicts the enthalpy corrections, due to the

fact that method (b) double counts the contribution of the middle 4-member ring. By

eliminating the overlapped ring correction, method (c) shown in Figure 4.7 calculates

a ring strain that agrees well with 'true' ring correction (here we use our M06-

2X calculations as 'true" values). In this particular example, the prediction error is

remarkably reduced to 0.9 kcal/mol by adopting the bicyclic decomposition approach.

In Subsection 4.3.3, we conducted a more thorough test of the performance of method

(c) .

4.3.2 Bicyclic correction estimation

We attempted to calculate commonly seen bicyclics and store them in the database.

But polycylics may have bicyclic components that are not registered in our database.

Often these are highly strained (e.g., consecutive double bonds in a ring) such as the

examples in Figure 4.10.

To maintain high accuracy, adding relevant bicyclic clusters into the database

would be a long term solution. In this study we developed an additional layer (Figure
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Figure 4.9: Ring corrections from bicyclics are very different from sum of corrections
of individual single rings that make up the bicyclics. Note s2 bicyclics are those with
2-atom bridges, and s3 bicyclics are those with 3-atom bridges.

CO
C0

0

Figure 4.10: Bicyclic
recorded in databases,
work exploration

structures like these with high ring strain are usually not
but they can be formed as intermediates during reaction net-

4.11) in the original bicyclic decomposition method for cases where requested bicyclic

components are not available or matched nodes are not similar enough to the target

bicyclics.

c0-KO-+DOO- c1-0

Figure 4.11: Bicyclic correction estimation scheme for bicyclics missing from the
database
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4.3.3 Model test

Using the same polycylic dataset, the bicyclic decomposition method significantly

reduces prediction error for both small and large cyclics (Figure 4.6).

For small cyclics (:; 2-ring molecules), bicyclics decomposition automatically

falls back to the similarity match method, which guarantees the prediction accuracy

achieved by similarity match, see Table 4.1. For large polycyclics, bicyclic decompo-

sition outperforms similarity match, bringing the error down to 4.9 kcal/mol and 9.8

kcal/mol for large linear cyclics and large fused cyclics, respectively.

Our algorithm was aslo tested against the data set by Osmont, et al. [11] who used

B3LYP/6-31g(d,p) to calculate enthalpy of formation for propellanes. Our bicyclic

decomposition algorithm, without running any further quantum chemistry calcula-

tions, was able to get enthalpies of dispiro[2.0.2.1]heptane, trispiro[2.0.2.0.2.0]nonane,

trispiro[2.0.0.2. 1. 1]nonane and tetraspiro [2.0.0.0.2.1.1. 1]undecane with DFT accuracy,

as shown in Table 4.2.

Table 4.2: Experimental and calculated enthalpy of formation at 298K (kcal/mol) for
spiropentane related polycyclic compounds

Structure Experimental value Osmont [11] DFT data This work

X 44.3 39.0 44.3

72.4 67.7 69.0

102.7 96.5 100.1

101.2 96.5 97.1

V7 V+V 130.0 125.3 131.3

For users that are interested in using this method to estimate polycylic ther-

mochemistry, a web application (http: //rmg.mit. edu/moleculesearch) is made

available to allow users to input molecules (with elements of C, H, 0) using species

identifiers such as SMILES, InChI, CAS number or species name and to compute

that molecule's thermochemistry. A screenshot illustrating the output from this web

tool is shown in Figure 4.12.
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RMG * Datbase Thwmmdynamns

Thermodynamics Data
Structure

If you have Uimmadynamlc dat to enntbuje to ie specte, you can add an enny hem: AY u must og in first.

Thermodynamic Data

Result #1 - Group additty

Comma:o ThefIn gomp adiy eantelm 9roMpCa.C*CaCW) + ONbe(R)+ *group(Ca.CCvHt-) + OMhe(R) + grotW(Ce.Cd6-CdB)C8Cti) + OMiefR) +
gWC4HCda.CtPCcuI) + oheM) + group(CeCat) other (R) +rou~t(Csa.CseH) + otw(R) + Woup(Ce-CsHN) + dd(R) + gmup(Ca.CaCWH) +
othur(R) gr o(Ca ) + oter(R) + group(Cd-CdsH) + othr(R) + goup(Cde-CdeC8H) + aWhr(R) + polyoyc(s2_5_6._ane) + poyycNc(3_5_6._ene_5) -

Srrmwy mrner I

Aur(298 K) 20.28 kcel/mol
ASj(298 K) = 90.60 cWl/(mol *K)

C(300 K) = 38.88 cal/(mol * K)
C(400 K) = 53.76 cal/(uol*K)
0(500 K) = 67.47 cal/(mol * K)

C(600 K) = 78.52 cal/(mol * K)

C(800 K) = 96.21 cal/(mol a K)

0(1000 K) = 109.63 cal/(mol * K)
C(1500 K) = 129.01 cal/(mol eK)

Figure 4.12: Example polycyclic thermochemistry estimation in web application at
rmg.mit.edu

4.4 Discussion

The new thermochemistry estimator based on group addivity, which combines simi-

larity match and the bicyclic decomposition method, predicts polycyclic thermochem-

istry more accurately. This extension makes the group additivity method generaliz-

able for polycyclics without requiring much pre-calculated data.

4.4.1 Large fused cyclics

For bicyclics and linear polycyclics, the typical error of 3 ~ 5 kcal/mol is generally

acceptable as a first approximation, especially when dealing with molecules with

more than 10 carbons. The underlying reason that such a simple model performs

well is that the decomposed bicyclic components act relatively independently; the

thermodynamic contribution from the inter-bicyclic interaction is small compared

with the ring strain contributions from the bicyclic itself.

For heavily fused cyclics, there are atoms shared by more than two rings. For

instance, tricyclic A in Figure 4.13 has one such atom (atom 1). To account for all

the fused parts (bond 1-2, 1-3 and 1-4), the bicyclic decompostion algorithm has to

decompose tricyclic A into 3 bicyclics; bicyclic B is for contribution from bond 1-4,

bicyclic C for 1-2 and bicyclic D for 1-3. In this case, the thermodynamic contribution

from the inter-bicyclic interaction is more important than in the large linear cyclic
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trcydicA bkyCkB bicydkCH bkydicD

71.4 kcal/mol 37.9 kcallmol 56.2 kcal/mol 37.3 kcal/mol 27.5 kcal/mol 26.2 kcal/mol 6.3 kcallmol

Figure 4.13: Bicyclic decompostion of an example heavily fused cyclic. The algorithm
estimatates its ring correction for enthalpy of formation to be 71.4 kcal/mol using
data from small rings, while direct quantum calculation gives 65 kcal/mol, leading to

around 6 kcal/mol error

cases. That explains why the prediction error increases to 10 kcal/mol for those

heavily fused cyclics.

4.4.2 Hetero-atom polycyclics

In many real applications, hetero-atoms such as 0, S, and N are embedded in poly-

cylics. There are usually fewer data available on heteropolycyclics than on polycyclic

hydrocarbons. However if ring corrections depend more on ring structures than atom

types, one can use the same database created in this chapter to estimate heteroatom

polycyclic thermochemistry.

Predictions made in this way for oxygen-embedded polycyclics agree well with the

quantum mechanically calculated values for over 18,000 oxygen-embedded polycyclics

[4] (Table 4.3). Predictions for hetero-atom polycyclics achieve similar accuracy to

hydrocarbon polycyclics.

Table 4.3: Mean absolute error (kcal/mol) of Hf(298 K) for each category of oxygen-

embeded polycyclics

Method small cyclics large linear cyclics large fused cyclics

Group Additivity Method 44 78 84
+ Similarity Match 5 34 40

+ Bicyclic Decomposition 5 6.6 10.6

4.4.3 Heat capacity and standard entropy predictions

Besides H1 (298 K), the methods proposed by this chapter also improve heat capacity

prediction accuracy by a factor of 6 ~ 10 for all three categories of polycyclics (Table

4.4). This can be crucial for chemical systems operated at temperatures other than

298K. For standard entropy S(298 K) predictions (Table 4.5), we also observed a

similar accuracy boost using the bicyclic decomposition method. The good agreement
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Table 4.4: Mean absolute error (cal/mol/K) of CO( 2 98 K) for each category of poly-
cyclics

Method small cyclics large linear cyclics large fused cyclics

Group Additivity Method 6.1 10.0 10.5
+ Similarity Match 1.1 2.0 2.7

+ Bicyclic Decomposition 1.1 0.7 1.7

seems to suggest the contributions to entropy and heat capacity from ring strains are

also additive (although we note the entropy prediction for large fused cyclics has large

uncertainties).

Table 4.5: Mean absolute error (cal/mol/K) of S(298 K) for each category of poly-
cyclics

Method small cyclics large linear cyclics large fused cyclics

Group Additivity Method 44.5 93.3 103.5
+ Similarity Match 3.6 36.7 47.6

+ Bicyclic Decomposition 3.6 4.9 11.9

4.5 Conclusion

The similarity match algorithm combined with the bicyclic decomposition model can

estimate unknown ring corrections and can be applied to various kinds of polycyclics.

By assuming bicyclic ring strain contributions are independent and additive, the

proposed method is both interpretable and effective (mean absolute error of Hf (298

K): 3 ~ 5 kcal/mol) for bicyclics and linear polycyclics. Its accuracy starts dropping

(mean absolute error of Hf (298 K): 10 kcal/mol) for large heavily fused cyclics, which

motivates us to develop a novel thermocehmistry estimator discussed in Chapter 5.

Besides formation enthalpy, the method also shows good performance in heat capacity

and entropy predictions and is applied well to some heteroatomic polycyclics (tested

on oxygen-embedded polycyclics).

Overall, this method provides a quick and moderately accurate way of estimating

themochemistry of large unknown polycyclics where quantum mechanical calculation

may be significantly more expensive. We have implemented this new method in RMG

and a web service is freely accessible via http: //rmg. mit . edu/moleculesearch.
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4.6 Appendix I: computed thermochemistry of bicyclics

The 190 pre-calculated molecules are mostly bicyclics. Table 4.6 records the full

collection. M06-2X/cc-pVTZ is employed with RRHO partition functions. Note the

values listed here are thermochemistry for molecules.

Ring corrections derived from these row values and Benson group values used for

the derivation are recorded in RMG-database, which is hosted on Github. Specifically,

ring corrections are stored at https: //github. com/ReactionMechanismGenerator/

RMG-dat abase/blob/mast er/input /thermo/groups/polycyclic .py and Benson group

values are at https: //github. com/ReactionMechanismGenerator/RMG-database/

blob/master/input/thermo/groups/group.py.

Table 4.6: Pre-calculated thermo-properties of 190 bycyclics

Structure Label in RMG tree AfH(298K) S(298K) Cp(300K) Cp(1000K) CP(1500K)
kcal/mol cal/mol/K cal/mol/K cal/mol/K cal/mol/K

>< si_3_3_ane 40.87 67.23 21.09 53.04 61.46

>< si_3_3_ene 95.61 67.64 20.20 45.94 52.32

si_3_4_ane 31.71 75.52 25.26 65.68 76.42

si_3_4_ene 64.25 73.35 23.59 58.31 67.12

si_3_5_ane 8.12 79.72 29.10 78.09 91.19

si_3 5_diene_1_3 55.75 74.45 25.61 63.37 72.54

si_3_5_ene_1 33.86 78.67 27.63 70.79 81.91
0)< si_3_5_ene_2 33.86 78.68 27.63 70.79 81.91

si_3_6_ane -3.92 82.94 33.38 90.63 106.03

si_3_6_diene_1i3 49.92 81.16 30.36 75.97 87.44

si_3_6_diene_1_4 48.56 79.91 30.29 75.88 87.40

si_3_6_ene_1 23.18 82.32 31.90 83.26 96.72

si_36ene_2 23.18 82.32 31.90 83.26 96.72

00' si_4_4_ane 26.49 78.15 29.14 78.23 91.32

si_4_4_diene_1_5 91.71 75.80 26.19 63.58 72.80

K0~ si 4_4_eneI 58.98 78.38 27.69 70.94 82.08

LIIX si_4_5_ane 3.81 85.56 33.58 90.71 106.14

^ si4_5_diene_1_3 55.69 80.94 29.97 76.09 87.55

si_4_5_dienei_6 62.88 81.79 30.22 76.05 87.58

si_4_5_diene_2_6 63.38 81.12 30.12 76.10 87.62

sC_4_5_ene1_ 30.23 82.76 31.71 83.42 96.87
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00X si_4_5_ene_2 30.53 82.26 31.52 83.42 96.88

sC_4_5_ene_6 36.82 84.58 32.08 83.39 96.85

sl l4_6-ane -7.63 87.69 37.76 103.35 121.02

sl si_4_6_diene_1_3 47.30 85.37 34.63 88.63 102.25

l si_4_6_diene_1_4 46.94 86.59 34.75 88.62 102.29

sK si_4_6_6diene_17 53.01 85.77 34.70 88.62 102.32

s14_6_diene_2_7 52.80 85.32 34.63 88.63 102.32

KX si_4__ene_1 20.39 86.92 36.24 95.95 111.69

si146ene_2 20.38 86.97 36.23 95.94 111.69

sl si_4_6 ene 7 25.39 86.30 36.09 95.90 111.69

00 si__5_ane -17.99 88.86 37.57 103.18 120.97

sX si5_5_diene_1_3 33.47 86.09 34.21 88.50 102.32

00 s55diene_1_6 35.22 86.50 34.33 88.56 102.38

0ii_si_5-diene_1_7 35.17 85.55 34.13 88.56 102.40

X s 5 5 _diene 2_7 206.39 88.46 37.12 87.89 100.95

00 s55_enel1 8.54 89.98 35.82 95.88 111.66

00 si_5_5_ene_2 8.10 87.37 35.88 95.91 111.69

O D si__6_ane -28.08 92.09 41.62 115.67 135.76

00/ si_5_6_diene_1_3 25.34 90.33 38.84 101.06 117.06

0 D 15_6_diene1_4 26.21 92.85 38.81 101.01 117.07

00 s56diene_1_7 25.76 90.07 38.77 101.06 117.09

si _5_6_2diene_1-8 25.68 89.64 38.71 101.13 117.12

lD 15_6_diene_2_7 24.78 89.46 38.69 101.09 117.10

s0I s15_6_diene_2-8 25.41 89.34 38.56 101.09 117.11

00 si 5 6 diene 7_9 23.54 88.66 38.29 100.99 117.12

X si_5_6_ene_1 -0.61 93.01 40.37 108.41 126.42

slXI _si56ene_2 -1.37 91.03 40.28 108.34 126.38

0 si_56ene7 -2.01 90.65 40.26 108.43 126.47

00 si_5-6ene-8 -2.01 90.64 40.26 108.43 126.47

0 si_6_6_ane -37.61 94.71 46.05 128.31 150.63

' D i__6_diene_1_3 15.68 93.57 43.27 113.71 131.96

C D si_6_6_diene_1_4 16.45 94.96 43.15 113.52 131.88

si_6_6_diene_1_7 17.41 93.09 43.21 113.55 131.90

sl_6-6_diene_1_8 17.05 94.02 43.21 113.61 131.92
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sl_6_6_diene_2_8 15.41 91.61 43.12 113.65 131.96

- s1_66_ene_1 -9.99 94.70 44.61 120.89 141.21

si_6_6_ene_2 -10.87 93.89 44.50 120.90 141.24

s2_3_3_ane 49.72 61.87 15.50 40.24 46.60

s2_3_3_ene 113.84 62.54 14.33 32.88 37.40

s2_3_4_ane 37.61 66.26 19.20 52.73 61.40

s2_3_4_ene_1 79.26 66.23 17.88 45.58 52.21

s2_3_5_ane 13.73 73.13 23.58 65.33 76.29

s2_3_5_ene_1 38.45 70.48 21.72 57.99 66.97

C) s2_3_6_ane 8.53 79.47 28.42 77.88 91.12

C s2_3_6_ben 88.52 73.33 22.72 55.40 63.14

s2_3-6_diene_1_3 50.99 74.00 24.63 63.08 72.45

s2_3_6_ene_1 29.65 75.58 26.35 70.42 81.75

s2_3_6_ene_2 29.87 75.52 26.60 70.46 81.82

s2_4_4_ane 34.40 72.46 23.74 65.51 76.44

1WT s2_4_4_ene_1 30.00 70.98 22.48 57.70 66.89

s2_4_5_ane 9.44 76.07 27.63 77.91 91.20

CsD s24_5_diene_0_3 73.79 75.63 25.29 63.34 72.69

s2_4_5_diene_4_6 119.13 74.98 24.40 61.45 70.74

CX s2_4_5_ene_1 34.05 75.66 25.88 70.53 81.89

s s2_4_6_ane 0.56 81.37 32.09 90.41 106.03

s2_4_6 ben 50.11 77.61 26.83 68.03 78.02

s2_4_6_diene_1_3 51.90 79.35 28.92 75.70 87.41

s2_4_6_diene_1_6 58.62 79.41 29.05 75.73 87.46

EOs2-4-6diene-26 59.96 80.39 29.41 75.83 87.53

s2_46diene57 97.66 81.98 30.89 76.06 87.51

s2_4_6_ene_1 25.59 80.44 30.50 83.03 96.71

o s2_4_6-ene_2 29.14 82.16 30.60 83.04 96.74

E s2_4_6-ene-6 47.27 79.70 30.39 83.00 96.72

s2_5_5_ane -14.47 79.90 31.54 90.31 105.96

0h0/ s2_5_5_diene_0_2 40.26 79.67 28.81 75.72 87.45

CO s2_5_5_diene_0_3 36.35 79.52 29.22 75.74 87.45

s2_5_5_diene_0_4 37.29 81.85 29.47 75.53 87.37

s2_5_5_diene_0_5 42.58 79.04 28.72 75.64 87.43
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s2_5_5_diene_0_6 39.38 78.91 28.62 75.62 87.42

s2___diene_1_5 37.56 79.21 28.38 75.64 87.41

s2_5_5_diene_1-6 38.78 79.53 28.49 75.70 87.45

Co s2_5_5_diene_m_2 37.66 80.30 29.23 75.59 87.41

Cl s2_S-Sene-O 14.24 81.61 30.65 82.99 96.73

Co s2_5_5_ene_1 11.24 81.29 30.15 83.04 96.74

Co s2_5_5_enem 12.38 81.49 31.07 82.79 96.67

CO s2_5_5_tetraene-0o2_4_6 96.36 76.11 25.38 60.81 68.72

CO s2_5_6_ane -23.45 87.64 36.72 102.94 120.89

Ss2_5-6ben 18.42 81.95 30.95 80.50 92.82

s2_5_6_diene_0_2 27.17 84.14 33.47 88.20 102.27

CC s2_5_6_diene_0_3 29.41 85.93 33.67 88.16 102.25

20 s2_5_6_diene_0_4 26.86 84.97 33.95 88.17 102.25

20 s2_S6-diene-0-5 23.69 85.82 33.83 88.07 102.20

C0 s2_5_6_diene_0_6 29.83 84.03 33.39 88.17 102.27

20 s2_5_6_diene_0_7 26.08 84.00 33.33 88.15 102.25

C0 s2_5_6_diene_1_3 29.95 86.71 33.21 88.15 102.21

CI s2_5 6 diene_1_5 32.37 85.27 33.77 88.25 102.30

C0 s2_S6-diene_61_ 30.28 83.85 33.17 88.21 102.27

C0 s2_5_6_diene_1_7 31.10 83.86 33.11 88.20 102.26

20 s2_6-_diene_2-5 29.36 86.20 33.76 88.18 102.28

Ss2_5_6diene_2_6 32.24 83.19 33.10 88.24 102.31

C0 s2_5_6_diene_5_7 25.30 83.49 33.19 88.22 102.26

C0 s2_5_6_diene_5_8 24.67 83.45 33.84 88.28 102.31

0 s2_56diene-m_1 26.13 85.93 34.06 88.15 102.21

0 s2_56diene-m_2 25.06 86.21 33.94 88.03 102.18

20 s2_5_6_dienem_7 23.24 84.68 33.83 88.24 102.31

Co s2_5_6_ene_0 1.75 86.31 35.29 95.54 111.57

20 s2_5_6_ene_1 4.36 85.92 34.83 95.49 111.52

s2_S6-ene_2 6.22 85.10 34.74 95.54 111.53

20 s2_5_6_ene_5 6.01 86.68 35.45 95.54 111.55
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s2_5_6_ene_6 6.61 85.77 34.95 95.59 111.58

s2_5_6_enem -1.05 87.16 35.58 95.38 111.56

00 s2_6_6_ane -35.51 89.21 41.18 115.60 135.82

s2_6_6_ben 10.52 87.14 35.56 93.04 107.67

s2_6-6_ben-ene_1 34.45 85.01 33.78 85.66 98.34

s2-6_6_diene_0_2 21.86 89.50 38.24 100.73 117.00

s2_6_6_diene_0_3 17.87 89.18 37.97 100.70 117.10

s2_6_6_diene_0_4 18.90 88.14 38.38 100.72 117.02

cc s2_6_6_diene_0_5 14.26 87.86 38.14 100.62 116.97

s2_6_6_diene_0_6 72.90 88.59 38.55 101.21 117.21

s2_6_6_diene_0-7 20.57 89.64 38.16 100.69 117.02

s2_6_6_diene_0_8 17.87 88.86 37.95 100.67 117.07

s2_6_6_diene_1_3 19.90 86.51 37.77 100.83 117.16

s2_6_6_diene_1_6 20.92 87.02 37.80 100.73 117.09

s2_6_6_diene_1_7 129.14 86.94 38.44 101.49 117.44

s2_6_6_diene_1_8 21.64 88.10 37.74 100.76 117.11

s2_6_6_diene_2_7 20.67 87.98 37.79 100.79 117.13

s2_6_6_diene-m_1 16.93 90.17 38.45 100.65 117.03

s2_6_6_diene-m_2 16.49 89.51 38.44 100.59 117.05

s2_6_6_ene_0 -8.08 90.03 39.58 108.04 126.38

s2_6_6_ene_1 -0.62 89.55 39.37 108.12 126.39

s2_6_6_ene_2 -7.55 88.77 39.71 108.20 126.48

s2_6_6_ene-m -9.82 88.32 39.87 107.91 126.32

s3_4_4_ane 49.94 62.34 17.96 52.71 61.48

s3_4_4_diene_0_2 152.09 63.37 16.06 38.12 42.95

s3_44ene_0 112.10 66.61 18.17 45.60 52.28

s3_4_5_ane 18.81 68.86 22.23 65.27 76.30

s3_4_5_diene_0_2 118.33 67.48 20.06 50.66 57.77

s3_4_5_diene_0_3 127.78 73.35 22.67 51.04 57.85

s3_4_5_diene_1_3 125.49 69.87 20.62 50.94 57.91

s3_4_5_diene_3_4 145.71 69.18 21.10 50.90 57.89

s3_4_5_ene_0 130.15 70.23 22.32 58.53 67.19
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s3_4_5_ene_1 60.44 67.42 20.81 58.08 67.05

s3_4_5_ene_3 99.29 73.46 23.12 58.44 67.27

s3_4_6_ane 9.37 75.59 26.99 77.75 91.13

s3_4_6_diene_0_2 115.97 72.72 24.41 63.48 72.74

0 s3_4_6_diene 0_3 82.15 73.20 24.32 63.26 72.47

s3_4_6diene_0_4 93.02 77.39 26.87 63.54 72.57

s3_4_6_diene_1_4 110.24 72.61 24.23 63.42 72.72

s3_4_6_diene_1i5 116.53 73.06 24.42 63.41 72.74

s3_4_6_ene_0 80.33 73.56 25.91 70.88 81.86

0 s3_4_6_ene_1 35.62 73.59 25.21 70.43 81.83

s3_4_6_ene_4 80.56 74.66 26.02 70.67 81.96

s3_5_5_ane -6.59 73.65 26.40 77.69 91.07

s3_5_5_diene_1_4 64.50 70.04 23.44 63.30 72.57

s3_5_5_ene_1 26.24 72.98 24.81 70.45 81.79

s3_5_6 ane -17.27 79.25 31.03 90.24 105.94

s3_5_6_diene_1_5 42.66 76.43 28.15 75.81 87.27

s3_5_6_ene_1 10.51 78.43 29.42 82.84 96.61

s3_5_6_ene_5 14.24 77.61 29.35 82.89 96.62

CD ~ s3_6_6_ane -22.57 82.55 35.34 102.51 120.64

s366_diene_02 49.78 81.32 32.60 88.17 102.22

CDs3_6_6_diene_0_3 65.54 80.99 32.94 88.37 102.27

s3_6_6_diene-0_4 60.78 80.07 33.13 88.35 102.26

s366-diene-0_5 43.85 81.27 32.55 88.19 102.22

/CD ss3-66diene-0o6 110.77 80.51 32.82 88.32 102.20

C s3_6_6_diene_0_m 125.35 81.56 33.56 88.78 102.52

CD s3_6_6_diene1_5 26.80 80.01 32.33 87.99 102.15

m s36_6_diene1_6 30.44 83.28 32.60 87.98 102.13

6 s36_6_diene_1_8 77.43 81.93 33.06 88.36 102.32

K s3_6_6_diene_im 78.57 81.61 33.00 88.42 102.36

s366-ene-0 54.35 82.41 34.43 95.71 111.60

K s3_6-6ene_1 0.10 82.73 34.04 95.44 111.51

\-I4- s3_6_6_ene_4 95.55 86.73 37.12 96.46 111.86

CID s3_6_7_ane -23.91 88.98 40.63 115.40 135.68
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s3_6_7_diene_6_9-0 118.04 86.85 38.44 101.29 117.32

s3_6_7_ene_6 28.52 86.49 38.49 107.94 126.24

s4_6_8_ane 26.56 91.69 42.02 115.68 135.62

s4_6_8_diene_7_9 41.54 86.07 37.66 100.86 117.12

s4-6-8_ene_7 15.63 88.48 39.52 108.21 126.43

4.7 Appendix II: Similarity match example

Here is an example where a big cyclic molecule (see Figure 4.15) that does not have

exact match in tree (see Figure 4.14). The similarity match algorithm will still match

an existing node in the tree for the molecule.

SI_3-6 >

I I I
Si13 6 ane Si3 6 ene S_3 6 diene

I I I

S1_3_6_ene_2 S1_3_6_ene_6 Si_3_6_diene_1_3 Si3_6_diene_1_4 Si_3_6_diene_1_6

Figure 4.14: Example sub-tree that organizes polycyclic ring corrections

It uses sub-graph isomorphism check to find which nodes are contained by the

big molecule and selects the correction of the first matched node. In this case, both

s1_3_6_ene_2 and s_3_6_diene_1__4 are contained in the example big molecule,

but the correction of first match si__3_6_ene__2 will be applied. This explaines

necessity of bicyclic decomposition algorithm.

Figure 4.15: Example tricyclic that does not have exact match in the tree
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5
ADAPTIVE THERMOCHEMISTRY ESTIMATOR USING

MOLECULAR CONVOLUTIONAL NEURAL NETWORKS

Heuristic method is effective in estimating thermochemistry of large polycyclics from

small polycyclic data, as shown in Chapter 4. In Hf(298 K) prediction, it achieves

moderately accurate results (MAE- 5 kcal/mol from Table 4.1 and Table 4.3) for

small cyclics and large linear cyclics. As polycylics become more fused and compli-

cated, its accuracy starts to drop (MAE- 10 kcal/mol with large fused polycyclic). It

is because heuristic method assumes bicyclic components act independently without

accounting for inter-bicyclic interaction, as described in Section 4.4.1. To account for

that, tricyclic decomposition (similar to bicyclic decomposition) can be designed to

help capture the interaction. It requires precalculation of possible kinds of tricyclics,

of which the total number is much larger than that of bicyclics.

Instead of creating more heuristics, this chapter focuses on a machine learning

approach to further improve thermochemistry estimator. A general machine learning

framework for molecular property prediction consists of two steps: featurization and

regression (Figure 5.1). Featurization converts a molecule (e.g., node-edge graphs in

2D representation) to a feature vector with fixed length, and the regression maps the

vector to property (scalar).

featurization regression

Molecule ? Feature vector ?

FgP rameters p

Figure 5.1: A general machine learning framework for molecular property prediction
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5.1 Previous work revisited

The thermochemistry estimators previously developed for RMG can also fit into this

framework. Group additivity method (see Figure 5.2) featurizes a molecule by count-

ing pre-defined groups present in the molecule; the size of pre-defined group list

defines the final feature vector size. Its regression part is linear regression model with

coefficients being group contributions.

featurization regression

HC

H2  H
S HC-CH, H2

H C 1

Hf1 4

10

Figure 5.2: Group additivity method with featurization and regression

Occasionally representation collision (Figure 5.3) takes place where multiple molecules

are mapped to a same feature vector. It's because pre-defined group list isn't com-

prehensive enough; usually more specific groups with larger defining neighborhood

can be added to the list to resolve collision, as shown in Figure 5.4. The widely used

Extended-Connectivity Fingerprint (ECFP) also originates from the similar idea [1];

its framework allows users to choose radius of a center atom's defining neighborhood.

The idea of adding correction for ring strain can be regarded as addition of ring

groups to the list (Figure 5.5). Since there's an infinite number of ring groups,
practically only those that have appeared in the training data are added. As expected

such estimator makes much less accurate predictions for molecules with ring groups

outside training data.

Heuristic method reveals the fact that the ring strain of a large group (e.g., tricyclic

groups) can be expressed by those of small ones (e.g., monocyclic and bicyclic groups)

and utilizes it to reduce the infinite feature space dimension to approximately the total

number of possible monocyclic and bicyclic groups (see Figure 5.6).
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Hfre = -40.5 kcal/mol

Hf,tu = -21.4 kcal/mol

HIC-CM3

H
1 
/

Htu,= -17.5 kcaL/mol

C C \/C

=fm +2.6 kcal/mol

Figure 5.3: Representation c
vector

"kCN~ HC-CH3
12C~ '8 \ /

I I pH c"I

ollision: multiple molecules are mapped to a same feature

CH,

CH,

Figure 5.4: More specific groups with larger defining neighborhood compared with

Figure 5.2

5.2 New estimator highlights

The previous estimators share a common part: human-designed featurization. When

encountering a new molecule domain with unsatisfactory estimation accuracy, the

estimators need new chemical insights from a human to modify featurization (e.g.,

adding more specific groups). When the insights are not available, estimators expe-

rience poor predictive performance and researchers tend to include as many features

as possible.

In this study, we created a new estimator with learnable featurization to reduce

the requirement of human chemical expertise. The learnable featurization, enabled by

molecular convolutional neural networks (Section 5.3), achieves better performance

than all the previous methods on thermochemistry predictions for polycyclics (Sec-
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H3C

C
H2

Hf
3

EO

HC-CH,

~~cH-cH,

Figure 5.5: Ring correction method expands the pre-defined group list with infinite
number of ring groups. Practically it only add those covered by training data

Hg

140\ cH

Figure 5.6: Heuristic method utilizes the ring strain dependence between large ring
groups and small ones and reduces feature space dimension by only pre-defining
monocyclic and bicyclic groups

tion 5.5); in particular, this estimator was able to gain higher accuracy for large fused

polycyclics than heuristic method without needing any human insights. Through a

self-evolving pipeline (Section 5.6), the estimator shows good extensibility; its pre-

diction capability has expanded in three dimensions as below.

* molecule shape: from cyclics to non-cyclics

* heteroatom: from C,H,O-based to nitrogen-containing molecules

* prediction task: from formation enthalpy to entropy and heat capacity
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5.3 Molecular convolutional neural networks

To make learnable featurization for molecules, Aspuru-Guzik, et al. designed convo-

lutional neural networks for molecular graphs and got promising results for solubility,
drug efficacy and photovoltaic efficiency applications [2]. Coley, et al. further applied

it to predictions on melting point, toxicity, etc [3]. This is the first time that molec-

ular convolutional neural network (thereafter MCNN) is applied to thermochemistry

prediction (architecture in Figure 5.7).

[1 Weights

Ar-_ Dot product

0 Element-wise product

0 G Element-wise sum

Arl List of atom vectors after i-th conv

Ar-_ -11 + Output

Ar--2  0
Hidden Layer

MolConv Layers Leamed Fingerprint

Figure 5.7: New thermochemistry estimator parameterizes featurization module via
MCNN and uses fully-connected neural network with one hidden layer as regression
module

Each molecule fed to MCNN is represented by three inputs: atom fingerprint

matrix (denoted by A), bond fingerprint tensor (denoted by B), connectivity matrix

(denoted by C). A has dimensionality of na x fa, B na x na x fb, and C na x n, where

na is the number of atoms, fa the size of atom fingerprint and fb the size of bond

fingerprint. The output of MCNN is molecular fingerprint vector with size of fin.

5.3.1 atom fingerprint matrix A

For a given molecule, A stores the information at atom level; each atom has a finger-

print vector therefore A has size of na x fa. Atom fingerprint includes basic atomic

information such as nuclear charge, number of hydrogens attached, appearance in

n-member ring, etc.

5.3.2 bond fingerprint matrix B

For a given molecule, B stores the information at bond level; each bond has a fin-

gerprint vector therefore B has size of na x na x fb. Bond fingerprint includes basic

information such as bond order, whether is in a ring, etc.
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5.3.3 connectivity matrix C

For a given molecule, each possible pair of atoms has an entry in C; 1 indicates

there's a bond between the pair, zero otherwise. C has size of na x n. For algorithm

implementation purpose, we set all diagonal entries as 1.

5.3.4 molecular convolution

In molecular convolution, we loop over each atom in the molecule and add its direct

neighbors' atom fingerprints to its own fingerprint with certain weights, which gives

a new convoluted atom fingerprint for each atom. Consecutive convolution is made

possible by the iterative algorithm below and it captures neighborhood information

with increasing radius r:

Ar= = A

A r--"1 = tanh([C -Ar=" , Baggr] -W + b) , m = ,., R

where Bagg, is a matrix (na x fb) by summing tensor B along the second dimension,

namely Baggrij = Ek Bigk, R is the maximum radius being considered and W and b

are weights and offsets to be trained.

Each atom fingerprint matrix has its own contribution to the final molecule fin-

gerprint:

fingerprint = -1 ( wsoftmax(A'=" ' W b'))
--. ma (=A +b)na X f

\ / xn,,

where W and b are another set of weights and offsets to be trained.

5.4 Datasets

In order to train and test the new estimators, two datasets were created from an

earlier paper by Ramakrishnan [4]; one named polycyclic_2954_table has 2954

cyclic hydrocarbons and the other named cyclic_0_only_table has 25620 cyclic

oxygenates. Three thermochemistry properties are included in the datasets: forma-

tion enthalpy at 298 K (unit: kcal/mol), standard entropy at 298 K (unit: cal/mol/K)

and constant-pressure heat capacity at 300 K (unit: cal/mol/K). Both datasets are
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currently hosted by a MongoDB instance on RMG server (hostname: rmg. mit. edu)
and support free accessibility.

We held out 20% of the datasets as test sets (polycyclic_2954_tabletest and

cyclic_0_onlytable_test). The remaining 80% (polycyclic_2954_tabletrain

and cyclic_0_onlytabletrain) are used in 5-fold cross-validation; 4 folds for

training the neural networks and 1 fold for validation. Early stopping technique

(using 10% of 4 folds training data) is applied to avoid ovefitting for each round of

cross-validation.

5.5 Results and Discussion

The MCNN-based thermochemistry estimator is implemented via Keras [5]. Source

code is available on Github: https: //github. com/KEHANG/RMG-Py/tree/cnn_framework

concise2.

In order to conduct comparison study, two baseline models are established:

1) RMG's current thermochemistry estimator based on heuristic method, and

2) ECFP model using Extended-Connectivity Fingerprint (thereafter ECFP) op-

eration as featurization and one hidden layer neural network as regression module

(architecture shown in Figure 5.8).

0

c~H 0
Figure 5.8: Architecture of second baseline model using ECFP and fully-connected
neural network as regression module

5.5.1 Performance

Similar to the observation in Chapter 4, the heuristic method gives moderately ac-

curate predictions with overall MAE ~ 6 kcal/mol. Its accuracy drops significantly

as the cyclic structural complexity increases; for large fused polycyclics, the MAE

reaches beyond 10 kcal/mol (see Table 5.1).

Using off-the-shelf featurization, ECFP model performs worst among the three

with overall MAE ~ 10 kcal/mol. Additional study shows more complex non-linear

regression module (e.g., from one hidden layer to multiple layers) doesn't futher im-

prove prediction performace, suggesting ECFP isn't sufficiently effective in extracting

features essential for formation enthalpy prediction.
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Table 5.1: Mean absolute error (kcal/mol) of Hf (298 K) for cyclic hydrocar-
bons and oxygenates. Test Datasets are polycyclic_2954_tabletest and
cyclicOonlytable_test

Method small cyclics large linear cyclics large fused cyclics overall

Heuristic Method 5.0 6.7 10.6 6.2
2048-bit ECFP 10.0 9.8 11.7 10.3

MCNN 1.5 2.0 2.5 1.6

MCNN-based estimator remarkably outperforms the other two, achieving MAE

of 1.6 kcal/mol overall. Without asking for human insights, it reduces MAE for

large fused polycyclics from ~ 10 kcal/mol to 2.5 kcal/mol (Table 5.1 and Figure

5.10). Its effectiveness is probably due to the fact that the featurization is optimized

together with regression; compared with precoded sub-structure features used by

ECFP, MCNN may be able to find higher-level features that are more direct and

essential to formation enthalpy prediction. This can be partially supported by the

observation that MCNN fingerprint with around 200 entries reaches performance

plateau (Figure 5.9), but still has better performance than ECFP with 2048 entries.

I.
I

15

14

13

12

11

10

9

8

7

810 102
Feature Vector Size

103

Figure 5.9: Effect of MCNN fingerprint length on test error (y axis: mean square
error, unit: kcal/mol). Test Datasets are polycyclic_2954_table test and
cyclicOonlytable_test

5.5.2 Model interpretaion

We carried out examination of the learned fingerprints to qualitatively evaluate con-

vergence quality and interpret the embedded meaning. This provides us with several

interesting observations.
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(monocyclics & bicyclics)
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Cyclic Structural Complexity

Figure 5.10: Predictions of enthalpy of formation (y axis) vs. quantum mechan-
ics values (x axis, using DFT method B3LYP/6-31G(2df,p)) with various mod-
els and cyclic types, unit: kcal/mol, dataset: polycyclic_2954_tabletest and
cyclic__onlytable_test

5.5.2.1 Similar molecules have similar fingerprints

In Figure 5.11, we show the first three cyclic hydrocarbons have fingerprints sharing

major high peaks (e.g., the three entries in the beginning section of the fingerprints).

Those peaks are not shared by the linear molecule (last molecule) with same number

of carbons.

5.5.2.2 Simple algebraic property is preserved

As inspired by a famous interpretation example in word embedding [6] that vec-

tor(King) - vector(Queen) results in a vector that is very close to the vector differ-

ence produced by vector(Man) - vector(Woman), we demonstrates similar behavior
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Figure 5.11: Fingerprints generated by MCNN for 4 example molecules

in MCNN featurization (Figure 5.12).

K0-0

0x0-0o

king-qUeen

[I~II~ ii
nan-women

II BI
Figure 5.12: Simple arithmatic check for molecule fingerprints

Graphically, the differences from the two pairs of molecules are similar; for each

pair, the first molecule differs from the second by a 4-member ring. In fingerprint

form, we do see the vector differences are learned to be similar.

5.5.2.3 Prediction on internal molecule stability

With a model interpretation technique used by Coley et al. [3], we are able to learn

what part of molecule MCNN model predicts to be stable or unstable in enthalpy

formation task. Figure 5.13 shows MCNN model is able to identify carbons in strained

configurations (colored red, e.g., in a 3-member ring, or in the fused part) as the

unstable parts of the molecules and carbons in free configurations (colored blue, e.g.,

in 5-member ring or in side-chain) as the stable parts.

5.5.3 Uncertainty

It's extremely difficult or even impossible to prepare a training dataset sampling

molecules uniformly from entire molecule space. In general, estimators usually make

accurate predictions for molecules similar to those in the training set, but are less
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CH,

ZL-OCH3

u_ HH

H2

Figure 5.13: MCNN model suggests red atoms are the most unstable parts of
molecules while blue atoms the most stable

reliable for molecules that are very different. Thus, a single reported performance

metric is not sufficient to indicate prediction error in real applications since a ther-

mochemistry estimator, once trained, allows any input molecules. It is always desired

to have molecule-specific uncertainty along with prediction.

The neural network literature presents a large amount of work on uncertainty
estimation [7, 8]. In this thesis, we provide two approaches: a intuitive distance-

based method[3] and a more rigorous ensemble-based [9] method.

5.5.3.1 Distance-based uncertainty estimation

Intuitively, prediction uncertainty is associated with distance between query molecule

and training molecules in feature space. We create a working curve (Figure 5.14)
which reveals that relationship quantitatively: prediction uncertainty increases with

distance and after distance > 3.5, the uncertainty reaches over 10 kcal/mol.

C0

. Nearest neighbor 6

0 V
MCC H2 1 T)8

Coenes of nw moigle re to training ee r

Figure 5.14: Relation between absolute prediction error for formation enthalpy
and distance to training data (defined as average distance to 5 nearest neigh-
bors in training set). Test datesets are polycyclic_2954_table_test and
cyclic__only table_test
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5.5.3.2 Ensemble-based uncertainty estimation

In addition to the intuitive approach, a more rigourious non-parametric ensemble

method motivated by bootstrap sampling was designed. The bootstrap principle is to

approximate a population distribution by a sample distribution. In its most common

form, bootstrap generates k sets of samples Do,..., Dk from a given data set D by

resampling uniformly with replacement [10]. Each bootstrap data set Di is expected

to have a fraction of the unique samples of D and the rest being duplicates. If the

original data set is a good approximation of the population of interest, one can derive

the sampling distribution of a particular statistic from the collection of its values

arising from the k data sets generated by bootstrapping. Similarly, one can train a

committee of k models using the bootstrap data sets and derive ensemble outputs

for a query, which is known as bagging or bootstrap aggregating [9, 11]. Since the

diversity of the outputs implies the uncertainty in the prediction, one can calculate

the standard deviation of the outputs to quantify the uncertainty and evaluate the

potential benefits of obtaining an accurate value for that molecule, e.g., by performing

a quantum chemistry calculation.

In this study, the ensemble models were implemented using dropout training with

neural networks. That is, instead of building multiple MCNN models, we trained the

original MCNN model from scratch (both MCNN featurization and regression) with

multiple dropout masks, as shown in Figure 5.15.

D DropoutMask

Ar-O 10, E Weights
A- I Dot product

0 0 Element-wIse product

0 Element-wise sum

r__ 1 -40Ae' List ofatems ectors after-thconv

Hlidde Layer

MolConv Layers Learned Fingerprints

Figure 5.15: Dropout training with MCNN model enables uncertainty estimation

Unlike the standard dropout procedure in which the mask is generated on-the-fly

during training, we randomly generated a set of masks before training and saved them

along with the weights of the networks as part of the model. Since applying dropout

masks removes non-output units from a fully connected network [12], a standard

neural net with k dropout masks can be viewed as an ensemble of k sub-networks

that share weights. For each training step, one of the sub-networks was randomly
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selected and optimized with one example (mini-batch of size one). Therefore, each
of the sub-networks is expected to see some duplicated examples and only a fraction
of the training data just as training ensemble models with bootstrap data sets. The
ensemble prediction and estimated uncertainty were derived by averaging and taking

standard deviation of the sub-network outputs.
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Figure 5.16: Errors and uncertainties in the predicted enthalpy of formation. The first
panel, (a), shows that the predictions with higher uncertainties tend to have a broader
true error distribution. This observation can be confirmed by the second panel, (b),
which shows a clear positive correlation between the estimated uncertainties and the
standard deviations of the true error distributions.

As shown in Figure 5.16a, the error distribution is bell-shaped and centered at
the origin at each uncertainty level. Instead of directly interpreting the estimated
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uncertainty (the square root of variance in the committee predictions) as a quantita-

tive estimation of the true error in a prediction, one should view this uncertainty as

a descriptor of the error distribution to which the prediction belongs. Figure 5.16b

shows a clear positive correlation between the estimated uncertainty and the stan-

dard deviation of the true error distribution at each uncertainty level. Therefore, if

the uncertainty in a prediction is small, the error distribution the prediction belongs

to should be narrow, and the probability of having a large error in that prediction

should be low. Moreover, because the estimated uncertainty correlates with the stan-

dard deviations of the error distributions, one can divide the errors by the associated

uncertainties to derive a "standardized" error distribution as shown in Figure 5.17.
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Figure 5.17: Distribution of standardized error (error/uncertainty). The black curve

shows a standard normal distribution (a = 1).

Though the standardized error distribution is not strictly normal (slightly broader

than a normal distribution), it provides a sense of prediction quality, and can be

viewed as a working curve for this method. For instance, given the estimated uncer-

tainty of 1 kcal/mol, the probablity of having true error > 3 kcal/mol is less than

5%.

5.6 Self-evolution

As RMG models increasingly complex systems, thermochemistry estimator needs to

expand its applicability domain. Collecting new training data usually requires in-

tensive computation (e.g., quantum mechanics calculation), so it becomes a practical
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issue how to suggest new training data that is valuable for the estimator to improve

its performance.

In this section we demonstrate the MCNN estimator's ability of suggesting new

training data via a numerical experiment in Subsection 5.6.1. That greatly facilitates

the construction of a pipeline that enables self-evolution of the thermochemistry es-

timator over time (Subsection 5.6.2, 5.6.3). Subsection 5.6.4 shows the expanded

prediction capability of our MCNN estimator in three dimensions.

5.6.1 Experiment of new data selection

In this numerical experiment, we trained a MCNN model with dropout masks (Fig-

ure 5.15) on polycyclic_2954_tabletrain and cyclic 0 onlytable_train and

tested it against polycyclic_2954_tabletest, cyclicOonlytable_test, ex-

actly same as we did for the MCNN model in Section 5.4. In addition, we tested it

on Ncyclicstable test, a test dataset with 9,995 nitrogen-containing molecules.

Since the model has only seen molecules composed of C, H, and 0 atoms, the

MAE on Ncyclicstabletest (18.1 kcal/mol) is much higher than MAEs (~ 2

kcal/mol) of polycyclic 2954_tabletest and cyclic_ _only table_test. The

model correctly assigned higher uncertainties to molecules in Ncyclics_tabletest

than those in polycyclic 2954_table-test, cyclic_0_onlytabletest; Figure

5.18 shows about 1.5% of the test hydrocarbons and oxygenates have uncertainties

higher than 3 kcal/mol, while 9% of the test nitrogen-containing molecules exceed this

level of uncertainty. Therefore, with cutoff of 3 kcal/mol, the model would suggest

picking nitrogen-containing molecules as additional training data six times more likely

than picking hydrocarbons or oxygenates.

Moreover, once the model is trained on a few nitrogen-containing molecules, it

starts to recognize this new type of molecule and make better predictions with more

accurate uncertainty estimations, which further increases the chance of identifying

most beneficial training data. As shown in Figure 5.18, if one adds 100 nitrogen-

containing molecules to the old training data, the percentage of the test nitrogen-

containing examples that exceed the 3 kcal/mol uncertainty level jumps up to 22%,

suggesting 14 times higher chance of picking less known examples (nitrogen-containing

molecules) than the better known ones (hydrocarbons and oxygenates).

5.6.2 Pipeline for self-evolving estimator

Using the ability to suggest new training data effectively, a pipeline was developed

to achieve self-evolution of the estimator. As shown in Figure 5.19, Users query
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Figure 5.18: Cumulative percentage of test molecules above certain uncertainty
level. The black curve, C+0(0), is the combined result of two test datasets:
polycyclic_2954_table test, cyclic_0_onlytabletest. The red and blue
curves, N(O) and N(100), are results of a test set composed of 9,995 nitrogen-
containing species. The numbers in the parentheses are the number of nitrogen-
containing species in the training data.

Users Database

Estimat or Automatic

Figure 5.19: Adaptive pipeline consists of four components: users, estimator,
database, automatic quantum mechanics calculator

for thermochemistry from the Estimator which returns both prediction and uncer-

tainty. If the uncertainty is higher than a pre-defined threshold, the corresponding

query molecule gets registered into Database as an unlabeled data point (i.e., without

thermochemistry data). The Database is responsible for analyzing and prioritizing

the unlabeled molecules as well as storing the ones already labeled with their ther-

mochemical parameters. In the meanwhile, it communicates with the Automatic

Quantum Mechanics Calculator (autoQM, implemented by the author) to launch ab

initio calculations for the highly uncertain molecules. When the calculations are fin-

ished, the thermochemistry data are sent back to the Database waiting to serve as

additional training examples in the next update of the estimator.
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Table 5.2: Data distribution and statistical errors during the
in estimator self-evolution described in Subsection 5.6.3

first three interations

Model 1 Model 2 Model 3

Number of Hydrocarbons 23,582 23,582 23,582
labeled examples Oxygenates

Nitrogen-containing 0 3,846 9,973
molecules

Number of High Uncertaintyb 3,846 6,127 1,049
unlabeled examples' Low Uncertaintyb 36,135 30,008 28,959

Statistical errors (kcal/mol) MSE -15.12 0.48 0.08
on Ncyclicstabletest MAE 18.09 5.21 3.21

(9,995 test molecules) RMSE 23.56 6.84 4.30

aAll the unlabeled examples are nitrogen-containing species. Identified high-
uncertainty examples will be labeled and added to the training set to get a new
generation of model.
bThe cutoff between low and high uncertainty is 3 kcal/mol.

Table 5.3: Prediction performance (mean absolute error) of latest MCNN estimator

Molecule Hf at 298 K S at 298 K C at 300 K Training/test
Shape set size

domain (kcal/mol) (cal/mol/K) (cal/mol/K) (ratio: 4:1)

non-cyclic 1.36 1.08 0.24 4,160/1,040
' ' cyclic 1.81 0.55 0.15 23,584/5,896

non-cyclic 1.61 0.93 0.21 5,808/1,452
N-containing cyclic 1.82 0.62 0.18 39,980/9,995

non-cyclic 4.52 1.83 1.32 104/26
S-containing cyclic 19.66 4.65 1.7 12/3

5.6.3 Self-evolving case study

To demonstrate the self-evolving process, we registered 39,981 unlabeled nitrogen-

containing molecules and 23,582 labeled hydrocarbons and oxygenates to the database

(Table 5.2). The process starts with training the model with the labeled examples

in the database. Since only the hydrocarbons and oxygenates have labels at the

beginning, the initial model (Model 1) is a C,H,O-based model which has not been

exposed to any nitrogen-containing molecules. The uncertainties of the unlabeled

examples, i.e., all the nitrogen-containing molecules, are calculated by Model 1 and

those high-uncertainty ones (uncertainty is higher than a certain cutoff value) will
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Figure 5.20: Error distributions of the low-uncertainty molecules identified by Model
1, Model 2 and Model 3, the three generations of estimators from self-evolution case
study

be labeled and incorporated into the training data to update the model. Since in

practice, high-uncertainty examples have to be subjected to ab initio calculations to

derive their labels, the cutoff for high and low uncertainties is a parameter that needs

to be chosen based on the available computational resources and the requirements

of accuracy in predictions. If the cutoff is too low, a large fraction of the unlabeled

examples will be subjected to ab initio calculations. For this demonstration, the

cutoff was set to 3 kcal/mol.

Similar to experiment result in Section 5.6.1, Table 5.2 shows Model 1 identi-

fies roughly 10% of the nitrogen-containing molecules as high-uncertainty molecules.

Incorporating all of these into the training set significantly improves uncertainty es-

timation quality so the model generated by the second round of training (Model 2)

found 6,127 high-uncertainty examples from the low-uncertainty species of Model 1.

One might expect more high-uncertainty species to be found after the next round of

training (Model 3). But in fact, the number of high uncertainty species determined

by Model 3 is significantly lower than the previous two models because not only

the quality of uncertainty estimates but also the accuracy of prediction have been

improved for nitrogen-containing species in this active learning process.

As shown in Figure 5.20, most of the low-uncertainty species determined by Model

3 indeed have small errors (< 6 kcal/mol), suggesting that the model has successfully

98



expanded its scope from just C,H,O to includes nitrogen-containing molecules.

5.6.4 Expanded prediction capability

The MCNN estimator has significantly expanded its prediction capability since it was

first trained on enthalpy formation data of hydrocarbon polycyclics; now it is able

to predict for a wide range of molecules for the tasks of enthalpy formation, entropy

and heat capacity, as shown in Table 5.3.

C,H,O,N-based molecules have been predicted well, with MAE for Hf: ~ 2

kcal/mol, for both non-cyclic and cyclic categories. Even with very limited train-

ing data for S-containing molecules (~ 100 data points), the MCNN estimator is able

to predict reasonably well for the non-cyclic category across all the three tasks. With

new training data flows in database, we can expect the estimator to further effectively

improve its performance in the S molecule domain. Performance metrics are updated

daily through the web dashboards:

" Enthalpy: kehangsblog. com/thermopredictor/overallperformance/Hf298/

" Entropy: kehangsblog. com/thermopredictor/overallperf ormance/S298/

" Heat capacity: kehangsblog. com/thermopredictor/overall_perf ormance/

Cp/

5.7 Conclusion

In previous attempts to estimate thermochemistry, we greatly relied on human chem-

ical insights to design effective featurization, which often comes with hidden assump-

tions (e.g., heuristic method assumes inter-bicyclic interaction is negligible). However,

as RMG models increasingly complex chemical systems, the thermochemistry esti-

mator encounters new molecule domains which may break the hidden assumptions

(e.g., large fused polycyclics breaking the assumption of heuristic method) and re-

quire new insights for featurization. When such new chemical insights are unavailable

or hard to be converted to straighforward and generalizable estimation formula, one

can hardly improve prediction performance in the target molecule domain even when

data is available.

To let featurization learn from data rather than depend on human input, this chap-

ter presents a new approach via molecular convolutional neural networks (MCNN).

The MCNN estimator successfully learnt an effective, compact and meaningful fea-

turization that helps gain higher accuracy for large fused polycyclics than heuristic
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method, without asking for human insights. Its performance on other types of poly-

cyclics is also superior to those of the previous methods.

We also designed the uncertainty estimation scheme for the MCNN estimator,
which eventually leads to the construction of a pipeline that makes MCNN esti-

mator self-evolve over time. The MCNN estimator has significantly expanded its

prediction capability since its first generation trained on hydrocarbon cyclics' for-

mation enthalpy data; it is now able to predict enthalpy, entropy and heat capacity

for C,H,O,N,S-based molecules (both cyclics and non-cyclics). A web service return-

ing the estimated values for any input C,H,O,N,S molecules is freely accessible via

http://kehangsblog.com/thermo predict or/thermoest imat ion. Besides auto-

matic mechanism generation tools, we also recommend using it in general applications

where a large molecular space has to be scanned/explored with limited time such as

high throughput virtual screening, automatic transition state search, etc.
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6
HEAVY SYSTEM APPLICATION: THERMAL

DECOMPOSITION OF HEAVY OILS

Thermal decomposition of heavy oils forming light petroleum and gases has been very

crucial in many energy applications. One important example is crude oil refinery and

upgrading (especially the produced crude oils have become heavier over the recent

years), which provides the energy support for most human and industrial activities

around the world.

However, even today we have very limited chemical knowledge of the decompo-

sition process. One of the major difficulties in the investigation is that crude oils

have hundreds of heavy components and many contain heteroatoms (e.g., nitrogen

and sulfur). Due to the overwhelming complexity associated with the heavy systems,
lumping strategy is widely employed to simplify kinetic models.

However, it greatly hampers models' extrapolation potential, which becomes a

key issue for applications where direct experiments are impractical (such as geological

formation with timescale in the order of millions of years) and models are fitted at

other experimentally feasible conditions.

As discussed in Chapter 1, reaction mechanisms at level 3 distinguish molecules

and model chemical process through elementary reaction steps, which retain most

fundamental chemistry and thus have greater potential to extrapolate. The construc-

tion of detailed kinetic mechanisms by hand for such complex systems is extremely

difficult. Thus, automatic reaction generation software RMG has been used.

In this study, we chose PDD (phenyldodecane, Figure 6.1) as the model com-

pound to study thermal decomposition of heavy oils. Literature has also presented

extensive experimental and mechanistic investigations on PDD pyrolysis [1-5]. On

the experimental side, PDD and many of its liquid and gaseous products are readily

recoverable and quantifiable by gas chromatography.
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Figure 6.1: PDD (C1 8H30 ); phenyldodecane; 246 amu

6.1 Methods

6.1.1 Reaction model generation

RMG has been used to model a variety of processes and give predictions consistent

with combustion and pyrolysis experiments for a wide range of applications at high

temperature [6-10]. An attempt before this thesis was made to generate a PDD

pyrolysis model with early version of RMG [11]; however, it lacked critical species

found in experiment and never ran to completion. In this study, we used the new

version of RMG software introduced by this thesis.

The PDD model was generated at 35 MPa and temperatures of 250, 350, and

450 C, with a tolerance of c = 0.2 and termination PDD conversions of 0.2, 0.6, and

0.8 respectively. The number of radical electrons was restricted to 1 to aid model

convergence. The final PDD mechanism contains 344 species and 9204 reactions.

The completion of this model largely relies on recent RMG advances such as

pruning [121, reaction filtering [13], polycyclic thermochemistry estimation methods

[14] and improved thermo / kinetics data and estimation rules [151.

Reaction simulations were carried out in a ideal-mixture homogenous batch reac-

tor module of CHEMKIN-PRO [16].

6.1.2 Quantum chemical calculations

Many reaction rate constants and thermochemical parameters from previous work [11,
13-15] were added to RMG database and available for use in this study. Additionally,
we identified reactions that are important for certain predictions and refined their

kinetic parameters using ab initio methods.

Specifically, we used the computational chemistry program Gaussian 03 [17] to

optimize geometries and calculate vibrational frequencies for reactants, products and

transition states at the CBS-QB3 level of theory. The CanTherm (open-source tool,
bundled within RMG) was used to translate quantum mechanic calculations to rate

constants and thermochemical parameters using transition state theory. Modified

Arrhenius constants were then derived with the kinetic parameters added to RMG

as rate rules to allow similar reactions to take place.
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6.2 Results and Discussion

Low temperature modeling has an inherent challenge where uncertainties in kinetics

parameters derived from ab initio calculations are greatly amplified [13]. For instance,
a typical rate coefficient with activation energy E uncertainty 6E = 2 kcal/mol

potentially contributing a factor of 2.7 error at 1000 K can contribute a factor of

2.72 - 7.3 error at 500 K. Thus, the model should be validated extensively. A

collection of various experimental data for PDD pyrolysis at different conditions [2,
4, 5] was obtained from literature and used for model validation. Additionally, Dr.

Reeves conducted PDD confined pyrolysis experiments at 350 C for this study.

6.2.1 PDD conversion prediction

The RMG model for PDD pyrolysis is simulated at various conditions and compared

against experimental data in Figure 6.2 where a shaded error bar reflects a factor of

2 uncertainty. The model predicts the conversion of PDD with moderate accuracy.

There is general agreement between these datasets except for the Lewan experiments,
which were conducted at atmospheric pressure, in contrast to the Behar and Reeves

experiments conducted at 14 MPa and 35 MPa, respectively. Further investigation

may be necessary to determine the full extent of the effects of low pressure on PDD

decomposition. At the temperature and pressure conditions of the Reeves experiment,
confined pyrolysis occurs in a single, liquid phase, but the system is thought to be

multiphase at the conditions of Lewan's experiment.

We currently use RMG's gas phase kinetics of high-pressure-limit rate coefficients

to model this, approximating the system as an ideal-mixture homogenous batch reac-

tor with inert wall. Constant-volume was assumed with adjusted pressure to reflect

liquid PDD density. An investigation into the error caused by these approximations

might be necessary to distinguish the chemistry error from the physics error. In the

future, using an equation of state to constrain the volume profile in CHEMKIN may

improve the approximation.

6.2.2 Products from #3-scission

Additional validation of the model was performed through comparisons with species

profiles from the 400'C experiments of Savage and Klein [2] in Figures 6.3 to 6.4. The

model well predicts the PDD conversion and major products such as toluene, decane

and ethylbenzene yields at these conditions, while it slightly overpredicts styrene and

underpredicts undecane.
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Figure 6.2: PDD conversion in neat pyrolysis and in the presence of DEDS with
respect to temperature. The RMG model is simulated at P = 35 MPa and at different
temperatures with an shaded error bar reflecting a factor of 2 uncertainty. The model
is plotted against various experimental data by Lewan, Behar, Savage and Reeves
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Figure 6.3: Simulated PDD neat pyrolysis molar yields of major species compared
against Savage and Klein experiments conducted at 4000C.

Figure 6.5 shows flux analysis of the reaction network where the major products

predicted in PDD neat pyrolysis are toluene, undecene, ethylbenzene, and decane.

Toluene and undecene arise primarily from PDDrad3, the radical formed by hydrogen

abstraction from the 3rd carbon for the phenyl group in PDD. Styrene, ethylbenzene,

and decane are formed primarily from PDDradl, the radical formed by hydrogen
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Figure 6.4: Simulated PDD neat pyrolysis molar yields of alkane and aromatic species
compared against Savage and Klein experiments conducted at 4000 C.

abstraction from the benzylic carbon adjacent to the phenyl group in PDD. This

radical is resonantly stabilized by the presence of the aromatic ring, therefore more

stable than all other PDD radicals formed from hydrogen abstraction on the aliphatic

chain.

No styrene was observed in the Reeves experiments. The Savage 4000 C 12] ex-

periments also show little styrene formation. This suggests that styrene formed from

PDDradl apparently reacts rapidly at these conditions, probably most of it converts

to ethylbenzene. This pathway is found by RMG: styrene can participate in a re-

verse disproportionation reaction with PDD to form two resonantly stabilized radical

species, leading to the formation of ethylbenzene. The kinetic rate of the reverse dis-

proportionation reaction can largely affect the predicted styrene concentration. While

the model suggests reverse disproportionation is the dominant pathway consuming

styrene, other pathways are also possible, e.g., any radical can add to styrene.

The undecane formation in the RMG model is primarily through the reverse dis-

proportionation reactions where undecene receives a hydrogen from PDD or toluene

to form undecyl radicals. The undecyl radical then abstracts another hydrogen to

form undecane. These reverse disproportionation reactions have very low branching

fraction, as shown in Figure 6.5, but are very important for undecane production.

The fact that current model estimates those parameters from non-exact reaction

analogs might explain the undecane underprediction. Future refinements of the re-

verse disproportionation rates could be important to further improve the prediction

of undecane.
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Figure 6.5: Fluxes of PDD decomposition at 350'C and 35 hours.

6.2.3 Products from ipso-isomerization

Besides products derived from 3-scission of initial PDD radicals, a number of PDD
isomers are found in Reeves experiments, as depicted in Figure 6.6. Those vari-
ous carbon-shifted isomers are from another major decomposition pathway: ipso-
isomerization of PDD radicals, shown in Figure 6.7. These reactions are analogous
to the reactions previously published in the phenyldecane Burkl-Vitzthum mech-
anism. [18]. With the recent advances in polycyclic thermochemistry estimation

methods [14] and quantum mechanic calculations of the Intra_R_Add Exocyclic
and Intra_R_Add_Endocyclic family kinetics carried out by Dr. Khanniche, RMG

was able to find these reaction pathways.

Experimentally beta-scission and ipso-isomerization are the two major competing

pathways for PDD decomposition at 350'C, as summarized in Table 6.1. Figure 6.8
shows the RMG model well captures both of the pathways. But the branching ratio
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of beta-scission to ipso-isomerization is underpredicted. That may be caused by the
fact that the rate parameters are estimated from inconsistent sources. Further high
quality calculations with a consistent level of theory is recommended to refine the
branching ratio.

2-PDD

3-PDD

4-PDD

5-PDD

Figure 6.6: PDD isomers identified in experiment.

6.2.4 Heavy products

Higher molecular weight products were detected in the experiments of the present
work although their chemical structures could not be identified. The model suggests
most of these products are formed from the recombination of resonantly stabilized
radicals (Figure 6.9). Further experimental probing using analytical chemistry tech-
niques that can identify the structures of these recombination products will be useful.

A general product trend in neat pyrolysis in this temperature range is that sat-
urated hydrocarbons are selectively formed over their unsaturated counterparts, i.e.
there are higher concentrations of butane vs. butene, hexane vs. hexene, octane vs
octene, etc. This result is also corroborated in the Savage [2] data. Note that the
simple process where large alkylaromatic converts to small alkylaromatic and alkane
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Table 6.1: The /-scission and ipso-isomerization reactions of the PDD initial radicals
leading to products detected in experiment. PDDradl has a radical closest to the
phenyl group, while PDDrad12 has a radical furthest away from the phenyl group.

Precursor Reaction Type Products

PDDradl O-scission styrene + decane

PDDrad2 3-scission propenylbenzene + nonane

ipso-isomerization 2-PDD

.s o .toluene + undecene

PDDrad3 butenylbenzene + octane

ipso-isomerization 3-PDD

.3-scission ethylbenzene + decene

PDDrad4 pentenylbenzene + heptane

ipso-isomerization 4-PDD

.-scission propylbenzene + nonene

PDDrad5 hexenylbenzene + hexane

ipso-isomerization 5-PDD

.s o .butylbenzene + octene

PDDrad6 heptenylbenzene + pentane

ipso-isomerization 6-PDD

P.-sad7 /3 pentylbenzene + heptene

PDDrad7 octenylbenzene + butane

ipso-isomerization 5-PDD

PDDrad8 /3-scission hexylbenzene + hexene

nonenylbenzene + propane

heptylbenzene + pentene

decenylbenzene + ethane

PDDradlO /3-scission octylbenzene + butene

undecenylbenzene + methane

PDDrad11 /-scission nonylbenzene + propene

PDDrad12 1 -scission decylbenzene + ethene
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PDDrad5

5-PDD

Figure 6.7: Ipso-isomerization reaction of a PDD radical leading to the formation of
a PDD isomer. Several related isomerizations also have high rates.
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Tolue11 Und02 Undm a Ethylbenzne Deown 2-PDD "DD 4-PDD 5-PDD

Figure 6.8: Simulated and experimental data of major species selectivities (moles
produced / moles PDD reacted) at 350'C after 72 hours of reaction time. Left panel
shows the major products from 0-scission pathway, while right panel shows the major
products from ipso-isomerization pathway.

requires some other process to occur in concert to provide the needed H atoms. What

is that process? One hypothesis is that at longer timescales, unsaturated hydrocar-

bons begin to cyclize via diels-alder type reactions, which give up H atoms as they

form polycyclic and polyaromatic ring structures eventually leading to coke. However,
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Figure 6.9: Recombination products in neat PDD pyrolysis.

RMG is currently not able to estimate these reactions due to our lack of elementary

reaction families for polyaromatic hydrocarbon (PAH) formation.

6.3 Conclusion

In this chapter, we conducted mechanistic investigation on the thermal decomposition

of heavy oils. Aimed to better understand the chemical process and provide a reaction

model with high extrapolation potential, we generated a detailed mechanism using

RMG. PDD is chosen as the model compound for this study. Although it was too

complex to model earlier, the new version of RMG was able to generate a complete

model for PDD pyrolysis.

The model predicts PDD conversion and the major products of PDD pyrolysis

experiments found in literature and in the new experiments by Dr. Reeves except

that there is an overprediction of styrene and underprediction of undecane. These

differences could be investigated by looking into the kinetics of related reverse dis-

proportionation reactions to verify that the branching ratios used in this model are

correct. It is also possible that the present model omits some pathways which con-

sume styrene.

For the underprediction of the branching ratio between -scission and ipso-isomoerization

pathways, further high quality calculations with more consistent level of theory is rec-

ommended.
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7
EXTENSION OF RMG: A FRAGMENT-BASED KINETIC

MODELING FRAMEWORK

Full-detailed molecule representation used in RMG allows very high fidelity to the,

true chemistry, and so has superior extrapolation potential. Unfortunately full-detail

quickly becomes intractable for large molecules. To illustrate the poor scalabilty,
consider an example feedstock with M carbons: up to L functionalized carbons (e.g.,
carbonyl, carboxyl, etc.) and remaining CH2 carbons. Suppose there are S different

carbon types for each functionalized carbon to choose from. The number of distinct

molecules is

NfuI-detail E N) N(7.1)

N=O

The largest term in the summation is (j)SL, which gives a lower bound for

Nfjl-detail.

In Nful-detail In s= In M!L (7.2)
LM (M - L)!L!

If we choose M = 30,L = 15 and S = 8, ln Nful-detan > 50: it would require e 50 ~

1022 distinct molecules to represent the feedstock. Even 1 byte per each molecule

requires total memory of 1022 bytes = 1010 terabytes, which is 30 times of entire

Internet data of 2011 [1]. Unfortunately, many applications that have significant

impact on energy, environment and society are complex chemical processes which may

have even larger feedstocks with more than 30 carbons such as crude oil, kerogen,
coal etc.

To model them, less-detailed representation methods are needed. Over the past

decades, people have tried to understand those systems and model the essential chem-

istry. Lumping strategy is widely employed where in early practice molecules were
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lumped based on molecular weights (or boiling points). In lumped models, the reac-

tions are often assumed first-order and irreversible. See an example of 3-lump model

for the catalytic cracking process in Figure 7.1 [2]. Despite simplicity, the lumping

strategy introduces an intrinsic error since the lumps contain molecules with different

reactivities; they don't all react at the same rate as assumed in the lumped model.

Consequently, the composition of a lump changes as the reaction proceeds (e.g. cer-

tain molecules get enriched) so experimentally the lump does not have fixed properties

nor follow first order kinetics. The kinetic parameters are often fitted from a very

limited set of pilot experiments, resulting in poor accuracy in extraploation. When

the feed or the operating condition changes, new experiments are usually required

and model parameters refitted (sometimes even model structure needs to be revised

to account for new chemistry).

Feed Gasoline 3-lump model
I Weekman & Nace, 1970
Feed (> 220'C)
Gasoline (Cs-220'C)
Gas (CIC4) A CokeI

Figure 7.1: A simple lumped model for catalytic cracking process by Weekman and

Nace. From Oliveira et al.

That greatly reduces the predictive capability of a lumped model. Structure-

oriented lumping (SOL) [3, 4] was invented to suggest a different lumping strategy:

lumping by functional groups. It predefines a list of functional groups, and represents

a molecule using a vector of which each entry corresponds to a group and records

the count of that group existing in the molecule. It assumes the functional groups

are chemically independent in a molecule and ignores the connectivity between them.

Its scalability can be illustrated in the same framework set by the aforementioned

example: we have S pre-defined functional groups and up to L = M/2 carbons are

functionalized. The number of distinct molecules equals to the number of distinct

vectors that satisfy:

S
Evi < L (7.3)
i=o

where vi is the ith entry of the vector (length S) that represents a molecule in SOL.

The number of physically meaningful SOL vectors can be approximated by the

volume of the positive hypersphere quadrant with dimension S and radius L. As-
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suming S is even, we have ,

7N S/ 2 (L)S 1
NsLe(S/2)! 2

which can be further simplified by Stirling's approximation into:

NSOL V (L ) (7.5)
2S

If we choose M = 30,L = 15 and S 8, NSOL ~ 200 millions, which is much less

than the full-detail representations but still too large for practical simulations; From

Eq. 7.5 we also see the number of species in SOL grows rapidly with the number of

functional groups allowed per molecule (L, which scales with the molecular weight)

as well as the number of distinct types of functional groups (S).
In this chapter, we propose a fragment-based strategy that supports mechanistic

modeling for large systems with better scalability (see Figure 7.2):

" We designed a fragment-based framework with two innovative components:

fragmentation of model compounds and reattachment of fragments (see de-

tails in Section 7.1), which speeds up modeling process by focusing on kinetics

between key parts of large molecules instead between molecules themselves.

" We demonstrate its accuracy using a case study of pyrolysis of a C18 hydro-

carbon: phenyldodecane (PDD, Section 7.2). By comparing its results against

those from full-detail representation method (RMG), we get good agreements

in feedstock's conversion and product molecular weight distribution (Section

7.3).

" We have built a modeling package AutoFragmentModeling based on this frame-

work. The source code is made available at https: //github. com/KEHANG/

AutoFragmentModeling.

7.1 Fragment modeling framework

This section presents our fragment-based modeling framework. It starts with defini-

tion of fragment and fragmentization, and proceeds with a case study detailing how

to generate fragment reactions, and estimate fragment-based kinetics and thermo-

chemistry.
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7.1.1 Fragment

In fragment modeling, we see a large molecule as a combination of molecular frag-

ments. Each molecular fragment is defined as an entity which consists of multiple

functional groups and preserves their original connectivity in the molecule. In that

sense, a molecular fragment can be viewed as a middle layer entity between molecule

and functional groups. Unlike SOL assuming little spacial interaction between func-

tional groups, the fragment framework accounts for the interaction by accommodating

related functional groups within the fragment, which may help improve model fidelity.

This concept makes a much more compact representation for feedstock than afore-

mentioned methods. Using the previous example, suppose fragments have K carbons

on average, the total number of distinct species in the fragment representation is

Nfragment = s' (7.6)

Since fragments are much smaller than molecules, we choose K = 5 with same

parameter setup as previous (S = 8), Nfragment = 33, 000. Eq. 7.6 also shows

Nfragment doesn't increase when dealing with larger molecules as long as modellers

keep fragment size and functional groups fixed. Scalability comparison is made in

Figure 7.2. 5-carbon fragments provide a smaller number of species than SOL for

C10 or larger -feeds. For heavy feeds, e.g., >C25, even an 8-carbon fragment is a

more compact representation than SOL.

120

100

60

40

20

01

Carbon number In fadstock

Figure 7.2: Scaling behaviors of number of distinct species with feedstock size for

three different methods, assuming 8 distinct carbon arom types, and that at least

half of the carbons in the large molecules are not functionalized (i.e., L = M/2).
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7.1.2 Fragmentization

The fragmentization is a modeling step of converting feedstocks to fragments. It has

three working scenarios.

" A) systems where individual molecule structures are currently not possible to

characterize but molecular weight distribution can be obtained as well as con-

centrations of functional groups.

* B) systems where individual molecule structures can be characterized

* C) systems where modellers have selected model compounds (with known molec-

* ular structures)

In scenario A, one needs to predefine fragment types based on characterized func-

tional groups and solve for initial fragment concentrations by minimizing the de-

viations between model and characterization data, which is very similar to regular

feedstock reconstruction procedure. [4-6]

In scenario B and C, with original molecule structure at hand, we fragmentize

the feedstock molecules with two competing considerations: making fragments small

to reduce computation cost, while enlarging fragments to keep important reactivities

locally. This chapter includes a case study of phenyldodecane pyrolysis, of which the

fragmentation step is shown in Figure 7.3.

R- I

ArCCCCR RCCCCR RC

Figure 7.3: In the case study, phenyldodecane is fragmentized into three types of
fragments

7.2 Case study

In this section we designed a case study to demonstrate the fragment-based modeling

workflow. In addition, by comparing prediction results of a fragment-based model

with those of a detailed model by RMG, we were able to assess feasibility of the

proposed framework.
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The target large system was purposefully chosen: low-temperature pyrolysis of

phenyldodecane (thereafer PDD), which is one of the largest systems ever modeled

using the full-detail representation by RMG (Chapter 6).

7.2.1 fragmentation

In a PDD molecule, the carbons on the long alkyl chain experience aromatic influ-

ence, which decreases with distance from the benzene ring. The first four carbons, a,

3, y and 3 carbon, are most influenced, which leads us to create the first fragment

ArCCCCR that contains these carbons shown in Figure 7.3. Second fragment RCC-

CCR represents the remaining alkyl carbons that behave as regular carbons on a long

alkyl chain. The terminal carbon is separately represented by the third fragment RC.

7.2.2 fragment reaction generation

In order to capture the key chemistry of PDD pyrolysis, we defined four elementary

reaction families (listed below) for the case study.

" bond-fission / radical-recombination, Figure 7.4

" beta-scission / multiple-bond-addition, Figure 7.5

* hydrogen-abstraction, Figure 7.6

" disproportionation, Figure 7.7

Figure 7.4: Example reactions for reaction type: bond-fission / radical-recombination

Figure 7.5: Example reaction for reaction type: 3-scission / multiple-bond-addition

Cross-reaction generation currently is achieved semi-automatically via AutoFragmentModeling;

modellers have to input a list of fragments and their reactions (see the input format

below) to AutoFragmentModeling, which facilitates the model construction process
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Figure 7.6: Example reaction for reaction type: hydrogen-abstraction

Figure 7.7: Example reaction for reaction type: disproportionation

by automatic bookkeeping, duplicate checking, thermochemistry and kinetics estima-

tion.

In particular, AutoFragmentModeling has designed SMILES identifier for frag-

ment (see example fragments defined in input file below) and implemented SMILES

parser which creates fragment graph structure from text representation. It has also

implemented fragment isomorphism algorithm, enabling fragment bookkeeping and

duplicate identification.

# This is a fragment input file

# 1st part is stable fragments

# label: fragment SMILES

ArC(CCCR)CCCR: clcccccIC(CCCR)CCCR

ArCC: c1ccccc1CC

ArCCC: clccccclCCC

H2: [H] [H]

RCC: RCC

RCCC: RCCC

RCCCCC__CC: RCCCCC=CC

# 2nd part is radical fragments

# label: fragment SMILES

RCCC*: RCC[CH2]

ArC*: clcccccl[CH2]

RCC*: RC[CH2]

ArCC*: clccccclC[CH2]

RC*: R[CH2]

ArCCC*: c1ccccc1CC[CH2J

On the other hand, reaction string parser has been created to help AutoFragmentModeling
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understand and process human readable fragment reaction representations (see ex-

ample reactions below), which provides equivalent service for reaction bookkeeping.

In addition, it also checks if a certain fragment reaction is a viable elementary step.

# This is a fragment reaction input file

# Beta-scissions: RAdditionMultipleBond

ArC*CCCR == ArC__C + RCC*

ArCC*CCR == ArCC__C + RC*

# Disproportionations: Disproportionation

ArC__C + C__CC__CC == ArC*C + C_CC__CC*

ArC__C + ArCCCCR == ArC*C + ArC*CCCR

Future functionalities such as automatic fragment reaction generation and selec-

tion are desired to be added.

7.2.2.1 thermo and kinetics estimation

AutoFragmentModeling estimates thermodynamic properties and kinetic parameters

based on first principle data to gain high transferability. In practice, it creates for

query fragment a representative molecule and sends the molecule to RMG's ther-

mochemistry estimator; the returned thermochemistry of the representative molecule

will be regarded as the fragment's. A similar scheme is in place for fragment kinetic

estimation.

Fragment Representative Thermo
molecule property

R M --- H1 , S, C,

Figure 7.8: Fragment thermochemistry estimation scheme in AutoFragmentModeling
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7.3 Results and Discussions

A final model was generated using AutoFragmentModeling v1. 0.0. It has 76 frag-

ment species and 528 reactions. Compared with molecule-based model (ref to PDD

paper), it reduces species and reactions by 5 and 17 times, respectively.

We conduct kinetic simulations in Cantera's [7] homogeneous batch reactor mod-

ule at 673 K and 350 bar using both models: one is molecule-based model by RMG-Py

v2 .0.0, the other is fragment-based model by AutoFragmentModeling v1. 0.0.

7.3.1 feedstock conversion

The feedstock composition for both simulations is 100% PDD. Since the fragment-

based model doesn't have PDD as a whole molecule representation, we set initial

composition equivalently to 26.7 mol% ArCCCCR, 46.7 mol% RCCCCR, and 26.7

mol% RC. When calculating feedstock conversion, we choose ArCCCCR's conversion

as an approximation for PDD's conversion since most ArCCCCR belongs to PDD

especially in early conversion.

1.0

0.8

0.6 -

0.4 -

0.2

0.0L
10 100

Time / hr
101-1

Figure 7.9: Agreement between feedstock conversions predicted by
model (RMG v2.0.0) and fragment-based model (this work)

molecule-based

As Figure 7.9 shows, feedstock conversions predicted by these two models agree

very well with each other when conversion < 0.6, after which the two predictions start

to deviate (by around 0.15 eventually). One major source causing the discrepancy is

that ArCCCCR appears in many other products in late conversion of PDD, which

makes it no longer an accurate proxy for PDD.
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7.3.2 selected products comparison

Molar yields (defined as moles produced per initial PDD mole) of a few selected

products are also compared between the two models (Figure 7.10). Toluene and

ethylbenzene are the two major products from PDD pyrolysis, both of which are

well captured by the fragment-based model. It also predicts heavy products, which
are typically generated from radical recombination (e.g., bottom right in Figure

7.10, RArArR) or multiple bond addition followed by hydrogen abstraction (e.g.,
bottom left in Figure 7.10, ArC(CCCR)CCCR). RArArR from the fragment-based
model is compared with clccccclC(CCCCCCCCCCC)C(CCCCCCCCCCC)clcccccl
(SMILES) from molecule-based model, and ArC(CCCR)CCCR from the fragment-
based model is compared with clccccclC(CCCCCCCCCCC)CCCCCCCCCCC (SMILES)
from molecule-based model.
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Figure 7.10: Major light products (toluene and ethylbenzene) and heavy products
are predicted by molecule-based model via RMG v2.0.0 and fragment-based model
via AutoFragmentModeling v1.0.0 with their molar yields compared.

7.3.3 molecular weight distribution

Sole ODE / PDE simulation in fragment space predicts fragment distribution which

makes limited predictions on molecule level, as shown in Figure 7.9 and 7.10, as a

fragment can appear in multiple molecules. To link fragment distribution back to
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molecule distribution, we designed a reattachment algorithm that merges fragments

into molecules.

However, the fragmentation step has lost connectivity information between frag-

ments in the original feedstock molecule. If allowing fragments to merge randomly,

reattachment would lead to frequent nonphysical reattachment, e.g., reattachment

between ArCCCCR and itself, impairing molecular prediction accuracy. Thus, we

modified the fragmentation step (Figure 7.3) to retain information of fragment con-

nectivity , as shown in Figure 7.11 by annotating fragments with pairing fragmenta-

tion labels; if two fragments are originally connected, one of them has R-label and

the other L-label.

ArCCCCR LCCCCR LC

Figure 7.11: Fragmentation of PDD with two fragmentation label types: R-label and
L-label

Most of the nonphysical reattachments can be easily prevented with the the new

fragmentation by requiring two merging fragments to have compatible label types;

reattachment is only allowed when a fragment contains R-label and the other L-label

(Figure 7.12).

compatible Incompatble

Figure 7.12: Compatible reattachment example (left panel) and incompatible reat-
tachment example (right panel)

It should be noted that the reattachment provides one possible realization of

product distribution. Statistically, the variance of all possible realizations can be

reduced by introducing more pairs of fragmentation labels, as it helps retain more
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information of fragment connectivity in original molecules. But it also creates more

distinct fragments, increasing computation workload during cross-reaction generation.

To balance with model construction cost, in this case study we choose to have one pair

of fragmentation labels. Its reconstruction effectiveness is shown in Figure 7.13; the

fragment-based model preserves most of prediction accuracy on products' molecular

weight distribution from detailed model by RMG.
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Figure 7.13: molecular weight distributions of PDD pyrolysis agree reasonably well
between molecule-based model by RMG v2.0.0 and fragment-based model by Aut-
oFragmentModeling v1.0.0.

7.4 Conclusion

In this chapter, we designed a new kinetic modeling framework with fragment concept.

Two key components in the framework make it scalable to model large kinetic systems:

the fragmentation of feedstock molecules reduces the number of species and reactions

needed to describe the chemical systems, and the reattachment of fragments allows

predictions at molecule level.

A proof-of-concept case study using C18 pyrolysis has been carried out. Compared

with RMG's detailed model, the fragment-based model has 17 times fewer reactions,

but gives similar predictions on feedstock conversion, major product molar yields

and molecular weight distribution. This demonstrates the promising potential of the

fragment-based framework in modeling large.systems which RMG cannot handle well.
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8
RECOMMENDATIONS FOR FUTURE WORK

This thesis has made several contributions to enabling automated construction of high

fidelity kinetic models for large complex chemical systems. Among them, are memory

usage reduction, concurrent model construction, improved cyclic thermochemistry

estimations. With these improvements integrated into RMG, a subsurface oil-to-

gas application was chosen and modelled, whose success highlights RMG's modeling

capability expanding toward very complex systems. Additionally, a novel modeling

strategy was designed to complement RMG's detailed modeling strategy, which opens

new opportunities to constructing accurate models for extremely large systems. This

chapter presents several challenges that become important and possible to solve with

recent advances in the automatic kinetic modeling community.

8.1 Data-driven estimation

With recent advances in machine learning and data science, many estimation tasks in

RMG can obtain great benefit. One example in this thesis is the data-driven MCNN

estimator for thermochemistry, which outperforms many traditional methods. During

traditional estimator development process, researchers have to collect data, look for

patterns, gain insights (e.g., our heuristic model) and eventutally translate them

to mathematic terms (model formulation). Data-driven estimation accelerates the

process by employing automatic pattern recognition and relating patterns directly to

prediction targets. It has significant advantage in boosting accuracy over traditional

estimations especially when insights are difficult to generate or generalize but data

collection is relatively easy. In order to pursue that within RMG scope, there are at

least two subjects requiring future research attention.
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8.1.1 Central database

We need a central database dedicated to raw data storage to support development

of future data-driven estimator. The main database in our group is RMG-database.

However, it is not designed for training and testing purposes. Instead its data prac-

tically serves as the parameters of many RMG's estimators such as group-additivity-

based estimator, library-based estimator, rate-rule-based estimator. Its text-based

nature enables easy version control, but also prevents it from benefitting from recent

advances in database management, e.g., quick query, easy insertion/deletion, status

reporting, etc.

In this thesis, I have done some preliminary work in establishing a central database

to store raw thermochemistry data via widely used database framework MongoDB.

Each data point is associated with its meta data, e.g., level of theory, timestamp.

The database is hosted by RMG server, allowing free accessibility. The standardized

central database frees RMG developers from carrying raw data around. Since the

data has been already cleaned, it enables us to mainly focus on creating, training,

testing and comparing data-driven estimators with exactly same base.

Several aspects of the central database still need futher work:

* Easy online tools for data query, insertion, visualization. Currently a series

of ipython notebooks have been in place to serve the purposes for developers.

Online web tools will be more desirable for general users outside the group.

" Massive data generation. I have implmented an automatic thermochemistry

calculator autoQM which takes a molecule identifier (e.g., SMILES), creates 3D

initial geometry, launch a quantum mechanics job and convert the job result to

thermodynamic properties. It currently only supports Guassian with SLURM

scheduler. Future work may extend that to other quantum mechanics softwares,

job schedulers as well as kinetic parameter calculations via automatic transition

state search.

" Set up kinetic central database for development of future kinetic estimators.

As an extension of thermo central database, kinetic central database can start

by addng existing elementary reactions stored in RMG's libraries and training

reaction libraries. At next stage of further enlarging reaction domain, autoQM

kinetic jobs can be launched to supply necessary kinetic data.
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8.1.2 Interpretation research

As discussed in Chapter 5, MCNN-based estimator successfully learnt patterns in

large fused polycyclics. Although we have done some qulitative interpretation analysis

for the learned fingerprints, more rigorous interpretation analysis can be conducted.

Gomez-Bombarelli et al. [1] developed an auto-encoder whose decoder was able to map

fingerprint space back to molecule space. It would be worthwhile pairing our MCNN

estimator with an appropriately selected decoder, which can be used to visualize each

learned fingerprint entry in molecule space.

8.2 Quality control

As RMG turns into a large scale scientific software, quality control becomes an in-

creasingly important subject as any small code modification may introduce unex-

pected chain effect leading to execution failure or performance loss. Since RMG

development follows modularized philosophy, it is straightforward to pair individual

functionality with one or more unit tests. That has already widely adopted among

RMG developers, which effectively prevents or early detects functionality breakdown.

For performance loss, we have built our own continuous integration test platform:

RMG-tests. It is designed to automatically compare model construction results for a

collection of applications, between previous version and pull-requested version with

new changes. RMG-tests currently has two types of performance monitoring: esti-

mator prediction, RMG model generation.

9 Add kinetic prediction tests. For estimator performance, RMG-tests currently

only tests thermodynamic property prediction. Kinetic performance is not mon-

itored mainly due to lack of test data. The situation can be improved by the

establishment of kinetic central database.

9 For R.MG model generation tests, the selection of applications should be up-

dated with RMG development status. Currently it only reflects a fraction of

chemistry RMG is able to model. On the other hand, most of the applications

have little experimental data. An effort should be made to create a structured

dataset containing application level data e.g., conversion and speciation. That

will help the RMG team to decide if a code change is beneficial and accelerates

new feature development.
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8.3 Fragment modeling

This thesis presents a fragment-based modeling strategy, which has much better scal-

ability than previous methods in dealing with extremely large chemical systems. The

proof-of-concept case study demonstrates its possibility of making an accurate ki-

netic model. The basic framework has been implmented in AutoFragmentModeling

package. There are several aspects listed below for future improvements.

o Automatic reaction generation for fragments should be implemented in Aut oFragmentModeling.

Ideally, the related methods in RMG could be modified to accept fragment for-

mat.

o Currently we need user inputs to divide molecules into fragments, which could

be made more intelligent and automated.

o It is an undesirable behavior during model generation that the range of frag-

ment sizes increases over time (heavier fragments get formed via recombination,

smaller ones via decomposition). The heavier fragments increasing modeling

complexity need to be further divided, while smaller ones need to be reattached

to reclaim reactivity. Thus, integration of more frequent fragmentation and

reattachment into model generation may be valuable.
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